]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - kernel/timer.c
Merge tag 'boards' of git://git.kernel.org/pub/scm/linux/kernel/git/arm/arm-soc
[mirror_ubuntu-bionic-kernel.git] / kernel / timer.c
1 /*
2 * linux/kernel/timer.c
3 *
4 * Kernel internal timers, basic process system calls
5 *
6 * Copyright (C) 1991, 1992 Linus Torvalds
7 *
8 * 1997-01-28 Modified by Finn Arne Gangstad to make timers scale better.
9 *
10 * 1997-09-10 Updated NTP code according to technical memorandum Jan '96
11 * "A Kernel Model for Precision Timekeeping" by Dave Mills
12 * 1998-12-24 Fixed a xtime SMP race (we need the xtime_lock rw spinlock to
13 * serialize accesses to xtime/lost_ticks).
14 * Copyright (C) 1998 Andrea Arcangeli
15 * 1999-03-10 Improved NTP compatibility by Ulrich Windl
16 * 2002-05-31 Move sys_sysinfo here and make its locking sane, Robert Love
17 * 2000-10-05 Implemented scalable SMP per-CPU timer handling.
18 * Copyright (C) 2000, 2001, 2002 Ingo Molnar
19 * Designed by David S. Miller, Alexey Kuznetsov and Ingo Molnar
20 */
21
22 #include <linux/kernel_stat.h>
23 #include <linux/export.h>
24 #include <linux/interrupt.h>
25 #include <linux/percpu.h>
26 #include <linux/init.h>
27 #include <linux/mm.h>
28 #include <linux/swap.h>
29 #include <linux/pid_namespace.h>
30 #include <linux/notifier.h>
31 #include <linux/thread_info.h>
32 #include <linux/time.h>
33 #include <linux/jiffies.h>
34 #include <linux/posix-timers.h>
35 #include <linux/cpu.h>
36 #include <linux/syscalls.h>
37 #include <linux/delay.h>
38 #include <linux/tick.h>
39 #include <linux/kallsyms.h>
40 #include <linux/irq_work.h>
41 #include <linux/sched.h>
42 #include <linux/slab.h>
43
44 #include <asm/uaccess.h>
45 #include <asm/unistd.h>
46 #include <asm/div64.h>
47 #include <asm/timex.h>
48 #include <asm/io.h>
49
50 #define CREATE_TRACE_POINTS
51 #include <trace/events/timer.h>
52
53 u64 jiffies_64 __cacheline_aligned_in_smp = INITIAL_JIFFIES;
54
55 EXPORT_SYMBOL(jiffies_64);
56
57 /*
58 * per-CPU timer vector definitions:
59 */
60 #define TVN_BITS (CONFIG_BASE_SMALL ? 4 : 6)
61 #define TVR_BITS (CONFIG_BASE_SMALL ? 6 : 8)
62 #define TVN_SIZE (1 << TVN_BITS)
63 #define TVR_SIZE (1 << TVR_BITS)
64 #define TVN_MASK (TVN_SIZE - 1)
65 #define TVR_MASK (TVR_SIZE - 1)
66
67 struct tvec {
68 struct list_head vec[TVN_SIZE];
69 };
70
71 struct tvec_root {
72 struct list_head vec[TVR_SIZE];
73 };
74
75 struct tvec_base {
76 spinlock_t lock;
77 struct timer_list *running_timer;
78 unsigned long timer_jiffies;
79 unsigned long next_timer;
80 struct tvec_root tv1;
81 struct tvec tv2;
82 struct tvec tv3;
83 struct tvec tv4;
84 struct tvec tv5;
85 } ____cacheline_aligned;
86
87 struct tvec_base boot_tvec_bases;
88 EXPORT_SYMBOL(boot_tvec_bases);
89 static DEFINE_PER_CPU(struct tvec_base *, tvec_bases) = &boot_tvec_bases;
90
91 /* Functions below help us manage 'deferrable' flag */
92 static inline unsigned int tbase_get_deferrable(struct tvec_base *base)
93 {
94 return ((unsigned int)(unsigned long)base & TBASE_DEFERRABLE_FLAG);
95 }
96
97 static inline struct tvec_base *tbase_get_base(struct tvec_base *base)
98 {
99 return ((struct tvec_base *)((unsigned long)base & ~TBASE_DEFERRABLE_FLAG));
100 }
101
102 static inline void timer_set_deferrable(struct timer_list *timer)
103 {
104 timer->base = TBASE_MAKE_DEFERRED(timer->base);
105 }
106
107 static inline void
108 timer_set_base(struct timer_list *timer, struct tvec_base *new_base)
109 {
110 timer->base = (struct tvec_base *)((unsigned long)(new_base) |
111 tbase_get_deferrable(timer->base));
112 }
113
114 static unsigned long round_jiffies_common(unsigned long j, int cpu,
115 bool force_up)
116 {
117 int rem;
118 unsigned long original = j;
119
120 /*
121 * We don't want all cpus firing their timers at once hitting the
122 * same lock or cachelines, so we skew each extra cpu with an extra
123 * 3 jiffies. This 3 jiffies came originally from the mm/ code which
124 * already did this.
125 * The skew is done by adding 3*cpunr, then round, then subtract this
126 * extra offset again.
127 */
128 j += cpu * 3;
129
130 rem = j % HZ;
131
132 /*
133 * If the target jiffie is just after a whole second (which can happen
134 * due to delays of the timer irq, long irq off times etc etc) then
135 * we should round down to the whole second, not up. Use 1/4th second
136 * as cutoff for this rounding as an extreme upper bound for this.
137 * But never round down if @force_up is set.
138 */
139 if (rem < HZ/4 && !force_up) /* round down */
140 j = j - rem;
141 else /* round up */
142 j = j - rem + HZ;
143
144 /* now that we have rounded, subtract the extra skew again */
145 j -= cpu * 3;
146
147 if (j <= jiffies) /* rounding ate our timeout entirely; */
148 return original;
149 return j;
150 }
151
152 /**
153 * __round_jiffies - function to round jiffies to a full second
154 * @j: the time in (absolute) jiffies that should be rounded
155 * @cpu: the processor number on which the timeout will happen
156 *
157 * __round_jiffies() rounds an absolute time in the future (in jiffies)
158 * up or down to (approximately) full seconds. This is useful for timers
159 * for which the exact time they fire does not matter too much, as long as
160 * they fire approximately every X seconds.
161 *
162 * By rounding these timers to whole seconds, all such timers will fire
163 * at the same time, rather than at various times spread out. The goal
164 * of this is to have the CPU wake up less, which saves power.
165 *
166 * The exact rounding is skewed for each processor to avoid all
167 * processors firing at the exact same time, which could lead
168 * to lock contention or spurious cache line bouncing.
169 *
170 * The return value is the rounded version of the @j parameter.
171 */
172 unsigned long __round_jiffies(unsigned long j, int cpu)
173 {
174 return round_jiffies_common(j, cpu, false);
175 }
176 EXPORT_SYMBOL_GPL(__round_jiffies);
177
178 /**
179 * __round_jiffies_relative - function to round jiffies to a full second
180 * @j: the time in (relative) jiffies that should be rounded
181 * @cpu: the processor number on which the timeout will happen
182 *
183 * __round_jiffies_relative() rounds a time delta in the future (in jiffies)
184 * up or down to (approximately) full seconds. This is useful for timers
185 * for which the exact time they fire does not matter too much, as long as
186 * they fire approximately every X seconds.
187 *
188 * By rounding these timers to whole seconds, all such timers will fire
189 * at the same time, rather than at various times spread out. The goal
190 * of this is to have the CPU wake up less, which saves power.
191 *
192 * The exact rounding is skewed for each processor to avoid all
193 * processors firing at the exact same time, which could lead
194 * to lock contention or spurious cache line bouncing.
195 *
196 * The return value is the rounded version of the @j parameter.
197 */
198 unsigned long __round_jiffies_relative(unsigned long j, int cpu)
199 {
200 unsigned long j0 = jiffies;
201
202 /* Use j0 because jiffies might change while we run */
203 return round_jiffies_common(j + j0, cpu, false) - j0;
204 }
205 EXPORT_SYMBOL_GPL(__round_jiffies_relative);
206
207 /**
208 * round_jiffies - function to round jiffies to a full second
209 * @j: the time in (absolute) jiffies that should be rounded
210 *
211 * round_jiffies() rounds an absolute time in the future (in jiffies)
212 * up or down to (approximately) full seconds. This is useful for timers
213 * for which the exact time they fire does not matter too much, as long as
214 * they fire approximately every X seconds.
215 *
216 * By rounding these timers to whole seconds, all such timers will fire
217 * at the same time, rather than at various times spread out. The goal
218 * of this is to have the CPU wake up less, which saves power.
219 *
220 * The return value is the rounded version of the @j parameter.
221 */
222 unsigned long round_jiffies(unsigned long j)
223 {
224 return round_jiffies_common(j, raw_smp_processor_id(), false);
225 }
226 EXPORT_SYMBOL_GPL(round_jiffies);
227
228 /**
229 * round_jiffies_relative - function to round jiffies to a full second
230 * @j: the time in (relative) jiffies that should be rounded
231 *
232 * round_jiffies_relative() rounds a time delta in the future (in jiffies)
233 * up or down to (approximately) full seconds. This is useful for timers
234 * for which the exact time they fire does not matter too much, as long as
235 * they fire approximately every X seconds.
236 *
237 * By rounding these timers to whole seconds, all such timers will fire
238 * at the same time, rather than at various times spread out. The goal
239 * of this is to have the CPU wake up less, which saves power.
240 *
241 * The return value is the rounded version of the @j parameter.
242 */
243 unsigned long round_jiffies_relative(unsigned long j)
244 {
245 return __round_jiffies_relative(j, raw_smp_processor_id());
246 }
247 EXPORT_SYMBOL_GPL(round_jiffies_relative);
248
249 /**
250 * __round_jiffies_up - function to round jiffies up to a full second
251 * @j: the time in (absolute) jiffies that should be rounded
252 * @cpu: the processor number on which the timeout will happen
253 *
254 * This is the same as __round_jiffies() except that it will never
255 * round down. This is useful for timeouts for which the exact time
256 * of firing does not matter too much, as long as they don't fire too
257 * early.
258 */
259 unsigned long __round_jiffies_up(unsigned long j, int cpu)
260 {
261 return round_jiffies_common(j, cpu, true);
262 }
263 EXPORT_SYMBOL_GPL(__round_jiffies_up);
264
265 /**
266 * __round_jiffies_up_relative - function to round jiffies up to a full second
267 * @j: the time in (relative) jiffies that should be rounded
268 * @cpu: the processor number on which the timeout will happen
269 *
270 * This is the same as __round_jiffies_relative() except that it will never
271 * round down. This is useful for timeouts for which the exact time
272 * of firing does not matter too much, as long as they don't fire too
273 * early.
274 */
275 unsigned long __round_jiffies_up_relative(unsigned long j, int cpu)
276 {
277 unsigned long j0 = jiffies;
278
279 /* Use j0 because jiffies might change while we run */
280 return round_jiffies_common(j + j0, cpu, true) - j0;
281 }
282 EXPORT_SYMBOL_GPL(__round_jiffies_up_relative);
283
284 /**
285 * round_jiffies_up - function to round jiffies up to a full second
286 * @j: the time in (absolute) jiffies that should be rounded
287 *
288 * This is the same as round_jiffies() except that it will never
289 * round down. This is useful for timeouts for which the exact time
290 * of firing does not matter too much, as long as they don't fire too
291 * early.
292 */
293 unsigned long round_jiffies_up(unsigned long j)
294 {
295 return round_jiffies_common(j, raw_smp_processor_id(), true);
296 }
297 EXPORT_SYMBOL_GPL(round_jiffies_up);
298
299 /**
300 * round_jiffies_up_relative - function to round jiffies up to a full second
301 * @j: the time in (relative) jiffies that should be rounded
302 *
303 * This is the same as round_jiffies_relative() except that it will never
304 * round down. This is useful for timeouts for which the exact time
305 * of firing does not matter too much, as long as they don't fire too
306 * early.
307 */
308 unsigned long round_jiffies_up_relative(unsigned long j)
309 {
310 return __round_jiffies_up_relative(j, raw_smp_processor_id());
311 }
312 EXPORT_SYMBOL_GPL(round_jiffies_up_relative);
313
314 /**
315 * set_timer_slack - set the allowed slack for a timer
316 * @timer: the timer to be modified
317 * @slack_hz: the amount of time (in jiffies) allowed for rounding
318 *
319 * Set the amount of time, in jiffies, that a certain timer has
320 * in terms of slack. By setting this value, the timer subsystem
321 * will schedule the actual timer somewhere between
322 * the time mod_timer() asks for, and that time plus the slack.
323 *
324 * By setting the slack to -1, a percentage of the delay is used
325 * instead.
326 */
327 void set_timer_slack(struct timer_list *timer, int slack_hz)
328 {
329 timer->slack = slack_hz;
330 }
331 EXPORT_SYMBOL_GPL(set_timer_slack);
332
333 static void internal_add_timer(struct tvec_base *base, struct timer_list *timer)
334 {
335 unsigned long expires = timer->expires;
336 unsigned long idx = expires - base->timer_jiffies;
337 struct list_head *vec;
338
339 if (idx < TVR_SIZE) {
340 int i = expires & TVR_MASK;
341 vec = base->tv1.vec + i;
342 } else if (idx < 1 << (TVR_BITS + TVN_BITS)) {
343 int i = (expires >> TVR_BITS) & TVN_MASK;
344 vec = base->tv2.vec + i;
345 } else if (idx < 1 << (TVR_BITS + 2 * TVN_BITS)) {
346 int i = (expires >> (TVR_BITS + TVN_BITS)) & TVN_MASK;
347 vec = base->tv3.vec + i;
348 } else if (idx < 1 << (TVR_BITS + 3 * TVN_BITS)) {
349 int i = (expires >> (TVR_BITS + 2 * TVN_BITS)) & TVN_MASK;
350 vec = base->tv4.vec + i;
351 } else if ((signed long) idx < 0) {
352 /*
353 * Can happen if you add a timer with expires == jiffies,
354 * or you set a timer to go off in the past
355 */
356 vec = base->tv1.vec + (base->timer_jiffies & TVR_MASK);
357 } else {
358 int i;
359 /* If the timeout is larger than 0xffffffff on 64-bit
360 * architectures then we use the maximum timeout:
361 */
362 if (idx > 0xffffffffUL) {
363 idx = 0xffffffffUL;
364 expires = idx + base->timer_jiffies;
365 }
366 i = (expires >> (TVR_BITS + 3 * TVN_BITS)) & TVN_MASK;
367 vec = base->tv5.vec + i;
368 }
369 /*
370 * Timers are FIFO:
371 */
372 list_add_tail(&timer->entry, vec);
373 }
374
375 #ifdef CONFIG_TIMER_STATS
376 void __timer_stats_timer_set_start_info(struct timer_list *timer, void *addr)
377 {
378 if (timer->start_site)
379 return;
380
381 timer->start_site = addr;
382 memcpy(timer->start_comm, current->comm, TASK_COMM_LEN);
383 timer->start_pid = current->pid;
384 }
385
386 static void timer_stats_account_timer(struct timer_list *timer)
387 {
388 unsigned int flag = 0;
389
390 if (likely(!timer->start_site))
391 return;
392 if (unlikely(tbase_get_deferrable(timer->base)))
393 flag |= TIMER_STATS_FLAG_DEFERRABLE;
394
395 timer_stats_update_stats(timer, timer->start_pid, timer->start_site,
396 timer->function, timer->start_comm, flag);
397 }
398
399 #else
400 static void timer_stats_account_timer(struct timer_list *timer) {}
401 #endif
402
403 #ifdef CONFIG_DEBUG_OBJECTS_TIMERS
404
405 static struct debug_obj_descr timer_debug_descr;
406
407 static void *timer_debug_hint(void *addr)
408 {
409 return ((struct timer_list *) addr)->function;
410 }
411
412 /*
413 * fixup_init is called when:
414 * - an active object is initialized
415 */
416 static int timer_fixup_init(void *addr, enum debug_obj_state state)
417 {
418 struct timer_list *timer = addr;
419
420 switch (state) {
421 case ODEBUG_STATE_ACTIVE:
422 del_timer_sync(timer);
423 debug_object_init(timer, &timer_debug_descr);
424 return 1;
425 default:
426 return 0;
427 }
428 }
429
430 /* Stub timer callback for improperly used timers. */
431 static void stub_timer(unsigned long data)
432 {
433 WARN_ON(1);
434 }
435
436 /*
437 * fixup_activate is called when:
438 * - an active object is activated
439 * - an unknown object is activated (might be a statically initialized object)
440 */
441 static int timer_fixup_activate(void *addr, enum debug_obj_state state)
442 {
443 struct timer_list *timer = addr;
444
445 switch (state) {
446
447 case ODEBUG_STATE_NOTAVAILABLE:
448 /*
449 * This is not really a fixup. The timer was
450 * statically initialized. We just make sure that it
451 * is tracked in the object tracker.
452 */
453 if (timer->entry.next == NULL &&
454 timer->entry.prev == TIMER_ENTRY_STATIC) {
455 debug_object_init(timer, &timer_debug_descr);
456 debug_object_activate(timer, &timer_debug_descr);
457 return 0;
458 } else {
459 setup_timer(timer, stub_timer, 0);
460 return 1;
461 }
462 return 0;
463
464 case ODEBUG_STATE_ACTIVE:
465 WARN_ON(1);
466
467 default:
468 return 0;
469 }
470 }
471
472 /*
473 * fixup_free is called when:
474 * - an active object is freed
475 */
476 static int timer_fixup_free(void *addr, enum debug_obj_state state)
477 {
478 struct timer_list *timer = addr;
479
480 switch (state) {
481 case ODEBUG_STATE_ACTIVE:
482 del_timer_sync(timer);
483 debug_object_free(timer, &timer_debug_descr);
484 return 1;
485 default:
486 return 0;
487 }
488 }
489
490 /*
491 * fixup_assert_init is called when:
492 * - an untracked/uninit-ed object is found
493 */
494 static int timer_fixup_assert_init(void *addr, enum debug_obj_state state)
495 {
496 struct timer_list *timer = addr;
497
498 switch (state) {
499 case ODEBUG_STATE_NOTAVAILABLE:
500 if (timer->entry.prev == TIMER_ENTRY_STATIC) {
501 /*
502 * This is not really a fixup. The timer was
503 * statically initialized. We just make sure that it
504 * is tracked in the object tracker.
505 */
506 debug_object_init(timer, &timer_debug_descr);
507 return 0;
508 } else {
509 setup_timer(timer, stub_timer, 0);
510 return 1;
511 }
512 default:
513 return 0;
514 }
515 }
516
517 static struct debug_obj_descr timer_debug_descr = {
518 .name = "timer_list",
519 .debug_hint = timer_debug_hint,
520 .fixup_init = timer_fixup_init,
521 .fixup_activate = timer_fixup_activate,
522 .fixup_free = timer_fixup_free,
523 .fixup_assert_init = timer_fixup_assert_init,
524 };
525
526 static inline void debug_timer_init(struct timer_list *timer)
527 {
528 debug_object_init(timer, &timer_debug_descr);
529 }
530
531 static inline void debug_timer_activate(struct timer_list *timer)
532 {
533 debug_object_activate(timer, &timer_debug_descr);
534 }
535
536 static inline void debug_timer_deactivate(struct timer_list *timer)
537 {
538 debug_object_deactivate(timer, &timer_debug_descr);
539 }
540
541 static inline void debug_timer_free(struct timer_list *timer)
542 {
543 debug_object_free(timer, &timer_debug_descr);
544 }
545
546 static inline void debug_timer_assert_init(struct timer_list *timer)
547 {
548 debug_object_assert_init(timer, &timer_debug_descr);
549 }
550
551 static void __init_timer(struct timer_list *timer,
552 const char *name,
553 struct lock_class_key *key);
554
555 void init_timer_on_stack_key(struct timer_list *timer,
556 const char *name,
557 struct lock_class_key *key)
558 {
559 debug_object_init_on_stack(timer, &timer_debug_descr);
560 __init_timer(timer, name, key);
561 }
562 EXPORT_SYMBOL_GPL(init_timer_on_stack_key);
563
564 void destroy_timer_on_stack(struct timer_list *timer)
565 {
566 debug_object_free(timer, &timer_debug_descr);
567 }
568 EXPORT_SYMBOL_GPL(destroy_timer_on_stack);
569
570 #else
571 static inline void debug_timer_init(struct timer_list *timer) { }
572 static inline void debug_timer_activate(struct timer_list *timer) { }
573 static inline void debug_timer_deactivate(struct timer_list *timer) { }
574 static inline void debug_timer_assert_init(struct timer_list *timer) { }
575 #endif
576
577 static inline void debug_init(struct timer_list *timer)
578 {
579 debug_timer_init(timer);
580 trace_timer_init(timer);
581 }
582
583 static inline void
584 debug_activate(struct timer_list *timer, unsigned long expires)
585 {
586 debug_timer_activate(timer);
587 trace_timer_start(timer, expires);
588 }
589
590 static inline void debug_deactivate(struct timer_list *timer)
591 {
592 debug_timer_deactivate(timer);
593 trace_timer_cancel(timer);
594 }
595
596 static inline void debug_assert_init(struct timer_list *timer)
597 {
598 debug_timer_assert_init(timer);
599 }
600
601 static void __init_timer(struct timer_list *timer,
602 const char *name,
603 struct lock_class_key *key)
604 {
605 timer->entry.next = NULL;
606 timer->base = __raw_get_cpu_var(tvec_bases);
607 timer->slack = -1;
608 #ifdef CONFIG_TIMER_STATS
609 timer->start_site = NULL;
610 timer->start_pid = -1;
611 memset(timer->start_comm, 0, TASK_COMM_LEN);
612 #endif
613 lockdep_init_map(&timer->lockdep_map, name, key, 0);
614 }
615
616 void setup_deferrable_timer_on_stack_key(struct timer_list *timer,
617 const char *name,
618 struct lock_class_key *key,
619 void (*function)(unsigned long),
620 unsigned long data)
621 {
622 timer->function = function;
623 timer->data = data;
624 init_timer_on_stack_key(timer, name, key);
625 timer_set_deferrable(timer);
626 }
627 EXPORT_SYMBOL_GPL(setup_deferrable_timer_on_stack_key);
628
629 /**
630 * init_timer_key - initialize a timer
631 * @timer: the timer to be initialized
632 * @name: name of the timer
633 * @key: lockdep class key of the fake lock used for tracking timer
634 * sync lock dependencies
635 *
636 * init_timer_key() must be done to a timer prior calling *any* of the
637 * other timer functions.
638 */
639 void init_timer_key(struct timer_list *timer,
640 const char *name,
641 struct lock_class_key *key)
642 {
643 debug_init(timer);
644 __init_timer(timer, name, key);
645 }
646 EXPORT_SYMBOL(init_timer_key);
647
648 void init_timer_deferrable_key(struct timer_list *timer,
649 const char *name,
650 struct lock_class_key *key)
651 {
652 init_timer_key(timer, name, key);
653 timer_set_deferrable(timer);
654 }
655 EXPORT_SYMBOL(init_timer_deferrable_key);
656
657 static inline void detach_timer(struct timer_list *timer,
658 int clear_pending)
659 {
660 struct list_head *entry = &timer->entry;
661
662 debug_deactivate(timer);
663
664 __list_del(entry->prev, entry->next);
665 if (clear_pending)
666 entry->next = NULL;
667 entry->prev = LIST_POISON2;
668 }
669
670 /*
671 * We are using hashed locking: holding per_cpu(tvec_bases).lock
672 * means that all timers which are tied to this base via timer->base are
673 * locked, and the base itself is locked too.
674 *
675 * So __run_timers/migrate_timers can safely modify all timers which could
676 * be found on ->tvX lists.
677 *
678 * When the timer's base is locked, and the timer removed from list, it is
679 * possible to set timer->base = NULL and drop the lock: the timer remains
680 * locked.
681 */
682 static struct tvec_base *lock_timer_base(struct timer_list *timer,
683 unsigned long *flags)
684 __acquires(timer->base->lock)
685 {
686 struct tvec_base *base;
687
688 for (;;) {
689 struct tvec_base *prelock_base = timer->base;
690 base = tbase_get_base(prelock_base);
691 if (likely(base != NULL)) {
692 spin_lock_irqsave(&base->lock, *flags);
693 if (likely(prelock_base == timer->base))
694 return base;
695 /* The timer has migrated to another CPU */
696 spin_unlock_irqrestore(&base->lock, *flags);
697 }
698 cpu_relax();
699 }
700 }
701
702 static inline int
703 __mod_timer(struct timer_list *timer, unsigned long expires,
704 bool pending_only, int pinned)
705 {
706 struct tvec_base *base, *new_base;
707 unsigned long flags;
708 int ret = 0 , cpu;
709
710 timer_stats_timer_set_start_info(timer);
711 BUG_ON(!timer->function);
712
713 base = lock_timer_base(timer, &flags);
714
715 if (timer_pending(timer)) {
716 detach_timer(timer, 0);
717 if (timer->expires == base->next_timer &&
718 !tbase_get_deferrable(timer->base))
719 base->next_timer = base->timer_jiffies;
720 ret = 1;
721 } else {
722 if (pending_only)
723 goto out_unlock;
724 }
725
726 debug_activate(timer, expires);
727
728 cpu = smp_processor_id();
729
730 #if defined(CONFIG_NO_HZ) && defined(CONFIG_SMP)
731 if (!pinned && get_sysctl_timer_migration() && idle_cpu(cpu))
732 cpu = get_nohz_timer_target();
733 #endif
734 new_base = per_cpu(tvec_bases, cpu);
735
736 if (base != new_base) {
737 /*
738 * We are trying to schedule the timer on the local CPU.
739 * However we can't change timer's base while it is running,
740 * otherwise del_timer_sync() can't detect that the timer's
741 * handler yet has not finished. This also guarantees that
742 * the timer is serialized wrt itself.
743 */
744 if (likely(base->running_timer != timer)) {
745 /* See the comment in lock_timer_base() */
746 timer_set_base(timer, NULL);
747 spin_unlock(&base->lock);
748 base = new_base;
749 spin_lock(&base->lock);
750 timer_set_base(timer, base);
751 }
752 }
753
754 timer->expires = expires;
755 if (time_before(timer->expires, base->next_timer) &&
756 !tbase_get_deferrable(timer->base))
757 base->next_timer = timer->expires;
758 internal_add_timer(base, timer);
759
760 out_unlock:
761 spin_unlock_irqrestore(&base->lock, flags);
762
763 return ret;
764 }
765
766 /**
767 * mod_timer_pending - modify a pending timer's timeout
768 * @timer: the pending timer to be modified
769 * @expires: new timeout in jiffies
770 *
771 * mod_timer_pending() is the same for pending timers as mod_timer(),
772 * but will not re-activate and modify already deleted timers.
773 *
774 * It is useful for unserialized use of timers.
775 */
776 int mod_timer_pending(struct timer_list *timer, unsigned long expires)
777 {
778 return __mod_timer(timer, expires, true, TIMER_NOT_PINNED);
779 }
780 EXPORT_SYMBOL(mod_timer_pending);
781
782 /*
783 * Decide where to put the timer while taking the slack into account
784 *
785 * Algorithm:
786 * 1) calculate the maximum (absolute) time
787 * 2) calculate the highest bit where the expires and new max are different
788 * 3) use this bit to make a mask
789 * 4) use the bitmask to round down the maximum time, so that all last
790 * bits are zeros
791 */
792 static inline
793 unsigned long apply_slack(struct timer_list *timer, unsigned long expires)
794 {
795 unsigned long expires_limit, mask;
796 int bit;
797
798 if (timer->slack >= 0) {
799 expires_limit = expires + timer->slack;
800 } else {
801 long delta = expires - jiffies;
802
803 if (delta < 256)
804 return expires;
805
806 expires_limit = expires + delta / 256;
807 }
808 mask = expires ^ expires_limit;
809 if (mask == 0)
810 return expires;
811
812 bit = find_last_bit(&mask, BITS_PER_LONG);
813
814 mask = (1 << bit) - 1;
815
816 expires_limit = expires_limit & ~(mask);
817
818 return expires_limit;
819 }
820
821 /**
822 * mod_timer - modify a timer's timeout
823 * @timer: the timer to be modified
824 * @expires: new timeout in jiffies
825 *
826 * mod_timer() is a more efficient way to update the expire field of an
827 * active timer (if the timer is inactive it will be activated)
828 *
829 * mod_timer(timer, expires) is equivalent to:
830 *
831 * del_timer(timer); timer->expires = expires; add_timer(timer);
832 *
833 * Note that if there are multiple unserialized concurrent users of the
834 * same timer, then mod_timer() is the only safe way to modify the timeout,
835 * since add_timer() cannot modify an already running timer.
836 *
837 * The function returns whether it has modified a pending timer or not.
838 * (ie. mod_timer() of an inactive timer returns 0, mod_timer() of an
839 * active timer returns 1.)
840 */
841 int mod_timer(struct timer_list *timer, unsigned long expires)
842 {
843 expires = apply_slack(timer, expires);
844
845 /*
846 * This is a common optimization triggered by the
847 * networking code - if the timer is re-modified
848 * to be the same thing then just return:
849 */
850 if (timer_pending(timer) && timer->expires == expires)
851 return 1;
852
853 return __mod_timer(timer, expires, false, TIMER_NOT_PINNED);
854 }
855 EXPORT_SYMBOL(mod_timer);
856
857 /**
858 * mod_timer_pinned - modify a timer's timeout
859 * @timer: the timer to be modified
860 * @expires: new timeout in jiffies
861 *
862 * mod_timer_pinned() is a way to update the expire field of an
863 * active timer (if the timer is inactive it will be activated)
864 * and to ensure that the timer is scheduled on the current CPU.
865 *
866 * Note that this does not prevent the timer from being migrated
867 * when the current CPU goes offline. If this is a problem for
868 * you, use CPU-hotplug notifiers to handle it correctly, for
869 * example, cancelling the timer when the corresponding CPU goes
870 * offline.
871 *
872 * mod_timer_pinned(timer, expires) is equivalent to:
873 *
874 * del_timer(timer); timer->expires = expires; add_timer(timer);
875 */
876 int mod_timer_pinned(struct timer_list *timer, unsigned long expires)
877 {
878 if (timer->expires == expires && timer_pending(timer))
879 return 1;
880
881 return __mod_timer(timer, expires, false, TIMER_PINNED);
882 }
883 EXPORT_SYMBOL(mod_timer_pinned);
884
885 /**
886 * add_timer - start a timer
887 * @timer: the timer to be added
888 *
889 * The kernel will do a ->function(->data) callback from the
890 * timer interrupt at the ->expires point in the future. The
891 * current time is 'jiffies'.
892 *
893 * The timer's ->expires, ->function (and if the handler uses it, ->data)
894 * fields must be set prior calling this function.
895 *
896 * Timers with an ->expires field in the past will be executed in the next
897 * timer tick.
898 */
899 void add_timer(struct timer_list *timer)
900 {
901 BUG_ON(timer_pending(timer));
902 mod_timer(timer, timer->expires);
903 }
904 EXPORT_SYMBOL(add_timer);
905
906 /**
907 * add_timer_on - start a timer on a particular CPU
908 * @timer: the timer to be added
909 * @cpu: the CPU to start it on
910 *
911 * This is not very scalable on SMP. Double adds are not possible.
912 */
913 void add_timer_on(struct timer_list *timer, int cpu)
914 {
915 struct tvec_base *base = per_cpu(tvec_bases, cpu);
916 unsigned long flags;
917
918 timer_stats_timer_set_start_info(timer);
919 BUG_ON(timer_pending(timer) || !timer->function);
920 spin_lock_irqsave(&base->lock, flags);
921 timer_set_base(timer, base);
922 debug_activate(timer, timer->expires);
923 if (time_before(timer->expires, base->next_timer) &&
924 !tbase_get_deferrable(timer->base))
925 base->next_timer = timer->expires;
926 internal_add_timer(base, timer);
927 /*
928 * Check whether the other CPU is idle and needs to be
929 * triggered to reevaluate the timer wheel when nohz is
930 * active. We are protected against the other CPU fiddling
931 * with the timer by holding the timer base lock. This also
932 * makes sure that a CPU on the way to idle can not evaluate
933 * the timer wheel.
934 */
935 wake_up_idle_cpu(cpu);
936 spin_unlock_irqrestore(&base->lock, flags);
937 }
938 EXPORT_SYMBOL_GPL(add_timer_on);
939
940 /**
941 * del_timer - deactive a timer.
942 * @timer: the timer to be deactivated
943 *
944 * del_timer() deactivates a timer - this works on both active and inactive
945 * timers.
946 *
947 * The function returns whether it has deactivated a pending timer or not.
948 * (ie. del_timer() of an inactive timer returns 0, del_timer() of an
949 * active timer returns 1.)
950 */
951 int del_timer(struct timer_list *timer)
952 {
953 struct tvec_base *base;
954 unsigned long flags;
955 int ret = 0;
956
957 debug_assert_init(timer);
958
959 timer_stats_timer_clear_start_info(timer);
960 if (timer_pending(timer)) {
961 base = lock_timer_base(timer, &flags);
962 if (timer_pending(timer)) {
963 detach_timer(timer, 1);
964 if (timer->expires == base->next_timer &&
965 !tbase_get_deferrable(timer->base))
966 base->next_timer = base->timer_jiffies;
967 ret = 1;
968 }
969 spin_unlock_irqrestore(&base->lock, flags);
970 }
971
972 return ret;
973 }
974 EXPORT_SYMBOL(del_timer);
975
976 /**
977 * try_to_del_timer_sync - Try to deactivate a timer
978 * @timer: timer do del
979 *
980 * This function tries to deactivate a timer. Upon successful (ret >= 0)
981 * exit the timer is not queued and the handler is not running on any CPU.
982 */
983 int try_to_del_timer_sync(struct timer_list *timer)
984 {
985 struct tvec_base *base;
986 unsigned long flags;
987 int ret = -1;
988
989 debug_assert_init(timer);
990
991 base = lock_timer_base(timer, &flags);
992
993 if (base->running_timer == timer)
994 goto out;
995
996 timer_stats_timer_clear_start_info(timer);
997 ret = 0;
998 if (timer_pending(timer)) {
999 detach_timer(timer, 1);
1000 if (timer->expires == base->next_timer &&
1001 !tbase_get_deferrable(timer->base))
1002 base->next_timer = base->timer_jiffies;
1003 ret = 1;
1004 }
1005 out:
1006 spin_unlock_irqrestore(&base->lock, flags);
1007
1008 return ret;
1009 }
1010 EXPORT_SYMBOL(try_to_del_timer_sync);
1011
1012 #ifdef CONFIG_SMP
1013 /**
1014 * del_timer_sync - deactivate a timer and wait for the handler to finish.
1015 * @timer: the timer to be deactivated
1016 *
1017 * This function only differs from del_timer() on SMP: besides deactivating
1018 * the timer it also makes sure the handler has finished executing on other
1019 * CPUs.
1020 *
1021 * Synchronization rules: Callers must prevent restarting of the timer,
1022 * otherwise this function is meaningless. It must not be called from
1023 * interrupt contexts. The caller must not hold locks which would prevent
1024 * completion of the timer's handler. The timer's handler must not call
1025 * add_timer_on(). Upon exit the timer is not queued and the handler is
1026 * not running on any CPU.
1027 *
1028 * Note: You must not hold locks that are held in interrupt context
1029 * while calling this function. Even if the lock has nothing to do
1030 * with the timer in question. Here's why:
1031 *
1032 * CPU0 CPU1
1033 * ---- ----
1034 * <SOFTIRQ>
1035 * call_timer_fn();
1036 * base->running_timer = mytimer;
1037 * spin_lock_irq(somelock);
1038 * <IRQ>
1039 * spin_lock(somelock);
1040 * del_timer_sync(mytimer);
1041 * while (base->running_timer == mytimer);
1042 *
1043 * Now del_timer_sync() will never return and never release somelock.
1044 * The interrupt on the other CPU is waiting to grab somelock but
1045 * it has interrupted the softirq that CPU0 is waiting to finish.
1046 *
1047 * The function returns whether it has deactivated a pending timer or not.
1048 */
1049 int del_timer_sync(struct timer_list *timer)
1050 {
1051 #ifdef CONFIG_LOCKDEP
1052 unsigned long flags;
1053
1054 /*
1055 * If lockdep gives a backtrace here, please reference
1056 * the synchronization rules above.
1057 */
1058 local_irq_save(flags);
1059 lock_map_acquire(&timer->lockdep_map);
1060 lock_map_release(&timer->lockdep_map);
1061 local_irq_restore(flags);
1062 #endif
1063 /*
1064 * don't use it in hardirq context, because it
1065 * could lead to deadlock.
1066 */
1067 WARN_ON(in_irq());
1068 for (;;) {
1069 int ret = try_to_del_timer_sync(timer);
1070 if (ret >= 0)
1071 return ret;
1072 cpu_relax();
1073 }
1074 }
1075 EXPORT_SYMBOL(del_timer_sync);
1076 #endif
1077
1078 static int cascade(struct tvec_base *base, struct tvec *tv, int index)
1079 {
1080 /* cascade all the timers from tv up one level */
1081 struct timer_list *timer, *tmp;
1082 struct list_head tv_list;
1083
1084 list_replace_init(tv->vec + index, &tv_list);
1085
1086 /*
1087 * We are removing _all_ timers from the list, so we
1088 * don't have to detach them individually.
1089 */
1090 list_for_each_entry_safe(timer, tmp, &tv_list, entry) {
1091 BUG_ON(tbase_get_base(timer->base) != base);
1092 internal_add_timer(base, timer);
1093 }
1094
1095 return index;
1096 }
1097
1098 static void call_timer_fn(struct timer_list *timer, void (*fn)(unsigned long),
1099 unsigned long data)
1100 {
1101 int preempt_count = preempt_count();
1102
1103 #ifdef CONFIG_LOCKDEP
1104 /*
1105 * It is permissible to free the timer from inside the
1106 * function that is called from it, this we need to take into
1107 * account for lockdep too. To avoid bogus "held lock freed"
1108 * warnings as well as problems when looking into
1109 * timer->lockdep_map, make a copy and use that here.
1110 */
1111 struct lockdep_map lockdep_map = timer->lockdep_map;
1112 #endif
1113 /*
1114 * Couple the lock chain with the lock chain at
1115 * del_timer_sync() by acquiring the lock_map around the fn()
1116 * call here and in del_timer_sync().
1117 */
1118 lock_map_acquire(&lockdep_map);
1119
1120 trace_timer_expire_entry(timer);
1121 fn(data);
1122 trace_timer_expire_exit(timer);
1123
1124 lock_map_release(&lockdep_map);
1125
1126 if (preempt_count != preempt_count()) {
1127 WARN_ONCE(1, "timer: %pF preempt leak: %08x -> %08x\n",
1128 fn, preempt_count, preempt_count());
1129 /*
1130 * Restore the preempt count. That gives us a decent
1131 * chance to survive and extract information. If the
1132 * callback kept a lock held, bad luck, but not worse
1133 * than the BUG() we had.
1134 */
1135 preempt_count() = preempt_count;
1136 }
1137 }
1138
1139 #define INDEX(N) ((base->timer_jiffies >> (TVR_BITS + (N) * TVN_BITS)) & TVN_MASK)
1140
1141 /**
1142 * __run_timers - run all expired timers (if any) on this CPU.
1143 * @base: the timer vector to be processed.
1144 *
1145 * This function cascades all vectors and executes all expired timer
1146 * vectors.
1147 */
1148 static inline void __run_timers(struct tvec_base *base)
1149 {
1150 struct timer_list *timer;
1151
1152 spin_lock_irq(&base->lock);
1153 while (time_after_eq(jiffies, base->timer_jiffies)) {
1154 struct list_head work_list;
1155 struct list_head *head = &work_list;
1156 int index = base->timer_jiffies & TVR_MASK;
1157
1158 /*
1159 * Cascade timers:
1160 */
1161 if (!index &&
1162 (!cascade(base, &base->tv2, INDEX(0))) &&
1163 (!cascade(base, &base->tv3, INDEX(1))) &&
1164 !cascade(base, &base->tv4, INDEX(2)))
1165 cascade(base, &base->tv5, INDEX(3));
1166 ++base->timer_jiffies;
1167 list_replace_init(base->tv1.vec + index, &work_list);
1168 while (!list_empty(head)) {
1169 void (*fn)(unsigned long);
1170 unsigned long data;
1171
1172 timer = list_first_entry(head, struct timer_list,entry);
1173 fn = timer->function;
1174 data = timer->data;
1175
1176 timer_stats_account_timer(timer);
1177
1178 base->running_timer = timer;
1179 detach_timer(timer, 1);
1180
1181 spin_unlock_irq(&base->lock);
1182 call_timer_fn(timer, fn, data);
1183 spin_lock_irq(&base->lock);
1184 }
1185 }
1186 base->running_timer = NULL;
1187 spin_unlock_irq(&base->lock);
1188 }
1189
1190 #ifdef CONFIG_NO_HZ
1191 /*
1192 * Find out when the next timer event is due to happen. This
1193 * is used on S/390 to stop all activity when a CPU is idle.
1194 * This function needs to be called with interrupts disabled.
1195 */
1196 static unsigned long __next_timer_interrupt(struct tvec_base *base)
1197 {
1198 unsigned long timer_jiffies = base->timer_jiffies;
1199 unsigned long expires = timer_jiffies + NEXT_TIMER_MAX_DELTA;
1200 int index, slot, array, found = 0;
1201 struct timer_list *nte;
1202 struct tvec *varray[4];
1203
1204 /* Look for timer events in tv1. */
1205 index = slot = timer_jiffies & TVR_MASK;
1206 do {
1207 list_for_each_entry(nte, base->tv1.vec + slot, entry) {
1208 if (tbase_get_deferrable(nte->base))
1209 continue;
1210
1211 found = 1;
1212 expires = nte->expires;
1213 /* Look at the cascade bucket(s)? */
1214 if (!index || slot < index)
1215 goto cascade;
1216 return expires;
1217 }
1218 slot = (slot + 1) & TVR_MASK;
1219 } while (slot != index);
1220
1221 cascade:
1222 /* Calculate the next cascade event */
1223 if (index)
1224 timer_jiffies += TVR_SIZE - index;
1225 timer_jiffies >>= TVR_BITS;
1226
1227 /* Check tv2-tv5. */
1228 varray[0] = &base->tv2;
1229 varray[1] = &base->tv3;
1230 varray[2] = &base->tv4;
1231 varray[3] = &base->tv5;
1232
1233 for (array = 0; array < 4; array++) {
1234 struct tvec *varp = varray[array];
1235
1236 index = slot = timer_jiffies & TVN_MASK;
1237 do {
1238 list_for_each_entry(nte, varp->vec + slot, entry) {
1239 if (tbase_get_deferrable(nte->base))
1240 continue;
1241
1242 found = 1;
1243 if (time_before(nte->expires, expires))
1244 expires = nte->expires;
1245 }
1246 /*
1247 * Do we still search for the first timer or are
1248 * we looking up the cascade buckets ?
1249 */
1250 if (found) {
1251 /* Look at the cascade bucket(s)? */
1252 if (!index || slot < index)
1253 break;
1254 return expires;
1255 }
1256 slot = (slot + 1) & TVN_MASK;
1257 } while (slot != index);
1258
1259 if (index)
1260 timer_jiffies += TVN_SIZE - index;
1261 timer_jiffies >>= TVN_BITS;
1262 }
1263 return expires;
1264 }
1265
1266 /*
1267 * Check, if the next hrtimer event is before the next timer wheel
1268 * event:
1269 */
1270 static unsigned long cmp_next_hrtimer_event(unsigned long now,
1271 unsigned long expires)
1272 {
1273 ktime_t hr_delta = hrtimer_get_next_event();
1274 struct timespec tsdelta;
1275 unsigned long delta;
1276
1277 if (hr_delta.tv64 == KTIME_MAX)
1278 return expires;
1279
1280 /*
1281 * Expired timer available, let it expire in the next tick
1282 */
1283 if (hr_delta.tv64 <= 0)
1284 return now + 1;
1285
1286 tsdelta = ktime_to_timespec(hr_delta);
1287 delta = timespec_to_jiffies(&tsdelta);
1288
1289 /*
1290 * Limit the delta to the max value, which is checked in
1291 * tick_nohz_stop_sched_tick():
1292 */
1293 if (delta > NEXT_TIMER_MAX_DELTA)
1294 delta = NEXT_TIMER_MAX_DELTA;
1295
1296 /*
1297 * Take rounding errors in to account and make sure, that it
1298 * expires in the next tick. Otherwise we go into an endless
1299 * ping pong due to tick_nohz_stop_sched_tick() retriggering
1300 * the timer softirq
1301 */
1302 if (delta < 1)
1303 delta = 1;
1304 now += delta;
1305 if (time_before(now, expires))
1306 return now;
1307 return expires;
1308 }
1309
1310 /**
1311 * get_next_timer_interrupt - return the jiffy of the next pending timer
1312 * @now: current time (in jiffies)
1313 */
1314 unsigned long get_next_timer_interrupt(unsigned long now)
1315 {
1316 struct tvec_base *base = __this_cpu_read(tvec_bases);
1317 unsigned long expires;
1318
1319 /*
1320 * Pretend that there is no timer pending if the cpu is offline.
1321 * Possible pending timers will be migrated later to an active cpu.
1322 */
1323 if (cpu_is_offline(smp_processor_id()))
1324 return now + NEXT_TIMER_MAX_DELTA;
1325 spin_lock(&base->lock);
1326 if (time_before_eq(base->next_timer, base->timer_jiffies))
1327 base->next_timer = __next_timer_interrupt(base);
1328 expires = base->next_timer;
1329 spin_unlock(&base->lock);
1330
1331 if (time_before_eq(expires, now))
1332 return now;
1333
1334 return cmp_next_hrtimer_event(now, expires);
1335 }
1336 #endif
1337
1338 /*
1339 * Called from the timer interrupt handler to charge one tick to the current
1340 * process. user_tick is 1 if the tick is user time, 0 for system.
1341 */
1342 void update_process_times(int user_tick)
1343 {
1344 struct task_struct *p = current;
1345 int cpu = smp_processor_id();
1346
1347 /* Note: this timer irq context must be accounted for as well. */
1348 account_process_tick(p, user_tick);
1349 run_local_timers();
1350 rcu_check_callbacks(cpu, user_tick);
1351 printk_tick();
1352 #ifdef CONFIG_IRQ_WORK
1353 if (in_irq())
1354 irq_work_run();
1355 #endif
1356 scheduler_tick();
1357 run_posix_cpu_timers(p);
1358 }
1359
1360 /*
1361 * This function runs timers and the timer-tq in bottom half context.
1362 */
1363 static void run_timer_softirq(struct softirq_action *h)
1364 {
1365 struct tvec_base *base = __this_cpu_read(tvec_bases);
1366
1367 hrtimer_run_pending();
1368
1369 if (time_after_eq(jiffies, base->timer_jiffies))
1370 __run_timers(base);
1371 }
1372
1373 /*
1374 * Called by the local, per-CPU timer interrupt on SMP.
1375 */
1376 void run_local_timers(void)
1377 {
1378 hrtimer_run_queues();
1379 raise_softirq(TIMER_SOFTIRQ);
1380 }
1381
1382 #ifdef __ARCH_WANT_SYS_ALARM
1383
1384 /*
1385 * For backwards compatibility? This can be done in libc so Alpha
1386 * and all newer ports shouldn't need it.
1387 */
1388 SYSCALL_DEFINE1(alarm, unsigned int, seconds)
1389 {
1390 return alarm_setitimer(seconds);
1391 }
1392
1393 #endif
1394
1395 #ifndef __alpha__
1396
1397 /*
1398 * The Alpha uses getxpid, getxuid, and getxgid instead. Maybe this
1399 * should be moved into arch/i386 instead?
1400 */
1401
1402 /**
1403 * sys_getpid - return the thread group id of the current process
1404 *
1405 * Note, despite the name, this returns the tgid not the pid. The tgid and
1406 * the pid are identical unless CLONE_THREAD was specified on clone() in
1407 * which case the tgid is the same in all threads of the same group.
1408 *
1409 * This is SMP safe as current->tgid does not change.
1410 */
1411 SYSCALL_DEFINE0(getpid)
1412 {
1413 return task_tgid_vnr(current);
1414 }
1415
1416 /*
1417 * Accessing ->real_parent is not SMP-safe, it could
1418 * change from under us. However, we can use a stale
1419 * value of ->real_parent under rcu_read_lock(), see
1420 * release_task()->call_rcu(delayed_put_task_struct).
1421 */
1422 SYSCALL_DEFINE0(getppid)
1423 {
1424 int pid;
1425
1426 rcu_read_lock();
1427 pid = task_tgid_vnr(rcu_dereference(current->real_parent));
1428 rcu_read_unlock();
1429
1430 return pid;
1431 }
1432
1433 SYSCALL_DEFINE0(getuid)
1434 {
1435 /* Only we change this so SMP safe */
1436 return current_uid();
1437 }
1438
1439 SYSCALL_DEFINE0(geteuid)
1440 {
1441 /* Only we change this so SMP safe */
1442 return current_euid();
1443 }
1444
1445 SYSCALL_DEFINE0(getgid)
1446 {
1447 /* Only we change this so SMP safe */
1448 return current_gid();
1449 }
1450
1451 SYSCALL_DEFINE0(getegid)
1452 {
1453 /* Only we change this so SMP safe */
1454 return current_egid();
1455 }
1456
1457 #endif
1458
1459 static void process_timeout(unsigned long __data)
1460 {
1461 wake_up_process((struct task_struct *)__data);
1462 }
1463
1464 /**
1465 * schedule_timeout - sleep until timeout
1466 * @timeout: timeout value in jiffies
1467 *
1468 * Make the current task sleep until @timeout jiffies have
1469 * elapsed. The routine will return immediately unless
1470 * the current task state has been set (see set_current_state()).
1471 *
1472 * You can set the task state as follows -
1473 *
1474 * %TASK_UNINTERRUPTIBLE - at least @timeout jiffies are guaranteed to
1475 * pass before the routine returns. The routine will return 0
1476 *
1477 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1478 * delivered to the current task. In this case the remaining time
1479 * in jiffies will be returned, or 0 if the timer expired in time
1480 *
1481 * The current task state is guaranteed to be TASK_RUNNING when this
1482 * routine returns.
1483 *
1484 * Specifying a @timeout value of %MAX_SCHEDULE_TIMEOUT will schedule
1485 * the CPU away without a bound on the timeout. In this case the return
1486 * value will be %MAX_SCHEDULE_TIMEOUT.
1487 *
1488 * In all cases the return value is guaranteed to be non-negative.
1489 */
1490 signed long __sched schedule_timeout(signed long timeout)
1491 {
1492 struct timer_list timer;
1493 unsigned long expire;
1494
1495 switch (timeout)
1496 {
1497 case MAX_SCHEDULE_TIMEOUT:
1498 /*
1499 * These two special cases are useful to be comfortable
1500 * in the caller. Nothing more. We could take
1501 * MAX_SCHEDULE_TIMEOUT from one of the negative value
1502 * but I' d like to return a valid offset (>=0) to allow
1503 * the caller to do everything it want with the retval.
1504 */
1505 schedule();
1506 goto out;
1507 default:
1508 /*
1509 * Another bit of PARANOID. Note that the retval will be
1510 * 0 since no piece of kernel is supposed to do a check
1511 * for a negative retval of schedule_timeout() (since it
1512 * should never happens anyway). You just have the printk()
1513 * that will tell you if something is gone wrong and where.
1514 */
1515 if (timeout < 0) {
1516 printk(KERN_ERR "schedule_timeout: wrong timeout "
1517 "value %lx\n", timeout);
1518 dump_stack();
1519 current->state = TASK_RUNNING;
1520 goto out;
1521 }
1522 }
1523
1524 expire = timeout + jiffies;
1525
1526 setup_timer_on_stack(&timer, process_timeout, (unsigned long)current);
1527 __mod_timer(&timer, expire, false, TIMER_NOT_PINNED);
1528 schedule();
1529 del_singleshot_timer_sync(&timer);
1530
1531 /* Remove the timer from the object tracker */
1532 destroy_timer_on_stack(&timer);
1533
1534 timeout = expire - jiffies;
1535
1536 out:
1537 return timeout < 0 ? 0 : timeout;
1538 }
1539 EXPORT_SYMBOL(schedule_timeout);
1540
1541 /*
1542 * We can use __set_current_state() here because schedule_timeout() calls
1543 * schedule() unconditionally.
1544 */
1545 signed long __sched schedule_timeout_interruptible(signed long timeout)
1546 {
1547 __set_current_state(TASK_INTERRUPTIBLE);
1548 return schedule_timeout(timeout);
1549 }
1550 EXPORT_SYMBOL(schedule_timeout_interruptible);
1551
1552 signed long __sched schedule_timeout_killable(signed long timeout)
1553 {
1554 __set_current_state(TASK_KILLABLE);
1555 return schedule_timeout(timeout);
1556 }
1557 EXPORT_SYMBOL(schedule_timeout_killable);
1558
1559 signed long __sched schedule_timeout_uninterruptible(signed long timeout)
1560 {
1561 __set_current_state(TASK_UNINTERRUPTIBLE);
1562 return schedule_timeout(timeout);
1563 }
1564 EXPORT_SYMBOL(schedule_timeout_uninterruptible);
1565
1566 /* Thread ID - the internal kernel "pid" */
1567 SYSCALL_DEFINE0(gettid)
1568 {
1569 return task_pid_vnr(current);
1570 }
1571
1572 /**
1573 * do_sysinfo - fill in sysinfo struct
1574 * @info: pointer to buffer to fill
1575 */
1576 int do_sysinfo(struct sysinfo *info)
1577 {
1578 unsigned long mem_total, sav_total;
1579 unsigned int mem_unit, bitcount;
1580 struct timespec tp;
1581
1582 memset(info, 0, sizeof(struct sysinfo));
1583
1584 ktime_get_ts(&tp);
1585 monotonic_to_bootbased(&tp);
1586 info->uptime = tp.tv_sec + (tp.tv_nsec ? 1 : 0);
1587
1588 get_avenrun(info->loads, 0, SI_LOAD_SHIFT - FSHIFT);
1589
1590 info->procs = nr_threads;
1591
1592 si_meminfo(info);
1593 si_swapinfo(info);
1594
1595 /*
1596 * If the sum of all the available memory (i.e. ram + swap)
1597 * is less than can be stored in a 32 bit unsigned long then
1598 * we can be binary compatible with 2.2.x kernels. If not,
1599 * well, in that case 2.2.x was broken anyways...
1600 *
1601 * -Erik Andersen <andersee@debian.org>
1602 */
1603
1604 mem_total = info->totalram + info->totalswap;
1605 if (mem_total < info->totalram || mem_total < info->totalswap)
1606 goto out;
1607 bitcount = 0;
1608 mem_unit = info->mem_unit;
1609 while (mem_unit > 1) {
1610 bitcount++;
1611 mem_unit >>= 1;
1612 sav_total = mem_total;
1613 mem_total <<= 1;
1614 if (mem_total < sav_total)
1615 goto out;
1616 }
1617
1618 /*
1619 * If mem_total did not overflow, multiply all memory values by
1620 * info->mem_unit and set it to 1. This leaves things compatible
1621 * with 2.2.x, and also retains compatibility with earlier 2.4.x
1622 * kernels...
1623 */
1624
1625 info->mem_unit = 1;
1626 info->totalram <<= bitcount;
1627 info->freeram <<= bitcount;
1628 info->sharedram <<= bitcount;
1629 info->bufferram <<= bitcount;
1630 info->totalswap <<= bitcount;
1631 info->freeswap <<= bitcount;
1632 info->totalhigh <<= bitcount;
1633 info->freehigh <<= bitcount;
1634
1635 out:
1636 return 0;
1637 }
1638
1639 SYSCALL_DEFINE1(sysinfo, struct sysinfo __user *, info)
1640 {
1641 struct sysinfo val;
1642
1643 do_sysinfo(&val);
1644
1645 if (copy_to_user(info, &val, sizeof(struct sysinfo)))
1646 return -EFAULT;
1647
1648 return 0;
1649 }
1650
1651 static int __cpuinit init_timers_cpu(int cpu)
1652 {
1653 int j;
1654 struct tvec_base *base;
1655 static char __cpuinitdata tvec_base_done[NR_CPUS];
1656
1657 if (!tvec_base_done[cpu]) {
1658 static char boot_done;
1659
1660 if (boot_done) {
1661 /*
1662 * The APs use this path later in boot
1663 */
1664 base = kmalloc_node(sizeof(*base),
1665 GFP_KERNEL | __GFP_ZERO,
1666 cpu_to_node(cpu));
1667 if (!base)
1668 return -ENOMEM;
1669
1670 /* Make sure that tvec_base is 2 byte aligned */
1671 if (tbase_get_deferrable(base)) {
1672 WARN_ON(1);
1673 kfree(base);
1674 return -ENOMEM;
1675 }
1676 per_cpu(tvec_bases, cpu) = base;
1677 } else {
1678 /*
1679 * This is for the boot CPU - we use compile-time
1680 * static initialisation because per-cpu memory isn't
1681 * ready yet and because the memory allocators are not
1682 * initialised either.
1683 */
1684 boot_done = 1;
1685 base = &boot_tvec_bases;
1686 }
1687 tvec_base_done[cpu] = 1;
1688 } else {
1689 base = per_cpu(tvec_bases, cpu);
1690 }
1691
1692 spin_lock_init(&base->lock);
1693
1694 for (j = 0; j < TVN_SIZE; j++) {
1695 INIT_LIST_HEAD(base->tv5.vec + j);
1696 INIT_LIST_HEAD(base->tv4.vec + j);
1697 INIT_LIST_HEAD(base->tv3.vec + j);
1698 INIT_LIST_HEAD(base->tv2.vec + j);
1699 }
1700 for (j = 0; j < TVR_SIZE; j++)
1701 INIT_LIST_HEAD(base->tv1.vec + j);
1702
1703 base->timer_jiffies = jiffies;
1704 base->next_timer = base->timer_jiffies;
1705 return 0;
1706 }
1707
1708 #ifdef CONFIG_HOTPLUG_CPU
1709 static void migrate_timer_list(struct tvec_base *new_base, struct list_head *head)
1710 {
1711 struct timer_list *timer;
1712
1713 while (!list_empty(head)) {
1714 timer = list_first_entry(head, struct timer_list, entry);
1715 detach_timer(timer, 0);
1716 timer_set_base(timer, new_base);
1717 if (time_before(timer->expires, new_base->next_timer) &&
1718 !tbase_get_deferrable(timer->base))
1719 new_base->next_timer = timer->expires;
1720 internal_add_timer(new_base, timer);
1721 }
1722 }
1723
1724 static void __cpuinit migrate_timers(int cpu)
1725 {
1726 struct tvec_base *old_base;
1727 struct tvec_base *new_base;
1728 int i;
1729
1730 BUG_ON(cpu_online(cpu));
1731 old_base = per_cpu(tvec_bases, cpu);
1732 new_base = get_cpu_var(tvec_bases);
1733 /*
1734 * The caller is globally serialized and nobody else
1735 * takes two locks at once, deadlock is not possible.
1736 */
1737 spin_lock_irq(&new_base->lock);
1738 spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
1739
1740 BUG_ON(old_base->running_timer);
1741
1742 for (i = 0; i < TVR_SIZE; i++)
1743 migrate_timer_list(new_base, old_base->tv1.vec + i);
1744 for (i = 0; i < TVN_SIZE; i++) {
1745 migrate_timer_list(new_base, old_base->tv2.vec + i);
1746 migrate_timer_list(new_base, old_base->tv3.vec + i);
1747 migrate_timer_list(new_base, old_base->tv4.vec + i);
1748 migrate_timer_list(new_base, old_base->tv5.vec + i);
1749 }
1750
1751 spin_unlock(&old_base->lock);
1752 spin_unlock_irq(&new_base->lock);
1753 put_cpu_var(tvec_bases);
1754 }
1755 #endif /* CONFIG_HOTPLUG_CPU */
1756
1757 static int __cpuinit timer_cpu_notify(struct notifier_block *self,
1758 unsigned long action, void *hcpu)
1759 {
1760 long cpu = (long)hcpu;
1761 int err;
1762
1763 switch(action) {
1764 case CPU_UP_PREPARE:
1765 case CPU_UP_PREPARE_FROZEN:
1766 err = init_timers_cpu(cpu);
1767 if (err < 0)
1768 return notifier_from_errno(err);
1769 break;
1770 #ifdef CONFIG_HOTPLUG_CPU
1771 case CPU_DEAD:
1772 case CPU_DEAD_FROZEN:
1773 migrate_timers(cpu);
1774 break;
1775 #endif
1776 default:
1777 break;
1778 }
1779 return NOTIFY_OK;
1780 }
1781
1782 static struct notifier_block __cpuinitdata timers_nb = {
1783 .notifier_call = timer_cpu_notify,
1784 };
1785
1786
1787 void __init init_timers(void)
1788 {
1789 int err = timer_cpu_notify(&timers_nb, (unsigned long)CPU_UP_PREPARE,
1790 (void *)(long)smp_processor_id());
1791
1792 init_timer_stats();
1793
1794 BUG_ON(err != NOTIFY_OK);
1795 register_cpu_notifier(&timers_nb);
1796 open_softirq(TIMER_SOFTIRQ, run_timer_softirq);
1797 }
1798
1799 /**
1800 * msleep - sleep safely even with waitqueue interruptions
1801 * @msecs: Time in milliseconds to sleep for
1802 */
1803 void msleep(unsigned int msecs)
1804 {
1805 unsigned long timeout = msecs_to_jiffies(msecs) + 1;
1806
1807 while (timeout)
1808 timeout = schedule_timeout_uninterruptible(timeout);
1809 }
1810
1811 EXPORT_SYMBOL(msleep);
1812
1813 /**
1814 * msleep_interruptible - sleep waiting for signals
1815 * @msecs: Time in milliseconds to sleep for
1816 */
1817 unsigned long msleep_interruptible(unsigned int msecs)
1818 {
1819 unsigned long timeout = msecs_to_jiffies(msecs) + 1;
1820
1821 while (timeout && !signal_pending(current))
1822 timeout = schedule_timeout_interruptible(timeout);
1823 return jiffies_to_msecs(timeout);
1824 }
1825
1826 EXPORT_SYMBOL(msleep_interruptible);
1827
1828 static int __sched do_usleep_range(unsigned long min, unsigned long max)
1829 {
1830 ktime_t kmin;
1831 unsigned long delta;
1832
1833 kmin = ktime_set(0, min * NSEC_PER_USEC);
1834 delta = (max - min) * NSEC_PER_USEC;
1835 return schedule_hrtimeout_range(&kmin, delta, HRTIMER_MODE_REL);
1836 }
1837
1838 /**
1839 * usleep_range - Drop in replacement for udelay where wakeup is flexible
1840 * @min: Minimum time in usecs to sleep
1841 * @max: Maximum time in usecs to sleep
1842 */
1843 void usleep_range(unsigned long min, unsigned long max)
1844 {
1845 __set_current_state(TASK_UNINTERRUPTIBLE);
1846 do_usleep_range(min, max);
1847 }
1848 EXPORT_SYMBOL(usleep_range);