]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - kernel/trace/bpf_trace.c
b5071c7e93ca9604309d8495f5787d930bda26dd
[mirror_ubuntu-jammy-kernel.git] / kernel / trace / bpf_trace.c
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2011-2015 PLUMgrid, http://plumgrid.com
3 * Copyright (c) 2016 Facebook
4 */
5 #include <linux/kernel.h>
6 #include <linux/types.h>
7 #include <linux/slab.h>
8 #include <linux/bpf.h>
9 #include <linux/bpf_perf_event.h>
10 #include <linux/filter.h>
11 #include <linux/uaccess.h>
12 #include <linux/ctype.h>
13 #include <linux/kprobes.h>
14 #include <linux/syscalls.h>
15 #include <linux/error-injection.h>
16
17 #include <asm/tlb.h>
18
19 #include "trace_probe.h"
20 #include "trace.h"
21
22 #define bpf_event_rcu_dereference(p) \
23 rcu_dereference_protected(p, lockdep_is_held(&bpf_event_mutex))
24
25 #ifdef CONFIG_MODULES
26 struct bpf_trace_module {
27 struct module *module;
28 struct list_head list;
29 };
30
31 static LIST_HEAD(bpf_trace_modules);
32 static DEFINE_MUTEX(bpf_module_mutex);
33
34 static struct bpf_raw_event_map *bpf_get_raw_tracepoint_module(const char *name)
35 {
36 struct bpf_raw_event_map *btp, *ret = NULL;
37 struct bpf_trace_module *btm;
38 unsigned int i;
39
40 mutex_lock(&bpf_module_mutex);
41 list_for_each_entry(btm, &bpf_trace_modules, list) {
42 for (i = 0; i < btm->module->num_bpf_raw_events; ++i) {
43 btp = &btm->module->bpf_raw_events[i];
44 if (!strcmp(btp->tp->name, name)) {
45 if (try_module_get(btm->module))
46 ret = btp;
47 goto out;
48 }
49 }
50 }
51 out:
52 mutex_unlock(&bpf_module_mutex);
53 return ret;
54 }
55 #else
56 static struct bpf_raw_event_map *bpf_get_raw_tracepoint_module(const char *name)
57 {
58 return NULL;
59 }
60 #endif /* CONFIG_MODULES */
61
62 u64 bpf_get_stackid(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5);
63 u64 bpf_get_stack(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5);
64
65 /**
66 * trace_call_bpf - invoke BPF program
67 * @call: tracepoint event
68 * @ctx: opaque context pointer
69 *
70 * kprobe handlers execute BPF programs via this helper.
71 * Can be used from static tracepoints in the future.
72 *
73 * Return: BPF programs always return an integer which is interpreted by
74 * kprobe handler as:
75 * 0 - return from kprobe (event is filtered out)
76 * 1 - store kprobe event into ring buffer
77 * Other values are reserved and currently alias to 1
78 */
79 unsigned int trace_call_bpf(struct trace_event_call *call, void *ctx)
80 {
81 unsigned int ret;
82
83 if (in_nmi()) /* not supported yet */
84 return 1;
85
86 cant_sleep();
87
88 if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1)) {
89 /*
90 * since some bpf program is already running on this cpu,
91 * don't call into another bpf program (same or different)
92 * and don't send kprobe event into ring-buffer,
93 * so return zero here
94 */
95 ret = 0;
96 goto out;
97 }
98
99 /*
100 * Instead of moving rcu_read_lock/rcu_dereference/rcu_read_unlock
101 * to all call sites, we did a bpf_prog_array_valid() there to check
102 * whether call->prog_array is empty or not, which is
103 * a heurisitc to speed up execution.
104 *
105 * If bpf_prog_array_valid() fetched prog_array was
106 * non-NULL, we go into trace_call_bpf() and do the actual
107 * proper rcu_dereference() under RCU lock.
108 * If it turns out that prog_array is NULL then, we bail out.
109 * For the opposite, if the bpf_prog_array_valid() fetched pointer
110 * was NULL, you'll skip the prog_array with the risk of missing
111 * out of events when it was updated in between this and the
112 * rcu_dereference() which is accepted risk.
113 */
114 ret = BPF_PROG_RUN_ARRAY_CHECK(call->prog_array, ctx, BPF_PROG_RUN);
115
116 out:
117 __this_cpu_dec(bpf_prog_active);
118
119 return ret;
120 }
121
122 #ifdef CONFIG_BPF_KPROBE_OVERRIDE
123 BPF_CALL_2(bpf_override_return, struct pt_regs *, regs, unsigned long, rc)
124 {
125 regs_set_return_value(regs, rc);
126 override_function_with_return(regs);
127 return 0;
128 }
129
130 static const struct bpf_func_proto bpf_override_return_proto = {
131 .func = bpf_override_return,
132 .gpl_only = true,
133 .ret_type = RET_INTEGER,
134 .arg1_type = ARG_PTR_TO_CTX,
135 .arg2_type = ARG_ANYTHING,
136 };
137 #endif
138
139 BPF_CALL_3(bpf_probe_read_user, void *, dst, u32, size,
140 const void __user *, unsafe_ptr)
141 {
142 int ret = probe_user_read(dst, unsafe_ptr, size);
143
144 if (unlikely(ret < 0))
145 memset(dst, 0, size);
146
147 return ret;
148 }
149
150 static const struct bpf_func_proto bpf_probe_read_user_proto = {
151 .func = bpf_probe_read_user,
152 .gpl_only = true,
153 .ret_type = RET_INTEGER,
154 .arg1_type = ARG_PTR_TO_UNINIT_MEM,
155 .arg2_type = ARG_CONST_SIZE_OR_ZERO,
156 .arg3_type = ARG_ANYTHING,
157 };
158
159 BPF_CALL_3(bpf_probe_read_user_str, void *, dst, u32, size,
160 const void __user *, unsafe_ptr)
161 {
162 int ret = strncpy_from_unsafe_user(dst, unsafe_ptr, size);
163
164 if (unlikely(ret < 0))
165 memset(dst, 0, size);
166
167 return ret;
168 }
169
170 static const struct bpf_func_proto bpf_probe_read_user_str_proto = {
171 .func = bpf_probe_read_user_str,
172 .gpl_only = true,
173 .ret_type = RET_INTEGER,
174 .arg1_type = ARG_PTR_TO_UNINIT_MEM,
175 .arg2_type = ARG_CONST_SIZE_OR_ZERO,
176 .arg3_type = ARG_ANYTHING,
177 };
178
179 static __always_inline int
180 bpf_probe_read_kernel_common(void *dst, u32 size, const void *unsafe_ptr,
181 const bool compat)
182 {
183 int ret = security_locked_down(LOCKDOWN_BPF_READ);
184
185 if (unlikely(ret < 0))
186 goto out;
187 ret = compat ? probe_kernel_read(dst, unsafe_ptr, size) :
188 probe_kernel_read_strict(dst, unsafe_ptr, size);
189 if (unlikely(ret < 0))
190 out:
191 memset(dst, 0, size);
192 return ret;
193 }
194
195 BPF_CALL_3(bpf_probe_read_kernel, void *, dst, u32, size,
196 const void *, unsafe_ptr)
197 {
198 return bpf_probe_read_kernel_common(dst, size, unsafe_ptr, false);
199 }
200
201 static const struct bpf_func_proto bpf_probe_read_kernel_proto = {
202 .func = bpf_probe_read_kernel,
203 .gpl_only = true,
204 .ret_type = RET_INTEGER,
205 .arg1_type = ARG_PTR_TO_UNINIT_MEM,
206 .arg2_type = ARG_CONST_SIZE_OR_ZERO,
207 .arg3_type = ARG_ANYTHING,
208 };
209
210 BPF_CALL_3(bpf_probe_read_compat, void *, dst, u32, size,
211 const void *, unsafe_ptr)
212 {
213 return bpf_probe_read_kernel_common(dst, size, unsafe_ptr, true);
214 }
215
216 static const struct bpf_func_proto bpf_probe_read_compat_proto = {
217 .func = bpf_probe_read_compat,
218 .gpl_only = true,
219 .ret_type = RET_INTEGER,
220 .arg1_type = ARG_PTR_TO_UNINIT_MEM,
221 .arg2_type = ARG_CONST_SIZE_OR_ZERO,
222 .arg3_type = ARG_ANYTHING,
223 };
224
225 static __always_inline int
226 bpf_probe_read_kernel_str_common(void *dst, u32 size, const void *unsafe_ptr,
227 const bool compat)
228 {
229 int ret = security_locked_down(LOCKDOWN_BPF_READ);
230
231 if (unlikely(ret < 0))
232 goto out;
233 /*
234 * The strncpy_from_unsafe_*() call will likely not fill the entire
235 * buffer, but that's okay in this circumstance as we're probing
236 * arbitrary memory anyway similar to bpf_probe_read_*() and might
237 * as well probe the stack. Thus, memory is explicitly cleared
238 * only in error case, so that improper users ignoring return
239 * code altogether don't copy garbage; otherwise length of string
240 * is returned that can be used for bpf_perf_event_output() et al.
241 */
242 ret = compat ? strncpy_from_unsafe(dst, unsafe_ptr, size) :
243 strncpy_from_unsafe_strict(dst, unsafe_ptr, size);
244 if (unlikely(ret < 0))
245 out:
246 memset(dst, 0, size);
247 return ret;
248 }
249
250 BPF_CALL_3(bpf_probe_read_kernel_str, void *, dst, u32, size,
251 const void *, unsafe_ptr)
252 {
253 return bpf_probe_read_kernel_str_common(dst, size, unsafe_ptr, false);
254 }
255
256 static const struct bpf_func_proto bpf_probe_read_kernel_str_proto = {
257 .func = bpf_probe_read_kernel_str,
258 .gpl_only = true,
259 .ret_type = RET_INTEGER,
260 .arg1_type = ARG_PTR_TO_UNINIT_MEM,
261 .arg2_type = ARG_CONST_SIZE_OR_ZERO,
262 .arg3_type = ARG_ANYTHING,
263 };
264
265 BPF_CALL_3(bpf_probe_read_compat_str, void *, dst, u32, size,
266 const void *, unsafe_ptr)
267 {
268 return bpf_probe_read_kernel_str_common(dst, size, unsafe_ptr, true);
269 }
270
271 static const struct bpf_func_proto bpf_probe_read_compat_str_proto = {
272 .func = bpf_probe_read_compat_str,
273 .gpl_only = true,
274 .ret_type = RET_INTEGER,
275 .arg1_type = ARG_PTR_TO_UNINIT_MEM,
276 .arg2_type = ARG_CONST_SIZE_OR_ZERO,
277 .arg3_type = ARG_ANYTHING,
278 };
279
280 BPF_CALL_3(bpf_probe_write_user, void __user *, unsafe_ptr, const void *, src,
281 u32, size)
282 {
283 /*
284 * Ensure we're in user context which is safe for the helper to
285 * run. This helper has no business in a kthread.
286 *
287 * access_ok() should prevent writing to non-user memory, but in
288 * some situations (nommu, temporary switch, etc) access_ok() does
289 * not provide enough validation, hence the check on KERNEL_DS.
290 *
291 * nmi_uaccess_okay() ensures the probe is not run in an interim
292 * state, when the task or mm are switched. This is specifically
293 * required to prevent the use of temporary mm.
294 */
295
296 if (unlikely(in_interrupt() ||
297 current->flags & (PF_KTHREAD | PF_EXITING)))
298 return -EPERM;
299 if (unlikely(uaccess_kernel()))
300 return -EPERM;
301 if (unlikely(!nmi_uaccess_okay()))
302 return -EPERM;
303
304 return probe_user_write(unsafe_ptr, src, size);
305 }
306
307 static const struct bpf_func_proto bpf_probe_write_user_proto = {
308 .func = bpf_probe_write_user,
309 .gpl_only = true,
310 .ret_type = RET_INTEGER,
311 .arg1_type = ARG_ANYTHING,
312 .arg2_type = ARG_PTR_TO_MEM,
313 .arg3_type = ARG_CONST_SIZE,
314 };
315
316 static const struct bpf_func_proto *bpf_get_probe_write_proto(void)
317 {
318 pr_warn_ratelimited("%s[%d] is installing a program with bpf_probe_write_user helper that may corrupt user memory!",
319 current->comm, task_pid_nr(current));
320
321 return &bpf_probe_write_user_proto;
322 }
323
324 /*
325 * Only limited trace_printk() conversion specifiers allowed:
326 * %d %i %u %x %ld %li %lu %lx %lld %lli %llu %llx %p %s
327 */
328 BPF_CALL_5(bpf_trace_printk, char *, fmt, u32, fmt_size, u64, arg1,
329 u64, arg2, u64, arg3)
330 {
331 bool str_seen = false;
332 int mod[3] = {};
333 int fmt_cnt = 0;
334 u64 unsafe_addr;
335 char buf[64];
336 int i;
337
338 /*
339 * bpf_check()->check_func_arg()->check_stack_boundary()
340 * guarantees that fmt points to bpf program stack,
341 * fmt_size bytes of it were initialized and fmt_size > 0
342 */
343 if (fmt[--fmt_size] != 0)
344 return -EINVAL;
345
346 /* check format string for allowed specifiers */
347 for (i = 0; i < fmt_size; i++) {
348 if ((!isprint(fmt[i]) && !isspace(fmt[i])) || !isascii(fmt[i]))
349 return -EINVAL;
350
351 if (fmt[i] != '%')
352 continue;
353
354 if (fmt_cnt >= 3)
355 return -EINVAL;
356
357 /* fmt[i] != 0 && fmt[last] == 0, so we can access fmt[i + 1] */
358 i++;
359 if (fmt[i] == 'l') {
360 mod[fmt_cnt]++;
361 i++;
362 } else if (fmt[i] == 'p' || fmt[i] == 's') {
363 mod[fmt_cnt]++;
364 /* disallow any further format extensions */
365 if (fmt[i + 1] != 0 &&
366 !isspace(fmt[i + 1]) &&
367 !ispunct(fmt[i + 1]))
368 return -EINVAL;
369 fmt_cnt++;
370 if (fmt[i] == 's') {
371 if (str_seen)
372 /* allow only one '%s' per fmt string */
373 return -EINVAL;
374 str_seen = true;
375
376 switch (fmt_cnt) {
377 case 1:
378 unsafe_addr = arg1;
379 arg1 = (long) buf;
380 break;
381 case 2:
382 unsafe_addr = arg2;
383 arg2 = (long) buf;
384 break;
385 case 3:
386 unsafe_addr = arg3;
387 arg3 = (long) buf;
388 break;
389 }
390 buf[0] = 0;
391 strncpy_from_unsafe(buf,
392 (void *) (long) unsafe_addr,
393 sizeof(buf));
394 }
395 continue;
396 }
397
398 if (fmt[i] == 'l') {
399 mod[fmt_cnt]++;
400 i++;
401 }
402
403 if (fmt[i] != 'i' && fmt[i] != 'd' &&
404 fmt[i] != 'u' && fmt[i] != 'x')
405 return -EINVAL;
406 fmt_cnt++;
407 }
408
409 /* Horrid workaround for getting va_list handling working with different
410 * argument type combinations generically for 32 and 64 bit archs.
411 */
412 #define __BPF_TP_EMIT() __BPF_ARG3_TP()
413 #define __BPF_TP(...) \
414 __trace_printk(0 /* Fake ip */, \
415 fmt, ##__VA_ARGS__)
416
417 #define __BPF_ARG1_TP(...) \
418 ((mod[0] == 2 || (mod[0] == 1 && __BITS_PER_LONG == 64)) \
419 ? __BPF_TP(arg1, ##__VA_ARGS__) \
420 : ((mod[0] == 1 || (mod[0] == 0 && __BITS_PER_LONG == 32)) \
421 ? __BPF_TP((long)arg1, ##__VA_ARGS__) \
422 : __BPF_TP((u32)arg1, ##__VA_ARGS__)))
423
424 #define __BPF_ARG2_TP(...) \
425 ((mod[1] == 2 || (mod[1] == 1 && __BITS_PER_LONG == 64)) \
426 ? __BPF_ARG1_TP(arg2, ##__VA_ARGS__) \
427 : ((mod[1] == 1 || (mod[1] == 0 && __BITS_PER_LONG == 32)) \
428 ? __BPF_ARG1_TP((long)arg2, ##__VA_ARGS__) \
429 : __BPF_ARG1_TP((u32)arg2, ##__VA_ARGS__)))
430
431 #define __BPF_ARG3_TP(...) \
432 ((mod[2] == 2 || (mod[2] == 1 && __BITS_PER_LONG == 64)) \
433 ? __BPF_ARG2_TP(arg3, ##__VA_ARGS__) \
434 : ((mod[2] == 1 || (mod[2] == 0 && __BITS_PER_LONG == 32)) \
435 ? __BPF_ARG2_TP((long)arg3, ##__VA_ARGS__) \
436 : __BPF_ARG2_TP((u32)arg3, ##__VA_ARGS__)))
437
438 return __BPF_TP_EMIT();
439 }
440
441 static const struct bpf_func_proto bpf_trace_printk_proto = {
442 .func = bpf_trace_printk,
443 .gpl_only = true,
444 .ret_type = RET_INTEGER,
445 .arg1_type = ARG_PTR_TO_MEM,
446 .arg2_type = ARG_CONST_SIZE,
447 };
448
449 const struct bpf_func_proto *bpf_get_trace_printk_proto(void)
450 {
451 /*
452 * this program might be calling bpf_trace_printk,
453 * so allocate per-cpu printk buffers
454 */
455 trace_printk_init_buffers();
456
457 return &bpf_trace_printk_proto;
458 }
459
460 static __always_inline int
461 get_map_perf_counter(struct bpf_map *map, u64 flags,
462 u64 *value, u64 *enabled, u64 *running)
463 {
464 struct bpf_array *array = container_of(map, struct bpf_array, map);
465 unsigned int cpu = smp_processor_id();
466 u64 index = flags & BPF_F_INDEX_MASK;
467 struct bpf_event_entry *ee;
468
469 if (unlikely(flags & ~(BPF_F_INDEX_MASK)))
470 return -EINVAL;
471 if (index == BPF_F_CURRENT_CPU)
472 index = cpu;
473 if (unlikely(index >= array->map.max_entries))
474 return -E2BIG;
475
476 ee = READ_ONCE(array->ptrs[index]);
477 if (!ee)
478 return -ENOENT;
479
480 return perf_event_read_local(ee->event, value, enabled, running);
481 }
482
483 BPF_CALL_2(bpf_perf_event_read, struct bpf_map *, map, u64, flags)
484 {
485 u64 value = 0;
486 int err;
487
488 err = get_map_perf_counter(map, flags, &value, NULL, NULL);
489 /*
490 * this api is ugly since we miss [-22..-2] range of valid
491 * counter values, but that's uapi
492 */
493 if (err)
494 return err;
495 return value;
496 }
497
498 static const struct bpf_func_proto bpf_perf_event_read_proto = {
499 .func = bpf_perf_event_read,
500 .gpl_only = true,
501 .ret_type = RET_INTEGER,
502 .arg1_type = ARG_CONST_MAP_PTR,
503 .arg2_type = ARG_ANYTHING,
504 };
505
506 BPF_CALL_4(bpf_perf_event_read_value, struct bpf_map *, map, u64, flags,
507 struct bpf_perf_event_value *, buf, u32, size)
508 {
509 int err = -EINVAL;
510
511 if (unlikely(size != sizeof(struct bpf_perf_event_value)))
512 goto clear;
513 err = get_map_perf_counter(map, flags, &buf->counter, &buf->enabled,
514 &buf->running);
515 if (unlikely(err))
516 goto clear;
517 return 0;
518 clear:
519 memset(buf, 0, size);
520 return err;
521 }
522
523 static const struct bpf_func_proto bpf_perf_event_read_value_proto = {
524 .func = bpf_perf_event_read_value,
525 .gpl_only = true,
526 .ret_type = RET_INTEGER,
527 .arg1_type = ARG_CONST_MAP_PTR,
528 .arg2_type = ARG_ANYTHING,
529 .arg3_type = ARG_PTR_TO_UNINIT_MEM,
530 .arg4_type = ARG_CONST_SIZE,
531 };
532
533 static __always_inline u64
534 __bpf_perf_event_output(struct pt_regs *regs, struct bpf_map *map,
535 u64 flags, struct perf_sample_data *sd)
536 {
537 struct bpf_array *array = container_of(map, struct bpf_array, map);
538 unsigned int cpu = smp_processor_id();
539 u64 index = flags & BPF_F_INDEX_MASK;
540 struct bpf_event_entry *ee;
541 struct perf_event *event;
542
543 if (index == BPF_F_CURRENT_CPU)
544 index = cpu;
545 if (unlikely(index >= array->map.max_entries))
546 return -E2BIG;
547
548 ee = READ_ONCE(array->ptrs[index]);
549 if (!ee)
550 return -ENOENT;
551
552 event = ee->event;
553 if (unlikely(event->attr.type != PERF_TYPE_SOFTWARE ||
554 event->attr.config != PERF_COUNT_SW_BPF_OUTPUT))
555 return -EINVAL;
556
557 if (unlikely(event->oncpu != cpu))
558 return -EOPNOTSUPP;
559
560 return perf_event_output(event, sd, regs);
561 }
562
563 /*
564 * Support executing tracepoints in normal, irq, and nmi context that each call
565 * bpf_perf_event_output
566 */
567 struct bpf_trace_sample_data {
568 struct perf_sample_data sds[3];
569 };
570
571 static DEFINE_PER_CPU(struct bpf_trace_sample_data, bpf_trace_sds);
572 static DEFINE_PER_CPU(int, bpf_trace_nest_level);
573 BPF_CALL_5(bpf_perf_event_output, struct pt_regs *, regs, struct bpf_map *, map,
574 u64, flags, void *, data, u64, size)
575 {
576 struct bpf_trace_sample_data *sds = this_cpu_ptr(&bpf_trace_sds);
577 int nest_level = this_cpu_inc_return(bpf_trace_nest_level);
578 struct perf_raw_record raw = {
579 .frag = {
580 .size = size,
581 .data = data,
582 },
583 };
584 struct perf_sample_data *sd;
585 int err;
586
587 if (WARN_ON_ONCE(nest_level > ARRAY_SIZE(sds->sds))) {
588 err = -EBUSY;
589 goto out;
590 }
591
592 sd = &sds->sds[nest_level - 1];
593
594 if (unlikely(flags & ~(BPF_F_INDEX_MASK))) {
595 err = -EINVAL;
596 goto out;
597 }
598
599 perf_sample_data_init(sd, 0, 0);
600 sd->raw = &raw;
601
602 err = __bpf_perf_event_output(regs, map, flags, sd);
603
604 out:
605 this_cpu_dec(bpf_trace_nest_level);
606 return err;
607 }
608
609 static const struct bpf_func_proto bpf_perf_event_output_proto = {
610 .func = bpf_perf_event_output,
611 .gpl_only = true,
612 .ret_type = RET_INTEGER,
613 .arg1_type = ARG_PTR_TO_CTX,
614 .arg2_type = ARG_CONST_MAP_PTR,
615 .arg3_type = ARG_ANYTHING,
616 .arg4_type = ARG_PTR_TO_MEM,
617 .arg5_type = ARG_CONST_SIZE_OR_ZERO,
618 };
619
620 static DEFINE_PER_CPU(int, bpf_event_output_nest_level);
621 struct bpf_nested_pt_regs {
622 struct pt_regs regs[3];
623 };
624 static DEFINE_PER_CPU(struct bpf_nested_pt_regs, bpf_pt_regs);
625 static DEFINE_PER_CPU(struct bpf_trace_sample_data, bpf_misc_sds);
626
627 u64 bpf_event_output(struct bpf_map *map, u64 flags, void *meta, u64 meta_size,
628 void *ctx, u64 ctx_size, bpf_ctx_copy_t ctx_copy)
629 {
630 int nest_level = this_cpu_inc_return(bpf_event_output_nest_level);
631 struct perf_raw_frag frag = {
632 .copy = ctx_copy,
633 .size = ctx_size,
634 .data = ctx,
635 };
636 struct perf_raw_record raw = {
637 .frag = {
638 {
639 .next = ctx_size ? &frag : NULL,
640 },
641 .size = meta_size,
642 .data = meta,
643 },
644 };
645 struct perf_sample_data *sd;
646 struct pt_regs *regs;
647 u64 ret;
648
649 if (WARN_ON_ONCE(nest_level > ARRAY_SIZE(bpf_misc_sds.sds))) {
650 ret = -EBUSY;
651 goto out;
652 }
653 sd = this_cpu_ptr(&bpf_misc_sds.sds[nest_level - 1]);
654 regs = this_cpu_ptr(&bpf_pt_regs.regs[nest_level - 1]);
655
656 perf_fetch_caller_regs(regs);
657 perf_sample_data_init(sd, 0, 0);
658 sd->raw = &raw;
659
660 ret = __bpf_perf_event_output(regs, map, flags, sd);
661 out:
662 this_cpu_dec(bpf_event_output_nest_level);
663 return ret;
664 }
665
666 BPF_CALL_0(bpf_get_current_task)
667 {
668 return (long) current;
669 }
670
671 static const struct bpf_func_proto bpf_get_current_task_proto = {
672 .func = bpf_get_current_task,
673 .gpl_only = true,
674 .ret_type = RET_INTEGER,
675 };
676
677 BPF_CALL_2(bpf_current_task_under_cgroup, struct bpf_map *, map, u32, idx)
678 {
679 struct bpf_array *array = container_of(map, struct bpf_array, map);
680 struct cgroup *cgrp;
681
682 if (unlikely(idx >= array->map.max_entries))
683 return -E2BIG;
684
685 cgrp = READ_ONCE(array->ptrs[idx]);
686 if (unlikely(!cgrp))
687 return -EAGAIN;
688
689 return task_under_cgroup_hierarchy(current, cgrp);
690 }
691
692 static const struct bpf_func_proto bpf_current_task_under_cgroup_proto = {
693 .func = bpf_current_task_under_cgroup,
694 .gpl_only = false,
695 .ret_type = RET_INTEGER,
696 .arg1_type = ARG_CONST_MAP_PTR,
697 .arg2_type = ARG_ANYTHING,
698 };
699
700 struct send_signal_irq_work {
701 struct irq_work irq_work;
702 struct task_struct *task;
703 u32 sig;
704 enum pid_type type;
705 };
706
707 static DEFINE_PER_CPU(struct send_signal_irq_work, send_signal_work);
708
709 static void do_bpf_send_signal(struct irq_work *entry)
710 {
711 struct send_signal_irq_work *work;
712
713 work = container_of(entry, struct send_signal_irq_work, irq_work);
714 group_send_sig_info(work->sig, SEND_SIG_PRIV, work->task, work->type);
715 }
716
717 static int bpf_send_signal_common(u32 sig, enum pid_type type)
718 {
719 struct send_signal_irq_work *work = NULL;
720
721 /* Similar to bpf_probe_write_user, task needs to be
722 * in a sound condition and kernel memory access be
723 * permitted in order to send signal to the current
724 * task.
725 */
726 if (unlikely(current->flags & (PF_KTHREAD | PF_EXITING)))
727 return -EPERM;
728 if (unlikely(uaccess_kernel()))
729 return -EPERM;
730 if (unlikely(!nmi_uaccess_okay()))
731 return -EPERM;
732
733 if (in_nmi()) {
734 /* Do an early check on signal validity. Otherwise,
735 * the error is lost in deferred irq_work.
736 */
737 if (unlikely(!valid_signal(sig)))
738 return -EINVAL;
739
740 work = this_cpu_ptr(&send_signal_work);
741 if (atomic_read(&work->irq_work.flags) & IRQ_WORK_BUSY)
742 return -EBUSY;
743
744 /* Add the current task, which is the target of sending signal,
745 * to the irq_work. The current task may change when queued
746 * irq works get executed.
747 */
748 work->task = current;
749 work->sig = sig;
750 work->type = type;
751 irq_work_queue(&work->irq_work);
752 return 0;
753 }
754
755 return group_send_sig_info(sig, SEND_SIG_PRIV, current, type);
756 }
757
758 BPF_CALL_1(bpf_send_signal, u32, sig)
759 {
760 return bpf_send_signal_common(sig, PIDTYPE_TGID);
761 }
762
763 static const struct bpf_func_proto bpf_send_signal_proto = {
764 .func = bpf_send_signal,
765 .gpl_only = false,
766 .ret_type = RET_INTEGER,
767 .arg1_type = ARG_ANYTHING,
768 };
769
770 BPF_CALL_1(bpf_send_signal_thread, u32, sig)
771 {
772 return bpf_send_signal_common(sig, PIDTYPE_PID);
773 }
774
775 static const struct bpf_func_proto bpf_send_signal_thread_proto = {
776 .func = bpf_send_signal_thread,
777 .gpl_only = false,
778 .ret_type = RET_INTEGER,
779 .arg1_type = ARG_ANYTHING,
780 };
781
782 static const struct bpf_func_proto *
783 tracing_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
784 {
785 switch (func_id) {
786 case BPF_FUNC_map_lookup_elem:
787 return &bpf_map_lookup_elem_proto;
788 case BPF_FUNC_map_update_elem:
789 return &bpf_map_update_elem_proto;
790 case BPF_FUNC_map_delete_elem:
791 return &bpf_map_delete_elem_proto;
792 case BPF_FUNC_map_push_elem:
793 return &bpf_map_push_elem_proto;
794 case BPF_FUNC_map_pop_elem:
795 return &bpf_map_pop_elem_proto;
796 case BPF_FUNC_map_peek_elem:
797 return &bpf_map_peek_elem_proto;
798 case BPF_FUNC_ktime_get_ns:
799 return &bpf_ktime_get_ns_proto;
800 case BPF_FUNC_tail_call:
801 return &bpf_tail_call_proto;
802 case BPF_FUNC_get_current_pid_tgid:
803 return &bpf_get_current_pid_tgid_proto;
804 case BPF_FUNC_get_current_task:
805 return &bpf_get_current_task_proto;
806 case BPF_FUNC_get_current_uid_gid:
807 return &bpf_get_current_uid_gid_proto;
808 case BPF_FUNC_get_current_comm:
809 return &bpf_get_current_comm_proto;
810 case BPF_FUNC_trace_printk:
811 return bpf_get_trace_printk_proto();
812 case BPF_FUNC_get_smp_processor_id:
813 return &bpf_get_smp_processor_id_proto;
814 case BPF_FUNC_get_numa_node_id:
815 return &bpf_get_numa_node_id_proto;
816 case BPF_FUNC_perf_event_read:
817 return &bpf_perf_event_read_proto;
818 case BPF_FUNC_probe_write_user:
819 return bpf_get_probe_write_proto();
820 case BPF_FUNC_current_task_under_cgroup:
821 return &bpf_current_task_under_cgroup_proto;
822 case BPF_FUNC_get_prandom_u32:
823 return &bpf_get_prandom_u32_proto;
824 case BPF_FUNC_probe_read_user:
825 return &bpf_probe_read_user_proto;
826 case BPF_FUNC_probe_read_kernel:
827 return &bpf_probe_read_kernel_proto;
828 case BPF_FUNC_probe_read:
829 return &bpf_probe_read_compat_proto;
830 case BPF_FUNC_probe_read_user_str:
831 return &bpf_probe_read_user_str_proto;
832 case BPF_FUNC_probe_read_kernel_str:
833 return &bpf_probe_read_kernel_str_proto;
834 case BPF_FUNC_probe_read_str:
835 return &bpf_probe_read_compat_str_proto;
836 #ifdef CONFIG_CGROUPS
837 case BPF_FUNC_get_current_cgroup_id:
838 return &bpf_get_current_cgroup_id_proto;
839 #endif
840 case BPF_FUNC_send_signal:
841 return &bpf_send_signal_proto;
842 case BPF_FUNC_send_signal_thread:
843 return &bpf_send_signal_thread_proto;
844 case BPF_FUNC_perf_event_read_value:
845 return &bpf_perf_event_read_value_proto;
846 case BPF_FUNC_get_ns_current_pid_tgid:
847 return &bpf_get_ns_current_pid_tgid_proto;
848 default:
849 return NULL;
850 }
851 }
852
853 static const struct bpf_func_proto *
854 kprobe_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
855 {
856 switch (func_id) {
857 case BPF_FUNC_perf_event_output:
858 return &bpf_perf_event_output_proto;
859 case BPF_FUNC_get_stackid:
860 return &bpf_get_stackid_proto;
861 case BPF_FUNC_get_stack:
862 return &bpf_get_stack_proto;
863 #ifdef CONFIG_BPF_KPROBE_OVERRIDE
864 case BPF_FUNC_override_return:
865 return &bpf_override_return_proto;
866 #endif
867 default:
868 return tracing_func_proto(func_id, prog);
869 }
870 }
871
872 /* bpf+kprobe programs can access fields of 'struct pt_regs' */
873 static bool kprobe_prog_is_valid_access(int off, int size, enum bpf_access_type type,
874 const struct bpf_prog *prog,
875 struct bpf_insn_access_aux *info)
876 {
877 if (off < 0 || off >= sizeof(struct pt_regs))
878 return false;
879 if (type != BPF_READ)
880 return false;
881 if (off % size != 0)
882 return false;
883 /*
884 * Assertion for 32 bit to make sure last 8 byte access
885 * (BPF_DW) to the last 4 byte member is disallowed.
886 */
887 if (off + size > sizeof(struct pt_regs))
888 return false;
889
890 return true;
891 }
892
893 const struct bpf_verifier_ops kprobe_verifier_ops = {
894 .get_func_proto = kprobe_prog_func_proto,
895 .is_valid_access = kprobe_prog_is_valid_access,
896 };
897
898 const struct bpf_prog_ops kprobe_prog_ops = {
899 };
900
901 BPF_CALL_5(bpf_perf_event_output_tp, void *, tp_buff, struct bpf_map *, map,
902 u64, flags, void *, data, u64, size)
903 {
904 struct pt_regs *regs = *(struct pt_regs **)tp_buff;
905
906 /*
907 * r1 points to perf tracepoint buffer where first 8 bytes are hidden
908 * from bpf program and contain a pointer to 'struct pt_regs'. Fetch it
909 * from there and call the same bpf_perf_event_output() helper inline.
910 */
911 return ____bpf_perf_event_output(regs, map, flags, data, size);
912 }
913
914 static const struct bpf_func_proto bpf_perf_event_output_proto_tp = {
915 .func = bpf_perf_event_output_tp,
916 .gpl_only = true,
917 .ret_type = RET_INTEGER,
918 .arg1_type = ARG_PTR_TO_CTX,
919 .arg2_type = ARG_CONST_MAP_PTR,
920 .arg3_type = ARG_ANYTHING,
921 .arg4_type = ARG_PTR_TO_MEM,
922 .arg5_type = ARG_CONST_SIZE_OR_ZERO,
923 };
924
925 BPF_CALL_3(bpf_get_stackid_tp, void *, tp_buff, struct bpf_map *, map,
926 u64, flags)
927 {
928 struct pt_regs *regs = *(struct pt_regs **)tp_buff;
929
930 /*
931 * Same comment as in bpf_perf_event_output_tp(), only that this time
932 * the other helper's function body cannot be inlined due to being
933 * external, thus we need to call raw helper function.
934 */
935 return bpf_get_stackid((unsigned long) regs, (unsigned long) map,
936 flags, 0, 0);
937 }
938
939 static const struct bpf_func_proto bpf_get_stackid_proto_tp = {
940 .func = bpf_get_stackid_tp,
941 .gpl_only = true,
942 .ret_type = RET_INTEGER,
943 .arg1_type = ARG_PTR_TO_CTX,
944 .arg2_type = ARG_CONST_MAP_PTR,
945 .arg3_type = ARG_ANYTHING,
946 };
947
948 BPF_CALL_4(bpf_get_stack_tp, void *, tp_buff, void *, buf, u32, size,
949 u64, flags)
950 {
951 struct pt_regs *regs = *(struct pt_regs **)tp_buff;
952
953 return bpf_get_stack((unsigned long) regs, (unsigned long) buf,
954 (unsigned long) size, flags, 0);
955 }
956
957 static const struct bpf_func_proto bpf_get_stack_proto_tp = {
958 .func = bpf_get_stack_tp,
959 .gpl_only = true,
960 .ret_type = RET_INTEGER,
961 .arg1_type = ARG_PTR_TO_CTX,
962 .arg2_type = ARG_PTR_TO_UNINIT_MEM,
963 .arg3_type = ARG_CONST_SIZE_OR_ZERO,
964 .arg4_type = ARG_ANYTHING,
965 };
966
967 static const struct bpf_func_proto *
968 tp_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
969 {
970 switch (func_id) {
971 case BPF_FUNC_perf_event_output:
972 return &bpf_perf_event_output_proto_tp;
973 case BPF_FUNC_get_stackid:
974 return &bpf_get_stackid_proto_tp;
975 case BPF_FUNC_get_stack:
976 return &bpf_get_stack_proto_tp;
977 default:
978 return tracing_func_proto(func_id, prog);
979 }
980 }
981
982 static bool tp_prog_is_valid_access(int off, int size, enum bpf_access_type type,
983 const struct bpf_prog *prog,
984 struct bpf_insn_access_aux *info)
985 {
986 if (off < sizeof(void *) || off >= PERF_MAX_TRACE_SIZE)
987 return false;
988 if (type != BPF_READ)
989 return false;
990 if (off % size != 0)
991 return false;
992
993 BUILD_BUG_ON(PERF_MAX_TRACE_SIZE % sizeof(__u64));
994 return true;
995 }
996
997 const struct bpf_verifier_ops tracepoint_verifier_ops = {
998 .get_func_proto = tp_prog_func_proto,
999 .is_valid_access = tp_prog_is_valid_access,
1000 };
1001
1002 const struct bpf_prog_ops tracepoint_prog_ops = {
1003 };
1004
1005 BPF_CALL_3(bpf_perf_prog_read_value, struct bpf_perf_event_data_kern *, ctx,
1006 struct bpf_perf_event_value *, buf, u32, size)
1007 {
1008 int err = -EINVAL;
1009
1010 if (unlikely(size != sizeof(struct bpf_perf_event_value)))
1011 goto clear;
1012 err = perf_event_read_local(ctx->event, &buf->counter, &buf->enabled,
1013 &buf->running);
1014 if (unlikely(err))
1015 goto clear;
1016 return 0;
1017 clear:
1018 memset(buf, 0, size);
1019 return err;
1020 }
1021
1022 static const struct bpf_func_proto bpf_perf_prog_read_value_proto = {
1023 .func = bpf_perf_prog_read_value,
1024 .gpl_only = true,
1025 .ret_type = RET_INTEGER,
1026 .arg1_type = ARG_PTR_TO_CTX,
1027 .arg2_type = ARG_PTR_TO_UNINIT_MEM,
1028 .arg3_type = ARG_CONST_SIZE,
1029 };
1030
1031 BPF_CALL_4(bpf_read_branch_records, struct bpf_perf_event_data_kern *, ctx,
1032 void *, buf, u32, size, u64, flags)
1033 {
1034 #ifndef CONFIG_X86
1035 return -ENOENT;
1036 #else
1037 static const u32 br_entry_size = sizeof(struct perf_branch_entry);
1038 struct perf_branch_stack *br_stack = ctx->data->br_stack;
1039 u32 to_copy;
1040
1041 if (unlikely(flags & ~BPF_F_GET_BRANCH_RECORDS_SIZE))
1042 return -EINVAL;
1043
1044 if (unlikely(!br_stack))
1045 return -EINVAL;
1046
1047 if (flags & BPF_F_GET_BRANCH_RECORDS_SIZE)
1048 return br_stack->nr * br_entry_size;
1049
1050 if (!buf || (size % br_entry_size != 0))
1051 return -EINVAL;
1052
1053 to_copy = min_t(u32, br_stack->nr * br_entry_size, size);
1054 memcpy(buf, br_stack->entries, to_copy);
1055
1056 return to_copy;
1057 #endif
1058 }
1059
1060 static const struct bpf_func_proto bpf_read_branch_records_proto = {
1061 .func = bpf_read_branch_records,
1062 .gpl_only = true,
1063 .ret_type = RET_INTEGER,
1064 .arg1_type = ARG_PTR_TO_CTX,
1065 .arg2_type = ARG_PTR_TO_MEM_OR_NULL,
1066 .arg3_type = ARG_CONST_SIZE_OR_ZERO,
1067 .arg4_type = ARG_ANYTHING,
1068 };
1069
1070 static const struct bpf_func_proto *
1071 pe_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
1072 {
1073 switch (func_id) {
1074 case BPF_FUNC_perf_event_output:
1075 return &bpf_perf_event_output_proto_tp;
1076 case BPF_FUNC_get_stackid:
1077 return &bpf_get_stackid_proto_tp;
1078 case BPF_FUNC_get_stack:
1079 return &bpf_get_stack_proto_tp;
1080 case BPF_FUNC_perf_prog_read_value:
1081 return &bpf_perf_prog_read_value_proto;
1082 case BPF_FUNC_read_branch_records:
1083 return &bpf_read_branch_records_proto;
1084 default:
1085 return tracing_func_proto(func_id, prog);
1086 }
1087 }
1088
1089 /*
1090 * bpf_raw_tp_regs are separate from bpf_pt_regs used from skb/xdp
1091 * to avoid potential recursive reuse issue when/if tracepoints are added
1092 * inside bpf_*_event_output, bpf_get_stackid and/or bpf_get_stack.
1093 *
1094 * Since raw tracepoints run despite bpf_prog_active, support concurrent usage
1095 * in normal, irq, and nmi context.
1096 */
1097 struct bpf_raw_tp_regs {
1098 struct pt_regs regs[3];
1099 };
1100 static DEFINE_PER_CPU(struct bpf_raw_tp_regs, bpf_raw_tp_regs);
1101 static DEFINE_PER_CPU(int, bpf_raw_tp_nest_level);
1102 static struct pt_regs *get_bpf_raw_tp_regs(void)
1103 {
1104 struct bpf_raw_tp_regs *tp_regs = this_cpu_ptr(&bpf_raw_tp_regs);
1105 int nest_level = this_cpu_inc_return(bpf_raw_tp_nest_level);
1106
1107 if (WARN_ON_ONCE(nest_level > ARRAY_SIZE(tp_regs->regs))) {
1108 this_cpu_dec(bpf_raw_tp_nest_level);
1109 return ERR_PTR(-EBUSY);
1110 }
1111
1112 return &tp_regs->regs[nest_level - 1];
1113 }
1114
1115 static void put_bpf_raw_tp_regs(void)
1116 {
1117 this_cpu_dec(bpf_raw_tp_nest_level);
1118 }
1119
1120 BPF_CALL_5(bpf_perf_event_output_raw_tp, struct bpf_raw_tracepoint_args *, args,
1121 struct bpf_map *, map, u64, flags, void *, data, u64, size)
1122 {
1123 struct pt_regs *regs = get_bpf_raw_tp_regs();
1124 int ret;
1125
1126 if (IS_ERR(regs))
1127 return PTR_ERR(regs);
1128
1129 perf_fetch_caller_regs(regs);
1130 ret = ____bpf_perf_event_output(regs, map, flags, data, size);
1131
1132 put_bpf_raw_tp_regs();
1133 return ret;
1134 }
1135
1136 static const struct bpf_func_proto bpf_perf_event_output_proto_raw_tp = {
1137 .func = bpf_perf_event_output_raw_tp,
1138 .gpl_only = true,
1139 .ret_type = RET_INTEGER,
1140 .arg1_type = ARG_PTR_TO_CTX,
1141 .arg2_type = ARG_CONST_MAP_PTR,
1142 .arg3_type = ARG_ANYTHING,
1143 .arg4_type = ARG_PTR_TO_MEM,
1144 .arg5_type = ARG_CONST_SIZE_OR_ZERO,
1145 };
1146
1147 extern const struct bpf_func_proto bpf_skb_output_proto;
1148
1149 BPF_CALL_3(bpf_get_stackid_raw_tp, struct bpf_raw_tracepoint_args *, args,
1150 struct bpf_map *, map, u64, flags)
1151 {
1152 struct pt_regs *regs = get_bpf_raw_tp_regs();
1153 int ret;
1154
1155 if (IS_ERR(regs))
1156 return PTR_ERR(regs);
1157
1158 perf_fetch_caller_regs(regs);
1159 /* similar to bpf_perf_event_output_tp, but pt_regs fetched differently */
1160 ret = bpf_get_stackid((unsigned long) regs, (unsigned long) map,
1161 flags, 0, 0);
1162 put_bpf_raw_tp_regs();
1163 return ret;
1164 }
1165
1166 static const struct bpf_func_proto bpf_get_stackid_proto_raw_tp = {
1167 .func = bpf_get_stackid_raw_tp,
1168 .gpl_only = true,
1169 .ret_type = RET_INTEGER,
1170 .arg1_type = ARG_PTR_TO_CTX,
1171 .arg2_type = ARG_CONST_MAP_PTR,
1172 .arg3_type = ARG_ANYTHING,
1173 };
1174
1175 BPF_CALL_4(bpf_get_stack_raw_tp, struct bpf_raw_tracepoint_args *, args,
1176 void *, buf, u32, size, u64, flags)
1177 {
1178 struct pt_regs *regs = get_bpf_raw_tp_regs();
1179 int ret;
1180
1181 if (IS_ERR(regs))
1182 return PTR_ERR(regs);
1183
1184 perf_fetch_caller_regs(regs);
1185 ret = bpf_get_stack((unsigned long) regs, (unsigned long) buf,
1186 (unsigned long) size, flags, 0);
1187 put_bpf_raw_tp_regs();
1188 return ret;
1189 }
1190
1191 static const struct bpf_func_proto bpf_get_stack_proto_raw_tp = {
1192 .func = bpf_get_stack_raw_tp,
1193 .gpl_only = true,
1194 .ret_type = RET_INTEGER,
1195 .arg1_type = ARG_PTR_TO_CTX,
1196 .arg2_type = ARG_PTR_TO_MEM,
1197 .arg3_type = ARG_CONST_SIZE_OR_ZERO,
1198 .arg4_type = ARG_ANYTHING,
1199 };
1200
1201 static const struct bpf_func_proto *
1202 raw_tp_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
1203 {
1204 switch (func_id) {
1205 case BPF_FUNC_perf_event_output:
1206 return &bpf_perf_event_output_proto_raw_tp;
1207 case BPF_FUNC_get_stackid:
1208 return &bpf_get_stackid_proto_raw_tp;
1209 case BPF_FUNC_get_stack:
1210 return &bpf_get_stack_proto_raw_tp;
1211 default:
1212 return tracing_func_proto(func_id, prog);
1213 }
1214 }
1215
1216 static const struct bpf_func_proto *
1217 tracing_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
1218 {
1219 switch (func_id) {
1220 #ifdef CONFIG_NET
1221 case BPF_FUNC_skb_output:
1222 return &bpf_skb_output_proto;
1223 #endif
1224 default:
1225 return raw_tp_prog_func_proto(func_id, prog);
1226 }
1227 }
1228
1229 static bool raw_tp_prog_is_valid_access(int off, int size,
1230 enum bpf_access_type type,
1231 const struct bpf_prog *prog,
1232 struct bpf_insn_access_aux *info)
1233 {
1234 if (off < 0 || off >= sizeof(__u64) * MAX_BPF_FUNC_ARGS)
1235 return false;
1236 if (type != BPF_READ)
1237 return false;
1238 if (off % size != 0)
1239 return false;
1240 return true;
1241 }
1242
1243 static bool tracing_prog_is_valid_access(int off, int size,
1244 enum bpf_access_type type,
1245 const struct bpf_prog *prog,
1246 struct bpf_insn_access_aux *info)
1247 {
1248 if (off < 0 || off >= sizeof(__u64) * MAX_BPF_FUNC_ARGS)
1249 return false;
1250 if (type != BPF_READ)
1251 return false;
1252 if (off % size != 0)
1253 return false;
1254 return btf_ctx_access(off, size, type, prog, info);
1255 }
1256
1257 int __weak bpf_prog_test_run_tracing(struct bpf_prog *prog,
1258 const union bpf_attr *kattr,
1259 union bpf_attr __user *uattr)
1260 {
1261 return -ENOTSUPP;
1262 }
1263
1264 const struct bpf_verifier_ops raw_tracepoint_verifier_ops = {
1265 .get_func_proto = raw_tp_prog_func_proto,
1266 .is_valid_access = raw_tp_prog_is_valid_access,
1267 };
1268
1269 const struct bpf_prog_ops raw_tracepoint_prog_ops = {
1270 };
1271
1272 const struct bpf_verifier_ops tracing_verifier_ops = {
1273 .get_func_proto = tracing_prog_func_proto,
1274 .is_valid_access = tracing_prog_is_valid_access,
1275 };
1276
1277 const struct bpf_prog_ops tracing_prog_ops = {
1278 .test_run = bpf_prog_test_run_tracing,
1279 };
1280
1281 static bool raw_tp_writable_prog_is_valid_access(int off, int size,
1282 enum bpf_access_type type,
1283 const struct bpf_prog *prog,
1284 struct bpf_insn_access_aux *info)
1285 {
1286 if (off == 0) {
1287 if (size != sizeof(u64) || type != BPF_READ)
1288 return false;
1289 info->reg_type = PTR_TO_TP_BUFFER;
1290 }
1291 return raw_tp_prog_is_valid_access(off, size, type, prog, info);
1292 }
1293
1294 const struct bpf_verifier_ops raw_tracepoint_writable_verifier_ops = {
1295 .get_func_proto = raw_tp_prog_func_proto,
1296 .is_valid_access = raw_tp_writable_prog_is_valid_access,
1297 };
1298
1299 const struct bpf_prog_ops raw_tracepoint_writable_prog_ops = {
1300 };
1301
1302 static bool pe_prog_is_valid_access(int off, int size, enum bpf_access_type type,
1303 const struct bpf_prog *prog,
1304 struct bpf_insn_access_aux *info)
1305 {
1306 const int size_u64 = sizeof(u64);
1307
1308 if (off < 0 || off >= sizeof(struct bpf_perf_event_data))
1309 return false;
1310 if (type != BPF_READ)
1311 return false;
1312 if (off % size != 0) {
1313 if (sizeof(unsigned long) != 4)
1314 return false;
1315 if (size != 8)
1316 return false;
1317 if (off % size != 4)
1318 return false;
1319 }
1320
1321 switch (off) {
1322 case bpf_ctx_range(struct bpf_perf_event_data, sample_period):
1323 bpf_ctx_record_field_size(info, size_u64);
1324 if (!bpf_ctx_narrow_access_ok(off, size, size_u64))
1325 return false;
1326 break;
1327 case bpf_ctx_range(struct bpf_perf_event_data, addr):
1328 bpf_ctx_record_field_size(info, size_u64);
1329 if (!bpf_ctx_narrow_access_ok(off, size, size_u64))
1330 return false;
1331 break;
1332 default:
1333 if (size != sizeof(long))
1334 return false;
1335 }
1336
1337 return true;
1338 }
1339
1340 static u32 pe_prog_convert_ctx_access(enum bpf_access_type type,
1341 const struct bpf_insn *si,
1342 struct bpf_insn *insn_buf,
1343 struct bpf_prog *prog, u32 *target_size)
1344 {
1345 struct bpf_insn *insn = insn_buf;
1346
1347 switch (si->off) {
1348 case offsetof(struct bpf_perf_event_data, sample_period):
1349 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_perf_event_data_kern,
1350 data), si->dst_reg, si->src_reg,
1351 offsetof(struct bpf_perf_event_data_kern, data));
1352 *insn++ = BPF_LDX_MEM(BPF_DW, si->dst_reg, si->dst_reg,
1353 bpf_target_off(struct perf_sample_data, period, 8,
1354 target_size));
1355 break;
1356 case offsetof(struct bpf_perf_event_data, addr):
1357 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_perf_event_data_kern,
1358 data), si->dst_reg, si->src_reg,
1359 offsetof(struct bpf_perf_event_data_kern, data));
1360 *insn++ = BPF_LDX_MEM(BPF_DW, si->dst_reg, si->dst_reg,
1361 bpf_target_off(struct perf_sample_data, addr, 8,
1362 target_size));
1363 break;
1364 default:
1365 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_perf_event_data_kern,
1366 regs), si->dst_reg, si->src_reg,
1367 offsetof(struct bpf_perf_event_data_kern, regs));
1368 *insn++ = BPF_LDX_MEM(BPF_SIZEOF(long), si->dst_reg, si->dst_reg,
1369 si->off);
1370 break;
1371 }
1372
1373 return insn - insn_buf;
1374 }
1375
1376 const struct bpf_verifier_ops perf_event_verifier_ops = {
1377 .get_func_proto = pe_prog_func_proto,
1378 .is_valid_access = pe_prog_is_valid_access,
1379 .convert_ctx_access = pe_prog_convert_ctx_access,
1380 };
1381
1382 const struct bpf_prog_ops perf_event_prog_ops = {
1383 };
1384
1385 static DEFINE_MUTEX(bpf_event_mutex);
1386
1387 #define BPF_TRACE_MAX_PROGS 64
1388
1389 int perf_event_attach_bpf_prog(struct perf_event *event,
1390 struct bpf_prog *prog)
1391 {
1392 struct bpf_prog_array *old_array;
1393 struct bpf_prog_array *new_array;
1394 int ret = -EEXIST;
1395
1396 /*
1397 * Kprobe override only works if they are on the function entry,
1398 * and only if they are on the opt-in list.
1399 */
1400 if (prog->kprobe_override &&
1401 (!trace_kprobe_on_func_entry(event->tp_event) ||
1402 !trace_kprobe_error_injectable(event->tp_event)))
1403 return -EINVAL;
1404
1405 mutex_lock(&bpf_event_mutex);
1406
1407 if (event->prog)
1408 goto unlock;
1409
1410 old_array = bpf_event_rcu_dereference(event->tp_event->prog_array);
1411 if (old_array &&
1412 bpf_prog_array_length(old_array) >= BPF_TRACE_MAX_PROGS) {
1413 ret = -E2BIG;
1414 goto unlock;
1415 }
1416
1417 ret = bpf_prog_array_copy(old_array, NULL, prog, &new_array);
1418 if (ret < 0)
1419 goto unlock;
1420
1421 /* set the new array to event->tp_event and set event->prog */
1422 event->prog = prog;
1423 rcu_assign_pointer(event->tp_event->prog_array, new_array);
1424 bpf_prog_array_free(old_array);
1425
1426 unlock:
1427 mutex_unlock(&bpf_event_mutex);
1428 return ret;
1429 }
1430
1431 void perf_event_detach_bpf_prog(struct perf_event *event)
1432 {
1433 struct bpf_prog_array *old_array;
1434 struct bpf_prog_array *new_array;
1435 int ret;
1436
1437 mutex_lock(&bpf_event_mutex);
1438
1439 if (!event->prog)
1440 goto unlock;
1441
1442 old_array = bpf_event_rcu_dereference(event->tp_event->prog_array);
1443 ret = bpf_prog_array_copy(old_array, event->prog, NULL, &new_array);
1444 if (ret == -ENOENT)
1445 goto unlock;
1446 if (ret < 0) {
1447 bpf_prog_array_delete_safe(old_array, event->prog);
1448 } else {
1449 rcu_assign_pointer(event->tp_event->prog_array, new_array);
1450 bpf_prog_array_free(old_array);
1451 }
1452
1453 bpf_prog_put(event->prog);
1454 event->prog = NULL;
1455
1456 unlock:
1457 mutex_unlock(&bpf_event_mutex);
1458 }
1459
1460 int perf_event_query_prog_array(struct perf_event *event, void __user *info)
1461 {
1462 struct perf_event_query_bpf __user *uquery = info;
1463 struct perf_event_query_bpf query = {};
1464 struct bpf_prog_array *progs;
1465 u32 *ids, prog_cnt, ids_len;
1466 int ret;
1467
1468 if (!capable(CAP_SYS_ADMIN))
1469 return -EPERM;
1470 if (event->attr.type != PERF_TYPE_TRACEPOINT)
1471 return -EINVAL;
1472 if (copy_from_user(&query, uquery, sizeof(query)))
1473 return -EFAULT;
1474
1475 ids_len = query.ids_len;
1476 if (ids_len > BPF_TRACE_MAX_PROGS)
1477 return -E2BIG;
1478 ids = kcalloc(ids_len, sizeof(u32), GFP_USER | __GFP_NOWARN);
1479 if (!ids)
1480 return -ENOMEM;
1481 /*
1482 * The above kcalloc returns ZERO_SIZE_PTR when ids_len = 0, which
1483 * is required when user only wants to check for uquery->prog_cnt.
1484 * There is no need to check for it since the case is handled
1485 * gracefully in bpf_prog_array_copy_info.
1486 */
1487
1488 mutex_lock(&bpf_event_mutex);
1489 progs = bpf_event_rcu_dereference(event->tp_event->prog_array);
1490 ret = bpf_prog_array_copy_info(progs, ids, ids_len, &prog_cnt);
1491 mutex_unlock(&bpf_event_mutex);
1492
1493 if (copy_to_user(&uquery->prog_cnt, &prog_cnt, sizeof(prog_cnt)) ||
1494 copy_to_user(uquery->ids, ids, ids_len * sizeof(u32)))
1495 ret = -EFAULT;
1496
1497 kfree(ids);
1498 return ret;
1499 }
1500
1501 extern struct bpf_raw_event_map __start__bpf_raw_tp[];
1502 extern struct bpf_raw_event_map __stop__bpf_raw_tp[];
1503
1504 struct bpf_raw_event_map *bpf_get_raw_tracepoint(const char *name)
1505 {
1506 struct bpf_raw_event_map *btp = __start__bpf_raw_tp;
1507
1508 for (; btp < __stop__bpf_raw_tp; btp++) {
1509 if (!strcmp(btp->tp->name, name))
1510 return btp;
1511 }
1512
1513 return bpf_get_raw_tracepoint_module(name);
1514 }
1515
1516 void bpf_put_raw_tracepoint(struct bpf_raw_event_map *btp)
1517 {
1518 struct module *mod = __module_address((unsigned long)btp);
1519
1520 if (mod)
1521 module_put(mod);
1522 }
1523
1524 static __always_inline
1525 void __bpf_trace_run(struct bpf_prog *prog, u64 *args)
1526 {
1527 cant_sleep();
1528 rcu_read_lock();
1529 (void) BPF_PROG_RUN(prog, args);
1530 rcu_read_unlock();
1531 }
1532
1533 #define UNPACK(...) __VA_ARGS__
1534 #define REPEAT_1(FN, DL, X, ...) FN(X)
1535 #define REPEAT_2(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_1(FN, DL, __VA_ARGS__)
1536 #define REPEAT_3(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_2(FN, DL, __VA_ARGS__)
1537 #define REPEAT_4(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_3(FN, DL, __VA_ARGS__)
1538 #define REPEAT_5(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_4(FN, DL, __VA_ARGS__)
1539 #define REPEAT_6(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_5(FN, DL, __VA_ARGS__)
1540 #define REPEAT_7(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_6(FN, DL, __VA_ARGS__)
1541 #define REPEAT_8(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_7(FN, DL, __VA_ARGS__)
1542 #define REPEAT_9(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_8(FN, DL, __VA_ARGS__)
1543 #define REPEAT_10(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_9(FN, DL, __VA_ARGS__)
1544 #define REPEAT_11(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_10(FN, DL, __VA_ARGS__)
1545 #define REPEAT_12(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_11(FN, DL, __VA_ARGS__)
1546 #define REPEAT(X, FN, DL, ...) REPEAT_##X(FN, DL, __VA_ARGS__)
1547
1548 #define SARG(X) u64 arg##X
1549 #define COPY(X) args[X] = arg##X
1550
1551 #define __DL_COM (,)
1552 #define __DL_SEM (;)
1553
1554 #define __SEQ_0_11 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11
1555
1556 #define BPF_TRACE_DEFN_x(x) \
1557 void bpf_trace_run##x(struct bpf_prog *prog, \
1558 REPEAT(x, SARG, __DL_COM, __SEQ_0_11)) \
1559 { \
1560 u64 args[x]; \
1561 REPEAT(x, COPY, __DL_SEM, __SEQ_0_11); \
1562 __bpf_trace_run(prog, args); \
1563 } \
1564 EXPORT_SYMBOL_GPL(bpf_trace_run##x)
1565 BPF_TRACE_DEFN_x(1);
1566 BPF_TRACE_DEFN_x(2);
1567 BPF_TRACE_DEFN_x(3);
1568 BPF_TRACE_DEFN_x(4);
1569 BPF_TRACE_DEFN_x(5);
1570 BPF_TRACE_DEFN_x(6);
1571 BPF_TRACE_DEFN_x(7);
1572 BPF_TRACE_DEFN_x(8);
1573 BPF_TRACE_DEFN_x(9);
1574 BPF_TRACE_DEFN_x(10);
1575 BPF_TRACE_DEFN_x(11);
1576 BPF_TRACE_DEFN_x(12);
1577
1578 static int __bpf_probe_register(struct bpf_raw_event_map *btp, struct bpf_prog *prog)
1579 {
1580 struct tracepoint *tp = btp->tp;
1581
1582 /*
1583 * check that program doesn't access arguments beyond what's
1584 * available in this tracepoint
1585 */
1586 if (prog->aux->max_ctx_offset > btp->num_args * sizeof(u64))
1587 return -EINVAL;
1588
1589 if (prog->aux->max_tp_access > btp->writable_size)
1590 return -EINVAL;
1591
1592 return tracepoint_probe_register(tp, (void *)btp->bpf_func, prog);
1593 }
1594
1595 int bpf_probe_register(struct bpf_raw_event_map *btp, struct bpf_prog *prog)
1596 {
1597 return __bpf_probe_register(btp, prog);
1598 }
1599
1600 int bpf_probe_unregister(struct bpf_raw_event_map *btp, struct bpf_prog *prog)
1601 {
1602 return tracepoint_probe_unregister(btp->tp, (void *)btp->bpf_func, prog);
1603 }
1604
1605 int bpf_get_perf_event_info(const struct perf_event *event, u32 *prog_id,
1606 u32 *fd_type, const char **buf,
1607 u64 *probe_offset, u64 *probe_addr)
1608 {
1609 bool is_tracepoint, is_syscall_tp;
1610 struct bpf_prog *prog;
1611 int flags, err = 0;
1612
1613 prog = event->prog;
1614 if (!prog)
1615 return -ENOENT;
1616
1617 /* not supporting BPF_PROG_TYPE_PERF_EVENT yet */
1618 if (prog->type == BPF_PROG_TYPE_PERF_EVENT)
1619 return -EOPNOTSUPP;
1620
1621 *prog_id = prog->aux->id;
1622 flags = event->tp_event->flags;
1623 is_tracepoint = flags & TRACE_EVENT_FL_TRACEPOINT;
1624 is_syscall_tp = is_syscall_trace_event(event->tp_event);
1625
1626 if (is_tracepoint || is_syscall_tp) {
1627 *buf = is_tracepoint ? event->tp_event->tp->name
1628 : event->tp_event->name;
1629 *fd_type = BPF_FD_TYPE_TRACEPOINT;
1630 *probe_offset = 0x0;
1631 *probe_addr = 0x0;
1632 } else {
1633 /* kprobe/uprobe */
1634 err = -EOPNOTSUPP;
1635 #ifdef CONFIG_KPROBE_EVENTS
1636 if (flags & TRACE_EVENT_FL_KPROBE)
1637 err = bpf_get_kprobe_info(event, fd_type, buf,
1638 probe_offset, probe_addr,
1639 event->attr.type == PERF_TYPE_TRACEPOINT);
1640 #endif
1641 #ifdef CONFIG_UPROBE_EVENTS
1642 if (flags & TRACE_EVENT_FL_UPROBE)
1643 err = bpf_get_uprobe_info(event, fd_type, buf,
1644 probe_offset,
1645 event->attr.type == PERF_TYPE_TRACEPOINT);
1646 #endif
1647 }
1648
1649 return err;
1650 }
1651
1652 static int __init send_signal_irq_work_init(void)
1653 {
1654 int cpu;
1655 struct send_signal_irq_work *work;
1656
1657 for_each_possible_cpu(cpu) {
1658 work = per_cpu_ptr(&send_signal_work, cpu);
1659 init_irq_work(&work->irq_work, do_bpf_send_signal);
1660 }
1661 return 0;
1662 }
1663
1664 subsys_initcall(send_signal_irq_work_init);
1665
1666 #ifdef CONFIG_MODULES
1667 static int bpf_event_notify(struct notifier_block *nb, unsigned long op,
1668 void *module)
1669 {
1670 struct bpf_trace_module *btm, *tmp;
1671 struct module *mod = module;
1672
1673 if (mod->num_bpf_raw_events == 0 ||
1674 (op != MODULE_STATE_COMING && op != MODULE_STATE_GOING))
1675 return 0;
1676
1677 mutex_lock(&bpf_module_mutex);
1678
1679 switch (op) {
1680 case MODULE_STATE_COMING:
1681 btm = kzalloc(sizeof(*btm), GFP_KERNEL);
1682 if (btm) {
1683 btm->module = module;
1684 list_add(&btm->list, &bpf_trace_modules);
1685 }
1686 break;
1687 case MODULE_STATE_GOING:
1688 list_for_each_entry_safe(btm, tmp, &bpf_trace_modules, list) {
1689 if (btm->module == module) {
1690 list_del(&btm->list);
1691 kfree(btm);
1692 break;
1693 }
1694 }
1695 break;
1696 }
1697
1698 mutex_unlock(&bpf_module_mutex);
1699
1700 return 0;
1701 }
1702
1703 static struct notifier_block bpf_module_nb = {
1704 .notifier_call = bpf_event_notify,
1705 };
1706
1707 static int __init bpf_event_init(void)
1708 {
1709 register_module_notifier(&bpf_module_nb);
1710 return 0;
1711 }
1712
1713 fs_initcall(bpf_event_init);
1714 #endif /* CONFIG_MODULES */