4 * Kernel internal timers, basic process system calls
6 * Copyright (C) 1991, 1992 Linus Torvalds
8 * 1997-01-28 Modified by Finn Arne Gangstad to make timers scale better.
10 * 1997-09-10 Updated NTP code according to technical memorandum Jan '96
11 * "A Kernel Model for Precision Timekeeping" by Dave Mills
12 * 1998-12-24 Fixed a xtime SMP race (we need the xtime_lock rw spinlock to
13 * serialize accesses to xtime/lost_ticks).
14 * Copyright (C) 1998 Andrea Arcangeli
15 * 1999-03-10 Improved NTP compatibility by Ulrich Windl
16 * 2002-05-31 Move sys_sysinfo here and make its locking sane, Robert Love
17 * 2000-10-05 Implemented scalable SMP per-CPU timer handling.
18 * Copyright (C) 2000, 2001, 2002 Ingo Molnar
19 * Designed by David S. Miller, Alexey Kuznetsov and Ingo Molnar
22 #include <linux/kernel_stat.h>
23 #include <linux/module.h>
24 #include <linux/interrupt.h>
25 #include <linux/percpu.h>
26 #include <linux/init.h>
28 #include <linux/swap.h>
29 #include <linux/pid_namespace.h>
30 #include <linux/notifier.h>
31 #include <linux/thread_info.h>
32 #include <linux/time.h>
33 #include <linux/jiffies.h>
34 #include <linux/posix-timers.h>
35 #include <linux/cpu.h>
36 #include <linux/syscalls.h>
37 #include <linux/delay.h>
38 #include <linux/tick.h>
39 #include <linux/kallsyms.h>
41 #include <asm/uaccess.h>
42 #include <asm/unistd.h>
43 #include <asm/div64.h>
44 #include <asm/timex.h>
47 u64 jiffies_64 __cacheline_aligned_in_smp
= INITIAL_JIFFIES
;
49 EXPORT_SYMBOL(jiffies_64
);
52 * per-CPU timer vector definitions:
54 #define TVN_BITS (CONFIG_BASE_SMALL ? 4 : 6)
55 #define TVR_BITS (CONFIG_BASE_SMALL ? 6 : 8)
56 #define TVN_SIZE (1 << TVN_BITS)
57 #define TVR_SIZE (1 << TVR_BITS)
58 #define TVN_MASK (TVN_SIZE - 1)
59 #define TVR_MASK (TVR_SIZE - 1)
62 struct list_head vec
[TVN_SIZE
];
66 struct list_head vec
[TVR_SIZE
];
71 struct timer_list
*running_timer
;
72 unsigned long timer_jiffies
;
78 } ____cacheline_aligned
;
80 struct tvec_base boot_tvec_bases
;
81 EXPORT_SYMBOL(boot_tvec_bases
);
82 static DEFINE_PER_CPU(struct tvec_base
*, tvec_bases
) = &boot_tvec_bases
;
85 * Note that all tvec_bases are 2 byte aligned and lower bit of
86 * base in timer_list is guaranteed to be zero. Use the LSB for
87 * the new flag to indicate whether the timer is deferrable
89 #define TBASE_DEFERRABLE_FLAG (0x1)
91 /* Functions below help us manage 'deferrable' flag */
92 static inline unsigned int tbase_get_deferrable(struct tvec_base
*base
)
94 return ((unsigned int)(unsigned long)base
& TBASE_DEFERRABLE_FLAG
);
97 static inline struct tvec_base
*tbase_get_base(struct tvec_base
*base
)
99 return ((struct tvec_base
*)((unsigned long)base
& ~TBASE_DEFERRABLE_FLAG
));
102 static inline void timer_set_deferrable(struct timer_list
*timer
)
104 timer
->base
= ((struct tvec_base
*)((unsigned long)(timer
->base
) |
105 TBASE_DEFERRABLE_FLAG
));
109 timer_set_base(struct timer_list
*timer
, struct tvec_base
*new_base
)
111 timer
->base
= (struct tvec_base
*)((unsigned long)(new_base
) |
112 tbase_get_deferrable(timer
->base
));
115 static unsigned long round_jiffies_common(unsigned long j
, int cpu
,
119 unsigned long original
= j
;
122 * We don't want all cpus firing their timers at once hitting the
123 * same lock or cachelines, so we skew each extra cpu with an extra
124 * 3 jiffies. This 3 jiffies came originally from the mm/ code which
126 * The skew is done by adding 3*cpunr, then round, then subtract this
127 * extra offset again.
134 * If the target jiffie is just after a whole second (which can happen
135 * due to delays of the timer irq, long irq off times etc etc) then
136 * we should round down to the whole second, not up. Use 1/4th second
137 * as cutoff for this rounding as an extreme upper bound for this.
138 * But never round down if @force_up is set.
140 if (rem
< HZ
/4 && !force_up
) /* round down */
145 /* now that we have rounded, subtract the extra skew again */
148 if (j
<= jiffies
) /* rounding ate our timeout entirely; */
154 * __round_jiffies - function to round jiffies to a full second
155 * @j: the time in (absolute) jiffies that should be rounded
156 * @cpu: the processor number on which the timeout will happen
158 * __round_jiffies() rounds an absolute time in the future (in jiffies)
159 * up or down to (approximately) full seconds. This is useful for timers
160 * for which the exact time they fire does not matter too much, as long as
161 * they fire approximately every X seconds.
163 * By rounding these timers to whole seconds, all such timers will fire
164 * at the same time, rather than at various times spread out. The goal
165 * of this is to have the CPU wake up less, which saves power.
167 * The exact rounding is skewed for each processor to avoid all
168 * processors firing at the exact same time, which could lead
169 * to lock contention or spurious cache line bouncing.
171 * The return value is the rounded version of the @j parameter.
173 unsigned long __round_jiffies(unsigned long j
, int cpu
)
175 return round_jiffies_common(j
, cpu
, false);
177 EXPORT_SYMBOL_GPL(__round_jiffies
);
180 * __round_jiffies_relative - function to round jiffies to a full second
181 * @j: the time in (relative) jiffies that should be rounded
182 * @cpu: the processor number on which the timeout will happen
184 * __round_jiffies_relative() rounds a time delta in the future (in jiffies)
185 * up or down to (approximately) full seconds. This is useful for timers
186 * for which the exact time they fire does not matter too much, as long as
187 * they fire approximately every X seconds.
189 * By rounding these timers to whole seconds, all such timers will fire
190 * at the same time, rather than at various times spread out. The goal
191 * of this is to have the CPU wake up less, which saves power.
193 * The exact rounding is skewed for each processor to avoid all
194 * processors firing at the exact same time, which could lead
195 * to lock contention or spurious cache line bouncing.
197 * The return value is the rounded version of the @j parameter.
199 unsigned long __round_jiffies_relative(unsigned long j
, int cpu
)
201 unsigned long j0
= jiffies
;
203 /* Use j0 because jiffies might change while we run */
204 return round_jiffies_common(j
+ j0
, cpu
, false) - j0
;
206 EXPORT_SYMBOL_GPL(__round_jiffies_relative
);
209 * round_jiffies - function to round jiffies to a full second
210 * @j: the time in (absolute) jiffies that should be rounded
212 * round_jiffies() rounds an absolute time in the future (in jiffies)
213 * up or down to (approximately) full seconds. This is useful for timers
214 * for which the exact time they fire does not matter too much, as long as
215 * they fire approximately every X seconds.
217 * By rounding these timers to whole seconds, all such timers will fire
218 * at the same time, rather than at various times spread out. The goal
219 * of this is to have the CPU wake up less, which saves power.
221 * The return value is the rounded version of the @j parameter.
223 unsigned long round_jiffies(unsigned long j
)
225 return round_jiffies_common(j
, raw_smp_processor_id(), false);
227 EXPORT_SYMBOL_GPL(round_jiffies
);
230 * round_jiffies_relative - function to round jiffies to a full second
231 * @j: the time in (relative) jiffies that should be rounded
233 * round_jiffies_relative() rounds a time delta in the future (in jiffies)
234 * up or down to (approximately) full seconds. This is useful for timers
235 * for which the exact time they fire does not matter too much, as long as
236 * they fire approximately every X seconds.
238 * By rounding these timers to whole seconds, all such timers will fire
239 * at the same time, rather than at various times spread out. The goal
240 * of this is to have the CPU wake up less, which saves power.
242 * The return value is the rounded version of the @j parameter.
244 unsigned long round_jiffies_relative(unsigned long j
)
246 return __round_jiffies_relative(j
, raw_smp_processor_id());
248 EXPORT_SYMBOL_GPL(round_jiffies_relative
);
251 * __round_jiffies_up - function to round jiffies up to a full second
252 * @j: the time in (absolute) jiffies that should be rounded
253 * @cpu: the processor number on which the timeout will happen
255 * This is the same as __round_jiffies() except that it will never
256 * round down. This is useful for timeouts for which the exact time
257 * of firing does not matter too much, as long as they don't fire too
260 unsigned long __round_jiffies_up(unsigned long j
, int cpu
)
262 return round_jiffies_common(j
, cpu
, true);
264 EXPORT_SYMBOL_GPL(__round_jiffies_up
);
267 * __round_jiffies_up_relative - function to round jiffies up to a full second
268 * @j: the time in (relative) jiffies that should be rounded
269 * @cpu: the processor number on which the timeout will happen
271 * This is the same as __round_jiffies_relative() except that it will never
272 * round down. This is useful for timeouts for which the exact time
273 * of firing does not matter too much, as long as they don't fire too
276 unsigned long __round_jiffies_up_relative(unsigned long j
, int cpu
)
278 unsigned long j0
= jiffies
;
280 /* Use j0 because jiffies might change while we run */
281 return round_jiffies_common(j
+ j0
, cpu
, true) - j0
;
283 EXPORT_SYMBOL_GPL(__round_jiffies_up_relative
);
286 * round_jiffies_up - function to round jiffies up to a full second
287 * @j: the time in (absolute) jiffies that should be rounded
289 * This is the same as round_jiffies() except that it will never
290 * round down. This is useful for timeouts for which the exact time
291 * of firing does not matter too much, as long as they don't fire too
294 unsigned long round_jiffies_up(unsigned long j
)
296 return round_jiffies_common(j
, raw_smp_processor_id(), true);
298 EXPORT_SYMBOL_GPL(round_jiffies_up
);
301 * round_jiffies_up_relative - function to round jiffies up to a full second
302 * @j: the time in (relative) jiffies that should be rounded
304 * This is the same as round_jiffies_relative() except that it will never
305 * round down. This is useful for timeouts for which the exact time
306 * of firing does not matter too much, as long as they don't fire too
309 unsigned long round_jiffies_up_relative(unsigned long j
)
311 return __round_jiffies_up_relative(j
, raw_smp_processor_id());
313 EXPORT_SYMBOL_GPL(round_jiffies_up_relative
);
316 static inline void set_running_timer(struct tvec_base
*base
,
317 struct timer_list
*timer
)
320 base
->running_timer
= timer
;
324 static void internal_add_timer(struct tvec_base
*base
, struct timer_list
*timer
)
326 unsigned long expires
= timer
->expires
;
327 unsigned long idx
= expires
- base
->timer_jiffies
;
328 struct list_head
*vec
;
330 if (idx
< TVR_SIZE
) {
331 int i
= expires
& TVR_MASK
;
332 vec
= base
->tv1
.vec
+ i
;
333 } else if (idx
< 1 << (TVR_BITS
+ TVN_BITS
)) {
334 int i
= (expires
>> TVR_BITS
) & TVN_MASK
;
335 vec
= base
->tv2
.vec
+ i
;
336 } else if (idx
< 1 << (TVR_BITS
+ 2 * TVN_BITS
)) {
337 int i
= (expires
>> (TVR_BITS
+ TVN_BITS
)) & TVN_MASK
;
338 vec
= base
->tv3
.vec
+ i
;
339 } else if (idx
< 1 << (TVR_BITS
+ 3 * TVN_BITS
)) {
340 int i
= (expires
>> (TVR_BITS
+ 2 * TVN_BITS
)) & TVN_MASK
;
341 vec
= base
->tv4
.vec
+ i
;
342 } else if ((signed long) idx
< 0) {
344 * Can happen if you add a timer with expires == jiffies,
345 * or you set a timer to go off in the past
347 vec
= base
->tv1
.vec
+ (base
->timer_jiffies
& TVR_MASK
);
350 /* If the timeout is larger than 0xffffffff on 64-bit
351 * architectures then we use the maximum timeout:
353 if (idx
> 0xffffffffUL
) {
355 expires
= idx
+ base
->timer_jiffies
;
357 i
= (expires
>> (TVR_BITS
+ 3 * TVN_BITS
)) & TVN_MASK
;
358 vec
= base
->tv5
.vec
+ i
;
363 list_add_tail(&timer
->entry
, vec
);
366 #ifdef CONFIG_TIMER_STATS
367 void __timer_stats_timer_set_start_info(struct timer_list
*timer
, void *addr
)
369 if (timer
->start_site
)
372 timer
->start_site
= addr
;
373 memcpy(timer
->start_comm
, current
->comm
, TASK_COMM_LEN
);
374 timer
->start_pid
= current
->pid
;
377 static void timer_stats_account_timer(struct timer_list
*timer
)
379 unsigned int flag
= 0;
381 if (unlikely(tbase_get_deferrable(timer
->base
)))
382 flag
|= TIMER_STATS_FLAG_DEFERRABLE
;
384 timer_stats_update_stats(timer
, timer
->start_pid
, timer
->start_site
,
385 timer
->function
, timer
->start_comm
, flag
);
389 static void timer_stats_account_timer(struct timer_list
*timer
) {}
392 #ifdef CONFIG_DEBUG_OBJECTS_TIMERS
394 static struct debug_obj_descr timer_debug_descr
;
397 * fixup_init is called when:
398 * - an active object is initialized
400 static int timer_fixup_init(void *addr
, enum debug_obj_state state
)
402 struct timer_list
*timer
= addr
;
405 case ODEBUG_STATE_ACTIVE
:
406 del_timer_sync(timer
);
407 debug_object_init(timer
, &timer_debug_descr
);
415 * fixup_activate is called when:
416 * - an active object is activated
417 * - an unknown object is activated (might be a statically initialized object)
419 static int timer_fixup_activate(void *addr
, enum debug_obj_state state
)
421 struct timer_list
*timer
= addr
;
425 case ODEBUG_STATE_NOTAVAILABLE
:
427 * This is not really a fixup. The timer was
428 * statically initialized. We just make sure that it
429 * is tracked in the object tracker.
431 if (timer
->entry
.next
== NULL
&&
432 timer
->entry
.prev
== TIMER_ENTRY_STATIC
) {
433 debug_object_init(timer
, &timer_debug_descr
);
434 debug_object_activate(timer
, &timer_debug_descr
);
441 case ODEBUG_STATE_ACTIVE
:
450 * fixup_free is called when:
451 * - an active object is freed
453 static int timer_fixup_free(void *addr
, enum debug_obj_state state
)
455 struct timer_list
*timer
= addr
;
458 case ODEBUG_STATE_ACTIVE
:
459 del_timer_sync(timer
);
460 debug_object_free(timer
, &timer_debug_descr
);
467 static struct debug_obj_descr timer_debug_descr
= {
468 .name
= "timer_list",
469 .fixup_init
= timer_fixup_init
,
470 .fixup_activate
= timer_fixup_activate
,
471 .fixup_free
= timer_fixup_free
,
474 static inline void debug_timer_init(struct timer_list
*timer
)
476 debug_object_init(timer
, &timer_debug_descr
);
479 static inline void debug_timer_activate(struct timer_list
*timer
)
481 debug_object_activate(timer
, &timer_debug_descr
);
484 static inline void debug_timer_deactivate(struct timer_list
*timer
)
486 debug_object_deactivate(timer
, &timer_debug_descr
);
489 static inline void debug_timer_free(struct timer_list
*timer
)
491 debug_object_free(timer
, &timer_debug_descr
);
494 static void __init_timer(struct timer_list
*timer
,
496 struct lock_class_key
*key
);
498 void init_timer_on_stack_key(struct timer_list
*timer
,
500 struct lock_class_key
*key
)
502 debug_object_init_on_stack(timer
, &timer_debug_descr
);
503 __init_timer(timer
, name
, key
);
505 EXPORT_SYMBOL_GPL(init_timer_on_stack_key
);
507 void destroy_timer_on_stack(struct timer_list
*timer
)
509 debug_object_free(timer
, &timer_debug_descr
);
511 EXPORT_SYMBOL_GPL(destroy_timer_on_stack
);
514 static inline void debug_timer_init(struct timer_list
*timer
) { }
515 static inline void debug_timer_activate(struct timer_list
*timer
) { }
516 static inline void debug_timer_deactivate(struct timer_list
*timer
) { }
519 static void __init_timer(struct timer_list
*timer
,
521 struct lock_class_key
*key
)
523 timer
->entry
.next
= NULL
;
524 timer
->base
= __raw_get_cpu_var(tvec_bases
);
525 #ifdef CONFIG_TIMER_STATS
526 timer
->start_site
= NULL
;
527 timer
->start_pid
= -1;
528 memset(timer
->start_comm
, 0, TASK_COMM_LEN
);
530 lockdep_init_map(&timer
->lockdep_map
, name
, key
, 0);
534 * init_timer_key - initialize a timer
535 * @timer: the timer to be initialized
536 * @name: name of the timer
537 * @key: lockdep class key of the fake lock used for tracking timer
538 * sync lock dependencies
540 * init_timer_key() must be done to a timer prior calling *any* of the
541 * other timer functions.
543 void init_timer_key(struct timer_list
*timer
,
545 struct lock_class_key
*key
)
547 debug_timer_init(timer
);
548 __init_timer(timer
, name
, key
);
550 EXPORT_SYMBOL(init_timer_key
);
552 void init_timer_deferrable_key(struct timer_list
*timer
,
554 struct lock_class_key
*key
)
556 init_timer_key(timer
, name
, key
);
557 timer_set_deferrable(timer
);
559 EXPORT_SYMBOL(init_timer_deferrable_key
);
561 static inline void detach_timer(struct timer_list
*timer
,
564 struct list_head
*entry
= &timer
->entry
;
566 debug_timer_deactivate(timer
);
568 __list_del(entry
->prev
, entry
->next
);
571 entry
->prev
= LIST_POISON2
;
575 * We are using hashed locking: holding per_cpu(tvec_bases).lock
576 * means that all timers which are tied to this base via timer->base are
577 * locked, and the base itself is locked too.
579 * So __run_timers/migrate_timers can safely modify all timers which could
580 * be found on ->tvX lists.
582 * When the timer's base is locked, and the timer removed from list, it is
583 * possible to set timer->base = NULL and drop the lock: the timer remains
586 static struct tvec_base
*lock_timer_base(struct timer_list
*timer
,
587 unsigned long *flags
)
588 __acquires(timer
->base
->lock
)
590 struct tvec_base
*base
;
593 struct tvec_base
*prelock_base
= timer
->base
;
594 base
= tbase_get_base(prelock_base
);
595 if (likely(base
!= NULL
)) {
596 spin_lock_irqsave(&base
->lock
, *flags
);
597 if (likely(prelock_base
== timer
->base
))
599 /* The timer has migrated to another CPU */
600 spin_unlock_irqrestore(&base
->lock
, *flags
);
607 __mod_timer(struct timer_list
*timer
, unsigned long expires
, bool pending_only
)
609 struct tvec_base
*base
, *new_base
;
615 timer_stats_timer_set_start_info(timer
);
616 BUG_ON(!timer
->function
);
618 base
= lock_timer_base(timer
, &flags
);
620 if (timer_pending(timer
)) {
621 detach_timer(timer
, 0);
628 debug_timer_activate(timer
);
630 new_base
= __get_cpu_var(tvec_bases
);
632 if (base
!= new_base
) {
634 * We are trying to schedule the timer on the local CPU.
635 * However we can't change timer's base while it is running,
636 * otherwise del_timer_sync() can't detect that the timer's
637 * handler yet has not finished. This also guarantees that
638 * the timer is serialized wrt itself.
640 if (likely(base
->running_timer
!= timer
)) {
641 /* See the comment in lock_timer_base() */
642 timer_set_base(timer
, NULL
);
643 spin_unlock(&base
->lock
);
645 spin_lock(&base
->lock
);
646 timer_set_base(timer
, base
);
650 timer
->expires
= expires
;
651 internal_add_timer(base
, timer
);
654 spin_unlock_irqrestore(&base
->lock
, flags
);
660 * mod_timer_pending - modify a pending timer's timeout
661 * @timer: the pending timer to be modified
662 * @expires: new timeout in jiffies
664 * mod_timer_pending() is the same for pending timers as mod_timer(),
665 * but will not re-activate and modify already deleted timers.
667 * It is useful for unserialized use of timers.
669 int mod_timer_pending(struct timer_list
*timer
, unsigned long expires
)
671 return __mod_timer(timer
, expires
, true);
673 EXPORT_SYMBOL(mod_timer_pending
);
676 * mod_timer - modify a timer's timeout
677 * @timer: the timer to be modified
678 * @expires: new timeout in jiffies
680 * mod_timer() is a more efficient way to update the expire field of an
681 * active timer (if the timer is inactive it will be activated)
683 * mod_timer(timer, expires) is equivalent to:
685 * del_timer(timer); timer->expires = expires; add_timer(timer);
687 * Note that if there are multiple unserialized concurrent users of the
688 * same timer, then mod_timer() is the only safe way to modify the timeout,
689 * since add_timer() cannot modify an already running timer.
691 * The function returns whether it has modified a pending timer or not.
692 * (ie. mod_timer() of an inactive timer returns 0, mod_timer() of an
693 * active timer returns 1.)
695 int mod_timer(struct timer_list
*timer
, unsigned long expires
)
698 * This is a common optimization triggered by the
699 * networking code - if the timer is re-modified
700 * to be the same thing then just return:
702 if (timer
->expires
== expires
&& timer_pending(timer
))
705 return __mod_timer(timer
, expires
, false);
707 EXPORT_SYMBOL(mod_timer
);
710 * add_timer - start a timer
711 * @timer: the timer to be added
713 * The kernel will do a ->function(->data) callback from the
714 * timer interrupt at the ->expires point in the future. The
715 * current time is 'jiffies'.
717 * The timer's ->expires, ->function (and if the handler uses it, ->data)
718 * fields must be set prior calling this function.
720 * Timers with an ->expires field in the past will be executed in the next
723 void add_timer(struct timer_list
*timer
)
725 BUG_ON(timer_pending(timer
));
726 mod_timer(timer
, timer
->expires
);
728 EXPORT_SYMBOL(add_timer
);
731 * add_timer_on - start a timer on a particular CPU
732 * @timer: the timer to be added
733 * @cpu: the CPU to start it on
735 * This is not very scalable on SMP. Double adds are not possible.
737 void add_timer_on(struct timer_list
*timer
, int cpu
)
739 struct tvec_base
*base
= per_cpu(tvec_bases
, cpu
);
742 timer_stats_timer_set_start_info(timer
);
743 BUG_ON(timer_pending(timer
) || !timer
->function
);
744 spin_lock_irqsave(&base
->lock
, flags
);
745 timer_set_base(timer
, base
);
746 debug_timer_activate(timer
);
747 internal_add_timer(base
, timer
);
749 * Check whether the other CPU is idle and needs to be
750 * triggered to reevaluate the timer wheel when nohz is
751 * active. We are protected against the other CPU fiddling
752 * with the timer by holding the timer base lock. This also
753 * makes sure that a CPU on the way to idle can not evaluate
756 wake_up_idle_cpu(cpu
);
757 spin_unlock_irqrestore(&base
->lock
, flags
);
761 * del_timer - deactive a timer.
762 * @timer: the timer to be deactivated
764 * del_timer() deactivates a timer - this works on both active and inactive
767 * The function returns whether it has deactivated a pending timer or not.
768 * (ie. del_timer() of an inactive timer returns 0, del_timer() of an
769 * active timer returns 1.)
771 int del_timer(struct timer_list
*timer
)
773 struct tvec_base
*base
;
777 timer_stats_timer_clear_start_info(timer
);
778 if (timer_pending(timer
)) {
779 base
= lock_timer_base(timer
, &flags
);
780 if (timer_pending(timer
)) {
781 detach_timer(timer
, 1);
784 spin_unlock_irqrestore(&base
->lock
, flags
);
789 EXPORT_SYMBOL(del_timer
);
793 * try_to_del_timer_sync - Try to deactivate a timer
794 * @timer: timer do del
796 * This function tries to deactivate a timer. Upon successful (ret >= 0)
797 * exit the timer is not queued and the handler is not running on any CPU.
799 * It must not be called from interrupt contexts.
801 int try_to_del_timer_sync(struct timer_list
*timer
)
803 struct tvec_base
*base
;
807 base
= lock_timer_base(timer
, &flags
);
809 if (base
->running_timer
== timer
)
813 if (timer_pending(timer
)) {
814 detach_timer(timer
, 1);
818 spin_unlock_irqrestore(&base
->lock
, flags
);
822 EXPORT_SYMBOL(try_to_del_timer_sync
);
825 * del_timer_sync - deactivate a timer and wait for the handler to finish.
826 * @timer: the timer to be deactivated
828 * This function only differs from del_timer() on SMP: besides deactivating
829 * the timer it also makes sure the handler has finished executing on other
832 * Synchronization rules: Callers must prevent restarting of the timer,
833 * otherwise this function is meaningless. It must not be called from
834 * interrupt contexts. The caller must not hold locks which would prevent
835 * completion of the timer's handler. The timer's handler must not call
836 * add_timer_on(). Upon exit the timer is not queued and the handler is
837 * not running on any CPU.
839 * The function returns whether it has deactivated a pending timer or not.
841 int del_timer_sync(struct timer_list
*timer
)
843 #ifdef CONFIG_LOCKDEP
846 local_irq_save(flags
);
847 lock_map_acquire(&timer
->lockdep_map
);
848 lock_map_release(&timer
->lockdep_map
);
849 local_irq_restore(flags
);
853 int ret
= try_to_del_timer_sync(timer
);
859 EXPORT_SYMBOL(del_timer_sync
);
862 static int cascade(struct tvec_base
*base
, struct tvec
*tv
, int index
)
864 /* cascade all the timers from tv up one level */
865 struct timer_list
*timer
, *tmp
;
866 struct list_head tv_list
;
868 list_replace_init(tv
->vec
+ index
, &tv_list
);
871 * We are removing _all_ timers from the list, so we
872 * don't have to detach them individually.
874 list_for_each_entry_safe(timer
, tmp
, &tv_list
, entry
) {
875 BUG_ON(tbase_get_base(timer
->base
) != base
);
876 internal_add_timer(base
, timer
);
882 #define INDEX(N) ((base->timer_jiffies >> (TVR_BITS + (N) * TVN_BITS)) & TVN_MASK)
885 * __run_timers - run all expired timers (if any) on this CPU.
886 * @base: the timer vector to be processed.
888 * This function cascades all vectors and executes all expired timer
891 static inline void __run_timers(struct tvec_base
*base
)
893 struct timer_list
*timer
;
895 spin_lock_irq(&base
->lock
);
896 while (time_after_eq(jiffies
, base
->timer_jiffies
)) {
897 struct list_head work_list
;
898 struct list_head
*head
= &work_list
;
899 int index
= base
->timer_jiffies
& TVR_MASK
;
905 (!cascade(base
, &base
->tv2
, INDEX(0))) &&
906 (!cascade(base
, &base
->tv3
, INDEX(1))) &&
907 !cascade(base
, &base
->tv4
, INDEX(2)))
908 cascade(base
, &base
->tv5
, INDEX(3));
909 ++base
->timer_jiffies
;
910 list_replace_init(base
->tv1
.vec
+ index
, &work_list
);
911 while (!list_empty(head
)) {
912 void (*fn
)(unsigned long);
915 timer
= list_first_entry(head
, struct timer_list
,entry
);
916 fn
= timer
->function
;
919 timer_stats_account_timer(timer
);
921 set_running_timer(base
, timer
);
922 detach_timer(timer
, 1);
924 spin_unlock_irq(&base
->lock
);
926 int preempt_count
= preempt_count();
928 #ifdef CONFIG_LOCKDEP
930 * It is permissible to free the timer from
931 * inside the function that is called from
932 * it, this we need to take into account for
933 * lockdep too. To avoid bogus "held lock
934 * freed" warnings as well as problems when
935 * looking into timer->lockdep_map, make a
936 * copy and use that here.
938 struct lockdep_map lockdep_map
=
942 * Couple the lock chain with the lock chain at
943 * del_timer_sync() by acquiring the lock_map
944 * around the fn() call here and in
947 lock_map_acquire(&lockdep_map
);
951 lock_map_release(&lockdep_map
);
953 if (preempt_count
!= preempt_count()) {
954 printk(KERN_ERR
"huh, entered %p "
955 "with preempt_count %08x, exited"
962 spin_lock_irq(&base
->lock
);
965 set_running_timer(base
, NULL
);
966 spin_unlock_irq(&base
->lock
);
971 * Find out when the next timer event is due to happen. This
972 * is used on S/390 to stop all activity when a cpus is idle.
973 * This functions needs to be called disabled.
975 static unsigned long __next_timer_interrupt(struct tvec_base
*base
)
977 unsigned long timer_jiffies
= base
->timer_jiffies
;
978 unsigned long expires
= timer_jiffies
+ NEXT_TIMER_MAX_DELTA
;
979 int index
, slot
, array
, found
= 0;
980 struct timer_list
*nte
;
981 struct tvec
*varray
[4];
983 /* Look for timer events in tv1. */
984 index
= slot
= timer_jiffies
& TVR_MASK
;
986 list_for_each_entry(nte
, base
->tv1
.vec
+ slot
, entry
) {
987 if (tbase_get_deferrable(nte
->base
))
991 expires
= nte
->expires
;
992 /* Look at the cascade bucket(s)? */
993 if (!index
|| slot
< index
)
997 slot
= (slot
+ 1) & TVR_MASK
;
998 } while (slot
!= index
);
1001 /* Calculate the next cascade event */
1003 timer_jiffies
+= TVR_SIZE
- index
;
1004 timer_jiffies
>>= TVR_BITS
;
1006 /* Check tv2-tv5. */
1007 varray
[0] = &base
->tv2
;
1008 varray
[1] = &base
->tv3
;
1009 varray
[2] = &base
->tv4
;
1010 varray
[3] = &base
->tv5
;
1012 for (array
= 0; array
< 4; array
++) {
1013 struct tvec
*varp
= varray
[array
];
1015 index
= slot
= timer_jiffies
& TVN_MASK
;
1017 list_for_each_entry(nte
, varp
->vec
+ slot
, entry
) {
1019 if (time_before(nte
->expires
, expires
))
1020 expires
= nte
->expires
;
1023 * Do we still search for the first timer or are
1024 * we looking up the cascade buckets ?
1027 /* Look at the cascade bucket(s)? */
1028 if (!index
|| slot
< index
)
1032 slot
= (slot
+ 1) & TVN_MASK
;
1033 } while (slot
!= index
);
1036 timer_jiffies
+= TVN_SIZE
- index
;
1037 timer_jiffies
>>= TVN_BITS
;
1043 * Check, if the next hrtimer event is before the next timer wheel
1046 static unsigned long cmp_next_hrtimer_event(unsigned long now
,
1047 unsigned long expires
)
1049 ktime_t hr_delta
= hrtimer_get_next_event();
1050 struct timespec tsdelta
;
1051 unsigned long delta
;
1053 if (hr_delta
.tv64
== KTIME_MAX
)
1057 * Expired timer available, let it expire in the next tick
1059 if (hr_delta
.tv64
<= 0)
1062 tsdelta
= ktime_to_timespec(hr_delta
);
1063 delta
= timespec_to_jiffies(&tsdelta
);
1066 * Limit the delta to the max value, which is checked in
1067 * tick_nohz_stop_sched_tick():
1069 if (delta
> NEXT_TIMER_MAX_DELTA
)
1070 delta
= NEXT_TIMER_MAX_DELTA
;
1073 * Take rounding errors in to account and make sure, that it
1074 * expires in the next tick. Otherwise we go into an endless
1075 * ping pong due to tick_nohz_stop_sched_tick() retriggering
1081 if (time_before(now
, expires
))
1087 * get_next_timer_interrupt - return the jiffy of the next pending timer
1088 * @now: current time (in jiffies)
1090 unsigned long get_next_timer_interrupt(unsigned long now
)
1092 struct tvec_base
*base
= __get_cpu_var(tvec_bases
);
1093 unsigned long expires
;
1095 spin_lock(&base
->lock
);
1096 expires
= __next_timer_interrupt(base
);
1097 spin_unlock(&base
->lock
);
1099 if (time_before_eq(expires
, now
))
1102 return cmp_next_hrtimer_event(now
, expires
);
1107 * Called from the timer interrupt handler to charge one tick to the current
1108 * process. user_tick is 1 if the tick is user time, 0 for system.
1110 void update_process_times(int user_tick
)
1112 struct task_struct
*p
= current
;
1113 int cpu
= smp_processor_id();
1115 /* Note: this timer irq context must be accounted for as well. */
1116 account_process_tick(p
, user_tick
);
1118 if (rcu_pending(cpu
))
1119 rcu_check_callbacks(cpu
, user_tick
);
1122 run_posix_cpu_timers(p
);
1126 * Nr of active tasks - counted in fixed-point numbers
1128 static unsigned long count_active_tasks(void)
1130 return nr_active() * FIXED_1
;
1134 * Hmm.. Changed this, as the GNU make sources (load.c) seems to
1135 * imply that avenrun[] is the standard name for this kind of thing.
1136 * Nothing else seems to be standardized: the fractional size etc
1137 * all seem to differ on different machines.
1139 * Requires xtime_lock to access.
1141 unsigned long avenrun
[3];
1143 EXPORT_SYMBOL(avenrun
);
1146 * calc_load - given tick count, update the avenrun load estimates.
1147 * This is called while holding a write_lock on xtime_lock.
1149 static inline void calc_load(unsigned long ticks
)
1151 unsigned long active_tasks
; /* fixed-point */
1152 static int count
= LOAD_FREQ
;
1155 if (unlikely(count
< 0)) {
1156 active_tasks
= count_active_tasks();
1158 CALC_LOAD(avenrun
[0], EXP_1
, active_tasks
);
1159 CALC_LOAD(avenrun
[1], EXP_5
, active_tasks
);
1160 CALC_LOAD(avenrun
[2], EXP_15
, active_tasks
);
1162 } while (count
< 0);
1167 * This function runs timers and the timer-tq in bottom half context.
1169 static void run_timer_softirq(struct softirq_action
*h
)
1171 struct tvec_base
*base
= __get_cpu_var(tvec_bases
);
1173 hrtimer_run_pending();
1175 if (time_after_eq(jiffies
, base
->timer_jiffies
))
1180 * Called by the local, per-CPU timer interrupt on SMP.
1182 void run_local_timers(void)
1184 hrtimer_run_queues();
1185 raise_softirq(TIMER_SOFTIRQ
);
1190 * Called by the timer interrupt. xtime_lock must already be taken
1193 static inline void update_times(unsigned long ticks
)
1200 * The 64-bit jiffies value is not atomic - you MUST NOT read it
1201 * without sampling the sequence number in xtime_lock.
1202 * jiffies is defined in the linker script...
1205 void do_timer(unsigned long ticks
)
1207 jiffies_64
+= ticks
;
1208 update_times(ticks
);
1211 #ifdef __ARCH_WANT_SYS_ALARM
1214 * For backwards compatibility? This can be done in libc so Alpha
1215 * and all newer ports shouldn't need it.
1217 SYSCALL_DEFINE1(alarm
, unsigned int, seconds
)
1219 return alarm_setitimer(seconds
);
1227 * The Alpha uses getxpid, getxuid, and getxgid instead. Maybe this
1228 * should be moved into arch/i386 instead?
1232 * sys_getpid - return the thread group id of the current process
1234 * Note, despite the name, this returns the tgid not the pid. The tgid and
1235 * the pid are identical unless CLONE_THREAD was specified on clone() in
1236 * which case the tgid is the same in all threads of the same group.
1238 * This is SMP safe as current->tgid does not change.
1240 SYSCALL_DEFINE0(getpid
)
1242 return task_tgid_vnr(current
);
1246 * Accessing ->real_parent is not SMP-safe, it could
1247 * change from under us. However, we can use a stale
1248 * value of ->real_parent under rcu_read_lock(), see
1249 * release_task()->call_rcu(delayed_put_task_struct).
1251 SYSCALL_DEFINE0(getppid
)
1256 pid
= task_tgid_vnr(current
->real_parent
);
1262 SYSCALL_DEFINE0(getuid
)
1264 /* Only we change this so SMP safe */
1265 return current_uid();
1268 SYSCALL_DEFINE0(geteuid
)
1270 /* Only we change this so SMP safe */
1271 return current_euid();
1274 SYSCALL_DEFINE0(getgid
)
1276 /* Only we change this so SMP safe */
1277 return current_gid();
1280 SYSCALL_DEFINE0(getegid
)
1282 /* Only we change this so SMP safe */
1283 return current_egid();
1288 static void process_timeout(unsigned long __data
)
1290 wake_up_process((struct task_struct
*)__data
);
1294 * schedule_timeout - sleep until timeout
1295 * @timeout: timeout value in jiffies
1297 * Make the current task sleep until @timeout jiffies have
1298 * elapsed. The routine will return immediately unless
1299 * the current task state has been set (see set_current_state()).
1301 * You can set the task state as follows -
1303 * %TASK_UNINTERRUPTIBLE - at least @timeout jiffies are guaranteed to
1304 * pass before the routine returns. The routine will return 0
1306 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1307 * delivered to the current task. In this case the remaining time
1308 * in jiffies will be returned, or 0 if the timer expired in time
1310 * The current task state is guaranteed to be TASK_RUNNING when this
1313 * Specifying a @timeout value of %MAX_SCHEDULE_TIMEOUT will schedule
1314 * the CPU away without a bound on the timeout. In this case the return
1315 * value will be %MAX_SCHEDULE_TIMEOUT.
1317 * In all cases the return value is guaranteed to be non-negative.
1319 signed long __sched
schedule_timeout(signed long timeout
)
1321 struct timer_list timer
;
1322 unsigned long expire
;
1326 case MAX_SCHEDULE_TIMEOUT
:
1328 * These two special cases are useful to be comfortable
1329 * in the caller. Nothing more. We could take
1330 * MAX_SCHEDULE_TIMEOUT from one of the negative value
1331 * but I' d like to return a valid offset (>=0) to allow
1332 * the caller to do everything it want with the retval.
1338 * Another bit of PARANOID. Note that the retval will be
1339 * 0 since no piece of kernel is supposed to do a check
1340 * for a negative retval of schedule_timeout() (since it
1341 * should never happens anyway). You just have the printk()
1342 * that will tell you if something is gone wrong and where.
1345 printk(KERN_ERR
"schedule_timeout: wrong timeout "
1346 "value %lx\n", timeout
);
1348 current
->state
= TASK_RUNNING
;
1353 expire
= timeout
+ jiffies
;
1355 setup_timer_on_stack(&timer
, process_timeout
, (unsigned long)current
);
1356 __mod_timer(&timer
, expire
, false);
1358 del_singleshot_timer_sync(&timer
);
1360 /* Remove the timer from the object tracker */
1361 destroy_timer_on_stack(&timer
);
1363 timeout
= expire
- jiffies
;
1366 return timeout
< 0 ? 0 : timeout
;
1368 EXPORT_SYMBOL(schedule_timeout
);
1371 * We can use __set_current_state() here because schedule_timeout() calls
1372 * schedule() unconditionally.
1374 signed long __sched
schedule_timeout_interruptible(signed long timeout
)
1376 __set_current_state(TASK_INTERRUPTIBLE
);
1377 return schedule_timeout(timeout
);
1379 EXPORT_SYMBOL(schedule_timeout_interruptible
);
1381 signed long __sched
schedule_timeout_killable(signed long timeout
)
1383 __set_current_state(TASK_KILLABLE
);
1384 return schedule_timeout(timeout
);
1386 EXPORT_SYMBOL(schedule_timeout_killable
);
1388 signed long __sched
schedule_timeout_uninterruptible(signed long timeout
)
1390 __set_current_state(TASK_UNINTERRUPTIBLE
);
1391 return schedule_timeout(timeout
);
1393 EXPORT_SYMBOL(schedule_timeout_uninterruptible
);
1395 /* Thread ID - the internal kernel "pid" */
1396 SYSCALL_DEFINE0(gettid
)
1398 return task_pid_vnr(current
);
1402 * do_sysinfo - fill in sysinfo struct
1403 * @info: pointer to buffer to fill
1405 int do_sysinfo(struct sysinfo
*info
)
1407 unsigned long mem_total
, sav_total
;
1408 unsigned int mem_unit
, bitcount
;
1411 memset(info
, 0, sizeof(struct sysinfo
));
1415 seq
= read_seqbegin(&xtime_lock
);
1418 * This is annoying. The below is the same thing
1419 * posix_get_clock_monotonic() does, but it wants to
1420 * take the lock which we want to cover the loads stuff
1424 getnstimeofday(&tp
);
1425 tp
.tv_sec
+= wall_to_monotonic
.tv_sec
;
1426 tp
.tv_nsec
+= wall_to_monotonic
.tv_nsec
;
1427 monotonic_to_bootbased(&tp
);
1428 if (tp
.tv_nsec
- NSEC_PER_SEC
>= 0) {
1429 tp
.tv_nsec
= tp
.tv_nsec
- NSEC_PER_SEC
;
1432 info
->uptime
= tp
.tv_sec
+ (tp
.tv_nsec
? 1 : 0);
1434 info
->loads
[0] = avenrun
[0] << (SI_LOAD_SHIFT
- FSHIFT
);
1435 info
->loads
[1] = avenrun
[1] << (SI_LOAD_SHIFT
- FSHIFT
);
1436 info
->loads
[2] = avenrun
[2] << (SI_LOAD_SHIFT
- FSHIFT
);
1438 info
->procs
= nr_threads
;
1439 } while (read_seqretry(&xtime_lock
, seq
));
1445 * If the sum of all the available memory (i.e. ram + swap)
1446 * is less than can be stored in a 32 bit unsigned long then
1447 * we can be binary compatible with 2.2.x kernels. If not,
1448 * well, in that case 2.2.x was broken anyways...
1450 * -Erik Andersen <andersee@debian.org>
1453 mem_total
= info
->totalram
+ info
->totalswap
;
1454 if (mem_total
< info
->totalram
|| mem_total
< info
->totalswap
)
1457 mem_unit
= info
->mem_unit
;
1458 while (mem_unit
> 1) {
1461 sav_total
= mem_total
;
1463 if (mem_total
< sav_total
)
1468 * If mem_total did not overflow, multiply all memory values by
1469 * info->mem_unit and set it to 1. This leaves things compatible
1470 * with 2.2.x, and also retains compatibility with earlier 2.4.x
1475 info
->totalram
<<= bitcount
;
1476 info
->freeram
<<= bitcount
;
1477 info
->sharedram
<<= bitcount
;
1478 info
->bufferram
<<= bitcount
;
1479 info
->totalswap
<<= bitcount
;
1480 info
->freeswap
<<= bitcount
;
1481 info
->totalhigh
<<= bitcount
;
1482 info
->freehigh
<<= bitcount
;
1488 SYSCALL_DEFINE1(sysinfo
, struct sysinfo __user
*, info
)
1494 if (copy_to_user(info
, &val
, sizeof(struct sysinfo
)))
1500 static int __cpuinit
init_timers_cpu(int cpu
)
1503 struct tvec_base
*base
;
1504 static char __cpuinitdata tvec_base_done
[NR_CPUS
];
1506 if (!tvec_base_done
[cpu
]) {
1507 static char boot_done
;
1511 * The APs use this path later in boot
1513 base
= kmalloc_node(sizeof(*base
),
1514 GFP_KERNEL
| __GFP_ZERO
,
1519 /* Make sure that tvec_base is 2 byte aligned */
1520 if (tbase_get_deferrable(base
)) {
1525 per_cpu(tvec_bases
, cpu
) = base
;
1528 * This is for the boot CPU - we use compile-time
1529 * static initialisation because per-cpu memory isn't
1530 * ready yet and because the memory allocators are not
1531 * initialised either.
1534 base
= &boot_tvec_bases
;
1536 tvec_base_done
[cpu
] = 1;
1538 base
= per_cpu(tvec_bases
, cpu
);
1541 spin_lock_init(&base
->lock
);
1543 for (j
= 0; j
< TVN_SIZE
; j
++) {
1544 INIT_LIST_HEAD(base
->tv5
.vec
+ j
);
1545 INIT_LIST_HEAD(base
->tv4
.vec
+ j
);
1546 INIT_LIST_HEAD(base
->tv3
.vec
+ j
);
1547 INIT_LIST_HEAD(base
->tv2
.vec
+ j
);
1549 for (j
= 0; j
< TVR_SIZE
; j
++)
1550 INIT_LIST_HEAD(base
->tv1
.vec
+ j
);
1552 base
->timer_jiffies
= jiffies
;
1556 #ifdef CONFIG_HOTPLUG_CPU
1557 static void migrate_timer_list(struct tvec_base
*new_base
, struct list_head
*head
)
1559 struct timer_list
*timer
;
1561 while (!list_empty(head
)) {
1562 timer
= list_first_entry(head
, struct timer_list
, entry
);
1563 detach_timer(timer
, 0);
1564 timer_set_base(timer
, new_base
);
1565 internal_add_timer(new_base
, timer
);
1569 static void __cpuinit
migrate_timers(int cpu
)
1571 struct tvec_base
*old_base
;
1572 struct tvec_base
*new_base
;
1575 BUG_ON(cpu_online(cpu
));
1576 old_base
= per_cpu(tvec_bases
, cpu
);
1577 new_base
= get_cpu_var(tvec_bases
);
1579 * The caller is globally serialized and nobody else
1580 * takes two locks at once, deadlock is not possible.
1582 spin_lock_irq(&new_base
->lock
);
1583 spin_lock_nested(&old_base
->lock
, SINGLE_DEPTH_NESTING
);
1585 BUG_ON(old_base
->running_timer
);
1587 for (i
= 0; i
< TVR_SIZE
; i
++)
1588 migrate_timer_list(new_base
, old_base
->tv1
.vec
+ i
);
1589 for (i
= 0; i
< TVN_SIZE
; i
++) {
1590 migrate_timer_list(new_base
, old_base
->tv2
.vec
+ i
);
1591 migrate_timer_list(new_base
, old_base
->tv3
.vec
+ i
);
1592 migrate_timer_list(new_base
, old_base
->tv4
.vec
+ i
);
1593 migrate_timer_list(new_base
, old_base
->tv5
.vec
+ i
);
1596 spin_unlock(&old_base
->lock
);
1597 spin_unlock_irq(&new_base
->lock
);
1598 put_cpu_var(tvec_bases
);
1600 #endif /* CONFIG_HOTPLUG_CPU */
1602 static int __cpuinit
timer_cpu_notify(struct notifier_block
*self
,
1603 unsigned long action
, void *hcpu
)
1605 long cpu
= (long)hcpu
;
1607 case CPU_UP_PREPARE
:
1608 case CPU_UP_PREPARE_FROZEN
:
1609 if (init_timers_cpu(cpu
) < 0)
1612 #ifdef CONFIG_HOTPLUG_CPU
1614 case CPU_DEAD_FROZEN
:
1615 migrate_timers(cpu
);
1624 static struct notifier_block __cpuinitdata timers_nb
= {
1625 .notifier_call
= timer_cpu_notify
,
1629 void __init
init_timers(void)
1631 int err
= timer_cpu_notify(&timers_nb
, (unsigned long)CPU_UP_PREPARE
,
1632 (void *)(long)smp_processor_id());
1636 BUG_ON(err
== NOTIFY_BAD
);
1637 register_cpu_notifier(&timers_nb
);
1638 open_softirq(TIMER_SOFTIRQ
, run_timer_softirq
);
1642 * msleep - sleep safely even with waitqueue interruptions
1643 * @msecs: Time in milliseconds to sleep for
1645 void msleep(unsigned int msecs
)
1647 unsigned long timeout
= msecs_to_jiffies(msecs
) + 1;
1650 timeout
= schedule_timeout_uninterruptible(timeout
);
1653 EXPORT_SYMBOL(msleep
);
1656 * msleep_interruptible - sleep waiting for signals
1657 * @msecs: Time in milliseconds to sleep for
1659 unsigned long msleep_interruptible(unsigned int msecs
)
1661 unsigned long timeout
= msecs_to_jiffies(msecs
) + 1;
1663 while (timeout
&& !signal_pending(current
))
1664 timeout
= schedule_timeout_interruptible(timeout
);
1665 return jiffies_to_msecs(timeout
);
1668 EXPORT_SYMBOL(msleep_interruptible
);