]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - kernel/trace/ftrace.c
UBUNTU: link-to-tracker: update tracking bug
[mirror_ubuntu-bionic-kernel.git] / kernel / trace / ftrace.c
1 /*
2 * Infrastructure for profiling code inserted by 'gcc -pg'.
3 *
4 * Copyright (C) 2007-2008 Steven Rostedt <srostedt@redhat.com>
5 * Copyright (C) 2004-2008 Ingo Molnar <mingo@redhat.com>
6 *
7 * Originally ported from the -rt patch by:
8 * Copyright (C) 2007 Arnaldo Carvalho de Melo <acme@redhat.com>
9 *
10 * Based on code in the latency_tracer, that is:
11 *
12 * Copyright (C) 2004-2006 Ingo Molnar
13 * Copyright (C) 2004 Nadia Yvette Chambers
14 */
15
16 #include <linux/stop_machine.h>
17 #include <linux/clocksource.h>
18 #include <linux/sched/task.h>
19 #include <linux/kallsyms.h>
20 #include <linux/seq_file.h>
21 #include <linux/suspend.h>
22 #include <linux/tracefs.h>
23 #include <linux/hardirq.h>
24 #include <linux/kthread.h>
25 #include <linux/uaccess.h>
26 #include <linux/bsearch.h>
27 #include <linux/module.h>
28 #include <linux/ftrace.h>
29 #include <linux/sysctl.h>
30 #include <linux/slab.h>
31 #include <linux/ctype.h>
32 #include <linux/sort.h>
33 #include <linux/list.h>
34 #include <linux/hash.h>
35 #include <linux/rcupdate.h>
36
37 #include <trace/events/sched.h>
38
39 #include <asm/sections.h>
40 #include <asm/setup.h>
41
42 #include "trace_output.h"
43 #include "trace_stat.h"
44
45 #define FTRACE_WARN_ON(cond) \
46 ({ \
47 int ___r = cond; \
48 if (WARN_ON(___r)) \
49 ftrace_kill(); \
50 ___r; \
51 })
52
53 #define FTRACE_WARN_ON_ONCE(cond) \
54 ({ \
55 int ___r = cond; \
56 if (WARN_ON_ONCE(___r)) \
57 ftrace_kill(); \
58 ___r; \
59 })
60
61 /* hash bits for specific function selection */
62 #define FTRACE_HASH_BITS 7
63 #define FTRACE_FUNC_HASHSIZE (1 << FTRACE_HASH_BITS)
64 #define FTRACE_HASH_DEFAULT_BITS 10
65 #define FTRACE_HASH_MAX_BITS 12
66
67 #ifdef CONFIG_DYNAMIC_FTRACE
68 #define INIT_OPS_HASH(opsname) \
69 .func_hash = &opsname.local_hash, \
70 .local_hash.regex_lock = __MUTEX_INITIALIZER(opsname.local_hash.regex_lock),
71 #define ASSIGN_OPS_HASH(opsname, val) \
72 .func_hash = val, \
73 .local_hash.regex_lock = __MUTEX_INITIALIZER(opsname.local_hash.regex_lock),
74 #else
75 #define INIT_OPS_HASH(opsname)
76 #define ASSIGN_OPS_HASH(opsname, val)
77 #endif
78
79 static struct ftrace_ops ftrace_list_end __read_mostly = {
80 .func = ftrace_stub,
81 .flags = FTRACE_OPS_FL_RECURSION_SAFE | FTRACE_OPS_FL_STUB,
82 INIT_OPS_HASH(ftrace_list_end)
83 };
84
85 /* ftrace_enabled is a method to turn ftrace on or off */
86 int ftrace_enabled __read_mostly;
87 static int last_ftrace_enabled;
88
89 /* Current function tracing op */
90 struct ftrace_ops *function_trace_op __read_mostly = &ftrace_list_end;
91 /* What to set function_trace_op to */
92 static struct ftrace_ops *set_function_trace_op;
93
94 static bool ftrace_pids_enabled(struct ftrace_ops *ops)
95 {
96 struct trace_array *tr;
97
98 if (!(ops->flags & FTRACE_OPS_FL_PID) || !ops->private)
99 return false;
100
101 tr = ops->private;
102
103 return tr->function_pids != NULL;
104 }
105
106 static void ftrace_update_trampoline(struct ftrace_ops *ops);
107
108 /*
109 * ftrace_disabled is set when an anomaly is discovered.
110 * ftrace_disabled is much stronger than ftrace_enabled.
111 */
112 static int ftrace_disabled __read_mostly;
113
114 static DEFINE_MUTEX(ftrace_lock);
115
116 static struct ftrace_ops __rcu *ftrace_ops_list __read_mostly = &ftrace_list_end;
117 ftrace_func_t ftrace_trace_function __read_mostly = ftrace_stub;
118 static struct ftrace_ops global_ops;
119
120 #if ARCH_SUPPORTS_FTRACE_OPS
121 static void ftrace_ops_list_func(unsigned long ip, unsigned long parent_ip,
122 struct ftrace_ops *op, struct pt_regs *regs);
123 #else
124 /* See comment below, where ftrace_ops_list_func is defined */
125 static void ftrace_ops_no_ops(unsigned long ip, unsigned long parent_ip);
126 #define ftrace_ops_list_func ((ftrace_func_t)ftrace_ops_no_ops)
127 #endif
128
129 /*
130 * Traverse the ftrace_global_list, invoking all entries. The reason that we
131 * can use rcu_dereference_raw_notrace() is that elements removed from this list
132 * are simply leaked, so there is no need to interact with a grace-period
133 * mechanism. The rcu_dereference_raw_notrace() calls are needed to handle
134 * concurrent insertions into the ftrace_global_list.
135 *
136 * Silly Alpha and silly pointer-speculation compiler optimizations!
137 */
138 #define do_for_each_ftrace_op(op, list) \
139 op = rcu_dereference_raw_notrace(list); \
140 do
141
142 /*
143 * Optimized for just a single item in the list (as that is the normal case).
144 */
145 #define while_for_each_ftrace_op(op) \
146 while (likely(op = rcu_dereference_raw_notrace((op)->next)) && \
147 unlikely((op) != &ftrace_list_end))
148
149 static inline void ftrace_ops_init(struct ftrace_ops *ops)
150 {
151 #ifdef CONFIG_DYNAMIC_FTRACE
152 if (!(ops->flags & FTRACE_OPS_FL_INITIALIZED)) {
153 mutex_init(&ops->local_hash.regex_lock);
154 ops->func_hash = &ops->local_hash;
155 ops->flags |= FTRACE_OPS_FL_INITIALIZED;
156 }
157 #endif
158 }
159
160 /**
161 * ftrace_nr_registered_ops - return number of ops registered
162 *
163 * Returns the number of ftrace_ops registered and tracing functions
164 */
165 int ftrace_nr_registered_ops(void)
166 {
167 struct ftrace_ops *ops;
168 int cnt = 0;
169
170 mutex_lock(&ftrace_lock);
171
172 for (ops = rcu_dereference_protected(ftrace_ops_list,
173 lockdep_is_held(&ftrace_lock));
174 ops != &ftrace_list_end;
175 ops = rcu_dereference_protected(ops->next,
176 lockdep_is_held(&ftrace_lock)))
177 cnt++;
178
179 mutex_unlock(&ftrace_lock);
180
181 return cnt;
182 }
183
184 static void ftrace_pid_func(unsigned long ip, unsigned long parent_ip,
185 struct ftrace_ops *op, struct pt_regs *regs)
186 {
187 struct trace_array *tr = op->private;
188
189 if (tr && this_cpu_read(tr->trace_buffer.data->ftrace_ignore_pid))
190 return;
191
192 op->saved_func(ip, parent_ip, op, regs);
193 }
194
195 /**
196 * clear_ftrace_function - reset the ftrace function
197 *
198 * This NULLs the ftrace function and in essence stops
199 * tracing. There may be lag
200 */
201 void clear_ftrace_function(void)
202 {
203 ftrace_trace_function = ftrace_stub;
204 }
205
206 static void ftrace_sync(struct work_struct *work)
207 {
208 /*
209 * This function is just a stub to implement a hard force
210 * of synchronize_sched(). This requires synchronizing
211 * tasks even in userspace and idle.
212 *
213 * Yes, function tracing is rude.
214 */
215 }
216
217 static void ftrace_sync_ipi(void *data)
218 {
219 /* Probably not needed, but do it anyway */
220 smp_rmb();
221 }
222
223 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
224 static void update_function_graph_func(void);
225
226 /* Both enabled by default (can be cleared by function_graph tracer flags */
227 static bool fgraph_sleep_time = true;
228 static bool fgraph_graph_time = true;
229
230 #else
231 static inline void update_function_graph_func(void) { }
232 #endif
233
234
235 static ftrace_func_t ftrace_ops_get_list_func(struct ftrace_ops *ops)
236 {
237 /*
238 * If this is a dynamic, RCU, or per CPU ops, or we force list func,
239 * then it needs to call the list anyway.
240 */
241 if (ops->flags & (FTRACE_OPS_FL_DYNAMIC | FTRACE_OPS_FL_RCU) ||
242 FTRACE_FORCE_LIST_FUNC)
243 return ftrace_ops_list_func;
244
245 return ftrace_ops_get_func(ops);
246 }
247
248 static void update_ftrace_function(void)
249 {
250 ftrace_func_t func;
251
252 /*
253 * Prepare the ftrace_ops that the arch callback will use.
254 * If there's only one ftrace_ops registered, the ftrace_ops_list
255 * will point to the ops we want.
256 */
257 set_function_trace_op = rcu_dereference_protected(ftrace_ops_list,
258 lockdep_is_held(&ftrace_lock));
259
260 /* If there's no ftrace_ops registered, just call the stub function */
261 if (set_function_trace_op == &ftrace_list_end) {
262 func = ftrace_stub;
263
264 /*
265 * If we are at the end of the list and this ops is
266 * recursion safe and not dynamic and the arch supports passing ops,
267 * then have the mcount trampoline call the function directly.
268 */
269 } else if (rcu_dereference_protected(ftrace_ops_list->next,
270 lockdep_is_held(&ftrace_lock)) == &ftrace_list_end) {
271 func = ftrace_ops_get_list_func(ftrace_ops_list);
272
273 } else {
274 /* Just use the default ftrace_ops */
275 set_function_trace_op = &ftrace_list_end;
276 func = ftrace_ops_list_func;
277 }
278
279 update_function_graph_func();
280
281 /* If there's no change, then do nothing more here */
282 if (ftrace_trace_function == func)
283 return;
284
285 /*
286 * If we are using the list function, it doesn't care
287 * about the function_trace_ops.
288 */
289 if (func == ftrace_ops_list_func) {
290 ftrace_trace_function = func;
291 /*
292 * Don't even bother setting function_trace_ops,
293 * it would be racy to do so anyway.
294 */
295 return;
296 }
297
298 #ifndef CONFIG_DYNAMIC_FTRACE
299 /*
300 * For static tracing, we need to be a bit more careful.
301 * The function change takes affect immediately. Thus,
302 * we need to coorditate the setting of the function_trace_ops
303 * with the setting of the ftrace_trace_function.
304 *
305 * Set the function to the list ops, which will call the
306 * function we want, albeit indirectly, but it handles the
307 * ftrace_ops and doesn't depend on function_trace_op.
308 */
309 ftrace_trace_function = ftrace_ops_list_func;
310 /*
311 * Make sure all CPUs see this. Yes this is slow, but static
312 * tracing is slow and nasty to have enabled.
313 */
314 schedule_on_each_cpu(ftrace_sync);
315 /* Now all cpus are using the list ops. */
316 function_trace_op = set_function_trace_op;
317 /* Make sure the function_trace_op is visible on all CPUs */
318 smp_wmb();
319 /* Nasty way to force a rmb on all cpus */
320 smp_call_function(ftrace_sync_ipi, NULL, 1);
321 /* OK, we are all set to update the ftrace_trace_function now! */
322 #endif /* !CONFIG_DYNAMIC_FTRACE */
323
324 ftrace_trace_function = func;
325 }
326
327 int using_ftrace_ops_list_func(void)
328 {
329 return ftrace_trace_function == ftrace_ops_list_func;
330 }
331
332 static void add_ftrace_ops(struct ftrace_ops __rcu **list,
333 struct ftrace_ops *ops)
334 {
335 rcu_assign_pointer(ops->next, *list);
336
337 /*
338 * We are entering ops into the list but another
339 * CPU might be walking that list. We need to make sure
340 * the ops->next pointer is valid before another CPU sees
341 * the ops pointer included into the list.
342 */
343 rcu_assign_pointer(*list, ops);
344 }
345
346 static int remove_ftrace_ops(struct ftrace_ops __rcu **list,
347 struct ftrace_ops *ops)
348 {
349 struct ftrace_ops **p;
350
351 /*
352 * If we are removing the last function, then simply point
353 * to the ftrace_stub.
354 */
355 if (rcu_dereference_protected(*list,
356 lockdep_is_held(&ftrace_lock)) == ops &&
357 rcu_dereference_protected(ops->next,
358 lockdep_is_held(&ftrace_lock)) == &ftrace_list_end) {
359 *list = &ftrace_list_end;
360 return 0;
361 }
362
363 for (p = list; *p != &ftrace_list_end; p = &(*p)->next)
364 if (*p == ops)
365 break;
366
367 if (*p != ops)
368 return -1;
369
370 *p = (*p)->next;
371 return 0;
372 }
373
374 static void ftrace_update_trampoline(struct ftrace_ops *ops);
375
376 static int __register_ftrace_function(struct ftrace_ops *ops)
377 {
378 if (ops->flags & FTRACE_OPS_FL_DELETED)
379 return -EINVAL;
380
381 if (WARN_ON(ops->flags & FTRACE_OPS_FL_ENABLED))
382 return -EBUSY;
383
384 #ifndef CONFIG_DYNAMIC_FTRACE_WITH_REGS
385 /*
386 * If the ftrace_ops specifies SAVE_REGS, then it only can be used
387 * if the arch supports it, or SAVE_REGS_IF_SUPPORTED is also set.
388 * Setting SAVE_REGS_IF_SUPPORTED makes SAVE_REGS irrelevant.
389 */
390 if (ops->flags & FTRACE_OPS_FL_SAVE_REGS &&
391 !(ops->flags & FTRACE_OPS_FL_SAVE_REGS_IF_SUPPORTED))
392 return -EINVAL;
393
394 if (ops->flags & FTRACE_OPS_FL_SAVE_REGS_IF_SUPPORTED)
395 ops->flags |= FTRACE_OPS_FL_SAVE_REGS;
396 #endif
397
398 if (!core_kernel_data((unsigned long)ops))
399 ops->flags |= FTRACE_OPS_FL_DYNAMIC;
400
401 add_ftrace_ops(&ftrace_ops_list, ops);
402
403 /* Always save the function, and reset at unregistering */
404 ops->saved_func = ops->func;
405
406 if (ftrace_pids_enabled(ops))
407 ops->func = ftrace_pid_func;
408
409 ftrace_update_trampoline(ops);
410
411 if (ftrace_enabled)
412 update_ftrace_function();
413
414 return 0;
415 }
416
417 static int __unregister_ftrace_function(struct ftrace_ops *ops)
418 {
419 int ret;
420
421 if (WARN_ON(!(ops->flags & FTRACE_OPS_FL_ENABLED)))
422 return -EBUSY;
423
424 ret = remove_ftrace_ops(&ftrace_ops_list, ops);
425
426 if (ret < 0)
427 return ret;
428
429 if (ftrace_enabled)
430 update_ftrace_function();
431
432 ops->func = ops->saved_func;
433
434 return 0;
435 }
436
437 static void ftrace_update_pid_func(void)
438 {
439 struct ftrace_ops *op;
440
441 /* Only do something if we are tracing something */
442 if (ftrace_trace_function == ftrace_stub)
443 return;
444
445 do_for_each_ftrace_op(op, ftrace_ops_list) {
446 if (op->flags & FTRACE_OPS_FL_PID) {
447 op->func = ftrace_pids_enabled(op) ?
448 ftrace_pid_func : op->saved_func;
449 ftrace_update_trampoline(op);
450 }
451 } while_for_each_ftrace_op(op);
452
453 update_ftrace_function();
454 }
455
456 #ifdef CONFIG_FUNCTION_PROFILER
457 struct ftrace_profile {
458 struct hlist_node node;
459 unsigned long ip;
460 unsigned long counter;
461 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
462 unsigned long long time;
463 unsigned long long time_squared;
464 #endif
465 };
466
467 struct ftrace_profile_page {
468 struct ftrace_profile_page *next;
469 unsigned long index;
470 struct ftrace_profile records[];
471 };
472
473 struct ftrace_profile_stat {
474 atomic_t disabled;
475 struct hlist_head *hash;
476 struct ftrace_profile_page *pages;
477 struct ftrace_profile_page *start;
478 struct tracer_stat stat;
479 };
480
481 #define PROFILE_RECORDS_SIZE \
482 (PAGE_SIZE - offsetof(struct ftrace_profile_page, records))
483
484 #define PROFILES_PER_PAGE \
485 (PROFILE_RECORDS_SIZE / sizeof(struct ftrace_profile))
486
487 static int ftrace_profile_enabled __read_mostly;
488
489 /* ftrace_profile_lock - synchronize the enable and disable of the profiler */
490 static DEFINE_MUTEX(ftrace_profile_lock);
491
492 static DEFINE_PER_CPU(struct ftrace_profile_stat, ftrace_profile_stats);
493
494 #define FTRACE_PROFILE_HASH_BITS 10
495 #define FTRACE_PROFILE_HASH_SIZE (1 << FTRACE_PROFILE_HASH_BITS)
496
497 static void *
498 function_stat_next(void *v, int idx)
499 {
500 struct ftrace_profile *rec = v;
501 struct ftrace_profile_page *pg;
502
503 pg = (struct ftrace_profile_page *)((unsigned long)rec & PAGE_MASK);
504
505 again:
506 if (idx != 0)
507 rec++;
508
509 if ((void *)rec >= (void *)&pg->records[pg->index]) {
510 pg = pg->next;
511 if (!pg)
512 return NULL;
513 rec = &pg->records[0];
514 if (!rec->counter)
515 goto again;
516 }
517
518 return rec;
519 }
520
521 static void *function_stat_start(struct tracer_stat *trace)
522 {
523 struct ftrace_profile_stat *stat =
524 container_of(trace, struct ftrace_profile_stat, stat);
525
526 if (!stat || !stat->start)
527 return NULL;
528
529 return function_stat_next(&stat->start->records[0], 0);
530 }
531
532 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
533 /* function graph compares on total time */
534 static int function_stat_cmp(void *p1, void *p2)
535 {
536 struct ftrace_profile *a = p1;
537 struct ftrace_profile *b = p2;
538
539 if (a->time < b->time)
540 return -1;
541 if (a->time > b->time)
542 return 1;
543 else
544 return 0;
545 }
546 #else
547 /* not function graph compares against hits */
548 static int function_stat_cmp(void *p1, void *p2)
549 {
550 struct ftrace_profile *a = p1;
551 struct ftrace_profile *b = p2;
552
553 if (a->counter < b->counter)
554 return -1;
555 if (a->counter > b->counter)
556 return 1;
557 else
558 return 0;
559 }
560 #endif
561
562 static int function_stat_headers(struct seq_file *m)
563 {
564 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
565 seq_puts(m, " Function "
566 "Hit Time Avg s^2\n"
567 " -------- "
568 "--- ---- --- ---\n");
569 #else
570 seq_puts(m, " Function Hit\n"
571 " -------- ---\n");
572 #endif
573 return 0;
574 }
575
576 static int function_stat_show(struct seq_file *m, void *v)
577 {
578 struct ftrace_profile *rec = v;
579 char str[KSYM_SYMBOL_LEN];
580 int ret = 0;
581 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
582 static struct trace_seq s;
583 unsigned long long avg;
584 unsigned long long stddev;
585 #endif
586 mutex_lock(&ftrace_profile_lock);
587
588 /* we raced with function_profile_reset() */
589 if (unlikely(rec->counter == 0)) {
590 ret = -EBUSY;
591 goto out;
592 }
593
594 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
595 avg = rec->time;
596 do_div(avg, rec->counter);
597 if (tracing_thresh && (avg < tracing_thresh))
598 goto out;
599 #endif
600
601 kallsyms_lookup(rec->ip, NULL, NULL, NULL, str);
602 seq_printf(m, " %-30.30s %10lu", str, rec->counter);
603
604 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
605 seq_puts(m, " ");
606
607 /* Sample standard deviation (s^2) */
608 if (rec->counter <= 1)
609 stddev = 0;
610 else {
611 /*
612 * Apply Welford's method:
613 * s^2 = 1 / (n * (n-1)) * (n * \Sum (x_i)^2 - (\Sum x_i)^2)
614 */
615 stddev = rec->counter * rec->time_squared -
616 rec->time * rec->time;
617
618 /*
619 * Divide only 1000 for ns^2 -> us^2 conversion.
620 * trace_print_graph_duration will divide 1000 again.
621 */
622 do_div(stddev, rec->counter * (rec->counter - 1) * 1000);
623 }
624
625 trace_seq_init(&s);
626 trace_print_graph_duration(rec->time, &s);
627 trace_seq_puts(&s, " ");
628 trace_print_graph_duration(avg, &s);
629 trace_seq_puts(&s, " ");
630 trace_print_graph_duration(stddev, &s);
631 trace_print_seq(m, &s);
632 #endif
633 seq_putc(m, '\n');
634 out:
635 mutex_unlock(&ftrace_profile_lock);
636
637 return ret;
638 }
639
640 static void ftrace_profile_reset(struct ftrace_profile_stat *stat)
641 {
642 struct ftrace_profile_page *pg;
643
644 pg = stat->pages = stat->start;
645
646 while (pg) {
647 memset(pg->records, 0, PROFILE_RECORDS_SIZE);
648 pg->index = 0;
649 pg = pg->next;
650 }
651
652 memset(stat->hash, 0,
653 FTRACE_PROFILE_HASH_SIZE * sizeof(struct hlist_head));
654 }
655
656 int ftrace_profile_pages_init(struct ftrace_profile_stat *stat)
657 {
658 struct ftrace_profile_page *pg;
659 int functions;
660 int pages;
661 int i;
662
663 /* If we already allocated, do nothing */
664 if (stat->pages)
665 return 0;
666
667 stat->pages = (void *)get_zeroed_page(GFP_KERNEL);
668 if (!stat->pages)
669 return -ENOMEM;
670
671 #ifdef CONFIG_DYNAMIC_FTRACE
672 functions = ftrace_update_tot_cnt;
673 #else
674 /*
675 * We do not know the number of functions that exist because
676 * dynamic tracing is what counts them. With past experience
677 * we have around 20K functions. That should be more than enough.
678 * It is highly unlikely we will execute every function in
679 * the kernel.
680 */
681 functions = 20000;
682 #endif
683
684 pg = stat->start = stat->pages;
685
686 pages = DIV_ROUND_UP(functions, PROFILES_PER_PAGE);
687
688 for (i = 1; i < pages; i++) {
689 pg->next = (void *)get_zeroed_page(GFP_KERNEL);
690 if (!pg->next)
691 goto out_free;
692 pg = pg->next;
693 }
694
695 return 0;
696
697 out_free:
698 pg = stat->start;
699 while (pg) {
700 unsigned long tmp = (unsigned long)pg;
701
702 pg = pg->next;
703 free_page(tmp);
704 }
705
706 stat->pages = NULL;
707 stat->start = NULL;
708
709 return -ENOMEM;
710 }
711
712 static int ftrace_profile_init_cpu(int cpu)
713 {
714 struct ftrace_profile_stat *stat;
715 int size;
716
717 stat = &per_cpu(ftrace_profile_stats, cpu);
718
719 if (stat->hash) {
720 /* If the profile is already created, simply reset it */
721 ftrace_profile_reset(stat);
722 return 0;
723 }
724
725 /*
726 * We are profiling all functions, but usually only a few thousand
727 * functions are hit. We'll make a hash of 1024 items.
728 */
729 size = FTRACE_PROFILE_HASH_SIZE;
730
731 stat->hash = kzalloc(sizeof(struct hlist_head) * size, GFP_KERNEL);
732
733 if (!stat->hash)
734 return -ENOMEM;
735
736 /* Preallocate the function profiling pages */
737 if (ftrace_profile_pages_init(stat) < 0) {
738 kfree(stat->hash);
739 stat->hash = NULL;
740 return -ENOMEM;
741 }
742
743 return 0;
744 }
745
746 static int ftrace_profile_init(void)
747 {
748 int cpu;
749 int ret = 0;
750
751 for_each_possible_cpu(cpu) {
752 ret = ftrace_profile_init_cpu(cpu);
753 if (ret)
754 break;
755 }
756
757 return ret;
758 }
759
760 /* interrupts must be disabled */
761 static struct ftrace_profile *
762 ftrace_find_profiled_func(struct ftrace_profile_stat *stat, unsigned long ip)
763 {
764 struct ftrace_profile *rec;
765 struct hlist_head *hhd;
766 unsigned long key;
767
768 key = hash_long(ip, FTRACE_PROFILE_HASH_BITS);
769 hhd = &stat->hash[key];
770
771 if (hlist_empty(hhd))
772 return NULL;
773
774 hlist_for_each_entry_rcu_notrace(rec, hhd, node) {
775 if (rec->ip == ip)
776 return rec;
777 }
778
779 return NULL;
780 }
781
782 static void ftrace_add_profile(struct ftrace_profile_stat *stat,
783 struct ftrace_profile *rec)
784 {
785 unsigned long key;
786
787 key = hash_long(rec->ip, FTRACE_PROFILE_HASH_BITS);
788 hlist_add_head_rcu(&rec->node, &stat->hash[key]);
789 }
790
791 /*
792 * The memory is already allocated, this simply finds a new record to use.
793 */
794 static struct ftrace_profile *
795 ftrace_profile_alloc(struct ftrace_profile_stat *stat, unsigned long ip)
796 {
797 struct ftrace_profile *rec = NULL;
798
799 /* prevent recursion (from NMIs) */
800 if (atomic_inc_return(&stat->disabled) != 1)
801 goto out;
802
803 /*
804 * Try to find the function again since an NMI
805 * could have added it
806 */
807 rec = ftrace_find_profiled_func(stat, ip);
808 if (rec)
809 goto out;
810
811 if (stat->pages->index == PROFILES_PER_PAGE) {
812 if (!stat->pages->next)
813 goto out;
814 stat->pages = stat->pages->next;
815 }
816
817 rec = &stat->pages->records[stat->pages->index++];
818 rec->ip = ip;
819 ftrace_add_profile(stat, rec);
820
821 out:
822 atomic_dec(&stat->disabled);
823
824 return rec;
825 }
826
827 static void
828 function_profile_call(unsigned long ip, unsigned long parent_ip,
829 struct ftrace_ops *ops, struct pt_regs *regs)
830 {
831 struct ftrace_profile_stat *stat;
832 struct ftrace_profile *rec;
833 unsigned long flags;
834
835 if (!ftrace_profile_enabled)
836 return;
837
838 local_irq_save(flags);
839
840 stat = this_cpu_ptr(&ftrace_profile_stats);
841 if (!stat->hash || !ftrace_profile_enabled)
842 goto out;
843
844 rec = ftrace_find_profiled_func(stat, ip);
845 if (!rec) {
846 rec = ftrace_profile_alloc(stat, ip);
847 if (!rec)
848 goto out;
849 }
850
851 rec->counter++;
852 out:
853 local_irq_restore(flags);
854 }
855
856 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
857 static int profile_graph_entry(struct ftrace_graph_ent *trace)
858 {
859 int index = trace->depth;
860
861 function_profile_call(trace->func, 0, NULL, NULL);
862
863 /* If function graph is shutting down, ret_stack can be NULL */
864 if (!current->ret_stack)
865 return 0;
866
867 if (index >= 0 && index < FTRACE_RETFUNC_DEPTH)
868 current->ret_stack[index].subtime = 0;
869
870 return 1;
871 }
872
873 static void profile_graph_return(struct ftrace_graph_ret *trace)
874 {
875 struct ftrace_profile_stat *stat;
876 unsigned long long calltime;
877 struct ftrace_profile *rec;
878 unsigned long flags;
879
880 local_irq_save(flags);
881 stat = this_cpu_ptr(&ftrace_profile_stats);
882 if (!stat->hash || !ftrace_profile_enabled)
883 goto out;
884
885 /* If the calltime was zero'd ignore it */
886 if (!trace->calltime)
887 goto out;
888
889 calltime = trace->rettime - trace->calltime;
890
891 if (!fgraph_graph_time) {
892 int index;
893
894 index = trace->depth;
895
896 /* Append this call time to the parent time to subtract */
897 if (index)
898 current->ret_stack[index - 1].subtime += calltime;
899
900 if (current->ret_stack[index].subtime < calltime)
901 calltime -= current->ret_stack[index].subtime;
902 else
903 calltime = 0;
904 }
905
906 rec = ftrace_find_profiled_func(stat, trace->func);
907 if (rec) {
908 rec->time += calltime;
909 rec->time_squared += calltime * calltime;
910 }
911
912 out:
913 local_irq_restore(flags);
914 }
915
916 static int register_ftrace_profiler(void)
917 {
918 return register_ftrace_graph(&profile_graph_return,
919 &profile_graph_entry);
920 }
921
922 static void unregister_ftrace_profiler(void)
923 {
924 unregister_ftrace_graph();
925 }
926 #else
927 static struct ftrace_ops ftrace_profile_ops __read_mostly = {
928 .func = function_profile_call,
929 .flags = FTRACE_OPS_FL_RECURSION_SAFE | FTRACE_OPS_FL_INITIALIZED,
930 INIT_OPS_HASH(ftrace_profile_ops)
931 };
932
933 static int register_ftrace_profiler(void)
934 {
935 return register_ftrace_function(&ftrace_profile_ops);
936 }
937
938 static void unregister_ftrace_profiler(void)
939 {
940 unregister_ftrace_function(&ftrace_profile_ops);
941 }
942 #endif /* CONFIG_FUNCTION_GRAPH_TRACER */
943
944 static ssize_t
945 ftrace_profile_write(struct file *filp, const char __user *ubuf,
946 size_t cnt, loff_t *ppos)
947 {
948 unsigned long val;
949 int ret;
950
951 ret = kstrtoul_from_user(ubuf, cnt, 10, &val);
952 if (ret)
953 return ret;
954
955 val = !!val;
956
957 mutex_lock(&ftrace_profile_lock);
958 if (ftrace_profile_enabled ^ val) {
959 if (val) {
960 ret = ftrace_profile_init();
961 if (ret < 0) {
962 cnt = ret;
963 goto out;
964 }
965
966 ret = register_ftrace_profiler();
967 if (ret < 0) {
968 cnt = ret;
969 goto out;
970 }
971 ftrace_profile_enabled = 1;
972 } else {
973 ftrace_profile_enabled = 0;
974 /*
975 * unregister_ftrace_profiler calls stop_machine
976 * so this acts like an synchronize_sched.
977 */
978 unregister_ftrace_profiler();
979 }
980 }
981 out:
982 mutex_unlock(&ftrace_profile_lock);
983
984 *ppos += cnt;
985
986 return cnt;
987 }
988
989 static ssize_t
990 ftrace_profile_read(struct file *filp, char __user *ubuf,
991 size_t cnt, loff_t *ppos)
992 {
993 char buf[64]; /* big enough to hold a number */
994 int r;
995
996 r = sprintf(buf, "%u\n", ftrace_profile_enabled);
997 return simple_read_from_buffer(ubuf, cnt, ppos, buf, r);
998 }
999
1000 static const struct file_operations ftrace_profile_fops = {
1001 .open = tracing_open_generic,
1002 .read = ftrace_profile_read,
1003 .write = ftrace_profile_write,
1004 .llseek = default_llseek,
1005 };
1006
1007 /* used to initialize the real stat files */
1008 static struct tracer_stat function_stats __initdata = {
1009 .name = "functions",
1010 .stat_start = function_stat_start,
1011 .stat_next = function_stat_next,
1012 .stat_cmp = function_stat_cmp,
1013 .stat_headers = function_stat_headers,
1014 .stat_show = function_stat_show
1015 };
1016
1017 static __init void ftrace_profile_tracefs(struct dentry *d_tracer)
1018 {
1019 struct ftrace_profile_stat *stat;
1020 struct dentry *entry;
1021 char *name;
1022 int ret;
1023 int cpu;
1024
1025 for_each_possible_cpu(cpu) {
1026 stat = &per_cpu(ftrace_profile_stats, cpu);
1027
1028 name = kasprintf(GFP_KERNEL, "function%d", cpu);
1029 if (!name) {
1030 /*
1031 * The files created are permanent, if something happens
1032 * we still do not free memory.
1033 */
1034 WARN(1,
1035 "Could not allocate stat file for cpu %d\n",
1036 cpu);
1037 return;
1038 }
1039 stat->stat = function_stats;
1040 stat->stat.name = name;
1041 ret = register_stat_tracer(&stat->stat);
1042 if (ret) {
1043 WARN(1,
1044 "Could not register function stat for cpu %d\n",
1045 cpu);
1046 kfree(name);
1047 return;
1048 }
1049 }
1050
1051 entry = tracefs_create_file("function_profile_enabled", 0644,
1052 d_tracer, NULL, &ftrace_profile_fops);
1053 if (!entry)
1054 pr_warn("Could not create tracefs 'function_profile_enabled' entry\n");
1055 }
1056
1057 #else /* CONFIG_FUNCTION_PROFILER */
1058 static __init void ftrace_profile_tracefs(struct dentry *d_tracer)
1059 {
1060 }
1061 #endif /* CONFIG_FUNCTION_PROFILER */
1062
1063 static struct pid * const ftrace_swapper_pid = &init_struct_pid;
1064
1065 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1066 static int ftrace_graph_active;
1067 #else
1068 # define ftrace_graph_active 0
1069 #endif
1070
1071 #ifdef CONFIG_DYNAMIC_FTRACE
1072
1073 static struct ftrace_ops *removed_ops;
1074
1075 /*
1076 * Set when doing a global update, like enabling all recs or disabling them.
1077 * It is not set when just updating a single ftrace_ops.
1078 */
1079 static bool update_all_ops;
1080
1081 #ifndef CONFIG_FTRACE_MCOUNT_RECORD
1082 # error Dynamic ftrace depends on MCOUNT_RECORD
1083 #endif
1084
1085 struct ftrace_func_entry {
1086 struct hlist_node hlist;
1087 unsigned long ip;
1088 };
1089
1090 struct ftrace_func_probe {
1091 struct ftrace_probe_ops *probe_ops;
1092 struct ftrace_ops ops;
1093 struct trace_array *tr;
1094 struct list_head list;
1095 void *data;
1096 int ref;
1097 };
1098
1099 /*
1100 * We make these constant because no one should touch them,
1101 * but they are used as the default "empty hash", to avoid allocating
1102 * it all the time. These are in a read only section such that if
1103 * anyone does try to modify it, it will cause an exception.
1104 */
1105 static const struct hlist_head empty_buckets[1];
1106 static const struct ftrace_hash empty_hash = {
1107 .buckets = (struct hlist_head *)empty_buckets,
1108 };
1109 #define EMPTY_HASH ((struct ftrace_hash *)&empty_hash)
1110
1111 static struct ftrace_ops global_ops = {
1112 .func = ftrace_stub,
1113 .local_hash.notrace_hash = EMPTY_HASH,
1114 .local_hash.filter_hash = EMPTY_HASH,
1115 INIT_OPS_HASH(global_ops)
1116 .flags = FTRACE_OPS_FL_RECURSION_SAFE |
1117 FTRACE_OPS_FL_INITIALIZED |
1118 FTRACE_OPS_FL_PID,
1119 };
1120
1121 /*
1122 * Used by the stack undwinder to know about dynamic ftrace trampolines.
1123 */
1124 struct ftrace_ops *ftrace_ops_trampoline(unsigned long addr)
1125 {
1126 struct ftrace_ops *op = NULL;
1127
1128 /*
1129 * Some of the ops may be dynamically allocated,
1130 * they are freed after a synchronize_sched().
1131 */
1132 preempt_disable_notrace();
1133
1134 do_for_each_ftrace_op(op, ftrace_ops_list) {
1135 /*
1136 * This is to check for dynamically allocated trampolines.
1137 * Trampolines that are in kernel text will have
1138 * core_kernel_text() return true.
1139 */
1140 if (op->trampoline && op->trampoline_size)
1141 if (addr >= op->trampoline &&
1142 addr < op->trampoline + op->trampoline_size) {
1143 preempt_enable_notrace();
1144 return op;
1145 }
1146 } while_for_each_ftrace_op(op);
1147 preempt_enable_notrace();
1148
1149 return NULL;
1150 }
1151
1152 /*
1153 * This is used by __kernel_text_address() to return true if the
1154 * address is on a dynamically allocated trampoline that would
1155 * not return true for either core_kernel_text() or
1156 * is_module_text_address().
1157 */
1158 bool is_ftrace_trampoline(unsigned long addr)
1159 {
1160 return ftrace_ops_trampoline(addr) != NULL;
1161 }
1162
1163 struct ftrace_page {
1164 struct ftrace_page *next;
1165 struct dyn_ftrace *records;
1166 int index;
1167 int size;
1168 };
1169
1170 #define ENTRY_SIZE sizeof(struct dyn_ftrace)
1171 #define ENTRIES_PER_PAGE (PAGE_SIZE / ENTRY_SIZE)
1172
1173 /* estimate from running different kernels */
1174 #define NR_TO_INIT 10000
1175
1176 static struct ftrace_page *ftrace_pages_start;
1177 static struct ftrace_page *ftrace_pages;
1178
1179 static __always_inline unsigned long
1180 ftrace_hash_key(struct ftrace_hash *hash, unsigned long ip)
1181 {
1182 if (hash->size_bits > 0)
1183 return hash_long(ip, hash->size_bits);
1184
1185 return 0;
1186 }
1187
1188 /* Only use this function if ftrace_hash_empty() has already been tested */
1189 static __always_inline struct ftrace_func_entry *
1190 __ftrace_lookup_ip(struct ftrace_hash *hash, unsigned long ip)
1191 {
1192 unsigned long key;
1193 struct ftrace_func_entry *entry;
1194 struct hlist_head *hhd;
1195
1196 key = ftrace_hash_key(hash, ip);
1197 hhd = &hash->buckets[key];
1198
1199 hlist_for_each_entry_rcu_notrace(entry, hhd, hlist) {
1200 if (entry->ip == ip)
1201 return entry;
1202 }
1203 return NULL;
1204 }
1205
1206 /**
1207 * ftrace_lookup_ip - Test to see if an ip exists in an ftrace_hash
1208 * @hash: The hash to look at
1209 * @ip: The instruction pointer to test
1210 *
1211 * Search a given @hash to see if a given instruction pointer (@ip)
1212 * exists in it.
1213 *
1214 * Returns the entry that holds the @ip if found. NULL otherwise.
1215 */
1216 struct ftrace_func_entry *
1217 ftrace_lookup_ip(struct ftrace_hash *hash, unsigned long ip)
1218 {
1219 if (ftrace_hash_empty(hash))
1220 return NULL;
1221
1222 return __ftrace_lookup_ip(hash, ip);
1223 }
1224
1225 static void __add_hash_entry(struct ftrace_hash *hash,
1226 struct ftrace_func_entry *entry)
1227 {
1228 struct hlist_head *hhd;
1229 unsigned long key;
1230
1231 key = ftrace_hash_key(hash, entry->ip);
1232 hhd = &hash->buckets[key];
1233 hlist_add_head(&entry->hlist, hhd);
1234 hash->count++;
1235 }
1236
1237 static int add_hash_entry(struct ftrace_hash *hash, unsigned long ip)
1238 {
1239 struct ftrace_func_entry *entry;
1240
1241 entry = kmalloc(sizeof(*entry), GFP_KERNEL);
1242 if (!entry)
1243 return -ENOMEM;
1244
1245 entry->ip = ip;
1246 __add_hash_entry(hash, entry);
1247
1248 return 0;
1249 }
1250
1251 static void
1252 free_hash_entry(struct ftrace_hash *hash,
1253 struct ftrace_func_entry *entry)
1254 {
1255 hlist_del(&entry->hlist);
1256 kfree(entry);
1257 hash->count--;
1258 }
1259
1260 static void
1261 remove_hash_entry(struct ftrace_hash *hash,
1262 struct ftrace_func_entry *entry)
1263 {
1264 hlist_del_rcu(&entry->hlist);
1265 hash->count--;
1266 }
1267
1268 static void ftrace_hash_clear(struct ftrace_hash *hash)
1269 {
1270 struct hlist_head *hhd;
1271 struct hlist_node *tn;
1272 struct ftrace_func_entry *entry;
1273 int size = 1 << hash->size_bits;
1274 int i;
1275
1276 if (!hash->count)
1277 return;
1278
1279 for (i = 0; i < size; i++) {
1280 hhd = &hash->buckets[i];
1281 hlist_for_each_entry_safe(entry, tn, hhd, hlist)
1282 free_hash_entry(hash, entry);
1283 }
1284 FTRACE_WARN_ON(hash->count);
1285 }
1286
1287 static void free_ftrace_mod(struct ftrace_mod_load *ftrace_mod)
1288 {
1289 list_del(&ftrace_mod->list);
1290 kfree(ftrace_mod->module);
1291 kfree(ftrace_mod->func);
1292 kfree(ftrace_mod);
1293 }
1294
1295 static void clear_ftrace_mod_list(struct list_head *head)
1296 {
1297 struct ftrace_mod_load *p, *n;
1298
1299 /* stack tracer isn't supported yet */
1300 if (!head)
1301 return;
1302
1303 mutex_lock(&ftrace_lock);
1304 list_for_each_entry_safe(p, n, head, list)
1305 free_ftrace_mod(p);
1306 mutex_unlock(&ftrace_lock);
1307 }
1308
1309 static void free_ftrace_hash(struct ftrace_hash *hash)
1310 {
1311 if (!hash || hash == EMPTY_HASH)
1312 return;
1313 ftrace_hash_clear(hash);
1314 kfree(hash->buckets);
1315 kfree(hash);
1316 }
1317
1318 static void __free_ftrace_hash_rcu(struct rcu_head *rcu)
1319 {
1320 struct ftrace_hash *hash;
1321
1322 hash = container_of(rcu, struct ftrace_hash, rcu);
1323 free_ftrace_hash(hash);
1324 }
1325
1326 static void free_ftrace_hash_rcu(struct ftrace_hash *hash)
1327 {
1328 if (!hash || hash == EMPTY_HASH)
1329 return;
1330 call_rcu_sched(&hash->rcu, __free_ftrace_hash_rcu);
1331 }
1332
1333 void ftrace_free_filter(struct ftrace_ops *ops)
1334 {
1335 ftrace_ops_init(ops);
1336 free_ftrace_hash(ops->func_hash->filter_hash);
1337 free_ftrace_hash(ops->func_hash->notrace_hash);
1338 }
1339
1340 static struct ftrace_hash *alloc_ftrace_hash(int size_bits)
1341 {
1342 struct ftrace_hash *hash;
1343 int size;
1344
1345 hash = kzalloc(sizeof(*hash), GFP_KERNEL);
1346 if (!hash)
1347 return NULL;
1348
1349 size = 1 << size_bits;
1350 hash->buckets = kcalloc(size, sizeof(*hash->buckets), GFP_KERNEL);
1351
1352 if (!hash->buckets) {
1353 kfree(hash);
1354 return NULL;
1355 }
1356
1357 hash->size_bits = size_bits;
1358
1359 return hash;
1360 }
1361
1362
1363 static int ftrace_add_mod(struct trace_array *tr,
1364 const char *func, const char *module,
1365 int enable)
1366 {
1367 struct ftrace_mod_load *ftrace_mod;
1368 struct list_head *mod_head = enable ? &tr->mod_trace : &tr->mod_notrace;
1369
1370 ftrace_mod = kzalloc(sizeof(*ftrace_mod), GFP_KERNEL);
1371 if (!ftrace_mod)
1372 return -ENOMEM;
1373
1374 ftrace_mod->func = kstrdup(func, GFP_KERNEL);
1375 ftrace_mod->module = kstrdup(module, GFP_KERNEL);
1376 ftrace_mod->enable = enable;
1377
1378 if (!ftrace_mod->func || !ftrace_mod->module)
1379 goto out_free;
1380
1381 list_add(&ftrace_mod->list, mod_head);
1382
1383 return 0;
1384
1385 out_free:
1386 free_ftrace_mod(ftrace_mod);
1387
1388 return -ENOMEM;
1389 }
1390
1391 static struct ftrace_hash *
1392 alloc_and_copy_ftrace_hash(int size_bits, struct ftrace_hash *hash)
1393 {
1394 struct ftrace_func_entry *entry;
1395 struct ftrace_hash *new_hash;
1396 int size;
1397 int ret;
1398 int i;
1399
1400 new_hash = alloc_ftrace_hash(size_bits);
1401 if (!new_hash)
1402 return NULL;
1403
1404 if (hash)
1405 new_hash->flags = hash->flags;
1406
1407 /* Empty hash? */
1408 if (ftrace_hash_empty(hash))
1409 return new_hash;
1410
1411 size = 1 << hash->size_bits;
1412 for (i = 0; i < size; i++) {
1413 hlist_for_each_entry(entry, &hash->buckets[i], hlist) {
1414 ret = add_hash_entry(new_hash, entry->ip);
1415 if (ret < 0)
1416 goto free_hash;
1417 }
1418 }
1419
1420 FTRACE_WARN_ON(new_hash->count != hash->count);
1421
1422 return new_hash;
1423
1424 free_hash:
1425 free_ftrace_hash(new_hash);
1426 return NULL;
1427 }
1428
1429 static void
1430 ftrace_hash_rec_disable_modify(struct ftrace_ops *ops, int filter_hash);
1431 static void
1432 ftrace_hash_rec_enable_modify(struct ftrace_ops *ops, int filter_hash);
1433
1434 static int ftrace_hash_ipmodify_update(struct ftrace_ops *ops,
1435 struct ftrace_hash *new_hash);
1436
1437 static struct ftrace_hash *
1438 __ftrace_hash_move(struct ftrace_hash *src)
1439 {
1440 struct ftrace_func_entry *entry;
1441 struct hlist_node *tn;
1442 struct hlist_head *hhd;
1443 struct ftrace_hash *new_hash;
1444 int size = src->count;
1445 int bits = 0;
1446 int i;
1447
1448 /*
1449 * If the new source is empty, just return the empty_hash.
1450 */
1451 if (ftrace_hash_empty(src))
1452 return EMPTY_HASH;
1453
1454 /*
1455 * Make the hash size about 1/2 the # found
1456 */
1457 for (size /= 2; size; size >>= 1)
1458 bits++;
1459
1460 /* Don't allocate too much */
1461 if (bits > FTRACE_HASH_MAX_BITS)
1462 bits = FTRACE_HASH_MAX_BITS;
1463
1464 new_hash = alloc_ftrace_hash(bits);
1465 if (!new_hash)
1466 return NULL;
1467
1468 new_hash->flags = src->flags;
1469
1470 size = 1 << src->size_bits;
1471 for (i = 0; i < size; i++) {
1472 hhd = &src->buckets[i];
1473 hlist_for_each_entry_safe(entry, tn, hhd, hlist) {
1474 remove_hash_entry(src, entry);
1475 __add_hash_entry(new_hash, entry);
1476 }
1477 }
1478
1479 return new_hash;
1480 }
1481
1482 static int
1483 ftrace_hash_move(struct ftrace_ops *ops, int enable,
1484 struct ftrace_hash **dst, struct ftrace_hash *src)
1485 {
1486 struct ftrace_hash *new_hash;
1487 int ret;
1488
1489 /* Reject setting notrace hash on IPMODIFY ftrace_ops */
1490 if (ops->flags & FTRACE_OPS_FL_IPMODIFY && !enable)
1491 return -EINVAL;
1492
1493 new_hash = __ftrace_hash_move(src);
1494 if (!new_hash)
1495 return -ENOMEM;
1496
1497 /* Make sure this can be applied if it is IPMODIFY ftrace_ops */
1498 if (enable) {
1499 /* IPMODIFY should be updated only when filter_hash updating */
1500 ret = ftrace_hash_ipmodify_update(ops, new_hash);
1501 if (ret < 0) {
1502 free_ftrace_hash(new_hash);
1503 return ret;
1504 }
1505 }
1506
1507 /*
1508 * Remove the current set, update the hash and add
1509 * them back.
1510 */
1511 ftrace_hash_rec_disable_modify(ops, enable);
1512
1513 rcu_assign_pointer(*dst, new_hash);
1514
1515 ftrace_hash_rec_enable_modify(ops, enable);
1516
1517 return 0;
1518 }
1519
1520 static bool hash_contains_ip(unsigned long ip,
1521 struct ftrace_ops_hash *hash)
1522 {
1523 /*
1524 * The function record is a match if it exists in the filter
1525 * hash and not in the notrace hash. Note, an emty hash is
1526 * considered a match for the filter hash, but an empty
1527 * notrace hash is considered not in the notrace hash.
1528 */
1529 return (ftrace_hash_empty(hash->filter_hash) ||
1530 __ftrace_lookup_ip(hash->filter_hash, ip)) &&
1531 (ftrace_hash_empty(hash->notrace_hash) ||
1532 !__ftrace_lookup_ip(hash->notrace_hash, ip));
1533 }
1534
1535 /*
1536 * Test the hashes for this ops to see if we want to call
1537 * the ops->func or not.
1538 *
1539 * It's a match if the ip is in the ops->filter_hash or
1540 * the filter_hash does not exist or is empty,
1541 * AND
1542 * the ip is not in the ops->notrace_hash.
1543 *
1544 * This needs to be called with preemption disabled as
1545 * the hashes are freed with call_rcu_sched().
1546 */
1547 static int
1548 ftrace_ops_test(struct ftrace_ops *ops, unsigned long ip, void *regs)
1549 {
1550 struct ftrace_ops_hash hash;
1551 int ret;
1552
1553 #ifdef CONFIG_DYNAMIC_FTRACE_WITH_REGS
1554 /*
1555 * There's a small race when adding ops that the ftrace handler
1556 * that wants regs, may be called without them. We can not
1557 * allow that handler to be called if regs is NULL.
1558 */
1559 if (regs == NULL && (ops->flags & FTRACE_OPS_FL_SAVE_REGS))
1560 return 0;
1561 #endif
1562
1563 rcu_assign_pointer(hash.filter_hash, ops->func_hash->filter_hash);
1564 rcu_assign_pointer(hash.notrace_hash, ops->func_hash->notrace_hash);
1565
1566 if (hash_contains_ip(ip, &hash))
1567 ret = 1;
1568 else
1569 ret = 0;
1570
1571 return ret;
1572 }
1573
1574 /*
1575 * This is a double for. Do not use 'break' to break out of the loop,
1576 * you must use a goto.
1577 */
1578 #define do_for_each_ftrace_rec(pg, rec) \
1579 for (pg = ftrace_pages_start; pg; pg = pg->next) { \
1580 int _____i; \
1581 for (_____i = 0; _____i < pg->index; _____i++) { \
1582 rec = &pg->records[_____i];
1583
1584 #define while_for_each_ftrace_rec() \
1585 } \
1586 }
1587
1588
1589 static int ftrace_cmp_recs(const void *a, const void *b)
1590 {
1591 const struct dyn_ftrace *key = a;
1592 const struct dyn_ftrace *rec = b;
1593
1594 if (key->flags < rec->ip)
1595 return -1;
1596 if (key->ip >= rec->ip + MCOUNT_INSN_SIZE)
1597 return 1;
1598 return 0;
1599 }
1600
1601 /**
1602 * ftrace_location_range - return the first address of a traced location
1603 * if it touches the given ip range
1604 * @start: start of range to search.
1605 * @end: end of range to search (inclusive). @end points to the last byte
1606 * to check.
1607 *
1608 * Returns rec->ip if the related ftrace location is a least partly within
1609 * the given address range. That is, the first address of the instruction
1610 * that is either a NOP or call to the function tracer. It checks the ftrace
1611 * internal tables to determine if the address belongs or not.
1612 */
1613 unsigned long ftrace_location_range(unsigned long start, unsigned long end)
1614 {
1615 struct ftrace_page *pg;
1616 struct dyn_ftrace *rec;
1617 struct dyn_ftrace key;
1618
1619 key.ip = start;
1620 key.flags = end; /* overload flags, as it is unsigned long */
1621
1622 for (pg = ftrace_pages_start; pg; pg = pg->next) {
1623 if (end < pg->records[0].ip ||
1624 start >= (pg->records[pg->index - 1].ip + MCOUNT_INSN_SIZE))
1625 continue;
1626 rec = bsearch(&key, pg->records, pg->index,
1627 sizeof(struct dyn_ftrace),
1628 ftrace_cmp_recs);
1629 if (rec)
1630 return rec->ip;
1631 }
1632
1633 return 0;
1634 }
1635
1636 /**
1637 * ftrace_location - return true if the ip giving is a traced location
1638 * @ip: the instruction pointer to check
1639 *
1640 * Returns rec->ip if @ip given is a pointer to a ftrace location.
1641 * That is, the instruction that is either a NOP or call to
1642 * the function tracer. It checks the ftrace internal tables to
1643 * determine if the address belongs or not.
1644 */
1645 unsigned long ftrace_location(unsigned long ip)
1646 {
1647 return ftrace_location_range(ip, ip);
1648 }
1649
1650 /**
1651 * ftrace_text_reserved - return true if range contains an ftrace location
1652 * @start: start of range to search
1653 * @end: end of range to search (inclusive). @end points to the last byte to check.
1654 *
1655 * Returns 1 if @start and @end contains a ftrace location.
1656 * That is, the instruction that is either a NOP or call to
1657 * the function tracer. It checks the ftrace internal tables to
1658 * determine if the address belongs or not.
1659 */
1660 int ftrace_text_reserved(const void *start, const void *end)
1661 {
1662 unsigned long ret;
1663
1664 ret = ftrace_location_range((unsigned long)start,
1665 (unsigned long)end);
1666
1667 return (int)!!ret;
1668 }
1669
1670 /* Test if ops registered to this rec needs regs */
1671 static bool test_rec_ops_needs_regs(struct dyn_ftrace *rec)
1672 {
1673 struct ftrace_ops *ops;
1674 bool keep_regs = false;
1675
1676 for (ops = ftrace_ops_list;
1677 ops != &ftrace_list_end; ops = ops->next) {
1678 /* pass rec in as regs to have non-NULL val */
1679 if (ftrace_ops_test(ops, rec->ip, rec)) {
1680 if (ops->flags & FTRACE_OPS_FL_SAVE_REGS) {
1681 keep_regs = true;
1682 break;
1683 }
1684 }
1685 }
1686
1687 return keep_regs;
1688 }
1689
1690 static bool __ftrace_hash_rec_update(struct ftrace_ops *ops,
1691 int filter_hash,
1692 bool inc)
1693 {
1694 struct ftrace_hash *hash;
1695 struct ftrace_hash *other_hash;
1696 struct ftrace_page *pg;
1697 struct dyn_ftrace *rec;
1698 bool update = false;
1699 int count = 0;
1700 int all = false;
1701
1702 /* Only update if the ops has been registered */
1703 if (!(ops->flags & FTRACE_OPS_FL_ENABLED))
1704 return false;
1705
1706 /*
1707 * In the filter_hash case:
1708 * If the count is zero, we update all records.
1709 * Otherwise we just update the items in the hash.
1710 *
1711 * In the notrace_hash case:
1712 * We enable the update in the hash.
1713 * As disabling notrace means enabling the tracing,
1714 * and enabling notrace means disabling, the inc variable
1715 * gets inversed.
1716 */
1717 if (filter_hash) {
1718 hash = ops->func_hash->filter_hash;
1719 other_hash = ops->func_hash->notrace_hash;
1720 if (ftrace_hash_empty(hash))
1721 all = true;
1722 } else {
1723 inc = !inc;
1724 hash = ops->func_hash->notrace_hash;
1725 other_hash = ops->func_hash->filter_hash;
1726 /*
1727 * If the notrace hash has no items,
1728 * then there's nothing to do.
1729 */
1730 if (ftrace_hash_empty(hash))
1731 return false;
1732 }
1733
1734 do_for_each_ftrace_rec(pg, rec) {
1735 int in_other_hash = 0;
1736 int in_hash = 0;
1737 int match = 0;
1738
1739 if (rec->flags & FTRACE_FL_DISABLED)
1740 continue;
1741
1742 if (all) {
1743 /*
1744 * Only the filter_hash affects all records.
1745 * Update if the record is not in the notrace hash.
1746 */
1747 if (!other_hash || !ftrace_lookup_ip(other_hash, rec->ip))
1748 match = 1;
1749 } else {
1750 in_hash = !!ftrace_lookup_ip(hash, rec->ip);
1751 in_other_hash = !!ftrace_lookup_ip(other_hash, rec->ip);
1752
1753 /*
1754 * If filter_hash is set, we want to match all functions
1755 * that are in the hash but not in the other hash.
1756 *
1757 * If filter_hash is not set, then we are decrementing.
1758 * That means we match anything that is in the hash
1759 * and also in the other_hash. That is, we need to turn
1760 * off functions in the other hash because they are disabled
1761 * by this hash.
1762 */
1763 if (filter_hash && in_hash && !in_other_hash)
1764 match = 1;
1765 else if (!filter_hash && in_hash &&
1766 (in_other_hash || ftrace_hash_empty(other_hash)))
1767 match = 1;
1768 }
1769 if (!match)
1770 continue;
1771
1772 if (inc) {
1773 rec->flags++;
1774 if (FTRACE_WARN_ON(ftrace_rec_count(rec) == FTRACE_REF_MAX))
1775 return false;
1776
1777 /*
1778 * If there's only a single callback registered to a
1779 * function, and the ops has a trampoline registered
1780 * for it, then we can call it directly.
1781 */
1782 if (ftrace_rec_count(rec) == 1 && ops->trampoline)
1783 rec->flags |= FTRACE_FL_TRAMP;
1784 else
1785 /*
1786 * If we are adding another function callback
1787 * to this function, and the previous had a
1788 * custom trampoline in use, then we need to go
1789 * back to the default trampoline.
1790 */
1791 rec->flags &= ~FTRACE_FL_TRAMP;
1792
1793 /*
1794 * If any ops wants regs saved for this function
1795 * then all ops will get saved regs.
1796 */
1797 if (ops->flags & FTRACE_OPS_FL_SAVE_REGS)
1798 rec->flags |= FTRACE_FL_REGS;
1799 } else {
1800 if (FTRACE_WARN_ON(ftrace_rec_count(rec) == 0))
1801 return false;
1802 rec->flags--;
1803
1804 /*
1805 * If the rec had REGS enabled and the ops that is
1806 * being removed had REGS set, then see if there is
1807 * still any ops for this record that wants regs.
1808 * If not, we can stop recording them.
1809 */
1810 if (ftrace_rec_count(rec) > 0 &&
1811 rec->flags & FTRACE_FL_REGS &&
1812 ops->flags & FTRACE_OPS_FL_SAVE_REGS) {
1813 if (!test_rec_ops_needs_regs(rec))
1814 rec->flags &= ~FTRACE_FL_REGS;
1815 }
1816
1817 /*
1818 * If the rec had TRAMP enabled, then it needs to
1819 * be cleared. As TRAMP can only be enabled iff
1820 * there is only a single ops attached to it.
1821 * In otherwords, always disable it on decrementing.
1822 * In the future, we may set it if rec count is
1823 * decremented to one, and the ops that is left
1824 * has a trampoline.
1825 */
1826 rec->flags &= ~FTRACE_FL_TRAMP;
1827
1828 /*
1829 * flags will be cleared in ftrace_check_record()
1830 * if rec count is zero.
1831 */
1832 }
1833 count++;
1834
1835 /* Must match FTRACE_UPDATE_CALLS in ftrace_modify_all_code() */
1836 update |= ftrace_test_record(rec, 1) != FTRACE_UPDATE_IGNORE;
1837
1838 /* Shortcut, if we handled all records, we are done. */
1839 if (!all && count == hash->count)
1840 return update;
1841 } while_for_each_ftrace_rec();
1842
1843 return update;
1844 }
1845
1846 static bool ftrace_hash_rec_disable(struct ftrace_ops *ops,
1847 int filter_hash)
1848 {
1849 return __ftrace_hash_rec_update(ops, filter_hash, 0);
1850 }
1851
1852 static bool ftrace_hash_rec_enable(struct ftrace_ops *ops,
1853 int filter_hash)
1854 {
1855 return __ftrace_hash_rec_update(ops, filter_hash, 1);
1856 }
1857
1858 static void ftrace_hash_rec_update_modify(struct ftrace_ops *ops,
1859 int filter_hash, int inc)
1860 {
1861 struct ftrace_ops *op;
1862
1863 __ftrace_hash_rec_update(ops, filter_hash, inc);
1864
1865 if (ops->func_hash != &global_ops.local_hash)
1866 return;
1867
1868 /*
1869 * If the ops shares the global_ops hash, then we need to update
1870 * all ops that are enabled and use this hash.
1871 */
1872 do_for_each_ftrace_op(op, ftrace_ops_list) {
1873 /* Already done */
1874 if (op == ops)
1875 continue;
1876 if (op->func_hash == &global_ops.local_hash)
1877 __ftrace_hash_rec_update(op, filter_hash, inc);
1878 } while_for_each_ftrace_op(op);
1879 }
1880
1881 static void ftrace_hash_rec_disable_modify(struct ftrace_ops *ops,
1882 int filter_hash)
1883 {
1884 ftrace_hash_rec_update_modify(ops, filter_hash, 0);
1885 }
1886
1887 static void ftrace_hash_rec_enable_modify(struct ftrace_ops *ops,
1888 int filter_hash)
1889 {
1890 ftrace_hash_rec_update_modify(ops, filter_hash, 1);
1891 }
1892
1893 /*
1894 * Try to update IPMODIFY flag on each ftrace_rec. Return 0 if it is OK
1895 * or no-needed to update, -EBUSY if it detects a conflict of the flag
1896 * on a ftrace_rec, and -EINVAL if the new_hash tries to trace all recs.
1897 * Note that old_hash and new_hash has below meanings
1898 * - If the hash is NULL, it hits all recs (if IPMODIFY is set, this is rejected)
1899 * - If the hash is EMPTY_HASH, it hits nothing
1900 * - Anything else hits the recs which match the hash entries.
1901 */
1902 static int __ftrace_hash_update_ipmodify(struct ftrace_ops *ops,
1903 struct ftrace_hash *old_hash,
1904 struct ftrace_hash *new_hash)
1905 {
1906 struct ftrace_page *pg;
1907 struct dyn_ftrace *rec, *end = NULL;
1908 int in_old, in_new;
1909
1910 /* Only update if the ops has been registered */
1911 if (!(ops->flags & FTRACE_OPS_FL_ENABLED))
1912 return 0;
1913
1914 if (!(ops->flags & FTRACE_OPS_FL_IPMODIFY))
1915 return 0;
1916
1917 /*
1918 * Since the IPMODIFY is a very address sensitive action, we do not
1919 * allow ftrace_ops to set all functions to new hash.
1920 */
1921 if (!new_hash || !old_hash)
1922 return -EINVAL;
1923
1924 /* Update rec->flags */
1925 do_for_each_ftrace_rec(pg, rec) {
1926
1927 if (rec->flags & FTRACE_FL_DISABLED)
1928 continue;
1929
1930 /* We need to update only differences of filter_hash */
1931 in_old = !!ftrace_lookup_ip(old_hash, rec->ip);
1932 in_new = !!ftrace_lookup_ip(new_hash, rec->ip);
1933 if (in_old == in_new)
1934 continue;
1935
1936 if (in_new) {
1937 /* New entries must ensure no others are using it */
1938 if (rec->flags & FTRACE_FL_IPMODIFY)
1939 goto rollback;
1940 rec->flags |= FTRACE_FL_IPMODIFY;
1941 } else /* Removed entry */
1942 rec->flags &= ~FTRACE_FL_IPMODIFY;
1943 } while_for_each_ftrace_rec();
1944
1945 return 0;
1946
1947 rollback:
1948 end = rec;
1949
1950 /* Roll back what we did above */
1951 do_for_each_ftrace_rec(pg, rec) {
1952
1953 if (rec->flags & FTRACE_FL_DISABLED)
1954 continue;
1955
1956 if (rec == end)
1957 goto err_out;
1958
1959 in_old = !!ftrace_lookup_ip(old_hash, rec->ip);
1960 in_new = !!ftrace_lookup_ip(new_hash, rec->ip);
1961 if (in_old == in_new)
1962 continue;
1963
1964 if (in_new)
1965 rec->flags &= ~FTRACE_FL_IPMODIFY;
1966 else
1967 rec->flags |= FTRACE_FL_IPMODIFY;
1968 } while_for_each_ftrace_rec();
1969
1970 err_out:
1971 return -EBUSY;
1972 }
1973
1974 static int ftrace_hash_ipmodify_enable(struct ftrace_ops *ops)
1975 {
1976 struct ftrace_hash *hash = ops->func_hash->filter_hash;
1977
1978 if (ftrace_hash_empty(hash))
1979 hash = NULL;
1980
1981 return __ftrace_hash_update_ipmodify(ops, EMPTY_HASH, hash);
1982 }
1983
1984 /* Disabling always succeeds */
1985 static void ftrace_hash_ipmodify_disable(struct ftrace_ops *ops)
1986 {
1987 struct ftrace_hash *hash = ops->func_hash->filter_hash;
1988
1989 if (ftrace_hash_empty(hash))
1990 hash = NULL;
1991
1992 __ftrace_hash_update_ipmodify(ops, hash, EMPTY_HASH);
1993 }
1994
1995 static int ftrace_hash_ipmodify_update(struct ftrace_ops *ops,
1996 struct ftrace_hash *new_hash)
1997 {
1998 struct ftrace_hash *old_hash = ops->func_hash->filter_hash;
1999
2000 if (ftrace_hash_empty(old_hash))
2001 old_hash = NULL;
2002
2003 if (ftrace_hash_empty(new_hash))
2004 new_hash = NULL;
2005
2006 return __ftrace_hash_update_ipmodify(ops, old_hash, new_hash);
2007 }
2008
2009 static void print_ip_ins(const char *fmt, const unsigned char *p)
2010 {
2011 int i;
2012
2013 printk(KERN_CONT "%s", fmt);
2014
2015 for (i = 0; i < MCOUNT_INSN_SIZE; i++)
2016 printk(KERN_CONT "%s%02x", i ? ":" : "", p[i]);
2017 }
2018
2019 static struct ftrace_ops *
2020 ftrace_find_tramp_ops_any(struct dyn_ftrace *rec);
2021 static struct ftrace_ops *
2022 ftrace_find_tramp_ops_next(struct dyn_ftrace *rec, struct ftrace_ops *ops);
2023
2024 enum ftrace_bug_type ftrace_bug_type;
2025 const void *ftrace_expected;
2026
2027 static void print_bug_type(void)
2028 {
2029 switch (ftrace_bug_type) {
2030 case FTRACE_BUG_UNKNOWN:
2031 break;
2032 case FTRACE_BUG_INIT:
2033 pr_info("Initializing ftrace call sites\n");
2034 break;
2035 case FTRACE_BUG_NOP:
2036 pr_info("Setting ftrace call site to NOP\n");
2037 break;
2038 case FTRACE_BUG_CALL:
2039 pr_info("Setting ftrace call site to call ftrace function\n");
2040 break;
2041 case FTRACE_BUG_UPDATE:
2042 pr_info("Updating ftrace call site to call a different ftrace function\n");
2043 break;
2044 }
2045 }
2046
2047 /**
2048 * ftrace_bug - report and shutdown function tracer
2049 * @failed: The failed type (EFAULT, EINVAL, EPERM)
2050 * @rec: The record that failed
2051 *
2052 * The arch code that enables or disables the function tracing
2053 * can call ftrace_bug() when it has detected a problem in
2054 * modifying the code. @failed should be one of either:
2055 * EFAULT - if the problem happens on reading the @ip address
2056 * EINVAL - if what is read at @ip is not what was expected
2057 * EPERM - if the problem happens on writting to the @ip address
2058 */
2059 void ftrace_bug(int failed, struct dyn_ftrace *rec)
2060 {
2061 unsigned long ip = rec ? rec->ip : 0;
2062
2063 switch (failed) {
2064 case -EFAULT:
2065 FTRACE_WARN_ON_ONCE(1);
2066 pr_info("ftrace faulted on modifying ");
2067 print_ip_sym(ip);
2068 break;
2069 case -EINVAL:
2070 FTRACE_WARN_ON_ONCE(1);
2071 pr_info("ftrace failed to modify ");
2072 print_ip_sym(ip);
2073 print_ip_ins(" actual: ", (unsigned char *)ip);
2074 pr_cont("\n");
2075 if (ftrace_expected) {
2076 print_ip_ins(" expected: ", ftrace_expected);
2077 pr_cont("\n");
2078 }
2079 break;
2080 case -EPERM:
2081 FTRACE_WARN_ON_ONCE(1);
2082 pr_info("ftrace faulted on writing ");
2083 print_ip_sym(ip);
2084 break;
2085 default:
2086 FTRACE_WARN_ON_ONCE(1);
2087 pr_info("ftrace faulted on unknown error ");
2088 print_ip_sym(ip);
2089 }
2090 print_bug_type();
2091 if (rec) {
2092 struct ftrace_ops *ops = NULL;
2093
2094 pr_info("ftrace record flags: %lx\n", rec->flags);
2095 pr_cont(" (%ld)%s", ftrace_rec_count(rec),
2096 rec->flags & FTRACE_FL_REGS ? " R" : " ");
2097 if (rec->flags & FTRACE_FL_TRAMP_EN) {
2098 ops = ftrace_find_tramp_ops_any(rec);
2099 if (ops) {
2100 do {
2101 pr_cont("\ttramp: %pS (%pS)",
2102 (void *)ops->trampoline,
2103 (void *)ops->func);
2104 ops = ftrace_find_tramp_ops_next(rec, ops);
2105 } while (ops);
2106 } else
2107 pr_cont("\ttramp: ERROR!");
2108
2109 }
2110 ip = ftrace_get_addr_curr(rec);
2111 pr_cont("\n expected tramp: %lx\n", ip);
2112 }
2113 }
2114
2115 static int ftrace_check_record(struct dyn_ftrace *rec, int enable, int update)
2116 {
2117 unsigned long flag = 0UL;
2118
2119 ftrace_bug_type = FTRACE_BUG_UNKNOWN;
2120
2121 if (rec->flags & FTRACE_FL_DISABLED)
2122 return FTRACE_UPDATE_IGNORE;
2123
2124 /*
2125 * If we are updating calls:
2126 *
2127 * If the record has a ref count, then we need to enable it
2128 * because someone is using it.
2129 *
2130 * Otherwise we make sure its disabled.
2131 *
2132 * If we are disabling calls, then disable all records that
2133 * are enabled.
2134 */
2135 if (enable && ftrace_rec_count(rec))
2136 flag = FTRACE_FL_ENABLED;
2137
2138 /*
2139 * If enabling and the REGS flag does not match the REGS_EN, or
2140 * the TRAMP flag doesn't match the TRAMP_EN, then do not ignore
2141 * this record. Set flags to fail the compare against ENABLED.
2142 */
2143 if (flag) {
2144 if (!(rec->flags & FTRACE_FL_REGS) !=
2145 !(rec->flags & FTRACE_FL_REGS_EN))
2146 flag |= FTRACE_FL_REGS;
2147
2148 if (!(rec->flags & FTRACE_FL_TRAMP) !=
2149 !(rec->flags & FTRACE_FL_TRAMP_EN))
2150 flag |= FTRACE_FL_TRAMP;
2151 }
2152
2153 /* If the state of this record hasn't changed, then do nothing */
2154 if ((rec->flags & FTRACE_FL_ENABLED) == flag)
2155 return FTRACE_UPDATE_IGNORE;
2156
2157 if (flag) {
2158 /* Save off if rec is being enabled (for return value) */
2159 flag ^= rec->flags & FTRACE_FL_ENABLED;
2160
2161 if (update) {
2162 rec->flags |= FTRACE_FL_ENABLED;
2163 if (flag & FTRACE_FL_REGS) {
2164 if (rec->flags & FTRACE_FL_REGS)
2165 rec->flags |= FTRACE_FL_REGS_EN;
2166 else
2167 rec->flags &= ~FTRACE_FL_REGS_EN;
2168 }
2169 if (flag & FTRACE_FL_TRAMP) {
2170 if (rec->flags & FTRACE_FL_TRAMP)
2171 rec->flags |= FTRACE_FL_TRAMP_EN;
2172 else
2173 rec->flags &= ~FTRACE_FL_TRAMP_EN;
2174 }
2175 }
2176
2177 /*
2178 * If this record is being updated from a nop, then
2179 * return UPDATE_MAKE_CALL.
2180 * Otherwise,
2181 * return UPDATE_MODIFY_CALL to tell the caller to convert
2182 * from the save regs, to a non-save regs function or
2183 * vice versa, or from a trampoline call.
2184 */
2185 if (flag & FTRACE_FL_ENABLED) {
2186 ftrace_bug_type = FTRACE_BUG_CALL;
2187 return FTRACE_UPDATE_MAKE_CALL;
2188 }
2189
2190 ftrace_bug_type = FTRACE_BUG_UPDATE;
2191 return FTRACE_UPDATE_MODIFY_CALL;
2192 }
2193
2194 if (update) {
2195 /* If there's no more users, clear all flags */
2196 if (!ftrace_rec_count(rec))
2197 rec->flags = 0;
2198 else
2199 /*
2200 * Just disable the record, but keep the ops TRAMP
2201 * and REGS states. The _EN flags must be disabled though.
2202 */
2203 rec->flags &= ~(FTRACE_FL_ENABLED | FTRACE_FL_TRAMP_EN |
2204 FTRACE_FL_REGS_EN);
2205 }
2206
2207 ftrace_bug_type = FTRACE_BUG_NOP;
2208 return FTRACE_UPDATE_MAKE_NOP;
2209 }
2210
2211 /**
2212 * ftrace_update_record, set a record that now is tracing or not
2213 * @rec: the record to update
2214 * @enable: set to 1 if the record is tracing, zero to force disable
2215 *
2216 * The records that represent all functions that can be traced need
2217 * to be updated when tracing has been enabled.
2218 */
2219 int ftrace_update_record(struct dyn_ftrace *rec, int enable)
2220 {
2221 return ftrace_check_record(rec, enable, 1);
2222 }
2223
2224 /**
2225 * ftrace_test_record, check if the record has been enabled or not
2226 * @rec: the record to test
2227 * @enable: set to 1 to check if enabled, 0 if it is disabled
2228 *
2229 * The arch code may need to test if a record is already set to
2230 * tracing to determine how to modify the function code that it
2231 * represents.
2232 */
2233 int ftrace_test_record(struct dyn_ftrace *rec, int enable)
2234 {
2235 return ftrace_check_record(rec, enable, 0);
2236 }
2237
2238 static struct ftrace_ops *
2239 ftrace_find_tramp_ops_any(struct dyn_ftrace *rec)
2240 {
2241 struct ftrace_ops *op;
2242 unsigned long ip = rec->ip;
2243
2244 do_for_each_ftrace_op(op, ftrace_ops_list) {
2245
2246 if (!op->trampoline)
2247 continue;
2248
2249 if (hash_contains_ip(ip, op->func_hash))
2250 return op;
2251 } while_for_each_ftrace_op(op);
2252
2253 return NULL;
2254 }
2255
2256 static struct ftrace_ops *
2257 ftrace_find_tramp_ops_next(struct dyn_ftrace *rec,
2258 struct ftrace_ops *op)
2259 {
2260 unsigned long ip = rec->ip;
2261
2262 while_for_each_ftrace_op(op) {
2263
2264 if (!op->trampoline)
2265 continue;
2266
2267 if (hash_contains_ip(ip, op->func_hash))
2268 return op;
2269 }
2270
2271 return NULL;
2272 }
2273
2274 static struct ftrace_ops *
2275 ftrace_find_tramp_ops_curr(struct dyn_ftrace *rec)
2276 {
2277 struct ftrace_ops *op;
2278 unsigned long ip = rec->ip;
2279
2280 /*
2281 * Need to check removed ops first.
2282 * If they are being removed, and this rec has a tramp,
2283 * and this rec is in the ops list, then it would be the
2284 * one with the tramp.
2285 */
2286 if (removed_ops) {
2287 if (hash_contains_ip(ip, &removed_ops->old_hash))
2288 return removed_ops;
2289 }
2290
2291 /*
2292 * Need to find the current trampoline for a rec.
2293 * Now, a trampoline is only attached to a rec if there
2294 * was a single 'ops' attached to it. But this can be called
2295 * when we are adding another op to the rec or removing the
2296 * current one. Thus, if the op is being added, we can
2297 * ignore it because it hasn't attached itself to the rec
2298 * yet.
2299 *
2300 * If an ops is being modified (hooking to different functions)
2301 * then we don't care about the new functions that are being
2302 * added, just the old ones (that are probably being removed).
2303 *
2304 * If we are adding an ops to a function that already is using
2305 * a trampoline, it needs to be removed (trampolines are only
2306 * for single ops connected), then an ops that is not being
2307 * modified also needs to be checked.
2308 */
2309 do_for_each_ftrace_op(op, ftrace_ops_list) {
2310
2311 if (!op->trampoline)
2312 continue;
2313
2314 /*
2315 * If the ops is being added, it hasn't gotten to
2316 * the point to be removed from this tree yet.
2317 */
2318 if (op->flags & FTRACE_OPS_FL_ADDING)
2319 continue;
2320
2321
2322 /*
2323 * If the ops is being modified and is in the old
2324 * hash, then it is probably being removed from this
2325 * function.
2326 */
2327 if ((op->flags & FTRACE_OPS_FL_MODIFYING) &&
2328 hash_contains_ip(ip, &op->old_hash))
2329 return op;
2330 /*
2331 * If the ops is not being added or modified, and it's
2332 * in its normal filter hash, then this must be the one
2333 * we want!
2334 */
2335 if (!(op->flags & FTRACE_OPS_FL_MODIFYING) &&
2336 hash_contains_ip(ip, op->func_hash))
2337 return op;
2338
2339 } while_for_each_ftrace_op(op);
2340
2341 return NULL;
2342 }
2343
2344 static struct ftrace_ops *
2345 ftrace_find_tramp_ops_new(struct dyn_ftrace *rec)
2346 {
2347 struct ftrace_ops *op;
2348 unsigned long ip = rec->ip;
2349
2350 do_for_each_ftrace_op(op, ftrace_ops_list) {
2351 /* pass rec in as regs to have non-NULL val */
2352 if (hash_contains_ip(ip, op->func_hash))
2353 return op;
2354 } while_for_each_ftrace_op(op);
2355
2356 return NULL;
2357 }
2358
2359 /**
2360 * ftrace_get_addr_new - Get the call address to set to
2361 * @rec: The ftrace record descriptor
2362 *
2363 * If the record has the FTRACE_FL_REGS set, that means that it
2364 * wants to convert to a callback that saves all regs. If FTRACE_FL_REGS
2365 * is not not set, then it wants to convert to the normal callback.
2366 *
2367 * Returns the address of the trampoline to set to
2368 */
2369 unsigned long ftrace_get_addr_new(struct dyn_ftrace *rec)
2370 {
2371 struct ftrace_ops *ops;
2372
2373 /* Trampolines take precedence over regs */
2374 if (rec->flags & FTRACE_FL_TRAMP) {
2375 ops = ftrace_find_tramp_ops_new(rec);
2376 if (FTRACE_WARN_ON(!ops || !ops->trampoline)) {
2377 pr_warn("Bad trampoline accounting at: %p (%pS) (%lx)\n",
2378 (void *)rec->ip, (void *)rec->ip, rec->flags);
2379 /* Ftrace is shutting down, return anything */
2380 return (unsigned long)FTRACE_ADDR;
2381 }
2382 return ops->trampoline;
2383 }
2384
2385 if (rec->flags & FTRACE_FL_REGS)
2386 return (unsigned long)FTRACE_REGS_ADDR;
2387 else
2388 return (unsigned long)FTRACE_ADDR;
2389 }
2390
2391 /**
2392 * ftrace_get_addr_curr - Get the call address that is already there
2393 * @rec: The ftrace record descriptor
2394 *
2395 * The FTRACE_FL_REGS_EN is set when the record already points to
2396 * a function that saves all the regs. Basically the '_EN' version
2397 * represents the current state of the function.
2398 *
2399 * Returns the address of the trampoline that is currently being called
2400 */
2401 unsigned long ftrace_get_addr_curr(struct dyn_ftrace *rec)
2402 {
2403 struct ftrace_ops *ops;
2404
2405 /* Trampolines take precedence over regs */
2406 if (rec->flags & FTRACE_FL_TRAMP_EN) {
2407 ops = ftrace_find_tramp_ops_curr(rec);
2408 if (FTRACE_WARN_ON(!ops)) {
2409 pr_warn("Bad trampoline accounting at: %p (%pS)\n",
2410 (void *)rec->ip, (void *)rec->ip);
2411 /* Ftrace is shutting down, return anything */
2412 return (unsigned long)FTRACE_ADDR;
2413 }
2414 return ops->trampoline;
2415 }
2416
2417 if (rec->flags & FTRACE_FL_REGS_EN)
2418 return (unsigned long)FTRACE_REGS_ADDR;
2419 else
2420 return (unsigned long)FTRACE_ADDR;
2421 }
2422
2423 static int
2424 __ftrace_replace_code(struct dyn_ftrace *rec, int enable)
2425 {
2426 unsigned long ftrace_old_addr;
2427 unsigned long ftrace_addr;
2428 int ret;
2429
2430 ftrace_addr = ftrace_get_addr_new(rec);
2431
2432 /* This needs to be done before we call ftrace_update_record */
2433 ftrace_old_addr = ftrace_get_addr_curr(rec);
2434
2435 ret = ftrace_update_record(rec, enable);
2436
2437 ftrace_bug_type = FTRACE_BUG_UNKNOWN;
2438
2439 switch (ret) {
2440 case FTRACE_UPDATE_IGNORE:
2441 return 0;
2442
2443 case FTRACE_UPDATE_MAKE_CALL:
2444 ftrace_bug_type = FTRACE_BUG_CALL;
2445 return ftrace_make_call(rec, ftrace_addr);
2446
2447 case FTRACE_UPDATE_MAKE_NOP:
2448 ftrace_bug_type = FTRACE_BUG_NOP;
2449 return ftrace_make_nop(NULL, rec, ftrace_old_addr);
2450
2451 case FTRACE_UPDATE_MODIFY_CALL:
2452 ftrace_bug_type = FTRACE_BUG_UPDATE;
2453 return ftrace_modify_call(rec, ftrace_old_addr, ftrace_addr);
2454 }
2455
2456 return -1; /* unknow ftrace bug */
2457 }
2458
2459 void __weak ftrace_replace_code(int enable)
2460 {
2461 struct dyn_ftrace *rec;
2462 struct ftrace_page *pg;
2463 int failed;
2464
2465 if (unlikely(ftrace_disabled))
2466 return;
2467
2468 do_for_each_ftrace_rec(pg, rec) {
2469
2470 if (rec->flags & FTRACE_FL_DISABLED)
2471 continue;
2472
2473 failed = __ftrace_replace_code(rec, enable);
2474 if (failed) {
2475 ftrace_bug(failed, rec);
2476 /* Stop processing */
2477 return;
2478 }
2479 } while_for_each_ftrace_rec();
2480 }
2481
2482 struct ftrace_rec_iter {
2483 struct ftrace_page *pg;
2484 int index;
2485 };
2486
2487 /**
2488 * ftrace_rec_iter_start, start up iterating over traced functions
2489 *
2490 * Returns an iterator handle that is used to iterate over all
2491 * the records that represent address locations where functions
2492 * are traced.
2493 *
2494 * May return NULL if no records are available.
2495 */
2496 struct ftrace_rec_iter *ftrace_rec_iter_start(void)
2497 {
2498 /*
2499 * We only use a single iterator.
2500 * Protected by the ftrace_lock mutex.
2501 */
2502 static struct ftrace_rec_iter ftrace_rec_iter;
2503 struct ftrace_rec_iter *iter = &ftrace_rec_iter;
2504
2505 iter->pg = ftrace_pages_start;
2506 iter->index = 0;
2507
2508 /* Could have empty pages */
2509 while (iter->pg && !iter->pg->index)
2510 iter->pg = iter->pg->next;
2511
2512 if (!iter->pg)
2513 return NULL;
2514
2515 return iter;
2516 }
2517
2518 /**
2519 * ftrace_rec_iter_next, get the next record to process.
2520 * @iter: The handle to the iterator.
2521 *
2522 * Returns the next iterator after the given iterator @iter.
2523 */
2524 struct ftrace_rec_iter *ftrace_rec_iter_next(struct ftrace_rec_iter *iter)
2525 {
2526 iter->index++;
2527
2528 if (iter->index >= iter->pg->index) {
2529 iter->pg = iter->pg->next;
2530 iter->index = 0;
2531
2532 /* Could have empty pages */
2533 while (iter->pg && !iter->pg->index)
2534 iter->pg = iter->pg->next;
2535 }
2536
2537 if (!iter->pg)
2538 return NULL;
2539
2540 return iter;
2541 }
2542
2543 /**
2544 * ftrace_rec_iter_record, get the record at the iterator location
2545 * @iter: The current iterator location
2546 *
2547 * Returns the record that the current @iter is at.
2548 */
2549 struct dyn_ftrace *ftrace_rec_iter_record(struct ftrace_rec_iter *iter)
2550 {
2551 return &iter->pg->records[iter->index];
2552 }
2553
2554 static int
2555 ftrace_code_disable(struct module *mod, struct dyn_ftrace *rec)
2556 {
2557 int ret;
2558
2559 if (unlikely(ftrace_disabled))
2560 return 0;
2561
2562 ret = ftrace_make_nop(mod, rec, MCOUNT_ADDR);
2563 if (ret) {
2564 ftrace_bug_type = FTRACE_BUG_INIT;
2565 ftrace_bug(ret, rec);
2566 return 0;
2567 }
2568 return 1;
2569 }
2570
2571 /*
2572 * archs can override this function if they must do something
2573 * before the modifying code is performed.
2574 */
2575 int __weak ftrace_arch_code_modify_prepare(void)
2576 {
2577 return 0;
2578 }
2579
2580 /*
2581 * archs can override this function if they must do something
2582 * after the modifying code is performed.
2583 */
2584 int __weak ftrace_arch_code_modify_post_process(void)
2585 {
2586 return 0;
2587 }
2588
2589 void ftrace_modify_all_code(int command)
2590 {
2591 int update = command & FTRACE_UPDATE_TRACE_FUNC;
2592 int err = 0;
2593
2594 /*
2595 * If the ftrace_caller calls a ftrace_ops func directly,
2596 * we need to make sure that it only traces functions it
2597 * expects to trace. When doing the switch of functions,
2598 * we need to update to the ftrace_ops_list_func first
2599 * before the transition between old and new calls are set,
2600 * as the ftrace_ops_list_func will check the ops hashes
2601 * to make sure the ops are having the right functions
2602 * traced.
2603 */
2604 if (update) {
2605 err = ftrace_update_ftrace_func(ftrace_ops_list_func);
2606 if (FTRACE_WARN_ON(err))
2607 return;
2608 }
2609
2610 if (command & FTRACE_UPDATE_CALLS)
2611 ftrace_replace_code(1);
2612 else if (command & FTRACE_DISABLE_CALLS)
2613 ftrace_replace_code(0);
2614
2615 if (update && ftrace_trace_function != ftrace_ops_list_func) {
2616 function_trace_op = set_function_trace_op;
2617 smp_wmb();
2618 /* If irqs are disabled, we are in stop machine */
2619 if (!irqs_disabled())
2620 smp_call_function(ftrace_sync_ipi, NULL, 1);
2621 err = ftrace_update_ftrace_func(ftrace_trace_function);
2622 if (FTRACE_WARN_ON(err))
2623 return;
2624 }
2625
2626 if (command & FTRACE_START_FUNC_RET)
2627 err = ftrace_enable_ftrace_graph_caller();
2628 else if (command & FTRACE_STOP_FUNC_RET)
2629 err = ftrace_disable_ftrace_graph_caller();
2630 FTRACE_WARN_ON(err);
2631 }
2632
2633 static int __ftrace_modify_code(void *data)
2634 {
2635 int *command = data;
2636
2637 ftrace_modify_all_code(*command);
2638
2639 return 0;
2640 }
2641
2642 /**
2643 * ftrace_run_stop_machine, go back to the stop machine method
2644 * @command: The command to tell ftrace what to do
2645 *
2646 * If an arch needs to fall back to the stop machine method, the
2647 * it can call this function.
2648 */
2649 void ftrace_run_stop_machine(int command)
2650 {
2651 stop_machine(__ftrace_modify_code, &command, NULL);
2652 }
2653
2654 /**
2655 * arch_ftrace_update_code, modify the code to trace or not trace
2656 * @command: The command that needs to be done
2657 *
2658 * Archs can override this function if it does not need to
2659 * run stop_machine() to modify code.
2660 */
2661 void __weak arch_ftrace_update_code(int command)
2662 {
2663 ftrace_run_stop_machine(command);
2664 }
2665
2666 static void ftrace_run_update_code(int command)
2667 {
2668 int ret;
2669
2670 ret = ftrace_arch_code_modify_prepare();
2671 FTRACE_WARN_ON(ret);
2672 if (ret)
2673 return;
2674
2675 /*
2676 * By default we use stop_machine() to modify the code.
2677 * But archs can do what ever they want as long as it
2678 * is safe. The stop_machine() is the safest, but also
2679 * produces the most overhead.
2680 */
2681 arch_ftrace_update_code(command);
2682
2683 ret = ftrace_arch_code_modify_post_process();
2684 FTRACE_WARN_ON(ret);
2685 }
2686
2687 static void ftrace_run_modify_code(struct ftrace_ops *ops, int command,
2688 struct ftrace_ops_hash *old_hash)
2689 {
2690 ops->flags |= FTRACE_OPS_FL_MODIFYING;
2691 ops->old_hash.filter_hash = old_hash->filter_hash;
2692 ops->old_hash.notrace_hash = old_hash->notrace_hash;
2693 ftrace_run_update_code(command);
2694 ops->old_hash.filter_hash = NULL;
2695 ops->old_hash.notrace_hash = NULL;
2696 ops->flags &= ~FTRACE_OPS_FL_MODIFYING;
2697 }
2698
2699 static ftrace_func_t saved_ftrace_func;
2700 static int ftrace_start_up;
2701
2702 void __weak arch_ftrace_trampoline_free(struct ftrace_ops *ops)
2703 {
2704 }
2705
2706 static void ftrace_startup_enable(int command)
2707 {
2708 if (saved_ftrace_func != ftrace_trace_function) {
2709 saved_ftrace_func = ftrace_trace_function;
2710 command |= FTRACE_UPDATE_TRACE_FUNC;
2711 }
2712
2713 if (!command || !ftrace_enabled)
2714 return;
2715
2716 ftrace_run_update_code(command);
2717 }
2718
2719 static void ftrace_startup_all(int command)
2720 {
2721 update_all_ops = true;
2722 ftrace_startup_enable(command);
2723 update_all_ops = false;
2724 }
2725
2726 static int ftrace_startup(struct ftrace_ops *ops, int command)
2727 {
2728 int ret;
2729
2730 if (unlikely(ftrace_disabled))
2731 return -ENODEV;
2732
2733 ret = __register_ftrace_function(ops);
2734 if (ret)
2735 return ret;
2736
2737 ftrace_start_up++;
2738
2739 /*
2740 * Note that ftrace probes uses this to start up
2741 * and modify functions it will probe. But we still
2742 * set the ADDING flag for modification, as probes
2743 * do not have trampolines. If they add them in the
2744 * future, then the probes will need to distinguish
2745 * between adding and updating probes.
2746 */
2747 ops->flags |= FTRACE_OPS_FL_ENABLED | FTRACE_OPS_FL_ADDING;
2748
2749 ret = ftrace_hash_ipmodify_enable(ops);
2750 if (ret < 0) {
2751 /* Rollback registration process */
2752 __unregister_ftrace_function(ops);
2753 ftrace_start_up--;
2754 ops->flags &= ~FTRACE_OPS_FL_ENABLED;
2755 return ret;
2756 }
2757
2758 if (ftrace_hash_rec_enable(ops, 1))
2759 command |= FTRACE_UPDATE_CALLS;
2760
2761 ftrace_startup_enable(command);
2762
2763 ops->flags &= ~FTRACE_OPS_FL_ADDING;
2764
2765 return 0;
2766 }
2767
2768 static int ftrace_shutdown(struct ftrace_ops *ops, int command)
2769 {
2770 int ret;
2771
2772 if (unlikely(ftrace_disabled))
2773 return -ENODEV;
2774
2775 ret = __unregister_ftrace_function(ops);
2776 if (ret)
2777 return ret;
2778
2779 ftrace_start_up--;
2780 /*
2781 * Just warn in case of unbalance, no need to kill ftrace, it's not
2782 * critical but the ftrace_call callers may be never nopped again after
2783 * further ftrace uses.
2784 */
2785 WARN_ON_ONCE(ftrace_start_up < 0);
2786
2787 /* Disabling ipmodify never fails */
2788 ftrace_hash_ipmodify_disable(ops);
2789
2790 if (ftrace_hash_rec_disable(ops, 1))
2791 command |= FTRACE_UPDATE_CALLS;
2792
2793 ops->flags &= ~FTRACE_OPS_FL_ENABLED;
2794
2795 if (saved_ftrace_func != ftrace_trace_function) {
2796 saved_ftrace_func = ftrace_trace_function;
2797 command |= FTRACE_UPDATE_TRACE_FUNC;
2798 }
2799
2800 if (!command || !ftrace_enabled) {
2801 /*
2802 * If these are dynamic or per_cpu ops, they still
2803 * need their data freed. Since, function tracing is
2804 * not currently active, we can just free them
2805 * without synchronizing all CPUs.
2806 */
2807 if (ops->flags & FTRACE_OPS_FL_DYNAMIC)
2808 goto free_ops;
2809
2810 return 0;
2811 }
2812
2813 /*
2814 * If the ops uses a trampoline, then it needs to be
2815 * tested first on update.
2816 */
2817 ops->flags |= FTRACE_OPS_FL_REMOVING;
2818 removed_ops = ops;
2819
2820 /* The trampoline logic checks the old hashes */
2821 ops->old_hash.filter_hash = ops->func_hash->filter_hash;
2822 ops->old_hash.notrace_hash = ops->func_hash->notrace_hash;
2823
2824 ftrace_run_update_code(command);
2825
2826 /*
2827 * If there's no more ops registered with ftrace, run a
2828 * sanity check to make sure all rec flags are cleared.
2829 */
2830 if (rcu_dereference_protected(ftrace_ops_list,
2831 lockdep_is_held(&ftrace_lock)) == &ftrace_list_end) {
2832 struct ftrace_page *pg;
2833 struct dyn_ftrace *rec;
2834
2835 do_for_each_ftrace_rec(pg, rec) {
2836 if (FTRACE_WARN_ON_ONCE(rec->flags & ~FTRACE_FL_DISABLED))
2837 pr_warn(" %pS flags:%lx\n",
2838 (void *)rec->ip, rec->flags);
2839 } while_for_each_ftrace_rec();
2840 }
2841
2842 ops->old_hash.filter_hash = NULL;
2843 ops->old_hash.notrace_hash = NULL;
2844
2845 removed_ops = NULL;
2846 ops->flags &= ~FTRACE_OPS_FL_REMOVING;
2847
2848 /*
2849 * Dynamic ops may be freed, we must make sure that all
2850 * callers are done before leaving this function.
2851 * The same goes for freeing the per_cpu data of the per_cpu
2852 * ops.
2853 */
2854 if (ops->flags & FTRACE_OPS_FL_DYNAMIC) {
2855 /*
2856 * We need to do a hard force of sched synchronization.
2857 * This is because we use preempt_disable() to do RCU, but
2858 * the function tracers can be called where RCU is not watching
2859 * (like before user_exit()). We can not rely on the RCU
2860 * infrastructure to do the synchronization, thus we must do it
2861 * ourselves.
2862 */
2863 schedule_on_each_cpu(ftrace_sync);
2864
2865 /*
2866 * When the kernel is preeptive, tasks can be preempted
2867 * while on a ftrace trampoline. Just scheduling a task on
2868 * a CPU is not good enough to flush them. Calling
2869 * synchornize_rcu_tasks() will wait for those tasks to
2870 * execute and either schedule voluntarily or enter user space.
2871 */
2872 if (IS_ENABLED(CONFIG_PREEMPT))
2873 synchronize_rcu_tasks();
2874
2875 free_ops:
2876 arch_ftrace_trampoline_free(ops);
2877 }
2878
2879 return 0;
2880 }
2881
2882 static void ftrace_startup_sysctl(void)
2883 {
2884 int command;
2885
2886 if (unlikely(ftrace_disabled))
2887 return;
2888
2889 /* Force update next time */
2890 saved_ftrace_func = NULL;
2891 /* ftrace_start_up is true if we want ftrace running */
2892 if (ftrace_start_up) {
2893 command = FTRACE_UPDATE_CALLS;
2894 if (ftrace_graph_active)
2895 command |= FTRACE_START_FUNC_RET;
2896 ftrace_startup_enable(command);
2897 }
2898 }
2899
2900 static void ftrace_shutdown_sysctl(void)
2901 {
2902 int command;
2903
2904 if (unlikely(ftrace_disabled))
2905 return;
2906
2907 /* ftrace_start_up is true if ftrace is running */
2908 if (ftrace_start_up) {
2909 command = FTRACE_DISABLE_CALLS;
2910 if (ftrace_graph_active)
2911 command |= FTRACE_STOP_FUNC_RET;
2912 ftrace_run_update_code(command);
2913 }
2914 }
2915
2916 static u64 ftrace_update_time;
2917 unsigned long ftrace_update_tot_cnt;
2918
2919 static inline int ops_traces_mod(struct ftrace_ops *ops)
2920 {
2921 /*
2922 * Filter_hash being empty will default to trace module.
2923 * But notrace hash requires a test of individual module functions.
2924 */
2925 return ftrace_hash_empty(ops->func_hash->filter_hash) &&
2926 ftrace_hash_empty(ops->func_hash->notrace_hash);
2927 }
2928
2929 /*
2930 * Check if the current ops references the record.
2931 *
2932 * If the ops traces all functions, then it was already accounted for.
2933 * If the ops does not trace the current record function, skip it.
2934 * If the ops ignores the function via notrace filter, skip it.
2935 */
2936 static inline bool
2937 ops_references_rec(struct ftrace_ops *ops, struct dyn_ftrace *rec)
2938 {
2939 /* If ops isn't enabled, ignore it */
2940 if (!(ops->flags & FTRACE_OPS_FL_ENABLED))
2941 return 0;
2942
2943 /* If ops traces all then it includes this function */
2944 if (ops_traces_mod(ops))
2945 return 1;
2946
2947 /* The function must be in the filter */
2948 if (!ftrace_hash_empty(ops->func_hash->filter_hash) &&
2949 !__ftrace_lookup_ip(ops->func_hash->filter_hash, rec->ip))
2950 return 0;
2951
2952 /* If in notrace hash, we ignore it too */
2953 if (ftrace_lookup_ip(ops->func_hash->notrace_hash, rec->ip))
2954 return 0;
2955
2956 return 1;
2957 }
2958
2959 static int ftrace_update_code(struct module *mod, struct ftrace_page *new_pgs)
2960 {
2961 struct ftrace_page *pg;
2962 struct dyn_ftrace *p;
2963 u64 start, stop;
2964 unsigned long update_cnt = 0;
2965 unsigned long rec_flags = 0;
2966 int i;
2967
2968 start = ftrace_now(raw_smp_processor_id());
2969
2970 /*
2971 * When a module is loaded, this function is called to convert
2972 * the calls to mcount in its text to nops, and also to create
2973 * an entry in the ftrace data. Now, if ftrace is activated
2974 * after this call, but before the module sets its text to
2975 * read-only, the modification of enabling ftrace can fail if
2976 * the read-only is done while ftrace is converting the calls.
2977 * To prevent this, the module's records are set as disabled
2978 * and will be enabled after the call to set the module's text
2979 * to read-only.
2980 */
2981 if (mod)
2982 rec_flags |= FTRACE_FL_DISABLED;
2983
2984 for (pg = new_pgs; pg; pg = pg->next) {
2985
2986 for (i = 0; i < pg->index; i++) {
2987
2988 /* If something went wrong, bail without enabling anything */
2989 if (unlikely(ftrace_disabled))
2990 return -1;
2991
2992 p = &pg->records[i];
2993 p->flags = rec_flags;
2994
2995 /*
2996 * Do the initial record conversion from mcount jump
2997 * to the NOP instructions.
2998 */
2999 if (!ftrace_code_disable(mod, p))
3000 break;
3001
3002 update_cnt++;
3003 }
3004 }
3005
3006 stop = ftrace_now(raw_smp_processor_id());
3007 ftrace_update_time = stop - start;
3008 ftrace_update_tot_cnt += update_cnt;
3009
3010 return 0;
3011 }
3012
3013 static int ftrace_allocate_records(struct ftrace_page *pg, int count)
3014 {
3015 int order;
3016 int cnt;
3017
3018 if (WARN_ON(!count))
3019 return -EINVAL;
3020
3021 order = get_count_order(DIV_ROUND_UP(count, ENTRIES_PER_PAGE));
3022
3023 /*
3024 * We want to fill as much as possible. No more than a page
3025 * may be empty.
3026 */
3027 while ((PAGE_SIZE << order) / ENTRY_SIZE >= count + ENTRIES_PER_PAGE)
3028 order--;
3029
3030 again:
3031 pg->records = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, order);
3032
3033 if (!pg->records) {
3034 /* if we can't allocate this size, try something smaller */
3035 if (!order)
3036 return -ENOMEM;
3037 order >>= 1;
3038 goto again;
3039 }
3040
3041 cnt = (PAGE_SIZE << order) / ENTRY_SIZE;
3042 pg->size = cnt;
3043
3044 if (cnt > count)
3045 cnt = count;
3046
3047 return cnt;
3048 }
3049
3050 static struct ftrace_page *
3051 ftrace_allocate_pages(unsigned long num_to_init)
3052 {
3053 struct ftrace_page *start_pg;
3054 struct ftrace_page *pg;
3055 int order;
3056 int cnt;
3057
3058 if (!num_to_init)
3059 return 0;
3060
3061 start_pg = pg = kzalloc(sizeof(*pg), GFP_KERNEL);
3062 if (!pg)
3063 return NULL;
3064
3065 /*
3066 * Try to allocate as much as possible in one continues
3067 * location that fills in all of the space. We want to
3068 * waste as little space as possible.
3069 */
3070 for (;;) {
3071 cnt = ftrace_allocate_records(pg, num_to_init);
3072 if (cnt < 0)
3073 goto free_pages;
3074
3075 num_to_init -= cnt;
3076 if (!num_to_init)
3077 break;
3078
3079 pg->next = kzalloc(sizeof(*pg), GFP_KERNEL);
3080 if (!pg->next)
3081 goto free_pages;
3082
3083 pg = pg->next;
3084 }
3085
3086 return start_pg;
3087
3088 free_pages:
3089 pg = start_pg;
3090 while (pg) {
3091 order = get_count_order(pg->size / ENTRIES_PER_PAGE);
3092 free_pages((unsigned long)pg->records, order);
3093 start_pg = pg->next;
3094 kfree(pg);
3095 pg = start_pg;
3096 }
3097 pr_info("ftrace: FAILED to allocate memory for functions\n");
3098 return NULL;
3099 }
3100
3101 #define FTRACE_BUFF_MAX (KSYM_SYMBOL_LEN+4) /* room for wildcards */
3102
3103 struct ftrace_iterator {
3104 loff_t pos;
3105 loff_t func_pos;
3106 loff_t mod_pos;
3107 struct ftrace_page *pg;
3108 struct dyn_ftrace *func;
3109 struct ftrace_func_probe *probe;
3110 struct ftrace_func_entry *probe_entry;
3111 struct trace_parser parser;
3112 struct ftrace_hash *hash;
3113 struct ftrace_ops *ops;
3114 struct trace_array *tr;
3115 struct list_head *mod_list;
3116 int pidx;
3117 int idx;
3118 unsigned flags;
3119 };
3120
3121 static void *
3122 t_probe_next(struct seq_file *m, loff_t *pos)
3123 {
3124 struct ftrace_iterator *iter = m->private;
3125 struct trace_array *tr = iter->ops->private;
3126 struct list_head *func_probes;
3127 struct ftrace_hash *hash;
3128 struct list_head *next;
3129 struct hlist_node *hnd = NULL;
3130 struct hlist_head *hhd;
3131 int size;
3132
3133 (*pos)++;
3134 iter->pos = *pos;
3135
3136 if (!tr)
3137 return NULL;
3138
3139 func_probes = &tr->func_probes;
3140 if (list_empty(func_probes))
3141 return NULL;
3142
3143 if (!iter->probe) {
3144 next = func_probes->next;
3145 iter->probe = list_entry(next, struct ftrace_func_probe, list);
3146 }
3147
3148 if (iter->probe_entry)
3149 hnd = &iter->probe_entry->hlist;
3150
3151 hash = iter->probe->ops.func_hash->filter_hash;
3152 size = 1 << hash->size_bits;
3153
3154 retry:
3155 if (iter->pidx >= size) {
3156 if (iter->probe->list.next == func_probes)
3157 return NULL;
3158 next = iter->probe->list.next;
3159 iter->probe = list_entry(next, struct ftrace_func_probe, list);
3160 hash = iter->probe->ops.func_hash->filter_hash;
3161 size = 1 << hash->size_bits;
3162 iter->pidx = 0;
3163 }
3164
3165 hhd = &hash->buckets[iter->pidx];
3166
3167 if (hlist_empty(hhd)) {
3168 iter->pidx++;
3169 hnd = NULL;
3170 goto retry;
3171 }
3172
3173 if (!hnd)
3174 hnd = hhd->first;
3175 else {
3176 hnd = hnd->next;
3177 if (!hnd) {
3178 iter->pidx++;
3179 goto retry;
3180 }
3181 }
3182
3183 if (WARN_ON_ONCE(!hnd))
3184 return NULL;
3185
3186 iter->probe_entry = hlist_entry(hnd, struct ftrace_func_entry, hlist);
3187
3188 return iter;
3189 }
3190
3191 static void *t_probe_start(struct seq_file *m, loff_t *pos)
3192 {
3193 struct ftrace_iterator *iter = m->private;
3194 void *p = NULL;
3195 loff_t l;
3196
3197 if (!(iter->flags & FTRACE_ITER_DO_PROBES))
3198 return NULL;
3199
3200 if (iter->mod_pos > *pos)
3201 return NULL;
3202
3203 iter->probe = NULL;
3204 iter->probe_entry = NULL;
3205 iter->pidx = 0;
3206 for (l = 0; l <= (*pos - iter->mod_pos); ) {
3207 p = t_probe_next(m, &l);
3208 if (!p)
3209 break;
3210 }
3211 if (!p)
3212 return NULL;
3213
3214 /* Only set this if we have an item */
3215 iter->flags |= FTRACE_ITER_PROBE;
3216
3217 return iter;
3218 }
3219
3220 static int
3221 t_probe_show(struct seq_file *m, struct ftrace_iterator *iter)
3222 {
3223 struct ftrace_func_entry *probe_entry;
3224 struct ftrace_probe_ops *probe_ops;
3225 struct ftrace_func_probe *probe;
3226
3227 probe = iter->probe;
3228 probe_entry = iter->probe_entry;
3229
3230 if (WARN_ON_ONCE(!probe || !probe_entry))
3231 return -EIO;
3232
3233 probe_ops = probe->probe_ops;
3234
3235 if (probe_ops->print)
3236 return probe_ops->print(m, probe_entry->ip, probe_ops, probe->data);
3237
3238 seq_printf(m, "%ps:%ps\n", (void *)probe_entry->ip,
3239 (void *)probe_ops->func);
3240
3241 return 0;
3242 }
3243
3244 static void *
3245 t_mod_next(struct seq_file *m, loff_t *pos)
3246 {
3247 struct ftrace_iterator *iter = m->private;
3248 struct trace_array *tr = iter->tr;
3249
3250 (*pos)++;
3251 iter->pos = *pos;
3252
3253 iter->mod_list = iter->mod_list->next;
3254
3255 if (iter->mod_list == &tr->mod_trace ||
3256 iter->mod_list == &tr->mod_notrace) {
3257 iter->flags &= ~FTRACE_ITER_MOD;
3258 return NULL;
3259 }
3260
3261 iter->mod_pos = *pos;
3262
3263 return iter;
3264 }
3265
3266 static void *t_mod_start(struct seq_file *m, loff_t *pos)
3267 {
3268 struct ftrace_iterator *iter = m->private;
3269 void *p = NULL;
3270 loff_t l;
3271
3272 if (iter->func_pos > *pos)
3273 return NULL;
3274
3275 iter->mod_pos = iter->func_pos;
3276
3277 /* probes are only available if tr is set */
3278 if (!iter->tr)
3279 return NULL;
3280
3281 for (l = 0; l <= (*pos - iter->func_pos); ) {
3282 p = t_mod_next(m, &l);
3283 if (!p)
3284 break;
3285 }
3286 if (!p) {
3287 iter->flags &= ~FTRACE_ITER_MOD;
3288 return t_probe_start(m, pos);
3289 }
3290
3291 /* Only set this if we have an item */
3292 iter->flags |= FTRACE_ITER_MOD;
3293
3294 return iter;
3295 }
3296
3297 static int
3298 t_mod_show(struct seq_file *m, struct ftrace_iterator *iter)
3299 {
3300 struct ftrace_mod_load *ftrace_mod;
3301 struct trace_array *tr = iter->tr;
3302
3303 if (WARN_ON_ONCE(!iter->mod_list) ||
3304 iter->mod_list == &tr->mod_trace ||
3305 iter->mod_list == &tr->mod_notrace)
3306 return -EIO;
3307
3308 ftrace_mod = list_entry(iter->mod_list, struct ftrace_mod_load, list);
3309
3310 if (ftrace_mod->func)
3311 seq_printf(m, "%s", ftrace_mod->func);
3312 else
3313 seq_putc(m, '*');
3314
3315 seq_printf(m, ":mod:%s\n", ftrace_mod->module);
3316
3317 return 0;
3318 }
3319
3320 static void *
3321 t_func_next(struct seq_file *m, loff_t *pos)
3322 {
3323 struct ftrace_iterator *iter = m->private;
3324 struct dyn_ftrace *rec = NULL;
3325
3326 (*pos)++;
3327
3328 retry:
3329 if (iter->idx >= iter->pg->index) {
3330 if (iter->pg->next) {
3331 iter->pg = iter->pg->next;
3332 iter->idx = 0;
3333 goto retry;
3334 }
3335 } else {
3336 rec = &iter->pg->records[iter->idx++];
3337 if (((iter->flags & (FTRACE_ITER_FILTER | FTRACE_ITER_NOTRACE)) &&
3338 !ftrace_lookup_ip(iter->hash, rec->ip)) ||
3339
3340 ((iter->flags & FTRACE_ITER_ENABLED) &&
3341 !(rec->flags & FTRACE_FL_ENABLED))) {
3342
3343 rec = NULL;
3344 goto retry;
3345 }
3346 }
3347
3348 if (!rec)
3349 return NULL;
3350
3351 iter->pos = iter->func_pos = *pos;
3352 iter->func = rec;
3353
3354 return iter;
3355 }
3356
3357 static void *
3358 t_next(struct seq_file *m, void *v, loff_t *pos)
3359 {
3360 struct ftrace_iterator *iter = m->private;
3361 loff_t l = *pos; /* t_probe_start() must use original pos */
3362 void *ret;
3363
3364 if (unlikely(ftrace_disabled))
3365 return NULL;
3366
3367 if (iter->flags & FTRACE_ITER_PROBE)
3368 return t_probe_next(m, pos);
3369
3370 if (iter->flags & FTRACE_ITER_MOD)
3371 return t_mod_next(m, pos);
3372
3373 if (iter->flags & FTRACE_ITER_PRINTALL) {
3374 /* next must increment pos, and t_probe_start does not */
3375 (*pos)++;
3376 return t_mod_start(m, &l);
3377 }
3378
3379 ret = t_func_next(m, pos);
3380
3381 if (!ret)
3382 return t_mod_start(m, &l);
3383
3384 return ret;
3385 }
3386
3387 static void reset_iter_read(struct ftrace_iterator *iter)
3388 {
3389 iter->pos = 0;
3390 iter->func_pos = 0;
3391 iter->flags &= ~(FTRACE_ITER_PRINTALL | FTRACE_ITER_PROBE | FTRACE_ITER_MOD);
3392 }
3393
3394 static void *t_start(struct seq_file *m, loff_t *pos)
3395 {
3396 struct ftrace_iterator *iter = m->private;
3397 void *p = NULL;
3398 loff_t l;
3399
3400 mutex_lock(&ftrace_lock);
3401
3402 if (unlikely(ftrace_disabled))
3403 return NULL;
3404
3405 /*
3406 * If an lseek was done, then reset and start from beginning.
3407 */
3408 if (*pos < iter->pos)
3409 reset_iter_read(iter);
3410
3411 /*
3412 * For set_ftrace_filter reading, if we have the filter
3413 * off, we can short cut and just print out that all
3414 * functions are enabled.
3415 */
3416 if ((iter->flags & (FTRACE_ITER_FILTER | FTRACE_ITER_NOTRACE)) &&
3417 ftrace_hash_empty(iter->hash)) {
3418 iter->func_pos = 1; /* Account for the message */
3419 if (*pos > 0)
3420 return t_mod_start(m, pos);
3421 iter->flags |= FTRACE_ITER_PRINTALL;
3422 /* reset in case of seek/pread */
3423 iter->flags &= ~FTRACE_ITER_PROBE;
3424 return iter;
3425 }
3426
3427 if (iter->flags & FTRACE_ITER_MOD)
3428 return t_mod_start(m, pos);
3429
3430 /*
3431 * Unfortunately, we need to restart at ftrace_pages_start
3432 * every time we let go of the ftrace_mutex. This is because
3433 * those pointers can change without the lock.
3434 */
3435 iter->pg = ftrace_pages_start;
3436 iter->idx = 0;
3437 for (l = 0; l <= *pos; ) {
3438 p = t_func_next(m, &l);
3439 if (!p)
3440 break;
3441 }
3442
3443 if (!p)
3444 return t_mod_start(m, pos);
3445
3446 return iter;
3447 }
3448
3449 static void t_stop(struct seq_file *m, void *p)
3450 {
3451 mutex_unlock(&ftrace_lock);
3452 }
3453
3454 void * __weak
3455 arch_ftrace_trampoline_func(struct ftrace_ops *ops, struct dyn_ftrace *rec)
3456 {
3457 return NULL;
3458 }
3459
3460 static void add_trampoline_func(struct seq_file *m, struct ftrace_ops *ops,
3461 struct dyn_ftrace *rec)
3462 {
3463 void *ptr;
3464
3465 ptr = arch_ftrace_trampoline_func(ops, rec);
3466 if (ptr)
3467 seq_printf(m, " ->%pS", ptr);
3468 }
3469
3470 static int t_show(struct seq_file *m, void *v)
3471 {
3472 struct ftrace_iterator *iter = m->private;
3473 struct dyn_ftrace *rec;
3474
3475 if (iter->flags & FTRACE_ITER_PROBE)
3476 return t_probe_show(m, iter);
3477
3478 if (iter->flags & FTRACE_ITER_MOD)
3479 return t_mod_show(m, iter);
3480
3481 if (iter->flags & FTRACE_ITER_PRINTALL) {
3482 if (iter->flags & FTRACE_ITER_NOTRACE)
3483 seq_puts(m, "#### no functions disabled ####\n");
3484 else
3485 seq_puts(m, "#### all functions enabled ####\n");
3486 return 0;
3487 }
3488
3489 rec = iter->func;
3490
3491 if (!rec)
3492 return 0;
3493
3494 seq_printf(m, "%ps", (void *)rec->ip);
3495 if (iter->flags & FTRACE_ITER_ENABLED) {
3496 struct ftrace_ops *ops;
3497
3498 seq_printf(m, " (%ld)%s%s",
3499 ftrace_rec_count(rec),
3500 rec->flags & FTRACE_FL_REGS ? " R" : " ",
3501 rec->flags & FTRACE_FL_IPMODIFY ? " I" : " ");
3502 if (rec->flags & FTRACE_FL_TRAMP_EN) {
3503 ops = ftrace_find_tramp_ops_any(rec);
3504 if (ops) {
3505 do {
3506 seq_printf(m, "\ttramp: %pS (%pS)",
3507 (void *)ops->trampoline,
3508 (void *)ops->func);
3509 add_trampoline_func(m, ops, rec);
3510 ops = ftrace_find_tramp_ops_next(rec, ops);
3511 } while (ops);
3512 } else
3513 seq_puts(m, "\ttramp: ERROR!");
3514 } else {
3515 add_trampoline_func(m, NULL, rec);
3516 }
3517 }
3518
3519 seq_putc(m, '\n');
3520
3521 return 0;
3522 }
3523
3524 static const struct seq_operations show_ftrace_seq_ops = {
3525 .start = t_start,
3526 .next = t_next,
3527 .stop = t_stop,
3528 .show = t_show,
3529 };
3530
3531 static int
3532 ftrace_avail_open(struct inode *inode, struct file *file)
3533 {
3534 struct ftrace_iterator *iter;
3535
3536 if (unlikely(ftrace_disabled))
3537 return -ENODEV;
3538
3539 iter = __seq_open_private(file, &show_ftrace_seq_ops, sizeof(*iter));
3540 if (!iter)
3541 return -ENOMEM;
3542
3543 iter->pg = ftrace_pages_start;
3544 iter->ops = &global_ops;
3545
3546 return 0;
3547 }
3548
3549 static int
3550 ftrace_enabled_open(struct inode *inode, struct file *file)
3551 {
3552 struct ftrace_iterator *iter;
3553
3554 iter = __seq_open_private(file, &show_ftrace_seq_ops, sizeof(*iter));
3555 if (!iter)
3556 return -ENOMEM;
3557
3558 iter->pg = ftrace_pages_start;
3559 iter->flags = FTRACE_ITER_ENABLED;
3560 iter->ops = &global_ops;
3561
3562 return 0;
3563 }
3564
3565 /**
3566 * ftrace_regex_open - initialize function tracer filter files
3567 * @ops: The ftrace_ops that hold the hash filters
3568 * @flag: The type of filter to process
3569 * @inode: The inode, usually passed in to your open routine
3570 * @file: The file, usually passed in to your open routine
3571 *
3572 * ftrace_regex_open() initializes the filter files for the
3573 * @ops. Depending on @flag it may process the filter hash or
3574 * the notrace hash of @ops. With this called from the open
3575 * routine, you can use ftrace_filter_write() for the write
3576 * routine if @flag has FTRACE_ITER_FILTER set, or
3577 * ftrace_notrace_write() if @flag has FTRACE_ITER_NOTRACE set.
3578 * tracing_lseek() should be used as the lseek routine, and
3579 * release must call ftrace_regex_release().
3580 */
3581 int
3582 ftrace_regex_open(struct ftrace_ops *ops, int flag,
3583 struct inode *inode, struct file *file)
3584 {
3585 struct ftrace_iterator *iter;
3586 struct ftrace_hash *hash;
3587 struct list_head *mod_head;
3588 struct trace_array *tr = ops->private;
3589 int ret = 0;
3590
3591 ftrace_ops_init(ops);
3592
3593 if (unlikely(ftrace_disabled))
3594 return -ENODEV;
3595
3596 iter = kzalloc(sizeof(*iter), GFP_KERNEL);
3597 if (!iter)
3598 return -ENOMEM;
3599
3600 if (trace_parser_get_init(&iter->parser, FTRACE_BUFF_MAX)) {
3601 kfree(iter);
3602 return -ENOMEM;
3603 }
3604
3605 iter->ops = ops;
3606 iter->flags = flag;
3607 iter->tr = tr;
3608
3609 mutex_lock(&ops->func_hash->regex_lock);
3610
3611 if (flag & FTRACE_ITER_NOTRACE) {
3612 hash = ops->func_hash->notrace_hash;
3613 mod_head = tr ? &tr->mod_notrace : NULL;
3614 } else {
3615 hash = ops->func_hash->filter_hash;
3616 mod_head = tr ? &tr->mod_trace : NULL;
3617 }
3618
3619 iter->mod_list = mod_head;
3620
3621 if (file->f_mode & FMODE_WRITE) {
3622 const int size_bits = FTRACE_HASH_DEFAULT_BITS;
3623
3624 if (file->f_flags & O_TRUNC) {
3625 iter->hash = alloc_ftrace_hash(size_bits);
3626 clear_ftrace_mod_list(mod_head);
3627 } else {
3628 iter->hash = alloc_and_copy_ftrace_hash(size_bits, hash);
3629 }
3630
3631 if (!iter->hash) {
3632 trace_parser_put(&iter->parser);
3633 kfree(iter);
3634 ret = -ENOMEM;
3635 goto out_unlock;
3636 }
3637 } else
3638 iter->hash = hash;
3639
3640 if (file->f_mode & FMODE_READ) {
3641 iter->pg = ftrace_pages_start;
3642
3643 ret = seq_open(file, &show_ftrace_seq_ops);
3644 if (!ret) {
3645 struct seq_file *m = file->private_data;
3646 m->private = iter;
3647 } else {
3648 /* Failed */
3649 free_ftrace_hash(iter->hash);
3650 trace_parser_put(&iter->parser);
3651 kfree(iter);
3652 }
3653 } else
3654 file->private_data = iter;
3655
3656 out_unlock:
3657 mutex_unlock(&ops->func_hash->regex_lock);
3658
3659 return ret;
3660 }
3661
3662 static int
3663 ftrace_filter_open(struct inode *inode, struct file *file)
3664 {
3665 struct ftrace_ops *ops = inode->i_private;
3666
3667 return ftrace_regex_open(ops,
3668 FTRACE_ITER_FILTER | FTRACE_ITER_DO_PROBES,
3669 inode, file);
3670 }
3671
3672 static int
3673 ftrace_notrace_open(struct inode *inode, struct file *file)
3674 {
3675 struct ftrace_ops *ops = inode->i_private;
3676
3677 return ftrace_regex_open(ops, FTRACE_ITER_NOTRACE,
3678 inode, file);
3679 }
3680
3681 /* Type for quick search ftrace basic regexes (globs) from filter_parse_regex */
3682 struct ftrace_glob {
3683 char *search;
3684 unsigned len;
3685 int type;
3686 };
3687
3688 /*
3689 * If symbols in an architecture don't correspond exactly to the user-visible
3690 * name of what they represent, it is possible to define this function to
3691 * perform the necessary adjustments.
3692 */
3693 char * __weak arch_ftrace_match_adjust(char *str, const char *search)
3694 {
3695 return str;
3696 }
3697
3698 static int ftrace_match(char *str, struct ftrace_glob *g)
3699 {
3700 int matched = 0;
3701 int slen;
3702
3703 str = arch_ftrace_match_adjust(str, g->search);
3704
3705 switch (g->type) {
3706 case MATCH_FULL:
3707 if (strcmp(str, g->search) == 0)
3708 matched = 1;
3709 break;
3710 case MATCH_FRONT_ONLY:
3711 if (strncmp(str, g->search, g->len) == 0)
3712 matched = 1;
3713 break;
3714 case MATCH_MIDDLE_ONLY:
3715 if (strstr(str, g->search))
3716 matched = 1;
3717 break;
3718 case MATCH_END_ONLY:
3719 slen = strlen(str);
3720 if (slen >= g->len &&
3721 memcmp(str + slen - g->len, g->search, g->len) == 0)
3722 matched = 1;
3723 break;
3724 case MATCH_GLOB:
3725 if (glob_match(g->search, str))
3726 matched = 1;
3727 break;
3728 }
3729
3730 return matched;
3731 }
3732
3733 static int
3734 enter_record(struct ftrace_hash *hash, struct dyn_ftrace *rec, int clear_filter)
3735 {
3736 struct ftrace_func_entry *entry;
3737 int ret = 0;
3738
3739 entry = ftrace_lookup_ip(hash, rec->ip);
3740 if (clear_filter) {
3741 /* Do nothing if it doesn't exist */
3742 if (!entry)
3743 return 0;
3744
3745 free_hash_entry(hash, entry);
3746 } else {
3747 /* Do nothing if it exists */
3748 if (entry)
3749 return 0;
3750
3751 ret = add_hash_entry(hash, rec->ip);
3752 }
3753 return ret;
3754 }
3755
3756 static int
3757 ftrace_match_record(struct dyn_ftrace *rec, struct ftrace_glob *func_g,
3758 struct ftrace_glob *mod_g, int exclude_mod)
3759 {
3760 char str[KSYM_SYMBOL_LEN];
3761 char *modname;
3762
3763 kallsyms_lookup(rec->ip, NULL, NULL, &modname, str);
3764
3765 if (mod_g) {
3766 int mod_matches = (modname) ? ftrace_match(modname, mod_g) : 0;
3767
3768 /* blank module name to match all modules */
3769 if (!mod_g->len) {
3770 /* blank module globbing: modname xor exclude_mod */
3771 if (!exclude_mod != !modname)
3772 goto func_match;
3773 return 0;
3774 }
3775
3776 /*
3777 * exclude_mod is set to trace everything but the given
3778 * module. If it is set and the module matches, then
3779 * return 0. If it is not set, and the module doesn't match
3780 * also return 0. Otherwise, check the function to see if
3781 * that matches.
3782 */
3783 if (!mod_matches == !exclude_mod)
3784 return 0;
3785 func_match:
3786 /* blank search means to match all funcs in the mod */
3787 if (!func_g->len)
3788 return 1;
3789 }
3790
3791 return ftrace_match(str, func_g);
3792 }
3793
3794 static int
3795 match_records(struct ftrace_hash *hash, char *func, int len, char *mod)
3796 {
3797 struct ftrace_page *pg;
3798 struct dyn_ftrace *rec;
3799 struct ftrace_glob func_g = { .type = MATCH_FULL };
3800 struct ftrace_glob mod_g = { .type = MATCH_FULL };
3801 struct ftrace_glob *mod_match = (mod) ? &mod_g : NULL;
3802 int exclude_mod = 0;
3803 int found = 0;
3804 int ret;
3805 int clear_filter = 0;
3806
3807 if (func) {
3808 func_g.type = filter_parse_regex(func, len, &func_g.search,
3809 &clear_filter);
3810 func_g.len = strlen(func_g.search);
3811 }
3812
3813 if (mod) {
3814 mod_g.type = filter_parse_regex(mod, strlen(mod),
3815 &mod_g.search, &exclude_mod);
3816 mod_g.len = strlen(mod_g.search);
3817 }
3818
3819 mutex_lock(&ftrace_lock);
3820
3821 if (unlikely(ftrace_disabled))
3822 goto out_unlock;
3823
3824 do_for_each_ftrace_rec(pg, rec) {
3825
3826 if (rec->flags & FTRACE_FL_DISABLED)
3827 continue;
3828
3829 if (ftrace_match_record(rec, &func_g, mod_match, exclude_mod)) {
3830 ret = enter_record(hash, rec, clear_filter);
3831 if (ret < 0) {
3832 found = ret;
3833 goto out_unlock;
3834 }
3835 found = 1;
3836 }
3837 } while_for_each_ftrace_rec();
3838 out_unlock:
3839 mutex_unlock(&ftrace_lock);
3840
3841 return found;
3842 }
3843
3844 static int
3845 ftrace_match_records(struct ftrace_hash *hash, char *buff, int len)
3846 {
3847 return match_records(hash, buff, len, NULL);
3848 }
3849
3850 static void ftrace_ops_update_code(struct ftrace_ops *ops,
3851 struct ftrace_ops_hash *old_hash)
3852 {
3853 struct ftrace_ops *op;
3854
3855 if (!ftrace_enabled)
3856 return;
3857
3858 if (ops->flags & FTRACE_OPS_FL_ENABLED) {
3859 ftrace_run_modify_code(ops, FTRACE_UPDATE_CALLS, old_hash);
3860 return;
3861 }
3862
3863 /*
3864 * If this is the shared global_ops filter, then we need to
3865 * check if there is another ops that shares it, is enabled.
3866 * If so, we still need to run the modify code.
3867 */
3868 if (ops->func_hash != &global_ops.local_hash)
3869 return;
3870
3871 do_for_each_ftrace_op(op, ftrace_ops_list) {
3872 if (op->func_hash == &global_ops.local_hash &&
3873 op->flags & FTRACE_OPS_FL_ENABLED) {
3874 ftrace_run_modify_code(op, FTRACE_UPDATE_CALLS, old_hash);
3875 /* Only need to do this once */
3876 return;
3877 }
3878 } while_for_each_ftrace_op(op);
3879 }
3880
3881 static int ftrace_hash_move_and_update_ops(struct ftrace_ops *ops,
3882 struct ftrace_hash **orig_hash,
3883 struct ftrace_hash *hash,
3884 int enable)
3885 {
3886 struct ftrace_ops_hash old_hash_ops;
3887 struct ftrace_hash *old_hash;
3888 int ret;
3889
3890 old_hash = *orig_hash;
3891 old_hash_ops.filter_hash = ops->func_hash->filter_hash;
3892 old_hash_ops.notrace_hash = ops->func_hash->notrace_hash;
3893 ret = ftrace_hash_move(ops, enable, orig_hash, hash);
3894 if (!ret) {
3895 ftrace_ops_update_code(ops, &old_hash_ops);
3896 free_ftrace_hash_rcu(old_hash);
3897 }
3898 return ret;
3899 }
3900
3901 static bool module_exists(const char *module)
3902 {
3903 /* All modules have the symbol __this_module */
3904 const char this_mod[] = "__this_module";
3905 const int modname_size = MAX_PARAM_PREFIX_LEN + sizeof(this_mod) + 1;
3906 char modname[modname_size + 1];
3907 unsigned long val;
3908 int n;
3909
3910 n = snprintf(modname, modname_size + 1, "%s:%s", module, this_mod);
3911
3912 if (n > modname_size)
3913 return false;
3914
3915 val = module_kallsyms_lookup_name(modname);
3916 return val != 0;
3917 }
3918
3919 static int cache_mod(struct trace_array *tr,
3920 const char *func, char *module, int enable)
3921 {
3922 struct ftrace_mod_load *ftrace_mod, *n;
3923 struct list_head *head = enable ? &tr->mod_trace : &tr->mod_notrace;
3924 int ret;
3925
3926 mutex_lock(&ftrace_lock);
3927
3928 /* We do not cache inverse filters */
3929 if (func[0] == '!') {
3930 func++;
3931 ret = -EINVAL;
3932
3933 /* Look to remove this hash */
3934 list_for_each_entry_safe(ftrace_mod, n, head, list) {
3935 if (strcmp(ftrace_mod->module, module) != 0)
3936 continue;
3937
3938 /* no func matches all */
3939 if (strcmp(func, "*") == 0 ||
3940 (ftrace_mod->func &&
3941 strcmp(ftrace_mod->func, func) == 0)) {
3942 ret = 0;
3943 free_ftrace_mod(ftrace_mod);
3944 continue;
3945 }
3946 }
3947 goto out;
3948 }
3949
3950 ret = -EINVAL;
3951 /* We only care about modules that have not been loaded yet */
3952 if (module_exists(module))
3953 goto out;
3954
3955 /* Save this string off, and execute it when the module is loaded */
3956 ret = ftrace_add_mod(tr, func, module, enable);
3957 out:
3958 mutex_unlock(&ftrace_lock);
3959
3960 return ret;
3961 }
3962
3963 static int
3964 ftrace_set_regex(struct ftrace_ops *ops, unsigned char *buf, int len,
3965 int reset, int enable);
3966
3967 #ifdef CONFIG_MODULES
3968 static void process_mod_list(struct list_head *head, struct ftrace_ops *ops,
3969 char *mod, bool enable)
3970 {
3971 struct ftrace_mod_load *ftrace_mod, *n;
3972 struct ftrace_hash **orig_hash, *new_hash;
3973 LIST_HEAD(process_mods);
3974 char *func;
3975 int ret;
3976
3977 mutex_lock(&ops->func_hash->regex_lock);
3978
3979 if (enable)
3980 orig_hash = &ops->func_hash->filter_hash;
3981 else
3982 orig_hash = &ops->func_hash->notrace_hash;
3983
3984 new_hash = alloc_and_copy_ftrace_hash(FTRACE_HASH_DEFAULT_BITS,
3985 *orig_hash);
3986 if (!new_hash)
3987 goto out; /* warn? */
3988
3989 mutex_lock(&ftrace_lock);
3990
3991 list_for_each_entry_safe(ftrace_mod, n, head, list) {
3992
3993 if (strcmp(ftrace_mod->module, mod) != 0)
3994 continue;
3995
3996 if (ftrace_mod->func)
3997 func = kstrdup(ftrace_mod->func, GFP_KERNEL);
3998 else
3999 func = kstrdup("*", GFP_KERNEL);
4000
4001 if (!func) /* warn? */
4002 continue;
4003
4004 list_del(&ftrace_mod->list);
4005 list_add(&ftrace_mod->list, &process_mods);
4006
4007 /* Use the newly allocated func, as it may be "*" */
4008 kfree(ftrace_mod->func);
4009 ftrace_mod->func = func;
4010 }
4011
4012 mutex_unlock(&ftrace_lock);
4013
4014 list_for_each_entry_safe(ftrace_mod, n, &process_mods, list) {
4015
4016 func = ftrace_mod->func;
4017
4018 /* Grabs ftrace_lock, which is why we have this extra step */
4019 match_records(new_hash, func, strlen(func), mod);
4020 free_ftrace_mod(ftrace_mod);
4021 }
4022
4023 if (enable && list_empty(head))
4024 new_hash->flags &= ~FTRACE_HASH_FL_MOD;
4025
4026 mutex_lock(&ftrace_lock);
4027
4028 ret = ftrace_hash_move_and_update_ops(ops, orig_hash,
4029 new_hash, enable);
4030 mutex_unlock(&ftrace_lock);
4031
4032 out:
4033 mutex_unlock(&ops->func_hash->regex_lock);
4034
4035 free_ftrace_hash(new_hash);
4036 }
4037
4038 static void process_cached_mods(const char *mod_name)
4039 {
4040 struct trace_array *tr;
4041 char *mod;
4042
4043 mod = kstrdup(mod_name, GFP_KERNEL);
4044 if (!mod)
4045 return;
4046
4047 mutex_lock(&trace_types_lock);
4048 list_for_each_entry(tr, &ftrace_trace_arrays, list) {
4049 if (!list_empty(&tr->mod_trace))
4050 process_mod_list(&tr->mod_trace, tr->ops, mod, true);
4051 if (!list_empty(&tr->mod_notrace))
4052 process_mod_list(&tr->mod_notrace, tr->ops, mod, false);
4053 }
4054 mutex_unlock(&trace_types_lock);
4055
4056 kfree(mod);
4057 }
4058 #endif
4059
4060 /*
4061 * We register the module command as a template to show others how
4062 * to register the a command as well.
4063 */
4064
4065 static int
4066 ftrace_mod_callback(struct trace_array *tr, struct ftrace_hash *hash,
4067 char *func_orig, char *cmd, char *module, int enable)
4068 {
4069 char *func;
4070 int ret;
4071
4072 /* match_records() modifies func, and we need the original */
4073 func = kstrdup(func_orig, GFP_KERNEL);
4074 if (!func)
4075 return -ENOMEM;
4076
4077 /*
4078 * cmd == 'mod' because we only registered this func
4079 * for the 'mod' ftrace_func_command.
4080 * But if you register one func with multiple commands,
4081 * you can tell which command was used by the cmd
4082 * parameter.
4083 */
4084 ret = match_records(hash, func, strlen(func), module);
4085 kfree(func);
4086
4087 if (!ret)
4088 return cache_mod(tr, func_orig, module, enable);
4089 if (ret < 0)
4090 return ret;
4091 return 0;
4092 }
4093
4094 static struct ftrace_func_command ftrace_mod_cmd = {
4095 .name = "mod",
4096 .func = ftrace_mod_callback,
4097 };
4098
4099 static int __init ftrace_mod_cmd_init(void)
4100 {
4101 return register_ftrace_command(&ftrace_mod_cmd);
4102 }
4103 core_initcall(ftrace_mod_cmd_init);
4104
4105 static void function_trace_probe_call(unsigned long ip, unsigned long parent_ip,
4106 struct ftrace_ops *op, struct pt_regs *pt_regs)
4107 {
4108 struct ftrace_probe_ops *probe_ops;
4109 struct ftrace_func_probe *probe;
4110
4111 probe = container_of(op, struct ftrace_func_probe, ops);
4112 probe_ops = probe->probe_ops;
4113
4114 /*
4115 * Disable preemption for these calls to prevent a RCU grace
4116 * period. This syncs the hash iteration and freeing of items
4117 * on the hash. rcu_read_lock is too dangerous here.
4118 */
4119 preempt_disable_notrace();
4120 probe_ops->func(ip, parent_ip, probe->tr, probe_ops, probe->data);
4121 preempt_enable_notrace();
4122 }
4123
4124 struct ftrace_func_map {
4125 struct ftrace_func_entry entry;
4126 void *data;
4127 };
4128
4129 struct ftrace_func_mapper {
4130 struct ftrace_hash hash;
4131 };
4132
4133 /**
4134 * allocate_ftrace_func_mapper - allocate a new ftrace_func_mapper
4135 *
4136 * Returns a ftrace_func_mapper descriptor that can be used to map ips to data.
4137 */
4138 struct ftrace_func_mapper *allocate_ftrace_func_mapper(void)
4139 {
4140 struct ftrace_hash *hash;
4141
4142 /*
4143 * The mapper is simply a ftrace_hash, but since the entries
4144 * in the hash are not ftrace_func_entry type, we define it
4145 * as a separate structure.
4146 */
4147 hash = alloc_ftrace_hash(FTRACE_HASH_DEFAULT_BITS);
4148 return (struct ftrace_func_mapper *)hash;
4149 }
4150
4151 /**
4152 * ftrace_func_mapper_find_ip - Find some data mapped to an ip
4153 * @mapper: The mapper that has the ip maps
4154 * @ip: the instruction pointer to find the data for
4155 *
4156 * Returns the data mapped to @ip if found otherwise NULL. The return
4157 * is actually the address of the mapper data pointer. The address is
4158 * returned for use cases where the data is no bigger than a long, and
4159 * the user can use the data pointer as its data instead of having to
4160 * allocate more memory for the reference.
4161 */
4162 void **ftrace_func_mapper_find_ip(struct ftrace_func_mapper *mapper,
4163 unsigned long ip)
4164 {
4165 struct ftrace_func_entry *entry;
4166 struct ftrace_func_map *map;
4167
4168 entry = ftrace_lookup_ip(&mapper->hash, ip);
4169 if (!entry)
4170 return NULL;
4171
4172 map = (struct ftrace_func_map *)entry;
4173 return &map->data;
4174 }
4175
4176 /**
4177 * ftrace_func_mapper_add_ip - Map some data to an ip
4178 * @mapper: The mapper that has the ip maps
4179 * @ip: The instruction pointer address to map @data to
4180 * @data: The data to map to @ip
4181 *
4182 * Returns 0 on succes otherwise an error.
4183 */
4184 int ftrace_func_mapper_add_ip(struct ftrace_func_mapper *mapper,
4185 unsigned long ip, void *data)
4186 {
4187 struct ftrace_func_entry *entry;
4188 struct ftrace_func_map *map;
4189
4190 entry = ftrace_lookup_ip(&mapper->hash, ip);
4191 if (entry)
4192 return -EBUSY;
4193
4194 map = kmalloc(sizeof(*map), GFP_KERNEL);
4195 if (!map)
4196 return -ENOMEM;
4197
4198 map->entry.ip = ip;
4199 map->data = data;
4200
4201 __add_hash_entry(&mapper->hash, &map->entry);
4202
4203 return 0;
4204 }
4205
4206 /**
4207 * ftrace_func_mapper_remove_ip - Remove an ip from the mapping
4208 * @mapper: The mapper that has the ip maps
4209 * @ip: The instruction pointer address to remove the data from
4210 *
4211 * Returns the data if it is found, otherwise NULL.
4212 * Note, if the data pointer is used as the data itself, (see
4213 * ftrace_func_mapper_find_ip(), then the return value may be meaningless,
4214 * if the data pointer was set to zero.
4215 */
4216 void *ftrace_func_mapper_remove_ip(struct ftrace_func_mapper *mapper,
4217 unsigned long ip)
4218 {
4219 struct ftrace_func_entry *entry;
4220 struct ftrace_func_map *map;
4221 void *data;
4222
4223 entry = ftrace_lookup_ip(&mapper->hash, ip);
4224 if (!entry)
4225 return NULL;
4226
4227 map = (struct ftrace_func_map *)entry;
4228 data = map->data;
4229
4230 remove_hash_entry(&mapper->hash, entry);
4231 kfree(entry);
4232
4233 return data;
4234 }
4235
4236 /**
4237 * free_ftrace_func_mapper - free a mapping of ips and data
4238 * @mapper: The mapper that has the ip maps
4239 * @free_func: A function to be called on each data item.
4240 *
4241 * This is used to free the function mapper. The @free_func is optional
4242 * and can be used if the data needs to be freed as well.
4243 */
4244 void free_ftrace_func_mapper(struct ftrace_func_mapper *mapper,
4245 ftrace_mapper_func free_func)
4246 {
4247 struct ftrace_func_entry *entry;
4248 struct ftrace_func_map *map;
4249 struct hlist_head *hhd;
4250 int size = 1 << mapper->hash.size_bits;
4251 int i;
4252
4253 if (free_func && mapper->hash.count) {
4254 for (i = 0; i < size; i++) {
4255 hhd = &mapper->hash.buckets[i];
4256 hlist_for_each_entry(entry, hhd, hlist) {
4257 map = (struct ftrace_func_map *)entry;
4258 free_func(map);
4259 }
4260 }
4261 }
4262 free_ftrace_hash(&mapper->hash);
4263 }
4264
4265 static void release_probe(struct ftrace_func_probe *probe)
4266 {
4267 struct ftrace_probe_ops *probe_ops;
4268
4269 mutex_lock(&ftrace_lock);
4270
4271 WARN_ON(probe->ref <= 0);
4272
4273 /* Subtract the ref that was used to protect this instance */
4274 probe->ref--;
4275
4276 if (!probe->ref) {
4277 probe_ops = probe->probe_ops;
4278 /*
4279 * Sending zero as ip tells probe_ops to free
4280 * the probe->data itself
4281 */
4282 if (probe_ops->free)
4283 probe_ops->free(probe_ops, probe->tr, 0, probe->data);
4284 list_del(&probe->list);
4285 kfree(probe);
4286 }
4287 mutex_unlock(&ftrace_lock);
4288 }
4289
4290 static void acquire_probe_locked(struct ftrace_func_probe *probe)
4291 {
4292 /*
4293 * Add one ref to keep it from being freed when releasing the
4294 * ftrace_lock mutex.
4295 */
4296 probe->ref++;
4297 }
4298
4299 int
4300 register_ftrace_function_probe(char *glob, struct trace_array *tr,
4301 struct ftrace_probe_ops *probe_ops,
4302 void *data)
4303 {
4304 struct ftrace_func_entry *entry;
4305 struct ftrace_func_probe *probe;
4306 struct ftrace_hash **orig_hash;
4307 struct ftrace_hash *old_hash;
4308 struct ftrace_hash *hash;
4309 int count = 0;
4310 int size;
4311 int ret;
4312 int i;
4313
4314 if (WARN_ON(!tr))
4315 return -EINVAL;
4316
4317 /* We do not support '!' for function probes */
4318 if (WARN_ON(glob[0] == '!'))
4319 return -EINVAL;
4320
4321
4322 mutex_lock(&ftrace_lock);
4323 /* Check if the probe_ops is already registered */
4324 list_for_each_entry(probe, &tr->func_probes, list) {
4325 if (probe->probe_ops == probe_ops)
4326 break;
4327 }
4328 if (&probe->list == &tr->func_probes) {
4329 probe = kzalloc(sizeof(*probe), GFP_KERNEL);
4330 if (!probe) {
4331 mutex_unlock(&ftrace_lock);
4332 return -ENOMEM;
4333 }
4334 probe->probe_ops = probe_ops;
4335 probe->ops.func = function_trace_probe_call;
4336 probe->tr = tr;
4337 ftrace_ops_init(&probe->ops);
4338 list_add(&probe->list, &tr->func_probes);
4339 }
4340
4341 acquire_probe_locked(probe);
4342
4343 mutex_unlock(&ftrace_lock);
4344
4345 mutex_lock(&probe->ops.func_hash->regex_lock);
4346
4347 orig_hash = &probe->ops.func_hash->filter_hash;
4348 old_hash = *orig_hash;
4349 hash = alloc_and_copy_ftrace_hash(FTRACE_HASH_DEFAULT_BITS, old_hash);
4350
4351 ret = ftrace_match_records(hash, glob, strlen(glob));
4352
4353 /* Nothing found? */
4354 if (!ret)
4355 ret = -EINVAL;
4356
4357 if (ret < 0)
4358 goto out;
4359
4360 size = 1 << hash->size_bits;
4361 for (i = 0; i < size; i++) {
4362 hlist_for_each_entry(entry, &hash->buckets[i], hlist) {
4363 if (ftrace_lookup_ip(old_hash, entry->ip))
4364 continue;
4365 /*
4366 * The caller might want to do something special
4367 * for each function we find. We call the callback
4368 * to give the caller an opportunity to do so.
4369 */
4370 if (probe_ops->init) {
4371 ret = probe_ops->init(probe_ops, tr,
4372 entry->ip, data,
4373 &probe->data);
4374 if (ret < 0) {
4375 if (probe_ops->free && count)
4376 probe_ops->free(probe_ops, tr,
4377 0, probe->data);
4378 probe->data = NULL;
4379 goto out;
4380 }
4381 }
4382 count++;
4383 }
4384 }
4385
4386 mutex_lock(&ftrace_lock);
4387
4388 if (!count) {
4389 /* Nothing was added? */
4390 ret = -EINVAL;
4391 goto out_unlock;
4392 }
4393
4394 ret = ftrace_hash_move_and_update_ops(&probe->ops, orig_hash,
4395 hash, 1);
4396 if (ret < 0)
4397 goto err_unlock;
4398
4399 /* One ref for each new function traced */
4400 probe->ref += count;
4401
4402 if (!(probe->ops.flags & FTRACE_OPS_FL_ENABLED))
4403 ret = ftrace_startup(&probe->ops, 0);
4404
4405 out_unlock:
4406 mutex_unlock(&ftrace_lock);
4407
4408 if (!ret)
4409 ret = count;
4410 out:
4411 mutex_unlock(&probe->ops.func_hash->regex_lock);
4412 free_ftrace_hash(hash);
4413
4414 release_probe(probe);
4415
4416 return ret;
4417
4418 err_unlock:
4419 if (!probe_ops->free || !count)
4420 goto out_unlock;
4421
4422 /* Failed to do the move, need to call the free functions */
4423 for (i = 0; i < size; i++) {
4424 hlist_for_each_entry(entry, &hash->buckets[i], hlist) {
4425 if (ftrace_lookup_ip(old_hash, entry->ip))
4426 continue;
4427 probe_ops->free(probe_ops, tr, entry->ip, probe->data);
4428 }
4429 }
4430 goto out_unlock;
4431 }
4432
4433 int
4434 unregister_ftrace_function_probe_func(char *glob, struct trace_array *tr,
4435 struct ftrace_probe_ops *probe_ops)
4436 {
4437 struct ftrace_ops_hash old_hash_ops;
4438 struct ftrace_func_entry *entry;
4439 struct ftrace_func_probe *probe;
4440 struct ftrace_glob func_g;
4441 struct ftrace_hash **orig_hash;
4442 struct ftrace_hash *old_hash;
4443 struct ftrace_hash *hash = NULL;
4444 struct hlist_node *tmp;
4445 struct hlist_head hhd;
4446 char str[KSYM_SYMBOL_LEN];
4447 int count = 0;
4448 int i, ret = -ENODEV;
4449 int size;
4450
4451 if (!glob || !strlen(glob) || !strcmp(glob, "*"))
4452 func_g.search = NULL;
4453 else {
4454 int not;
4455
4456 func_g.type = filter_parse_regex(glob, strlen(glob),
4457 &func_g.search, &not);
4458 func_g.len = strlen(func_g.search);
4459
4460 /* we do not support '!' for function probes */
4461 if (WARN_ON(not))
4462 return -EINVAL;
4463 }
4464
4465 mutex_lock(&ftrace_lock);
4466 /* Check if the probe_ops is already registered */
4467 list_for_each_entry(probe, &tr->func_probes, list) {
4468 if (probe->probe_ops == probe_ops)
4469 break;
4470 }
4471 if (&probe->list == &tr->func_probes)
4472 goto err_unlock_ftrace;
4473
4474 ret = -EINVAL;
4475 if (!(probe->ops.flags & FTRACE_OPS_FL_INITIALIZED))
4476 goto err_unlock_ftrace;
4477
4478 acquire_probe_locked(probe);
4479
4480 mutex_unlock(&ftrace_lock);
4481
4482 mutex_lock(&probe->ops.func_hash->regex_lock);
4483
4484 orig_hash = &probe->ops.func_hash->filter_hash;
4485 old_hash = *orig_hash;
4486
4487 if (ftrace_hash_empty(old_hash))
4488 goto out_unlock;
4489
4490 old_hash_ops.filter_hash = old_hash;
4491 /* Probes only have filters */
4492 old_hash_ops.notrace_hash = NULL;
4493
4494 ret = -ENOMEM;
4495 hash = alloc_and_copy_ftrace_hash(FTRACE_HASH_DEFAULT_BITS, old_hash);
4496 if (!hash)
4497 goto out_unlock;
4498
4499 INIT_HLIST_HEAD(&hhd);
4500
4501 size = 1 << hash->size_bits;
4502 for (i = 0; i < size; i++) {
4503 hlist_for_each_entry_safe(entry, tmp, &hash->buckets[i], hlist) {
4504
4505 if (func_g.search) {
4506 kallsyms_lookup(entry->ip, NULL, NULL,
4507 NULL, str);
4508 if (!ftrace_match(str, &func_g))
4509 continue;
4510 }
4511 count++;
4512 remove_hash_entry(hash, entry);
4513 hlist_add_head(&entry->hlist, &hhd);
4514 }
4515 }
4516
4517 /* Nothing found? */
4518 if (!count) {
4519 ret = -EINVAL;
4520 goto out_unlock;
4521 }
4522
4523 mutex_lock(&ftrace_lock);
4524
4525 WARN_ON(probe->ref < count);
4526
4527 probe->ref -= count;
4528
4529 if (ftrace_hash_empty(hash))
4530 ftrace_shutdown(&probe->ops, 0);
4531
4532 ret = ftrace_hash_move_and_update_ops(&probe->ops, orig_hash,
4533 hash, 1);
4534
4535 /* still need to update the function call sites */
4536 if (ftrace_enabled && !ftrace_hash_empty(hash))
4537 ftrace_run_modify_code(&probe->ops, FTRACE_UPDATE_CALLS,
4538 &old_hash_ops);
4539 synchronize_sched();
4540
4541 hlist_for_each_entry_safe(entry, tmp, &hhd, hlist) {
4542 hlist_del(&entry->hlist);
4543 if (probe_ops->free)
4544 probe_ops->free(probe_ops, tr, entry->ip, probe->data);
4545 kfree(entry);
4546 }
4547 mutex_unlock(&ftrace_lock);
4548
4549 out_unlock:
4550 mutex_unlock(&probe->ops.func_hash->regex_lock);
4551 free_ftrace_hash(hash);
4552
4553 release_probe(probe);
4554
4555 return ret;
4556
4557 err_unlock_ftrace:
4558 mutex_unlock(&ftrace_lock);
4559 return ret;
4560 }
4561
4562 void clear_ftrace_function_probes(struct trace_array *tr)
4563 {
4564 struct ftrace_func_probe *probe, *n;
4565
4566 list_for_each_entry_safe(probe, n, &tr->func_probes, list)
4567 unregister_ftrace_function_probe_func(NULL, tr, probe->probe_ops);
4568 }
4569
4570 static LIST_HEAD(ftrace_commands);
4571 static DEFINE_MUTEX(ftrace_cmd_mutex);
4572
4573 /*
4574 * Currently we only register ftrace commands from __init, so mark this
4575 * __init too.
4576 */
4577 __init int register_ftrace_command(struct ftrace_func_command *cmd)
4578 {
4579 struct ftrace_func_command *p;
4580 int ret = 0;
4581
4582 mutex_lock(&ftrace_cmd_mutex);
4583 list_for_each_entry(p, &ftrace_commands, list) {
4584 if (strcmp(cmd->name, p->name) == 0) {
4585 ret = -EBUSY;
4586 goto out_unlock;
4587 }
4588 }
4589 list_add(&cmd->list, &ftrace_commands);
4590 out_unlock:
4591 mutex_unlock(&ftrace_cmd_mutex);
4592
4593 return ret;
4594 }
4595
4596 /*
4597 * Currently we only unregister ftrace commands from __init, so mark
4598 * this __init too.
4599 */
4600 __init int unregister_ftrace_command(struct ftrace_func_command *cmd)
4601 {
4602 struct ftrace_func_command *p, *n;
4603 int ret = -ENODEV;
4604
4605 mutex_lock(&ftrace_cmd_mutex);
4606 list_for_each_entry_safe(p, n, &ftrace_commands, list) {
4607 if (strcmp(cmd->name, p->name) == 0) {
4608 ret = 0;
4609 list_del_init(&p->list);
4610 goto out_unlock;
4611 }
4612 }
4613 out_unlock:
4614 mutex_unlock(&ftrace_cmd_mutex);
4615
4616 return ret;
4617 }
4618
4619 static int ftrace_process_regex(struct ftrace_iterator *iter,
4620 char *buff, int len, int enable)
4621 {
4622 struct ftrace_hash *hash = iter->hash;
4623 struct trace_array *tr = iter->ops->private;
4624 char *func, *command, *next = buff;
4625 struct ftrace_func_command *p;
4626 int ret = -EINVAL;
4627
4628 func = strsep(&next, ":");
4629
4630 if (!next) {
4631 ret = ftrace_match_records(hash, func, len);
4632 if (!ret)
4633 ret = -EINVAL;
4634 if (ret < 0)
4635 return ret;
4636 return 0;
4637 }
4638
4639 /* command found */
4640
4641 command = strsep(&next, ":");
4642
4643 mutex_lock(&ftrace_cmd_mutex);
4644 list_for_each_entry(p, &ftrace_commands, list) {
4645 if (strcmp(p->name, command) == 0) {
4646 ret = p->func(tr, hash, func, command, next, enable);
4647 goto out_unlock;
4648 }
4649 }
4650 out_unlock:
4651 mutex_unlock(&ftrace_cmd_mutex);
4652
4653 return ret;
4654 }
4655
4656 static ssize_t
4657 ftrace_regex_write(struct file *file, const char __user *ubuf,
4658 size_t cnt, loff_t *ppos, int enable)
4659 {
4660 struct ftrace_iterator *iter;
4661 struct trace_parser *parser;
4662 ssize_t ret, read;
4663
4664 if (!cnt)
4665 return 0;
4666
4667 if (file->f_mode & FMODE_READ) {
4668 struct seq_file *m = file->private_data;
4669 iter = m->private;
4670 } else
4671 iter = file->private_data;
4672
4673 if (unlikely(ftrace_disabled))
4674 return -ENODEV;
4675
4676 /* iter->hash is a local copy, so we don't need regex_lock */
4677
4678 parser = &iter->parser;
4679 read = trace_get_user(parser, ubuf, cnt, ppos);
4680
4681 if (read >= 0 && trace_parser_loaded(parser) &&
4682 !trace_parser_cont(parser)) {
4683 ret = ftrace_process_regex(iter, parser->buffer,
4684 parser->idx, enable);
4685 trace_parser_clear(parser);
4686 if (ret < 0)
4687 goto out;
4688 }
4689
4690 ret = read;
4691 out:
4692 return ret;
4693 }
4694
4695 ssize_t
4696 ftrace_filter_write(struct file *file, const char __user *ubuf,
4697 size_t cnt, loff_t *ppos)
4698 {
4699 return ftrace_regex_write(file, ubuf, cnt, ppos, 1);
4700 }
4701
4702 ssize_t
4703 ftrace_notrace_write(struct file *file, const char __user *ubuf,
4704 size_t cnt, loff_t *ppos)
4705 {
4706 return ftrace_regex_write(file, ubuf, cnt, ppos, 0);
4707 }
4708
4709 static int
4710 ftrace_match_addr(struct ftrace_hash *hash, unsigned long ip, int remove)
4711 {
4712 struct ftrace_func_entry *entry;
4713
4714 if (!ftrace_location(ip))
4715 return -EINVAL;
4716
4717 if (remove) {
4718 entry = ftrace_lookup_ip(hash, ip);
4719 if (!entry)
4720 return -ENOENT;
4721 free_hash_entry(hash, entry);
4722 return 0;
4723 }
4724
4725 return add_hash_entry(hash, ip);
4726 }
4727
4728 static int
4729 ftrace_set_hash(struct ftrace_ops *ops, unsigned char *buf, int len,
4730 unsigned long ip, int remove, int reset, int enable)
4731 {
4732 struct ftrace_hash **orig_hash;
4733 struct ftrace_hash *hash;
4734 int ret;
4735
4736 if (unlikely(ftrace_disabled))
4737 return -ENODEV;
4738
4739 mutex_lock(&ops->func_hash->regex_lock);
4740
4741 if (enable)
4742 orig_hash = &ops->func_hash->filter_hash;
4743 else
4744 orig_hash = &ops->func_hash->notrace_hash;
4745
4746 if (reset)
4747 hash = alloc_ftrace_hash(FTRACE_HASH_DEFAULT_BITS);
4748 else
4749 hash = alloc_and_copy_ftrace_hash(FTRACE_HASH_DEFAULT_BITS, *orig_hash);
4750
4751 if (!hash) {
4752 ret = -ENOMEM;
4753 goto out_regex_unlock;
4754 }
4755
4756 if (buf && !ftrace_match_records(hash, buf, len)) {
4757 ret = -EINVAL;
4758 goto out_regex_unlock;
4759 }
4760 if (ip) {
4761 ret = ftrace_match_addr(hash, ip, remove);
4762 if (ret < 0)
4763 goto out_regex_unlock;
4764 }
4765
4766 mutex_lock(&ftrace_lock);
4767 ret = ftrace_hash_move_and_update_ops(ops, orig_hash, hash, enable);
4768 mutex_unlock(&ftrace_lock);
4769
4770 out_regex_unlock:
4771 mutex_unlock(&ops->func_hash->regex_lock);
4772
4773 free_ftrace_hash(hash);
4774 return ret;
4775 }
4776
4777 static int
4778 ftrace_set_addr(struct ftrace_ops *ops, unsigned long ip, int remove,
4779 int reset, int enable)
4780 {
4781 return ftrace_set_hash(ops, 0, 0, ip, remove, reset, enable);
4782 }
4783
4784 /**
4785 * ftrace_set_filter_ip - set a function to filter on in ftrace by address
4786 * @ops - the ops to set the filter with
4787 * @ip - the address to add to or remove from the filter.
4788 * @remove - non zero to remove the ip from the filter
4789 * @reset - non zero to reset all filters before applying this filter.
4790 *
4791 * Filters denote which functions should be enabled when tracing is enabled
4792 * If @ip is NULL, it failes to update filter.
4793 */
4794 int ftrace_set_filter_ip(struct ftrace_ops *ops, unsigned long ip,
4795 int remove, int reset)
4796 {
4797 ftrace_ops_init(ops);
4798 return ftrace_set_addr(ops, ip, remove, reset, 1);
4799 }
4800 EXPORT_SYMBOL_GPL(ftrace_set_filter_ip);
4801
4802 /**
4803 * ftrace_ops_set_global_filter - setup ops to use global filters
4804 * @ops - the ops which will use the global filters
4805 *
4806 * ftrace users who need global function trace filtering should call this.
4807 * It can set the global filter only if ops were not initialized before.
4808 */
4809 void ftrace_ops_set_global_filter(struct ftrace_ops *ops)
4810 {
4811 if (ops->flags & FTRACE_OPS_FL_INITIALIZED)
4812 return;
4813
4814 ftrace_ops_init(ops);
4815 ops->func_hash = &global_ops.local_hash;
4816 }
4817 EXPORT_SYMBOL_GPL(ftrace_ops_set_global_filter);
4818
4819 static int
4820 ftrace_set_regex(struct ftrace_ops *ops, unsigned char *buf, int len,
4821 int reset, int enable)
4822 {
4823 return ftrace_set_hash(ops, buf, len, 0, 0, reset, enable);
4824 }
4825
4826 /**
4827 * ftrace_set_filter - set a function to filter on in ftrace
4828 * @ops - the ops to set the filter with
4829 * @buf - the string that holds the function filter text.
4830 * @len - the length of the string.
4831 * @reset - non zero to reset all filters before applying this filter.
4832 *
4833 * Filters denote which functions should be enabled when tracing is enabled.
4834 * If @buf is NULL and reset is set, all functions will be enabled for tracing.
4835 */
4836 int ftrace_set_filter(struct ftrace_ops *ops, unsigned char *buf,
4837 int len, int reset)
4838 {
4839 ftrace_ops_init(ops);
4840 return ftrace_set_regex(ops, buf, len, reset, 1);
4841 }
4842 EXPORT_SYMBOL_GPL(ftrace_set_filter);
4843
4844 /**
4845 * ftrace_set_notrace - set a function to not trace in ftrace
4846 * @ops - the ops to set the notrace filter with
4847 * @buf - the string that holds the function notrace text.
4848 * @len - the length of the string.
4849 * @reset - non zero to reset all filters before applying this filter.
4850 *
4851 * Notrace Filters denote which functions should not be enabled when tracing
4852 * is enabled. If @buf is NULL and reset is set, all functions will be enabled
4853 * for tracing.
4854 */
4855 int ftrace_set_notrace(struct ftrace_ops *ops, unsigned char *buf,
4856 int len, int reset)
4857 {
4858 ftrace_ops_init(ops);
4859 return ftrace_set_regex(ops, buf, len, reset, 0);
4860 }
4861 EXPORT_SYMBOL_GPL(ftrace_set_notrace);
4862 /**
4863 * ftrace_set_global_filter - set a function to filter on with global tracers
4864 * @buf - the string that holds the function filter text.
4865 * @len - the length of the string.
4866 * @reset - non zero to reset all filters before applying this filter.
4867 *
4868 * Filters denote which functions should be enabled when tracing is enabled.
4869 * If @buf is NULL and reset is set, all functions will be enabled for tracing.
4870 */
4871 void ftrace_set_global_filter(unsigned char *buf, int len, int reset)
4872 {
4873 ftrace_set_regex(&global_ops, buf, len, reset, 1);
4874 }
4875 EXPORT_SYMBOL_GPL(ftrace_set_global_filter);
4876
4877 /**
4878 * ftrace_set_global_notrace - set a function to not trace with global tracers
4879 * @buf - the string that holds the function notrace text.
4880 * @len - the length of the string.
4881 * @reset - non zero to reset all filters before applying this filter.
4882 *
4883 * Notrace Filters denote which functions should not be enabled when tracing
4884 * is enabled. If @buf is NULL and reset is set, all functions will be enabled
4885 * for tracing.
4886 */
4887 void ftrace_set_global_notrace(unsigned char *buf, int len, int reset)
4888 {
4889 ftrace_set_regex(&global_ops, buf, len, reset, 0);
4890 }
4891 EXPORT_SYMBOL_GPL(ftrace_set_global_notrace);
4892
4893 /*
4894 * command line interface to allow users to set filters on boot up.
4895 */
4896 #define FTRACE_FILTER_SIZE COMMAND_LINE_SIZE
4897 static char ftrace_notrace_buf[FTRACE_FILTER_SIZE] __initdata;
4898 static char ftrace_filter_buf[FTRACE_FILTER_SIZE] __initdata;
4899
4900 /* Used by function selftest to not test if filter is set */
4901 bool ftrace_filter_param __initdata;
4902
4903 static int __init set_ftrace_notrace(char *str)
4904 {
4905 ftrace_filter_param = true;
4906 strlcpy(ftrace_notrace_buf, str, FTRACE_FILTER_SIZE);
4907 return 1;
4908 }
4909 __setup("ftrace_notrace=", set_ftrace_notrace);
4910
4911 static int __init set_ftrace_filter(char *str)
4912 {
4913 ftrace_filter_param = true;
4914 strlcpy(ftrace_filter_buf, str, FTRACE_FILTER_SIZE);
4915 return 1;
4916 }
4917 __setup("ftrace_filter=", set_ftrace_filter);
4918
4919 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
4920 static char ftrace_graph_buf[FTRACE_FILTER_SIZE] __initdata;
4921 static char ftrace_graph_notrace_buf[FTRACE_FILTER_SIZE] __initdata;
4922 static int ftrace_graph_set_hash(struct ftrace_hash *hash, char *buffer);
4923
4924 static int __init set_graph_function(char *str)
4925 {
4926 strlcpy(ftrace_graph_buf, str, FTRACE_FILTER_SIZE);
4927 return 1;
4928 }
4929 __setup("ftrace_graph_filter=", set_graph_function);
4930
4931 static int __init set_graph_notrace_function(char *str)
4932 {
4933 strlcpy(ftrace_graph_notrace_buf, str, FTRACE_FILTER_SIZE);
4934 return 1;
4935 }
4936 __setup("ftrace_graph_notrace=", set_graph_notrace_function);
4937
4938 static int __init set_graph_max_depth_function(char *str)
4939 {
4940 if (!str)
4941 return 0;
4942 fgraph_max_depth = simple_strtoul(str, NULL, 0);
4943 return 1;
4944 }
4945 __setup("ftrace_graph_max_depth=", set_graph_max_depth_function);
4946
4947 static void __init set_ftrace_early_graph(char *buf, int enable)
4948 {
4949 int ret;
4950 char *func;
4951 struct ftrace_hash *hash;
4952
4953 hash = alloc_ftrace_hash(FTRACE_HASH_DEFAULT_BITS);
4954 if (WARN_ON(!hash))
4955 return;
4956
4957 while (buf) {
4958 func = strsep(&buf, ",");
4959 /* we allow only one expression at a time */
4960 ret = ftrace_graph_set_hash(hash, func);
4961 if (ret)
4962 printk(KERN_DEBUG "ftrace: function %s not "
4963 "traceable\n", func);
4964 }
4965
4966 if (enable)
4967 ftrace_graph_hash = hash;
4968 else
4969 ftrace_graph_notrace_hash = hash;
4970 }
4971 #endif /* CONFIG_FUNCTION_GRAPH_TRACER */
4972
4973 void __init
4974 ftrace_set_early_filter(struct ftrace_ops *ops, char *buf, int enable)
4975 {
4976 char *func;
4977
4978 ftrace_ops_init(ops);
4979
4980 while (buf) {
4981 func = strsep(&buf, ",");
4982 ftrace_set_regex(ops, func, strlen(func), 0, enable);
4983 }
4984 }
4985
4986 static void __init set_ftrace_early_filters(void)
4987 {
4988 if (ftrace_filter_buf[0])
4989 ftrace_set_early_filter(&global_ops, ftrace_filter_buf, 1);
4990 if (ftrace_notrace_buf[0])
4991 ftrace_set_early_filter(&global_ops, ftrace_notrace_buf, 0);
4992 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
4993 if (ftrace_graph_buf[0])
4994 set_ftrace_early_graph(ftrace_graph_buf, 1);
4995 if (ftrace_graph_notrace_buf[0])
4996 set_ftrace_early_graph(ftrace_graph_notrace_buf, 0);
4997 #endif /* CONFIG_FUNCTION_GRAPH_TRACER */
4998 }
4999
5000 int ftrace_regex_release(struct inode *inode, struct file *file)
5001 {
5002 struct seq_file *m = (struct seq_file *)file->private_data;
5003 struct ftrace_iterator *iter;
5004 struct ftrace_hash **orig_hash;
5005 struct trace_parser *parser;
5006 int filter_hash;
5007 int ret;
5008
5009 if (file->f_mode & FMODE_READ) {
5010 iter = m->private;
5011 seq_release(inode, file);
5012 } else
5013 iter = file->private_data;
5014
5015 parser = &iter->parser;
5016 if (trace_parser_loaded(parser)) {
5017 parser->buffer[parser->idx] = 0;
5018 ftrace_match_records(iter->hash, parser->buffer, parser->idx);
5019 }
5020
5021 trace_parser_put(parser);
5022
5023 mutex_lock(&iter->ops->func_hash->regex_lock);
5024
5025 if (file->f_mode & FMODE_WRITE) {
5026 filter_hash = !!(iter->flags & FTRACE_ITER_FILTER);
5027
5028 if (filter_hash) {
5029 orig_hash = &iter->ops->func_hash->filter_hash;
5030 if (iter->tr && !list_empty(&iter->tr->mod_trace))
5031 iter->hash->flags |= FTRACE_HASH_FL_MOD;
5032 } else
5033 orig_hash = &iter->ops->func_hash->notrace_hash;
5034
5035 mutex_lock(&ftrace_lock);
5036 ret = ftrace_hash_move_and_update_ops(iter->ops, orig_hash,
5037 iter->hash, filter_hash);
5038 mutex_unlock(&ftrace_lock);
5039 } else {
5040 /* For read only, the hash is the ops hash */
5041 iter->hash = NULL;
5042 }
5043
5044 mutex_unlock(&iter->ops->func_hash->regex_lock);
5045 free_ftrace_hash(iter->hash);
5046 kfree(iter);
5047
5048 return 0;
5049 }
5050
5051 static const struct file_operations ftrace_avail_fops = {
5052 .open = ftrace_avail_open,
5053 .read = seq_read,
5054 .llseek = seq_lseek,
5055 .release = seq_release_private,
5056 };
5057
5058 static const struct file_operations ftrace_enabled_fops = {
5059 .open = ftrace_enabled_open,
5060 .read = seq_read,
5061 .llseek = seq_lseek,
5062 .release = seq_release_private,
5063 };
5064
5065 static const struct file_operations ftrace_filter_fops = {
5066 .open = ftrace_filter_open,
5067 .read = seq_read,
5068 .write = ftrace_filter_write,
5069 .llseek = tracing_lseek,
5070 .release = ftrace_regex_release,
5071 };
5072
5073 static const struct file_operations ftrace_notrace_fops = {
5074 .open = ftrace_notrace_open,
5075 .read = seq_read,
5076 .write = ftrace_notrace_write,
5077 .llseek = tracing_lseek,
5078 .release = ftrace_regex_release,
5079 };
5080
5081 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
5082
5083 static DEFINE_MUTEX(graph_lock);
5084
5085 struct ftrace_hash *ftrace_graph_hash = EMPTY_HASH;
5086 struct ftrace_hash *ftrace_graph_notrace_hash = EMPTY_HASH;
5087
5088 enum graph_filter_type {
5089 GRAPH_FILTER_NOTRACE = 0,
5090 GRAPH_FILTER_FUNCTION,
5091 };
5092
5093 #define FTRACE_GRAPH_EMPTY ((void *)1)
5094
5095 struct ftrace_graph_data {
5096 struct ftrace_hash *hash;
5097 struct ftrace_func_entry *entry;
5098 int idx; /* for hash table iteration */
5099 enum graph_filter_type type;
5100 struct ftrace_hash *new_hash;
5101 const struct seq_operations *seq_ops;
5102 struct trace_parser parser;
5103 };
5104
5105 static void *
5106 __g_next(struct seq_file *m, loff_t *pos)
5107 {
5108 struct ftrace_graph_data *fgd = m->private;
5109 struct ftrace_func_entry *entry = fgd->entry;
5110 struct hlist_head *head;
5111 int i, idx = fgd->idx;
5112
5113 if (*pos >= fgd->hash->count)
5114 return NULL;
5115
5116 if (entry) {
5117 hlist_for_each_entry_continue(entry, hlist) {
5118 fgd->entry = entry;
5119 return entry;
5120 }
5121
5122 idx++;
5123 }
5124
5125 for (i = idx; i < 1 << fgd->hash->size_bits; i++) {
5126 head = &fgd->hash->buckets[i];
5127 hlist_for_each_entry(entry, head, hlist) {
5128 fgd->entry = entry;
5129 fgd->idx = i;
5130 return entry;
5131 }
5132 }
5133 return NULL;
5134 }
5135
5136 static void *
5137 g_next(struct seq_file *m, void *v, loff_t *pos)
5138 {
5139 (*pos)++;
5140 return __g_next(m, pos);
5141 }
5142
5143 static void *g_start(struct seq_file *m, loff_t *pos)
5144 {
5145 struct ftrace_graph_data *fgd = m->private;
5146
5147 mutex_lock(&graph_lock);
5148
5149 if (fgd->type == GRAPH_FILTER_FUNCTION)
5150 fgd->hash = rcu_dereference_protected(ftrace_graph_hash,
5151 lockdep_is_held(&graph_lock));
5152 else
5153 fgd->hash = rcu_dereference_protected(ftrace_graph_notrace_hash,
5154 lockdep_is_held(&graph_lock));
5155
5156 /* Nothing, tell g_show to print all functions are enabled */
5157 if (ftrace_hash_empty(fgd->hash) && !*pos)
5158 return FTRACE_GRAPH_EMPTY;
5159
5160 fgd->idx = 0;
5161 fgd->entry = NULL;
5162 return __g_next(m, pos);
5163 }
5164
5165 static void g_stop(struct seq_file *m, void *p)
5166 {
5167 mutex_unlock(&graph_lock);
5168 }
5169
5170 static int g_show(struct seq_file *m, void *v)
5171 {
5172 struct ftrace_func_entry *entry = v;
5173
5174 if (!entry)
5175 return 0;
5176
5177 if (entry == FTRACE_GRAPH_EMPTY) {
5178 struct ftrace_graph_data *fgd = m->private;
5179
5180 if (fgd->type == GRAPH_FILTER_FUNCTION)
5181 seq_puts(m, "#### all functions enabled ####\n");
5182 else
5183 seq_puts(m, "#### no functions disabled ####\n");
5184 return 0;
5185 }
5186
5187 seq_printf(m, "%ps\n", (void *)entry->ip);
5188
5189 return 0;
5190 }
5191
5192 static const struct seq_operations ftrace_graph_seq_ops = {
5193 .start = g_start,
5194 .next = g_next,
5195 .stop = g_stop,
5196 .show = g_show,
5197 };
5198
5199 static int
5200 __ftrace_graph_open(struct inode *inode, struct file *file,
5201 struct ftrace_graph_data *fgd)
5202 {
5203 int ret = 0;
5204 struct ftrace_hash *new_hash = NULL;
5205
5206 if (file->f_mode & FMODE_WRITE) {
5207 const int size_bits = FTRACE_HASH_DEFAULT_BITS;
5208
5209 if (trace_parser_get_init(&fgd->parser, FTRACE_BUFF_MAX))
5210 return -ENOMEM;
5211
5212 if (file->f_flags & O_TRUNC)
5213 new_hash = alloc_ftrace_hash(size_bits);
5214 else
5215 new_hash = alloc_and_copy_ftrace_hash(size_bits,
5216 fgd->hash);
5217 if (!new_hash) {
5218 ret = -ENOMEM;
5219 goto out;
5220 }
5221 }
5222
5223 if (file->f_mode & FMODE_READ) {
5224 ret = seq_open(file, &ftrace_graph_seq_ops);
5225 if (!ret) {
5226 struct seq_file *m = file->private_data;
5227 m->private = fgd;
5228 } else {
5229 /* Failed */
5230 free_ftrace_hash(new_hash);
5231 new_hash = NULL;
5232 }
5233 } else
5234 file->private_data = fgd;
5235
5236 out:
5237 if (ret < 0 && file->f_mode & FMODE_WRITE)
5238 trace_parser_put(&fgd->parser);
5239
5240 fgd->new_hash = new_hash;
5241
5242 /*
5243 * All uses of fgd->hash must be taken with the graph_lock
5244 * held. The graph_lock is going to be released, so force
5245 * fgd->hash to be reinitialized when it is taken again.
5246 */
5247 fgd->hash = NULL;
5248
5249 return ret;
5250 }
5251
5252 static int
5253 ftrace_graph_open(struct inode *inode, struct file *file)
5254 {
5255 struct ftrace_graph_data *fgd;
5256 int ret;
5257
5258 if (unlikely(ftrace_disabled))
5259 return -ENODEV;
5260
5261 fgd = kmalloc(sizeof(*fgd), GFP_KERNEL);
5262 if (fgd == NULL)
5263 return -ENOMEM;
5264
5265 mutex_lock(&graph_lock);
5266
5267 fgd->hash = rcu_dereference_protected(ftrace_graph_hash,
5268 lockdep_is_held(&graph_lock));
5269 fgd->type = GRAPH_FILTER_FUNCTION;
5270 fgd->seq_ops = &ftrace_graph_seq_ops;
5271
5272 ret = __ftrace_graph_open(inode, file, fgd);
5273 if (ret < 0)
5274 kfree(fgd);
5275
5276 mutex_unlock(&graph_lock);
5277 return ret;
5278 }
5279
5280 static int
5281 ftrace_graph_notrace_open(struct inode *inode, struct file *file)
5282 {
5283 struct ftrace_graph_data *fgd;
5284 int ret;
5285
5286 if (unlikely(ftrace_disabled))
5287 return -ENODEV;
5288
5289 fgd = kmalloc(sizeof(*fgd), GFP_KERNEL);
5290 if (fgd == NULL)
5291 return -ENOMEM;
5292
5293 mutex_lock(&graph_lock);
5294
5295 fgd->hash = rcu_dereference_protected(ftrace_graph_notrace_hash,
5296 lockdep_is_held(&graph_lock));
5297 fgd->type = GRAPH_FILTER_NOTRACE;
5298 fgd->seq_ops = &ftrace_graph_seq_ops;
5299
5300 ret = __ftrace_graph_open(inode, file, fgd);
5301 if (ret < 0)
5302 kfree(fgd);
5303
5304 mutex_unlock(&graph_lock);
5305 return ret;
5306 }
5307
5308 static int
5309 ftrace_graph_release(struct inode *inode, struct file *file)
5310 {
5311 struct ftrace_graph_data *fgd;
5312 struct ftrace_hash *old_hash, *new_hash;
5313 struct trace_parser *parser;
5314 int ret = 0;
5315
5316 if (file->f_mode & FMODE_READ) {
5317 struct seq_file *m = file->private_data;
5318
5319 fgd = m->private;
5320 seq_release(inode, file);
5321 } else {
5322 fgd = file->private_data;
5323 }
5324
5325
5326 if (file->f_mode & FMODE_WRITE) {
5327
5328 parser = &fgd->parser;
5329
5330 if (trace_parser_loaded((parser))) {
5331 parser->buffer[parser->idx] = 0;
5332 ret = ftrace_graph_set_hash(fgd->new_hash,
5333 parser->buffer);
5334 }
5335
5336 trace_parser_put(parser);
5337
5338 new_hash = __ftrace_hash_move(fgd->new_hash);
5339 if (!new_hash) {
5340 ret = -ENOMEM;
5341 goto out;
5342 }
5343
5344 mutex_lock(&graph_lock);
5345
5346 if (fgd->type == GRAPH_FILTER_FUNCTION) {
5347 old_hash = rcu_dereference_protected(ftrace_graph_hash,
5348 lockdep_is_held(&graph_lock));
5349 rcu_assign_pointer(ftrace_graph_hash, new_hash);
5350 } else {
5351 old_hash = rcu_dereference_protected(ftrace_graph_notrace_hash,
5352 lockdep_is_held(&graph_lock));
5353 rcu_assign_pointer(ftrace_graph_notrace_hash, new_hash);
5354 }
5355
5356 mutex_unlock(&graph_lock);
5357
5358 /* Wait till all users are no longer using the old hash */
5359 synchronize_sched();
5360
5361 free_ftrace_hash(old_hash);
5362 }
5363
5364 out:
5365 free_ftrace_hash(fgd->new_hash);
5366 kfree(fgd);
5367
5368 return ret;
5369 }
5370
5371 static int
5372 ftrace_graph_set_hash(struct ftrace_hash *hash, char *buffer)
5373 {
5374 struct ftrace_glob func_g;
5375 struct dyn_ftrace *rec;
5376 struct ftrace_page *pg;
5377 struct ftrace_func_entry *entry;
5378 int fail = 1;
5379 int not;
5380
5381 /* decode regex */
5382 func_g.type = filter_parse_regex(buffer, strlen(buffer),
5383 &func_g.search, &not);
5384
5385 func_g.len = strlen(func_g.search);
5386
5387 mutex_lock(&ftrace_lock);
5388
5389 if (unlikely(ftrace_disabled)) {
5390 mutex_unlock(&ftrace_lock);
5391 return -ENODEV;
5392 }
5393
5394 do_for_each_ftrace_rec(pg, rec) {
5395
5396 if (rec->flags & FTRACE_FL_DISABLED)
5397 continue;
5398
5399 if (ftrace_match_record(rec, &func_g, NULL, 0)) {
5400 entry = ftrace_lookup_ip(hash, rec->ip);
5401
5402 if (!not) {
5403 fail = 0;
5404
5405 if (entry)
5406 continue;
5407 if (add_hash_entry(hash, rec->ip) < 0)
5408 goto out;
5409 } else {
5410 if (entry) {
5411 free_hash_entry(hash, entry);
5412 fail = 0;
5413 }
5414 }
5415 }
5416 } while_for_each_ftrace_rec();
5417 out:
5418 mutex_unlock(&ftrace_lock);
5419
5420 if (fail)
5421 return -EINVAL;
5422
5423 return 0;
5424 }
5425
5426 static ssize_t
5427 ftrace_graph_write(struct file *file, const char __user *ubuf,
5428 size_t cnt, loff_t *ppos)
5429 {
5430 ssize_t read, ret = 0;
5431 struct ftrace_graph_data *fgd = file->private_data;
5432 struct trace_parser *parser;
5433
5434 if (!cnt)
5435 return 0;
5436
5437 /* Read mode uses seq functions */
5438 if (file->f_mode & FMODE_READ) {
5439 struct seq_file *m = file->private_data;
5440 fgd = m->private;
5441 }
5442
5443 parser = &fgd->parser;
5444
5445 read = trace_get_user(parser, ubuf, cnt, ppos);
5446
5447 if (read >= 0 && trace_parser_loaded(parser) &&
5448 !trace_parser_cont(parser)) {
5449
5450 ret = ftrace_graph_set_hash(fgd->new_hash,
5451 parser->buffer);
5452 trace_parser_clear(parser);
5453 }
5454
5455 if (!ret)
5456 ret = read;
5457
5458 return ret;
5459 }
5460
5461 static const struct file_operations ftrace_graph_fops = {
5462 .open = ftrace_graph_open,
5463 .read = seq_read,
5464 .write = ftrace_graph_write,
5465 .llseek = tracing_lseek,
5466 .release = ftrace_graph_release,
5467 };
5468
5469 static const struct file_operations ftrace_graph_notrace_fops = {
5470 .open = ftrace_graph_notrace_open,
5471 .read = seq_read,
5472 .write = ftrace_graph_write,
5473 .llseek = tracing_lseek,
5474 .release = ftrace_graph_release,
5475 };
5476 #endif /* CONFIG_FUNCTION_GRAPH_TRACER */
5477
5478 void ftrace_create_filter_files(struct ftrace_ops *ops,
5479 struct dentry *parent)
5480 {
5481
5482 trace_create_file("set_ftrace_filter", 0644, parent,
5483 ops, &ftrace_filter_fops);
5484
5485 trace_create_file("set_ftrace_notrace", 0644, parent,
5486 ops, &ftrace_notrace_fops);
5487 }
5488
5489 /*
5490 * The name "destroy_filter_files" is really a misnomer. Although
5491 * in the future, it may actualy delete the files, but this is
5492 * really intended to make sure the ops passed in are disabled
5493 * and that when this function returns, the caller is free to
5494 * free the ops.
5495 *
5496 * The "destroy" name is only to match the "create" name that this
5497 * should be paired with.
5498 */
5499 void ftrace_destroy_filter_files(struct ftrace_ops *ops)
5500 {
5501 mutex_lock(&ftrace_lock);
5502 if (ops->flags & FTRACE_OPS_FL_ENABLED)
5503 ftrace_shutdown(ops, 0);
5504 ops->flags |= FTRACE_OPS_FL_DELETED;
5505 mutex_unlock(&ftrace_lock);
5506 }
5507
5508 static __init int ftrace_init_dyn_tracefs(struct dentry *d_tracer)
5509 {
5510
5511 trace_create_file("available_filter_functions", 0444,
5512 d_tracer, NULL, &ftrace_avail_fops);
5513
5514 trace_create_file("enabled_functions", 0444,
5515 d_tracer, NULL, &ftrace_enabled_fops);
5516
5517 ftrace_create_filter_files(&global_ops, d_tracer);
5518
5519 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
5520 trace_create_file("set_graph_function", 0444, d_tracer,
5521 NULL,
5522 &ftrace_graph_fops);
5523 trace_create_file("set_graph_notrace", 0444, d_tracer,
5524 NULL,
5525 &ftrace_graph_notrace_fops);
5526 #endif /* CONFIG_FUNCTION_GRAPH_TRACER */
5527
5528 return 0;
5529 }
5530
5531 static int ftrace_cmp_ips(const void *a, const void *b)
5532 {
5533 const unsigned long *ipa = a;
5534 const unsigned long *ipb = b;
5535
5536 if (*ipa > *ipb)
5537 return 1;
5538 if (*ipa < *ipb)
5539 return -1;
5540 return 0;
5541 }
5542
5543 static int ftrace_process_locs(struct module *mod,
5544 unsigned long *start,
5545 unsigned long *end)
5546 {
5547 struct ftrace_page *start_pg;
5548 struct ftrace_page *pg;
5549 struct dyn_ftrace *rec;
5550 unsigned long count;
5551 unsigned long *p;
5552 unsigned long addr;
5553 unsigned long flags = 0; /* Shut up gcc */
5554 int ret = -ENOMEM;
5555
5556 count = end - start;
5557
5558 if (!count)
5559 return 0;
5560
5561 sort(start, count, sizeof(*start),
5562 ftrace_cmp_ips, NULL);
5563
5564 start_pg = ftrace_allocate_pages(count);
5565 if (!start_pg)
5566 return -ENOMEM;
5567
5568 mutex_lock(&ftrace_lock);
5569
5570 /*
5571 * Core and each module needs their own pages, as
5572 * modules will free them when they are removed.
5573 * Force a new page to be allocated for modules.
5574 */
5575 if (!mod) {
5576 WARN_ON(ftrace_pages || ftrace_pages_start);
5577 /* First initialization */
5578 ftrace_pages = ftrace_pages_start = start_pg;
5579 } else {
5580 if (!ftrace_pages)
5581 goto out;
5582
5583 if (WARN_ON(ftrace_pages->next)) {
5584 /* Hmm, we have free pages? */
5585 while (ftrace_pages->next)
5586 ftrace_pages = ftrace_pages->next;
5587 }
5588
5589 ftrace_pages->next = start_pg;
5590 }
5591
5592 p = start;
5593 pg = start_pg;
5594 while (p < end) {
5595 addr = ftrace_call_adjust(*p++);
5596 /*
5597 * Some architecture linkers will pad between
5598 * the different mcount_loc sections of different
5599 * object files to satisfy alignments.
5600 * Skip any NULL pointers.
5601 */
5602 if (!addr)
5603 continue;
5604
5605 if (pg->index == pg->size) {
5606 /* We should have allocated enough */
5607 if (WARN_ON(!pg->next))
5608 break;
5609 pg = pg->next;
5610 }
5611
5612 rec = &pg->records[pg->index++];
5613 rec->ip = addr;
5614 }
5615
5616 /* We should have used all pages */
5617 WARN_ON(pg->next);
5618
5619 /* Assign the last page to ftrace_pages */
5620 ftrace_pages = pg;
5621
5622 /*
5623 * We only need to disable interrupts on start up
5624 * because we are modifying code that an interrupt
5625 * may execute, and the modification is not atomic.
5626 * But for modules, nothing runs the code we modify
5627 * until we are finished with it, and there's no
5628 * reason to cause large interrupt latencies while we do it.
5629 */
5630 if (!mod)
5631 local_irq_save(flags);
5632 ftrace_update_code(mod, start_pg);
5633 if (!mod)
5634 local_irq_restore(flags);
5635 ret = 0;
5636 out:
5637 mutex_unlock(&ftrace_lock);
5638
5639 return ret;
5640 }
5641
5642 struct ftrace_mod_func {
5643 struct list_head list;
5644 char *name;
5645 unsigned long ip;
5646 unsigned int size;
5647 };
5648
5649 struct ftrace_mod_map {
5650 struct rcu_head rcu;
5651 struct list_head list;
5652 struct module *mod;
5653 unsigned long start_addr;
5654 unsigned long end_addr;
5655 struct list_head funcs;
5656 unsigned int num_funcs;
5657 };
5658
5659 #ifdef CONFIG_MODULES
5660
5661 #define next_to_ftrace_page(p) container_of(p, struct ftrace_page, next)
5662
5663 static LIST_HEAD(ftrace_mod_maps);
5664
5665 static int referenced_filters(struct dyn_ftrace *rec)
5666 {
5667 struct ftrace_ops *ops;
5668 int cnt = 0;
5669
5670 for (ops = ftrace_ops_list; ops != &ftrace_list_end; ops = ops->next) {
5671 if (ops_references_rec(ops, rec))
5672 cnt++;
5673 }
5674
5675 return cnt;
5676 }
5677
5678 static void
5679 clear_mod_from_hash(struct ftrace_page *pg, struct ftrace_hash *hash)
5680 {
5681 struct ftrace_func_entry *entry;
5682 struct dyn_ftrace *rec;
5683 int i;
5684
5685 if (ftrace_hash_empty(hash))
5686 return;
5687
5688 for (i = 0; i < pg->index; i++) {
5689 rec = &pg->records[i];
5690 entry = __ftrace_lookup_ip(hash, rec->ip);
5691 /*
5692 * Do not allow this rec to match again.
5693 * Yeah, it may waste some memory, but will be removed
5694 * if/when the hash is modified again.
5695 */
5696 if (entry)
5697 entry->ip = 0;
5698 }
5699 }
5700
5701 /* Clear any records from hashs */
5702 static void clear_mod_from_hashes(struct ftrace_page *pg)
5703 {
5704 struct trace_array *tr;
5705
5706 mutex_lock(&trace_types_lock);
5707 list_for_each_entry(tr, &ftrace_trace_arrays, list) {
5708 if (!tr->ops || !tr->ops->func_hash)
5709 continue;
5710 mutex_lock(&tr->ops->func_hash->regex_lock);
5711 clear_mod_from_hash(pg, tr->ops->func_hash->filter_hash);
5712 clear_mod_from_hash(pg, tr->ops->func_hash->notrace_hash);
5713 mutex_unlock(&tr->ops->func_hash->regex_lock);
5714 }
5715 mutex_unlock(&trace_types_lock);
5716 }
5717
5718 static void ftrace_free_mod_map(struct rcu_head *rcu)
5719 {
5720 struct ftrace_mod_map *mod_map = container_of(rcu, struct ftrace_mod_map, rcu);
5721 struct ftrace_mod_func *mod_func;
5722 struct ftrace_mod_func *n;
5723
5724 /* All the contents of mod_map are now not visible to readers */
5725 list_for_each_entry_safe(mod_func, n, &mod_map->funcs, list) {
5726 kfree(mod_func->name);
5727 list_del(&mod_func->list);
5728 kfree(mod_func);
5729 }
5730
5731 kfree(mod_map);
5732 }
5733
5734 void ftrace_release_mod(struct module *mod)
5735 {
5736 struct ftrace_mod_map *mod_map;
5737 struct ftrace_mod_map *n;
5738 struct dyn_ftrace *rec;
5739 struct ftrace_page **last_pg;
5740 struct ftrace_page *tmp_page = NULL;
5741 struct ftrace_page *pg;
5742 int order;
5743
5744 mutex_lock(&ftrace_lock);
5745
5746 if (ftrace_disabled)
5747 goto out_unlock;
5748
5749 list_for_each_entry_safe(mod_map, n, &ftrace_mod_maps, list) {
5750 if (mod_map->mod == mod) {
5751 list_del_rcu(&mod_map->list);
5752 call_rcu_sched(&mod_map->rcu, ftrace_free_mod_map);
5753 break;
5754 }
5755 }
5756
5757 /*
5758 * Each module has its own ftrace_pages, remove
5759 * them from the list.
5760 */
5761 last_pg = &ftrace_pages_start;
5762 for (pg = ftrace_pages_start; pg; pg = *last_pg) {
5763 rec = &pg->records[0];
5764 if (within_module_core(rec->ip, mod) ||
5765 within_module_init(rec->ip, mod)) {
5766 /*
5767 * As core pages are first, the first
5768 * page should never be a module page.
5769 */
5770 if (WARN_ON(pg == ftrace_pages_start))
5771 goto out_unlock;
5772
5773 /* Check if we are deleting the last page */
5774 if (pg == ftrace_pages)
5775 ftrace_pages = next_to_ftrace_page(last_pg);
5776
5777 ftrace_update_tot_cnt -= pg->index;
5778 *last_pg = pg->next;
5779
5780 pg->next = tmp_page;
5781 tmp_page = pg;
5782 } else
5783 last_pg = &pg->next;
5784 }
5785 out_unlock:
5786 mutex_unlock(&ftrace_lock);
5787
5788 for (pg = tmp_page; pg; pg = tmp_page) {
5789
5790 /* Needs to be called outside of ftrace_lock */
5791 clear_mod_from_hashes(pg);
5792
5793 order = get_count_order(pg->size / ENTRIES_PER_PAGE);
5794 free_pages((unsigned long)pg->records, order);
5795 tmp_page = pg->next;
5796 kfree(pg);
5797 }
5798 }
5799
5800 void ftrace_module_enable(struct module *mod)
5801 {
5802 struct dyn_ftrace *rec;
5803 struct ftrace_page *pg;
5804
5805 mutex_lock(&ftrace_lock);
5806
5807 if (ftrace_disabled)
5808 goto out_unlock;
5809
5810 /*
5811 * If the tracing is enabled, go ahead and enable the record.
5812 *
5813 * The reason not to enable the record immediatelly is the
5814 * inherent check of ftrace_make_nop/ftrace_make_call for
5815 * correct previous instructions. Making first the NOP
5816 * conversion puts the module to the correct state, thus
5817 * passing the ftrace_make_call check.
5818 *
5819 * We also delay this to after the module code already set the
5820 * text to read-only, as we now need to set it back to read-write
5821 * so that we can modify the text.
5822 */
5823 if (ftrace_start_up)
5824 ftrace_arch_code_modify_prepare();
5825
5826 do_for_each_ftrace_rec(pg, rec) {
5827 int cnt;
5828 /*
5829 * do_for_each_ftrace_rec() is a double loop.
5830 * module text shares the pg. If a record is
5831 * not part of this module, then skip this pg,
5832 * which the "break" will do.
5833 */
5834 if (!within_module_core(rec->ip, mod) &&
5835 !within_module_init(rec->ip, mod))
5836 break;
5837
5838 cnt = 0;
5839
5840 /*
5841 * When adding a module, we need to check if tracers are
5842 * currently enabled and if they are, and can trace this record,
5843 * we need to enable the module functions as well as update the
5844 * reference counts for those function records.
5845 */
5846 if (ftrace_start_up)
5847 cnt += referenced_filters(rec);
5848
5849 /* This clears FTRACE_FL_DISABLED */
5850 rec->flags = cnt;
5851
5852 if (ftrace_start_up && cnt) {
5853 int failed = __ftrace_replace_code(rec, 1);
5854 if (failed) {
5855 ftrace_bug(failed, rec);
5856 goto out_loop;
5857 }
5858 }
5859
5860 } while_for_each_ftrace_rec();
5861
5862 out_loop:
5863 if (ftrace_start_up)
5864 ftrace_arch_code_modify_post_process();
5865
5866 out_unlock:
5867 mutex_unlock(&ftrace_lock);
5868
5869 process_cached_mods(mod->name);
5870 }
5871
5872 void ftrace_module_init(struct module *mod)
5873 {
5874 if (ftrace_disabled || !mod->num_ftrace_callsites)
5875 return;
5876
5877 ftrace_process_locs(mod, mod->ftrace_callsites,
5878 mod->ftrace_callsites + mod->num_ftrace_callsites);
5879 }
5880
5881 static void save_ftrace_mod_rec(struct ftrace_mod_map *mod_map,
5882 struct dyn_ftrace *rec)
5883 {
5884 struct ftrace_mod_func *mod_func;
5885 unsigned long symsize;
5886 unsigned long offset;
5887 char str[KSYM_SYMBOL_LEN];
5888 char *modname;
5889 const char *ret;
5890
5891 ret = kallsyms_lookup(rec->ip, &symsize, &offset, &modname, str);
5892 if (!ret)
5893 return;
5894
5895 mod_func = kmalloc(sizeof(*mod_func), GFP_KERNEL);
5896 if (!mod_func)
5897 return;
5898
5899 mod_func->name = kstrdup(str, GFP_KERNEL);
5900 if (!mod_func->name) {
5901 kfree(mod_func);
5902 return;
5903 }
5904
5905 mod_func->ip = rec->ip - offset;
5906 mod_func->size = symsize;
5907
5908 mod_map->num_funcs++;
5909
5910 list_add_rcu(&mod_func->list, &mod_map->funcs);
5911 }
5912
5913 static struct ftrace_mod_map *
5914 allocate_ftrace_mod_map(struct module *mod,
5915 unsigned long start, unsigned long end)
5916 {
5917 struct ftrace_mod_map *mod_map;
5918
5919 mod_map = kmalloc(sizeof(*mod_map), GFP_KERNEL);
5920 if (!mod_map)
5921 return NULL;
5922
5923 mod_map->mod = mod;
5924 mod_map->start_addr = start;
5925 mod_map->end_addr = end;
5926 mod_map->num_funcs = 0;
5927
5928 INIT_LIST_HEAD_RCU(&mod_map->funcs);
5929
5930 list_add_rcu(&mod_map->list, &ftrace_mod_maps);
5931
5932 return mod_map;
5933 }
5934
5935 static const char *
5936 ftrace_func_address_lookup(struct ftrace_mod_map *mod_map,
5937 unsigned long addr, unsigned long *size,
5938 unsigned long *off, char *sym)
5939 {
5940 struct ftrace_mod_func *found_func = NULL;
5941 struct ftrace_mod_func *mod_func;
5942
5943 list_for_each_entry_rcu(mod_func, &mod_map->funcs, list) {
5944 if (addr >= mod_func->ip &&
5945 addr < mod_func->ip + mod_func->size) {
5946 found_func = mod_func;
5947 break;
5948 }
5949 }
5950
5951 if (found_func) {
5952 if (size)
5953 *size = found_func->size;
5954 if (off)
5955 *off = addr - found_func->ip;
5956 if (sym)
5957 strlcpy(sym, found_func->name, KSYM_NAME_LEN);
5958
5959 return found_func->name;
5960 }
5961
5962 return NULL;
5963 }
5964
5965 const char *
5966 ftrace_mod_address_lookup(unsigned long addr, unsigned long *size,
5967 unsigned long *off, char **modname, char *sym)
5968 {
5969 struct ftrace_mod_map *mod_map;
5970 const char *ret = NULL;
5971
5972 /* mod_map is freed via call_rcu_sched() */
5973 preempt_disable();
5974 list_for_each_entry_rcu(mod_map, &ftrace_mod_maps, list) {
5975 ret = ftrace_func_address_lookup(mod_map, addr, size, off, sym);
5976 if (ret) {
5977 if (modname)
5978 *modname = mod_map->mod->name;
5979 break;
5980 }
5981 }
5982 preempt_enable();
5983
5984 return ret;
5985 }
5986
5987 int ftrace_mod_get_kallsym(unsigned int symnum, unsigned long *value,
5988 char *type, char *name,
5989 char *module_name, int *exported)
5990 {
5991 struct ftrace_mod_map *mod_map;
5992 struct ftrace_mod_func *mod_func;
5993
5994 preempt_disable();
5995 list_for_each_entry_rcu(mod_map, &ftrace_mod_maps, list) {
5996
5997 if (symnum >= mod_map->num_funcs) {
5998 symnum -= mod_map->num_funcs;
5999 continue;
6000 }
6001
6002 list_for_each_entry_rcu(mod_func, &mod_map->funcs, list) {
6003 if (symnum > 1) {
6004 symnum--;
6005 continue;
6006 }
6007
6008 *value = mod_func->ip;
6009 *type = 'T';
6010 strlcpy(name, mod_func->name, KSYM_NAME_LEN);
6011 strlcpy(module_name, mod_map->mod->name, MODULE_NAME_LEN);
6012 *exported = 1;
6013 preempt_enable();
6014 return 0;
6015 }
6016 WARN_ON(1);
6017 break;
6018 }
6019 preempt_enable();
6020 return -ERANGE;
6021 }
6022
6023 #else
6024 static void save_ftrace_mod_rec(struct ftrace_mod_map *mod_map,
6025 struct dyn_ftrace *rec) { }
6026 static inline struct ftrace_mod_map *
6027 allocate_ftrace_mod_map(struct module *mod,
6028 unsigned long start, unsigned long end)
6029 {
6030 return NULL;
6031 }
6032 #endif /* CONFIG_MODULES */
6033
6034 struct ftrace_init_func {
6035 struct list_head list;
6036 unsigned long ip;
6037 };
6038
6039 /* Clear any init ips from hashes */
6040 static void
6041 clear_func_from_hash(struct ftrace_init_func *func, struct ftrace_hash *hash)
6042 {
6043 struct ftrace_func_entry *entry;
6044
6045 if (ftrace_hash_empty(hash))
6046 return;
6047
6048 entry = __ftrace_lookup_ip(hash, func->ip);
6049
6050 /*
6051 * Do not allow this rec to match again.
6052 * Yeah, it may waste some memory, but will be removed
6053 * if/when the hash is modified again.
6054 */
6055 if (entry)
6056 entry->ip = 0;
6057 }
6058
6059 static void
6060 clear_func_from_hashes(struct ftrace_init_func *func)
6061 {
6062 struct trace_array *tr;
6063
6064 mutex_lock(&trace_types_lock);
6065 list_for_each_entry(tr, &ftrace_trace_arrays, list) {
6066 if (!tr->ops || !tr->ops->func_hash)
6067 continue;
6068 mutex_lock(&tr->ops->func_hash->regex_lock);
6069 clear_func_from_hash(func, tr->ops->func_hash->filter_hash);
6070 clear_func_from_hash(func, tr->ops->func_hash->notrace_hash);
6071 mutex_unlock(&tr->ops->func_hash->regex_lock);
6072 }
6073 mutex_unlock(&trace_types_lock);
6074 }
6075
6076 static void add_to_clear_hash_list(struct list_head *clear_list,
6077 struct dyn_ftrace *rec)
6078 {
6079 struct ftrace_init_func *func;
6080
6081 func = kmalloc(sizeof(*func), GFP_KERNEL);
6082 if (!func) {
6083 WARN_ONCE(1, "alloc failure, ftrace filter could be stale\n");
6084 return;
6085 }
6086
6087 func->ip = rec->ip;
6088 list_add(&func->list, clear_list);
6089 }
6090
6091 void ftrace_free_mem(struct module *mod, void *start_ptr, void *end_ptr)
6092 {
6093 unsigned long start = (unsigned long)(start_ptr);
6094 unsigned long end = (unsigned long)(end_ptr);
6095 struct ftrace_page **last_pg = &ftrace_pages_start;
6096 struct ftrace_page *pg;
6097 struct dyn_ftrace *rec;
6098 struct dyn_ftrace key;
6099 struct ftrace_mod_map *mod_map = NULL;
6100 struct ftrace_init_func *func, *func_next;
6101 struct list_head clear_hash;
6102 int order;
6103
6104 INIT_LIST_HEAD(&clear_hash);
6105
6106 key.ip = start;
6107 key.flags = end; /* overload flags, as it is unsigned long */
6108
6109 mutex_lock(&ftrace_lock);
6110
6111 /*
6112 * If we are freeing module init memory, then check if
6113 * any tracer is active. If so, we need to save a mapping of
6114 * the module functions being freed with the address.
6115 */
6116 if (mod && ftrace_ops_list != &ftrace_list_end)
6117 mod_map = allocate_ftrace_mod_map(mod, start, end);
6118
6119 for (pg = ftrace_pages_start; pg; last_pg = &pg->next, pg = *last_pg) {
6120 if (end < pg->records[0].ip ||
6121 start >= (pg->records[pg->index - 1].ip + MCOUNT_INSN_SIZE))
6122 continue;
6123 again:
6124 rec = bsearch(&key, pg->records, pg->index,
6125 sizeof(struct dyn_ftrace),
6126 ftrace_cmp_recs);
6127 if (!rec)
6128 continue;
6129
6130 /* rec will be cleared from hashes after ftrace_lock unlock */
6131 add_to_clear_hash_list(&clear_hash, rec);
6132
6133 if (mod_map)
6134 save_ftrace_mod_rec(mod_map, rec);
6135
6136 pg->index--;
6137 ftrace_update_tot_cnt--;
6138 if (!pg->index) {
6139 *last_pg = pg->next;
6140 order = get_count_order(pg->size / ENTRIES_PER_PAGE);
6141 free_pages((unsigned long)pg->records, order);
6142 kfree(pg);
6143 pg = container_of(last_pg, struct ftrace_page, next);
6144 if (!(*last_pg))
6145 ftrace_pages = pg;
6146 continue;
6147 }
6148 memmove(rec, rec + 1,
6149 (pg->index - (rec - pg->records)) * sizeof(*rec));
6150 /* More than one function may be in this block */
6151 goto again;
6152 }
6153 mutex_unlock(&ftrace_lock);
6154
6155 list_for_each_entry_safe(func, func_next, &clear_hash, list) {
6156 clear_func_from_hashes(func);
6157 kfree(func);
6158 }
6159 }
6160
6161 void __init ftrace_free_init_mem(void)
6162 {
6163 void *start = (void *)(&__init_begin);
6164 void *end = (void *)(&__init_end);
6165
6166 ftrace_free_mem(NULL, start, end);
6167 }
6168
6169 void __init ftrace_init(void)
6170 {
6171 extern unsigned long __start_mcount_loc[];
6172 extern unsigned long __stop_mcount_loc[];
6173 unsigned long count, flags;
6174 int ret;
6175
6176 local_irq_save(flags);
6177 ret = ftrace_dyn_arch_init();
6178 local_irq_restore(flags);
6179 if (ret)
6180 goto failed;
6181
6182 count = __stop_mcount_loc - __start_mcount_loc;
6183 if (!count) {
6184 pr_info("ftrace: No functions to be traced?\n");
6185 goto failed;
6186 }
6187
6188 pr_info("ftrace: allocating %ld entries in %ld pages\n",
6189 count, count / ENTRIES_PER_PAGE + 1);
6190
6191 last_ftrace_enabled = ftrace_enabled = 1;
6192
6193 ret = ftrace_process_locs(NULL,
6194 __start_mcount_loc,
6195 __stop_mcount_loc);
6196
6197 set_ftrace_early_filters();
6198
6199 return;
6200 failed:
6201 ftrace_disabled = 1;
6202 }
6203
6204 /* Do nothing if arch does not support this */
6205 void __weak arch_ftrace_update_trampoline(struct ftrace_ops *ops)
6206 {
6207 }
6208
6209 static void ftrace_update_trampoline(struct ftrace_ops *ops)
6210 {
6211 arch_ftrace_update_trampoline(ops);
6212 }
6213
6214 void ftrace_init_trace_array(struct trace_array *tr)
6215 {
6216 INIT_LIST_HEAD(&tr->func_probes);
6217 INIT_LIST_HEAD(&tr->mod_trace);
6218 INIT_LIST_HEAD(&tr->mod_notrace);
6219 }
6220 #else
6221
6222 static struct ftrace_ops global_ops = {
6223 .func = ftrace_stub,
6224 .flags = FTRACE_OPS_FL_RECURSION_SAFE |
6225 FTRACE_OPS_FL_INITIALIZED |
6226 FTRACE_OPS_FL_PID,
6227 };
6228
6229 static int __init ftrace_nodyn_init(void)
6230 {
6231 ftrace_enabled = 1;
6232 return 0;
6233 }
6234 core_initcall(ftrace_nodyn_init);
6235
6236 static inline int ftrace_init_dyn_tracefs(struct dentry *d_tracer) { return 0; }
6237 static inline void ftrace_startup_enable(int command) { }
6238 static inline void ftrace_startup_all(int command) { }
6239 /* Keep as macros so we do not need to define the commands */
6240 # define ftrace_startup(ops, command) \
6241 ({ \
6242 int ___ret = __register_ftrace_function(ops); \
6243 if (!___ret) \
6244 (ops)->flags |= FTRACE_OPS_FL_ENABLED; \
6245 ___ret; \
6246 })
6247 # define ftrace_shutdown(ops, command) \
6248 ({ \
6249 int ___ret = __unregister_ftrace_function(ops); \
6250 if (!___ret) \
6251 (ops)->flags &= ~FTRACE_OPS_FL_ENABLED; \
6252 ___ret; \
6253 })
6254
6255 # define ftrace_startup_sysctl() do { } while (0)
6256 # define ftrace_shutdown_sysctl() do { } while (0)
6257
6258 static inline int
6259 ftrace_ops_test(struct ftrace_ops *ops, unsigned long ip, void *regs)
6260 {
6261 return 1;
6262 }
6263
6264 static void ftrace_update_trampoline(struct ftrace_ops *ops)
6265 {
6266 }
6267
6268 #endif /* CONFIG_DYNAMIC_FTRACE */
6269
6270 __init void ftrace_init_global_array_ops(struct trace_array *tr)
6271 {
6272 tr->ops = &global_ops;
6273 tr->ops->private = tr;
6274 ftrace_init_trace_array(tr);
6275 }
6276
6277 void ftrace_init_array_ops(struct trace_array *tr, ftrace_func_t func)
6278 {
6279 /* If we filter on pids, update to use the pid function */
6280 if (tr->flags & TRACE_ARRAY_FL_GLOBAL) {
6281 if (WARN_ON(tr->ops->func != ftrace_stub))
6282 printk("ftrace ops had %pS for function\n",
6283 tr->ops->func);
6284 }
6285 tr->ops->func = func;
6286 tr->ops->private = tr;
6287 }
6288
6289 void ftrace_reset_array_ops(struct trace_array *tr)
6290 {
6291 tr->ops->func = ftrace_stub;
6292 }
6293
6294 static inline void
6295 __ftrace_ops_list_func(unsigned long ip, unsigned long parent_ip,
6296 struct ftrace_ops *ignored, struct pt_regs *regs)
6297 {
6298 struct ftrace_ops *op;
6299 int bit;
6300
6301 bit = trace_test_and_set_recursion(TRACE_LIST_START, TRACE_LIST_MAX);
6302 if (bit < 0)
6303 return;
6304
6305 /*
6306 * Some of the ops may be dynamically allocated,
6307 * they must be freed after a synchronize_sched().
6308 */
6309 preempt_disable_notrace();
6310
6311 do_for_each_ftrace_op(op, ftrace_ops_list) {
6312 /*
6313 * Check the following for each ops before calling their func:
6314 * if RCU flag is set, then rcu_is_watching() must be true
6315 * if PER_CPU is set, then ftrace_function_local_disable()
6316 * must be false
6317 * Otherwise test if the ip matches the ops filter
6318 *
6319 * If any of the above fails then the op->func() is not executed.
6320 */
6321 if ((!(op->flags & FTRACE_OPS_FL_RCU) || rcu_is_watching()) &&
6322 ftrace_ops_test(op, ip, regs)) {
6323 if (FTRACE_WARN_ON(!op->func)) {
6324 pr_warn("op=%p %pS\n", op, op);
6325 goto out;
6326 }
6327 op->func(ip, parent_ip, op, regs);
6328 }
6329 } while_for_each_ftrace_op(op);
6330 out:
6331 preempt_enable_notrace();
6332 trace_clear_recursion(bit);
6333 }
6334
6335 /*
6336 * Some archs only support passing ip and parent_ip. Even though
6337 * the list function ignores the op parameter, we do not want any
6338 * C side effects, where a function is called without the caller
6339 * sending a third parameter.
6340 * Archs are to support both the regs and ftrace_ops at the same time.
6341 * If they support ftrace_ops, it is assumed they support regs.
6342 * If call backs want to use regs, they must either check for regs
6343 * being NULL, or CONFIG_DYNAMIC_FTRACE_WITH_REGS.
6344 * Note, CONFIG_DYNAMIC_FTRACE_WITH_REGS expects a full regs to be saved.
6345 * An architecture can pass partial regs with ftrace_ops and still
6346 * set the ARCH_SUPPORTS_FTRACE_OPS.
6347 */
6348 #if ARCH_SUPPORTS_FTRACE_OPS
6349 static void ftrace_ops_list_func(unsigned long ip, unsigned long parent_ip,
6350 struct ftrace_ops *op, struct pt_regs *regs)
6351 {
6352 __ftrace_ops_list_func(ip, parent_ip, NULL, regs);
6353 }
6354 #else
6355 static void ftrace_ops_no_ops(unsigned long ip, unsigned long parent_ip)
6356 {
6357 __ftrace_ops_list_func(ip, parent_ip, NULL, NULL);
6358 }
6359 #endif
6360
6361 /*
6362 * If there's only one function registered but it does not support
6363 * recursion, needs RCU protection and/or requires per cpu handling, then
6364 * this function will be called by the mcount trampoline.
6365 */
6366 static void ftrace_ops_assist_func(unsigned long ip, unsigned long parent_ip,
6367 struct ftrace_ops *op, struct pt_regs *regs)
6368 {
6369 int bit;
6370
6371 if ((op->flags & FTRACE_OPS_FL_RCU) && !rcu_is_watching())
6372 return;
6373
6374 bit = trace_test_and_set_recursion(TRACE_LIST_START, TRACE_LIST_MAX);
6375 if (bit < 0)
6376 return;
6377
6378 preempt_disable_notrace();
6379
6380 op->func(ip, parent_ip, op, regs);
6381
6382 preempt_enable_notrace();
6383 trace_clear_recursion(bit);
6384 }
6385
6386 /**
6387 * ftrace_ops_get_func - get the function a trampoline should call
6388 * @ops: the ops to get the function for
6389 *
6390 * Normally the mcount trampoline will call the ops->func, but there
6391 * are times that it should not. For example, if the ops does not
6392 * have its own recursion protection, then it should call the
6393 * ftrace_ops_assist_func() instead.
6394 *
6395 * Returns the function that the trampoline should call for @ops.
6396 */
6397 ftrace_func_t ftrace_ops_get_func(struct ftrace_ops *ops)
6398 {
6399 /*
6400 * If the function does not handle recursion, needs to be RCU safe,
6401 * or does per cpu logic, then we need to call the assist handler.
6402 */
6403 if (!(ops->flags & FTRACE_OPS_FL_RECURSION_SAFE) ||
6404 ops->flags & FTRACE_OPS_FL_RCU)
6405 return ftrace_ops_assist_func;
6406
6407 return ops->func;
6408 }
6409
6410 static void
6411 ftrace_filter_pid_sched_switch_probe(void *data, bool preempt,
6412 struct task_struct *prev, struct task_struct *next)
6413 {
6414 struct trace_array *tr = data;
6415 struct trace_pid_list *pid_list;
6416
6417 pid_list = rcu_dereference_sched(tr->function_pids);
6418
6419 this_cpu_write(tr->trace_buffer.data->ftrace_ignore_pid,
6420 trace_ignore_this_task(pid_list, next));
6421 }
6422
6423 static void
6424 ftrace_pid_follow_sched_process_fork(void *data,
6425 struct task_struct *self,
6426 struct task_struct *task)
6427 {
6428 struct trace_pid_list *pid_list;
6429 struct trace_array *tr = data;
6430
6431 pid_list = rcu_dereference_sched(tr->function_pids);
6432 trace_filter_add_remove_task(pid_list, self, task);
6433 }
6434
6435 static void
6436 ftrace_pid_follow_sched_process_exit(void *data, struct task_struct *task)
6437 {
6438 struct trace_pid_list *pid_list;
6439 struct trace_array *tr = data;
6440
6441 pid_list = rcu_dereference_sched(tr->function_pids);
6442 trace_filter_add_remove_task(pid_list, NULL, task);
6443 }
6444
6445 void ftrace_pid_follow_fork(struct trace_array *tr, bool enable)
6446 {
6447 if (enable) {
6448 register_trace_sched_process_fork(ftrace_pid_follow_sched_process_fork,
6449 tr);
6450 register_trace_sched_process_exit(ftrace_pid_follow_sched_process_exit,
6451 tr);
6452 } else {
6453 unregister_trace_sched_process_fork(ftrace_pid_follow_sched_process_fork,
6454 tr);
6455 unregister_trace_sched_process_exit(ftrace_pid_follow_sched_process_exit,
6456 tr);
6457 }
6458 }
6459
6460 static void clear_ftrace_pids(struct trace_array *tr)
6461 {
6462 struct trace_pid_list *pid_list;
6463 int cpu;
6464
6465 pid_list = rcu_dereference_protected(tr->function_pids,
6466 lockdep_is_held(&ftrace_lock));
6467 if (!pid_list)
6468 return;
6469
6470 unregister_trace_sched_switch(ftrace_filter_pid_sched_switch_probe, tr);
6471
6472 for_each_possible_cpu(cpu)
6473 per_cpu_ptr(tr->trace_buffer.data, cpu)->ftrace_ignore_pid = false;
6474
6475 rcu_assign_pointer(tr->function_pids, NULL);
6476
6477 /* Wait till all users are no longer using pid filtering */
6478 synchronize_sched();
6479
6480 trace_free_pid_list(pid_list);
6481 }
6482
6483 void ftrace_clear_pids(struct trace_array *tr)
6484 {
6485 mutex_lock(&ftrace_lock);
6486
6487 clear_ftrace_pids(tr);
6488
6489 mutex_unlock(&ftrace_lock);
6490 }
6491
6492 static void ftrace_pid_reset(struct trace_array *tr)
6493 {
6494 mutex_lock(&ftrace_lock);
6495 clear_ftrace_pids(tr);
6496
6497 ftrace_update_pid_func();
6498 ftrace_startup_all(0);
6499
6500 mutex_unlock(&ftrace_lock);
6501 }
6502
6503 /* Greater than any max PID */
6504 #define FTRACE_NO_PIDS (void *)(PID_MAX_LIMIT + 1)
6505
6506 static void *fpid_start(struct seq_file *m, loff_t *pos)
6507 __acquires(RCU)
6508 {
6509 struct trace_pid_list *pid_list;
6510 struct trace_array *tr = m->private;
6511
6512 mutex_lock(&ftrace_lock);
6513 rcu_read_lock_sched();
6514
6515 pid_list = rcu_dereference_sched(tr->function_pids);
6516
6517 if (!pid_list)
6518 return !(*pos) ? FTRACE_NO_PIDS : NULL;
6519
6520 return trace_pid_start(pid_list, pos);
6521 }
6522
6523 static void *fpid_next(struct seq_file *m, void *v, loff_t *pos)
6524 {
6525 struct trace_array *tr = m->private;
6526 struct trace_pid_list *pid_list = rcu_dereference_sched(tr->function_pids);
6527
6528 if (v == FTRACE_NO_PIDS)
6529 return NULL;
6530
6531 return trace_pid_next(pid_list, v, pos);
6532 }
6533
6534 static void fpid_stop(struct seq_file *m, void *p)
6535 __releases(RCU)
6536 {
6537 rcu_read_unlock_sched();
6538 mutex_unlock(&ftrace_lock);
6539 }
6540
6541 static int fpid_show(struct seq_file *m, void *v)
6542 {
6543 if (v == FTRACE_NO_PIDS) {
6544 seq_puts(m, "no pid\n");
6545 return 0;
6546 }
6547
6548 return trace_pid_show(m, v);
6549 }
6550
6551 static const struct seq_operations ftrace_pid_sops = {
6552 .start = fpid_start,
6553 .next = fpid_next,
6554 .stop = fpid_stop,
6555 .show = fpid_show,
6556 };
6557
6558 static int
6559 ftrace_pid_open(struct inode *inode, struct file *file)
6560 {
6561 struct trace_array *tr = inode->i_private;
6562 struct seq_file *m;
6563 int ret = 0;
6564
6565 if (trace_array_get(tr) < 0)
6566 return -ENODEV;
6567
6568 if ((file->f_mode & FMODE_WRITE) &&
6569 (file->f_flags & O_TRUNC))
6570 ftrace_pid_reset(tr);
6571
6572 ret = seq_open(file, &ftrace_pid_sops);
6573 if (ret < 0) {
6574 trace_array_put(tr);
6575 } else {
6576 m = file->private_data;
6577 /* copy tr over to seq ops */
6578 m->private = tr;
6579 }
6580
6581 return ret;
6582 }
6583
6584 static void ignore_task_cpu(void *data)
6585 {
6586 struct trace_array *tr = data;
6587 struct trace_pid_list *pid_list;
6588
6589 /*
6590 * This function is called by on_each_cpu() while the
6591 * event_mutex is held.
6592 */
6593 pid_list = rcu_dereference_protected(tr->function_pids,
6594 mutex_is_locked(&ftrace_lock));
6595
6596 this_cpu_write(tr->trace_buffer.data->ftrace_ignore_pid,
6597 trace_ignore_this_task(pid_list, current));
6598 }
6599
6600 static ssize_t
6601 ftrace_pid_write(struct file *filp, const char __user *ubuf,
6602 size_t cnt, loff_t *ppos)
6603 {
6604 struct seq_file *m = filp->private_data;
6605 struct trace_array *tr = m->private;
6606 struct trace_pid_list *filtered_pids = NULL;
6607 struct trace_pid_list *pid_list;
6608 ssize_t ret;
6609
6610 if (!cnt)
6611 return 0;
6612
6613 mutex_lock(&ftrace_lock);
6614
6615 filtered_pids = rcu_dereference_protected(tr->function_pids,
6616 lockdep_is_held(&ftrace_lock));
6617
6618 ret = trace_pid_write(filtered_pids, &pid_list, ubuf, cnt);
6619 if (ret < 0)
6620 goto out;
6621
6622 rcu_assign_pointer(tr->function_pids, pid_list);
6623
6624 if (filtered_pids) {
6625 synchronize_sched();
6626 trace_free_pid_list(filtered_pids);
6627 } else if (pid_list) {
6628 /* Register a probe to set whether to ignore the tracing of a task */
6629 register_trace_sched_switch(ftrace_filter_pid_sched_switch_probe, tr);
6630 }
6631
6632 /*
6633 * Ignoring of pids is done at task switch. But we have to
6634 * check for those tasks that are currently running.
6635 * Always do this in case a pid was appended or removed.
6636 */
6637 on_each_cpu(ignore_task_cpu, tr, 1);
6638
6639 ftrace_update_pid_func();
6640 ftrace_startup_all(0);
6641 out:
6642 mutex_unlock(&ftrace_lock);
6643
6644 if (ret > 0)
6645 *ppos += ret;
6646
6647 return ret;
6648 }
6649
6650 static int
6651 ftrace_pid_release(struct inode *inode, struct file *file)
6652 {
6653 struct trace_array *tr = inode->i_private;
6654
6655 trace_array_put(tr);
6656
6657 return seq_release(inode, file);
6658 }
6659
6660 static const struct file_operations ftrace_pid_fops = {
6661 .open = ftrace_pid_open,
6662 .write = ftrace_pid_write,
6663 .read = seq_read,
6664 .llseek = tracing_lseek,
6665 .release = ftrace_pid_release,
6666 };
6667
6668 void ftrace_init_tracefs(struct trace_array *tr, struct dentry *d_tracer)
6669 {
6670 trace_create_file("set_ftrace_pid", 0644, d_tracer,
6671 tr, &ftrace_pid_fops);
6672 }
6673
6674 void __init ftrace_init_tracefs_toplevel(struct trace_array *tr,
6675 struct dentry *d_tracer)
6676 {
6677 /* Only the top level directory has the dyn_tracefs and profile */
6678 WARN_ON(!(tr->flags & TRACE_ARRAY_FL_GLOBAL));
6679
6680 ftrace_init_dyn_tracefs(d_tracer);
6681 ftrace_profile_tracefs(d_tracer);
6682 }
6683
6684 /**
6685 * ftrace_kill - kill ftrace
6686 *
6687 * This function should be used by panic code. It stops ftrace
6688 * but in a not so nice way. If you need to simply kill ftrace
6689 * from a non-atomic section, use ftrace_kill.
6690 */
6691 void ftrace_kill(void)
6692 {
6693 ftrace_disabled = 1;
6694 ftrace_enabled = 0;
6695 clear_ftrace_function();
6696 }
6697
6698 /**
6699 * Test if ftrace is dead or not.
6700 */
6701 int ftrace_is_dead(void)
6702 {
6703 return ftrace_disabled;
6704 }
6705
6706 /**
6707 * register_ftrace_function - register a function for profiling
6708 * @ops - ops structure that holds the function for profiling.
6709 *
6710 * Register a function to be called by all functions in the
6711 * kernel.
6712 *
6713 * Note: @ops->func and all the functions it calls must be labeled
6714 * with "notrace", otherwise it will go into a
6715 * recursive loop.
6716 */
6717 int register_ftrace_function(struct ftrace_ops *ops)
6718 {
6719 int ret = -1;
6720
6721 ftrace_ops_init(ops);
6722
6723 mutex_lock(&ftrace_lock);
6724
6725 ret = ftrace_startup(ops, 0);
6726
6727 mutex_unlock(&ftrace_lock);
6728
6729 return ret;
6730 }
6731 EXPORT_SYMBOL_GPL(register_ftrace_function);
6732
6733 /**
6734 * unregister_ftrace_function - unregister a function for profiling.
6735 * @ops - ops structure that holds the function to unregister
6736 *
6737 * Unregister a function that was added to be called by ftrace profiling.
6738 */
6739 int unregister_ftrace_function(struct ftrace_ops *ops)
6740 {
6741 int ret;
6742
6743 mutex_lock(&ftrace_lock);
6744 ret = ftrace_shutdown(ops, 0);
6745 mutex_unlock(&ftrace_lock);
6746
6747 return ret;
6748 }
6749 EXPORT_SYMBOL_GPL(unregister_ftrace_function);
6750
6751 int
6752 ftrace_enable_sysctl(struct ctl_table *table, int write,
6753 void __user *buffer, size_t *lenp,
6754 loff_t *ppos)
6755 {
6756 int ret = -ENODEV;
6757
6758 mutex_lock(&ftrace_lock);
6759
6760 if (unlikely(ftrace_disabled))
6761 goto out;
6762
6763 ret = proc_dointvec(table, write, buffer, lenp, ppos);
6764
6765 if (ret || !write || (last_ftrace_enabled == !!ftrace_enabled))
6766 goto out;
6767
6768 last_ftrace_enabled = !!ftrace_enabled;
6769
6770 if (ftrace_enabled) {
6771
6772 /* we are starting ftrace again */
6773 if (rcu_dereference_protected(ftrace_ops_list,
6774 lockdep_is_held(&ftrace_lock)) != &ftrace_list_end)
6775 update_ftrace_function();
6776
6777 ftrace_startup_sysctl();
6778
6779 } else {
6780 /* stopping ftrace calls (just send to ftrace_stub) */
6781 ftrace_trace_function = ftrace_stub;
6782
6783 ftrace_shutdown_sysctl();
6784 }
6785
6786 out:
6787 mutex_unlock(&ftrace_lock);
6788 return ret;
6789 }
6790
6791 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
6792
6793 static struct ftrace_ops graph_ops = {
6794 .func = ftrace_stub,
6795 .flags = FTRACE_OPS_FL_RECURSION_SAFE |
6796 FTRACE_OPS_FL_INITIALIZED |
6797 FTRACE_OPS_FL_PID |
6798 FTRACE_OPS_FL_STUB,
6799 #ifdef FTRACE_GRAPH_TRAMP_ADDR
6800 .trampoline = FTRACE_GRAPH_TRAMP_ADDR,
6801 /* trampoline_size is only needed for dynamically allocated tramps */
6802 #endif
6803 ASSIGN_OPS_HASH(graph_ops, &global_ops.local_hash)
6804 };
6805
6806 void ftrace_graph_sleep_time_control(bool enable)
6807 {
6808 fgraph_sleep_time = enable;
6809 }
6810
6811 void ftrace_graph_graph_time_control(bool enable)
6812 {
6813 fgraph_graph_time = enable;
6814 }
6815
6816 int ftrace_graph_entry_stub(struct ftrace_graph_ent *trace)
6817 {
6818 return 0;
6819 }
6820
6821 /* The callbacks that hook a function */
6822 trace_func_graph_ret_t ftrace_graph_return =
6823 (trace_func_graph_ret_t)ftrace_stub;
6824 trace_func_graph_ent_t ftrace_graph_entry = ftrace_graph_entry_stub;
6825 static trace_func_graph_ent_t __ftrace_graph_entry = ftrace_graph_entry_stub;
6826
6827 /* Try to assign a return stack array on FTRACE_RETSTACK_ALLOC_SIZE tasks. */
6828 static int alloc_retstack_tasklist(struct ftrace_ret_stack **ret_stack_list)
6829 {
6830 int i;
6831 int ret = 0;
6832 int start = 0, end = FTRACE_RETSTACK_ALLOC_SIZE;
6833 struct task_struct *g, *t;
6834
6835 for (i = 0; i < FTRACE_RETSTACK_ALLOC_SIZE; i++) {
6836 ret_stack_list[i] = kmalloc(FTRACE_RETFUNC_DEPTH
6837 * sizeof(struct ftrace_ret_stack),
6838 GFP_KERNEL);
6839 if (!ret_stack_list[i]) {
6840 start = 0;
6841 end = i;
6842 ret = -ENOMEM;
6843 goto free;
6844 }
6845 }
6846
6847 read_lock(&tasklist_lock);
6848 do_each_thread(g, t) {
6849 if (start == end) {
6850 ret = -EAGAIN;
6851 goto unlock;
6852 }
6853
6854 if (t->ret_stack == NULL) {
6855 atomic_set(&t->tracing_graph_pause, 0);
6856 atomic_set(&t->trace_overrun, 0);
6857 t->curr_ret_stack = -1;
6858 /* Make sure the tasks see the -1 first: */
6859 smp_wmb();
6860 t->ret_stack = ret_stack_list[start++];
6861 }
6862 } while_each_thread(g, t);
6863
6864 unlock:
6865 read_unlock(&tasklist_lock);
6866 free:
6867 for (i = start; i < end; i++)
6868 kfree(ret_stack_list[i]);
6869 return ret;
6870 }
6871
6872 static void
6873 ftrace_graph_probe_sched_switch(void *ignore, bool preempt,
6874 struct task_struct *prev, struct task_struct *next)
6875 {
6876 unsigned long long timestamp;
6877 int index;
6878
6879 /*
6880 * Does the user want to count the time a function was asleep.
6881 * If so, do not update the time stamps.
6882 */
6883 if (fgraph_sleep_time)
6884 return;
6885
6886 timestamp = trace_clock_local();
6887
6888 prev->ftrace_timestamp = timestamp;
6889
6890 /* only process tasks that we timestamped */
6891 if (!next->ftrace_timestamp)
6892 return;
6893
6894 /*
6895 * Update all the counters in next to make up for the
6896 * time next was sleeping.
6897 */
6898 timestamp -= next->ftrace_timestamp;
6899
6900 for (index = next->curr_ret_stack; index >= 0; index--)
6901 next->ret_stack[index].calltime += timestamp;
6902 }
6903
6904 /* Allocate a return stack for each task */
6905 static int start_graph_tracing(void)
6906 {
6907 struct ftrace_ret_stack **ret_stack_list;
6908 int ret, cpu;
6909
6910 ret_stack_list = kmalloc(FTRACE_RETSTACK_ALLOC_SIZE *
6911 sizeof(struct ftrace_ret_stack *),
6912 GFP_KERNEL);
6913
6914 if (!ret_stack_list)
6915 return -ENOMEM;
6916
6917 /* The cpu_boot init_task->ret_stack will never be freed */
6918 for_each_online_cpu(cpu) {
6919 if (!idle_task(cpu)->ret_stack)
6920 ftrace_graph_init_idle_task(idle_task(cpu), cpu);
6921 }
6922
6923 do {
6924 ret = alloc_retstack_tasklist(ret_stack_list);
6925 } while (ret == -EAGAIN);
6926
6927 if (!ret) {
6928 ret = register_trace_sched_switch(ftrace_graph_probe_sched_switch, NULL);
6929 if (ret)
6930 pr_info("ftrace_graph: Couldn't activate tracepoint"
6931 " probe to kernel_sched_switch\n");
6932 }
6933
6934 kfree(ret_stack_list);
6935 return ret;
6936 }
6937
6938 /*
6939 * Hibernation protection.
6940 * The state of the current task is too much unstable during
6941 * suspend/restore to disk. We want to protect against that.
6942 */
6943 static int
6944 ftrace_suspend_notifier_call(struct notifier_block *bl, unsigned long state,
6945 void *unused)
6946 {
6947 switch (state) {
6948 case PM_HIBERNATION_PREPARE:
6949 pause_graph_tracing();
6950 break;
6951
6952 case PM_POST_HIBERNATION:
6953 unpause_graph_tracing();
6954 break;
6955 }
6956 return NOTIFY_DONE;
6957 }
6958
6959 static int ftrace_graph_entry_test(struct ftrace_graph_ent *trace)
6960 {
6961 if (!ftrace_ops_test(&global_ops, trace->func, NULL))
6962 return 0;
6963 return __ftrace_graph_entry(trace);
6964 }
6965
6966 /*
6967 * The function graph tracer should only trace the functions defined
6968 * by set_ftrace_filter and set_ftrace_notrace. If another function
6969 * tracer ops is registered, the graph tracer requires testing the
6970 * function against the global ops, and not just trace any function
6971 * that any ftrace_ops registered.
6972 */
6973 static void update_function_graph_func(void)
6974 {
6975 struct ftrace_ops *op;
6976 bool do_test = false;
6977
6978 /*
6979 * The graph and global ops share the same set of functions
6980 * to test. If any other ops is on the list, then
6981 * the graph tracing needs to test if its the function
6982 * it should call.
6983 */
6984 do_for_each_ftrace_op(op, ftrace_ops_list) {
6985 if (op != &global_ops && op != &graph_ops &&
6986 op != &ftrace_list_end) {
6987 do_test = true;
6988 /* in double loop, break out with goto */
6989 goto out;
6990 }
6991 } while_for_each_ftrace_op(op);
6992 out:
6993 if (do_test)
6994 ftrace_graph_entry = ftrace_graph_entry_test;
6995 else
6996 ftrace_graph_entry = __ftrace_graph_entry;
6997 }
6998
6999 static struct notifier_block ftrace_suspend_notifier = {
7000 .notifier_call = ftrace_suspend_notifier_call,
7001 };
7002
7003 int register_ftrace_graph(trace_func_graph_ret_t retfunc,
7004 trace_func_graph_ent_t entryfunc)
7005 {
7006 int ret = 0;
7007
7008 mutex_lock(&ftrace_lock);
7009
7010 /* we currently allow only one tracer registered at a time */
7011 if (ftrace_graph_active) {
7012 ret = -EBUSY;
7013 goto out;
7014 }
7015
7016 register_pm_notifier(&ftrace_suspend_notifier);
7017
7018 ftrace_graph_active++;
7019 ret = start_graph_tracing();
7020 if (ret) {
7021 ftrace_graph_active--;
7022 goto out;
7023 }
7024
7025 ftrace_graph_return = retfunc;
7026
7027 /*
7028 * Update the indirect function to the entryfunc, and the
7029 * function that gets called to the entry_test first. Then
7030 * call the update fgraph entry function to determine if
7031 * the entryfunc should be called directly or not.
7032 */
7033 __ftrace_graph_entry = entryfunc;
7034 ftrace_graph_entry = ftrace_graph_entry_test;
7035 update_function_graph_func();
7036
7037 ret = ftrace_startup(&graph_ops, FTRACE_START_FUNC_RET);
7038 out:
7039 mutex_unlock(&ftrace_lock);
7040 return ret;
7041 }
7042
7043 void unregister_ftrace_graph(void)
7044 {
7045 mutex_lock(&ftrace_lock);
7046
7047 if (unlikely(!ftrace_graph_active))
7048 goto out;
7049
7050 ftrace_graph_active--;
7051 ftrace_graph_return = (trace_func_graph_ret_t)ftrace_stub;
7052 ftrace_graph_entry = ftrace_graph_entry_stub;
7053 __ftrace_graph_entry = ftrace_graph_entry_stub;
7054 ftrace_shutdown(&graph_ops, FTRACE_STOP_FUNC_RET);
7055 unregister_pm_notifier(&ftrace_suspend_notifier);
7056 unregister_trace_sched_switch(ftrace_graph_probe_sched_switch, NULL);
7057
7058 out:
7059 mutex_unlock(&ftrace_lock);
7060 }
7061
7062 static DEFINE_PER_CPU(struct ftrace_ret_stack *, idle_ret_stack);
7063
7064 static void
7065 graph_init_task(struct task_struct *t, struct ftrace_ret_stack *ret_stack)
7066 {
7067 atomic_set(&t->tracing_graph_pause, 0);
7068 atomic_set(&t->trace_overrun, 0);
7069 t->ftrace_timestamp = 0;
7070 /* make curr_ret_stack visible before we add the ret_stack */
7071 smp_wmb();
7072 t->ret_stack = ret_stack;
7073 }
7074
7075 /*
7076 * Allocate a return stack for the idle task. May be the first
7077 * time through, or it may be done by CPU hotplug online.
7078 */
7079 void ftrace_graph_init_idle_task(struct task_struct *t, int cpu)
7080 {
7081 t->curr_ret_stack = -1;
7082 /*
7083 * The idle task has no parent, it either has its own
7084 * stack or no stack at all.
7085 */
7086 if (t->ret_stack)
7087 WARN_ON(t->ret_stack != per_cpu(idle_ret_stack, cpu));
7088
7089 if (ftrace_graph_active) {
7090 struct ftrace_ret_stack *ret_stack;
7091
7092 ret_stack = per_cpu(idle_ret_stack, cpu);
7093 if (!ret_stack) {
7094 ret_stack = kmalloc(FTRACE_RETFUNC_DEPTH
7095 * sizeof(struct ftrace_ret_stack),
7096 GFP_KERNEL);
7097 if (!ret_stack)
7098 return;
7099 per_cpu(idle_ret_stack, cpu) = ret_stack;
7100 }
7101 graph_init_task(t, ret_stack);
7102 }
7103 }
7104
7105 /* Allocate a return stack for newly created task */
7106 void ftrace_graph_init_task(struct task_struct *t)
7107 {
7108 /* Make sure we do not use the parent ret_stack */
7109 t->ret_stack = NULL;
7110 t->curr_ret_stack = -1;
7111
7112 if (ftrace_graph_active) {
7113 struct ftrace_ret_stack *ret_stack;
7114
7115 ret_stack = kmalloc(FTRACE_RETFUNC_DEPTH
7116 * sizeof(struct ftrace_ret_stack),
7117 GFP_KERNEL);
7118 if (!ret_stack)
7119 return;
7120 graph_init_task(t, ret_stack);
7121 }
7122 }
7123
7124 void ftrace_graph_exit_task(struct task_struct *t)
7125 {
7126 struct ftrace_ret_stack *ret_stack = t->ret_stack;
7127
7128 t->ret_stack = NULL;
7129 /* NULL must become visible to IRQs before we free it: */
7130 barrier();
7131
7132 kfree(ret_stack);
7133 }
7134 #endif