]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - kernel/trace/bpf_trace.c
Merge remote-tracking branches 'asoc/topic/cs35l32', 'asoc/topic/cs35l34', 'asoc...
[mirror_ubuntu-jammy-kernel.git] / kernel / trace / bpf_trace.c
1 /* Copyright (c) 2011-2015 PLUMgrid, http://plumgrid.com
2 * Copyright (c) 2016 Facebook
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of version 2 of the GNU General Public
6 * License as published by the Free Software Foundation.
7 */
8 #include <linux/kernel.h>
9 #include <linux/types.h>
10 #include <linux/slab.h>
11 #include <linux/bpf.h>
12 #include <linux/bpf_perf_event.h>
13 #include <linux/filter.h>
14 #include <linux/uaccess.h>
15 #include <linux/ctype.h>
16 #include "trace.h"
17
18 u64 bpf_get_stackid(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5);
19
20 /**
21 * trace_call_bpf - invoke BPF program
22 * @call: tracepoint event
23 * @ctx: opaque context pointer
24 *
25 * kprobe handlers execute BPF programs via this helper.
26 * Can be used from static tracepoints in the future.
27 *
28 * Return: BPF programs always return an integer which is interpreted by
29 * kprobe handler as:
30 * 0 - return from kprobe (event is filtered out)
31 * 1 - store kprobe event into ring buffer
32 * Other values are reserved and currently alias to 1
33 */
34 unsigned int trace_call_bpf(struct trace_event_call *call, void *ctx)
35 {
36 unsigned int ret;
37
38 if (in_nmi()) /* not supported yet */
39 return 1;
40
41 preempt_disable();
42
43 if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1)) {
44 /*
45 * since some bpf program is already running on this cpu,
46 * don't call into another bpf program (same or different)
47 * and don't send kprobe event into ring-buffer,
48 * so return zero here
49 */
50 ret = 0;
51 goto out;
52 }
53
54 /*
55 * Instead of moving rcu_read_lock/rcu_dereference/rcu_read_unlock
56 * to all call sites, we did a bpf_prog_array_valid() there to check
57 * whether call->prog_array is empty or not, which is
58 * a heurisitc to speed up execution.
59 *
60 * If bpf_prog_array_valid() fetched prog_array was
61 * non-NULL, we go into trace_call_bpf() and do the actual
62 * proper rcu_dereference() under RCU lock.
63 * If it turns out that prog_array is NULL then, we bail out.
64 * For the opposite, if the bpf_prog_array_valid() fetched pointer
65 * was NULL, you'll skip the prog_array with the risk of missing
66 * out of events when it was updated in between this and the
67 * rcu_dereference() which is accepted risk.
68 */
69 ret = BPF_PROG_RUN_ARRAY_CHECK(call->prog_array, ctx, BPF_PROG_RUN);
70
71 out:
72 __this_cpu_dec(bpf_prog_active);
73 preempt_enable();
74
75 return ret;
76 }
77 EXPORT_SYMBOL_GPL(trace_call_bpf);
78
79 BPF_CALL_3(bpf_probe_read, void *, dst, u32, size, const void *, unsafe_ptr)
80 {
81 int ret;
82
83 ret = probe_kernel_read(dst, unsafe_ptr, size);
84 if (unlikely(ret < 0))
85 memset(dst, 0, size);
86
87 return ret;
88 }
89
90 static const struct bpf_func_proto bpf_probe_read_proto = {
91 .func = bpf_probe_read,
92 .gpl_only = true,
93 .ret_type = RET_INTEGER,
94 .arg1_type = ARG_PTR_TO_UNINIT_MEM,
95 .arg2_type = ARG_CONST_SIZE_OR_ZERO,
96 .arg3_type = ARG_ANYTHING,
97 };
98
99 BPF_CALL_3(bpf_probe_write_user, void *, unsafe_ptr, const void *, src,
100 u32, size)
101 {
102 /*
103 * Ensure we're in user context which is safe for the helper to
104 * run. This helper has no business in a kthread.
105 *
106 * access_ok() should prevent writing to non-user memory, but in
107 * some situations (nommu, temporary switch, etc) access_ok() does
108 * not provide enough validation, hence the check on KERNEL_DS.
109 */
110
111 if (unlikely(in_interrupt() ||
112 current->flags & (PF_KTHREAD | PF_EXITING)))
113 return -EPERM;
114 if (unlikely(uaccess_kernel()))
115 return -EPERM;
116 if (!access_ok(VERIFY_WRITE, unsafe_ptr, size))
117 return -EPERM;
118
119 return probe_kernel_write(unsafe_ptr, src, size);
120 }
121
122 static const struct bpf_func_proto bpf_probe_write_user_proto = {
123 .func = bpf_probe_write_user,
124 .gpl_only = true,
125 .ret_type = RET_INTEGER,
126 .arg1_type = ARG_ANYTHING,
127 .arg2_type = ARG_PTR_TO_MEM,
128 .arg3_type = ARG_CONST_SIZE,
129 };
130
131 static const struct bpf_func_proto *bpf_get_probe_write_proto(void)
132 {
133 pr_warn_ratelimited("%s[%d] is installing a program with bpf_probe_write_user helper that may corrupt user memory!",
134 current->comm, task_pid_nr(current));
135
136 return &bpf_probe_write_user_proto;
137 }
138
139 /*
140 * Only limited trace_printk() conversion specifiers allowed:
141 * %d %i %u %x %ld %li %lu %lx %lld %lli %llu %llx %p %s
142 */
143 BPF_CALL_5(bpf_trace_printk, char *, fmt, u32, fmt_size, u64, arg1,
144 u64, arg2, u64, arg3)
145 {
146 bool str_seen = false;
147 int mod[3] = {};
148 int fmt_cnt = 0;
149 u64 unsafe_addr;
150 char buf[64];
151 int i;
152
153 /*
154 * bpf_check()->check_func_arg()->check_stack_boundary()
155 * guarantees that fmt points to bpf program stack,
156 * fmt_size bytes of it were initialized and fmt_size > 0
157 */
158 if (fmt[--fmt_size] != 0)
159 return -EINVAL;
160
161 /* check format string for allowed specifiers */
162 for (i = 0; i < fmt_size; i++) {
163 if ((!isprint(fmt[i]) && !isspace(fmt[i])) || !isascii(fmt[i]))
164 return -EINVAL;
165
166 if (fmt[i] != '%')
167 continue;
168
169 if (fmt_cnt >= 3)
170 return -EINVAL;
171
172 /* fmt[i] != 0 && fmt[last] == 0, so we can access fmt[i + 1] */
173 i++;
174 if (fmt[i] == 'l') {
175 mod[fmt_cnt]++;
176 i++;
177 } else if (fmt[i] == 'p' || fmt[i] == 's') {
178 mod[fmt_cnt]++;
179 i++;
180 if (!isspace(fmt[i]) && !ispunct(fmt[i]) && fmt[i] != 0)
181 return -EINVAL;
182 fmt_cnt++;
183 if (fmt[i - 1] == 's') {
184 if (str_seen)
185 /* allow only one '%s' per fmt string */
186 return -EINVAL;
187 str_seen = true;
188
189 switch (fmt_cnt) {
190 case 1:
191 unsafe_addr = arg1;
192 arg1 = (long) buf;
193 break;
194 case 2:
195 unsafe_addr = arg2;
196 arg2 = (long) buf;
197 break;
198 case 3:
199 unsafe_addr = arg3;
200 arg3 = (long) buf;
201 break;
202 }
203 buf[0] = 0;
204 strncpy_from_unsafe(buf,
205 (void *) (long) unsafe_addr,
206 sizeof(buf));
207 }
208 continue;
209 }
210
211 if (fmt[i] == 'l') {
212 mod[fmt_cnt]++;
213 i++;
214 }
215
216 if (fmt[i] != 'i' && fmt[i] != 'd' &&
217 fmt[i] != 'u' && fmt[i] != 'x')
218 return -EINVAL;
219 fmt_cnt++;
220 }
221
222 /* Horrid workaround for getting va_list handling working with different
223 * argument type combinations generically for 32 and 64 bit archs.
224 */
225 #define __BPF_TP_EMIT() __BPF_ARG3_TP()
226 #define __BPF_TP(...) \
227 __trace_printk(1 /* Fake ip will not be printed. */, \
228 fmt, ##__VA_ARGS__)
229
230 #define __BPF_ARG1_TP(...) \
231 ((mod[0] == 2 || (mod[0] == 1 && __BITS_PER_LONG == 64)) \
232 ? __BPF_TP(arg1, ##__VA_ARGS__) \
233 : ((mod[0] == 1 || (mod[0] == 0 && __BITS_PER_LONG == 32)) \
234 ? __BPF_TP((long)arg1, ##__VA_ARGS__) \
235 : __BPF_TP((u32)arg1, ##__VA_ARGS__)))
236
237 #define __BPF_ARG2_TP(...) \
238 ((mod[1] == 2 || (mod[1] == 1 && __BITS_PER_LONG == 64)) \
239 ? __BPF_ARG1_TP(arg2, ##__VA_ARGS__) \
240 : ((mod[1] == 1 || (mod[1] == 0 && __BITS_PER_LONG == 32)) \
241 ? __BPF_ARG1_TP((long)arg2, ##__VA_ARGS__) \
242 : __BPF_ARG1_TP((u32)arg2, ##__VA_ARGS__)))
243
244 #define __BPF_ARG3_TP(...) \
245 ((mod[2] == 2 || (mod[2] == 1 && __BITS_PER_LONG == 64)) \
246 ? __BPF_ARG2_TP(arg3, ##__VA_ARGS__) \
247 : ((mod[2] == 1 || (mod[2] == 0 && __BITS_PER_LONG == 32)) \
248 ? __BPF_ARG2_TP((long)arg3, ##__VA_ARGS__) \
249 : __BPF_ARG2_TP((u32)arg3, ##__VA_ARGS__)))
250
251 return __BPF_TP_EMIT();
252 }
253
254 static const struct bpf_func_proto bpf_trace_printk_proto = {
255 .func = bpf_trace_printk,
256 .gpl_only = true,
257 .ret_type = RET_INTEGER,
258 .arg1_type = ARG_PTR_TO_MEM,
259 .arg2_type = ARG_CONST_SIZE,
260 };
261
262 const struct bpf_func_proto *bpf_get_trace_printk_proto(void)
263 {
264 /*
265 * this program might be calling bpf_trace_printk,
266 * so allocate per-cpu printk buffers
267 */
268 trace_printk_init_buffers();
269
270 return &bpf_trace_printk_proto;
271 }
272
273 static __always_inline int
274 get_map_perf_counter(struct bpf_map *map, u64 flags,
275 u64 *value, u64 *enabled, u64 *running)
276 {
277 struct bpf_array *array = container_of(map, struct bpf_array, map);
278 unsigned int cpu = smp_processor_id();
279 u64 index = flags & BPF_F_INDEX_MASK;
280 struct bpf_event_entry *ee;
281
282 if (unlikely(flags & ~(BPF_F_INDEX_MASK)))
283 return -EINVAL;
284 if (index == BPF_F_CURRENT_CPU)
285 index = cpu;
286 if (unlikely(index >= array->map.max_entries))
287 return -E2BIG;
288
289 ee = READ_ONCE(array->ptrs[index]);
290 if (!ee)
291 return -ENOENT;
292
293 return perf_event_read_local(ee->event, value, enabled, running);
294 }
295
296 BPF_CALL_2(bpf_perf_event_read, struct bpf_map *, map, u64, flags)
297 {
298 u64 value = 0;
299 int err;
300
301 err = get_map_perf_counter(map, flags, &value, NULL, NULL);
302 /*
303 * this api is ugly since we miss [-22..-2] range of valid
304 * counter values, but that's uapi
305 */
306 if (err)
307 return err;
308 return value;
309 }
310
311 static const struct bpf_func_proto bpf_perf_event_read_proto = {
312 .func = bpf_perf_event_read,
313 .gpl_only = true,
314 .ret_type = RET_INTEGER,
315 .arg1_type = ARG_CONST_MAP_PTR,
316 .arg2_type = ARG_ANYTHING,
317 };
318
319 BPF_CALL_4(bpf_perf_event_read_value, struct bpf_map *, map, u64, flags,
320 struct bpf_perf_event_value *, buf, u32, size)
321 {
322 int err = -EINVAL;
323
324 if (unlikely(size != sizeof(struct bpf_perf_event_value)))
325 goto clear;
326 err = get_map_perf_counter(map, flags, &buf->counter, &buf->enabled,
327 &buf->running);
328 if (unlikely(err))
329 goto clear;
330 return 0;
331 clear:
332 memset(buf, 0, size);
333 return err;
334 }
335
336 static const struct bpf_func_proto bpf_perf_event_read_value_proto = {
337 .func = bpf_perf_event_read_value,
338 .gpl_only = true,
339 .ret_type = RET_INTEGER,
340 .arg1_type = ARG_CONST_MAP_PTR,
341 .arg2_type = ARG_ANYTHING,
342 .arg3_type = ARG_PTR_TO_UNINIT_MEM,
343 .arg4_type = ARG_CONST_SIZE,
344 };
345
346 static DEFINE_PER_CPU(struct perf_sample_data, bpf_trace_sd);
347
348 static __always_inline u64
349 __bpf_perf_event_output(struct pt_regs *regs, struct bpf_map *map,
350 u64 flags, struct perf_sample_data *sd)
351 {
352 struct bpf_array *array = container_of(map, struct bpf_array, map);
353 unsigned int cpu = smp_processor_id();
354 u64 index = flags & BPF_F_INDEX_MASK;
355 struct bpf_event_entry *ee;
356 struct perf_event *event;
357
358 if (index == BPF_F_CURRENT_CPU)
359 index = cpu;
360 if (unlikely(index >= array->map.max_entries))
361 return -E2BIG;
362
363 ee = READ_ONCE(array->ptrs[index]);
364 if (!ee)
365 return -ENOENT;
366
367 event = ee->event;
368 if (unlikely(event->attr.type != PERF_TYPE_SOFTWARE ||
369 event->attr.config != PERF_COUNT_SW_BPF_OUTPUT))
370 return -EINVAL;
371
372 if (unlikely(event->oncpu != cpu))
373 return -EOPNOTSUPP;
374
375 perf_event_output(event, sd, regs);
376 return 0;
377 }
378
379 BPF_CALL_5(bpf_perf_event_output, struct pt_regs *, regs, struct bpf_map *, map,
380 u64, flags, void *, data, u64, size)
381 {
382 struct perf_sample_data *sd = this_cpu_ptr(&bpf_trace_sd);
383 struct perf_raw_record raw = {
384 .frag = {
385 .size = size,
386 .data = data,
387 },
388 };
389
390 if (unlikely(flags & ~(BPF_F_INDEX_MASK)))
391 return -EINVAL;
392
393 perf_sample_data_init(sd, 0, 0);
394 sd->raw = &raw;
395
396 return __bpf_perf_event_output(regs, map, flags, sd);
397 }
398
399 static const struct bpf_func_proto bpf_perf_event_output_proto = {
400 .func = bpf_perf_event_output,
401 .gpl_only = true,
402 .ret_type = RET_INTEGER,
403 .arg1_type = ARG_PTR_TO_CTX,
404 .arg2_type = ARG_CONST_MAP_PTR,
405 .arg3_type = ARG_ANYTHING,
406 .arg4_type = ARG_PTR_TO_MEM,
407 .arg5_type = ARG_CONST_SIZE_OR_ZERO,
408 };
409
410 static DEFINE_PER_CPU(struct pt_regs, bpf_pt_regs);
411 static DEFINE_PER_CPU(struct perf_sample_data, bpf_misc_sd);
412
413 u64 bpf_event_output(struct bpf_map *map, u64 flags, void *meta, u64 meta_size,
414 void *ctx, u64 ctx_size, bpf_ctx_copy_t ctx_copy)
415 {
416 struct perf_sample_data *sd = this_cpu_ptr(&bpf_misc_sd);
417 struct pt_regs *regs = this_cpu_ptr(&bpf_pt_regs);
418 struct perf_raw_frag frag = {
419 .copy = ctx_copy,
420 .size = ctx_size,
421 .data = ctx,
422 };
423 struct perf_raw_record raw = {
424 .frag = {
425 {
426 .next = ctx_size ? &frag : NULL,
427 },
428 .size = meta_size,
429 .data = meta,
430 },
431 };
432
433 perf_fetch_caller_regs(regs);
434 perf_sample_data_init(sd, 0, 0);
435 sd->raw = &raw;
436
437 return __bpf_perf_event_output(regs, map, flags, sd);
438 }
439
440 BPF_CALL_0(bpf_get_current_task)
441 {
442 return (long) current;
443 }
444
445 static const struct bpf_func_proto bpf_get_current_task_proto = {
446 .func = bpf_get_current_task,
447 .gpl_only = true,
448 .ret_type = RET_INTEGER,
449 };
450
451 BPF_CALL_2(bpf_current_task_under_cgroup, struct bpf_map *, map, u32, idx)
452 {
453 struct bpf_array *array = container_of(map, struct bpf_array, map);
454 struct cgroup *cgrp;
455
456 if (unlikely(in_interrupt()))
457 return -EINVAL;
458 if (unlikely(idx >= array->map.max_entries))
459 return -E2BIG;
460
461 cgrp = READ_ONCE(array->ptrs[idx]);
462 if (unlikely(!cgrp))
463 return -EAGAIN;
464
465 return task_under_cgroup_hierarchy(current, cgrp);
466 }
467
468 static const struct bpf_func_proto bpf_current_task_under_cgroup_proto = {
469 .func = bpf_current_task_under_cgroup,
470 .gpl_only = false,
471 .ret_type = RET_INTEGER,
472 .arg1_type = ARG_CONST_MAP_PTR,
473 .arg2_type = ARG_ANYTHING,
474 };
475
476 BPF_CALL_3(bpf_probe_read_str, void *, dst, u32, size,
477 const void *, unsafe_ptr)
478 {
479 int ret;
480
481 /*
482 * The strncpy_from_unsafe() call will likely not fill the entire
483 * buffer, but that's okay in this circumstance as we're probing
484 * arbitrary memory anyway similar to bpf_probe_read() and might
485 * as well probe the stack. Thus, memory is explicitly cleared
486 * only in error case, so that improper users ignoring return
487 * code altogether don't copy garbage; otherwise length of string
488 * is returned that can be used for bpf_perf_event_output() et al.
489 */
490 ret = strncpy_from_unsafe(dst, unsafe_ptr, size);
491 if (unlikely(ret < 0))
492 memset(dst, 0, size);
493
494 return ret;
495 }
496
497 static const struct bpf_func_proto bpf_probe_read_str_proto = {
498 .func = bpf_probe_read_str,
499 .gpl_only = true,
500 .ret_type = RET_INTEGER,
501 .arg1_type = ARG_PTR_TO_UNINIT_MEM,
502 .arg2_type = ARG_CONST_SIZE_OR_ZERO,
503 .arg3_type = ARG_ANYTHING,
504 };
505
506 static const struct bpf_func_proto *tracing_func_proto(enum bpf_func_id func_id)
507 {
508 switch (func_id) {
509 case BPF_FUNC_map_lookup_elem:
510 return &bpf_map_lookup_elem_proto;
511 case BPF_FUNC_map_update_elem:
512 return &bpf_map_update_elem_proto;
513 case BPF_FUNC_map_delete_elem:
514 return &bpf_map_delete_elem_proto;
515 case BPF_FUNC_probe_read:
516 return &bpf_probe_read_proto;
517 case BPF_FUNC_ktime_get_ns:
518 return &bpf_ktime_get_ns_proto;
519 case BPF_FUNC_tail_call:
520 return &bpf_tail_call_proto;
521 case BPF_FUNC_get_current_pid_tgid:
522 return &bpf_get_current_pid_tgid_proto;
523 case BPF_FUNC_get_current_task:
524 return &bpf_get_current_task_proto;
525 case BPF_FUNC_get_current_uid_gid:
526 return &bpf_get_current_uid_gid_proto;
527 case BPF_FUNC_get_current_comm:
528 return &bpf_get_current_comm_proto;
529 case BPF_FUNC_trace_printk:
530 return bpf_get_trace_printk_proto();
531 case BPF_FUNC_get_smp_processor_id:
532 return &bpf_get_smp_processor_id_proto;
533 case BPF_FUNC_get_numa_node_id:
534 return &bpf_get_numa_node_id_proto;
535 case BPF_FUNC_perf_event_read:
536 return &bpf_perf_event_read_proto;
537 case BPF_FUNC_probe_write_user:
538 return bpf_get_probe_write_proto();
539 case BPF_FUNC_current_task_under_cgroup:
540 return &bpf_current_task_under_cgroup_proto;
541 case BPF_FUNC_get_prandom_u32:
542 return &bpf_get_prandom_u32_proto;
543 case BPF_FUNC_probe_read_str:
544 return &bpf_probe_read_str_proto;
545 default:
546 return NULL;
547 }
548 }
549
550 static const struct bpf_func_proto *kprobe_prog_func_proto(enum bpf_func_id func_id)
551 {
552 switch (func_id) {
553 case BPF_FUNC_perf_event_output:
554 return &bpf_perf_event_output_proto;
555 case BPF_FUNC_get_stackid:
556 return &bpf_get_stackid_proto;
557 case BPF_FUNC_perf_event_read_value:
558 return &bpf_perf_event_read_value_proto;
559 default:
560 return tracing_func_proto(func_id);
561 }
562 }
563
564 /* bpf+kprobe programs can access fields of 'struct pt_regs' */
565 static bool kprobe_prog_is_valid_access(int off, int size, enum bpf_access_type type,
566 struct bpf_insn_access_aux *info)
567 {
568 if (off < 0 || off >= sizeof(struct pt_regs))
569 return false;
570 if (type != BPF_READ)
571 return false;
572 if (off % size != 0)
573 return false;
574 /*
575 * Assertion for 32 bit to make sure last 8 byte access
576 * (BPF_DW) to the last 4 byte member is disallowed.
577 */
578 if (off + size > sizeof(struct pt_regs))
579 return false;
580
581 return true;
582 }
583
584 const struct bpf_verifier_ops kprobe_verifier_ops = {
585 .get_func_proto = kprobe_prog_func_proto,
586 .is_valid_access = kprobe_prog_is_valid_access,
587 };
588
589 const struct bpf_prog_ops kprobe_prog_ops = {
590 };
591
592 BPF_CALL_5(bpf_perf_event_output_tp, void *, tp_buff, struct bpf_map *, map,
593 u64, flags, void *, data, u64, size)
594 {
595 struct pt_regs *regs = *(struct pt_regs **)tp_buff;
596
597 /*
598 * r1 points to perf tracepoint buffer where first 8 bytes are hidden
599 * from bpf program and contain a pointer to 'struct pt_regs'. Fetch it
600 * from there and call the same bpf_perf_event_output() helper inline.
601 */
602 return ____bpf_perf_event_output(regs, map, flags, data, size);
603 }
604
605 static const struct bpf_func_proto bpf_perf_event_output_proto_tp = {
606 .func = bpf_perf_event_output_tp,
607 .gpl_only = true,
608 .ret_type = RET_INTEGER,
609 .arg1_type = ARG_PTR_TO_CTX,
610 .arg2_type = ARG_CONST_MAP_PTR,
611 .arg3_type = ARG_ANYTHING,
612 .arg4_type = ARG_PTR_TO_MEM,
613 .arg5_type = ARG_CONST_SIZE_OR_ZERO,
614 };
615
616 BPF_CALL_3(bpf_get_stackid_tp, void *, tp_buff, struct bpf_map *, map,
617 u64, flags)
618 {
619 struct pt_regs *regs = *(struct pt_regs **)tp_buff;
620
621 /*
622 * Same comment as in bpf_perf_event_output_tp(), only that this time
623 * the other helper's function body cannot be inlined due to being
624 * external, thus we need to call raw helper function.
625 */
626 return bpf_get_stackid((unsigned long) regs, (unsigned long) map,
627 flags, 0, 0);
628 }
629
630 static const struct bpf_func_proto bpf_get_stackid_proto_tp = {
631 .func = bpf_get_stackid_tp,
632 .gpl_only = true,
633 .ret_type = RET_INTEGER,
634 .arg1_type = ARG_PTR_TO_CTX,
635 .arg2_type = ARG_CONST_MAP_PTR,
636 .arg3_type = ARG_ANYTHING,
637 };
638
639 BPF_CALL_3(bpf_perf_prog_read_value_tp, struct bpf_perf_event_data_kern *, ctx,
640 struct bpf_perf_event_value *, buf, u32, size)
641 {
642 int err = -EINVAL;
643
644 if (unlikely(size != sizeof(struct bpf_perf_event_value)))
645 goto clear;
646 err = perf_event_read_local(ctx->event, &buf->counter, &buf->enabled,
647 &buf->running);
648 if (unlikely(err))
649 goto clear;
650 return 0;
651 clear:
652 memset(buf, 0, size);
653 return err;
654 }
655
656 static const struct bpf_func_proto bpf_perf_prog_read_value_proto_tp = {
657 .func = bpf_perf_prog_read_value_tp,
658 .gpl_only = true,
659 .ret_type = RET_INTEGER,
660 .arg1_type = ARG_PTR_TO_CTX,
661 .arg2_type = ARG_PTR_TO_UNINIT_MEM,
662 .arg3_type = ARG_CONST_SIZE,
663 };
664
665 static const struct bpf_func_proto *tp_prog_func_proto(enum bpf_func_id func_id)
666 {
667 switch (func_id) {
668 case BPF_FUNC_perf_event_output:
669 return &bpf_perf_event_output_proto_tp;
670 case BPF_FUNC_get_stackid:
671 return &bpf_get_stackid_proto_tp;
672 case BPF_FUNC_perf_prog_read_value:
673 return &bpf_perf_prog_read_value_proto_tp;
674 default:
675 return tracing_func_proto(func_id);
676 }
677 }
678
679 static bool tp_prog_is_valid_access(int off, int size, enum bpf_access_type type,
680 struct bpf_insn_access_aux *info)
681 {
682 if (off < sizeof(void *) || off >= PERF_MAX_TRACE_SIZE)
683 return false;
684 if (type != BPF_READ)
685 return false;
686 if (off % size != 0)
687 return false;
688
689 BUILD_BUG_ON(PERF_MAX_TRACE_SIZE % sizeof(__u64));
690 return true;
691 }
692
693 const struct bpf_verifier_ops tracepoint_verifier_ops = {
694 .get_func_proto = tp_prog_func_proto,
695 .is_valid_access = tp_prog_is_valid_access,
696 };
697
698 const struct bpf_prog_ops tracepoint_prog_ops = {
699 };
700
701 static bool pe_prog_is_valid_access(int off, int size, enum bpf_access_type type,
702 struct bpf_insn_access_aux *info)
703 {
704 const int size_sp = FIELD_SIZEOF(struct bpf_perf_event_data,
705 sample_period);
706
707 if (off < 0 || off >= sizeof(struct bpf_perf_event_data))
708 return false;
709 if (type != BPF_READ)
710 return false;
711 if (off % size != 0)
712 return false;
713
714 switch (off) {
715 case bpf_ctx_range(struct bpf_perf_event_data, sample_period):
716 bpf_ctx_record_field_size(info, size_sp);
717 if (!bpf_ctx_narrow_access_ok(off, size, size_sp))
718 return false;
719 break;
720 default:
721 if (size != sizeof(long))
722 return false;
723 }
724
725 return true;
726 }
727
728 static u32 pe_prog_convert_ctx_access(enum bpf_access_type type,
729 const struct bpf_insn *si,
730 struct bpf_insn *insn_buf,
731 struct bpf_prog *prog, u32 *target_size)
732 {
733 struct bpf_insn *insn = insn_buf;
734
735 switch (si->off) {
736 case offsetof(struct bpf_perf_event_data, sample_period):
737 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_perf_event_data_kern,
738 data), si->dst_reg, si->src_reg,
739 offsetof(struct bpf_perf_event_data_kern, data));
740 *insn++ = BPF_LDX_MEM(BPF_DW, si->dst_reg, si->dst_reg,
741 bpf_target_off(struct perf_sample_data, period, 8,
742 target_size));
743 break;
744 default:
745 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_perf_event_data_kern,
746 regs), si->dst_reg, si->src_reg,
747 offsetof(struct bpf_perf_event_data_kern, regs));
748 *insn++ = BPF_LDX_MEM(BPF_SIZEOF(long), si->dst_reg, si->dst_reg,
749 si->off);
750 break;
751 }
752
753 return insn - insn_buf;
754 }
755
756 const struct bpf_verifier_ops perf_event_verifier_ops = {
757 .get_func_proto = tp_prog_func_proto,
758 .is_valid_access = pe_prog_is_valid_access,
759 .convert_ctx_access = pe_prog_convert_ctx_access,
760 };
761
762 const struct bpf_prog_ops perf_event_prog_ops = {
763 };
764
765 static DEFINE_MUTEX(bpf_event_mutex);
766
767 #define BPF_TRACE_MAX_PROGS 64
768
769 int perf_event_attach_bpf_prog(struct perf_event *event,
770 struct bpf_prog *prog)
771 {
772 struct bpf_prog_array __rcu *old_array;
773 struct bpf_prog_array *new_array;
774 int ret = -EEXIST;
775
776 mutex_lock(&bpf_event_mutex);
777
778 if (event->prog)
779 goto unlock;
780
781 old_array = event->tp_event->prog_array;
782 if (old_array &&
783 bpf_prog_array_length(old_array) >= BPF_TRACE_MAX_PROGS) {
784 ret = -E2BIG;
785 goto unlock;
786 }
787
788 ret = bpf_prog_array_copy(old_array, NULL, prog, &new_array);
789 if (ret < 0)
790 goto unlock;
791
792 /* set the new array to event->tp_event and set event->prog */
793 event->prog = prog;
794 rcu_assign_pointer(event->tp_event->prog_array, new_array);
795 bpf_prog_array_free(old_array);
796
797 unlock:
798 mutex_unlock(&bpf_event_mutex);
799 return ret;
800 }
801
802 void perf_event_detach_bpf_prog(struct perf_event *event)
803 {
804 struct bpf_prog_array __rcu *old_array;
805 struct bpf_prog_array *new_array;
806 int ret;
807
808 mutex_lock(&bpf_event_mutex);
809
810 if (!event->prog)
811 goto unlock;
812
813 old_array = event->tp_event->prog_array;
814 ret = bpf_prog_array_copy(old_array, event->prog, NULL, &new_array);
815 if (ret < 0) {
816 bpf_prog_array_delete_safe(old_array, event->prog);
817 } else {
818 rcu_assign_pointer(event->tp_event->prog_array, new_array);
819 bpf_prog_array_free(old_array);
820 }
821
822 bpf_prog_put(event->prog);
823 event->prog = NULL;
824
825 unlock:
826 mutex_unlock(&bpf_event_mutex);
827 }