]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - kernel/timer.c
Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/dtor/input
[mirror_ubuntu-bionic-kernel.git] / kernel / timer.c
1 /*
2 * linux/kernel/timer.c
3 *
4 * Kernel internal timers, basic process system calls
5 *
6 * Copyright (C) 1991, 1992 Linus Torvalds
7 *
8 * 1997-01-28 Modified by Finn Arne Gangstad to make timers scale better.
9 *
10 * 1997-09-10 Updated NTP code according to technical memorandum Jan '96
11 * "A Kernel Model for Precision Timekeeping" by Dave Mills
12 * 1998-12-24 Fixed a xtime SMP race (we need the xtime_lock rw spinlock to
13 * serialize accesses to xtime/lost_ticks).
14 * Copyright (C) 1998 Andrea Arcangeli
15 * 1999-03-10 Improved NTP compatibility by Ulrich Windl
16 * 2002-05-31 Move sys_sysinfo here and make its locking sane, Robert Love
17 * 2000-10-05 Implemented scalable SMP per-CPU timer handling.
18 * Copyright (C) 2000, 2001, 2002 Ingo Molnar
19 * Designed by David S. Miller, Alexey Kuznetsov and Ingo Molnar
20 */
21
22 #include <linux/kernel_stat.h>
23 #include <linux/module.h>
24 #include <linux/interrupt.h>
25 #include <linux/percpu.h>
26 #include <linux/init.h>
27 #include <linux/mm.h>
28 #include <linux/swap.h>
29 #include <linux/pid_namespace.h>
30 #include <linux/notifier.h>
31 #include <linux/thread_info.h>
32 #include <linux/time.h>
33 #include <linux/jiffies.h>
34 #include <linux/posix-timers.h>
35 #include <linux/cpu.h>
36 #include <linux/syscalls.h>
37 #include <linux/delay.h>
38 #include <linux/tick.h>
39 #include <linux/kallsyms.h>
40
41 #include <asm/uaccess.h>
42 #include <asm/unistd.h>
43 #include <asm/div64.h>
44 #include <asm/timex.h>
45 #include <asm/io.h>
46
47 u64 jiffies_64 __cacheline_aligned_in_smp = INITIAL_JIFFIES;
48
49 EXPORT_SYMBOL(jiffies_64);
50
51 /*
52 * per-CPU timer vector definitions:
53 */
54 #define TVN_BITS (CONFIG_BASE_SMALL ? 4 : 6)
55 #define TVR_BITS (CONFIG_BASE_SMALL ? 6 : 8)
56 #define TVN_SIZE (1 << TVN_BITS)
57 #define TVR_SIZE (1 << TVR_BITS)
58 #define TVN_MASK (TVN_SIZE - 1)
59 #define TVR_MASK (TVR_SIZE - 1)
60
61 struct tvec {
62 struct list_head vec[TVN_SIZE];
63 };
64
65 struct tvec_root {
66 struct list_head vec[TVR_SIZE];
67 };
68
69 struct tvec_base {
70 spinlock_t lock;
71 struct timer_list *running_timer;
72 unsigned long timer_jiffies;
73 struct tvec_root tv1;
74 struct tvec tv2;
75 struct tvec tv3;
76 struct tvec tv4;
77 struct tvec tv5;
78 } ____cacheline_aligned;
79
80 struct tvec_base boot_tvec_bases;
81 EXPORT_SYMBOL(boot_tvec_bases);
82 static DEFINE_PER_CPU(struct tvec_base *, tvec_bases) = &boot_tvec_bases;
83
84 /*
85 * Note that all tvec_bases are 2 byte aligned and lower bit of
86 * base in timer_list is guaranteed to be zero. Use the LSB for
87 * the new flag to indicate whether the timer is deferrable
88 */
89 #define TBASE_DEFERRABLE_FLAG (0x1)
90
91 /* Functions below help us manage 'deferrable' flag */
92 static inline unsigned int tbase_get_deferrable(struct tvec_base *base)
93 {
94 return ((unsigned int)(unsigned long)base & TBASE_DEFERRABLE_FLAG);
95 }
96
97 static inline struct tvec_base *tbase_get_base(struct tvec_base *base)
98 {
99 return ((struct tvec_base *)((unsigned long)base & ~TBASE_DEFERRABLE_FLAG));
100 }
101
102 static inline void timer_set_deferrable(struct timer_list *timer)
103 {
104 timer->base = ((struct tvec_base *)((unsigned long)(timer->base) |
105 TBASE_DEFERRABLE_FLAG));
106 }
107
108 static inline void
109 timer_set_base(struct timer_list *timer, struct tvec_base *new_base)
110 {
111 timer->base = (struct tvec_base *)((unsigned long)(new_base) |
112 tbase_get_deferrable(timer->base));
113 }
114
115 /**
116 * __round_jiffies - function to round jiffies to a full second
117 * @j: the time in (absolute) jiffies that should be rounded
118 * @cpu: the processor number on which the timeout will happen
119 *
120 * __round_jiffies() rounds an absolute time in the future (in jiffies)
121 * up or down to (approximately) full seconds. This is useful for timers
122 * for which the exact time they fire does not matter too much, as long as
123 * they fire approximately every X seconds.
124 *
125 * By rounding these timers to whole seconds, all such timers will fire
126 * at the same time, rather than at various times spread out. The goal
127 * of this is to have the CPU wake up less, which saves power.
128 *
129 * The exact rounding is skewed for each processor to avoid all
130 * processors firing at the exact same time, which could lead
131 * to lock contention or spurious cache line bouncing.
132 *
133 * The return value is the rounded version of the @j parameter.
134 */
135 unsigned long __round_jiffies(unsigned long j, int cpu)
136 {
137 int rem;
138 unsigned long original = j;
139
140 /*
141 * We don't want all cpus firing their timers at once hitting the
142 * same lock or cachelines, so we skew each extra cpu with an extra
143 * 3 jiffies. This 3 jiffies came originally from the mm/ code which
144 * already did this.
145 * The skew is done by adding 3*cpunr, then round, then subtract this
146 * extra offset again.
147 */
148 j += cpu * 3;
149
150 rem = j % HZ;
151
152 /*
153 * If the target jiffie is just after a whole second (which can happen
154 * due to delays of the timer irq, long irq off times etc etc) then
155 * we should round down to the whole second, not up. Use 1/4th second
156 * as cutoff for this rounding as an extreme upper bound for this.
157 */
158 if (rem < HZ/4) /* round down */
159 j = j - rem;
160 else /* round up */
161 j = j - rem + HZ;
162
163 /* now that we have rounded, subtract the extra skew again */
164 j -= cpu * 3;
165
166 if (j <= jiffies) /* rounding ate our timeout entirely; */
167 return original;
168 return j;
169 }
170 EXPORT_SYMBOL_GPL(__round_jiffies);
171
172 /**
173 * __round_jiffies_relative - function to round jiffies to a full second
174 * @j: the time in (relative) jiffies that should be rounded
175 * @cpu: the processor number on which the timeout will happen
176 *
177 * __round_jiffies_relative() rounds a time delta in the future (in jiffies)
178 * up or down to (approximately) full seconds. This is useful for timers
179 * for which the exact time they fire does not matter too much, as long as
180 * they fire approximately every X seconds.
181 *
182 * By rounding these timers to whole seconds, all such timers will fire
183 * at the same time, rather than at various times spread out. The goal
184 * of this is to have the CPU wake up less, which saves power.
185 *
186 * The exact rounding is skewed for each processor to avoid all
187 * processors firing at the exact same time, which could lead
188 * to lock contention or spurious cache line bouncing.
189 *
190 * The return value is the rounded version of the @j parameter.
191 */
192 unsigned long __round_jiffies_relative(unsigned long j, int cpu)
193 {
194 /*
195 * In theory the following code can skip a jiffy in case jiffies
196 * increments right between the addition and the later subtraction.
197 * However since the entire point of this function is to use approximate
198 * timeouts, it's entirely ok to not handle that.
199 */
200 return __round_jiffies(j + jiffies, cpu) - jiffies;
201 }
202 EXPORT_SYMBOL_GPL(__round_jiffies_relative);
203
204 /**
205 * round_jiffies - function to round jiffies to a full second
206 * @j: the time in (absolute) jiffies that should be rounded
207 *
208 * round_jiffies() rounds an absolute time in the future (in jiffies)
209 * up or down to (approximately) full seconds. This is useful for timers
210 * for which the exact time they fire does not matter too much, as long as
211 * they fire approximately every X seconds.
212 *
213 * By rounding these timers to whole seconds, all such timers will fire
214 * at the same time, rather than at various times spread out. The goal
215 * of this is to have the CPU wake up less, which saves power.
216 *
217 * The return value is the rounded version of the @j parameter.
218 */
219 unsigned long round_jiffies(unsigned long j)
220 {
221 return __round_jiffies(j, raw_smp_processor_id());
222 }
223 EXPORT_SYMBOL_GPL(round_jiffies);
224
225 /**
226 * round_jiffies_relative - function to round jiffies to a full second
227 * @j: the time in (relative) jiffies that should be rounded
228 *
229 * round_jiffies_relative() rounds a time delta in the future (in jiffies)
230 * up or down to (approximately) full seconds. This is useful for timers
231 * for which the exact time they fire does not matter too much, as long as
232 * they fire approximately every X seconds.
233 *
234 * By rounding these timers to whole seconds, all such timers will fire
235 * at the same time, rather than at various times spread out. The goal
236 * of this is to have the CPU wake up less, which saves power.
237 *
238 * The return value is the rounded version of the @j parameter.
239 */
240 unsigned long round_jiffies_relative(unsigned long j)
241 {
242 return __round_jiffies_relative(j, raw_smp_processor_id());
243 }
244 EXPORT_SYMBOL_GPL(round_jiffies_relative);
245
246
247 static inline void set_running_timer(struct tvec_base *base,
248 struct timer_list *timer)
249 {
250 #ifdef CONFIG_SMP
251 base->running_timer = timer;
252 #endif
253 }
254
255 static void internal_add_timer(struct tvec_base *base, struct timer_list *timer)
256 {
257 unsigned long expires = timer->expires;
258 unsigned long idx = expires - base->timer_jiffies;
259 struct list_head *vec;
260
261 if (idx < TVR_SIZE) {
262 int i = expires & TVR_MASK;
263 vec = base->tv1.vec + i;
264 } else if (idx < 1 << (TVR_BITS + TVN_BITS)) {
265 int i = (expires >> TVR_BITS) & TVN_MASK;
266 vec = base->tv2.vec + i;
267 } else if (idx < 1 << (TVR_BITS + 2 * TVN_BITS)) {
268 int i = (expires >> (TVR_BITS + TVN_BITS)) & TVN_MASK;
269 vec = base->tv3.vec + i;
270 } else if (idx < 1 << (TVR_BITS + 3 * TVN_BITS)) {
271 int i = (expires >> (TVR_BITS + 2 * TVN_BITS)) & TVN_MASK;
272 vec = base->tv4.vec + i;
273 } else if ((signed long) idx < 0) {
274 /*
275 * Can happen if you add a timer with expires == jiffies,
276 * or you set a timer to go off in the past
277 */
278 vec = base->tv1.vec + (base->timer_jiffies & TVR_MASK);
279 } else {
280 int i;
281 /* If the timeout is larger than 0xffffffff on 64-bit
282 * architectures then we use the maximum timeout:
283 */
284 if (idx > 0xffffffffUL) {
285 idx = 0xffffffffUL;
286 expires = idx + base->timer_jiffies;
287 }
288 i = (expires >> (TVR_BITS + 3 * TVN_BITS)) & TVN_MASK;
289 vec = base->tv5.vec + i;
290 }
291 /*
292 * Timers are FIFO:
293 */
294 list_add_tail(&timer->entry, vec);
295 }
296
297 #ifdef CONFIG_TIMER_STATS
298 void __timer_stats_timer_set_start_info(struct timer_list *timer, void *addr)
299 {
300 if (timer->start_site)
301 return;
302
303 timer->start_site = addr;
304 memcpy(timer->start_comm, current->comm, TASK_COMM_LEN);
305 timer->start_pid = current->pid;
306 }
307
308 static void timer_stats_account_timer(struct timer_list *timer)
309 {
310 unsigned int flag = 0;
311
312 if (unlikely(tbase_get_deferrable(timer->base)))
313 flag |= TIMER_STATS_FLAG_DEFERRABLE;
314
315 timer_stats_update_stats(timer, timer->start_pid, timer->start_site,
316 timer->function, timer->start_comm, flag);
317 }
318
319 #else
320 static void timer_stats_account_timer(struct timer_list *timer) {}
321 #endif
322
323 #ifdef CONFIG_DEBUG_OBJECTS_TIMERS
324
325 static struct debug_obj_descr timer_debug_descr;
326
327 /*
328 * fixup_init is called when:
329 * - an active object is initialized
330 */
331 static int timer_fixup_init(void *addr, enum debug_obj_state state)
332 {
333 struct timer_list *timer = addr;
334
335 switch (state) {
336 case ODEBUG_STATE_ACTIVE:
337 del_timer_sync(timer);
338 debug_object_init(timer, &timer_debug_descr);
339 return 1;
340 default:
341 return 0;
342 }
343 }
344
345 /*
346 * fixup_activate is called when:
347 * - an active object is activated
348 * - an unknown object is activated (might be a statically initialized object)
349 */
350 static int timer_fixup_activate(void *addr, enum debug_obj_state state)
351 {
352 struct timer_list *timer = addr;
353
354 switch (state) {
355
356 case ODEBUG_STATE_NOTAVAILABLE:
357 /*
358 * This is not really a fixup. The timer was
359 * statically initialized. We just make sure that it
360 * is tracked in the object tracker.
361 */
362 if (timer->entry.next == NULL &&
363 timer->entry.prev == TIMER_ENTRY_STATIC) {
364 debug_object_init(timer, &timer_debug_descr);
365 debug_object_activate(timer, &timer_debug_descr);
366 return 0;
367 } else {
368 WARN_ON_ONCE(1);
369 }
370 return 0;
371
372 case ODEBUG_STATE_ACTIVE:
373 WARN_ON(1);
374
375 default:
376 return 0;
377 }
378 }
379
380 /*
381 * fixup_free is called when:
382 * - an active object is freed
383 */
384 static int timer_fixup_free(void *addr, enum debug_obj_state state)
385 {
386 struct timer_list *timer = addr;
387
388 switch (state) {
389 case ODEBUG_STATE_ACTIVE:
390 del_timer_sync(timer);
391 debug_object_free(timer, &timer_debug_descr);
392 return 1;
393 default:
394 return 0;
395 }
396 }
397
398 static struct debug_obj_descr timer_debug_descr = {
399 .name = "timer_list",
400 .fixup_init = timer_fixup_init,
401 .fixup_activate = timer_fixup_activate,
402 .fixup_free = timer_fixup_free,
403 };
404
405 static inline void debug_timer_init(struct timer_list *timer)
406 {
407 debug_object_init(timer, &timer_debug_descr);
408 }
409
410 static inline void debug_timer_activate(struct timer_list *timer)
411 {
412 debug_object_activate(timer, &timer_debug_descr);
413 }
414
415 static inline void debug_timer_deactivate(struct timer_list *timer)
416 {
417 debug_object_deactivate(timer, &timer_debug_descr);
418 }
419
420 static inline void debug_timer_free(struct timer_list *timer)
421 {
422 debug_object_free(timer, &timer_debug_descr);
423 }
424
425 static void __init_timer(struct timer_list *timer);
426
427 void init_timer_on_stack(struct timer_list *timer)
428 {
429 debug_object_init_on_stack(timer, &timer_debug_descr);
430 __init_timer(timer);
431 }
432 EXPORT_SYMBOL_GPL(init_timer_on_stack);
433
434 void destroy_timer_on_stack(struct timer_list *timer)
435 {
436 debug_object_free(timer, &timer_debug_descr);
437 }
438 EXPORT_SYMBOL_GPL(destroy_timer_on_stack);
439
440 #else
441 static inline void debug_timer_init(struct timer_list *timer) { }
442 static inline void debug_timer_activate(struct timer_list *timer) { }
443 static inline void debug_timer_deactivate(struct timer_list *timer) { }
444 #endif
445
446 static void __init_timer(struct timer_list *timer)
447 {
448 timer->entry.next = NULL;
449 timer->base = __raw_get_cpu_var(tvec_bases);
450 #ifdef CONFIG_TIMER_STATS
451 timer->start_site = NULL;
452 timer->start_pid = -1;
453 memset(timer->start_comm, 0, TASK_COMM_LEN);
454 #endif
455 }
456
457 /**
458 * init_timer - initialize a timer.
459 * @timer: the timer to be initialized
460 *
461 * init_timer() must be done to a timer prior calling *any* of the
462 * other timer functions.
463 */
464 void init_timer(struct timer_list *timer)
465 {
466 debug_timer_init(timer);
467 __init_timer(timer);
468 }
469 EXPORT_SYMBOL(init_timer);
470
471 void init_timer_deferrable(struct timer_list *timer)
472 {
473 init_timer(timer);
474 timer_set_deferrable(timer);
475 }
476 EXPORT_SYMBOL(init_timer_deferrable);
477
478 static inline void detach_timer(struct timer_list *timer,
479 int clear_pending)
480 {
481 struct list_head *entry = &timer->entry;
482
483 debug_timer_deactivate(timer);
484
485 __list_del(entry->prev, entry->next);
486 if (clear_pending)
487 entry->next = NULL;
488 entry->prev = LIST_POISON2;
489 }
490
491 /*
492 * We are using hashed locking: holding per_cpu(tvec_bases).lock
493 * means that all timers which are tied to this base via timer->base are
494 * locked, and the base itself is locked too.
495 *
496 * So __run_timers/migrate_timers can safely modify all timers which could
497 * be found on ->tvX lists.
498 *
499 * When the timer's base is locked, and the timer removed from list, it is
500 * possible to set timer->base = NULL and drop the lock: the timer remains
501 * locked.
502 */
503 static struct tvec_base *lock_timer_base(struct timer_list *timer,
504 unsigned long *flags)
505 __acquires(timer->base->lock)
506 {
507 struct tvec_base *base;
508
509 for (;;) {
510 struct tvec_base *prelock_base = timer->base;
511 base = tbase_get_base(prelock_base);
512 if (likely(base != NULL)) {
513 spin_lock_irqsave(&base->lock, *flags);
514 if (likely(prelock_base == timer->base))
515 return base;
516 /* The timer has migrated to another CPU */
517 spin_unlock_irqrestore(&base->lock, *flags);
518 }
519 cpu_relax();
520 }
521 }
522
523 int __mod_timer(struct timer_list *timer, unsigned long expires)
524 {
525 struct tvec_base *base, *new_base;
526 unsigned long flags;
527 int ret = 0;
528
529 timer_stats_timer_set_start_info(timer);
530 BUG_ON(!timer->function);
531
532 base = lock_timer_base(timer, &flags);
533
534 if (timer_pending(timer)) {
535 detach_timer(timer, 0);
536 ret = 1;
537 }
538
539 debug_timer_activate(timer);
540
541 new_base = __get_cpu_var(tvec_bases);
542
543 if (base != new_base) {
544 /*
545 * We are trying to schedule the timer on the local CPU.
546 * However we can't change timer's base while it is running,
547 * otherwise del_timer_sync() can't detect that the timer's
548 * handler yet has not finished. This also guarantees that
549 * the timer is serialized wrt itself.
550 */
551 if (likely(base->running_timer != timer)) {
552 /* See the comment in lock_timer_base() */
553 timer_set_base(timer, NULL);
554 spin_unlock(&base->lock);
555 base = new_base;
556 spin_lock(&base->lock);
557 timer_set_base(timer, base);
558 }
559 }
560
561 timer->expires = expires;
562 internal_add_timer(base, timer);
563 spin_unlock_irqrestore(&base->lock, flags);
564
565 return ret;
566 }
567
568 EXPORT_SYMBOL(__mod_timer);
569
570 /**
571 * add_timer_on - start a timer on a particular CPU
572 * @timer: the timer to be added
573 * @cpu: the CPU to start it on
574 *
575 * This is not very scalable on SMP. Double adds are not possible.
576 */
577 void add_timer_on(struct timer_list *timer, int cpu)
578 {
579 struct tvec_base *base = per_cpu(tvec_bases, cpu);
580 unsigned long flags;
581
582 timer_stats_timer_set_start_info(timer);
583 BUG_ON(timer_pending(timer) || !timer->function);
584 spin_lock_irqsave(&base->lock, flags);
585 timer_set_base(timer, base);
586 debug_timer_activate(timer);
587 internal_add_timer(base, timer);
588 /*
589 * Check whether the other CPU is idle and needs to be
590 * triggered to reevaluate the timer wheel when nohz is
591 * active. We are protected against the other CPU fiddling
592 * with the timer by holding the timer base lock. This also
593 * makes sure that a CPU on the way to idle can not evaluate
594 * the timer wheel.
595 */
596 wake_up_idle_cpu(cpu);
597 spin_unlock_irqrestore(&base->lock, flags);
598 }
599
600 /**
601 * mod_timer - modify a timer's timeout
602 * @timer: the timer to be modified
603 * @expires: new timeout in jiffies
604 *
605 * mod_timer() is a more efficient way to update the expire field of an
606 * active timer (if the timer is inactive it will be activated)
607 *
608 * mod_timer(timer, expires) is equivalent to:
609 *
610 * del_timer(timer); timer->expires = expires; add_timer(timer);
611 *
612 * Note that if there are multiple unserialized concurrent users of the
613 * same timer, then mod_timer() is the only safe way to modify the timeout,
614 * since add_timer() cannot modify an already running timer.
615 *
616 * The function returns whether it has modified a pending timer or not.
617 * (ie. mod_timer() of an inactive timer returns 0, mod_timer() of an
618 * active timer returns 1.)
619 */
620 int mod_timer(struct timer_list *timer, unsigned long expires)
621 {
622 BUG_ON(!timer->function);
623
624 timer_stats_timer_set_start_info(timer);
625 /*
626 * This is a common optimization triggered by the
627 * networking code - if the timer is re-modified
628 * to be the same thing then just return:
629 */
630 if (timer->expires == expires && timer_pending(timer))
631 return 1;
632
633 return __mod_timer(timer, expires);
634 }
635
636 EXPORT_SYMBOL(mod_timer);
637
638 /**
639 * del_timer - deactive a timer.
640 * @timer: the timer to be deactivated
641 *
642 * del_timer() deactivates a timer - this works on both active and inactive
643 * timers.
644 *
645 * The function returns whether it has deactivated a pending timer or not.
646 * (ie. del_timer() of an inactive timer returns 0, del_timer() of an
647 * active timer returns 1.)
648 */
649 int del_timer(struct timer_list *timer)
650 {
651 struct tvec_base *base;
652 unsigned long flags;
653 int ret = 0;
654
655 timer_stats_timer_clear_start_info(timer);
656 if (timer_pending(timer)) {
657 base = lock_timer_base(timer, &flags);
658 if (timer_pending(timer)) {
659 detach_timer(timer, 1);
660 ret = 1;
661 }
662 spin_unlock_irqrestore(&base->lock, flags);
663 }
664
665 return ret;
666 }
667
668 EXPORT_SYMBOL(del_timer);
669
670 #ifdef CONFIG_SMP
671 /**
672 * try_to_del_timer_sync - Try to deactivate a timer
673 * @timer: timer do del
674 *
675 * This function tries to deactivate a timer. Upon successful (ret >= 0)
676 * exit the timer is not queued and the handler is not running on any CPU.
677 *
678 * It must not be called from interrupt contexts.
679 */
680 int try_to_del_timer_sync(struct timer_list *timer)
681 {
682 struct tvec_base *base;
683 unsigned long flags;
684 int ret = -1;
685
686 base = lock_timer_base(timer, &flags);
687
688 if (base->running_timer == timer)
689 goto out;
690
691 ret = 0;
692 if (timer_pending(timer)) {
693 detach_timer(timer, 1);
694 ret = 1;
695 }
696 out:
697 spin_unlock_irqrestore(&base->lock, flags);
698
699 return ret;
700 }
701
702 EXPORT_SYMBOL(try_to_del_timer_sync);
703
704 /**
705 * del_timer_sync - deactivate a timer and wait for the handler to finish.
706 * @timer: the timer to be deactivated
707 *
708 * This function only differs from del_timer() on SMP: besides deactivating
709 * the timer it also makes sure the handler has finished executing on other
710 * CPUs.
711 *
712 * Synchronization rules: Callers must prevent restarting of the timer,
713 * otherwise this function is meaningless. It must not be called from
714 * interrupt contexts. The caller must not hold locks which would prevent
715 * completion of the timer's handler. The timer's handler must not call
716 * add_timer_on(). Upon exit the timer is not queued and the handler is
717 * not running on any CPU.
718 *
719 * The function returns whether it has deactivated a pending timer or not.
720 */
721 int del_timer_sync(struct timer_list *timer)
722 {
723 for (;;) {
724 int ret = try_to_del_timer_sync(timer);
725 if (ret >= 0)
726 return ret;
727 cpu_relax();
728 }
729 }
730
731 EXPORT_SYMBOL(del_timer_sync);
732 #endif
733
734 static int cascade(struct tvec_base *base, struct tvec *tv, int index)
735 {
736 /* cascade all the timers from tv up one level */
737 struct timer_list *timer, *tmp;
738 struct list_head tv_list;
739
740 list_replace_init(tv->vec + index, &tv_list);
741
742 /*
743 * We are removing _all_ timers from the list, so we
744 * don't have to detach them individually.
745 */
746 list_for_each_entry_safe(timer, tmp, &tv_list, entry) {
747 BUG_ON(tbase_get_base(timer->base) != base);
748 internal_add_timer(base, timer);
749 }
750
751 return index;
752 }
753
754 #define INDEX(N) ((base->timer_jiffies >> (TVR_BITS + (N) * TVN_BITS)) & TVN_MASK)
755
756 /**
757 * __run_timers - run all expired timers (if any) on this CPU.
758 * @base: the timer vector to be processed.
759 *
760 * This function cascades all vectors and executes all expired timer
761 * vectors.
762 */
763 static inline void __run_timers(struct tvec_base *base)
764 {
765 struct timer_list *timer;
766
767 spin_lock_irq(&base->lock);
768 while (time_after_eq(jiffies, base->timer_jiffies)) {
769 struct list_head work_list;
770 struct list_head *head = &work_list;
771 int index = base->timer_jiffies & TVR_MASK;
772
773 /*
774 * Cascade timers:
775 */
776 if (!index &&
777 (!cascade(base, &base->tv2, INDEX(0))) &&
778 (!cascade(base, &base->tv3, INDEX(1))) &&
779 !cascade(base, &base->tv4, INDEX(2)))
780 cascade(base, &base->tv5, INDEX(3));
781 ++base->timer_jiffies;
782 list_replace_init(base->tv1.vec + index, &work_list);
783 while (!list_empty(head)) {
784 void (*fn)(unsigned long);
785 unsigned long data;
786
787 timer = list_first_entry(head, struct timer_list,entry);
788 fn = timer->function;
789 data = timer->data;
790
791 timer_stats_account_timer(timer);
792
793 set_running_timer(base, timer);
794 detach_timer(timer, 1);
795 spin_unlock_irq(&base->lock);
796 {
797 int preempt_count = preempt_count();
798 fn(data);
799 if (preempt_count != preempt_count()) {
800 printk(KERN_ERR "huh, entered %p "
801 "with preempt_count %08x, exited"
802 " with %08x?\n",
803 fn, preempt_count,
804 preempt_count());
805 BUG();
806 }
807 }
808 spin_lock_irq(&base->lock);
809 }
810 }
811 set_running_timer(base, NULL);
812 spin_unlock_irq(&base->lock);
813 }
814
815 #ifdef CONFIG_NO_HZ
816 /*
817 * Find out when the next timer event is due to happen. This
818 * is used on S/390 to stop all activity when a cpus is idle.
819 * This functions needs to be called disabled.
820 */
821 static unsigned long __next_timer_interrupt(struct tvec_base *base)
822 {
823 unsigned long timer_jiffies = base->timer_jiffies;
824 unsigned long expires = timer_jiffies + NEXT_TIMER_MAX_DELTA;
825 int index, slot, array, found = 0;
826 struct timer_list *nte;
827 struct tvec *varray[4];
828
829 /* Look for timer events in tv1. */
830 index = slot = timer_jiffies & TVR_MASK;
831 do {
832 list_for_each_entry(nte, base->tv1.vec + slot, entry) {
833 if (tbase_get_deferrable(nte->base))
834 continue;
835
836 found = 1;
837 expires = nte->expires;
838 /* Look at the cascade bucket(s)? */
839 if (!index || slot < index)
840 goto cascade;
841 return expires;
842 }
843 slot = (slot + 1) & TVR_MASK;
844 } while (slot != index);
845
846 cascade:
847 /* Calculate the next cascade event */
848 if (index)
849 timer_jiffies += TVR_SIZE - index;
850 timer_jiffies >>= TVR_BITS;
851
852 /* Check tv2-tv5. */
853 varray[0] = &base->tv2;
854 varray[1] = &base->tv3;
855 varray[2] = &base->tv4;
856 varray[3] = &base->tv5;
857
858 for (array = 0; array < 4; array++) {
859 struct tvec *varp = varray[array];
860
861 index = slot = timer_jiffies & TVN_MASK;
862 do {
863 list_for_each_entry(nte, varp->vec + slot, entry) {
864 found = 1;
865 if (time_before(nte->expires, expires))
866 expires = nte->expires;
867 }
868 /*
869 * Do we still search for the first timer or are
870 * we looking up the cascade buckets ?
871 */
872 if (found) {
873 /* Look at the cascade bucket(s)? */
874 if (!index || slot < index)
875 break;
876 return expires;
877 }
878 slot = (slot + 1) & TVN_MASK;
879 } while (slot != index);
880
881 if (index)
882 timer_jiffies += TVN_SIZE - index;
883 timer_jiffies >>= TVN_BITS;
884 }
885 return expires;
886 }
887
888 /*
889 * Check, if the next hrtimer event is before the next timer wheel
890 * event:
891 */
892 static unsigned long cmp_next_hrtimer_event(unsigned long now,
893 unsigned long expires)
894 {
895 ktime_t hr_delta = hrtimer_get_next_event();
896 struct timespec tsdelta;
897 unsigned long delta;
898
899 if (hr_delta.tv64 == KTIME_MAX)
900 return expires;
901
902 /*
903 * Expired timer available, let it expire in the next tick
904 */
905 if (hr_delta.tv64 <= 0)
906 return now + 1;
907
908 tsdelta = ktime_to_timespec(hr_delta);
909 delta = timespec_to_jiffies(&tsdelta);
910
911 /*
912 * Limit the delta to the max value, which is checked in
913 * tick_nohz_stop_sched_tick():
914 */
915 if (delta > NEXT_TIMER_MAX_DELTA)
916 delta = NEXT_TIMER_MAX_DELTA;
917
918 /*
919 * Take rounding errors in to account and make sure, that it
920 * expires in the next tick. Otherwise we go into an endless
921 * ping pong due to tick_nohz_stop_sched_tick() retriggering
922 * the timer softirq
923 */
924 if (delta < 1)
925 delta = 1;
926 now += delta;
927 if (time_before(now, expires))
928 return now;
929 return expires;
930 }
931
932 /**
933 * get_next_timer_interrupt - return the jiffy of the next pending timer
934 * @now: current time (in jiffies)
935 */
936 unsigned long get_next_timer_interrupt(unsigned long now)
937 {
938 struct tvec_base *base = __get_cpu_var(tvec_bases);
939 unsigned long expires;
940
941 spin_lock(&base->lock);
942 expires = __next_timer_interrupt(base);
943 spin_unlock(&base->lock);
944
945 if (time_before_eq(expires, now))
946 return now;
947
948 return cmp_next_hrtimer_event(now, expires);
949 }
950 #endif
951
952 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
953 void account_process_tick(struct task_struct *p, int user_tick)
954 {
955 cputime_t one_jiffy = jiffies_to_cputime(1);
956
957 if (user_tick) {
958 account_user_time(p, one_jiffy);
959 account_user_time_scaled(p, cputime_to_scaled(one_jiffy));
960 } else {
961 account_system_time(p, HARDIRQ_OFFSET, one_jiffy);
962 account_system_time_scaled(p, cputime_to_scaled(one_jiffy));
963 }
964 }
965 #endif
966
967 /*
968 * Called from the timer interrupt handler to charge one tick to the current
969 * process. user_tick is 1 if the tick is user time, 0 for system.
970 */
971 void update_process_times(int user_tick)
972 {
973 struct task_struct *p = current;
974 int cpu = smp_processor_id();
975
976 /* Note: this timer irq context must be accounted for as well. */
977 account_process_tick(p, user_tick);
978 run_local_timers();
979 if (rcu_pending(cpu))
980 rcu_check_callbacks(cpu, user_tick);
981 printk_tick();
982 scheduler_tick();
983 run_posix_cpu_timers(p);
984 }
985
986 /*
987 * Nr of active tasks - counted in fixed-point numbers
988 */
989 static unsigned long count_active_tasks(void)
990 {
991 return nr_active() * FIXED_1;
992 }
993
994 /*
995 * Hmm.. Changed this, as the GNU make sources (load.c) seems to
996 * imply that avenrun[] is the standard name for this kind of thing.
997 * Nothing else seems to be standardized: the fractional size etc
998 * all seem to differ on different machines.
999 *
1000 * Requires xtime_lock to access.
1001 */
1002 unsigned long avenrun[3];
1003
1004 EXPORT_SYMBOL(avenrun);
1005
1006 /*
1007 * calc_load - given tick count, update the avenrun load estimates.
1008 * This is called while holding a write_lock on xtime_lock.
1009 */
1010 static inline void calc_load(unsigned long ticks)
1011 {
1012 unsigned long active_tasks; /* fixed-point */
1013 static int count = LOAD_FREQ;
1014
1015 count -= ticks;
1016 if (unlikely(count < 0)) {
1017 active_tasks = count_active_tasks();
1018 do {
1019 CALC_LOAD(avenrun[0], EXP_1, active_tasks);
1020 CALC_LOAD(avenrun[1], EXP_5, active_tasks);
1021 CALC_LOAD(avenrun[2], EXP_15, active_tasks);
1022 count += LOAD_FREQ;
1023 } while (count < 0);
1024 }
1025 }
1026
1027 /*
1028 * This function runs timers and the timer-tq in bottom half context.
1029 */
1030 static void run_timer_softirq(struct softirq_action *h)
1031 {
1032 struct tvec_base *base = __get_cpu_var(tvec_bases);
1033
1034 hrtimer_run_pending();
1035
1036 if (time_after_eq(jiffies, base->timer_jiffies))
1037 __run_timers(base);
1038 }
1039
1040 /*
1041 * Called by the local, per-CPU timer interrupt on SMP.
1042 */
1043 void run_local_timers(void)
1044 {
1045 hrtimer_run_queues();
1046 raise_softirq(TIMER_SOFTIRQ);
1047 softlockup_tick();
1048 }
1049
1050 /*
1051 * Called by the timer interrupt. xtime_lock must already be taken
1052 * by the timer IRQ!
1053 */
1054 static inline void update_times(unsigned long ticks)
1055 {
1056 update_wall_time();
1057 calc_load(ticks);
1058 }
1059
1060 /*
1061 * The 64-bit jiffies value is not atomic - you MUST NOT read it
1062 * without sampling the sequence number in xtime_lock.
1063 * jiffies is defined in the linker script...
1064 */
1065
1066 void do_timer(unsigned long ticks)
1067 {
1068 jiffies_64 += ticks;
1069 update_times(ticks);
1070 }
1071
1072 #ifdef __ARCH_WANT_SYS_ALARM
1073
1074 /*
1075 * For backwards compatibility? This can be done in libc so Alpha
1076 * and all newer ports shouldn't need it.
1077 */
1078 asmlinkage unsigned long sys_alarm(unsigned int seconds)
1079 {
1080 return alarm_setitimer(seconds);
1081 }
1082
1083 #endif
1084
1085 #ifndef __alpha__
1086
1087 /*
1088 * The Alpha uses getxpid, getxuid, and getxgid instead. Maybe this
1089 * should be moved into arch/i386 instead?
1090 */
1091
1092 /**
1093 * sys_getpid - return the thread group id of the current process
1094 *
1095 * Note, despite the name, this returns the tgid not the pid. The tgid and
1096 * the pid are identical unless CLONE_THREAD was specified on clone() in
1097 * which case the tgid is the same in all threads of the same group.
1098 *
1099 * This is SMP safe as current->tgid does not change.
1100 */
1101 asmlinkage long sys_getpid(void)
1102 {
1103 return task_tgid_vnr(current);
1104 }
1105
1106 /*
1107 * Accessing ->real_parent is not SMP-safe, it could
1108 * change from under us. However, we can use a stale
1109 * value of ->real_parent under rcu_read_lock(), see
1110 * release_task()->call_rcu(delayed_put_task_struct).
1111 */
1112 asmlinkage long sys_getppid(void)
1113 {
1114 int pid;
1115
1116 rcu_read_lock();
1117 pid = task_tgid_vnr(current->real_parent);
1118 rcu_read_unlock();
1119
1120 return pid;
1121 }
1122
1123 asmlinkage long sys_getuid(void)
1124 {
1125 /* Only we change this so SMP safe */
1126 return current->uid;
1127 }
1128
1129 asmlinkage long sys_geteuid(void)
1130 {
1131 /* Only we change this so SMP safe */
1132 return current->euid;
1133 }
1134
1135 asmlinkage long sys_getgid(void)
1136 {
1137 /* Only we change this so SMP safe */
1138 return current->gid;
1139 }
1140
1141 asmlinkage long sys_getegid(void)
1142 {
1143 /* Only we change this so SMP safe */
1144 return current->egid;
1145 }
1146
1147 #endif
1148
1149 static void process_timeout(unsigned long __data)
1150 {
1151 wake_up_process((struct task_struct *)__data);
1152 }
1153
1154 /**
1155 * schedule_timeout - sleep until timeout
1156 * @timeout: timeout value in jiffies
1157 *
1158 * Make the current task sleep until @timeout jiffies have
1159 * elapsed. The routine will return immediately unless
1160 * the current task state has been set (see set_current_state()).
1161 *
1162 * You can set the task state as follows -
1163 *
1164 * %TASK_UNINTERRUPTIBLE - at least @timeout jiffies are guaranteed to
1165 * pass before the routine returns. The routine will return 0
1166 *
1167 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1168 * delivered to the current task. In this case the remaining time
1169 * in jiffies will be returned, or 0 if the timer expired in time
1170 *
1171 * The current task state is guaranteed to be TASK_RUNNING when this
1172 * routine returns.
1173 *
1174 * Specifying a @timeout value of %MAX_SCHEDULE_TIMEOUT will schedule
1175 * the CPU away without a bound on the timeout. In this case the return
1176 * value will be %MAX_SCHEDULE_TIMEOUT.
1177 *
1178 * In all cases the return value is guaranteed to be non-negative.
1179 */
1180 signed long __sched schedule_timeout(signed long timeout)
1181 {
1182 struct timer_list timer;
1183 unsigned long expire;
1184
1185 switch (timeout)
1186 {
1187 case MAX_SCHEDULE_TIMEOUT:
1188 /*
1189 * These two special cases are useful to be comfortable
1190 * in the caller. Nothing more. We could take
1191 * MAX_SCHEDULE_TIMEOUT from one of the negative value
1192 * but I' d like to return a valid offset (>=0) to allow
1193 * the caller to do everything it want with the retval.
1194 */
1195 schedule();
1196 goto out;
1197 default:
1198 /*
1199 * Another bit of PARANOID. Note that the retval will be
1200 * 0 since no piece of kernel is supposed to do a check
1201 * for a negative retval of schedule_timeout() (since it
1202 * should never happens anyway). You just have the printk()
1203 * that will tell you if something is gone wrong and where.
1204 */
1205 if (timeout < 0) {
1206 printk(KERN_ERR "schedule_timeout: wrong timeout "
1207 "value %lx\n", timeout);
1208 dump_stack();
1209 current->state = TASK_RUNNING;
1210 goto out;
1211 }
1212 }
1213
1214 expire = timeout + jiffies;
1215
1216 setup_timer_on_stack(&timer, process_timeout, (unsigned long)current);
1217 __mod_timer(&timer, expire);
1218 schedule();
1219 del_singleshot_timer_sync(&timer);
1220
1221 /* Remove the timer from the object tracker */
1222 destroy_timer_on_stack(&timer);
1223
1224 timeout = expire - jiffies;
1225
1226 out:
1227 return timeout < 0 ? 0 : timeout;
1228 }
1229 EXPORT_SYMBOL(schedule_timeout);
1230
1231 /*
1232 * We can use __set_current_state() here because schedule_timeout() calls
1233 * schedule() unconditionally.
1234 */
1235 signed long __sched schedule_timeout_interruptible(signed long timeout)
1236 {
1237 __set_current_state(TASK_INTERRUPTIBLE);
1238 return schedule_timeout(timeout);
1239 }
1240 EXPORT_SYMBOL(schedule_timeout_interruptible);
1241
1242 signed long __sched schedule_timeout_killable(signed long timeout)
1243 {
1244 __set_current_state(TASK_KILLABLE);
1245 return schedule_timeout(timeout);
1246 }
1247 EXPORT_SYMBOL(schedule_timeout_killable);
1248
1249 signed long __sched schedule_timeout_uninterruptible(signed long timeout)
1250 {
1251 __set_current_state(TASK_UNINTERRUPTIBLE);
1252 return schedule_timeout(timeout);
1253 }
1254 EXPORT_SYMBOL(schedule_timeout_uninterruptible);
1255
1256 /* Thread ID - the internal kernel "pid" */
1257 asmlinkage long sys_gettid(void)
1258 {
1259 return task_pid_vnr(current);
1260 }
1261
1262 /**
1263 * do_sysinfo - fill in sysinfo struct
1264 * @info: pointer to buffer to fill
1265 */
1266 int do_sysinfo(struct sysinfo *info)
1267 {
1268 unsigned long mem_total, sav_total;
1269 unsigned int mem_unit, bitcount;
1270 unsigned long seq;
1271
1272 memset(info, 0, sizeof(struct sysinfo));
1273
1274 do {
1275 struct timespec tp;
1276 seq = read_seqbegin(&xtime_lock);
1277
1278 /*
1279 * This is annoying. The below is the same thing
1280 * posix_get_clock_monotonic() does, but it wants to
1281 * take the lock which we want to cover the loads stuff
1282 * too.
1283 */
1284
1285 getnstimeofday(&tp);
1286 tp.tv_sec += wall_to_monotonic.tv_sec;
1287 tp.tv_nsec += wall_to_monotonic.tv_nsec;
1288 monotonic_to_bootbased(&tp);
1289 if (tp.tv_nsec - NSEC_PER_SEC >= 0) {
1290 tp.tv_nsec = tp.tv_nsec - NSEC_PER_SEC;
1291 tp.tv_sec++;
1292 }
1293 info->uptime = tp.tv_sec + (tp.tv_nsec ? 1 : 0);
1294
1295 info->loads[0] = avenrun[0] << (SI_LOAD_SHIFT - FSHIFT);
1296 info->loads[1] = avenrun[1] << (SI_LOAD_SHIFT - FSHIFT);
1297 info->loads[2] = avenrun[2] << (SI_LOAD_SHIFT - FSHIFT);
1298
1299 info->procs = nr_threads;
1300 } while (read_seqretry(&xtime_lock, seq));
1301
1302 si_meminfo(info);
1303 si_swapinfo(info);
1304
1305 /*
1306 * If the sum of all the available memory (i.e. ram + swap)
1307 * is less than can be stored in a 32 bit unsigned long then
1308 * we can be binary compatible with 2.2.x kernels. If not,
1309 * well, in that case 2.2.x was broken anyways...
1310 *
1311 * -Erik Andersen <andersee@debian.org>
1312 */
1313
1314 mem_total = info->totalram + info->totalswap;
1315 if (mem_total < info->totalram || mem_total < info->totalswap)
1316 goto out;
1317 bitcount = 0;
1318 mem_unit = info->mem_unit;
1319 while (mem_unit > 1) {
1320 bitcount++;
1321 mem_unit >>= 1;
1322 sav_total = mem_total;
1323 mem_total <<= 1;
1324 if (mem_total < sav_total)
1325 goto out;
1326 }
1327
1328 /*
1329 * If mem_total did not overflow, multiply all memory values by
1330 * info->mem_unit and set it to 1. This leaves things compatible
1331 * with 2.2.x, and also retains compatibility with earlier 2.4.x
1332 * kernels...
1333 */
1334
1335 info->mem_unit = 1;
1336 info->totalram <<= bitcount;
1337 info->freeram <<= bitcount;
1338 info->sharedram <<= bitcount;
1339 info->bufferram <<= bitcount;
1340 info->totalswap <<= bitcount;
1341 info->freeswap <<= bitcount;
1342 info->totalhigh <<= bitcount;
1343 info->freehigh <<= bitcount;
1344
1345 out:
1346 return 0;
1347 }
1348
1349 asmlinkage long sys_sysinfo(struct sysinfo __user *info)
1350 {
1351 struct sysinfo val;
1352
1353 do_sysinfo(&val);
1354
1355 if (copy_to_user(info, &val, sizeof(struct sysinfo)))
1356 return -EFAULT;
1357
1358 return 0;
1359 }
1360
1361 static int __cpuinit init_timers_cpu(int cpu)
1362 {
1363 int j;
1364 struct tvec_base *base;
1365 static char __cpuinitdata tvec_base_done[NR_CPUS];
1366
1367 if (!tvec_base_done[cpu]) {
1368 static char boot_done;
1369
1370 if (boot_done) {
1371 /*
1372 * The APs use this path later in boot
1373 */
1374 base = kmalloc_node(sizeof(*base),
1375 GFP_KERNEL | __GFP_ZERO,
1376 cpu_to_node(cpu));
1377 if (!base)
1378 return -ENOMEM;
1379
1380 /* Make sure that tvec_base is 2 byte aligned */
1381 if (tbase_get_deferrable(base)) {
1382 WARN_ON(1);
1383 kfree(base);
1384 return -ENOMEM;
1385 }
1386 per_cpu(tvec_bases, cpu) = base;
1387 } else {
1388 /*
1389 * This is for the boot CPU - we use compile-time
1390 * static initialisation because per-cpu memory isn't
1391 * ready yet and because the memory allocators are not
1392 * initialised either.
1393 */
1394 boot_done = 1;
1395 base = &boot_tvec_bases;
1396 }
1397 tvec_base_done[cpu] = 1;
1398 } else {
1399 base = per_cpu(tvec_bases, cpu);
1400 }
1401
1402 spin_lock_init(&base->lock);
1403
1404 for (j = 0; j < TVN_SIZE; j++) {
1405 INIT_LIST_HEAD(base->tv5.vec + j);
1406 INIT_LIST_HEAD(base->tv4.vec + j);
1407 INIT_LIST_HEAD(base->tv3.vec + j);
1408 INIT_LIST_HEAD(base->tv2.vec + j);
1409 }
1410 for (j = 0; j < TVR_SIZE; j++)
1411 INIT_LIST_HEAD(base->tv1.vec + j);
1412
1413 base->timer_jiffies = jiffies;
1414 return 0;
1415 }
1416
1417 #ifdef CONFIG_HOTPLUG_CPU
1418 static void migrate_timer_list(struct tvec_base *new_base, struct list_head *head)
1419 {
1420 struct timer_list *timer;
1421
1422 while (!list_empty(head)) {
1423 timer = list_first_entry(head, struct timer_list, entry);
1424 detach_timer(timer, 0);
1425 timer_set_base(timer, new_base);
1426 internal_add_timer(new_base, timer);
1427 }
1428 }
1429
1430 static void __cpuinit migrate_timers(int cpu)
1431 {
1432 struct tvec_base *old_base;
1433 struct tvec_base *new_base;
1434 int i;
1435
1436 BUG_ON(cpu_online(cpu));
1437 old_base = per_cpu(tvec_bases, cpu);
1438 new_base = get_cpu_var(tvec_bases);
1439 /*
1440 * The caller is globally serialized and nobody else
1441 * takes two locks at once, deadlock is not possible.
1442 */
1443 spin_lock_irq(&new_base->lock);
1444 spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
1445
1446 BUG_ON(old_base->running_timer);
1447
1448 for (i = 0; i < TVR_SIZE; i++)
1449 migrate_timer_list(new_base, old_base->tv1.vec + i);
1450 for (i = 0; i < TVN_SIZE; i++) {
1451 migrate_timer_list(new_base, old_base->tv2.vec + i);
1452 migrate_timer_list(new_base, old_base->tv3.vec + i);
1453 migrate_timer_list(new_base, old_base->tv4.vec + i);
1454 migrate_timer_list(new_base, old_base->tv5.vec + i);
1455 }
1456
1457 spin_unlock(&old_base->lock);
1458 spin_unlock_irq(&new_base->lock);
1459 put_cpu_var(tvec_bases);
1460 }
1461 #endif /* CONFIG_HOTPLUG_CPU */
1462
1463 static int __cpuinit timer_cpu_notify(struct notifier_block *self,
1464 unsigned long action, void *hcpu)
1465 {
1466 long cpu = (long)hcpu;
1467 switch(action) {
1468 case CPU_UP_PREPARE:
1469 case CPU_UP_PREPARE_FROZEN:
1470 if (init_timers_cpu(cpu) < 0)
1471 return NOTIFY_BAD;
1472 break;
1473 #ifdef CONFIG_HOTPLUG_CPU
1474 case CPU_DEAD:
1475 case CPU_DEAD_FROZEN:
1476 migrate_timers(cpu);
1477 break;
1478 #endif
1479 default:
1480 break;
1481 }
1482 return NOTIFY_OK;
1483 }
1484
1485 static struct notifier_block __cpuinitdata timers_nb = {
1486 .notifier_call = timer_cpu_notify,
1487 };
1488
1489
1490 void __init init_timers(void)
1491 {
1492 int err = timer_cpu_notify(&timers_nb, (unsigned long)CPU_UP_PREPARE,
1493 (void *)(long)smp_processor_id());
1494
1495 init_timer_stats();
1496
1497 BUG_ON(err == NOTIFY_BAD);
1498 register_cpu_notifier(&timers_nb);
1499 open_softirq(TIMER_SOFTIRQ, run_timer_softirq);
1500 }
1501
1502 /**
1503 * msleep - sleep safely even with waitqueue interruptions
1504 * @msecs: Time in milliseconds to sleep for
1505 */
1506 void msleep(unsigned int msecs)
1507 {
1508 unsigned long timeout = msecs_to_jiffies(msecs) + 1;
1509
1510 while (timeout)
1511 timeout = schedule_timeout_uninterruptible(timeout);
1512 }
1513
1514 EXPORT_SYMBOL(msleep);
1515
1516 /**
1517 * msleep_interruptible - sleep waiting for signals
1518 * @msecs: Time in milliseconds to sleep for
1519 */
1520 unsigned long msleep_interruptible(unsigned int msecs)
1521 {
1522 unsigned long timeout = msecs_to_jiffies(msecs) + 1;
1523
1524 while (timeout && !signal_pending(current))
1525 timeout = schedule_timeout_interruptible(timeout);
1526 return jiffies_to_msecs(timeout);
1527 }
1528
1529 EXPORT_SYMBOL(msleep_interruptible);