]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - kernel/trace/bpf_trace.c
Merge branches 'x86/amd', 'x86/vt-d', 'arm/rockchip', 'arm/omap', 'arm/mediatek'...
[mirror_ubuntu-hirsute-kernel.git] / kernel / trace / bpf_trace.c
1 /* Copyright (c) 2011-2015 PLUMgrid, http://plumgrid.com
2 * Copyright (c) 2016 Facebook
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of version 2 of the GNU General Public
6 * License as published by the Free Software Foundation.
7 */
8 #include <linux/kernel.h>
9 #include <linux/types.h>
10 #include <linux/slab.h>
11 #include <linux/bpf.h>
12 #include <linux/bpf_perf_event.h>
13 #include <linux/filter.h>
14 #include <linux/uaccess.h>
15 #include <linux/ctype.h>
16 #include <linux/kprobes.h>
17 #include <linux/error-injection.h>
18
19 #include "trace_probe.h"
20 #include "trace.h"
21
22 u64 bpf_get_stackid(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5);
23
24 /**
25 * trace_call_bpf - invoke BPF program
26 * @call: tracepoint event
27 * @ctx: opaque context pointer
28 *
29 * kprobe handlers execute BPF programs via this helper.
30 * Can be used from static tracepoints in the future.
31 *
32 * Return: BPF programs always return an integer which is interpreted by
33 * kprobe handler as:
34 * 0 - return from kprobe (event is filtered out)
35 * 1 - store kprobe event into ring buffer
36 * Other values are reserved and currently alias to 1
37 */
38 unsigned int trace_call_bpf(struct trace_event_call *call, void *ctx)
39 {
40 unsigned int ret;
41
42 if (in_nmi()) /* not supported yet */
43 return 1;
44
45 preempt_disable();
46
47 if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1)) {
48 /*
49 * since some bpf program is already running on this cpu,
50 * don't call into another bpf program (same or different)
51 * and don't send kprobe event into ring-buffer,
52 * so return zero here
53 */
54 ret = 0;
55 goto out;
56 }
57
58 /*
59 * Instead of moving rcu_read_lock/rcu_dereference/rcu_read_unlock
60 * to all call sites, we did a bpf_prog_array_valid() there to check
61 * whether call->prog_array is empty or not, which is
62 * a heurisitc to speed up execution.
63 *
64 * If bpf_prog_array_valid() fetched prog_array was
65 * non-NULL, we go into trace_call_bpf() and do the actual
66 * proper rcu_dereference() under RCU lock.
67 * If it turns out that prog_array is NULL then, we bail out.
68 * For the opposite, if the bpf_prog_array_valid() fetched pointer
69 * was NULL, you'll skip the prog_array with the risk of missing
70 * out of events when it was updated in between this and the
71 * rcu_dereference() which is accepted risk.
72 */
73 ret = BPF_PROG_RUN_ARRAY_CHECK(call->prog_array, ctx, BPF_PROG_RUN);
74
75 out:
76 __this_cpu_dec(bpf_prog_active);
77 preempt_enable();
78
79 return ret;
80 }
81 EXPORT_SYMBOL_GPL(trace_call_bpf);
82
83 #ifdef CONFIG_BPF_KPROBE_OVERRIDE
84 BPF_CALL_2(bpf_override_return, struct pt_regs *, regs, unsigned long, rc)
85 {
86 regs_set_return_value(regs, rc);
87 override_function_with_return(regs);
88 return 0;
89 }
90
91 static const struct bpf_func_proto bpf_override_return_proto = {
92 .func = bpf_override_return,
93 .gpl_only = true,
94 .ret_type = RET_INTEGER,
95 .arg1_type = ARG_PTR_TO_CTX,
96 .arg2_type = ARG_ANYTHING,
97 };
98 #endif
99
100 BPF_CALL_3(bpf_probe_read, void *, dst, u32, size, const void *, unsafe_ptr)
101 {
102 int ret;
103
104 ret = probe_kernel_read(dst, unsafe_ptr, size);
105 if (unlikely(ret < 0))
106 memset(dst, 0, size);
107
108 return ret;
109 }
110
111 static const struct bpf_func_proto bpf_probe_read_proto = {
112 .func = bpf_probe_read,
113 .gpl_only = true,
114 .ret_type = RET_INTEGER,
115 .arg1_type = ARG_PTR_TO_UNINIT_MEM,
116 .arg2_type = ARG_CONST_SIZE_OR_ZERO,
117 .arg3_type = ARG_ANYTHING,
118 };
119
120 BPF_CALL_3(bpf_probe_write_user, void *, unsafe_ptr, const void *, src,
121 u32, size)
122 {
123 /*
124 * Ensure we're in user context which is safe for the helper to
125 * run. This helper has no business in a kthread.
126 *
127 * access_ok() should prevent writing to non-user memory, but in
128 * some situations (nommu, temporary switch, etc) access_ok() does
129 * not provide enough validation, hence the check on KERNEL_DS.
130 */
131
132 if (unlikely(in_interrupt() ||
133 current->flags & (PF_KTHREAD | PF_EXITING)))
134 return -EPERM;
135 if (unlikely(uaccess_kernel()))
136 return -EPERM;
137 if (!access_ok(VERIFY_WRITE, unsafe_ptr, size))
138 return -EPERM;
139
140 return probe_kernel_write(unsafe_ptr, src, size);
141 }
142
143 static const struct bpf_func_proto bpf_probe_write_user_proto = {
144 .func = bpf_probe_write_user,
145 .gpl_only = true,
146 .ret_type = RET_INTEGER,
147 .arg1_type = ARG_ANYTHING,
148 .arg2_type = ARG_PTR_TO_MEM,
149 .arg3_type = ARG_CONST_SIZE,
150 };
151
152 static const struct bpf_func_proto *bpf_get_probe_write_proto(void)
153 {
154 pr_warn_ratelimited("%s[%d] is installing a program with bpf_probe_write_user helper that may corrupt user memory!",
155 current->comm, task_pid_nr(current));
156
157 return &bpf_probe_write_user_proto;
158 }
159
160 /*
161 * Only limited trace_printk() conversion specifiers allowed:
162 * %d %i %u %x %ld %li %lu %lx %lld %lli %llu %llx %p %s
163 */
164 BPF_CALL_5(bpf_trace_printk, char *, fmt, u32, fmt_size, u64, arg1,
165 u64, arg2, u64, arg3)
166 {
167 bool str_seen = false;
168 int mod[3] = {};
169 int fmt_cnt = 0;
170 u64 unsafe_addr;
171 char buf[64];
172 int i;
173
174 /*
175 * bpf_check()->check_func_arg()->check_stack_boundary()
176 * guarantees that fmt points to bpf program stack,
177 * fmt_size bytes of it were initialized and fmt_size > 0
178 */
179 if (fmt[--fmt_size] != 0)
180 return -EINVAL;
181
182 /* check format string for allowed specifiers */
183 for (i = 0; i < fmt_size; i++) {
184 if ((!isprint(fmt[i]) && !isspace(fmt[i])) || !isascii(fmt[i]))
185 return -EINVAL;
186
187 if (fmt[i] != '%')
188 continue;
189
190 if (fmt_cnt >= 3)
191 return -EINVAL;
192
193 /* fmt[i] != 0 && fmt[last] == 0, so we can access fmt[i + 1] */
194 i++;
195 if (fmt[i] == 'l') {
196 mod[fmt_cnt]++;
197 i++;
198 } else if (fmt[i] == 'p' || fmt[i] == 's') {
199 mod[fmt_cnt]++;
200 i++;
201 if (!isspace(fmt[i]) && !ispunct(fmt[i]) && fmt[i] != 0)
202 return -EINVAL;
203 fmt_cnt++;
204 if (fmt[i - 1] == 's') {
205 if (str_seen)
206 /* allow only one '%s' per fmt string */
207 return -EINVAL;
208 str_seen = true;
209
210 switch (fmt_cnt) {
211 case 1:
212 unsafe_addr = arg1;
213 arg1 = (long) buf;
214 break;
215 case 2:
216 unsafe_addr = arg2;
217 arg2 = (long) buf;
218 break;
219 case 3:
220 unsafe_addr = arg3;
221 arg3 = (long) buf;
222 break;
223 }
224 buf[0] = 0;
225 strncpy_from_unsafe(buf,
226 (void *) (long) unsafe_addr,
227 sizeof(buf));
228 }
229 continue;
230 }
231
232 if (fmt[i] == 'l') {
233 mod[fmt_cnt]++;
234 i++;
235 }
236
237 if (fmt[i] != 'i' && fmt[i] != 'd' &&
238 fmt[i] != 'u' && fmt[i] != 'x')
239 return -EINVAL;
240 fmt_cnt++;
241 }
242
243 /* Horrid workaround for getting va_list handling working with different
244 * argument type combinations generically for 32 and 64 bit archs.
245 */
246 #define __BPF_TP_EMIT() __BPF_ARG3_TP()
247 #define __BPF_TP(...) \
248 __trace_printk(0 /* Fake ip */, \
249 fmt, ##__VA_ARGS__)
250
251 #define __BPF_ARG1_TP(...) \
252 ((mod[0] == 2 || (mod[0] == 1 && __BITS_PER_LONG == 64)) \
253 ? __BPF_TP(arg1, ##__VA_ARGS__) \
254 : ((mod[0] == 1 || (mod[0] == 0 && __BITS_PER_LONG == 32)) \
255 ? __BPF_TP((long)arg1, ##__VA_ARGS__) \
256 : __BPF_TP((u32)arg1, ##__VA_ARGS__)))
257
258 #define __BPF_ARG2_TP(...) \
259 ((mod[1] == 2 || (mod[1] == 1 && __BITS_PER_LONG == 64)) \
260 ? __BPF_ARG1_TP(arg2, ##__VA_ARGS__) \
261 : ((mod[1] == 1 || (mod[1] == 0 && __BITS_PER_LONG == 32)) \
262 ? __BPF_ARG1_TP((long)arg2, ##__VA_ARGS__) \
263 : __BPF_ARG1_TP((u32)arg2, ##__VA_ARGS__)))
264
265 #define __BPF_ARG3_TP(...) \
266 ((mod[2] == 2 || (mod[2] == 1 && __BITS_PER_LONG == 64)) \
267 ? __BPF_ARG2_TP(arg3, ##__VA_ARGS__) \
268 : ((mod[2] == 1 || (mod[2] == 0 && __BITS_PER_LONG == 32)) \
269 ? __BPF_ARG2_TP((long)arg3, ##__VA_ARGS__) \
270 : __BPF_ARG2_TP((u32)arg3, ##__VA_ARGS__)))
271
272 return __BPF_TP_EMIT();
273 }
274
275 static const struct bpf_func_proto bpf_trace_printk_proto = {
276 .func = bpf_trace_printk,
277 .gpl_only = true,
278 .ret_type = RET_INTEGER,
279 .arg1_type = ARG_PTR_TO_MEM,
280 .arg2_type = ARG_CONST_SIZE,
281 };
282
283 const struct bpf_func_proto *bpf_get_trace_printk_proto(void)
284 {
285 /*
286 * this program might be calling bpf_trace_printk,
287 * so allocate per-cpu printk buffers
288 */
289 trace_printk_init_buffers();
290
291 return &bpf_trace_printk_proto;
292 }
293
294 static __always_inline int
295 get_map_perf_counter(struct bpf_map *map, u64 flags,
296 u64 *value, u64 *enabled, u64 *running)
297 {
298 struct bpf_array *array = container_of(map, struct bpf_array, map);
299 unsigned int cpu = smp_processor_id();
300 u64 index = flags & BPF_F_INDEX_MASK;
301 struct bpf_event_entry *ee;
302
303 if (unlikely(flags & ~(BPF_F_INDEX_MASK)))
304 return -EINVAL;
305 if (index == BPF_F_CURRENT_CPU)
306 index = cpu;
307 if (unlikely(index >= array->map.max_entries))
308 return -E2BIG;
309
310 ee = READ_ONCE(array->ptrs[index]);
311 if (!ee)
312 return -ENOENT;
313
314 return perf_event_read_local(ee->event, value, enabled, running);
315 }
316
317 BPF_CALL_2(bpf_perf_event_read, struct bpf_map *, map, u64, flags)
318 {
319 u64 value = 0;
320 int err;
321
322 err = get_map_perf_counter(map, flags, &value, NULL, NULL);
323 /*
324 * this api is ugly since we miss [-22..-2] range of valid
325 * counter values, but that's uapi
326 */
327 if (err)
328 return err;
329 return value;
330 }
331
332 static const struct bpf_func_proto bpf_perf_event_read_proto = {
333 .func = bpf_perf_event_read,
334 .gpl_only = true,
335 .ret_type = RET_INTEGER,
336 .arg1_type = ARG_CONST_MAP_PTR,
337 .arg2_type = ARG_ANYTHING,
338 };
339
340 BPF_CALL_4(bpf_perf_event_read_value, struct bpf_map *, map, u64, flags,
341 struct bpf_perf_event_value *, buf, u32, size)
342 {
343 int err = -EINVAL;
344
345 if (unlikely(size != sizeof(struct bpf_perf_event_value)))
346 goto clear;
347 err = get_map_perf_counter(map, flags, &buf->counter, &buf->enabled,
348 &buf->running);
349 if (unlikely(err))
350 goto clear;
351 return 0;
352 clear:
353 memset(buf, 0, size);
354 return err;
355 }
356
357 static const struct bpf_func_proto bpf_perf_event_read_value_proto = {
358 .func = bpf_perf_event_read_value,
359 .gpl_only = true,
360 .ret_type = RET_INTEGER,
361 .arg1_type = ARG_CONST_MAP_PTR,
362 .arg2_type = ARG_ANYTHING,
363 .arg3_type = ARG_PTR_TO_UNINIT_MEM,
364 .arg4_type = ARG_CONST_SIZE,
365 };
366
367 static DEFINE_PER_CPU(struct perf_sample_data, bpf_trace_sd);
368
369 static __always_inline u64
370 __bpf_perf_event_output(struct pt_regs *regs, struct bpf_map *map,
371 u64 flags, struct perf_sample_data *sd)
372 {
373 struct bpf_array *array = container_of(map, struct bpf_array, map);
374 unsigned int cpu = smp_processor_id();
375 u64 index = flags & BPF_F_INDEX_MASK;
376 struct bpf_event_entry *ee;
377 struct perf_event *event;
378
379 if (index == BPF_F_CURRENT_CPU)
380 index = cpu;
381 if (unlikely(index >= array->map.max_entries))
382 return -E2BIG;
383
384 ee = READ_ONCE(array->ptrs[index]);
385 if (!ee)
386 return -ENOENT;
387
388 event = ee->event;
389 if (unlikely(event->attr.type != PERF_TYPE_SOFTWARE ||
390 event->attr.config != PERF_COUNT_SW_BPF_OUTPUT))
391 return -EINVAL;
392
393 if (unlikely(event->oncpu != cpu))
394 return -EOPNOTSUPP;
395
396 perf_event_output(event, sd, regs);
397 return 0;
398 }
399
400 BPF_CALL_5(bpf_perf_event_output, struct pt_regs *, regs, struct bpf_map *, map,
401 u64, flags, void *, data, u64, size)
402 {
403 struct perf_sample_data *sd = this_cpu_ptr(&bpf_trace_sd);
404 struct perf_raw_record raw = {
405 .frag = {
406 .size = size,
407 .data = data,
408 },
409 };
410
411 if (unlikely(flags & ~(BPF_F_INDEX_MASK)))
412 return -EINVAL;
413
414 perf_sample_data_init(sd, 0, 0);
415 sd->raw = &raw;
416
417 return __bpf_perf_event_output(regs, map, flags, sd);
418 }
419
420 static const struct bpf_func_proto bpf_perf_event_output_proto = {
421 .func = bpf_perf_event_output,
422 .gpl_only = true,
423 .ret_type = RET_INTEGER,
424 .arg1_type = ARG_PTR_TO_CTX,
425 .arg2_type = ARG_CONST_MAP_PTR,
426 .arg3_type = ARG_ANYTHING,
427 .arg4_type = ARG_PTR_TO_MEM,
428 .arg5_type = ARG_CONST_SIZE_OR_ZERO,
429 };
430
431 static DEFINE_PER_CPU(struct pt_regs, bpf_pt_regs);
432 static DEFINE_PER_CPU(struct perf_sample_data, bpf_misc_sd);
433
434 u64 bpf_event_output(struct bpf_map *map, u64 flags, void *meta, u64 meta_size,
435 void *ctx, u64 ctx_size, bpf_ctx_copy_t ctx_copy)
436 {
437 struct perf_sample_data *sd = this_cpu_ptr(&bpf_misc_sd);
438 struct pt_regs *regs = this_cpu_ptr(&bpf_pt_regs);
439 struct perf_raw_frag frag = {
440 .copy = ctx_copy,
441 .size = ctx_size,
442 .data = ctx,
443 };
444 struct perf_raw_record raw = {
445 .frag = {
446 {
447 .next = ctx_size ? &frag : NULL,
448 },
449 .size = meta_size,
450 .data = meta,
451 },
452 };
453
454 perf_fetch_caller_regs(regs);
455 perf_sample_data_init(sd, 0, 0);
456 sd->raw = &raw;
457
458 return __bpf_perf_event_output(regs, map, flags, sd);
459 }
460
461 BPF_CALL_0(bpf_get_current_task)
462 {
463 return (long) current;
464 }
465
466 static const struct bpf_func_proto bpf_get_current_task_proto = {
467 .func = bpf_get_current_task,
468 .gpl_only = true,
469 .ret_type = RET_INTEGER,
470 };
471
472 BPF_CALL_2(bpf_current_task_under_cgroup, struct bpf_map *, map, u32, idx)
473 {
474 struct bpf_array *array = container_of(map, struct bpf_array, map);
475 struct cgroup *cgrp;
476
477 if (unlikely(in_interrupt()))
478 return -EINVAL;
479 if (unlikely(idx >= array->map.max_entries))
480 return -E2BIG;
481
482 cgrp = READ_ONCE(array->ptrs[idx]);
483 if (unlikely(!cgrp))
484 return -EAGAIN;
485
486 return task_under_cgroup_hierarchy(current, cgrp);
487 }
488
489 static const struct bpf_func_proto bpf_current_task_under_cgroup_proto = {
490 .func = bpf_current_task_under_cgroup,
491 .gpl_only = false,
492 .ret_type = RET_INTEGER,
493 .arg1_type = ARG_CONST_MAP_PTR,
494 .arg2_type = ARG_ANYTHING,
495 };
496
497 BPF_CALL_3(bpf_probe_read_str, void *, dst, u32, size,
498 const void *, unsafe_ptr)
499 {
500 int ret;
501
502 /*
503 * The strncpy_from_unsafe() call will likely not fill the entire
504 * buffer, but that's okay in this circumstance as we're probing
505 * arbitrary memory anyway similar to bpf_probe_read() and might
506 * as well probe the stack. Thus, memory is explicitly cleared
507 * only in error case, so that improper users ignoring return
508 * code altogether don't copy garbage; otherwise length of string
509 * is returned that can be used for bpf_perf_event_output() et al.
510 */
511 ret = strncpy_from_unsafe(dst, unsafe_ptr, size);
512 if (unlikely(ret < 0))
513 memset(dst, 0, size);
514
515 return ret;
516 }
517
518 static const struct bpf_func_proto bpf_probe_read_str_proto = {
519 .func = bpf_probe_read_str,
520 .gpl_only = true,
521 .ret_type = RET_INTEGER,
522 .arg1_type = ARG_PTR_TO_UNINIT_MEM,
523 .arg2_type = ARG_CONST_SIZE_OR_ZERO,
524 .arg3_type = ARG_ANYTHING,
525 };
526
527 static const struct bpf_func_proto *tracing_func_proto(enum bpf_func_id func_id)
528 {
529 switch (func_id) {
530 case BPF_FUNC_map_lookup_elem:
531 return &bpf_map_lookup_elem_proto;
532 case BPF_FUNC_map_update_elem:
533 return &bpf_map_update_elem_proto;
534 case BPF_FUNC_map_delete_elem:
535 return &bpf_map_delete_elem_proto;
536 case BPF_FUNC_probe_read:
537 return &bpf_probe_read_proto;
538 case BPF_FUNC_ktime_get_ns:
539 return &bpf_ktime_get_ns_proto;
540 case BPF_FUNC_tail_call:
541 return &bpf_tail_call_proto;
542 case BPF_FUNC_get_current_pid_tgid:
543 return &bpf_get_current_pid_tgid_proto;
544 case BPF_FUNC_get_current_task:
545 return &bpf_get_current_task_proto;
546 case BPF_FUNC_get_current_uid_gid:
547 return &bpf_get_current_uid_gid_proto;
548 case BPF_FUNC_get_current_comm:
549 return &bpf_get_current_comm_proto;
550 case BPF_FUNC_trace_printk:
551 return bpf_get_trace_printk_proto();
552 case BPF_FUNC_get_smp_processor_id:
553 return &bpf_get_smp_processor_id_proto;
554 case BPF_FUNC_get_numa_node_id:
555 return &bpf_get_numa_node_id_proto;
556 case BPF_FUNC_perf_event_read:
557 return &bpf_perf_event_read_proto;
558 case BPF_FUNC_probe_write_user:
559 return bpf_get_probe_write_proto();
560 case BPF_FUNC_current_task_under_cgroup:
561 return &bpf_current_task_under_cgroup_proto;
562 case BPF_FUNC_get_prandom_u32:
563 return &bpf_get_prandom_u32_proto;
564 case BPF_FUNC_probe_read_str:
565 return &bpf_probe_read_str_proto;
566 default:
567 return NULL;
568 }
569 }
570
571 static const struct bpf_func_proto *kprobe_prog_func_proto(enum bpf_func_id func_id)
572 {
573 switch (func_id) {
574 case BPF_FUNC_perf_event_output:
575 return &bpf_perf_event_output_proto;
576 case BPF_FUNC_get_stackid:
577 return &bpf_get_stackid_proto;
578 case BPF_FUNC_perf_event_read_value:
579 return &bpf_perf_event_read_value_proto;
580 #ifdef CONFIG_BPF_KPROBE_OVERRIDE
581 case BPF_FUNC_override_return:
582 return &bpf_override_return_proto;
583 #endif
584 default:
585 return tracing_func_proto(func_id);
586 }
587 }
588
589 /* bpf+kprobe programs can access fields of 'struct pt_regs' */
590 static bool kprobe_prog_is_valid_access(int off, int size, enum bpf_access_type type,
591 struct bpf_insn_access_aux *info)
592 {
593 if (off < 0 || off >= sizeof(struct pt_regs))
594 return false;
595 if (type != BPF_READ)
596 return false;
597 if (off % size != 0)
598 return false;
599 /*
600 * Assertion for 32 bit to make sure last 8 byte access
601 * (BPF_DW) to the last 4 byte member is disallowed.
602 */
603 if (off + size > sizeof(struct pt_regs))
604 return false;
605
606 return true;
607 }
608
609 const struct bpf_verifier_ops kprobe_verifier_ops = {
610 .get_func_proto = kprobe_prog_func_proto,
611 .is_valid_access = kprobe_prog_is_valid_access,
612 };
613
614 const struct bpf_prog_ops kprobe_prog_ops = {
615 };
616
617 BPF_CALL_5(bpf_perf_event_output_tp, void *, tp_buff, struct bpf_map *, map,
618 u64, flags, void *, data, u64, size)
619 {
620 struct pt_regs *regs = *(struct pt_regs **)tp_buff;
621
622 /*
623 * r1 points to perf tracepoint buffer where first 8 bytes are hidden
624 * from bpf program and contain a pointer to 'struct pt_regs'. Fetch it
625 * from there and call the same bpf_perf_event_output() helper inline.
626 */
627 return ____bpf_perf_event_output(regs, map, flags, data, size);
628 }
629
630 static const struct bpf_func_proto bpf_perf_event_output_proto_tp = {
631 .func = bpf_perf_event_output_tp,
632 .gpl_only = true,
633 .ret_type = RET_INTEGER,
634 .arg1_type = ARG_PTR_TO_CTX,
635 .arg2_type = ARG_CONST_MAP_PTR,
636 .arg3_type = ARG_ANYTHING,
637 .arg4_type = ARG_PTR_TO_MEM,
638 .arg5_type = ARG_CONST_SIZE_OR_ZERO,
639 };
640
641 BPF_CALL_3(bpf_get_stackid_tp, void *, tp_buff, struct bpf_map *, map,
642 u64, flags)
643 {
644 struct pt_regs *regs = *(struct pt_regs **)tp_buff;
645
646 /*
647 * Same comment as in bpf_perf_event_output_tp(), only that this time
648 * the other helper's function body cannot be inlined due to being
649 * external, thus we need to call raw helper function.
650 */
651 return bpf_get_stackid((unsigned long) regs, (unsigned long) map,
652 flags, 0, 0);
653 }
654
655 static const struct bpf_func_proto bpf_get_stackid_proto_tp = {
656 .func = bpf_get_stackid_tp,
657 .gpl_only = true,
658 .ret_type = RET_INTEGER,
659 .arg1_type = ARG_PTR_TO_CTX,
660 .arg2_type = ARG_CONST_MAP_PTR,
661 .arg3_type = ARG_ANYTHING,
662 };
663
664 static const struct bpf_func_proto *tp_prog_func_proto(enum bpf_func_id func_id)
665 {
666 switch (func_id) {
667 case BPF_FUNC_perf_event_output:
668 return &bpf_perf_event_output_proto_tp;
669 case BPF_FUNC_get_stackid:
670 return &bpf_get_stackid_proto_tp;
671 default:
672 return tracing_func_proto(func_id);
673 }
674 }
675
676 static bool tp_prog_is_valid_access(int off, int size, enum bpf_access_type type,
677 struct bpf_insn_access_aux *info)
678 {
679 if (off < sizeof(void *) || off >= PERF_MAX_TRACE_SIZE)
680 return false;
681 if (type != BPF_READ)
682 return false;
683 if (off % size != 0)
684 return false;
685
686 BUILD_BUG_ON(PERF_MAX_TRACE_SIZE % sizeof(__u64));
687 return true;
688 }
689
690 const struct bpf_verifier_ops tracepoint_verifier_ops = {
691 .get_func_proto = tp_prog_func_proto,
692 .is_valid_access = tp_prog_is_valid_access,
693 };
694
695 const struct bpf_prog_ops tracepoint_prog_ops = {
696 };
697
698 BPF_CALL_3(bpf_perf_prog_read_value, struct bpf_perf_event_data_kern *, ctx,
699 struct bpf_perf_event_value *, buf, u32, size)
700 {
701 int err = -EINVAL;
702
703 if (unlikely(size != sizeof(struct bpf_perf_event_value)))
704 goto clear;
705 err = perf_event_read_local(ctx->event, &buf->counter, &buf->enabled,
706 &buf->running);
707 if (unlikely(err))
708 goto clear;
709 return 0;
710 clear:
711 memset(buf, 0, size);
712 return err;
713 }
714
715 static const struct bpf_func_proto bpf_perf_prog_read_value_proto = {
716 .func = bpf_perf_prog_read_value,
717 .gpl_only = true,
718 .ret_type = RET_INTEGER,
719 .arg1_type = ARG_PTR_TO_CTX,
720 .arg2_type = ARG_PTR_TO_UNINIT_MEM,
721 .arg3_type = ARG_CONST_SIZE,
722 };
723
724 static const struct bpf_func_proto *pe_prog_func_proto(enum bpf_func_id func_id)
725 {
726 switch (func_id) {
727 case BPF_FUNC_perf_event_output:
728 return &bpf_perf_event_output_proto_tp;
729 case BPF_FUNC_get_stackid:
730 return &bpf_get_stackid_proto_tp;
731 case BPF_FUNC_perf_prog_read_value:
732 return &bpf_perf_prog_read_value_proto;
733 default:
734 return tracing_func_proto(func_id);
735 }
736 }
737
738 static bool pe_prog_is_valid_access(int off, int size, enum bpf_access_type type,
739 struct bpf_insn_access_aux *info)
740 {
741 const int size_sp = FIELD_SIZEOF(struct bpf_perf_event_data,
742 sample_period);
743
744 if (off < 0 || off >= sizeof(struct bpf_perf_event_data))
745 return false;
746 if (type != BPF_READ)
747 return false;
748 if (off % size != 0)
749 return false;
750
751 switch (off) {
752 case bpf_ctx_range(struct bpf_perf_event_data, sample_period):
753 bpf_ctx_record_field_size(info, size_sp);
754 if (!bpf_ctx_narrow_access_ok(off, size, size_sp))
755 return false;
756 break;
757 default:
758 if (size != sizeof(long))
759 return false;
760 }
761
762 return true;
763 }
764
765 static u32 pe_prog_convert_ctx_access(enum bpf_access_type type,
766 const struct bpf_insn *si,
767 struct bpf_insn *insn_buf,
768 struct bpf_prog *prog, u32 *target_size)
769 {
770 struct bpf_insn *insn = insn_buf;
771
772 switch (si->off) {
773 case offsetof(struct bpf_perf_event_data, sample_period):
774 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_perf_event_data_kern,
775 data), si->dst_reg, si->src_reg,
776 offsetof(struct bpf_perf_event_data_kern, data));
777 *insn++ = BPF_LDX_MEM(BPF_DW, si->dst_reg, si->dst_reg,
778 bpf_target_off(struct perf_sample_data, period, 8,
779 target_size));
780 break;
781 default:
782 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_perf_event_data_kern,
783 regs), si->dst_reg, si->src_reg,
784 offsetof(struct bpf_perf_event_data_kern, regs));
785 *insn++ = BPF_LDX_MEM(BPF_SIZEOF(long), si->dst_reg, si->dst_reg,
786 si->off);
787 break;
788 }
789
790 return insn - insn_buf;
791 }
792
793 const struct bpf_verifier_ops perf_event_verifier_ops = {
794 .get_func_proto = pe_prog_func_proto,
795 .is_valid_access = pe_prog_is_valid_access,
796 .convert_ctx_access = pe_prog_convert_ctx_access,
797 };
798
799 const struct bpf_prog_ops perf_event_prog_ops = {
800 };
801
802 static DEFINE_MUTEX(bpf_event_mutex);
803
804 #define BPF_TRACE_MAX_PROGS 64
805
806 int perf_event_attach_bpf_prog(struct perf_event *event,
807 struct bpf_prog *prog)
808 {
809 struct bpf_prog_array __rcu *old_array;
810 struct bpf_prog_array *new_array;
811 int ret = -EEXIST;
812
813 /*
814 * Kprobe override only works if they are on the function entry,
815 * and only if they are on the opt-in list.
816 */
817 if (prog->kprobe_override &&
818 (!trace_kprobe_on_func_entry(event->tp_event) ||
819 !trace_kprobe_error_injectable(event->tp_event)))
820 return -EINVAL;
821
822 mutex_lock(&bpf_event_mutex);
823
824 if (event->prog)
825 goto unlock;
826
827 old_array = event->tp_event->prog_array;
828 if (old_array &&
829 bpf_prog_array_length(old_array) >= BPF_TRACE_MAX_PROGS) {
830 ret = -E2BIG;
831 goto unlock;
832 }
833
834 ret = bpf_prog_array_copy(old_array, NULL, prog, &new_array);
835 if (ret < 0)
836 goto unlock;
837
838 /* set the new array to event->tp_event and set event->prog */
839 event->prog = prog;
840 rcu_assign_pointer(event->tp_event->prog_array, new_array);
841 bpf_prog_array_free(old_array);
842
843 unlock:
844 mutex_unlock(&bpf_event_mutex);
845 return ret;
846 }
847
848 void perf_event_detach_bpf_prog(struct perf_event *event)
849 {
850 struct bpf_prog_array __rcu *old_array;
851 struct bpf_prog_array *new_array;
852 int ret;
853
854 mutex_lock(&bpf_event_mutex);
855
856 if (!event->prog)
857 goto unlock;
858
859 old_array = event->tp_event->prog_array;
860 ret = bpf_prog_array_copy(old_array, event->prog, NULL, &new_array);
861 if (ret < 0) {
862 bpf_prog_array_delete_safe(old_array, event->prog);
863 } else {
864 rcu_assign_pointer(event->tp_event->prog_array, new_array);
865 bpf_prog_array_free(old_array);
866 }
867
868 bpf_prog_put(event->prog);
869 event->prog = NULL;
870
871 unlock:
872 mutex_unlock(&bpf_event_mutex);
873 }
874
875 int perf_event_query_prog_array(struct perf_event *event, void __user *info)
876 {
877 struct perf_event_query_bpf __user *uquery = info;
878 struct perf_event_query_bpf query = {};
879 int ret;
880
881 if (!capable(CAP_SYS_ADMIN))
882 return -EPERM;
883 if (event->attr.type != PERF_TYPE_TRACEPOINT)
884 return -EINVAL;
885 if (copy_from_user(&query, uquery, sizeof(query)))
886 return -EFAULT;
887 if (query.ids_len > BPF_TRACE_MAX_PROGS)
888 return -E2BIG;
889
890 mutex_lock(&bpf_event_mutex);
891 ret = bpf_prog_array_copy_info(event->tp_event->prog_array,
892 uquery->ids,
893 query.ids_len,
894 &uquery->prog_cnt);
895 mutex_unlock(&bpf_event_mutex);
896
897 return ret;
898 }