]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - kernel/trace/ftrace.c
tracing: Have type enum modifications copy the strings
[mirror_ubuntu-jammy-kernel.git] / kernel / trace / ftrace.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Infrastructure for profiling code inserted by 'gcc -pg'.
4 *
5 * Copyright (C) 2007-2008 Steven Rostedt <srostedt@redhat.com>
6 * Copyright (C) 2004-2008 Ingo Molnar <mingo@redhat.com>
7 *
8 * Originally ported from the -rt patch by:
9 * Copyright (C) 2007 Arnaldo Carvalho de Melo <acme@redhat.com>
10 *
11 * Based on code in the latency_tracer, that is:
12 *
13 * Copyright (C) 2004-2006 Ingo Molnar
14 * Copyright (C) 2004 Nadia Yvette Chambers
15 */
16
17 #include <linux/stop_machine.h>
18 #include <linux/clocksource.h>
19 #include <linux/sched/task.h>
20 #include <linux/kallsyms.h>
21 #include <linux/security.h>
22 #include <linux/seq_file.h>
23 #include <linux/tracefs.h>
24 #include <linux/hardirq.h>
25 #include <linux/kthread.h>
26 #include <linux/uaccess.h>
27 #include <linux/bsearch.h>
28 #include <linux/module.h>
29 #include <linux/ftrace.h>
30 #include <linux/sysctl.h>
31 #include <linux/slab.h>
32 #include <linux/ctype.h>
33 #include <linux/sort.h>
34 #include <linux/list.h>
35 #include <linux/hash.h>
36 #include <linux/rcupdate.h>
37 #include <linux/kprobes.h>
38
39 #include <trace/events/sched.h>
40
41 #include <asm/sections.h>
42 #include <asm/setup.h>
43
44 #include "ftrace_internal.h"
45 #include "trace_output.h"
46 #include "trace_stat.h"
47
48 #define FTRACE_WARN_ON(cond) \
49 ({ \
50 int ___r = cond; \
51 if (WARN_ON(___r)) \
52 ftrace_kill(); \
53 ___r; \
54 })
55
56 #define FTRACE_WARN_ON_ONCE(cond) \
57 ({ \
58 int ___r = cond; \
59 if (WARN_ON_ONCE(___r)) \
60 ftrace_kill(); \
61 ___r; \
62 })
63
64 /* hash bits for specific function selection */
65 #define FTRACE_HASH_DEFAULT_BITS 10
66 #define FTRACE_HASH_MAX_BITS 12
67
68 #ifdef CONFIG_DYNAMIC_FTRACE
69 #define INIT_OPS_HASH(opsname) \
70 .func_hash = &opsname.local_hash, \
71 .local_hash.regex_lock = __MUTEX_INITIALIZER(opsname.local_hash.regex_lock),
72 #else
73 #define INIT_OPS_HASH(opsname)
74 #endif
75
76 enum {
77 FTRACE_MODIFY_ENABLE_FL = (1 << 0),
78 FTRACE_MODIFY_MAY_SLEEP_FL = (1 << 1),
79 };
80
81 struct ftrace_ops ftrace_list_end __read_mostly = {
82 .func = ftrace_stub,
83 .flags = FTRACE_OPS_FL_STUB,
84 INIT_OPS_HASH(ftrace_list_end)
85 };
86
87 /* ftrace_enabled is a method to turn ftrace on or off */
88 int ftrace_enabled __read_mostly;
89 static int last_ftrace_enabled;
90
91 /* Current function tracing op */
92 struct ftrace_ops *function_trace_op __read_mostly = &ftrace_list_end;
93 /* What to set function_trace_op to */
94 static struct ftrace_ops *set_function_trace_op;
95
96 static bool ftrace_pids_enabled(struct ftrace_ops *ops)
97 {
98 struct trace_array *tr;
99
100 if (!(ops->flags & FTRACE_OPS_FL_PID) || !ops->private)
101 return false;
102
103 tr = ops->private;
104
105 return tr->function_pids != NULL || tr->function_no_pids != NULL;
106 }
107
108 static void ftrace_update_trampoline(struct ftrace_ops *ops);
109
110 /*
111 * ftrace_disabled is set when an anomaly is discovered.
112 * ftrace_disabled is much stronger than ftrace_enabled.
113 */
114 static int ftrace_disabled __read_mostly;
115
116 DEFINE_MUTEX(ftrace_lock);
117
118 struct ftrace_ops __rcu *ftrace_ops_list __read_mostly = &ftrace_list_end;
119 ftrace_func_t ftrace_trace_function __read_mostly = ftrace_stub;
120 struct ftrace_ops global_ops;
121
122 #if ARCH_SUPPORTS_FTRACE_OPS
123 static void ftrace_ops_list_func(unsigned long ip, unsigned long parent_ip,
124 struct ftrace_ops *op, struct ftrace_regs *fregs);
125 #else
126 /* See comment below, where ftrace_ops_list_func is defined */
127 static void ftrace_ops_no_ops(unsigned long ip, unsigned long parent_ip);
128 #define ftrace_ops_list_func ((ftrace_func_t)ftrace_ops_no_ops)
129 #endif
130
131 static inline void ftrace_ops_init(struct ftrace_ops *ops)
132 {
133 #ifdef CONFIG_DYNAMIC_FTRACE
134 if (!(ops->flags & FTRACE_OPS_FL_INITIALIZED)) {
135 mutex_init(&ops->local_hash.regex_lock);
136 ops->func_hash = &ops->local_hash;
137 ops->flags |= FTRACE_OPS_FL_INITIALIZED;
138 }
139 #endif
140 }
141
142 static void ftrace_pid_func(unsigned long ip, unsigned long parent_ip,
143 struct ftrace_ops *op, struct ftrace_regs *fregs)
144 {
145 struct trace_array *tr = op->private;
146 int pid;
147
148 if (tr) {
149 pid = this_cpu_read(tr->array_buffer.data->ftrace_ignore_pid);
150 if (pid == FTRACE_PID_IGNORE)
151 return;
152 if (pid != FTRACE_PID_TRACE &&
153 pid != current->pid)
154 return;
155 }
156
157 op->saved_func(ip, parent_ip, op, fregs);
158 }
159
160 static void ftrace_sync_ipi(void *data)
161 {
162 /* Probably not needed, but do it anyway */
163 smp_rmb();
164 }
165
166 static ftrace_func_t ftrace_ops_get_list_func(struct ftrace_ops *ops)
167 {
168 /*
169 * If this is a dynamic, RCU, or per CPU ops, or we force list func,
170 * then it needs to call the list anyway.
171 */
172 if (ops->flags & (FTRACE_OPS_FL_DYNAMIC | FTRACE_OPS_FL_RCU) ||
173 FTRACE_FORCE_LIST_FUNC)
174 return ftrace_ops_list_func;
175
176 return ftrace_ops_get_func(ops);
177 }
178
179 static void update_ftrace_function(void)
180 {
181 ftrace_func_t func;
182
183 /*
184 * Prepare the ftrace_ops that the arch callback will use.
185 * If there's only one ftrace_ops registered, the ftrace_ops_list
186 * will point to the ops we want.
187 */
188 set_function_trace_op = rcu_dereference_protected(ftrace_ops_list,
189 lockdep_is_held(&ftrace_lock));
190
191 /* If there's no ftrace_ops registered, just call the stub function */
192 if (set_function_trace_op == &ftrace_list_end) {
193 func = ftrace_stub;
194
195 /*
196 * If we are at the end of the list and this ops is
197 * recursion safe and not dynamic and the arch supports passing ops,
198 * then have the mcount trampoline call the function directly.
199 */
200 } else if (rcu_dereference_protected(ftrace_ops_list->next,
201 lockdep_is_held(&ftrace_lock)) == &ftrace_list_end) {
202 func = ftrace_ops_get_list_func(ftrace_ops_list);
203
204 } else {
205 /* Just use the default ftrace_ops */
206 set_function_trace_op = &ftrace_list_end;
207 func = ftrace_ops_list_func;
208 }
209
210 update_function_graph_func();
211
212 /* If there's no change, then do nothing more here */
213 if (ftrace_trace_function == func)
214 return;
215
216 /*
217 * If we are using the list function, it doesn't care
218 * about the function_trace_ops.
219 */
220 if (func == ftrace_ops_list_func) {
221 ftrace_trace_function = func;
222 /*
223 * Don't even bother setting function_trace_ops,
224 * it would be racy to do so anyway.
225 */
226 return;
227 }
228
229 #ifndef CONFIG_DYNAMIC_FTRACE
230 /*
231 * For static tracing, we need to be a bit more careful.
232 * The function change takes affect immediately. Thus,
233 * we need to coordinate the setting of the function_trace_ops
234 * with the setting of the ftrace_trace_function.
235 *
236 * Set the function to the list ops, which will call the
237 * function we want, albeit indirectly, but it handles the
238 * ftrace_ops and doesn't depend on function_trace_op.
239 */
240 ftrace_trace_function = ftrace_ops_list_func;
241 /*
242 * Make sure all CPUs see this. Yes this is slow, but static
243 * tracing is slow and nasty to have enabled.
244 */
245 synchronize_rcu_tasks_rude();
246 /* Now all cpus are using the list ops. */
247 function_trace_op = set_function_trace_op;
248 /* Make sure the function_trace_op is visible on all CPUs */
249 smp_wmb();
250 /* Nasty way to force a rmb on all cpus */
251 smp_call_function(ftrace_sync_ipi, NULL, 1);
252 /* OK, we are all set to update the ftrace_trace_function now! */
253 #endif /* !CONFIG_DYNAMIC_FTRACE */
254
255 ftrace_trace_function = func;
256 }
257
258 static void add_ftrace_ops(struct ftrace_ops __rcu **list,
259 struct ftrace_ops *ops)
260 {
261 rcu_assign_pointer(ops->next, *list);
262
263 /*
264 * We are entering ops into the list but another
265 * CPU might be walking that list. We need to make sure
266 * the ops->next pointer is valid before another CPU sees
267 * the ops pointer included into the list.
268 */
269 rcu_assign_pointer(*list, ops);
270 }
271
272 static int remove_ftrace_ops(struct ftrace_ops __rcu **list,
273 struct ftrace_ops *ops)
274 {
275 struct ftrace_ops **p;
276
277 /*
278 * If we are removing the last function, then simply point
279 * to the ftrace_stub.
280 */
281 if (rcu_dereference_protected(*list,
282 lockdep_is_held(&ftrace_lock)) == ops &&
283 rcu_dereference_protected(ops->next,
284 lockdep_is_held(&ftrace_lock)) == &ftrace_list_end) {
285 *list = &ftrace_list_end;
286 return 0;
287 }
288
289 for (p = list; *p != &ftrace_list_end; p = &(*p)->next)
290 if (*p == ops)
291 break;
292
293 if (*p != ops)
294 return -1;
295
296 *p = (*p)->next;
297 return 0;
298 }
299
300 static void ftrace_update_trampoline(struct ftrace_ops *ops);
301
302 int __register_ftrace_function(struct ftrace_ops *ops)
303 {
304 if (ops->flags & FTRACE_OPS_FL_DELETED)
305 return -EINVAL;
306
307 if (WARN_ON(ops->flags & FTRACE_OPS_FL_ENABLED))
308 return -EBUSY;
309
310 #ifndef CONFIG_DYNAMIC_FTRACE_WITH_REGS
311 /*
312 * If the ftrace_ops specifies SAVE_REGS, then it only can be used
313 * if the arch supports it, or SAVE_REGS_IF_SUPPORTED is also set.
314 * Setting SAVE_REGS_IF_SUPPORTED makes SAVE_REGS irrelevant.
315 */
316 if (ops->flags & FTRACE_OPS_FL_SAVE_REGS &&
317 !(ops->flags & FTRACE_OPS_FL_SAVE_REGS_IF_SUPPORTED))
318 return -EINVAL;
319
320 if (ops->flags & FTRACE_OPS_FL_SAVE_REGS_IF_SUPPORTED)
321 ops->flags |= FTRACE_OPS_FL_SAVE_REGS;
322 #endif
323 if (!ftrace_enabled && (ops->flags & FTRACE_OPS_FL_PERMANENT))
324 return -EBUSY;
325
326 if (!core_kernel_data((unsigned long)ops))
327 ops->flags |= FTRACE_OPS_FL_DYNAMIC;
328
329 add_ftrace_ops(&ftrace_ops_list, ops);
330
331 /* Always save the function, and reset at unregistering */
332 ops->saved_func = ops->func;
333
334 if (ftrace_pids_enabled(ops))
335 ops->func = ftrace_pid_func;
336
337 ftrace_update_trampoline(ops);
338
339 if (ftrace_enabled)
340 update_ftrace_function();
341
342 return 0;
343 }
344
345 int __unregister_ftrace_function(struct ftrace_ops *ops)
346 {
347 int ret;
348
349 if (WARN_ON(!(ops->flags & FTRACE_OPS_FL_ENABLED)))
350 return -EBUSY;
351
352 ret = remove_ftrace_ops(&ftrace_ops_list, ops);
353
354 if (ret < 0)
355 return ret;
356
357 if (ftrace_enabled)
358 update_ftrace_function();
359
360 ops->func = ops->saved_func;
361
362 return 0;
363 }
364
365 static void ftrace_update_pid_func(void)
366 {
367 struct ftrace_ops *op;
368
369 /* Only do something if we are tracing something */
370 if (ftrace_trace_function == ftrace_stub)
371 return;
372
373 do_for_each_ftrace_op(op, ftrace_ops_list) {
374 if (op->flags & FTRACE_OPS_FL_PID) {
375 op->func = ftrace_pids_enabled(op) ?
376 ftrace_pid_func : op->saved_func;
377 ftrace_update_trampoline(op);
378 }
379 } while_for_each_ftrace_op(op);
380
381 update_ftrace_function();
382 }
383
384 #ifdef CONFIG_FUNCTION_PROFILER
385 struct ftrace_profile {
386 struct hlist_node node;
387 unsigned long ip;
388 unsigned long counter;
389 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
390 unsigned long long time;
391 unsigned long long time_squared;
392 #endif
393 };
394
395 struct ftrace_profile_page {
396 struct ftrace_profile_page *next;
397 unsigned long index;
398 struct ftrace_profile records[];
399 };
400
401 struct ftrace_profile_stat {
402 atomic_t disabled;
403 struct hlist_head *hash;
404 struct ftrace_profile_page *pages;
405 struct ftrace_profile_page *start;
406 struct tracer_stat stat;
407 };
408
409 #define PROFILE_RECORDS_SIZE \
410 (PAGE_SIZE - offsetof(struct ftrace_profile_page, records))
411
412 #define PROFILES_PER_PAGE \
413 (PROFILE_RECORDS_SIZE / sizeof(struct ftrace_profile))
414
415 static int ftrace_profile_enabled __read_mostly;
416
417 /* ftrace_profile_lock - synchronize the enable and disable of the profiler */
418 static DEFINE_MUTEX(ftrace_profile_lock);
419
420 static DEFINE_PER_CPU(struct ftrace_profile_stat, ftrace_profile_stats);
421
422 #define FTRACE_PROFILE_HASH_BITS 10
423 #define FTRACE_PROFILE_HASH_SIZE (1 << FTRACE_PROFILE_HASH_BITS)
424
425 static void *
426 function_stat_next(void *v, int idx)
427 {
428 struct ftrace_profile *rec = v;
429 struct ftrace_profile_page *pg;
430
431 pg = (struct ftrace_profile_page *)((unsigned long)rec & PAGE_MASK);
432
433 again:
434 if (idx != 0)
435 rec++;
436
437 if ((void *)rec >= (void *)&pg->records[pg->index]) {
438 pg = pg->next;
439 if (!pg)
440 return NULL;
441 rec = &pg->records[0];
442 if (!rec->counter)
443 goto again;
444 }
445
446 return rec;
447 }
448
449 static void *function_stat_start(struct tracer_stat *trace)
450 {
451 struct ftrace_profile_stat *stat =
452 container_of(trace, struct ftrace_profile_stat, stat);
453
454 if (!stat || !stat->start)
455 return NULL;
456
457 return function_stat_next(&stat->start->records[0], 0);
458 }
459
460 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
461 /* function graph compares on total time */
462 static int function_stat_cmp(const void *p1, const void *p2)
463 {
464 const struct ftrace_profile *a = p1;
465 const struct ftrace_profile *b = p2;
466
467 if (a->time < b->time)
468 return -1;
469 if (a->time > b->time)
470 return 1;
471 else
472 return 0;
473 }
474 #else
475 /* not function graph compares against hits */
476 static int function_stat_cmp(const void *p1, const void *p2)
477 {
478 const struct ftrace_profile *a = p1;
479 const struct ftrace_profile *b = p2;
480
481 if (a->counter < b->counter)
482 return -1;
483 if (a->counter > b->counter)
484 return 1;
485 else
486 return 0;
487 }
488 #endif
489
490 static int function_stat_headers(struct seq_file *m)
491 {
492 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
493 seq_puts(m, " Function "
494 "Hit Time Avg s^2\n"
495 " -------- "
496 "--- ---- --- ---\n");
497 #else
498 seq_puts(m, " Function Hit\n"
499 " -------- ---\n");
500 #endif
501 return 0;
502 }
503
504 static int function_stat_show(struct seq_file *m, void *v)
505 {
506 struct ftrace_profile *rec = v;
507 char str[KSYM_SYMBOL_LEN];
508 int ret = 0;
509 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
510 static struct trace_seq s;
511 unsigned long long avg;
512 unsigned long long stddev;
513 #endif
514 mutex_lock(&ftrace_profile_lock);
515
516 /* we raced with function_profile_reset() */
517 if (unlikely(rec->counter == 0)) {
518 ret = -EBUSY;
519 goto out;
520 }
521
522 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
523 avg = div64_ul(rec->time, rec->counter);
524 if (tracing_thresh && (avg < tracing_thresh))
525 goto out;
526 #endif
527
528 kallsyms_lookup(rec->ip, NULL, NULL, NULL, str);
529 seq_printf(m, " %-30.30s %10lu", str, rec->counter);
530
531 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
532 seq_puts(m, " ");
533
534 /* Sample standard deviation (s^2) */
535 if (rec->counter <= 1)
536 stddev = 0;
537 else {
538 /*
539 * Apply Welford's method:
540 * s^2 = 1 / (n * (n-1)) * (n * \Sum (x_i)^2 - (\Sum x_i)^2)
541 */
542 stddev = rec->counter * rec->time_squared -
543 rec->time * rec->time;
544
545 /*
546 * Divide only 1000 for ns^2 -> us^2 conversion.
547 * trace_print_graph_duration will divide 1000 again.
548 */
549 stddev = div64_ul(stddev,
550 rec->counter * (rec->counter - 1) * 1000);
551 }
552
553 trace_seq_init(&s);
554 trace_print_graph_duration(rec->time, &s);
555 trace_seq_puts(&s, " ");
556 trace_print_graph_duration(avg, &s);
557 trace_seq_puts(&s, " ");
558 trace_print_graph_duration(stddev, &s);
559 trace_print_seq(m, &s);
560 #endif
561 seq_putc(m, '\n');
562 out:
563 mutex_unlock(&ftrace_profile_lock);
564
565 return ret;
566 }
567
568 static void ftrace_profile_reset(struct ftrace_profile_stat *stat)
569 {
570 struct ftrace_profile_page *pg;
571
572 pg = stat->pages = stat->start;
573
574 while (pg) {
575 memset(pg->records, 0, PROFILE_RECORDS_SIZE);
576 pg->index = 0;
577 pg = pg->next;
578 }
579
580 memset(stat->hash, 0,
581 FTRACE_PROFILE_HASH_SIZE * sizeof(struct hlist_head));
582 }
583
584 int ftrace_profile_pages_init(struct ftrace_profile_stat *stat)
585 {
586 struct ftrace_profile_page *pg;
587 int functions;
588 int pages;
589 int i;
590
591 /* If we already allocated, do nothing */
592 if (stat->pages)
593 return 0;
594
595 stat->pages = (void *)get_zeroed_page(GFP_KERNEL);
596 if (!stat->pages)
597 return -ENOMEM;
598
599 #ifdef CONFIG_DYNAMIC_FTRACE
600 functions = ftrace_update_tot_cnt;
601 #else
602 /*
603 * We do not know the number of functions that exist because
604 * dynamic tracing is what counts them. With past experience
605 * we have around 20K functions. That should be more than enough.
606 * It is highly unlikely we will execute every function in
607 * the kernel.
608 */
609 functions = 20000;
610 #endif
611
612 pg = stat->start = stat->pages;
613
614 pages = DIV_ROUND_UP(functions, PROFILES_PER_PAGE);
615
616 for (i = 1; i < pages; i++) {
617 pg->next = (void *)get_zeroed_page(GFP_KERNEL);
618 if (!pg->next)
619 goto out_free;
620 pg = pg->next;
621 }
622
623 return 0;
624
625 out_free:
626 pg = stat->start;
627 while (pg) {
628 unsigned long tmp = (unsigned long)pg;
629
630 pg = pg->next;
631 free_page(tmp);
632 }
633
634 stat->pages = NULL;
635 stat->start = NULL;
636
637 return -ENOMEM;
638 }
639
640 static int ftrace_profile_init_cpu(int cpu)
641 {
642 struct ftrace_profile_stat *stat;
643 int size;
644
645 stat = &per_cpu(ftrace_profile_stats, cpu);
646
647 if (stat->hash) {
648 /* If the profile is already created, simply reset it */
649 ftrace_profile_reset(stat);
650 return 0;
651 }
652
653 /*
654 * We are profiling all functions, but usually only a few thousand
655 * functions are hit. We'll make a hash of 1024 items.
656 */
657 size = FTRACE_PROFILE_HASH_SIZE;
658
659 stat->hash = kcalloc(size, sizeof(struct hlist_head), GFP_KERNEL);
660
661 if (!stat->hash)
662 return -ENOMEM;
663
664 /* Preallocate the function profiling pages */
665 if (ftrace_profile_pages_init(stat) < 0) {
666 kfree(stat->hash);
667 stat->hash = NULL;
668 return -ENOMEM;
669 }
670
671 return 0;
672 }
673
674 static int ftrace_profile_init(void)
675 {
676 int cpu;
677 int ret = 0;
678
679 for_each_possible_cpu(cpu) {
680 ret = ftrace_profile_init_cpu(cpu);
681 if (ret)
682 break;
683 }
684
685 return ret;
686 }
687
688 /* interrupts must be disabled */
689 static struct ftrace_profile *
690 ftrace_find_profiled_func(struct ftrace_profile_stat *stat, unsigned long ip)
691 {
692 struct ftrace_profile *rec;
693 struct hlist_head *hhd;
694 unsigned long key;
695
696 key = hash_long(ip, FTRACE_PROFILE_HASH_BITS);
697 hhd = &stat->hash[key];
698
699 if (hlist_empty(hhd))
700 return NULL;
701
702 hlist_for_each_entry_rcu_notrace(rec, hhd, node) {
703 if (rec->ip == ip)
704 return rec;
705 }
706
707 return NULL;
708 }
709
710 static void ftrace_add_profile(struct ftrace_profile_stat *stat,
711 struct ftrace_profile *rec)
712 {
713 unsigned long key;
714
715 key = hash_long(rec->ip, FTRACE_PROFILE_HASH_BITS);
716 hlist_add_head_rcu(&rec->node, &stat->hash[key]);
717 }
718
719 /*
720 * The memory is already allocated, this simply finds a new record to use.
721 */
722 static struct ftrace_profile *
723 ftrace_profile_alloc(struct ftrace_profile_stat *stat, unsigned long ip)
724 {
725 struct ftrace_profile *rec = NULL;
726
727 /* prevent recursion (from NMIs) */
728 if (atomic_inc_return(&stat->disabled) != 1)
729 goto out;
730
731 /*
732 * Try to find the function again since an NMI
733 * could have added it
734 */
735 rec = ftrace_find_profiled_func(stat, ip);
736 if (rec)
737 goto out;
738
739 if (stat->pages->index == PROFILES_PER_PAGE) {
740 if (!stat->pages->next)
741 goto out;
742 stat->pages = stat->pages->next;
743 }
744
745 rec = &stat->pages->records[stat->pages->index++];
746 rec->ip = ip;
747 ftrace_add_profile(stat, rec);
748
749 out:
750 atomic_dec(&stat->disabled);
751
752 return rec;
753 }
754
755 static void
756 function_profile_call(unsigned long ip, unsigned long parent_ip,
757 struct ftrace_ops *ops, struct ftrace_regs *fregs)
758 {
759 struct ftrace_profile_stat *stat;
760 struct ftrace_profile *rec;
761 unsigned long flags;
762
763 if (!ftrace_profile_enabled)
764 return;
765
766 local_irq_save(flags);
767
768 stat = this_cpu_ptr(&ftrace_profile_stats);
769 if (!stat->hash || !ftrace_profile_enabled)
770 goto out;
771
772 rec = ftrace_find_profiled_func(stat, ip);
773 if (!rec) {
774 rec = ftrace_profile_alloc(stat, ip);
775 if (!rec)
776 goto out;
777 }
778
779 rec->counter++;
780 out:
781 local_irq_restore(flags);
782 }
783
784 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
785 static bool fgraph_graph_time = true;
786
787 void ftrace_graph_graph_time_control(bool enable)
788 {
789 fgraph_graph_time = enable;
790 }
791
792 static int profile_graph_entry(struct ftrace_graph_ent *trace)
793 {
794 struct ftrace_ret_stack *ret_stack;
795
796 function_profile_call(trace->func, 0, NULL, NULL);
797
798 /* If function graph is shutting down, ret_stack can be NULL */
799 if (!current->ret_stack)
800 return 0;
801
802 ret_stack = ftrace_graph_get_ret_stack(current, 0);
803 if (ret_stack)
804 ret_stack->subtime = 0;
805
806 return 1;
807 }
808
809 static void profile_graph_return(struct ftrace_graph_ret *trace)
810 {
811 struct ftrace_ret_stack *ret_stack;
812 struct ftrace_profile_stat *stat;
813 unsigned long long calltime;
814 struct ftrace_profile *rec;
815 unsigned long flags;
816
817 local_irq_save(flags);
818 stat = this_cpu_ptr(&ftrace_profile_stats);
819 if (!stat->hash || !ftrace_profile_enabled)
820 goto out;
821
822 /* If the calltime was zero'd ignore it */
823 if (!trace->calltime)
824 goto out;
825
826 calltime = trace->rettime - trace->calltime;
827
828 if (!fgraph_graph_time) {
829
830 /* Append this call time to the parent time to subtract */
831 ret_stack = ftrace_graph_get_ret_stack(current, 1);
832 if (ret_stack)
833 ret_stack->subtime += calltime;
834
835 ret_stack = ftrace_graph_get_ret_stack(current, 0);
836 if (ret_stack && ret_stack->subtime < calltime)
837 calltime -= ret_stack->subtime;
838 else
839 calltime = 0;
840 }
841
842 rec = ftrace_find_profiled_func(stat, trace->func);
843 if (rec) {
844 rec->time += calltime;
845 rec->time_squared += calltime * calltime;
846 }
847
848 out:
849 local_irq_restore(flags);
850 }
851
852 static struct fgraph_ops fprofiler_ops = {
853 .entryfunc = &profile_graph_entry,
854 .retfunc = &profile_graph_return,
855 };
856
857 static int register_ftrace_profiler(void)
858 {
859 return register_ftrace_graph(&fprofiler_ops);
860 }
861
862 static void unregister_ftrace_profiler(void)
863 {
864 unregister_ftrace_graph(&fprofiler_ops);
865 }
866 #else
867 static struct ftrace_ops ftrace_profile_ops __read_mostly = {
868 .func = function_profile_call,
869 .flags = FTRACE_OPS_FL_INITIALIZED,
870 INIT_OPS_HASH(ftrace_profile_ops)
871 };
872
873 static int register_ftrace_profiler(void)
874 {
875 return register_ftrace_function(&ftrace_profile_ops);
876 }
877
878 static void unregister_ftrace_profiler(void)
879 {
880 unregister_ftrace_function(&ftrace_profile_ops);
881 }
882 #endif /* CONFIG_FUNCTION_GRAPH_TRACER */
883
884 static ssize_t
885 ftrace_profile_write(struct file *filp, const char __user *ubuf,
886 size_t cnt, loff_t *ppos)
887 {
888 unsigned long val;
889 int ret;
890
891 ret = kstrtoul_from_user(ubuf, cnt, 10, &val);
892 if (ret)
893 return ret;
894
895 val = !!val;
896
897 mutex_lock(&ftrace_profile_lock);
898 if (ftrace_profile_enabled ^ val) {
899 if (val) {
900 ret = ftrace_profile_init();
901 if (ret < 0) {
902 cnt = ret;
903 goto out;
904 }
905
906 ret = register_ftrace_profiler();
907 if (ret < 0) {
908 cnt = ret;
909 goto out;
910 }
911 ftrace_profile_enabled = 1;
912 } else {
913 ftrace_profile_enabled = 0;
914 /*
915 * unregister_ftrace_profiler calls stop_machine
916 * so this acts like an synchronize_rcu.
917 */
918 unregister_ftrace_profiler();
919 }
920 }
921 out:
922 mutex_unlock(&ftrace_profile_lock);
923
924 *ppos += cnt;
925
926 return cnt;
927 }
928
929 static ssize_t
930 ftrace_profile_read(struct file *filp, char __user *ubuf,
931 size_t cnt, loff_t *ppos)
932 {
933 char buf[64]; /* big enough to hold a number */
934 int r;
935
936 r = sprintf(buf, "%u\n", ftrace_profile_enabled);
937 return simple_read_from_buffer(ubuf, cnt, ppos, buf, r);
938 }
939
940 static const struct file_operations ftrace_profile_fops = {
941 .open = tracing_open_generic,
942 .read = ftrace_profile_read,
943 .write = ftrace_profile_write,
944 .llseek = default_llseek,
945 };
946
947 /* used to initialize the real stat files */
948 static struct tracer_stat function_stats __initdata = {
949 .name = "functions",
950 .stat_start = function_stat_start,
951 .stat_next = function_stat_next,
952 .stat_cmp = function_stat_cmp,
953 .stat_headers = function_stat_headers,
954 .stat_show = function_stat_show
955 };
956
957 static __init void ftrace_profile_tracefs(struct dentry *d_tracer)
958 {
959 struct ftrace_profile_stat *stat;
960 struct dentry *entry;
961 char *name;
962 int ret;
963 int cpu;
964
965 for_each_possible_cpu(cpu) {
966 stat = &per_cpu(ftrace_profile_stats, cpu);
967
968 name = kasprintf(GFP_KERNEL, "function%d", cpu);
969 if (!name) {
970 /*
971 * The files created are permanent, if something happens
972 * we still do not free memory.
973 */
974 WARN(1,
975 "Could not allocate stat file for cpu %d\n",
976 cpu);
977 return;
978 }
979 stat->stat = function_stats;
980 stat->stat.name = name;
981 ret = register_stat_tracer(&stat->stat);
982 if (ret) {
983 WARN(1,
984 "Could not register function stat for cpu %d\n",
985 cpu);
986 kfree(name);
987 return;
988 }
989 }
990
991 entry = tracefs_create_file("function_profile_enabled",
992 TRACE_MODE_WRITE, d_tracer, NULL,
993 &ftrace_profile_fops);
994 if (!entry)
995 pr_warn("Could not create tracefs 'function_profile_enabled' entry\n");
996 }
997
998 #else /* CONFIG_FUNCTION_PROFILER */
999 static __init void ftrace_profile_tracefs(struct dentry *d_tracer)
1000 {
1001 }
1002 #endif /* CONFIG_FUNCTION_PROFILER */
1003
1004 #ifdef CONFIG_DYNAMIC_FTRACE
1005
1006 static struct ftrace_ops *removed_ops;
1007
1008 /*
1009 * Set when doing a global update, like enabling all recs or disabling them.
1010 * It is not set when just updating a single ftrace_ops.
1011 */
1012 static bool update_all_ops;
1013
1014 #ifndef CONFIG_FTRACE_MCOUNT_RECORD
1015 # error Dynamic ftrace depends on MCOUNT_RECORD
1016 #endif
1017
1018 struct ftrace_func_probe {
1019 struct ftrace_probe_ops *probe_ops;
1020 struct ftrace_ops ops;
1021 struct trace_array *tr;
1022 struct list_head list;
1023 void *data;
1024 int ref;
1025 };
1026
1027 /*
1028 * We make these constant because no one should touch them,
1029 * but they are used as the default "empty hash", to avoid allocating
1030 * it all the time. These are in a read only section such that if
1031 * anyone does try to modify it, it will cause an exception.
1032 */
1033 static const struct hlist_head empty_buckets[1];
1034 static const struct ftrace_hash empty_hash = {
1035 .buckets = (struct hlist_head *)empty_buckets,
1036 };
1037 #define EMPTY_HASH ((struct ftrace_hash *)&empty_hash)
1038
1039 struct ftrace_ops global_ops = {
1040 .func = ftrace_stub,
1041 .local_hash.notrace_hash = EMPTY_HASH,
1042 .local_hash.filter_hash = EMPTY_HASH,
1043 INIT_OPS_HASH(global_ops)
1044 .flags = FTRACE_OPS_FL_INITIALIZED |
1045 FTRACE_OPS_FL_PID,
1046 };
1047
1048 /*
1049 * Used by the stack unwinder to know about dynamic ftrace trampolines.
1050 */
1051 struct ftrace_ops *ftrace_ops_trampoline(unsigned long addr)
1052 {
1053 struct ftrace_ops *op = NULL;
1054
1055 /*
1056 * Some of the ops may be dynamically allocated,
1057 * they are freed after a synchronize_rcu().
1058 */
1059 preempt_disable_notrace();
1060
1061 do_for_each_ftrace_op(op, ftrace_ops_list) {
1062 /*
1063 * This is to check for dynamically allocated trampolines.
1064 * Trampolines that are in kernel text will have
1065 * core_kernel_text() return true.
1066 */
1067 if (op->trampoline && op->trampoline_size)
1068 if (addr >= op->trampoline &&
1069 addr < op->trampoline + op->trampoline_size) {
1070 preempt_enable_notrace();
1071 return op;
1072 }
1073 } while_for_each_ftrace_op(op);
1074 preempt_enable_notrace();
1075
1076 return NULL;
1077 }
1078
1079 /*
1080 * This is used by __kernel_text_address() to return true if the
1081 * address is on a dynamically allocated trampoline that would
1082 * not return true for either core_kernel_text() or
1083 * is_module_text_address().
1084 */
1085 bool is_ftrace_trampoline(unsigned long addr)
1086 {
1087 return ftrace_ops_trampoline(addr) != NULL;
1088 }
1089
1090 struct ftrace_page {
1091 struct ftrace_page *next;
1092 struct dyn_ftrace *records;
1093 int index;
1094 int order;
1095 };
1096
1097 #define ENTRY_SIZE sizeof(struct dyn_ftrace)
1098 #define ENTRIES_PER_PAGE (PAGE_SIZE / ENTRY_SIZE)
1099
1100 static struct ftrace_page *ftrace_pages_start;
1101 static struct ftrace_page *ftrace_pages;
1102
1103 static __always_inline unsigned long
1104 ftrace_hash_key(struct ftrace_hash *hash, unsigned long ip)
1105 {
1106 if (hash->size_bits > 0)
1107 return hash_long(ip, hash->size_bits);
1108
1109 return 0;
1110 }
1111
1112 /* Only use this function if ftrace_hash_empty() has already been tested */
1113 static __always_inline struct ftrace_func_entry *
1114 __ftrace_lookup_ip(struct ftrace_hash *hash, unsigned long ip)
1115 {
1116 unsigned long key;
1117 struct ftrace_func_entry *entry;
1118 struct hlist_head *hhd;
1119
1120 key = ftrace_hash_key(hash, ip);
1121 hhd = &hash->buckets[key];
1122
1123 hlist_for_each_entry_rcu_notrace(entry, hhd, hlist) {
1124 if (entry->ip == ip)
1125 return entry;
1126 }
1127 return NULL;
1128 }
1129
1130 /**
1131 * ftrace_lookup_ip - Test to see if an ip exists in an ftrace_hash
1132 * @hash: The hash to look at
1133 * @ip: The instruction pointer to test
1134 *
1135 * Search a given @hash to see if a given instruction pointer (@ip)
1136 * exists in it.
1137 *
1138 * Returns the entry that holds the @ip if found. NULL otherwise.
1139 */
1140 struct ftrace_func_entry *
1141 ftrace_lookup_ip(struct ftrace_hash *hash, unsigned long ip)
1142 {
1143 if (ftrace_hash_empty(hash))
1144 return NULL;
1145
1146 return __ftrace_lookup_ip(hash, ip);
1147 }
1148
1149 static void __add_hash_entry(struct ftrace_hash *hash,
1150 struct ftrace_func_entry *entry)
1151 {
1152 struct hlist_head *hhd;
1153 unsigned long key;
1154
1155 key = ftrace_hash_key(hash, entry->ip);
1156 hhd = &hash->buckets[key];
1157 hlist_add_head(&entry->hlist, hhd);
1158 hash->count++;
1159 }
1160
1161 static int add_hash_entry(struct ftrace_hash *hash, unsigned long ip)
1162 {
1163 struct ftrace_func_entry *entry;
1164
1165 entry = kmalloc(sizeof(*entry), GFP_KERNEL);
1166 if (!entry)
1167 return -ENOMEM;
1168
1169 entry->ip = ip;
1170 __add_hash_entry(hash, entry);
1171
1172 return 0;
1173 }
1174
1175 static void
1176 free_hash_entry(struct ftrace_hash *hash,
1177 struct ftrace_func_entry *entry)
1178 {
1179 hlist_del(&entry->hlist);
1180 kfree(entry);
1181 hash->count--;
1182 }
1183
1184 static void
1185 remove_hash_entry(struct ftrace_hash *hash,
1186 struct ftrace_func_entry *entry)
1187 {
1188 hlist_del_rcu(&entry->hlist);
1189 hash->count--;
1190 }
1191
1192 static void ftrace_hash_clear(struct ftrace_hash *hash)
1193 {
1194 struct hlist_head *hhd;
1195 struct hlist_node *tn;
1196 struct ftrace_func_entry *entry;
1197 int size = 1 << hash->size_bits;
1198 int i;
1199
1200 if (!hash->count)
1201 return;
1202
1203 for (i = 0; i < size; i++) {
1204 hhd = &hash->buckets[i];
1205 hlist_for_each_entry_safe(entry, tn, hhd, hlist)
1206 free_hash_entry(hash, entry);
1207 }
1208 FTRACE_WARN_ON(hash->count);
1209 }
1210
1211 static void free_ftrace_mod(struct ftrace_mod_load *ftrace_mod)
1212 {
1213 list_del(&ftrace_mod->list);
1214 kfree(ftrace_mod->module);
1215 kfree(ftrace_mod->func);
1216 kfree(ftrace_mod);
1217 }
1218
1219 static void clear_ftrace_mod_list(struct list_head *head)
1220 {
1221 struct ftrace_mod_load *p, *n;
1222
1223 /* stack tracer isn't supported yet */
1224 if (!head)
1225 return;
1226
1227 mutex_lock(&ftrace_lock);
1228 list_for_each_entry_safe(p, n, head, list)
1229 free_ftrace_mod(p);
1230 mutex_unlock(&ftrace_lock);
1231 }
1232
1233 static void free_ftrace_hash(struct ftrace_hash *hash)
1234 {
1235 if (!hash || hash == EMPTY_HASH)
1236 return;
1237 ftrace_hash_clear(hash);
1238 kfree(hash->buckets);
1239 kfree(hash);
1240 }
1241
1242 static void __free_ftrace_hash_rcu(struct rcu_head *rcu)
1243 {
1244 struct ftrace_hash *hash;
1245
1246 hash = container_of(rcu, struct ftrace_hash, rcu);
1247 free_ftrace_hash(hash);
1248 }
1249
1250 static void free_ftrace_hash_rcu(struct ftrace_hash *hash)
1251 {
1252 if (!hash || hash == EMPTY_HASH)
1253 return;
1254 call_rcu(&hash->rcu, __free_ftrace_hash_rcu);
1255 }
1256
1257 void ftrace_free_filter(struct ftrace_ops *ops)
1258 {
1259 ftrace_ops_init(ops);
1260 free_ftrace_hash(ops->func_hash->filter_hash);
1261 free_ftrace_hash(ops->func_hash->notrace_hash);
1262 }
1263
1264 static struct ftrace_hash *alloc_ftrace_hash(int size_bits)
1265 {
1266 struct ftrace_hash *hash;
1267 int size;
1268
1269 hash = kzalloc(sizeof(*hash), GFP_KERNEL);
1270 if (!hash)
1271 return NULL;
1272
1273 size = 1 << size_bits;
1274 hash->buckets = kcalloc(size, sizeof(*hash->buckets), GFP_KERNEL);
1275
1276 if (!hash->buckets) {
1277 kfree(hash);
1278 return NULL;
1279 }
1280
1281 hash->size_bits = size_bits;
1282
1283 return hash;
1284 }
1285
1286
1287 static int ftrace_add_mod(struct trace_array *tr,
1288 const char *func, const char *module,
1289 int enable)
1290 {
1291 struct ftrace_mod_load *ftrace_mod;
1292 struct list_head *mod_head = enable ? &tr->mod_trace : &tr->mod_notrace;
1293
1294 ftrace_mod = kzalloc(sizeof(*ftrace_mod), GFP_KERNEL);
1295 if (!ftrace_mod)
1296 return -ENOMEM;
1297
1298 ftrace_mod->func = kstrdup(func, GFP_KERNEL);
1299 ftrace_mod->module = kstrdup(module, GFP_KERNEL);
1300 ftrace_mod->enable = enable;
1301
1302 if (!ftrace_mod->func || !ftrace_mod->module)
1303 goto out_free;
1304
1305 list_add(&ftrace_mod->list, mod_head);
1306
1307 return 0;
1308
1309 out_free:
1310 free_ftrace_mod(ftrace_mod);
1311
1312 return -ENOMEM;
1313 }
1314
1315 static struct ftrace_hash *
1316 alloc_and_copy_ftrace_hash(int size_bits, struct ftrace_hash *hash)
1317 {
1318 struct ftrace_func_entry *entry;
1319 struct ftrace_hash *new_hash;
1320 int size;
1321 int ret;
1322 int i;
1323
1324 new_hash = alloc_ftrace_hash(size_bits);
1325 if (!new_hash)
1326 return NULL;
1327
1328 if (hash)
1329 new_hash->flags = hash->flags;
1330
1331 /* Empty hash? */
1332 if (ftrace_hash_empty(hash))
1333 return new_hash;
1334
1335 size = 1 << hash->size_bits;
1336 for (i = 0; i < size; i++) {
1337 hlist_for_each_entry(entry, &hash->buckets[i], hlist) {
1338 ret = add_hash_entry(new_hash, entry->ip);
1339 if (ret < 0)
1340 goto free_hash;
1341 }
1342 }
1343
1344 FTRACE_WARN_ON(new_hash->count != hash->count);
1345
1346 return new_hash;
1347
1348 free_hash:
1349 free_ftrace_hash(new_hash);
1350 return NULL;
1351 }
1352
1353 static void
1354 ftrace_hash_rec_disable_modify(struct ftrace_ops *ops, int filter_hash);
1355 static void
1356 ftrace_hash_rec_enable_modify(struct ftrace_ops *ops, int filter_hash);
1357
1358 static int ftrace_hash_ipmodify_update(struct ftrace_ops *ops,
1359 struct ftrace_hash *new_hash);
1360
1361 static struct ftrace_hash *dup_hash(struct ftrace_hash *src, int size)
1362 {
1363 struct ftrace_func_entry *entry;
1364 struct ftrace_hash *new_hash;
1365 struct hlist_head *hhd;
1366 struct hlist_node *tn;
1367 int bits = 0;
1368 int i;
1369
1370 /*
1371 * Use around half the size (max bit of it), but
1372 * a minimum of 2 is fine (as size of 0 or 1 both give 1 for bits).
1373 */
1374 bits = fls(size / 2);
1375
1376 /* Don't allocate too much */
1377 if (bits > FTRACE_HASH_MAX_BITS)
1378 bits = FTRACE_HASH_MAX_BITS;
1379
1380 new_hash = alloc_ftrace_hash(bits);
1381 if (!new_hash)
1382 return NULL;
1383
1384 new_hash->flags = src->flags;
1385
1386 size = 1 << src->size_bits;
1387 for (i = 0; i < size; i++) {
1388 hhd = &src->buckets[i];
1389 hlist_for_each_entry_safe(entry, tn, hhd, hlist) {
1390 remove_hash_entry(src, entry);
1391 __add_hash_entry(new_hash, entry);
1392 }
1393 }
1394 return new_hash;
1395 }
1396
1397 static struct ftrace_hash *
1398 __ftrace_hash_move(struct ftrace_hash *src)
1399 {
1400 int size = src->count;
1401
1402 /*
1403 * If the new source is empty, just return the empty_hash.
1404 */
1405 if (ftrace_hash_empty(src))
1406 return EMPTY_HASH;
1407
1408 return dup_hash(src, size);
1409 }
1410
1411 static int
1412 ftrace_hash_move(struct ftrace_ops *ops, int enable,
1413 struct ftrace_hash **dst, struct ftrace_hash *src)
1414 {
1415 struct ftrace_hash *new_hash;
1416 int ret;
1417
1418 /* Reject setting notrace hash on IPMODIFY ftrace_ops */
1419 if (ops->flags & FTRACE_OPS_FL_IPMODIFY && !enable)
1420 return -EINVAL;
1421
1422 new_hash = __ftrace_hash_move(src);
1423 if (!new_hash)
1424 return -ENOMEM;
1425
1426 /* Make sure this can be applied if it is IPMODIFY ftrace_ops */
1427 if (enable) {
1428 /* IPMODIFY should be updated only when filter_hash updating */
1429 ret = ftrace_hash_ipmodify_update(ops, new_hash);
1430 if (ret < 0) {
1431 free_ftrace_hash(new_hash);
1432 return ret;
1433 }
1434 }
1435
1436 /*
1437 * Remove the current set, update the hash and add
1438 * them back.
1439 */
1440 ftrace_hash_rec_disable_modify(ops, enable);
1441
1442 rcu_assign_pointer(*dst, new_hash);
1443
1444 ftrace_hash_rec_enable_modify(ops, enable);
1445
1446 return 0;
1447 }
1448
1449 static bool hash_contains_ip(unsigned long ip,
1450 struct ftrace_ops_hash *hash)
1451 {
1452 /*
1453 * The function record is a match if it exists in the filter
1454 * hash and not in the notrace hash. Note, an empty hash is
1455 * considered a match for the filter hash, but an empty
1456 * notrace hash is considered not in the notrace hash.
1457 */
1458 return (ftrace_hash_empty(hash->filter_hash) ||
1459 __ftrace_lookup_ip(hash->filter_hash, ip)) &&
1460 (ftrace_hash_empty(hash->notrace_hash) ||
1461 !__ftrace_lookup_ip(hash->notrace_hash, ip));
1462 }
1463
1464 /*
1465 * Test the hashes for this ops to see if we want to call
1466 * the ops->func or not.
1467 *
1468 * It's a match if the ip is in the ops->filter_hash or
1469 * the filter_hash does not exist or is empty,
1470 * AND
1471 * the ip is not in the ops->notrace_hash.
1472 *
1473 * This needs to be called with preemption disabled as
1474 * the hashes are freed with call_rcu().
1475 */
1476 int
1477 ftrace_ops_test(struct ftrace_ops *ops, unsigned long ip, void *regs)
1478 {
1479 struct ftrace_ops_hash hash;
1480 int ret;
1481
1482 #ifdef CONFIG_DYNAMIC_FTRACE_WITH_REGS
1483 /*
1484 * There's a small race when adding ops that the ftrace handler
1485 * that wants regs, may be called without them. We can not
1486 * allow that handler to be called if regs is NULL.
1487 */
1488 if (regs == NULL && (ops->flags & FTRACE_OPS_FL_SAVE_REGS))
1489 return 0;
1490 #endif
1491
1492 rcu_assign_pointer(hash.filter_hash, ops->func_hash->filter_hash);
1493 rcu_assign_pointer(hash.notrace_hash, ops->func_hash->notrace_hash);
1494
1495 if (hash_contains_ip(ip, &hash))
1496 ret = 1;
1497 else
1498 ret = 0;
1499
1500 return ret;
1501 }
1502
1503 /*
1504 * This is a double for. Do not use 'break' to break out of the loop,
1505 * you must use a goto.
1506 */
1507 #define do_for_each_ftrace_rec(pg, rec) \
1508 for (pg = ftrace_pages_start; pg; pg = pg->next) { \
1509 int _____i; \
1510 for (_____i = 0; _____i < pg->index; _____i++) { \
1511 rec = &pg->records[_____i];
1512
1513 #define while_for_each_ftrace_rec() \
1514 } \
1515 }
1516
1517
1518 static int ftrace_cmp_recs(const void *a, const void *b)
1519 {
1520 const struct dyn_ftrace *key = a;
1521 const struct dyn_ftrace *rec = b;
1522
1523 if (key->flags < rec->ip)
1524 return -1;
1525 if (key->ip >= rec->ip + MCOUNT_INSN_SIZE)
1526 return 1;
1527 return 0;
1528 }
1529
1530 static struct dyn_ftrace *lookup_rec(unsigned long start, unsigned long end)
1531 {
1532 struct ftrace_page *pg;
1533 struct dyn_ftrace *rec = NULL;
1534 struct dyn_ftrace key;
1535
1536 key.ip = start;
1537 key.flags = end; /* overload flags, as it is unsigned long */
1538
1539 for (pg = ftrace_pages_start; pg; pg = pg->next) {
1540 if (end < pg->records[0].ip ||
1541 start >= (pg->records[pg->index - 1].ip + MCOUNT_INSN_SIZE))
1542 continue;
1543 rec = bsearch(&key, pg->records, pg->index,
1544 sizeof(struct dyn_ftrace),
1545 ftrace_cmp_recs);
1546 if (rec)
1547 break;
1548 }
1549 return rec;
1550 }
1551
1552 /**
1553 * ftrace_location_range - return the first address of a traced location
1554 * if it touches the given ip range
1555 * @start: start of range to search.
1556 * @end: end of range to search (inclusive). @end points to the last byte
1557 * to check.
1558 *
1559 * Returns rec->ip if the related ftrace location is a least partly within
1560 * the given address range. That is, the first address of the instruction
1561 * that is either a NOP or call to the function tracer. It checks the ftrace
1562 * internal tables to determine if the address belongs or not.
1563 */
1564 unsigned long ftrace_location_range(unsigned long start, unsigned long end)
1565 {
1566 struct dyn_ftrace *rec;
1567
1568 rec = lookup_rec(start, end);
1569 if (rec)
1570 return rec->ip;
1571
1572 return 0;
1573 }
1574
1575 /**
1576 * ftrace_location - return true if the ip giving is a traced location
1577 * @ip: the instruction pointer to check
1578 *
1579 * Returns rec->ip if @ip given is a pointer to a ftrace location.
1580 * That is, the instruction that is either a NOP or call to
1581 * the function tracer. It checks the ftrace internal tables to
1582 * determine if the address belongs or not.
1583 */
1584 unsigned long ftrace_location(unsigned long ip)
1585 {
1586 return ftrace_location_range(ip, ip);
1587 }
1588
1589 /**
1590 * ftrace_text_reserved - return true if range contains an ftrace location
1591 * @start: start of range to search
1592 * @end: end of range to search (inclusive). @end points to the last byte to check.
1593 *
1594 * Returns 1 if @start and @end contains a ftrace location.
1595 * That is, the instruction that is either a NOP or call to
1596 * the function tracer. It checks the ftrace internal tables to
1597 * determine if the address belongs or not.
1598 */
1599 int ftrace_text_reserved(const void *start, const void *end)
1600 {
1601 unsigned long ret;
1602
1603 ret = ftrace_location_range((unsigned long)start,
1604 (unsigned long)end);
1605
1606 return (int)!!ret;
1607 }
1608
1609 /* Test if ops registered to this rec needs regs */
1610 static bool test_rec_ops_needs_regs(struct dyn_ftrace *rec)
1611 {
1612 struct ftrace_ops *ops;
1613 bool keep_regs = false;
1614
1615 for (ops = ftrace_ops_list;
1616 ops != &ftrace_list_end; ops = ops->next) {
1617 /* pass rec in as regs to have non-NULL val */
1618 if (ftrace_ops_test(ops, rec->ip, rec)) {
1619 if (ops->flags & FTRACE_OPS_FL_SAVE_REGS) {
1620 keep_regs = true;
1621 break;
1622 }
1623 }
1624 }
1625
1626 return keep_regs;
1627 }
1628
1629 static struct ftrace_ops *
1630 ftrace_find_tramp_ops_any(struct dyn_ftrace *rec);
1631 static struct ftrace_ops *
1632 ftrace_find_tramp_ops_any_other(struct dyn_ftrace *rec, struct ftrace_ops *op_exclude);
1633 static struct ftrace_ops *
1634 ftrace_find_tramp_ops_next(struct dyn_ftrace *rec, struct ftrace_ops *ops);
1635
1636 static bool __ftrace_hash_rec_update(struct ftrace_ops *ops,
1637 int filter_hash,
1638 bool inc)
1639 {
1640 struct ftrace_hash *hash;
1641 struct ftrace_hash *other_hash;
1642 struct ftrace_page *pg;
1643 struct dyn_ftrace *rec;
1644 bool update = false;
1645 int count = 0;
1646 int all = false;
1647
1648 /* Only update if the ops has been registered */
1649 if (!(ops->flags & FTRACE_OPS_FL_ENABLED))
1650 return false;
1651
1652 /*
1653 * In the filter_hash case:
1654 * If the count is zero, we update all records.
1655 * Otherwise we just update the items in the hash.
1656 *
1657 * In the notrace_hash case:
1658 * We enable the update in the hash.
1659 * As disabling notrace means enabling the tracing,
1660 * and enabling notrace means disabling, the inc variable
1661 * gets inversed.
1662 */
1663 if (filter_hash) {
1664 hash = ops->func_hash->filter_hash;
1665 other_hash = ops->func_hash->notrace_hash;
1666 if (ftrace_hash_empty(hash))
1667 all = true;
1668 } else {
1669 inc = !inc;
1670 hash = ops->func_hash->notrace_hash;
1671 other_hash = ops->func_hash->filter_hash;
1672 /*
1673 * If the notrace hash has no items,
1674 * then there's nothing to do.
1675 */
1676 if (ftrace_hash_empty(hash))
1677 return false;
1678 }
1679
1680 do_for_each_ftrace_rec(pg, rec) {
1681 int in_other_hash = 0;
1682 int in_hash = 0;
1683 int match = 0;
1684
1685 if (rec->flags & FTRACE_FL_DISABLED)
1686 continue;
1687
1688 if (all) {
1689 /*
1690 * Only the filter_hash affects all records.
1691 * Update if the record is not in the notrace hash.
1692 */
1693 if (!other_hash || !ftrace_lookup_ip(other_hash, rec->ip))
1694 match = 1;
1695 } else {
1696 in_hash = !!ftrace_lookup_ip(hash, rec->ip);
1697 in_other_hash = !!ftrace_lookup_ip(other_hash, rec->ip);
1698
1699 /*
1700 * If filter_hash is set, we want to match all functions
1701 * that are in the hash but not in the other hash.
1702 *
1703 * If filter_hash is not set, then we are decrementing.
1704 * That means we match anything that is in the hash
1705 * and also in the other_hash. That is, we need to turn
1706 * off functions in the other hash because they are disabled
1707 * by this hash.
1708 */
1709 if (filter_hash && in_hash && !in_other_hash)
1710 match = 1;
1711 else if (!filter_hash && in_hash &&
1712 (in_other_hash || ftrace_hash_empty(other_hash)))
1713 match = 1;
1714 }
1715 if (!match)
1716 continue;
1717
1718 if (inc) {
1719 rec->flags++;
1720 if (FTRACE_WARN_ON(ftrace_rec_count(rec) == FTRACE_REF_MAX))
1721 return false;
1722
1723 if (ops->flags & FTRACE_OPS_FL_DIRECT)
1724 rec->flags |= FTRACE_FL_DIRECT;
1725
1726 /*
1727 * If there's only a single callback registered to a
1728 * function, and the ops has a trampoline registered
1729 * for it, then we can call it directly.
1730 */
1731 if (ftrace_rec_count(rec) == 1 && ops->trampoline)
1732 rec->flags |= FTRACE_FL_TRAMP;
1733 else
1734 /*
1735 * If we are adding another function callback
1736 * to this function, and the previous had a
1737 * custom trampoline in use, then we need to go
1738 * back to the default trampoline.
1739 */
1740 rec->flags &= ~FTRACE_FL_TRAMP;
1741
1742 /*
1743 * If any ops wants regs saved for this function
1744 * then all ops will get saved regs.
1745 */
1746 if (ops->flags & FTRACE_OPS_FL_SAVE_REGS)
1747 rec->flags |= FTRACE_FL_REGS;
1748 } else {
1749 if (FTRACE_WARN_ON(ftrace_rec_count(rec) == 0))
1750 return false;
1751 rec->flags--;
1752
1753 /*
1754 * Only the internal direct_ops should have the
1755 * DIRECT flag set. Thus, if it is removing a
1756 * function, then that function should no longer
1757 * be direct.
1758 */
1759 if (ops->flags & FTRACE_OPS_FL_DIRECT)
1760 rec->flags &= ~FTRACE_FL_DIRECT;
1761
1762 /*
1763 * If the rec had REGS enabled and the ops that is
1764 * being removed had REGS set, then see if there is
1765 * still any ops for this record that wants regs.
1766 * If not, we can stop recording them.
1767 */
1768 if (ftrace_rec_count(rec) > 0 &&
1769 rec->flags & FTRACE_FL_REGS &&
1770 ops->flags & FTRACE_OPS_FL_SAVE_REGS) {
1771 if (!test_rec_ops_needs_regs(rec))
1772 rec->flags &= ~FTRACE_FL_REGS;
1773 }
1774
1775 /*
1776 * The TRAMP needs to be set only if rec count
1777 * is decremented to one, and the ops that is
1778 * left has a trampoline. As TRAMP can only be
1779 * enabled if there is only a single ops attached
1780 * to it.
1781 */
1782 if (ftrace_rec_count(rec) == 1 &&
1783 ftrace_find_tramp_ops_any_other(rec, ops))
1784 rec->flags |= FTRACE_FL_TRAMP;
1785 else
1786 rec->flags &= ~FTRACE_FL_TRAMP;
1787
1788 /*
1789 * flags will be cleared in ftrace_check_record()
1790 * if rec count is zero.
1791 */
1792 }
1793 count++;
1794
1795 /* Must match FTRACE_UPDATE_CALLS in ftrace_modify_all_code() */
1796 update |= ftrace_test_record(rec, true) != FTRACE_UPDATE_IGNORE;
1797
1798 /* Shortcut, if we handled all records, we are done. */
1799 if (!all && count == hash->count)
1800 return update;
1801 } while_for_each_ftrace_rec();
1802
1803 return update;
1804 }
1805
1806 static bool ftrace_hash_rec_disable(struct ftrace_ops *ops,
1807 int filter_hash)
1808 {
1809 return __ftrace_hash_rec_update(ops, filter_hash, 0);
1810 }
1811
1812 static bool ftrace_hash_rec_enable(struct ftrace_ops *ops,
1813 int filter_hash)
1814 {
1815 return __ftrace_hash_rec_update(ops, filter_hash, 1);
1816 }
1817
1818 static void ftrace_hash_rec_update_modify(struct ftrace_ops *ops,
1819 int filter_hash, int inc)
1820 {
1821 struct ftrace_ops *op;
1822
1823 __ftrace_hash_rec_update(ops, filter_hash, inc);
1824
1825 if (ops->func_hash != &global_ops.local_hash)
1826 return;
1827
1828 /*
1829 * If the ops shares the global_ops hash, then we need to update
1830 * all ops that are enabled and use this hash.
1831 */
1832 do_for_each_ftrace_op(op, ftrace_ops_list) {
1833 /* Already done */
1834 if (op == ops)
1835 continue;
1836 if (op->func_hash == &global_ops.local_hash)
1837 __ftrace_hash_rec_update(op, filter_hash, inc);
1838 } while_for_each_ftrace_op(op);
1839 }
1840
1841 static void ftrace_hash_rec_disable_modify(struct ftrace_ops *ops,
1842 int filter_hash)
1843 {
1844 ftrace_hash_rec_update_modify(ops, filter_hash, 0);
1845 }
1846
1847 static void ftrace_hash_rec_enable_modify(struct ftrace_ops *ops,
1848 int filter_hash)
1849 {
1850 ftrace_hash_rec_update_modify(ops, filter_hash, 1);
1851 }
1852
1853 /*
1854 * Try to update IPMODIFY flag on each ftrace_rec. Return 0 if it is OK
1855 * or no-needed to update, -EBUSY if it detects a conflict of the flag
1856 * on a ftrace_rec, and -EINVAL if the new_hash tries to trace all recs.
1857 * Note that old_hash and new_hash has below meanings
1858 * - If the hash is NULL, it hits all recs (if IPMODIFY is set, this is rejected)
1859 * - If the hash is EMPTY_HASH, it hits nothing
1860 * - Anything else hits the recs which match the hash entries.
1861 */
1862 static int __ftrace_hash_update_ipmodify(struct ftrace_ops *ops,
1863 struct ftrace_hash *old_hash,
1864 struct ftrace_hash *new_hash)
1865 {
1866 struct ftrace_page *pg;
1867 struct dyn_ftrace *rec, *end = NULL;
1868 int in_old, in_new;
1869
1870 /* Only update if the ops has been registered */
1871 if (!(ops->flags & FTRACE_OPS_FL_ENABLED))
1872 return 0;
1873
1874 if (!(ops->flags & FTRACE_OPS_FL_IPMODIFY))
1875 return 0;
1876
1877 /*
1878 * Since the IPMODIFY is a very address sensitive action, we do not
1879 * allow ftrace_ops to set all functions to new hash.
1880 */
1881 if (!new_hash || !old_hash)
1882 return -EINVAL;
1883
1884 /* Update rec->flags */
1885 do_for_each_ftrace_rec(pg, rec) {
1886
1887 if (rec->flags & FTRACE_FL_DISABLED)
1888 continue;
1889
1890 /* We need to update only differences of filter_hash */
1891 in_old = !!ftrace_lookup_ip(old_hash, rec->ip);
1892 in_new = !!ftrace_lookup_ip(new_hash, rec->ip);
1893 if (in_old == in_new)
1894 continue;
1895
1896 if (in_new) {
1897 /* New entries must ensure no others are using it */
1898 if (rec->flags & FTRACE_FL_IPMODIFY)
1899 goto rollback;
1900 rec->flags |= FTRACE_FL_IPMODIFY;
1901 } else /* Removed entry */
1902 rec->flags &= ~FTRACE_FL_IPMODIFY;
1903 } while_for_each_ftrace_rec();
1904
1905 return 0;
1906
1907 rollback:
1908 end = rec;
1909
1910 /* Roll back what we did above */
1911 do_for_each_ftrace_rec(pg, rec) {
1912
1913 if (rec->flags & FTRACE_FL_DISABLED)
1914 continue;
1915
1916 if (rec == end)
1917 goto err_out;
1918
1919 in_old = !!ftrace_lookup_ip(old_hash, rec->ip);
1920 in_new = !!ftrace_lookup_ip(new_hash, rec->ip);
1921 if (in_old == in_new)
1922 continue;
1923
1924 if (in_new)
1925 rec->flags &= ~FTRACE_FL_IPMODIFY;
1926 else
1927 rec->flags |= FTRACE_FL_IPMODIFY;
1928 } while_for_each_ftrace_rec();
1929
1930 err_out:
1931 return -EBUSY;
1932 }
1933
1934 static int ftrace_hash_ipmodify_enable(struct ftrace_ops *ops)
1935 {
1936 struct ftrace_hash *hash = ops->func_hash->filter_hash;
1937
1938 if (ftrace_hash_empty(hash))
1939 hash = NULL;
1940
1941 return __ftrace_hash_update_ipmodify(ops, EMPTY_HASH, hash);
1942 }
1943
1944 /* Disabling always succeeds */
1945 static void ftrace_hash_ipmodify_disable(struct ftrace_ops *ops)
1946 {
1947 struct ftrace_hash *hash = ops->func_hash->filter_hash;
1948
1949 if (ftrace_hash_empty(hash))
1950 hash = NULL;
1951
1952 __ftrace_hash_update_ipmodify(ops, hash, EMPTY_HASH);
1953 }
1954
1955 static int ftrace_hash_ipmodify_update(struct ftrace_ops *ops,
1956 struct ftrace_hash *new_hash)
1957 {
1958 struct ftrace_hash *old_hash = ops->func_hash->filter_hash;
1959
1960 if (ftrace_hash_empty(old_hash))
1961 old_hash = NULL;
1962
1963 if (ftrace_hash_empty(new_hash))
1964 new_hash = NULL;
1965
1966 return __ftrace_hash_update_ipmodify(ops, old_hash, new_hash);
1967 }
1968
1969 static void print_ip_ins(const char *fmt, const unsigned char *p)
1970 {
1971 char ins[MCOUNT_INSN_SIZE];
1972 int i;
1973
1974 if (copy_from_kernel_nofault(ins, p, MCOUNT_INSN_SIZE)) {
1975 printk(KERN_CONT "%s[FAULT] %px\n", fmt, p);
1976 return;
1977 }
1978
1979 printk(KERN_CONT "%s", fmt);
1980
1981 for (i = 0; i < MCOUNT_INSN_SIZE; i++)
1982 printk(KERN_CONT "%s%02x", i ? ":" : "", ins[i]);
1983 }
1984
1985 enum ftrace_bug_type ftrace_bug_type;
1986 const void *ftrace_expected;
1987
1988 static void print_bug_type(void)
1989 {
1990 switch (ftrace_bug_type) {
1991 case FTRACE_BUG_UNKNOWN:
1992 break;
1993 case FTRACE_BUG_INIT:
1994 pr_info("Initializing ftrace call sites\n");
1995 break;
1996 case FTRACE_BUG_NOP:
1997 pr_info("Setting ftrace call site to NOP\n");
1998 break;
1999 case FTRACE_BUG_CALL:
2000 pr_info("Setting ftrace call site to call ftrace function\n");
2001 break;
2002 case FTRACE_BUG_UPDATE:
2003 pr_info("Updating ftrace call site to call a different ftrace function\n");
2004 break;
2005 }
2006 }
2007
2008 /**
2009 * ftrace_bug - report and shutdown function tracer
2010 * @failed: The failed type (EFAULT, EINVAL, EPERM)
2011 * @rec: The record that failed
2012 *
2013 * The arch code that enables or disables the function tracing
2014 * can call ftrace_bug() when it has detected a problem in
2015 * modifying the code. @failed should be one of either:
2016 * EFAULT - if the problem happens on reading the @ip address
2017 * EINVAL - if what is read at @ip is not what was expected
2018 * EPERM - if the problem happens on writing to the @ip address
2019 */
2020 void ftrace_bug(int failed, struct dyn_ftrace *rec)
2021 {
2022 unsigned long ip = rec ? rec->ip : 0;
2023
2024 pr_info("------------[ ftrace bug ]------------\n");
2025
2026 switch (failed) {
2027 case -EFAULT:
2028 pr_info("ftrace faulted on modifying ");
2029 print_ip_sym(KERN_INFO, ip);
2030 break;
2031 case -EINVAL:
2032 pr_info("ftrace failed to modify ");
2033 print_ip_sym(KERN_INFO, ip);
2034 print_ip_ins(" actual: ", (unsigned char *)ip);
2035 pr_cont("\n");
2036 if (ftrace_expected) {
2037 print_ip_ins(" expected: ", ftrace_expected);
2038 pr_cont("\n");
2039 }
2040 break;
2041 case -EPERM:
2042 pr_info("ftrace faulted on writing ");
2043 print_ip_sym(KERN_INFO, ip);
2044 break;
2045 default:
2046 pr_info("ftrace faulted on unknown error ");
2047 print_ip_sym(KERN_INFO, ip);
2048 }
2049 print_bug_type();
2050 if (rec) {
2051 struct ftrace_ops *ops = NULL;
2052
2053 pr_info("ftrace record flags: %lx\n", rec->flags);
2054 pr_cont(" (%ld)%s", ftrace_rec_count(rec),
2055 rec->flags & FTRACE_FL_REGS ? " R" : " ");
2056 if (rec->flags & FTRACE_FL_TRAMP_EN) {
2057 ops = ftrace_find_tramp_ops_any(rec);
2058 if (ops) {
2059 do {
2060 pr_cont("\ttramp: %pS (%pS)",
2061 (void *)ops->trampoline,
2062 (void *)ops->func);
2063 ops = ftrace_find_tramp_ops_next(rec, ops);
2064 } while (ops);
2065 } else
2066 pr_cont("\ttramp: ERROR!");
2067
2068 }
2069 ip = ftrace_get_addr_curr(rec);
2070 pr_cont("\n expected tramp: %lx\n", ip);
2071 }
2072
2073 FTRACE_WARN_ON_ONCE(1);
2074 }
2075
2076 static int ftrace_check_record(struct dyn_ftrace *rec, bool enable, bool update)
2077 {
2078 unsigned long flag = 0UL;
2079
2080 ftrace_bug_type = FTRACE_BUG_UNKNOWN;
2081
2082 if (rec->flags & FTRACE_FL_DISABLED)
2083 return FTRACE_UPDATE_IGNORE;
2084
2085 /*
2086 * If we are updating calls:
2087 *
2088 * If the record has a ref count, then we need to enable it
2089 * because someone is using it.
2090 *
2091 * Otherwise we make sure its disabled.
2092 *
2093 * If we are disabling calls, then disable all records that
2094 * are enabled.
2095 */
2096 if (enable && ftrace_rec_count(rec))
2097 flag = FTRACE_FL_ENABLED;
2098
2099 /*
2100 * If enabling and the REGS flag does not match the REGS_EN, or
2101 * the TRAMP flag doesn't match the TRAMP_EN, then do not ignore
2102 * this record. Set flags to fail the compare against ENABLED.
2103 * Same for direct calls.
2104 */
2105 if (flag) {
2106 if (!(rec->flags & FTRACE_FL_REGS) !=
2107 !(rec->flags & FTRACE_FL_REGS_EN))
2108 flag |= FTRACE_FL_REGS;
2109
2110 if (!(rec->flags & FTRACE_FL_TRAMP) !=
2111 !(rec->flags & FTRACE_FL_TRAMP_EN))
2112 flag |= FTRACE_FL_TRAMP;
2113
2114 /*
2115 * Direct calls are special, as count matters.
2116 * We must test the record for direct, if the
2117 * DIRECT and DIRECT_EN do not match, but only
2118 * if the count is 1. That's because, if the
2119 * count is something other than one, we do not
2120 * want the direct enabled (it will be done via the
2121 * direct helper). But if DIRECT_EN is set, and
2122 * the count is not one, we need to clear it.
2123 */
2124 if (ftrace_rec_count(rec) == 1) {
2125 if (!(rec->flags & FTRACE_FL_DIRECT) !=
2126 !(rec->flags & FTRACE_FL_DIRECT_EN))
2127 flag |= FTRACE_FL_DIRECT;
2128 } else if (rec->flags & FTRACE_FL_DIRECT_EN) {
2129 flag |= FTRACE_FL_DIRECT;
2130 }
2131 }
2132
2133 /* If the state of this record hasn't changed, then do nothing */
2134 if ((rec->flags & FTRACE_FL_ENABLED) == flag)
2135 return FTRACE_UPDATE_IGNORE;
2136
2137 if (flag) {
2138 /* Save off if rec is being enabled (for return value) */
2139 flag ^= rec->flags & FTRACE_FL_ENABLED;
2140
2141 if (update) {
2142 rec->flags |= FTRACE_FL_ENABLED;
2143 if (flag & FTRACE_FL_REGS) {
2144 if (rec->flags & FTRACE_FL_REGS)
2145 rec->flags |= FTRACE_FL_REGS_EN;
2146 else
2147 rec->flags &= ~FTRACE_FL_REGS_EN;
2148 }
2149 if (flag & FTRACE_FL_TRAMP) {
2150 if (rec->flags & FTRACE_FL_TRAMP)
2151 rec->flags |= FTRACE_FL_TRAMP_EN;
2152 else
2153 rec->flags &= ~FTRACE_FL_TRAMP_EN;
2154 }
2155
2156 if (flag & FTRACE_FL_DIRECT) {
2157 /*
2158 * If there's only one user (direct_ops helper)
2159 * then we can call the direct function
2160 * directly (no ftrace trampoline).
2161 */
2162 if (ftrace_rec_count(rec) == 1) {
2163 if (rec->flags & FTRACE_FL_DIRECT)
2164 rec->flags |= FTRACE_FL_DIRECT_EN;
2165 else
2166 rec->flags &= ~FTRACE_FL_DIRECT_EN;
2167 } else {
2168 /*
2169 * Can only call directly if there's
2170 * only one callback to the function.
2171 */
2172 rec->flags &= ~FTRACE_FL_DIRECT_EN;
2173 }
2174 }
2175 }
2176
2177 /*
2178 * If this record is being updated from a nop, then
2179 * return UPDATE_MAKE_CALL.
2180 * Otherwise,
2181 * return UPDATE_MODIFY_CALL to tell the caller to convert
2182 * from the save regs, to a non-save regs function or
2183 * vice versa, or from a trampoline call.
2184 */
2185 if (flag & FTRACE_FL_ENABLED) {
2186 ftrace_bug_type = FTRACE_BUG_CALL;
2187 return FTRACE_UPDATE_MAKE_CALL;
2188 }
2189
2190 ftrace_bug_type = FTRACE_BUG_UPDATE;
2191 return FTRACE_UPDATE_MODIFY_CALL;
2192 }
2193
2194 if (update) {
2195 /* If there's no more users, clear all flags */
2196 if (!ftrace_rec_count(rec))
2197 rec->flags = 0;
2198 else
2199 /*
2200 * Just disable the record, but keep the ops TRAMP
2201 * and REGS states. The _EN flags must be disabled though.
2202 */
2203 rec->flags &= ~(FTRACE_FL_ENABLED | FTRACE_FL_TRAMP_EN |
2204 FTRACE_FL_REGS_EN | FTRACE_FL_DIRECT_EN);
2205 }
2206
2207 ftrace_bug_type = FTRACE_BUG_NOP;
2208 return FTRACE_UPDATE_MAKE_NOP;
2209 }
2210
2211 /**
2212 * ftrace_update_record - set a record that now is tracing or not
2213 * @rec: the record to update
2214 * @enable: set to true if the record is tracing, false to force disable
2215 *
2216 * The records that represent all functions that can be traced need
2217 * to be updated when tracing has been enabled.
2218 */
2219 int ftrace_update_record(struct dyn_ftrace *rec, bool enable)
2220 {
2221 return ftrace_check_record(rec, enable, true);
2222 }
2223
2224 /**
2225 * ftrace_test_record - check if the record has been enabled or not
2226 * @rec: the record to test
2227 * @enable: set to true to check if enabled, false if it is disabled
2228 *
2229 * The arch code may need to test if a record is already set to
2230 * tracing to determine how to modify the function code that it
2231 * represents.
2232 */
2233 int ftrace_test_record(struct dyn_ftrace *rec, bool enable)
2234 {
2235 return ftrace_check_record(rec, enable, false);
2236 }
2237
2238 static struct ftrace_ops *
2239 ftrace_find_tramp_ops_any(struct dyn_ftrace *rec)
2240 {
2241 struct ftrace_ops *op;
2242 unsigned long ip = rec->ip;
2243
2244 do_for_each_ftrace_op(op, ftrace_ops_list) {
2245
2246 if (!op->trampoline)
2247 continue;
2248
2249 if (hash_contains_ip(ip, op->func_hash))
2250 return op;
2251 } while_for_each_ftrace_op(op);
2252
2253 return NULL;
2254 }
2255
2256 static struct ftrace_ops *
2257 ftrace_find_tramp_ops_any_other(struct dyn_ftrace *rec, struct ftrace_ops *op_exclude)
2258 {
2259 struct ftrace_ops *op;
2260 unsigned long ip = rec->ip;
2261
2262 do_for_each_ftrace_op(op, ftrace_ops_list) {
2263
2264 if (op == op_exclude || !op->trampoline)
2265 continue;
2266
2267 if (hash_contains_ip(ip, op->func_hash))
2268 return op;
2269 } while_for_each_ftrace_op(op);
2270
2271 return NULL;
2272 }
2273
2274 static struct ftrace_ops *
2275 ftrace_find_tramp_ops_next(struct dyn_ftrace *rec,
2276 struct ftrace_ops *op)
2277 {
2278 unsigned long ip = rec->ip;
2279
2280 while_for_each_ftrace_op(op) {
2281
2282 if (!op->trampoline)
2283 continue;
2284
2285 if (hash_contains_ip(ip, op->func_hash))
2286 return op;
2287 }
2288
2289 return NULL;
2290 }
2291
2292 static struct ftrace_ops *
2293 ftrace_find_tramp_ops_curr(struct dyn_ftrace *rec)
2294 {
2295 struct ftrace_ops *op;
2296 unsigned long ip = rec->ip;
2297
2298 /*
2299 * Need to check removed ops first.
2300 * If they are being removed, and this rec has a tramp,
2301 * and this rec is in the ops list, then it would be the
2302 * one with the tramp.
2303 */
2304 if (removed_ops) {
2305 if (hash_contains_ip(ip, &removed_ops->old_hash))
2306 return removed_ops;
2307 }
2308
2309 /*
2310 * Need to find the current trampoline for a rec.
2311 * Now, a trampoline is only attached to a rec if there
2312 * was a single 'ops' attached to it. But this can be called
2313 * when we are adding another op to the rec or removing the
2314 * current one. Thus, if the op is being added, we can
2315 * ignore it because it hasn't attached itself to the rec
2316 * yet.
2317 *
2318 * If an ops is being modified (hooking to different functions)
2319 * then we don't care about the new functions that are being
2320 * added, just the old ones (that are probably being removed).
2321 *
2322 * If we are adding an ops to a function that already is using
2323 * a trampoline, it needs to be removed (trampolines are only
2324 * for single ops connected), then an ops that is not being
2325 * modified also needs to be checked.
2326 */
2327 do_for_each_ftrace_op(op, ftrace_ops_list) {
2328
2329 if (!op->trampoline)
2330 continue;
2331
2332 /*
2333 * If the ops is being added, it hasn't gotten to
2334 * the point to be removed from this tree yet.
2335 */
2336 if (op->flags & FTRACE_OPS_FL_ADDING)
2337 continue;
2338
2339
2340 /*
2341 * If the ops is being modified and is in the old
2342 * hash, then it is probably being removed from this
2343 * function.
2344 */
2345 if ((op->flags & FTRACE_OPS_FL_MODIFYING) &&
2346 hash_contains_ip(ip, &op->old_hash))
2347 return op;
2348 /*
2349 * If the ops is not being added or modified, and it's
2350 * in its normal filter hash, then this must be the one
2351 * we want!
2352 */
2353 if (!(op->flags & FTRACE_OPS_FL_MODIFYING) &&
2354 hash_contains_ip(ip, op->func_hash))
2355 return op;
2356
2357 } while_for_each_ftrace_op(op);
2358
2359 return NULL;
2360 }
2361
2362 static struct ftrace_ops *
2363 ftrace_find_tramp_ops_new(struct dyn_ftrace *rec)
2364 {
2365 struct ftrace_ops *op;
2366 unsigned long ip = rec->ip;
2367
2368 do_for_each_ftrace_op(op, ftrace_ops_list) {
2369 /* pass rec in as regs to have non-NULL val */
2370 if (hash_contains_ip(ip, op->func_hash))
2371 return op;
2372 } while_for_each_ftrace_op(op);
2373
2374 return NULL;
2375 }
2376
2377 #ifdef CONFIG_DYNAMIC_FTRACE_WITH_DIRECT_CALLS
2378 /* Protected by rcu_tasks for reading, and direct_mutex for writing */
2379 static struct ftrace_hash *direct_functions = EMPTY_HASH;
2380 static DEFINE_MUTEX(direct_mutex);
2381 int ftrace_direct_func_count;
2382
2383 /*
2384 * Search the direct_functions hash to see if the given instruction pointer
2385 * has a direct caller attached to it.
2386 */
2387 unsigned long ftrace_find_rec_direct(unsigned long ip)
2388 {
2389 struct ftrace_func_entry *entry;
2390
2391 entry = __ftrace_lookup_ip(direct_functions, ip);
2392 if (!entry)
2393 return 0;
2394
2395 return entry->direct;
2396 }
2397
2398 static void call_direct_funcs(unsigned long ip, unsigned long pip,
2399 struct ftrace_ops *ops, struct ftrace_regs *fregs)
2400 {
2401 struct pt_regs *regs = ftrace_get_regs(fregs);
2402 unsigned long addr;
2403
2404 addr = ftrace_find_rec_direct(ip);
2405 if (!addr)
2406 return;
2407
2408 arch_ftrace_set_direct_caller(regs, addr);
2409 }
2410
2411 struct ftrace_ops direct_ops = {
2412 .func = call_direct_funcs,
2413 .flags = FTRACE_OPS_FL_IPMODIFY
2414 | FTRACE_OPS_FL_DIRECT | FTRACE_OPS_FL_SAVE_REGS
2415 | FTRACE_OPS_FL_PERMANENT,
2416 /*
2417 * By declaring the main trampoline as this trampoline
2418 * it will never have one allocated for it. Allocated
2419 * trampolines should not call direct functions.
2420 * The direct_ops should only be called by the builtin
2421 * ftrace_regs_caller trampoline.
2422 */
2423 .trampoline = FTRACE_REGS_ADDR,
2424 };
2425 #endif /* CONFIG_DYNAMIC_FTRACE_WITH_DIRECT_CALLS */
2426
2427 /**
2428 * ftrace_get_addr_new - Get the call address to set to
2429 * @rec: The ftrace record descriptor
2430 *
2431 * If the record has the FTRACE_FL_REGS set, that means that it
2432 * wants to convert to a callback that saves all regs. If FTRACE_FL_REGS
2433 * is not set, then it wants to convert to the normal callback.
2434 *
2435 * Returns the address of the trampoline to set to
2436 */
2437 unsigned long ftrace_get_addr_new(struct dyn_ftrace *rec)
2438 {
2439 struct ftrace_ops *ops;
2440 unsigned long addr;
2441
2442 if ((rec->flags & FTRACE_FL_DIRECT) &&
2443 (ftrace_rec_count(rec) == 1)) {
2444 addr = ftrace_find_rec_direct(rec->ip);
2445 if (addr)
2446 return addr;
2447 WARN_ON_ONCE(1);
2448 }
2449
2450 /* Trampolines take precedence over regs */
2451 if (rec->flags & FTRACE_FL_TRAMP) {
2452 ops = ftrace_find_tramp_ops_new(rec);
2453 if (FTRACE_WARN_ON(!ops || !ops->trampoline)) {
2454 pr_warn("Bad trampoline accounting at: %p (%pS) (%lx)\n",
2455 (void *)rec->ip, (void *)rec->ip, rec->flags);
2456 /* Ftrace is shutting down, return anything */
2457 return (unsigned long)FTRACE_ADDR;
2458 }
2459 return ops->trampoline;
2460 }
2461
2462 if (rec->flags & FTRACE_FL_REGS)
2463 return (unsigned long)FTRACE_REGS_ADDR;
2464 else
2465 return (unsigned long)FTRACE_ADDR;
2466 }
2467
2468 /**
2469 * ftrace_get_addr_curr - Get the call address that is already there
2470 * @rec: The ftrace record descriptor
2471 *
2472 * The FTRACE_FL_REGS_EN is set when the record already points to
2473 * a function that saves all the regs. Basically the '_EN' version
2474 * represents the current state of the function.
2475 *
2476 * Returns the address of the trampoline that is currently being called
2477 */
2478 unsigned long ftrace_get_addr_curr(struct dyn_ftrace *rec)
2479 {
2480 struct ftrace_ops *ops;
2481 unsigned long addr;
2482
2483 /* Direct calls take precedence over trampolines */
2484 if (rec->flags & FTRACE_FL_DIRECT_EN) {
2485 addr = ftrace_find_rec_direct(rec->ip);
2486 if (addr)
2487 return addr;
2488 WARN_ON_ONCE(1);
2489 }
2490
2491 /* Trampolines take precedence over regs */
2492 if (rec->flags & FTRACE_FL_TRAMP_EN) {
2493 ops = ftrace_find_tramp_ops_curr(rec);
2494 if (FTRACE_WARN_ON(!ops)) {
2495 pr_warn("Bad trampoline accounting at: %p (%pS)\n",
2496 (void *)rec->ip, (void *)rec->ip);
2497 /* Ftrace is shutting down, return anything */
2498 return (unsigned long)FTRACE_ADDR;
2499 }
2500 return ops->trampoline;
2501 }
2502
2503 if (rec->flags & FTRACE_FL_REGS_EN)
2504 return (unsigned long)FTRACE_REGS_ADDR;
2505 else
2506 return (unsigned long)FTRACE_ADDR;
2507 }
2508
2509 static int
2510 __ftrace_replace_code(struct dyn_ftrace *rec, bool enable)
2511 {
2512 unsigned long ftrace_old_addr;
2513 unsigned long ftrace_addr;
2514 int ret;
2515
2516 ftrace_addr = ftrace_get_addr_new(rec);
2517
2518 /* This needs to be done before we call ftrace_update_record */
2519 ftrace_old_addr = ftrace_get_addr_curr(rec);
2520
2521 ret = ftrace_update_record(rec, enable);
2522
2523 ftrace_bug_type = FTRACE_BUG_UNKNOWN;
2524
2525 switch (ret) {
2526 case FTRACE_UPDATE_IGNORE:
2527 return 0;
2528
2529 case FTRACE_UPDATE_MAKE_CALL:
2530 ftrace_bug_type = FTRACE_BUG_CALL;
2531 return ftrace_make_call(rec, ftrace_addr);
2532
2533 case FTRACE_UPDATE_MAKE_NOP:
2534 ftrace_bug_type = FTRACE_BUG_NOP;
2535 return ftrace_make_nop(NULL, rec, ftrace_old_addr);
2536
2537 case FTRACE_UPDATE_MODIFY_CALL:
2538 ftrace_bug_type = FTRACE_BUG_UPDATE;
2539 return ftrace_modify_call(rec, ftrace_old_addr, ftrace_addr);
2540 }
2541
2542 return -1; /* unknown ftrace bug */
2543 }
2544
2545 void __weak ftrace_replace_code(int mod_flags)
2546 {
2547 struct dyn_ftrace *rec;
2548 struct ftrace_page *pg;
2549 bool enable = mod_flags & FTRACE_MODIFY_ENABLE_FL;
2550 int schedulable = mod_flags & FTRACE_MODIFY_MAY_SLEEP_FL;
2551 int failed;
2552
2553 if (unlikely(ftrace_disabled))
2554 return;
2555
2556 do_for_each_ftrace_rec(pg, rec) {
2557
2558 if (rec->flags & FTRACE_FL_DISABLED)
2559 continue;
2560
2561 failed = __ftrace_replace_code(rec, enable);
2562 if (failed) {
2563 ftrace_bug(failed, rec);
2564 /* Stop processing */
2565 return;
2566 }
2567 if (schedulable)
2568 cond_resched();
2569 } while_for_each_ftrace_rec();
2570 }
2571
2572 struct ftrace_rec_iter {
2573 struct ftrace_page *pg;
2574 int index;
2575 };
2576
2577 /**
2578 * ftrace_rec_iter_start - start up iterating over traced functions
2579 *
2580 * Returns an iterator handle that is used to iterate over all
2581 * the records that represent address locations where functions
2582 * are traced.
2583 *
2584 * May return NULL if no records are available.
2585 */
2586 struct ftrace_rec_iter *ftrace_rec_iter_start(void)
2587 {
2588 /*
2589 * We only use a single iterator.
2590 * Protected by the ftrace_lock mutex.
2591 */
2592 static struct ftrace_rec_iter ftrace_rec_iter;
2593 struct ftrace_rec_iter *iter = &ftrace_rec_iter;
2594
2595 iter->pg = ftrace_pages_start;
2596 iter->index = 0;
2597
2598 /* Could have empty pages */
2599 while (iter->pg && !iter->pg->index)
2600 iter->pg = iter->pg->next;
2601
2602 if (!iter->pg)
2603 return NULL;
2604
2605 return iter;
2606 }
2607
2608 /**
2609 * ftrace_rec_iter_next - get the next record to process.
2610 * @iter: The handle to the iterator.
2611 *
2612 * Returns the next iterator after the given iterator @iter.
2613 */
2614 struct ftrace_rec_iter *ftrace_rec_iter_next(struct ftrace_rec_iter *iter)
2615 {
2616 iter->index++;
2617
2618 if (iter->index >= iter->pg->index) {
2619 iter->pg = iter->pg->next;
2620 iter->index = 0;
2621
2622 /* Could have empty pages */
2623 while (iter->pg && !iter->pg->index)
2624 iter->pg = iter->pg->next;
2625 }
2626
2627 if (!iter->pg)
2628 return NULL;
2629
2630 return iter;
2631 }
2632
2633 /**
2634 * ftrace_rec_iter_record - get the record at the iterator location
2635 * @iter: The current iterator location
2636 *
2637 * Returns the record that the current @iter is at.
2638 */
2639 struct dyn_ftrace *ftrace_rec_iter_record(struct ftrace_rec_iter *iter)
2640 {
2641 return &iter->pg->records[iter->index];
2642 }
2643
2644 static int
2645 ftrace_nop_initialize(struct module *mod, struct dyn_ftrace *rec)
2646 {
2647 int ret;
2648
2649 if (unlikely(ftrace_disabled))
2650 return 0;
2651
2652 ret = ftrace_init_nop(mod, rec);
2653 if (ret) {
2654 ftrace_bug_type = FTRACE_BUG_INIT;
2655 ftrace_bug(ret, rec);
2656 return 0;
2657 }
2658 return 1;
2659 }
2660
2661 /*
2662 * archs can override this function if they must do something
2663 * before the modifying code is performed.
2664 */
2665 int __weak ftrace_arch_code_modify_prepare(void)
2666 {
2667 return 0;
2668 }
2669
2670 /*
2671 * archs can override this function if they must do something
2672 * after the modifying code is performed.
2673 */
2674 int __weak ftrace_arch_code_modify_post_process(void)
2675 {
2676 return 0;
2677 }
2678
2679 void ftrace_modify_all_code(int command)
2680 {
2681 int update = command & FTRACE_UPDATE_TRACE_FUNC;
2682 int mod_flags = 0;
2683 int err = 0;
2684
2685 if (command & FTRACE_MAY_SLEEP)
2686 mod_flags = FTRACE_MODIFY_MAY_SLEEP_FL;
2687
2688 /*
2689 * If the ftrace_caller calls a ftrace_ops func directly,
2690 * we need to make sure that it only traces functions it
2691 * expects to trace. When doing the switch of functions,
2692 * we need to update to the ftrace_ops_list_func first
2693 * before the transition between old and new calls are set,
2694 * as the ftrace_ops_list_func will check the ops hashes
2695 * to make sure the ops are having the right functions
2696 * traced.
2697 */
2698 if (update) {
2699 err = ftrace_update_ftrace_func(ftrace_ops_list_func);
2700 if (FTRACE_WARN_ON(err))
2701 return;
2702 }
2703
2704 if (command & FTRACE_UPDATE_CALLS)
2705 ftrace_replace_code(mod_flags | FTRACE_MODIFY_ENABLE_FL);
2706 else if (command & FTRACE_DISABLE_CALLS)
2707 ftrace_replace_code(mod_flags);
2708
2709 if (update && ftrace_trace_function != ftrace_ops_list_func) {
2710 function_trace_op = set_function_trace_op;
2711 smp_wmb();
2712 /* If irqs are disabled, we are in stop machine */
2713 if (!irqs_disabled())
2714 smp_call_function(ftrace_sync_ipi, NULL, 1);
2715 err = ftrace_update_ftrace_func(ftrace_trace_function);
2716 if (FTRACE_WARN_ON(err))
2717 return;
2718 }
2719
2720 if (command & FTRACE_START_FUNC_RET)
2721 err = ftrace_enable_ftrace_graph_caller();
2722 else if (command & FTRACE_STOP_FUNC_RET)
2723 err = ftrace_disable_ftrace_graph_caller();
2724 FTRACE_WARN_ON(err);
2725 }
2726
2727 static int __ftrace_modify_code(void *data)
2728 {
2729 int *command = data;
2730
2731 ftrace_modify_all_code(*command);
2732
2733 return 0;
2734 }
2735
2736 /**
2737 * ftrace_run_stop_machine - go back to the stop machine method
2738 * @command: The command to tell ftrace what to do
2739 *
2740 * If an arch needs to fall back to the stop machine method, the
2741 * it can call this function.
2742 */
2743 void ftrace_run_stop_machine(int command)
2744 {
2745 stop_machine(__ftrace_modify_code, &command, NULL);
2746 }
2747
2748 /**
2749 * arch_ftrace_update_code - modify the code to trace or not trace
2750 * @command: The command that needs to be done
2751 *
2752 * Archs can override this function if it does not need to
2753 * run stop_machine() to modify code.
2754 */
2755 void __weak arch_ftrace_update_code(int command)
2756 {
2757 ftrace_run_stop_machine(command);
2758 }
2759
2760 static void ftrace_run_update_code(int command)
2761 {
2762 int ret;
2763
2764 ret = ftrace_arch_code_modify_prepare();
2765 FTRACE_WARN_ON(ret);
2766 if (ret)
2767 return;
2768
2769 /*
2770 * By default we use stop_machine() to modify the code.
2771 * But archs can do what ever they want as long as it
2772 * is safe. The stop_machine() is the safest, but also
2773 * produces the most overhead.
2774 */
2775 arch_ftrace_update_code(command);
2776
2777 ret = ftrace_arch_code_modify_post_process();
2778 FTRACE_WARN_ON(ret);
2779 }
2780
2781 static void ftrace_run_modify_code(struct ftrace_ops *ops, int command,
2782 struct ftrace_ops_hash *old_hash)
2783 {
2784 ops->flags |= FTRACE_OPS_FL_MODIFYING;
2785 ops->old_hash.filter_hash = old_hash->filter_hash;
2786 ops->old_hash.notrace_hash = old_hash->notrace_hash;
2787 ftrace_run_update_code(command);
2788 ops->old_hash.filter_hash = NULL;
2789 ops->old_hash.notrace_hash = NULL;
2790 ops->flags &= ~FTRACE_OPS_FL_MODIFYING;
2791 }
2792
2793 static ftrace_func_t saved_ftrace_func;
2794 static int ftrace_start_up;
2795
2796 void __weak arch_ftrace_trampoline_free(struct ftrace_ops *ops)
2797 {
2798 }
2799
2800 /* List of trace_ops that have allocated trampolines */
2801 static LIST_HEAD(ftrace_ops_trampoline_list);
2802
2803 static void ftrace_add_trampoline_to_kallsyms(struct ftrace_ops *ops)
2804 {
2805 lockdep_assert_held(&ftrace_lock);
2806 list_add_rcu(&ops->list, &ftrace_ops_trampoline_list);
2807 }
2808
2809 static void ftrace_remove_trampoline_from_kallsyms(struct ftrace_ops *ops)
2810 {
2811 lockdep_assert_held(&ftrace_lock);
2812 list_del_rcu(&ops->list);
2813 synchronize_rcu();
2814 }
2815
2816 /*
2817 * "__builtin__ftrace" is used as a module name in /proc/kallsyms for symbols
2818 * for pages allocated for ftrace purposes, even though "__builtin__ftrace" is
2819 * not a module.
2820 */
2821 #define FTRACE_TRAMPOLINE_MOD "__builtin__ftrace"
2822 #define FTRACE_TRAMPOLINE_SYM "ftrace_trampoline"
2823
2824 static void ftrace_trampoline_free(struct ftrace_ops *ops)
2825 {
2826 if (ops && (ops->flags & FTRACE_OPS_FL_ALLOC_TRAMP) &&
2827 ops->trampoline) {
2828 /*
2829 * Record the text poke event before the ksymbol unregister
2830 * event.
2831 */
2832 perf_event_text_poke((void *)ops->trampoline,
2833 (void *)ops->trampoline,
2834 ops->trampoline_size, NULL, 0);
2835 perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_OOL,
2836 ops->trampoline, ops->trampoline_size,
2837 true, FTRACE_TRAMPOLINE_SYM);
2838 /* Remove from kallsyms after the perf events */
2839 ftrace_remove_trampoline_from_kallsyms(ops);
2840 }
2841
2842 arch_ftrace_trampoline_free(ops);
2843 }
2844
2845 static void ftrace_startup_enable(int command)
2846 {
2847 if (saved_ftrace_func != ftrace_trace_function) {
2848 saved_ftrace_func = ftrace_trace_function;
2849 command |= FTRACE_UPDATE_TRACE_FUNC;
2850 }
2851
2852 if (!command || !ftrace_enabled)
2853 return;
2854
2855 ftrace_run_update_code(command);
2856 }
2857
2858 static void ftrace_startup_all(int command)
2859 {
2860 update_all_ops = true;
2861 ftrace_startup_enable(command);
2862 update_all_ops = false;
2863 }
2864
2865 int ftrace_startup(struct ftrace_ops *ops, int command)
2866 {
2867 int ret;
2868
2869 if (unlikely(ftrace_disabled))
2870 return -ENODEV;
2871
2872 ret = __register_ftrace_function(ops);
2873 if (ret)
2874 return ret;
2875
2876 ftrace_start_up++;
2877
2878 /*
2879 * Note that ftrace probes uses this to start up
2880 * and modify functions it will probe. But we still
2881 * set the ADDING flag for modification, as probes
2882 * do not have trampolines. If they add them in the
2883 * future, then the probes will need to distinguish
2884 * between adding and updating probes.
2885 */
2886 ops->flags |= FTRACE_OPS_FL_ENABLED | FTRACE_OPS_FL_ADDING;
2887
2888 ret = ftrace_hash_ipmodify_enable(ops);
2889 if (ret < 0) {
2890 /* Rollback registration process */
2891 __unregister_ftrace_function(ops);
2892 ftrace_start_up--;
2893 ops->flags &= ~FTRACE_OPS_FL_ENABLED;
2894 if (ops->flags & FTRACE_OPS_FL_DYNAMIC)
2895 ftrace_trampoline_free(ops);
2896 return ret;
2897 }
2898
2899 if (ftrace_hash_rec_enable(ops, 1))
2900 command |= FTRACE_UPDATE_CALLS;
2901
2902 ftrace_startup_enable(command);
2903
2904 ops->flags &= ~FTRACE_OPS_FL_ADDING;
2905
2906 return 0;
2907 }
2908
2909 int ftrace_shutdown(struct ftrace_ops *ops, int command)
2910 {
2911 int ret;
2912
2913 if (unlikely(ftrace_disabled))
2914 return -ENODEV;
2915
2916 ret = __unregister_ftrace_function(ops);
2917 if (ret)
2918 return ret;
2919
2920 ftrace_start_up--;
2921 /*
2922 * Just warn in case of unbalance, no need to kill ftrace, it's not
2923 * critical but the ftrace_call callers may be never nopped again after
2924 * further ftrace uses.
2925 */
2926 WARN_ON_ONCE(ftrace_start_up < 0);
2927
2928 /* Disabling ipmodify never fails */
2929 ftrace_hash_ipmodify_disable(ops);
2930
2931 if (ftrace_hash_rec_disable(ops, 1))
2932 command |= FTRACE_UPDATE_CALLS;
2933
2934 ops->flags &= ~FTRACE_OPS_FL_ENABLED;
2935
2936 if (saved_ftrace_func != ftrace_trace_function) {
2937 saved_ftrace_func = ftrace_trace_function;
2938 command |= FTRACE_UPDATE_TRACE_FUNC;
2939 }
2940
2941 if (!command || !ftrace_enabled) {
2942 /*
2943 * If these are dynamic or per_cpu ops, they still
2944 * need their data freed. Since, function tracing is
2945 * not currently active, we can just free them
2946 * without synchronizing all CPUs.
2947 */
2948 if (ops->flags & FTRACE_OPS_FL_DYNAMIC)
2949 goto free_ops;
2950
2951 return 0;
2952 }
2953
2954 /*
2955 * If the ops uses a trampoline, then it needs to be
2956 * tested first on update.
2957 */
2958 ops->flags |= FTRACE_OPS_FL_REMOVING;
2959 removed_ops = ops;
2960
2961 /* The trampoline logic checks the old hashes */
2962 ops->old_hash.filter_hash = ops->func_hash->filter_hash;
2963 ops->old_hash.notrace_hash = ops->func_hash->notrace_hash;
2964
2965 ftrace_run_update_code(command);
2966
2967 /*
2968 * If there's no more ops registered with ftrace, run a
2969 * sanity check to make sure all rec flags are cleared.
2970 */
2971 if (rcu_dereference_protected(ftrace_ops_list,
2972 lockdep_is_held(&ftrace_lock)) == &ftrace_list_end) {
2973 struct ftrace_page *pg;
2974 struct dyn_ftrace *rec;
2975
2976 do_for_each_ftrace_rec(pg, rec) {
2977 if (FTRACE_WARN_ON_ONCE(rec->flags & ~FTRACE_FL_DISABLED))
2978 pr_warn(" %pS flags:%lx\n",
2979 (void *)rec->ip, rec->flags);
2980 } while_for_each_ftrace_rec();
2981 }
2982
2983 ops->old_hash.filter_hash = NULL;
2984 ops->old_hash.notrace_hash = NULL;
2985
2986 removed_ops = NULL;
2987 ops->flags &= ~FTRACE_OPS_FL_REMOVING;
2988
2989 /*
2990 * Dynamic ops may be freed, we must make sure that all
2991 * callers are done before leaving this function.
2992 * The same goes for freeing the per_cpu data of the per_cpu
2993 * ops.
2994 */
2995 if (ops->flags & FTRACE_OPS_FL_DYNAMIC) {
2996 /*
2997 * We need to do a hard force of sched synchronization.
2998 * This is because we use preempt_disable() to do RCU, but
2999 * the function tracers can be called where RCU is not watching
3000 * (like before user_exit()). We can not rely on the RCU
3001 * infrastructure to do the synchronization, thus we must do it
3002 * ourselves.
3003 */
3004 synchronize_rcu_tasks_rude();
3005
3006 /*
3007 * When the kernel is preemptive, tasks can be preempted
3008 * while on a ftrace trampoline. Just scheduling a task on
3009 * a CPU is not good enough to flush them. Calling
3010 * synchronize_rcu_tasks() will wait for those tasks to
3011 * execute and either schedule voluntarily or enter user space.
3012 */
3013 if (IS_ENABLED(CONFIG_PREEMPTION))
3014 synchronize_rcu_tasks();
3015
3016 free_ops:
3017 ftrace_trampoline_free(ops);
3018 }
3019
3020 return 0;
3021 }
3022
3023 static void ftrace_startup_sysctl(void)
3024 {
3025 int command;
3026
3027 if (unlikely(ftrace_disabled))
3028 return;
3029
3030 /* Force update next time */
3031 saved_ftrace_func = NULL;
3032 /* ftrace_start_up is true if we want ftrace running */
3033 if (ftrace_start_up) {
3034 command = FTRACE_UPDATE_CALLS;
3035 if (ftrace_graph_active)
3036 command |= FTRACE_START_FUNC_RET;
3037 ftrace_startup_enable(command);
3038 }
3039 }
3040
3041 static void ftrace_shutdown_sysctl(void)
3042 {
3043 int command;
3044
3045 if (unlikely(ftrace_disabled))
3046 return;
3047
3048 /* ftrace_start_up is true if ftrace is running */
3049 if (ftrace_start_up) {
3050 command = FTRACE_DISABLE_CALLS;
3051 if (ftrace_graph_active)
3052 command |= FTRACE_STOP_FUNC_RET;
3053 ftrace_run_update_code(command);
3054 }
3055 }
3056
3057 static u64 ftrace_update_time;
3058 unsigned long ftrace_update_tot_cnt;
3059 unsigned long ftrace_number_of_pages;
3060 unsigned long ftrace_number_of_groups;
3061
3062 static inline int ops_traces_mod(struct ftrace_ops *ops)
3063 {
3064 /*
3065 * Filter_hash being empty will default to trace module.
3066 * But notrace hash requires a test of individual module functions.
3067 */
3068 return ftrace_hash_empty(ops->func_hash->filter_hash) &&
3069 ftrace_hash_empty(ops->func_hash->notrace_hash);
3070 }
3071
3072 /*
3073 * Check if the current ops references the record.
3074 *
3075 * If the ops traces all functions, then it was already accounted for.
3076 * If the ops does not trace the current record function, skip it.
3077 * If the ops ignores the function via notrace filter, skip it.
3078 */
3079 static inline bool
3080 ops_references_rec(struct ftrace_ops *ops, struct dyn_ftrace *rec)
3081 {
3082 /* If ops isn't enabled, ignore it */
3083 if (!(ops->flags & FTRACE_OPS_FL_ENABLED))
3084 return false;
3085
3086 /* If ops traces all then it includes this function */
3087 if (ops_traces_mod(ops))
3088 return true;
3089
3090 /* The function must be in the filter */
3091 if (!ftrace_hash_empty(ops->func_hash->filter_hash) &&
3092 !__ftrace_lookup_ip(ops->func_hash->filter_hash, rec->ip))
3093 return false;
3094
3095 /* If in notrace hash, we ignore it too */
3096 if (ftrace_lookup_ip(ops->func_hash->notrace_hash, rec->ip))
3097 return false;
3098
3099 return true;
3100 }
3101
3102 static int ftrace_update_code(struct module *mod, struct ftrace_page *new_pgs)
3103 {
3104 bool init_nop = ftrace_need_init_nop();
3105 struct ftrace_page *pg;
3106 struct dyn_ftrace *p;
3107 u64 start, stop;
3108 unsigned long update_cnt = 0;
3109 unsigned long rec_flags = 0;
3110 int i;
3111
3112 start = ftrace_now(raw_smp_processor_id());
3113
3114 /*
3115 * When a module is loaded, this function is called to convert
3116 * the calls to mcount in its text to nops, and also to create
3117 * an entry in the ftrace data. Now, if ftrace is activated
3118 * after this call, but before the module sets its text to
3119 * read-only, the modification of enabling ftrace can fail if
3120 * the read-only is done while ftrace is converting the calls.
3121 * To prevent this, the module's records are set as disabled
3122 * and will be enabled after the call to set the module's text
3123 * to read-only.
3124 */
3125 if (mod)
3126 rec_flags |= FTRACE_FL_DISABLED;
3127
3128 for (pg = new_pgs; pg; pg = pg->next) {
3129
3130 for (i = 0; i < pg->index; i++) {
3131
3132 /* If something went wrong, bail without enabling anything */
3133 if (unlikely(ftrace_disabled))
3134 return -1;
3135
3136 p = &pg->records[i];
3137 p->flags = rec_flags;
3138
3139 /*
3140 * Do the initial record conversion from mcount jump
3141 * to the NOP instructions.
3142 */
3143 if (init_nop && !ftrace_nop_initialize(mod, p))
3144 break;
3145
3146 update_cnt++;
3147 }
3148 }
3149
3150 stop = ftrace_now(raw_smp_processor_id());
3151 ftrace_update_time = stop - start;
3152 ftrace_update_tot_cnt += update_cnt;
3153
3154 return 0;
3155 }
3156
3157 static int ftrace_allocate_records(struct ftrace_page *pg, int count)
3158 {
3159 int order;
3160 int pages;
3161 int cnt;
3162
3163 if (WARN_ON(!count))
3164 return -EINVAL;
3165
3166 /* We want to fill as much as possible, with no empty pages */
3167 pages = DIV_ROUND_UP(count, ENTRIES_PER_PAGE);
3168 order = fls(pages) - 1;
3169
3170 again:
3171 pg->records = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, order);
3172
3173 if (!pg->records) {
3174 /* if we can't allocate this size, try something smaller */
3175 if (!order)
3176 return -ENOMEM;
3177 order >>= 1;
3178 goto again;
3179 }
3180
3181 ftrace_number_of_pages += 1 << order;
3182 ftrace_number_of_groups++;
3183
3184 cnt = (PAGE_SIZE << order) / ENTRY_SIZE;
3185 pg->order = order;
3186
3187 if (cnt > count)
3188 cnt = count;
3189
3190 return cnt;
3191 }
3192
3193 static struct ftrace_page *
3194 ftrace_allocate_pages(unsigned long num_to_init)
3195 {
3196 struct ftrace_page *start_pg;
3197 struct ftrace_page *pg;
3198 int cnt;
3199
3200 if (!num_to_init)
3201 return NULL;
3202
3203 start_pg = pg = kzalloc(sizeof(*pg), GFP_KERNEL);
3204 if (!pg)
3205 return NULL;
3206
3207 /*
3208 * Try to allocate as much as possible in one continues
3209 * location that fills in all of the space. We want to
3210 * waste as little space as possible.
3211 */
3212 for (;;) {
3213 cnt = ftrace_allocate_records(pg, num_to_init);
3214 if (cnt < 0)
3215 goto free_pages;
3216
3217 num_to_init -= cnt;
3218 if (!num_to_init)
3219 break;
3220
3221 pg->next = kzalloc(sizeof(*pg), GFP_KERNEL);
3222 if (!pg->next)
3223 goto free_pages;
3224
3225 pg = pg->next;
3226 }
3227
3228 return start_pg;
3229
3230 free_pages:
3231 pg = start_pg;
3232 while (pg) {
3233 if (pg->records) {
3234 free_pages((unsigned long)pg->records, pg->order);
3235 ftrace_number_of_pages -= 1 << pg->order;
3236 }
3237 start_pg = pg->next;
3238 kfree(pg);
3239 pg = start_pg;
3240 ftrace_number_of_groups--;
3241 }
3242 pr_info("ftrace: FAILED to allocate memory for functions\n");
3243 return NULL;
3244 }
3245
3246 #define FTRACE_BUFF_MAX (KSYM_SYMBOL_LEN+4) /* room for wildcards */
3247
3248 struct ftrace_iterator {
3249 loff_t pos;
3250 loff_t func_pos;
3251 loff_t mod_pos;
3252 struct ftrace_page *pg;
3253 struct dyn_ftrace *func;
3254 struct ftrace_func_probe *probe;
3255 struct ftrace_func_entry *probe_entry;
3256 struct trace_parser parser;
3257 struct ftrace_hash *hash;
3258 struct ftrace_ops *ops;
3259 struct trace_array *tr;
3260 struct list_head *mod_list;
3261 int pidx;
3262 int idx;
3263 unsigned flags;
3264 };
3265
3266 static void *
3267 t_probe_next(struct seq_file *m, loff_t *pos)
3268 {
3269 struct ftrace_iterator *iter = m->private;
3270 struct trace_array *tr = iter->ops->private;
3271 struct list_head *func_probes;
3272 struct ftrace_hash *hash;
3273 struct list_head *next;
3274 struct hlist_node *hnd = NULL;
3275 struct hlist_head *hhd;
3276 int size;
3277
3278 (*pos)++;
3279 iter->pos = *pos;
3280
3281 if (!tr)
3282 return NULL;
3283
3284 func_probes = &tr->func_probes;
3285 if (list_empty(func_probes))
3286 return NULL;
3287
3288 if (!iter->probe) {
3289 next = func_probes->next;
3290 iter->probe = list_entry(next, struct ftrace_func_probe, list);
3291 }
3292
3293 if (iter->probe_entry)
3294 hnd = &iter->probe_entry->hlist;
3295
3296 hash = iter->probe->ops.func_hash->filter_hash;
3297
3298 /*
3299 * A probe being registered may temporarily have an empty hash
3300 * and it's at the end of the func_probes list.
3301 */
3302 if (!hash || hash == EMPTY_HASH)
3303 return NULL;
3304
3305 size = 1 << hash->size_bits;
3306
3307 retry:
3308 if (iter->pidx >= size) {
3309 if (iter->probe->list.next == func_probes)
3310 return NULL;
3311 next = iter->probe->list.next;
3312 iter->probe = list_entry(next, struct ftrace_func_probe, list);
3313 hash = iter->probe->ops.func_hash->filter_hash;
3314 size = 1 << hash->size_bits;
3315 iter->pidx = 0;
3316 }
3317
3318 hhd = &hash->buckets[iter->pidx];
3319
3320 if (hlist_empty(hhd)) {
3321 iter->pidx++;
3322 hnd = NULL;
3323 goto retry;
3324 }
3325
3326 if (!hnd)
3327 hnd = hhd->first;
3328 else {
3329 hnd = hnd->next;
3330 if (!hnd) {
3331 iter->pidx++;
3332 goto retry;
3333 }
3334 }
3335
3336 if (WARN_ON_ONCE(!hnd))
3337 return NULL;
3338
3339 iter->probe_entry = hlist_entry(hnd, struct ftrace_func_entry, hlist);
3340
3341 return iter;
3342 }
3343
3344 static void *t_probe_start(struct seq_file *m, loff_t *pos)
3345 {
3346 struct ftrace_iterator *iter = m->private;
3347 void *p = NULL;
3348 loff_t l;
3349
3350 if (!(iter->flags & FTRACE_ITER_DO_PROBES))
3351 return NULL;
3352
3353 if (iter->mod_pos > *pos)
3354 return NULL;
3355
3356 iter->probe = NULL;
3357 iter->probe_entry = NULL;
3358 iter->pidx = 0;
3359 for (l = 0; l <= (*pos - iter->mod_pos); ) {
3360 p = t_probe_next(m, &l);
3361 if (!p)
3362 break;
3363 }
3364 if (!p)
3365 return NULL;
3366
3367 /* Only set this if we have an item */
3368 iter->flags |= FTRACE_ITER_PROBE;
3369
3370 return iter;
3371 }
3372
3373 static int
3374 t_probe_show(struct seq_file *m, struct ftrace_iterator *iter)
3375 {
3376 struct ftrace_func_entry *probe_entry;
3377 struct ftrace_probe_ops *probe_ops;
3378 struct ftrace_func_probe *probe;
3379
3380 probe = iter->probe;
3381 probe_entry = iter->probe_entry;
3382
3383 if (WARN_ON_ONCE(!probe || !probe_entry))
3384 return -EIO;
3385
3386 probe_ops = probe->probe_ops;
3387
3388 if (probe_ops->print)
3389 return probe_ops->print(m, probe_entry->ip, probe_ops, probe->data);
3390
3391 seq_printf(m, "%ps:%ps\n", (void *)probe_entry->ip,
3392 (void *)probe_ops->func);
3393
3394 return 0;
3395 }
3396
3397 static void *
3398 t_mod_next(struct seq_file *m, loff_t *pos)
3399 {
3400 struct ftrace_iterator *iter = m->private;
3401 struct trace_array *tr = iter->tr;
3402
3403 (*pos)++;
3404 iter->pos = *pos;
3405
3406 iter->mod_list = iter->mod_list->next;
3407
3408 if (iter->mod_list == &tr->mod_trace ||
3409 iter->mod_list == &tr->mod_notrace) {
3410 iter->flags &= ~FTRACE_ITER_MOD;
3411 return NULL;
3412 }
3413
3414 iter->mod_pos = *pos;
3415
3416 return iter;
3417 }
3418
3419 static void *t_mod_start(struct seq_file *m, loff_t *pos)
3420 {
3421 struct ftrace_iterator *iter = m->private;
3422 void *p = NULL;
3423 loff_t l;
3424
3425 if (iter->func_pos > *pos)
3426 return NULL;
3427
3428 iter->mod_pos = iter->func_pos;
3429
3430 /* probes are only available if tr is set */
3431 if (!iter->tr)
3432 return NULL;
3433
3434 for (l = 0; l <= (*pos - iter->func_pos); ) {
3435 p = t_mod_next(m, &l);
3436 if (!p)
3437 break;
3438 }
3439 if (!p) {
3440 iter->flags &= ~FTRACE_ITER_MOD;
3441 return t_probe_start(m, pos);
3442 }
3443
3444 /* Only set this if we have an item */
3445 iter->flags |= FTRACE_ITER_MOD;
3446
3447 return iter;
3448 }
3449
3450 static int
3451 t_mod_show(struct seq_file *m, struct ftrace_iterator *iter)
3452 {
3453 struct ftrace_mod_load *ftrace_mod;
3454 struct trace_array *tr = iter->tr;
3455
3456 if (WARN_ON_ONCE(!iter->mod_list) ||
3457 iter->mod_list == &tr->mod_trace ||
3458 iter->mod_list == &tr->mod_notrace)
3459 return -EIO;
3460
3461 ftrace_mod = list_entry(iter->mod_list, struct ftrace_mod_load, list);
3462
3463 if (ftrace_mod->func)
3464 seq_printf(m, "%s", ftrace_mod->func);
3465 else
3466 seq_putc(m, '*');
3467
3468 seq_printf(m, ":mod:%s\n", ftrace_mod->module);
3469
3470 return 0;
3471 }
3472
3473 static void *
3474 t_func_next(struct seq_file *m, loff_t *pos)
3475 {
3476 struct ftrace_iterator *iter = m->private;
3477 struct dyn_ftrace *rec = NULL;
3478
3479 (*pos)++;
3480
3481 retry:
3482 if (iter->idx >= iter->pg->index) {
3483 if (iter->pg->next) {
3484 iter->pg = iter->pg->next;
3485 iter->idx = 0;
3486 goto retry;
3487 }
3488 } else {
3489 rec = &iter->pg->records[iter->idx++];
3490 if (((iter->flags & (FTRACE_ITER_FILTER | FTRACE_ITER_NOTRACE)) &&
3491 !ftrace_lookup_ip(iter->hash, rec->ip)) ||
3492
3493 ((iter->flags & FTRACE_ITER_ENABLED) &&
3494 !(rec->flags & FTRACE_FL_ENABLED))) {
3495
3496 rec = NULL;
3497 goto retry;
3498 }
3499 }
3500
3501 if (!rec)
3502 return NULL;
3503
3504 iter->pos = iter->func_pos = *pos;
3505 iter->func = rec;
3506
3507 return iter;
3508 }
3509
3510 static void *
3511 t_next(struct seq_file *m, void *v, loff_t *pos)
3512 {
3513 struct ftrace_iterator *iter = m->private;
3514 loff_t l = *pos; /* t_probe_start() must use original pos */
3515 void *ret;
3516
3517 if (unlikely(ftrace_disabled))
3518 return NULL;
3519
3520 if (iter->flags & FTRACE_ITER_PROBE)
3521 return t_probe_next(m, pos);
3522
3523 if (iter->flags & FTRACE_ITER_MOD)
3524 return t_mod_next(m, pos);
3525
3526 if (iter->flags & FTRACE_ITER_PRINTALL) {
3527 /* next must increment pos, and t_probe_start does not */
3528 (*pos)++;
3529 return t_mod_start(m, &l);
3530 }
3531
3532 ret = t_func_next(m, pos);
3533
3534 if (!ret)
3535 return t_mod_start(m, &l);
3536
3537 return ret;
3538 }
3539
3540 static void reset_iter_read(struct ftrace_iterator *iter)
3541 {
3542 iter->pos = 0;
3543 iter->func_pos = 0;
3544 iter->flags &= ~(FTRACE_ITER_PRINTALL | FTRACE_ITER_PROBE | FTRACE_ITER_MOD);
3545 }
3546
3547 static void *t_start(struct seq_file *m, loff_t *pos)
3548 {
3549 struct ftrace_iterator *iter = m->private;
3550 void *p = NULL;
3551 loff_t l;
3552
3553 mutex_lock(&ftrace_lock);
3554
3555 if (unlikely(ftrace_disabled))
3556 return NULL;
3557
3558 /*
3559 * If an lseek was done, then reset and start from beginning.
3560 */
3561 if (*pos < iter->pos)
3562 reset_iter_read(iter);
3563
3564 /*
3565 * For set_ftrace_filter reading, if we have the filter
3566 * off, we can short cut and just print out that all
3567 * functions are enabled.
3568 */
3569 if ((iter->flags & (FTRACE_ITER_FILTER | FTRACE_ITER_NOTRACE)) &&
3570 ftrace_hash_empty(iter->hash)) {
3571 iter->func_pos = 1; /* Account for the message */
3572 if (*pos > 0)
3573 return t_mod_start(m, pos);
3574 iter->flags |= FTRACE_ITER_PRINTALL;
3575 /* reset in case of seek/pread */
3576 iter->flags &= ~FTRACE_ITER_PROBE;
3577 return iter;
3578 }
3579
3580 if (iter->flags & FTRACE_ITER_MOD)
3581 return t_mod_start(m, pos);
3582
3583 /*
3584 * Unfortunately, we need to restart at ftrace_pages_start
3585 * every time we let go of the ftrace_mutex. This is because
3586 * those pointers can change without the lock.
3587 */
3588 iter->pg = ftrace_pages_start;
3589 iter->idx = 0;
3590 for (l = 0; l <= *pos; ) {
3591 p = t_func_next(m, &l);
3592 if (!p)
3593 break;
3594 }
3595
3596 if (!p)
3597 return t_mod_start(m, pos);
3598
3599 return iter;
3600 }
3601
3602 static void t_stop(struct seq_file *m, void *p)
3603 {
3604 mutex_unlock(&ftrace_lock);
3605 }
3606
3607 void * __weak
3608 arch_ftrace_trampoline_func(struct ftrace_ops *ops, struct dyn_ftrace *rec)
3609 {
3610 return NULL;
3611 }
3612
3613 static void add_trampoline_func(struct seq_file *m, struct ftrace_ops *ops,
3614 struct dyn_ftrace *rec)
3615 {
3616 void *ptr;
3617
3618 ptr = arch_ftrace_trampoline_func(ops, rec);
3619 if (ptr)
3620 seq_printf(m, " ->%pS", ptr);
3621 }
3622
3623 static int t_show(struct seq_file *m, void *v)
3624 {
3625 struct ftrace_iterator *iter = m->private;
3626 struct dyn_ftrace *rec;
3627
3628 if (iter->flags & FTRACE_ITER_PROBE)
3629 return t_probe_show(m, iter);
3630
3631 if (iter->flags & FTRACE_ITER_MOD)
3632 return t_mod_show(m, iter);
3633
3634 if (iter->flags & FTRACE_ITER_PRINTALL) {
3635 if (iter->flags & FTRACE_ITER_NOTRACE)
3636 seq_puts(m, "#### no functions disabled ####\n");
3637 else
3638 seq_puts(m, "#### all functions enabled ####\n");
3639 return 0;
3640 }
3641
3642 rec = iter->func;
3643
3644 if (!rec)
3645 return 0;
3646
3647 seq_printf(m, "%ps", (void *)rec->ip);
3648 if (iter->flags & FTRACE_ITER_ENABLED) {
3649 struct ftrace_ops *ops;
3650
3651 seq_printf(m, " (%ld)%s%s%s",
3652 ftrace_rec_count(rec),
3653 rec->flags & FTRACE_FL_REGS ? " R" : " ",
3654 rec->flags & FTRACE_FL_IPMODIFY ? " I" : " ",
3655 rec->flags & FTRACE_FL_DIRECT ? " D" : " ");
3656 if (rec->flags & FTRACE_FL_TRAMP_EN) {
3657 ops = ftrace_find_tramp_ops_any(rec);
3658 if (ops) {
3659 do {
3660 seq_printf(m, "\ttramp: %pS (%pS)",
3661 (void *)ops->trampoline,
3662 (void *)ops->func);
3663 add_trampoline_func(m, ops, rec);
3664 ops = ftrace_find_tramp_ops_next(rec, ops);
3665 } while (ops);
3666 } else
3667 seq_puts(m, "\ttramp: ERROR!");
3668 } else {
3669 add_trampoline_func(m, NULL, rec);
3670 }
3671 if (rec->flags & FTRACE_FL_DIRECT) {
3672 unsigned long direct;
3673
3674 direct = ftrace_find_rec_direct(rec->ip);
3675 if (direct)
3676 seq_printf(m, "\n\tdirect-->%pS", (void *)direct);
3677 }
3678 }
3679
3680 seq_putc(m, '\n');
3681
3682 return 0;
3683 }
3684
3685 static const struct seq_operations show_ftrace_seq_ops = {
3686 .start = t_start,
3687 .next = t_next,
3688 .stop = t_stop,
3689 .show = t_show,
3690 };
3691
3692 static int
3693 ftrace_avail_open(struct inode *inode, struct file *file)
3694 {
3695 struct ftrace_iterator *iter;
3696 int ret;
3697
3698 ret = security_locked_down(LOCKDOWN_TRACEFS);
3699 if (ret)
3700 return ret;
3701
3702 if (unlikely(ftrace_disabled))
3703 return -ENODEV;
3704
3705 iter = __seq_open_private(file, &show_ftrace_seq_ops, sizeof(*iter));
3706 if (!iter)
3707 return -ENOMEM;
3708
3709 iter->pg = ftrace_pages_start;
3710 iter->ops = &global_ops;
3711
3712 return 0;
3713 }
3714
3715 static int
3716 ftrace_enabled_open(struct inode *inode, struct file *file)
3717 {
3718 struct ftrace_iterator *iter;
3719
3720 /*
3721 * This shows us what functions are currently being
3722 * traced and by what. Not sure if we want lockdown
3723 * to hide such critical information for an admin.
3724 * Although, perhaps it can show information we don't
3725 * want people to see, but if something is tracing
3726 * something, we probably want to know about it.
3727 */
3728
3729 iter = __seq_open_private(file, &show_ftrace_seq_ops, sizeof(*iter));
3730 if (!iter)
3731 return -ENOMEM;
3732
3733 iter->pg = ftrace_pages_start;
3734 iter->flags = FTRACE_ITER_ENABLED;
3735 iter->ops = &global_ops;
3736
3737 return 0;
3738 }
3739
3740 /**
3741 * ftrace_regex_open - initialize function tracer filter files
3742 * @ops: The ftrace_ops that hold the hash filters
3743 * @flag: The type of filter to process
3744 * @inode: The inode, usually passed in to your open routine
3745 * @file: The file, usually passed in to your open routine
3746 *
3747 * ftrace_regex_open() initializes the filter files for the
3748 * @ops. Depending on @flag it may process the filter hash or
3749 * the notrace hash of @ops. With this called from the open
3750 * routine, you can use ftrace_filter_write() for the write
3751 * routine if @flag has FTRACE_ITER_FILTER set, or
3752 * ftrace_notrace_write() if @flag has FTRACE_ITER_NOTRACE set.
3753 * tracing_lseek() should be used as the lseek routine, and
3754 * release must call ftrace_regex_release().
3755 */
3756 int
3757 ftrace_regex_open(struct ftrace_ops *ops, int flag,
3758 struct inode *inode, struct file *file)
3759 {
3760 struct ftrace_iterator *iter;
3761 struct ftrace_hash *hash;
3762 struct list_head *mod_head;
3763 struct trace_array *tr = ops->private;
3764 int ret = -ENOMEM;
3765
3766 ftrace_ops_init(ops);
3767
3768 if (unlikely(ftrace_disabled))
3769 return -ENODEV;
3770
3771 if (tracing_check_open_get_tr(tr))
3772 return -ENODEV;
3773
3774 iter = kzalloc(sizeof(*iter), GFP_KERNEL);
3775 if (!iter)
3776 goto out;
3777
3778 if (trace_parser_get_init(&iter->parser, FTRACE_BUFF_MAX))
3779 goto out;
3780
3781 iter->ops = ops;
3782 iter->flags = flag;
3783 iter->tr = tr;
3784
3785 mutex_lock(&ops->func_hash->regex_lock);
3786
3787 if (flag & FTRACE_ITER_NOTRACE) {
3788 hash = ops->func_hash->notrace_hash;
3789 mod_head = tr ? &tr->mod_notrace : NULL;
3790 } else {
3791 hash = ops->func_hash->filter_hash;
3792 mod_head = tr ? &tr->mod_trace : NULL;
3793 }
3794
3795 iter->mod_list = mod_head;
3796
3797 if (file->f_mode & FMODE_WRITE) {
3798 const int size_bits = FTRACE_HASH_DEFAULT_BITS;
3799
3800 if (file->f_flags & O_TRUNC) {
3801 iter->hash = alloc_ftrace_hash(size_bits);
3802 clear_ftrace_mod_list(mod_head);
3803 } else {
3804 iter->hash = alloc_and_copy_ftrace_hash(size_bits, hash);
3805 }
3806
3807 if (!iter->hash) {
3808 trace_parser_put(&iter->parser);
3809 goto out_unlock;
3810 }
3811 } else
3812 iter->hash = hash;
3813
3814 ret = 0;
3815
3816 if (file->f_mode & FMODE_READ) {
3817 iter->pg = ftrace_pages_start;
3818
3819 ret = seq_open(file, &show_ftrace_seq_ops);
3820 if (!ret) {
3821 struct seq_file *m = file->private_data;
3822 m->private = iter;
3823 } else {
3824 /* Failed */
3825 free_ftrace_hash(iter->hash);
3826 trace_parser_put(&iter->parser);
3827 }
3828 } else
3829 file->private_data = iter;
3830
3831 out_unlock:
3832 mutex_unlock(&ops->func_hash->regex_lock);
3833
3834 out:
3835 if (ret) {
3836 kfree(iter);
3837 if (tr)
3838 trace_array_put(tr);
3839 }
3840
3841 return ret;
3842 }
3843
3844 static int
3845 ftrace_filter_open(struct inode *inode, struct file *file)
3846 {
3847 struct ftrace_ops *ops = inode->i_private;
3848
3849 /* Checks for tracefs lockdown */
3850 return ftrace_regex_open(ops,
3851 FTRACE_ITER_FILTER | FTRACE_ITER_DO_PROBES,
3852 inode, file);
3853 }
3854
3855 static int
3856 ftrace_notrace_open(struct inode *inode, struct file *file)
3857 {
3858 struct ftrace_ops *ops = inode->i_private;
3859
3860 /* Checks for tracefs lockdown */
3861 return ftrace_regex_open(ops, FTRACE_ITER_NOTRACE,
3862 inode, file);
3863 }
3864
3865 /* Type for quick search ftrace basic regexes (globs) from filter_parse_regex */
3866 struct ftrace_glob {
3867 char *search;
3868 unsigned len;
3869 int type;
3870 };
3871
3872 /*
3873 * If symbols in an architecture don't correspond exactly to the user-visible
3874 * name of what they represent, it is possible to define this function to
3875 * perform the necessary adjustments.
3876 */
3877 char * __weak arch_ftrace_match_adjust(char *str, const char *search)
3878 {
3879 return str;
3880 }
3881
3882 static int ftrace_match(char *str, struct ftrace_glob *g)
3883 {
3884 int matched = 0;
3885 int slen;
3886
3887 str = arch_ftrace_match_adjust(str, g->search);
3888
3889 switch (g->type) {
3890 case MATCH_FULL:
3891 if (strcmp(str, g->search) == 0)
3892 matched = 1;
3893 break;
3894 case MATCH_FRONT_ONLY:
3895 if (strncmp(str, g->search, g->len) == 0)
3896 matched = 1;
3897 break;
3898 case MATCH_MIDDLE_ONLY:
3899 if (strstr(str, g->search))
3900 matched = 1;
3901 break;
3902 case MATCH_END_ONLY:
3903 slen = strlen(str);
3904 if (slen >= g->len &&
3905 memcmp(str + slen - g->len, g->search, g->len) == 0)
3906 matched = 1;
3907 break;
3908 case MATCH_GLOB:
3909 if (glob_match(g->search, str))
3910 matched = 1;
3911 break;
3912 }
3913
3914 return matched;
3915 }
3916
3917 static int
3918 enter_record(struct ftrace_hash *hash, struct dyn_ftrace *rec, int clear_filter)
3919 {
3920 struct ftrace_func_entry *entry;
3921 int ret = 0;
3922
3923 entry = ftrace_lookup_ip(hash, rec->ip);
3924 if (clear_filter) {
3925 /* Do nothing if it doesn't exist */
3926 if (!entry)
3927 return 0;
3928
3929 free_hash_entry(hash, entry);
3930 } else {
3931 /* Do nothing if it exists */
3932 if (entry)
3933 return 0;
3934
3935 ret = add_hash_entry(hash, rec->ip);
3936 }
3937 return ret;
3938 }
3939
3940 static int
3941 add_rec_by_index(struct ftrace_hash *hash, struct ftrace_glob *func_g,
3942 int clear_filter)
3943 {
3944 long index = simple_strtoul(func_g->search, NULL, 0);
3945 struct ftrace_page *pg;
3946 struct dyn_ftrace *rec;
3947
3948 /* The index starts at 1 */
3949 if (--index < 0)
3950 return 0;
3951
3952 do_for_each_ftrace_rec(pg, rec) {
3953 if (pg->index <= index) {
3954 index -= pg->index;
3955 /* this is a double loop, break goes to the next page */
3956 break;
3957 }
3958 rec = &pg->records[index];
3959 enter_record(hash, rec, clear_filter);
3960 return 1;
3961 } while_for_each_ftrace_rec();
3962 return 0;
3963 }
3964
3965 static int
3966 ftrace_match_record(struct dyn_ftrace *rec, struct ftrace_glob *func_g,
3967 struct ftrace_glob *mod_g, int exclude_mod)
3968 {
3969 char str[KSYM_SYMBOL_LEN];
3970 char *modname;
3971
3972 kallsyms_lookup(rec->ip, NULL, NULL, &modname, str);
3973
3974 if (mod_g) {
3975 int mod_matches = (modname) ? ftrace_match(modname, mod_g) : 0;
3976
3977 /* blank module name to match all modules */
3978 if (!mod_g->len) {
3979 /* blank module globbing: modname xor exclude_mod */
3980 if (!exclude_mod != !modname)
3981 goto func_match;
3982 return 0;
3983 }
3984
3985 /*
3986 * exclude_mod is set to trace everything but the given
3987 * module. If it is set and the module matches, then
3988 * return 0. If it is not set, and the module doesn't match
3989 * also return 0. Otherwise, check the function to see if
3990 * that matches.
3991 */
3992 if (!mod_matches == !exclude_mod)
3993 return 0;
3994 func_match:
3995 /* blank search means to match all funcs in the mod */
3996 if (!func_g->len)
3997 return 1;
3998 }
3999
4000 return ftrace_match(str, func_g);
4001 }
4002
4003 static int
4004 match_records(struct ftrace_hash *hash, char *func, int len, char *mod)
4005 {
4006 struct ftrace_page *pg;
4007 struct dyn_ftrace *rec;
4008 struct ftrace_glob func_g = { .type = MATCH_FULL };
4009 struct ftrace_glob mod_g = { .type = MATCH_FULL };
4010 struct ftrace_glob *mod_match = (mod) ? &mod_g : NULL;
4011 int exclude_mod = 0;
4012 int found = 0;
4013 int ret;
4014 int clear_filter = 0;
4015
4016 if (func) {
4017 func_g.type = filter_parse_regex(func, len, &func_g.search,
4018 &clear_filter);
4019 func_g.len = strlen(func_g.search);
4020 }
4021
4022 if (mod) {
4023 mod_g.type = filter_parse_regex(mod, strlen(mod),
4024 &mod_g.search, &exclude_mod);
4025 mod_g.len = strlen(mod_g.search);
4026 }
4027
4028 mutex_lock(&ftrace_lock);
4029
4030 if (unlikely(ftrace_disabled))
4031 goto out_unlock;
4032
4033 if (func_g.type == MATCH_INDEX) {
4034 found = add_rec_by_index(hash, &func_g, clear_filter);
4035 goto out_unlock;
4036 }
4037
4038 do_for_each_ftrace_rec(pg, rec) {
4039
4040 if (rec->flags & FTRACE_FL_DISABLED)
4041 continue;
4042
4043 if (ftrace_match_record(rec, &func_g, mod_match, exclude_mod)) {
4044 ret = enter_record(hash, rec, clear_filter);
4045 if (ret < 0) {
4046 found = ret;
4047 goto out_unlock;
4048 }
4049 found = 1;
4050 }
4051 } while_for_each_ftrace_rec();
4052 out_unlock:
4053 mutex_unlock(&ftrace_lock);
4054
4055 return found;
4056 }
4057
4058 static int
4059 ftrace_match_records(struct ftrace_hash *hash, char *buff, int len)
4060 {
4061 return match_records(hash, buff, len, NULL);
4062 }
4063
4064 static void ftrace_ops_update_code(struct ftrace_ops *ops,
4065 struct ftrace_ops_hash *old_hash)
4066 {
4067 struct ftrace_ops *op;
4068
4069 if (!ftrace_enabled)
4070 return;
4071
4072 if (ops->flags & FTRACE_OPS_FL_ENABLED) {
4073 ftrace_run_modify_code(ops, FTRACE_UPDATE_CALLS, old_hash);
4074 return;
4075 }
4076
4077 /*
4078 * If this is the shared global_ops filter, then we need to
4079 * check if there is another ops that shares it, is enabled.
4080 * If so, we still need to run the modify code.
4081 */
4082 if (ops->func_hash != &global_ops.local_hash)
4083 return;
4084
4085 do_for_each_ftrace_op(op, ftrace_ops_list) {
4086 if (op->func_hash == &global_ops.local_hash &&
4087 op->flags & FTRACE_OPS_FL_ENABLED) {
4088 ftrace_run_modify_code(op, FTRACE_UPDATE_CALLS, old_hash);
4089 /* Only need to do this once */
4090 return;
4091 }
4092 } while_for_each_ftrace_op(op);
4093 }
4094
4095 static int ftrace_hash_move_and_update_ops(struct ftrace_ops *ops,
4096 struct ftrace_hash **orig_hash,
4097 struct ftrace_hash *hash,
4098 int enable)
4099 {
4100 struct ftrace_ops_hash old_hash_ops;
4101 struct ftrace_hash *old_hash;
4102 int ret;
4103
4104 old_hash = *orig_hash;
4105 old_hash_ops.filter_hash = ops->func_hash->filter_hash;
4106 old_hash_ops.notrace_hash = ops->func_hash->notrace_hash;
4107 ret = ftrace_hash_move(ops, enable, orig_hash, hash);
4108 if (!ret) {
4109 ftrace_ops_update_code(ops, &old_hash_ops);
4110 free_ftrace_hash_rcu(old_hash);
4111 }
4112 return ret;
4113 }
4114
4115 static bool module_exists(const char *module)
4116 {
4117 /* All modules have the symbol __this_module */
4118 static const char this_mod[] = "__this_module";
4119 char modname[MAX_PARAM_PREFIX_LEN + sizeof(this_mod) + 2];
4120 unsigned long val;
4121 int n;
4122
4123 n = snprintf(modname, sizeof(modname), "%s:%s", module, this_mod);
4124
4125 if (n > sizeof(modname) - 1)
4126 return false;
4127
4128 val = module_kallsyms_lookup_name(modname);
4129 return val != 0;
4130 }
4131
4132 static int cache_mod(struct trace_array *tr,
4133 const char *func, char *module, int enable)
4134 {
4135 struct ftrace_mod_load *ftrace_mod, *n;
4136 struct list_head *head = enable ? &tr->mod_trace : &tr->mod_notrace;
4137 int ret;
4138
4139 mutex_lock(&ftrace_lock);
4140
4141 /* We do not cache inverse filters */
4142 if (func[0] == '!') {
4143 func++;
4144 ret = -EINVAL;
4145
4146 /* Look to remove this hash */
4147 list_for_each_entry_safe(ftrace_mod, n, head, list) {
4148 if (strcmp(ftrace_mod->module, module) != 0)
4149 continue;
4150
4151 /* no func matches all */
4152 if (strcmp(func, "*") == 0 ||
4153 (ftrace_mod->func &&
4154 strcmp(ftrace_mod->func, func) == 0)) {
4155 ret = 0;
4156 free_ftrace_mod(ftrace_mod);
4157 continue;
4158 }
4159 }
4160 goto out;
4161 }
4162
4163 ret = -EINVAL;
4164 /* We only care about modules that have not been loaded yet */
4165 if (module_exists(module))
4166 goto out;
4167
4168 /* Save this string off, and execute it when the module is loaded */
4169 ret = ftrace_add_mod(tr, func, module, enable);
4170 out:
4171 mutex_unlock(&ftrace_lock);
4172
4173 return ret;
4174 }
4175
4176 static int
4177 ftrace_set_regex(struct ftrace_ops *ops, unsigned char *buf, int len,
4178 int reset, int enable);
4179
4180 #ifdef CONFIG_MODULES
4181 static void process_mod_list(struct list_head *head, struct ftrace_ops *ops,
4182 char *mod, bool enable)
4183 {
4184 struct ftrace_mod_load *ftrace_mod, *n;
4185 struct ftrace_hash **orig_hash, *new_hash;
4186 LIST_HEAD(process_mods);
4187 char *func;
4188
4189 mutex_lock(&ops->func_hash->regex_lock);
4190
4191 if (enable)
4192 orig_hash = &ops->func_hash->filter_hash;
4193 else
4194 orig_hash = &ops->func_hash->notrace_hash;
4195
4196 new_hash = alloc_and_copy_ftrace_hash(FTRACE_HASH_DEFAULT_BITS,
4197 *orig_hash);
4198 if (!new_hash)
4199 goto out; /* warn? */
4200
4201 mutex_lock(&ftrace_lock);
4202
4203 list_for_each_entry_safe(ftrace_mod, n, head, list) {
4204
4205 if (strcmp(ftrace_mod->module, mod) != 0)
4206 continue;
4207
4208 if (ftrace_mod->func)
4209 func = kstrdup(ftrace_mod->func, GFP_KERNEL);
4210 else
4211 func = kstrdup("*", GFP_KERNEL);
4212
4213 if (!func) /* warn? */
4214 continue;
4215
4216 list_move(&ftrace_mod->list, &process_mods);
4217
4218 /* Use the newly allocated func, as it may be "*" */
4219 kfree(ftrace_mod->func);
4220 ftrace_mod->func = func;
4221 }
4222
4223 mutex_unlock(&ftrace_lock);
4224
4225 list_for_each_entry_safe(ftrace_mod, n, &process_mods, list) {
4226
4227 func = ftrace_mod->func;
4228
4229 /* Grabs ftrace_lock, which is why we have this extra step */
4230 match_records(new_hash, func, strlen(func), mod);
4231 free_ftrace_mod(ftrace_mod);
4232 }
4233
4234 if (enable && list_empty(head))
4235 new_hash->flags &= ~FTRACE_HASH_FL_MOD;
4236
4237 mutex_lock(&ftrace_lock);
4238
4239 ftrace_hash_move_and_update_ops(ops, orig_hash,
4240 new_hash, enable);
4241 mutex_unlock(&ftrace_lock);
4242
4243 out:
4244 mutex_unlock(&ops->func_hash->regex_lock);
4245
4246 free_ftrace_hash(new_hash);
4247 }
4248
4249 static void process_cached_mods(const char *mod_name)
4250 {
4251 struct trace_array *tr;
4252 char *mod;
4253
4254 mod = kstrdup(mod_name, GFP_KERNEL);
4255 if (!mod)
4256 return;
4257
4258 mutex_lock(&trace_types_lock);
4259 list_for_each_entry(tr, &ftrace_trace_arrays, list) {
4260 if (!list_empty(&tr->mod_trace))
4261 process_mod_list(&tr->mod_trace, tr->ops, mod, true);
4262 if (!list_empty(&tr->mod_notrace))
4263 process_mod_list(&tr->mod_notrace, tr->ops, mod, false);
4264 }
4265 mutex_unlock(&trace_types_lock);
4266
4267 kfree(mod);
4268 }
4269 #endif
4270
4271 /*
4272 * We register the module command as a template to show others how
4273 * to register the a command as well.
4274 */
4275
4276 static int
4277 ftrace_mod_callback(struct trace_array *tr, struct ftrace_hash *hash,
4278 char *func_orig, char *cmd, char *module, int enable)
4279 {
4280 char *func;
4281 int ret;
4282
4283 /* match_records() modifies func, and we need the original */
4284 func = kstrdup(func_orig, GFP_KERNEL);
4285 if (!func)
4286 return -ENOMEM;
4287
4288 /*
4289 * cmd == 'mod' because we only registered this func
4290 * for the 'mod' ftrace_func_command.
4291 * But if you register one func with multiple commands,
4292 * you can tell which command was used by the cmd
4293 * parameter.
4294 */
4295 ret = match_records(hash, func, strlen(func), module);
4296 kfree(func);
4297
4298 if (!ret)
4299 return cache_mod(tr, func_orig, module, enable);
4300 if (ret < 0)
4301 return ret;
4302 return 0;
4303 }
4304
4305 static struct ftrace_func_command ftrace_mod_cmd = {
4306 .name = "mod",
4307 .func = ftrace_mod_callback,
4308 };
4309
4310 static int __init ftrace_mod_cmd_init(void)
4311 {
4312 return register_ftrace_command(&ftrace_mod_cmd);
4313 }
4314 core_initcall(ftrace_mod_cmd_init);
4315
4316 static void function_trace_probe_call(unsigned long ip, unsigned long parent_ip,
4317 struct ftrace_ops *op, struct ftrace_regs *fregs)
4318 {
4319 struct ftrace_probe_ops *probe_ops;
4320 struct ftrace_func_probe *probe;
4321
4322 probe = container_of(op, struct ftrace_func_probe, ops);
4323 probe_ops = probe->probe_ops;
4324
4325 /*
4326 * Disable preemption for these calls to prevent a RCU grace
4327 * period. This syncs the hash iteration and freeing of items
4328 * on the hash. rcu_read_lock is too dangerous here.
4329 */
4330 preempt_disable_notrace();
4331 probe_ops->func(ip, parent_ip, probe->tr, probe_ops, probe->data);
4332 preempt_enable_notrace();
4333 }
4334
4335 struct ftrace_func_map {
4336 struct ftrace_func_entry entry;
4337 void *data;
4338 };
4339
4340 struct ftrace_func_mapper {
4341 struct ftrace_hash hash;
4342 };
4343
4344 /**
4345 * allocate_ftrace_func_mapper - allocate a new ftrace_func_mapper
4346 *
4347 * Returns a ftrace_func_mapper descriptor that can be used to map ips to data.
4348 */
4349 struct ftrace_func_mapper *allocate_ftrace_func_mapper(void)
4350 {
4351 struct ftrace_hash *hash;
4352
4353 /*
4354 * The mapper is simply a ftrace_hash, but since the entries
4355 * in the hash are not ftrace_func_entry type, we define it
4356 * as a separate structure.
4357 */
4358 hash = alloc_ftrace_hash(FTRACE_HASH_DEFAULT_BITS);
4359 return (struct ftrace_func_mapper *)hash;
4360 }
4361
4362 /**
4363 * ftrace_func_mapper_find_ip - Find some data mapped to an ip
4364 * @mapper: The mapper that has the ip maps
4365 * @ip: the instruction pointer to find the data for
4366 *
4367 * Returns the data mapped to @ip if found otherwise NULL. The return
4368 * is actually the address of the mapper data pointer. The address is
4369 * returned for use cases where the data is no bigger than a long, and
4370 * the user can use the data pointer as its data instead of having to
4371 * allocate more memory for the reference.
4372 */
4373 void **ftrace_func_mapper_find_ip(struct ftrace_func_mapper *mapper,
4374 unsigned long ip)
4375 {
4376 struct ftrace_func_entry *entry;
4377 struct ftrace_func_map *map;
4378
4379 entry = ftrace_lookup_ip(&mapper->hash, ip);
4380 if (!entry)
4381 return NULL;
4382
4383 map = (struct ftrace_func_map *)entry;
4384 return &map->data;
4385 }
4386
4387 /**
4388 * ftrace_func_mapper_add_ip - Map some data to an ip
4389 * @mapper: The mapper that has the ip maps
4390 * @ip: The instruction pointer address to map @data to
4391 * @data: The data to map to @ip
4392 *
4393 * Returns 0 on success otherwise an error.
4394 */
4395 int ftrace_func_mapper_add_ip(struct ftrace_func_mapper *mapper,
4396 unsigned long ip, void *data)
4397 {
4398 struct ftrace_func_entry *entry;
4399 struct ftrace_func_map *map;
4400
4401 entry = ftrace_lookup_ip(&mapper->hash, ip);
4402 if (entry)
4403 return -EBUSY;
4404
4405 map = kmalloc(sizeof(*map), GFP_KERNEL);
4406 if (!map)
4407 return -ENOMEM;
4408
4409 map->entry.ip = ip;
4410 map->data = data;
4411
4412 __add_hash_entry(&mapper->hash, &map->entry);
4413
4414 return 0;
4415 }
4416
4417 /**
4418 * ftrace_func_mapper_remove_ip - Remove an ip from the mapping
4419 * @mapper: The mapper that has the ip maps
4420 * @ip: The instruction pointer address to remove the data from
4421 *
4422 * Returns the data if it is found, otherwise NULL.
4423 * Note, if the data pointer is used as the data itself, (see
4424 * ftrace_func_mapper_find_ip(), then the return value may be meaningless,
4425 * if the data pointer was set to zero.
4426 */
4427 void *ftrace_func_mapper_remove_ip(struct ftrace_func_mapper *mapper,
4428 unsigned long ip)
4429 {
4430 struct ftrace_func_entry *entry;
4431 struct ftrace_func_map *map;
4432 void *data;
4433
4434 entry = ftrace_lookup_ip(&mapper->hash, ip);
4435 if (!entry)
4436 return NULL;
4437
4438 map = (struct ftrace_func_map *)entry;
4439 data = map->data;
4440
4441 remove_hash_entry(&mapper->hash, entry);
4442 kfree(entry);
4443
4444 return data;
4445 }
4446
4447 /**
4448 * free_ftrace_func_mapper - free a mapping of ips and data
4449 * @mapper: The mapper that has the ip maps
4450 * @free_func: A function to be called on each data item.
4451 *
4452 * This is used to free the function mapper. The @free_func is optional
4453 * and can be used if the data needs to be freed as well.
4454 */
4455 void free_ftrace_func_mapper(struct ftrace_func_mapper *mapper,
4456 ftrace_mapper_func free_func)
4457 {
4458 struct ftrace_func_entry *entry;
4459 struct ftrace_func_map *map;
4460 struct hlist_head *hhd;
4461 int size, i;
4462
4463 if (!mapper)
4464 return;
4465
4466 if (free_func && mapper->hash.count) {
4467 size = 1 << mapper->hash.size_bits;
4468 for (i = 0; i < size; i++) {
4469 hhd = &mapper->hash.buckets[i];
4470 hlist_for_each_entry(entry, hhd, hlist) {
4471 map = (struct ftrace_func_map *)entry;
4472 free_func(map);
4473 }
4474 }
4475 }
4476 free_ftrace_hash(&mapper->hash);
4477 }
4478
4479 static void release_probe(struct ftrace_func_probe *probe)
4480 {
4481 struct ftrace_probe_ops *probe_ops;
4482
4483 mutex_lock(&ftrace_lock);
4484
4485 WARN_ON(probe->ref <= 0);
4486
4487 /* Subtract the ref that was used to protect this instance */
4488 probe->ref--;
4489
4490 if (!probe->ref) {
4491 probe_ops = probe->probe_ops;
4492 /*
4493 * Sending zero as ip tells probe_ops to free
4494 * the probe->data itself
4495 */
4496 if (probe_ops->free)
4497 probe_ops->free(probe_ops, probe->tr, 0, probe->data);
4498 list_del(&probe->list);
4499 kfree(probe);
4500 }
4501 mutex_unlock(&ftrace_lock);
4502 }
4503
4504 static void acquire_probe_locked(struct ftrace_func_probe *probe)
4505 {
4506 /*
4507 * Add one ref to keep it from being freed when releasing the
4508 * ftrace_lock mutex.
4509 */
4510 probe->ref++;
4511 }
4512
4513 int
4514 register_ftrace_function_probe(char *glob, struct trace_array *tr,
4515 struct ftrace_probe_ops *probe_ops,
4516 void *data)
4517 {
4518 struct ftrace_func_entry *entry;
4519 struct ftrace_func_probe *probe;
4520 struct ftrace_hash **orig_hash;
4521 struct ftrace_hash *old_hash;
4522 struct ftrace_hash *hash;
4523 int count = 0;
4524 int size;
4525 int ret;
4526 int i;
4527
4528 if (WARN_ON(!tr))
4529 return -EINVAL;
4530
4531 /* We do not support '!' for function probes */
4532 if (WARN_ON(glob[0] == '!'))
4533 return -EINVAL;
4534
4535
4536 mutex_lock(&ftrace_lock);
4537 /* Check if the probe_ops is already registered */
4538 list_for_each_entry(probe, &tr->func_probes, list) {
4539 if (probe->probe_ops == probe_ops)
4540 break;
4541 }
4542 if (&probe->list == &tr->func_probes) {
4543 probe = kzalloc(sizeof(*probe), GFP_KERNEL);
4544 if (!probe) {
4545 mutex_unlock(&ftrace_lock);
4546 return -ENOMEM;
4547 }
4548 probe->probe_ops = probe_ops;
4549 probe->ops.func = function_trace_probe_call;
4550 probe->tr = tr;
4551 ftrace_ops_init(&probe->ops);
4552 list_add(&probe->list, &tr->func_probes);
4553 }
4554
4555 acquire_probe_locked(probe);
4556
4557 mutex_unlock(&ftrace_lock);
4558
4559 /*
4560 * Note, there's a small window here that the func_hash->filter_hash
4561 * may be NULL or empty. Need to be careful when reading the loop.
4562 */
4563 mutex_lock(&probe->ops.func_hash->regex_lock);
4564
4565 orig_hash = &probe->ops.func_hash->filter_hash;
4566 old_hash = *orig_hash;
4567 hash = alloc_and_copy_ftrace_hash(FTRACE_HASH_DEFAULT_BITS, old_hash);
4568
4569 if (!hash) {
4570 ret = -ENOMEM;
4571 goto out;
4572 }
4573
4574 ret = ftrace_match_records(hash, glob, strlen(glob));
4575
4576 /* Nothing found? */
4577 if (!ret)
4578 ret = -EINVAL;
4579
4580 if (ret < 0)
4581 goto out;
4582
4583 size = 1 << hash->size_bits;
4584 for (i = 0; i < size; i++) {
4585 hlist_for_each_entry(entry, &hash->buckets[i], hlist) {
4586 if (ftrace_lookup_ip(old_hash, entry->ip))
4587 continue;
4588 /*
4589 * The caller might want to do something special
4590 * for each function we find. We call the callback
4591 * to give the caller an opportunity to do so.
4592 */
4593 if (probe_ops->init) {
4594 ret = probe_ops->init(probe_ops, tr,
4595 entry->ip, data,
4596 &probe->data);
4597 if (ret < 0) {
4598 if (probe_ops->free && count)
4599 probe_ops->free(probe_ops, tr,
4600 0, probe->data);
4601 probe->data = NULL;
4602 goto out;
4603 }
4604 }
4605 count++;
4606 }
4607 }
4608
4609 mutex_lock(&ftrace_lock);
4610
4611 if (!count) {
4612 /* Nothing was added? */
4613 ret = -EINVAL;
4614 goto out_unlock;
4615 }
4616
4617 ret = ftrace_hash_move_and_update_ops(&probe->ops, orig_hash,
4618 hash, 1);
4619 if (ret < 0)
4620 goto err_unlock;
4621
4622 /* One ref for each new function traced */
4623 probe->ref += count;
4624
4625 if (!(probe->ops.flags & FTRACE_OPS_FL_ENABLED))
4626 ret = ftrace_startup(&probe->ops, 0);
4627
4628 out_unlock:
4629 mutex_unlock(&ftrace_lock);
4630
4631 if (!ret)
4632 ret = count;
4633 out:
4634 mutex_unlock(&probe->ops.func_hash->regex_lock);
4635 free_ftrace_hash(hash);
4636
4637 release_probe(probe);
4638
4639 return ret;
4640
4641 err_unlock:
4642 if (!probe_ops->free || !count)
4643 goto out_unlock;
4644
4645 /* Failed to do the move, need to call the free functions */
4646 for (i = 0; i < size; i++) {
4647 hlist_for_each_entry(entry, &hash->buckets[i], hlist) {
4648 if (ftrace_lookup_ip(old_hash, entry->ip))
4649 continue;
4650 probe_ops->free(probe_ops, tr, entry->ip, probe->data);
4651 }
4652 }
4653 goto out_unlock;
4654 }
4655
4656 int
4657 unregister_ftrace_function_probe_func(char *glob, struct trace_array *tr,
4658 struct ftrace_probe_ops *probe_ops)
4659 {
4660 struct ftrace_ops_hash old_hash_ops;
4661 struct ftrace_func_entry *entry;
4662 struct ftrace_func_probe *probe;
4663 struct ftrace_glob func_g;
4664 struct ftrace_hash **orig_hash;
4665 struct ftrace_hash *old_hash;
4666 struct ftrace_hash *hash = NULL;
4667 struct hlist_node *tmp;
4668 struct hlist_head hhd;
4669 char str[KSYM_SYMBOL_LEN];
4670 int count = 0;
4671 int i, ret = -ENODEV;
4672 int size;
4673
4674 if (!glob || !strlen(glob) || !strcmp(glob, "*"))
4675 func_g.search = NULL;
4676 else {
4677 int not;
4678
4679 func_g.type = filter_parse_regex(glob, strlen(glob),
4680 &func_g.search, &not);
4681 func_g.len = strlen(func_g.search);
4682
4683 /* we do not support '!' for function probes */
4684 if (WARN_ON(not))
4685 return -EINVAL;
4686 }
4687
4688 mutex_lock(&ftrace_lock);
4689 /* Check if the probe_ops is already registered */
4690 list_for_each_entry(probe, &tr->func_probes, list) {
4691 if (probe->probe_ops == probe_ops)
4692 break;
4693 }
4694 if (&probe->list == &tr->func_probes)
4695 goto err_unlock_ftrace;
4696
4697 ret = -EINVAL;
4698 if (!(probe->ops.flags & FTRACE_OPS_FL_INITIALIZED))
4699 goto err_unlock_ftrace;
4700
4701 acquire_probe_locked(probe);
4702
4703 mutex_unlock(&ftrace_lock);
4704
4705 mutex_lock(&probe->ops.func_hash->regex_lock);
4706
4707 orig_hash = &probe->ops.func_hash->filter_hash;
4708 old_hash = *orig_hash;
4709
4710 if (ftrace_hash_empty(old_hash))
4711 goto out_unlock;
4712
4713 old_hash_ops.filter_hash = old_hash;
4714 /* Probes only have filters */
4715 old_hash_ops.notrace_hash = NULL;
4716
4717 ret = -ENOMEM;
4718 hash = alloc_and_copy_ftrace_hash(FTRACE_HASH_DEFAULT_BITS, old_hash);
4719 if (!hash)
4720 goto out_unlock;
4721
4722 INIT_HLIST_HEAD(&hhd);
4723
4724 size = 1 << hash->size_bits;
4725 for (i = 0; i < size; i++) {
4726 hlist_for_each_entry_safe(entry, tmp, &hash->buckets[i], hlist) {
4727
4728 if (func_g.search) {
4729 kallsyms_lookup(entry->ip, NULL, NULL,
4730 NULL, str);
4731 if (!ftrace_match(str, &func_g))
4732 continue;
4733 }
4734 count++;
4735 remove_hash_entry(hash, entry);
4736 hlist_add_head(&entry->hlist, &hhd);
4737 }
4738 }
4739
4740 /* Nothing found? */
4741 if (!count) {
4742 ret = -EINVAL;
4743 goto out_unlock;
4744 }
4745
4746 mutex_lock(&ftrace_lock);
4747
4748 WARN_ON(probe->ref < count);
4749
4750 probe->ref -= count;
4751
4752 if (ftrace_hash_empty(hash))
4753 ftrace_shutdown(&probe->ops, 0);
4754
4755 ret = ftrace_hash_move_and_update_ops(&probe->ops, orig_hash,
4756 hash, 1);
4757
4758 /* still need to update the function call sites */
4759 if (ftrace_enabled && !ftrace_hash_empty(hash))
4760 ftrace_run_modify_code(&probe->ops, FTRACE_UPDATE_CALLS,
4761 &old_hash_ops);
4762 synchronize_rcu();
4763
4764 hlist_for_each_entry_safe(entry, tmp, &hhd, hlist) {
4765 hlist_del(&entry->hlist);
4766 if (probe_ops->free)
4767 probe_ops->free(probe_ops, tr, entry->ip, probe->data);
4768 kfree(entry);
4769 }
4770 mutex_unlock(&ftrace_lock);
4771
4772 out_unlock:
4773 mutex_unlock(&probe->ops.func_hash->regex_lock);
4774 free_ftrace_hash(hash);
4775
4776 release_probe(probe);
4777
4778 return ret;
4779
4780 err_unlock_ftrace:
4781 mutex_unlock(&ftrace_lock);
4782 return ret;
4783 }
4784
4785 void clear_ftrace_function_probes(struct trace_array *tr)
4786 {
4787 struct ftrace_func_probe *probe, *n;
4788
4789 list_for_each_entry_safe(probe, n, &tr->func_probes, list)
4790 unregister_ftrace_function_probe_func(NULL, tr, probe->probe_ops);
4791 }
4792
4793 static LIST_HEAD(ftrace_commands);
4794 static DEFINE_MUTEX(ftrace_cmd_mutex);
4795
4796 /*
4797 * Currently we only register ftrace commands from __init, so mark this
4798 * __init too.
4799 */
4800 __init int register_ftrace_command(struct ftrace_func_command *cmd)
4801 {
4802 struct ftrace_func_command *p;
4803 int ret = 0;
4804
4805 mutex_lock(&ftrace_cmd_mutex);
4806 list_for_each_entry(p, &ftrace_commands, list) {
4807 if (strcmp(cmd->name, p->name) == 0) {
4808 ret = -EBUSY;
4809 goto out_unlock;
4810 }
4811 }
4812 list_add(&cmd->list, &ftrace_commands);
4813 out_unlock:
4814 mutex_unlock(&ftrace_cmd_mutex);
4815
4816 return ret;
4817 }
4818
4819 /*
4820 * Currently we only unregister ftrace commands from __init, so mark
4821 * this __init too.
4822 */
4823 __init int unregister_ftrace_command(struct ftrace_func_command *cmd)
4824 {
4825 struct ftrace_func_command *p, *n;
4826 int ret = -ENODEV;
4827
4828 mutex_lock(&ftrace_cmd_mutex);
4829 list_for_each_entry_safe(p, n, &ftrace_commands, list) {
4830 if (strcmp(cmd->name, p->name) == 0) {
4831 ret = 0;
4832 list_del_init(&p->list);
4833 goto out_unlock;
4834 }
4835 }
4836 out_unlock:
4837 mutex_unlock(&ftrace_cmd_mutex);
4838
4839 return ret;
4840 }
4841
4842 static int ftrace_process_regex(struct ftrace_iterator *iter,
4843 char *buff, int len, int enable)
4844 {
4845 struct ftrace_hash *hash = iter->hash;
4846 struct trace_array *tr = iter->ops->private;
4847 char *func, *command, *next = buff;
4848 struct ftrace_func_command *p;
4849 int ret = -EINVAL;
4850
4851 func = strsep(&next, ":");
4852
4853 if (!next) {
4854 ret = ftrace_match_records(hash, func, len);
4855 if (!ret)
4856 ret = -EINVAL;
4857 if (ret < 0)
4858 return ret;
4859 return 0;
4860 }
4861
4862 /* command found */
4863
4864 command = strsep(&next, ":");
4865
4866 mutex_lock(&ftrace_cmd_mutex);
4867 list_for_each_entry(p, &ftrace_commands, list) {
4868 if (strcmp(p->name, command) == 0) {
4869 ret = p->func(tr, hash, func, command, next, enable);
4870 goto out_unlock;
4871 }
4872 }
4873 out_unlock:
4874 mutex_unlock(&ftrace_cmd_mutex);
4875
4876 return ret;
4877 }
4878
4879 static ssize_t
4880 ftrace_regex_write(struct file *file, const char __user *ubuf,
4881 size_t cnt, loff_t *ppos, int enable)
4882 {
4883 struct ftrace_iterator *iter;
4884 struct trace_parser *parser;
4885 ssize_t ret, read;
4886
4887 if (!cnt)
4888 return 0;
4889
4890 if (file->f_mode & FMODE_READ) {
4891 struct seq_file *m = file->private_data;
4892 iter = m->private;
4893 } else
4894 iter = file->private_data;
4895
4896 if (unlikely(ftrace_disabled))
4897 return -ENODEV;
4898
4899 /* iter->hash is a local copy, so we don't need regex_lock */
4900
4901 parser = &iter->parser;
4902 read = trace_get_user(parser, ubuf, cnt, ppos);
4903
4904 if (read >= 0 && trace_parser_loaded(parser) &&
4905 !trace_parser_cont(parser)) {
4906 ret = ftrace_process_regex(iter, parser->buffer,
4907 parser->idx, enable);
4908 trace_parser_clear(parser);
4909 if (ret < 0)
4910 goto out;
4911 }
4912
4913 ret = read;
4914 out:
4915 return ret;
4916 }
4917
4918 ssize_t
4919 ftrace_filter_write(struct file *file, const char __user *ubuf,
4920 size_t cnt, loff_t *ppos)
4921 {
4922 return ftrace_regex_write(file, ubuf, cnt, ppos, 1);
4923 }
4924
4925 ssize_t
4926 ftrace_notrace_write(struct file *file, const char __user *ubuf,
4927 size_t cnt, loff_t *ppos)
4928 {
4929 return ftrace_regex_write(file, ubuf, cnt, ppos, 0);
4930 }
4931
4932 static int
4933 ftrace_match_addr(struct ftrace_hash *hash, unsigned long ip, int remove)
4934 {
4935 struct ftrace_func_entry *entry;
4936
4937 if (!ftrace_location(ip))
4938 return -EINVAL;
4939
4940 if (remove) {
4941 entry = ftrace_lookup_ip(hash, ip);
4942 if (!entry)
4943 return -ENOENT;
4944 free_hash_entry(hash, entry);
4945 return 0;
4946 }
4947
4948 return add_hash_entry(hash, ip);
4949 }
4950
4951 static int
4952 ftrace_set_hash(struct ftrace_ops *ops, unsigned char *buf, int len,
4953 unsigned long ip, int remove, int reset, int enable)
4954 {
4955 struct ftrace_hash **orig_hash;
4956 struct ftrace_hash *hash;
4957 int ret;
4958
4959 if (unlikely(ftrace_disabled))
4960 return -ENODEV;
4961
4962 mutex_lock(&ops->func_hash->regex_lock);
4963
4964 if (enable)
4965 orig_hash = &ops->func_hash->filter_hash;
4966 else
4967 orig_hash = &ops->func_hash->notrace_hash;
4968
4969 if (reset)
4970 hash = alloc_ftrace_hash(FTRACE_HASH_DEFAULT_BITS);
4971 else
4972 hash = alloc_and_copy_ftrace_hash(FTRACE_HASH_DEFAULT_BITS, *orig_hash);
4973
4974 if (!hash) {
4975 ret = -ENOMEM;
4976 goto out_regex_unlock;
4977 }
4978
4979 if (buf && !ftrace_match_records(hash, buf, len)) {
4980 ret = -EINVAL;
4981 goto out_regex_unlock;
4982 }
4983 if (ip) {
4984 ret = ftrace_match_addr(hash, ip, remove);
4985 if (ret < 0)
4986 goto out_regex_unlock;
4987 }
4988
4989 mutex_lock(&ftrace_lock);
4990 ret = ftrace_hash_move_and_update_ops(ops, orig_hash, hash, enable);
4991 mutex_unlock(&ftrace_lock);
4992
4993 out_regex_unlock:
4994 mutex_unlock(&ops->func_hash->regex_lock);
4995
4996 free_ftrace_hash(hash);
4997 return ret;
4998 }
4999
5000 static int
5001 ftrace_set_addr(struct ftrace_ops *ops, unsigned long ip, int remove,
5002 int reset, int enable)
5003 {
5004 return ftrace_set_hash(ops, NULL, 0, ip, remove, reset, enable);
5005 }
5006
5007 #ifdef CONFIG_DYNAMIC_FTRACE_WITH_DIRECT_CALLS
5008
5009 struct ftrace_direct_func {
5010 struct list_head next;
5011 unsigned long addr;
5012 int count;
5013 };
5014
5015 static LIST_HEAD(ftrace_direct_funcs);
5016
5017 /**
5018 * ftrace_find_direct_func - test an address if it is a registered direct caller
5019 * @addr: The address of a registered direct caller
5020 *
5021 * This searches to see if a ftrace direct caller has been registered
5022 * at a specific address, and if so, it returns a descriptor for it.
5023 *
5024 * This can be used by architecture code to see if an address is
5025 * a direct caller (trampoline) attached to a fentry/mcount location.
5026 * This is useful for the function_graph tracer, as it may need to
5027 * do adjustments if it traced a location that also has a direct
5028 * trampoline attached to it.
5029 */
5030 struct ftrace_direct_func *ftrace_find_direct_func(unsigned long addr)
5031 {
5032 struct ftrace_direct_func *entry;
5033 bool found = false;
5034
5035 /* May be called by fgraph trampoline (protected by rcu tasks) */
5036 list_for_each_entry_rcu(entry, &ftrace_direct_funcs, next) {
5037 if (entry->addr == addr) {
5038 found = true;
5039 break;
5040 }
5041 }
5042 if (found)
5043 return entry;
5044
5045 return NULL;
5046 }
5047
5048 static struct ftrace_direct_func *ftrace_alloc_direct_func(unsigned long addr)
5049 {
5050 struct ftrace_direct_func *direct;
5051
5052 direct = kmalloc(sizeof(*direct), GFP_KERNEL);
5053 if (!direct)
5054 return NULL;
5055 direct->addr = addr;
5056 direct->count = 0;
5057 list_add_rcu(&direct->next, &ftrace_direct_funcs);
5058 ftrace_direct_func_count++;
5059 return direct;
5060 }
5061
5062 /**
5063 * register_ftrace_direct - Call a custom trampoline directly
5064 * @ip: The address of the nop at the beginning of a function
5065 * @addr: The address of the trampoline to call at @ip
5066 *
5067 * This is used to connect a direct call from the nop location (@ip)
5068 * at the start of ftrace traced functions. The location that it calls
5069 * (@addr) must be able to handle a direct call, and save the parameters
5070 * of the function being traced, and restore them (or inject new ones
5071 * if needed), before returning.
5072 *
5073 * Returns:
5074 * 0 on success
5075 * -EBUSY - Another direct function is already attached (there can be only one)
5076 * -ENODEV - @ip does not point to a ftrace nop location (or not supported)
5077 * -ENOMEM - There was an allocation failure.
5078 */
5079 int register_ftrace_direct(unsigned long ip, unsigned long addr)
5080 {
5081 struct ftrace_direct_func *direct;
5082 struct ftrace_func_entry *entry;
5083 struct ftrace_hash *free_hash = NULL;
5084 struct dyn_ftrace *rec;
5085 int ret = -EBUSY;
5086
5087 mutex_lock(&direct_mutex);
5088
5089 /* See if there's a direct function at @ip already */
5090 if (ftrace_find_rec_direct(ip))
5091 goto out_unlock;
5092
5093 ret = -ENODEV;
5094 rec = lookup_rec(ip, ip);
5095 if (!rec)
5096 goto out_unlock;
5097
5098 /*
5099 * Check if the rec says it has a direct call but we didn't
5100 * find one earlier?
5101 */
5102 if (WARN_ON(rec->flags & FTRACE_FL_DIRECT))
5103 goto out_unlock;
5104
5105 /* Make sure the ip points to the exact record */
5106 if (ip != rec->ip) {
5107 ip = rec->ip;
5108 /* Need to check this ip for a direct. */
5109 if (ftrace_find_rec_direct(ip))
5110 goto out_unlock;
5111 }
5112
5113 ret = -ENOMEM;
5114 if (ftrace_hash_empty(direct_functions) ||
5115 direct_functions->count > 2 * (1 << direct_functions->size_bits)) {
5116 struct ftrace_hash *new_hash;
5117 int size = ftrace_hash_empty(direct_functions) ? 0 :
5118 direct_functions->count + 1;
5119
5120 if (size < 32)
5121 size = 32;
5122
5123 new_hash = dup_hash(direct_functions, size);
5124 if (!new_hash)
5125 goto out_unlock;
5126
5127 free_hash = direct_functions;
5128 direct_functions = new_hash;
5129 }
5130
5131 entry = kmalloc(sizeof(*entry), GFP_KERNEL);
5132 if (!entry)
5133 goto out_unlock;
5134
5135 direct = ftrace_find_direct_func(addr);
5136 if (!direct) {
5137 direct = ftrace_alloc_direct_func(addr);
5138 if (!direct) {
5139 kfree(entry);
5140 goto out_unlock;
5141 }
5142 }
5143
5144 entry->ip = ip;
5145 entry->direct = addr;
5146 __add_hash_entry(direct_functions, entry);
5147
5148 ret = ftrace_set_filter_ip(&direct_ops, ip, 0, 0);
5149 if (ret)
5150 remove_hash_entry(direct_functions, entry);
5151
5152 if (!ret && !(direct_ops.flags & FTRACE_OPS_FL_ENABLED)) {
5153 ret = register_ftrace_function(&direct_ops);
5154 if (ret)
5155 ftrace_set_filter_ip(&direct_ops, ip, 1, 0);
5156 }
5157
5158 if (ret) {
5159 kfree(entry);
5160 if (!direct->count) {
5161 list_del_rcu(&direct->next);
5162 synchronize_rcu_tasks();
5163 kfree(direct);
5164 if (free_hash)
5165 free_ftrace_hash(free_hash);
5166 free_hash = NULL;
5167 ftrace_direct_func_count--;
5168 }
5169 } else {
5170 direct->count++;
5171 }
5172 out_unlock:
5173 mutex_unlock(&direct_mutex);
5174
5175 if (free_hash) {
5176 synchronize_rcu_tasks();
5177 free_ftrace_hash(free_hash);
5178 }
5179
5180 return ret;
5181 }
5182 EXPORT_SYMBOL_GPL(register_ftrace_direct);
5183
5184 static struct ftrace_func_entry *find_direct_entry(unsigned long *ip,
5185 struct dyn_ftrace **recp)
5186 {
5187 struct ftrace_func_entry *entry;
5188 struct dyn_ftrace *rec;
5189
5190 rec = lookup_rec(*ip, *ip);
5191 if (!rec)
5192 return NULL;
5193
5194 entry = __ftrace_lookup_ip(direct_functions, rec->ip);
5195 if (!entry) {
5196 WARN_ON(rec->flags & FTRACE_FL_DIRECT);
5197 return NULL;
5198 }
5199
5200 WARN_ON(!(rec->flags & FTRACE_FL_DIRECT));
5201
5202 /* Passed in ip just needs to be on the call site */
5203 *ip = rec->ip;
5204
5205 if (recp)
5206 *recp = rec;
5207
5208 return entry;
5209 }
5210
5211 int unregister_ftrace_direct(unsigned long ip, unsigned long addr)
5212 {
5213 struct ftrace_direct_func *direct;
5214 struct ftrace_func_entry *entry;
5215 int ret = -ENODEV;
5216
5217 mutex_lock(&direct_mutex);
5218
5219 entry = find_direct_entry(&ip, NULL);
5220 if (!entry)
5221 goto out_unlock;
5222
5223 if (direct_functions->count == 1)
5224 unregister_ftrace_function(&direct_ops);
5225
5226 ret = ftrace_set_filter_ip(&direct_ops, ip, 1, 0);
5227
5228 WARN_ON(ret);
5229
5230 remove_hash_entry(direct_functions, entry);
5231
5232 direct = ftrace_find_direct_func(addr);
5233 if (!WARN_ON(!direct)) {
5234 /* This is the good path (see the ! before WARN) */
5235 direct->count--;
5236 WARN_ON(direct->count < 0);
5237 if (!direct->count) {
5238 list_del_rcu(&direct->next);
5239 synchronize_rcu_tasks();
5240 kfree(direct);
5241 kfree(entry);
5242 ftrace_direct_func_count--;
5243 }
5244 }
5245 out_unlock:
5246 mutex_unlock(&direct_mutex);
5247
5248 return ret;
5249 }
5250 EXPORT_SYMBOL_GPL(unregister_ftrace_direct);
5251
5252 static struct ftrace_ops stub_ops = {
5253 .func = ftrace_stub,
5254 };
5255
5256 /**
5257 * ftrace_modify_direct_caller - modify ftrace nop directly
5258 * @entry: The ftrace hash entry of the direct helper for @rec
5259 * @rec: The record representing the function site to patch
5260 * @old_addr: The location that the site at @rec->ip currently calls
5261 * @new_addr: The location that the site at @rec->ip should call
5262 *
5263 * An architecture may overwrite this function to optimize the
5264 * changing of the direct callback on an ftrace nop location.
5265 * This is called with the ftrace_lock mutex held, and no other
5266 * ftrace callbacks are on the associated record (@rec). Thus,
5267 * it is safe to modify the ftrace record, where it should be
5268 * currently calling @old_addr directly, to call @new_addr.
5269 *
5270 * Safety checks should be made to make sure that the code at
5271 * @rec->ip is currently calling @old_addr. And this must
5272 * also update entry->direct to @new_addr.
5273 */
5274 int __weak ftrace_modify_direct_caller(struct ftrace_func_entry *entry,
5275 struct dyn_ftrace *rec,
5276 unsigned long old_addr,
5277 unsigned long new_addr)
5278 {
5279 unsigned long ip = rec->ip;
5280 int ret;
5281
5282 /*
5283 * The ftrace_lock was used to determine if the record
5284 * had more than one registered user to it. If it did,
5285 * we needed to prevent that from changing to do the quick
5286 * switch. But if it did not (only a direct caller was attached)
5287 * then this function is called. But this function can deal
5288 * with attached callers to the rec that we care about, and
5289 * since this function uses standard ftrace calls that take
5290 * the ftrace_lock mutex, we need to release it.
5291 */
5292 mutex_unlock(&ftrace_lock);
5293
5294 /*
5295 * By setting a stub function at the same address, we force
5296 * the code to call the iterator and the direct_ops helper.
5297 * This means that @ip does not call the direct call, and
5298 * we can simply modify it.
5299 */
5300 ret = ftrace_set_filter_ip(&stub_ops, ip, 0, 0);
5301 if (ret)
5302 goto out_lock;
5303
5304 ret = register_ftrace_function(&stub_ops);
5305 if (ret) {
5306 ftrace_set_filter_ip(&stub_ops, ip, 1, 0);
5307 goto out_lock;
5308 }
5309
5310 entry->direct = new_addr;
5311
5312 /*
5313 * By removing the stub, we put back the direct call, calling
5314 * the @new_addr.
5315 */
5316 unregister_ftrace_function(&stub_ops);
5317 ftrace_set_filter_ip(&stub_ops, ip, 1, 0);
5318
5319 out_lock:
5320 mutex_lock(&ftrace_lock);
5321
5322 return ret;
5323 }
5324
5325 /**
5326 * modify_ftrace_direct - Modify an existing direct call to call something else
5327 * @ip: The instruction pointer to modify
5328 * @old_addr: The address that the current @ip calls directly
5329 * @new_addr: The address that the @ip should call
5330 *
5331 * This modifies a ftrace direct caller at an instruction pointer without
5332 * having to disable it first. The direct call will switch over to the
5333 * @new_addr without missing anything.
5334 *
5335 * Returns: zero on success. Non zero on error, which includes:
5336 * -ENODEV : the @ip given has no direct caller attached
5337 * -EINVAL : the @old_addr does not match the current direct caller
5338 */
5339 int modify_ftrace_direct(unsigned long ip,
5340 unsigned long old_addr, unsigned long new_addr)
5341 {
5342 struct ftrace_direct_func *direct, *new_direct = NULL;
5343 struct ftrace_func_entry *entry;
5344 struct dyn_ftrace *rec;
5345 int ret = -ENODEV;
5346
5347 mutex_lock(&direct_mutex);
5348
5349 mutex_lock(&ftrace_lock);
5350 entry = find_direct_entry(&ip, &rec);
5351 if (!entry)
5352 goto out_unlock;
5353
5354 ret = -EINVAL;
5355 if (entry->direct != old_addr)
5356 goto out_unlock;
5357
5358 direct = ftrace_find_direct_func(old_addr);
5359 if (WARN_ON(!direct))
5360 goto out_unlock;
5361 if (direct->count > 1) {
5362 ret = -ENOMEM;
5363 new_direct = ftrace_alloc_direct_func(new_addr);
5364 if (!new_direct)
5365 goto out_unlock;
5366 direct->count--;
5367 new_direct->count++;
5368 } else {
5369 direct->addr = new_addr;
5370 }
5371
5372 /*
5373 * If there's no other ftrace callback on the rec->ip location,
5374 * then it can be changed directly by the architecture.
5375 * If there is another caller, then we just need to change the
5376 * direct caller helper to point to @new_addr.
5377 */
5378 if (ftrace_rec_count(rec) == 1) {
5379 ret = ftrace_modify_direct_caller(entry, rec, old_addr, new_addr);
5380 } else {
5381 entry->direct = new_addr;
5382 ret = 0;
5383 }
5384
5385 if (unlikely(ret && new_direct)) {
5386 direct->count++;
5387 list_del_rcu(&new_direct->next);
5388 synchronize_rcu_tasks();
5389 kfree(new_direct);
5390 ftrace_direct_func_count--;
5391 }
5392
5393 out_unlock:
5394 mutex_unlock(&ftrace_lock);
5395 mutex_unlock(&direct_mutex);
5396 return ret;
5397 }
5398 EXPORT_SYMBOL_GPL(modify_ftrace_direct);
5399 #endif /* CONFIG_DYNAMIC_FTRACE_WITH_DIRECT_CALLS */
5400
5401 /**
5402 * ftrace_set_filter_ip - set a function to filter on in ftrace by address
5403 * @ops - the ops to set the filter with
5404 * @ip - the address to add to or remove from the filter.
5405 * @remove - non zero to remove the ip from the filter
5406 * @reset - non zero to reset all filters before applying this filter.
5407 *
5408 * Filters denote which functions should be enabled when tracing is enabled
5409 * If @ip is NULL, it fails to update filter.
5410 */
5411 int ftrace_set_filter_ip(struct ftrace_ops *ops, unsigned long ip,
5412 int remove, int reset)
5413 {
5414 ftrace_ops_init(ops);
5415 return ftrace_set_addr(ops, ip, remove, reset, 1);
5416 }
5417 EXPORT_SYMBOL_GPL(ftrace_set_filter_ip);
5418
5419 /**
5420 * ftrace_ops_set_global_filter - setup ops to use global filters
5421 * @ops - the ops which will use the global filters
5422 *
5423 * ftrace users who need global function trace filtering should call this.
5424 * It can set the global filter only if ops were not initialized before.
5425 */
5426 void ftrace_ops_set_global_filter(struct ftrace_ops *ops)
5427 {
5428 if (ops->flags & FTRACE_OPS_FL_INITIALIZED)
5429 return;
5430
5431 ftrace_ops_init(ops);
5432 ops->func_hash = &global_ops.local_hash;
5433 }
5434 EXPORT_SYMBOL_GPL(ftrace_ops_set_global_filter);
5435
5436 static int
5437 ftrace_set_regex(struct ftrace_ops *ops, unsigned char *buf, int len,
5438 int reset, int enable)
5439 {
5440 return ftrace_set_hash(ops, buf, len, 0, 0, reset, enable);
5441 }
5442
5443 /**
5444 * ftrace_set_filter - set a function to filter on in ftrace
5445 * @ops - the ops to set the filter with
5446 * @buf - the string that holds the function filter text.
5447 * @len - the length of the string.
5448 * @reset - non zero to reset all filters before applying this filter.
5449 *
5450 * Filters denote which functions should be enabled when tracing is enabled.
5451 * If @buf is NULL and reset is set, all functions will be enabled for tracing.
5452 */
5453 int ftrace_set_filter(struct ftrace_ops *ops, unsigned char *buf,
5454 int len, int reset)
5455 {
5456 ftrace_ops_init(ops);
5457 return ftrace_set_regex(ops, buf, len, reset, 1);
5458 }
5459 EXPORT_SYMBOL_GPL(ftrace_set_filter);
5460
5461 /**
5462 * ftrace_set_notrace - set a function to not trace in ftrace
5463 * @ops - the ops to set the notrace filter with
5464 * @buf - the string that holds the function notrace text.
5465 * @len - the length of the string.
5466 * @reset - non zero to reset all filters before applying this filter.
5467 *
5468 * Notrace Filters denote which functions should not be enabled when tracing
5469 * is enabled. If @buf is NULL and reset is set, all functions will be enabled
5470 * for tracing.
5471 */
5472 int ftrace_set_notrace(struct ftrace_ops *ops, unsigned char *buf,
5473 int len, int reset)
5474 {
5475 ftrace_ops_init(ops);
5476 return ftrace_set_regex(ops, buf, len, reset, 0);
5477 }
5478 EXPORT_SYMBOL_GPL(ftrace_set_notrace);
5479 /**
5480 * ftrace_set_global_filter - set a function to filter on with global tracers
5481 * @buf - the string that holds the function filter text.
5482 * @len - the length of the string.
5483 * @reset - non zero to reset all filters before applying this filter.
5484 *
5485 * Filters denote which functions should be enabled when tracing is enabled.
5486 * If @buf is NULL and reset is set, all functions will be enabled for tracing.
5487 */
5488 void ftrace_set_global_filter(unsigned char *buf, int len, int reset)
5489 {
5490 ftrace_set_regex(&global_ops, buf, len, reset, 1);
5491 }
5492 EXPORT_SYMBOL_GPL(ftrace_set_global_filter);
5493
5494 /**
5495 * ftrace_set_global_notrace - set a function to not trace with global tracers
5496 * @buf - the string that holds the function notrace text.
5497 * @len - the length of the string.
5498 * @reset - non zero to reset all filters before applying this filter.
5499 *
5500 * Notrace Filters denote which functions should not be enabled when tracing
5501 * is enabled. If @buf is NULL and reset is set, all functions will be enabled
5502 * for tracing.
5503 */
5504 void ftrace_set_global_notrace(unsigned char *buf, int len, int reset)
5505 {
5506 ftrace_set_regex(&global_ops, buf, len, reset, 0);
5507 }
5508 EXPORT_SYMBOL_GPL(ftrace_set_global_notrace);
5509
5510 /*
5511 * command line interface to allow users to set filters on boot up.
5512 */
5513 #define FTRACE_FILTER_SIZE COMMAND_LINE_SIZE
5514 static char ftrace_notrace_buf[FTRACE_FILTER_SIZE] __initdata;
5515 static char ftrace_filter_buf[FTRACE_FILTER_SIZE] __initdata;
5516
5517 /* Used by function selftest to not test if filter is set */
5518 bool ftrace_filter_param __initdata;
5519
5520 static int __init set_ftrace_notrace(char *str)
5521 {
5522 ftrace_filter_param = true;
5523 strlcpy(ftrace_notrace_buf, str, FTRACE_FILTER_SIZE);
5524 return 1;
5525 }
5526 __setup("ftrace_notrace=", set_ftrace_notrace);
5527
5528 static int __init set_ftrace_filter(char *str)
5529 {
5530 ftrace_filter_param = true;
5531 strlcpy(ftrace_filter_buf, str, FTRACE_FILTER_SIZE);
5532 return 1;
5533 }
5534 __setup("ftrace_filter=", set_ftrace_filter);
5535
5536 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
5537 static char ftrace_graph_buf[FTRACE_FILTER_SIZE] __initdata;
5538 static char ftrace_graph_notrace_buf[FTRACE_FILTER_SIZE] __initdata;
5539 static int ftrace_graph_set_hash(struct ftrace_hash *hash, char *buffer);
5540
5541 static int __init set_graph_function(char *str)
5542 {
5543 strlcpy(ftrace_graph_buf, str, FTRACE_FILTER_SIZE);
5544 return 1;
5545 }
5546 __setup("ftrace_graph_filter=", set_graph_function);
5547
5548 static int __init set_graph_notrace_function(char *str)
5549 {
5550 strlcpy(ftrace_graph_notrace_buf, str, FTRACE_FILTER_SIZE);
5551 return 1;
5552 }
5553 __setup("ftrace_graph_notrace=", set_graph_notrace_function);
5554
5555 static int __init set_graph_max_depth_function(char *str)
5556 {
5557 if (!str)
5558 return 0;
5559 fgraph_max_depth = simple_strtoul(str, NULL, 0);
5560 return 1;
5561 }
5562 __setup("ftrace_graph_max_depth=", set_graph_max_depth_function);
5563
5564 static void __init set_ftrace_early_graph(char *buf, int enable)
5565 {
5566 int ret;
5567 char *func;
5568 struct ftrace_hash *hash;
5569
5570 hash = alloc_ftrace_hash(FTRACE_HASH_DEFAULT_BITS);
5571 if (MEM_FAIL(!hash, "Failed to allocate hash\n"))
5572 return;
5573
5574 while (buf) {
5575 func = strsep(&buf, ",");
5576 /* we allow only one expression at a time */
5577 ret = ftrace_graph_set_hash(hash, func);
5578 if (ret)
5579 printk(KERN_DEBUG "ftrace: function %s not "
5580 "traceable\n", func);
5581 }
5582
5583 if (enable)
5584 ftrace_graph_hash = hash;
5585 else
5586 ftrace_graph_notrace_hash = hash;
5587 }
5588 #endif /* CONFIG_FUNCTION_GRAPH_TRACER */
5589
5590 void __init
5591 ftrace_set_early_filter(struct ftrace_ops *ops, char *buf, int enable)
5592 {
5593 char *func;
5594
5595 ftrace_ops_init(ops);
5596
5597 while (buf) {
5598 func = strsep(&buf, ",");
5599 ftrace_set_regex(ops, func, strlen(func), 0, enable);
5600 }
5601 }
5602
5603 static void __init set_ftrace_early_filters(void)
5604 {
5605 if (ftrace_filter_buf[0])
5606 ftrace_set_early_filter(&global_ops, ftrace_filter_buf, 1);
5607 if (ftrace_notrace_buf[0])
5608 ftrace_set_early_filter(&global_ops, ftrace_notrace_buf, 0);
5609 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
5610 if (ftrace_graph_buf[0])
5611 set_ftrace_early_graph(ftrace_graph_buf, 1);
5612 if (ftrace_graph_notrace_buf[0])
5613 set_ftrace_early_graph(ftrace_graph_notrace_buf, 0);
5614 #endif /* CONFIG_FUNCTION_GRAPH_TRACER */
5615 }
5616
5617 int ftrace_regex_release(struct inode *inode, struct file *file)
5618 {
5619 struct seq_file *m = (struct seq_file *)file->private_data;
5620 struct ftrace_iterator *iter;
5621 struct ftrace_hash **orig_hash;
5622 struct trace_parser *parser;
5623 int filter_hash;
5624
5625 if (file->f_mode & FMODE_READ) {
5626 iter = m->private;
5627 seq_release(inode, file);
5628 } else
5629 iter = file->private_data;
5630
5631 parser = &iter->parser;
5632 if (trace_parser_loaded(parser)) {
5633 int enable = !(iter->flags & FTRACE_ITER_NOTRACE);
5634
5635 ftrace_process_regex(iter, parser->buffer,
5636 parser->idx, enable);
5637 }
5638
5639 trace_parser_put(parser);
5640
5641 mutex_lock(&iter->ops->func_hash->regex_lock);
5642
5643 if (file->f_mode & FMODE_WRITE) {
5644 filter_hash = !!(iter->flags & FTRACE_ITER_FILTER);
5645
5646 if (filter_hash) {
5647 orig_hash = &iter->ops->func_hash->filter_hash;
5648 if (iter->tr && !list_empty(&iter->tr->mod_trace))
5649 iter->hash->flags |= FTRACE_HASH_FL_MOD;
5650 } else
5651 orig_hash = &iter->ops->func_hash->notrace_hash;
5652
5653 mutex_lock(&ftrace_lock);
5654 ftrace_hash_move_and_update_ops(iter->ops, orig_hash,
5655 iter->hash, filter_hash);
5656 mutex_unlock(&ftrace_lock);
5657 } else {
5658 /* For read only, the hash is the ops hash */
5659 iter->hash = NULL;
5660 }
5661
5662 mutex_unlock(&iter->ops->func_hash->regex_lock);
5663 free_ftrace_hash(iter->hash);
5664 if (iter->tr)
5665 trace_array_put(iter->tr);
5666 kfree(iter);
5667
5668 return 0;
5669 }
5670
5671 static const struct file_operations ftrace_avail_fops = {
5672 .open = ftrace_avail_open,
5673 .read = seq_read,
5674 .llseek = seq_lseek,
5675 .release = seq_release_private,
5676 };
5677
5678 static const struct file_operations ftrace_enabled_fops = {
5679 .open = ftrace_enabled_open,
5680 .read = seq_read,
5681 .llseek = seq_lseek,
5682 .release = seq_release_private,
5683 };
5684
5685 static const struct file_operations ftrace_filter_fops = {
5686 .open = ftrace_filter_open,
5687 .read = seq_read,
5688 .write = ftrace_filter_write,
5689 .llseek = tracing_lseek,
5690 .release = ftrace_regex_release,
5691 };
5692
5693 static const struct file_operations ftrace_notrace_fops = {
5694 .open = ftrace_notrace_open,
5695 .read = seq_read,
5696 .write = ftrace_notrace_write,
5697 .llseek = tracing_lseek,
5698 .release = ftrace_regex_release,
5699 };
5700
5701 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
5702
5703 static DEFINE_MUTEX(graph_lock);
5704
5705 struct ftrace_hash __rcu *ftrace_graph_hash = EMPTY_HASH;
5706 struct ftrace_hash __rcu *ftrace_graph_notrace_hash = EMPTY_HASH;
5707
5708 enum graph_filter_type {
5709 GRAPH_FILTER_NOTRACE = 0,
5710 GRAPH_FILTER_FUNCTION,
5711 };
5712
5713 #define FTRACE_GRAPH_EMPTY ((void *)1)
5714
5715 struct ftrace_graph_data {
5716 struct ftrace_hash *hash;
5717 struct ftrace_func_entry *entry;
5718 int idx; /* for hash table iteration */
5719 enum graph_filter_type type;
5720 struct ftrace_hash *new_hash;
5721 const struct seq_operations *seq_ops;
5722 struct trace_parser parser;
5723 };
5724
5725 static void *
5726 __g_next(struct seq_file *m, loff_t *pos)
5727 {
5728 struct ftrace_graph_data *fgd = m->private;
5729 struct ftrace_func_entry *entry = fgd->entry;
5730 struct hlist_head *head;
5731 int i, idx = fgd->idx;
5732
5733 if (*pos >= fgd->hash->count)
5734 return NULL;
5735
5736 if (entry) {
5737 hlist_for_each_entry_continue(entry, hlist) {
5738 fgd->entry = entry;
5739 return entry;
5740 }
5741
5742 idx++;
5743 }
5744
5745 for (i = idx; i < 1 << fgd->hash->size_bits; i++) {
5746 head = &fgd->hash->buckets[i];
5747 hlist_for_each_entry(entry, head, hlist) {
5748 fgd->entry = entry;
5749 fgd->idx = i;
5750 return entry;
5751 }
5752 }
5753 return NULL;
5754 }
5755
5756 static void *
5757 g_next(struct seq_file *m, void *v, loff_t *pos)
5758 {
5759 (*pos)++;
5760 return __g_next(m, pos);
5761 }
5762
5763 static void *g_start(struct seq_file *m, loff_t *pos)
5764 {
5765 struct ftrace_graph_data *fgd = m->private;
5766
5767 mutex_lock(&graph_lock);
5768
5769 if (fgd->type == GRAPH_FILTER_FUNCTION)
5770 fgd->hash = rcu_dereference_protected(ftrace_graph_hash,
5771 lockdep_is_held(&graph_lock));
5772 else
5773 fgd->hash = rcu_dereference_protected(ftrace_graph_notrace_hash,
5774 lockdep_is_held(&graph_lock));
5775
5776 /* Nothing, tell g_show to print all functions are enabled */
5777 if (ftrace_hash_empty(fgd->hash) && !*pos)
5778 return FTRACE_GRAPH_EMPTY;
5779
5780 fgd->idx = 0;
5781 fgd->entry = NULL;
5782 return __g_next(m, pos);
5783 }
5784
5785 static void g_stop(struct seq_file *m, void *p)
5786 {
5787 mutex_unlock(&graph_lock);
5788 }
5789
5790 static int g_show(struct seq_file *m, void *v)
5791 {
5792 struct ftrace_func_entry *entry = v;
5793
5794 if (!entry)
5795 return 0;
5796
5797 if (entry == FTRACE_GRAPH_EMPTY) {
5798 struct ftrace_graph_data *fgd = m->private;
5799
5800 if (fgd->type == GRAPH_FILTER_FUNCTION)
5801 seq_puts(m, "#### all functions enabled ####\n");
5802 else
5803 seq_puts(m, "#### no functions disabled ####\n");
5804 return 0;
5805 }
5806
5807 seq_printf(m, "%ps\n", (void *)entry->ip);
5808
5809 return 0;
5810 }
5811
5812 static const struct seq_operations ftrace_graph_seq_ops = {
5813 .start = g_start,
5814 .next = g_next,
5815 .stop = g_stop,
5816 .show = g_show,
5817 };
5818
5819 static int
5820 __ftrace_graph_open(struct inode *inode, struct file *file,
5821 struct ftrace_graph_data *fgd)
5822 {
5823 int ret;
5824 struct ftrace_hash *new_hash = NULL;
5825
5826 ret = security_locked_down(LOCKDOWN_TRACEFS);
5827 if (ret)
5828 return ret;
5829
5830 if (file->f_mode & FMODE_WRITE) {
5831 const int size_bits = FTRACE_HASH_DEFAULT_BITS;
5832
5833 if (trace_parser_get_init(&fgd->parser, FTRACE_BUFF_MAX))
5834 return -ENOMEM;
5835
5836 if (file->f_flags & O_TRUNC)
5837 new_hash = alloc_ftrace_hash(size_bits);
5838 else
5839 new_hash = alloc_and_copy_ftrace_hash(size_bits,
5840 fgd->hash);
5841 if (!new_hash) {
5842 ret = -ENOMEM;
5843 goto out;
5844 }
5845 }
5846
5847 if (file->f_mode & FMODE_READ) {
5848 ret = seq_open(file, &ftrace_graph_seq_ops);
5849 if (!ret) {
5850 struct seq_file *m = file->private_data;
5851 m->private = fgd;
5852 } else {
5853 /* Failed */
5854 free_ftrace_hash(new_hash);
5855 new_hash = NULL;
5856 }
5857 } else
5858 file->private_data = fgd;
5859
5860 out:
5861 if (ret < 0 && file->f_mode & FMODE_WRITE)
5862 trace_parser_put(&fgd->parser);
5863
5864 fgd->new_hash = new_hash;
5865
5866 /*
5867 * All uses of fgd->hash must be taken with the graph_lock
5868 * held. The graph_lock is going to be released, so force
5869 * fgd->hash to be reinitialized when it is taken again.
5870 */
5871 fgd->hash = NULL;
5872
5873 return ret;
5874 }
5875
5876 static int
5877 ftrace_graph_open(struct inode *inode, struct file *file)
5878 {
5879 struct ftrace_graph_data *fgd;
5880 int ret;
5881
5882 if (unlikely(ftrace_disabled))
5883 return -ENODEV;
5884
5885 fgd = kmalloc(sizeof(*fgd), GFP_KERNEL);
5886 if (fgd == NULL)
5887 return -ENOMEM;
5888
5889 mutex_lock(&graph_lock);
5890
5891 fgd->hash = rcu_dereference_protected(ftrace_graph_hash,
5892 lockdep_is_held(&graph_lock));
5893 fgd->type = GRAPH_FILTER_FUNCTION;
5894 fgd->seq_ops = &ftrace_graph_seq_ops;
5895
5896 ret = __ftrace_graph_open(inode, file, fgd);
5897 if (ret < 0)
5898 kfree(fgd);
5899
5900 mutex_unlock(&graph_lock);
5901 return ret;
5902 }
5903
5904 static int
5905 ftrace_graph_notrace_open(struct inode *inode, struct file *file)
5906 {
5907 struct ftrace_graph_data *fgd;
5908 int ret;
5909
5910 if (unlikely(ftrace_disabled))
5911 return -ENODEV;
5912
5913 fgd = kmalloc(sizeof(*fgd), GFP_KERNEL);
5914 if (fgd == NULL)
5915 return -ENOMEM;
5916
5917 mutex_lock(&graph_lock);
5918
5919 fgd->hash = rcu_dereference_protected(ftrace_graph_notrace_hash,
5920 lockdep_is_held(&graph_lock));
5921 fgd->type = GRAPH_FILTER_NOTRACE;
5922 fgd->seq_ops = &ftrace_graph_seq_ops;
5923
5924 ret = __ftrace_graph_open(inode, file, fgd);
5925 if (ret < 0)
5926 kfree(fgd);
5927
5928 mutex_unlock(&graph_lock);
5929 return ret;
5930 }
5931
5932 static int
5933 ftrace_graph_release(struct inode *inode, struct file *file)
5934 {
5935 struct ftrace_graph_data *fgd;
5936 struct ftrace_hash *old_hash, *new_hash;
5937 struct trace_parser *parser;
5938 int ret = 0;
5939
5940 if (file->f_mode & FMODE_READ) {
5941 struct seq_file *m = file->private_data;
5942
5943 fgd = m->private;
5944 seq_release(inode, file);
5945 } else {
5946 fgd = file->private_data;
5947 }
5948
5949
5950 if (file->f_mode & FMODE_WRITE) {
5951
5952 parser = &fgd->parser;
5953
5954 if (trace_parser_loaded((parser))) {
5955 ret = ftrace_graph_set_hash(fgd->new_hash,
5956 parser->buffer);
5957 }
5958
5959 trace_parser_put(parser);
5960
5961 new_hash = __ftrace_hash_move(fgd->new_hash);
5962 if (!new_hash) {
5963 ret = -ENOMEM;
5964 goto out;
5965 }
5966
5967 mutex_lock(&graph_lock);
5968
5969 if (fgd->type == GRAPH_FILTER_FUNCTION) {
5970 old_hash = rcu_dereference_protected(ftrace_graph_hash,
5971 lockdep_is_held(&graph_lock));
5972 rcu_assign_pointer(ftrace_graph_hash, new_hash);
5973 } else {
5974 old_hash = rcu_dereference_protected(ftrace_graph_notrace_hash,
5975 lockdep_is_held(&graph_lock));
5976 rcu_assign_pointer(ftrace_graph_notrace_hash, new_hash);
5977 }
5978
5979 mutex_unlock(&graph_lock);
5980
5981 /*
5982 * We need to do a hard force of sched synchronization.
5983 * This is because we use preempt_disable() to do RCU, but
5984 * the function tracers can be called where RCU is not watching
5985 * (like before user_exit()). We can not rely on the RCU
5986 * infrastructure to do the synchronization, thus we must do it
5987 * ourselves.
5988 */
5989 if (old_hash != EMPTY_HASH)
5990 synchronize_rcu_tasks_rude();
5991
5992 free_ftrace_hash(old_hash);
5993 }
5994
5995 out:
5996 free_ftrace_hash(fgd->new_hash);
5997 kfree(fgd);
5998
5999 return ret;
6000 }
6001
6002 static int
6003 ftrace_graph_set_hash(struct ftrace_hash *hash, char *buffer)
6004 {
6005 struct ftrace_glob func_g;
6006 struct dyn_ftrace *rec;
6007 struct ftrace_page *pg;
6008 struct ftrace_func_entry *entry;
6009 int fail = 1;
6010 int not;
6011
6012 /* decode regex */
6013 func_g.type = filter_parse_regex(buffer, strlen(buffer),
6014 &func_g.search, &not);
6015
6016 func_g.len = strlen(func_g.search);
6017
6018 mutex_lock(&ftrace_lock);
6019
6020 if (unlikely(ftrace_disabled)) {
6021 mutex_unlock(&ftrace_lock);
6022 return -ENODEV;
6023 }
6024
6025 do_for_each_ftrace_rec(pg, rec) {
6026
6027 if (rec->flags & FTRACE_FL_DISABLED)
6028 continue;
6029
6030 if (ftrace_match_record(rec, &func_g, NULL, 0)) {
6031 entry = ftrace_lookup_ip(hash, rec->ip);
6032
6033 if (!not) {
6034 fail = 0;
6035
6036 if (entry)
6037 continue;
6038 if (add_hash_entry(hash, rec->ip) < 0)
6039 goto out;
6040 } else {
6041 if (entry) {
6042 free_hash_entry(hash, entry);
6043 fail = 0;
6044 }
6045 }
6046 }
6047 } while_for_each_ftrace_rec();
6048 out:
6049 mutex_unlock(&ftrace_lock);
6050
6051 if (fail)
6052 return -EINVAL;
6053
6054 return 0;
6055 }
6056
6057 static ssize_t
6058 ftrace_graph_write(struct file *file, const char __user *ubuf,
6059 size_t cnt, loff_t *ppos)
6060 {
6061 ssize_t read, ret = 0;
6062 struct ftrace_graph_data *fgd = file->private_data;
6063 struct trace_parser *parser;
6064
6065 if (!cnt)
6066 return 0;
6067
6068 /* Read mode uses seq functions */
6069 if (file->f_mode & FMODE_READ) {
6070 struct seq_file *m = file->private_data;
6071 fgd = m->private;
6072 }
6073
6074 parser = &fgd->parser;
6075
6076 read = trace_get_user(parser, ubuf, cnt, ppos);
6077
6078 if (read >= 0 && trace_parser_loaded(parser) &&
6079 !trace_parser_cont(parser)) {
6080
6081 ret = ftrace_graph_set_hash(fgd->new_hash,
6082 parser->buffer);
6083 trace_parser_clear(parser);
6084 }
6085
6086 if (!ret)
6087 ret = read;
6088
6089 return ret;
6090 }
6091
6092 static const struct file_operations ftrace_graph_fops = {
6093 .open = ftrace_graph_open,
6094 .read = seq_read,
6095 .write = ftrace_graph_write,
6096 .llseek = tracing_lseek,
6097 .release = ftrace_graph_release,
6098 };
6099
6100 static const struct file_operations ftrace_graph_notrace_fops = {
6101 .open = ftrace_graph_notrace_open,
6102 .read = seq_read,
6103 .write = ftrace_graph_write,
6104 .llseek = tracing_lseek,
6105 .release = ftrace_graph_release,
6106 };
6107 #endif /* CONFIG_FUNCTION_GRAPH_TRACER */
6108
6109 void ftrace_create_filter_files(struct ftrace_ops *ops,
6110 struct dentry *parent)
6111 {
6112
6113 trace_create_file("set_ftrace_filter", TRACE_MODE_WRITE, parent,
6114 ops, &ftrace_filter_fops);
6115
6116 trace_create_file("set_ftrace_notrace", TRACE_MODE_WRITE, parent,
6117 ops, &ftrace_notrace_fops);
6118 }
6119
6120 /*
6121 * The name "destroy_filter_files" is really a misnomer. Although
6122 * in the future, it may actually delete the files, but this is
6123 * really intended to make sure the ops passed in are disabled
6124 * and that when this function returns, the caller is free to
6125 * free the ops.
6126 *
6127 * The "destroy" name is only to match the "create" name that this
6128 * should be paired with.
6129 */
6130 void ftrace_destroy_filter_files(struct ftrace_ops *ops)
6131 {
6132 mutex_lock(&ftrace_lock);
6133 if (ops->flags & FTRACE_OPS_FL_ENABLED)
6134 ftrace_shutdown(ops, 0);
6135 ops->flags |= FTRACE_OPS_FL_DELETED;
6136 ftrace_free_filter(ops);
6137 mutex_unlock(&ftrace_lock);
6138 }
6139
6140 static __init int ftrace_init_dyn_tracefs(struct dentry *d_tracer)
6141 {
6142
6143 trace_create_file("available_filter_functions", TRACE_MODE_READ,
6144 d_tracer, NULL, &ftrace_avail_fops);
6145
6146 trace_create_file("enabled_functions", TRACE_MODE_READ,
6147 d_tracer, NULL, &ftrace_enabled_fops);
6148
6149 ftrace_create_filter_files(&global_ops, d_tracer);
6150
6151 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
6152 trace_create_file("set_graph_function", TRACE_MODE_WRITE, d_tracer,
6153 NULL,
6154 &ftrace_graph_fops);
6155 trace_create_file("set_graph_notrace", TRACE_MODE_WRITE, d_tracer,
6156 NULL,
6157 &ftrace_graph_notrace_fops);
6158 #endif /* CONFIG_FUNCTION_GRAPH_TRACER */
6159
6160 return 0;
6161 }
6162
6163 static int ftrace_cmp_ips(const void *a, const void *b)
6164 {
6165 const unsigned long *ipa = a;
6166 const unsigned long *ipb = b;
6167
6168 if (*ipa > *ipb)
6169 return 1;
6170 if (*ipa < *ipb)
6171 return -1;
6172 return 0;
6173 }
6174
6175 static int ftrace_process_locs(struct module *mod,
6176 unsigned long *start,
6177 unsigned long *end)
6178 {
6179 struct ftrace_page *start_pg;
6180 struct ftrace_page *pg;
6181 struct dyn_ftrace *rec;
6182 unsigned long count;
6183 unsigned long *p;
6184 unsigned long addr;
6185 unsigned long flags = 0; /* Shut up gcc */
6186 int ret = -ENOMEM;
6187
6188 count = end - start;
6189
6190 if (!count)
6191 return 0;
6192
6193 sort(start, count, sizeof(*start),
6194 ftrace_cmp_ips, NULL);
6195
6196 start_pg = ftrace_allocate_pages(count);
6197 if (!start_pg)
6198 return -ENOMEM;
6199
6200 mutex_lock(&ftrace_lock);
6201
6202 /*
6203 * Core and each module needs their own pages, as
6204 * modules will free them when they are removed.
6205 * Force a new page to be allocated for modules.
6206 */
6207 if (!mod) {
6208 WARN_ON(ftrace_pages || ftrace_pages_start);
6209 /* First initialization */
6210 ftrace_pages = ftrace_pages_start = start_pg;
6211 } else {
6212 if (!ftrace_pages)
6213 goto out;
6214
6215 if (WARN_ON(ftrace_pages->next)) {
6216 /* Hmm, we have free pages? */
6217 while (ftrace_pages->next)
6218 ftrace_pages = ftrace_pages->next;
6219 }
6220
6221 ftrace_pages->next = start_pg;
6222 }
6223
6224 p = start;
6225 pg = start_pg;
6226 while (p < end) {
6227 unsigned long end_offset;
6228 addr = ftrace_call_adjust(*p++);
6229 /*
6230 * Some architecture linkers will pad between
6231 * the different mcount_loc sections of different
6232 * object files to satisfy alignments.
6233 * Skip any NULL pointers.
6234 */
6235 if (!addr)
6236 continue;
6237
6238 end_offset = (pg->index+1) * sizeof(pg->records[0]);
6239 if (end_offset > PAGE_SIZE << pg->order) {
6240 /* We should have allocated enough */
6241 if (WARN_ON(!pg->next))
6242 break;
6243 pg = pg->next;
6244 }
6245
6246 rec = &pg->records[pg->index++];
6247 rec->ip = addr;
6248 }
6249
6250 /* We should have used all pages */
6251 WARN_ON(pg->next);
6252
6253 /* Assign the last page to ftrace_pages */
6254 ftrace_pages = pg;
6255
6256 /*
6257 * We only need to disable interrupts on start up
6258 * because we are modifying code that an interrupt
6259 * may execute, and the modification is not atomic.
6260 * But for modules, nothing runs the code we modify
6261 * until we are finished with it, and there's no
6262 * reason to cause large interrupt latencies while we do it.
6263 */
6264 if (!mod)
6265 local_irq_save(flags);
6266 ftrace_update_code(mod, start_pg);
6267 if (!mod)
6268 local_irq_restore(flags);
6269 ret = 0;
6270 out:
6271 mutex_unlock(&ftrace_lock);
6272
6273 return ret;
6274 }
6275
6276 struct ftrace_mod_func {
6277 struct list_head list;
6278 char *name;
6279 unsigned long ip;
6280 unsigned int size;
6281 };
6282
6283 struct ftrace_mod_map {
6284 struct rcu_head rcu;
6285 struct list_head list;
6286 struct module *mod;
6287 unsigned long start_addr;
6288 unsigned long end_addr;
6289 struct list_head funcs;
6290 unsigned int num_funcs;
6291 };
6292
6293 static int ftrace_get_trampoline_kallsym(unsigned int symnum,
6294 unsigned long *value, char *type,
6295 char *name, char *module_name,
6296 int *exported)
6297 {
6298 struct ftrace_ops *op;
6299
6300 list_for_each_entry_rcu(op, &ftrace_ops_trampoline_list, list) {
6301 if (!op->trampoline || symnum--)
6302 continue;
6303 *value = op->trampoline;
6304 *type = 't';
6305 strlcpy(name, FTRACE_TRAMPOLINE_SYM, KSYM_NAME_LEN);
6306 strlcpy(module_name, FTRACE_TRAMPOLINE_MOD, MODULE_NAME_LEN);
6307 *exported = 0;
6308 return 0;
6309 }
6310
6311 return -ERANGE;
6312 }
6313
6314 #ifdef CONFIG_MODULES
6315
6316 #define next_to_ftrace_page(p) container_of(p, struct ftrace_page, next)
6317
6318 static LIST_HEAD(ftrace_mod_maps);
6319
6320 static int referenced_filters(struct dyn_ftrace *rec)
6321 {
6322 struct ftrace_ops *ops;
6323 int cnt = 0;
6324
6325 for (ops = ftrace_ops_list; ops != &ftrace_list_end; ops = ops->next) {
6326 if (ops_references_rec(ops, rec)) {
6327 if (WARN_ON_ONCE(ops->flags & FTRACE_OPS_FL_DIRECT))
6328 continue;
6329 if (WARN_ON_ONCE(ops->flags & FTRACE_OPS_FL_IPMODIFY))
6330 continue;
6331 cnt++;
6332 if (ops->flags & FTRACE_OPS_FL_SAVE_REGS)
6333 rec->flags |= FTRACE_FL_REGS;
6334 if (cnt == 1 && ops->trampoline)
6335 rec->flags |= FTRACE_FL_TRAMP;
6336 else
6337 rec->flags &= ~FTRACE_FL_TRAMP;
6338 }
6339 }
6340
6341 return cnt;
6342 }
6343
6344 static void
6345 clear_mod_from_hash(struct ftrace_page *pg, struct ftrace_hash *hash)
6346 {
6347 struct ftrace_func_entry *entry;
6348 struct dyn_ftrace *rec;
6349 int i;
6350
6351 if (ftrace_hash_empty(hash))
6352 return;
6353
6354 for (i = 0; i < pg->index; i++) {
6355 rec = &pg->records[i];
6356 entry = __ftrace_lookup_ip(hash, rec->ip);
6357 /*
6358 * Do not allow this rec to match again.
6359 * Yeah, it may waste some memory, but will be removed
6360 * if/when the hash is modified again.
6361 */
6362 if (entry)
6363 entry->ip = 0;
6364 }
6365 }
6366
6367 /* Clear any records from hashes */
6368 static void clear_mod_from_hashes(struct ftrace_page *pg)
6369 {
6370 struct trace_array *tr;
6371
6372 mutex_lock(&trace_types_lock);
6373 list_for_each_entry(tr, &ftrace_trace_arrays, list) {
6374 if (!tr->ops || !tr->ops->func_hash)
6375 continue;
6376 mutex_lock(&tr->ops->func_hash->regex_lock);
6377 clear_mod_from_hash(pg, tr->ops->func_hash->filter_hash);
6378 clear_mod_from_hash(pg, tr->ops->func_hash->notrace_hash);
6379 mutex_unlock(&tr->ops->func_hash->regex_lock);
6380 }
6381 mutex_unlock(&trace_types_lock);
6382 }
6383
6384 static void ftrace_free_mod_map(struct rcu_head *rcu)
6385 {
6386 struct ftrace_mod_map *mod_map = container_of(rcu, struct ftrace_mod_map, rcu);
6387 struct ftrace_mod_func *mod_func;
6388 struct ftrace_mod_func *n;
6389
6390 /* All the contents of mod_map are now not visible to readers */
6391 list_for_each_entry_safe(mod_func, n, &mod_map->funcs, list) {
6392 kfree(mod_func->name);
6393 list_del(&mod_func->list);
6394 kfree(mod_func);
6395 }
6396
6397 kfree(mod_map);
6398 }
6399
6400 void ftrace_release_mod(struct module *mod)
6401 {
6402 struct ftrace_mod_map *mod_map;
6403 struct ftrace_mod_map *n;
6404 struct dyn_ftrace *rec;
6405 struct ftrace_page **last_pg;
6406 struct ftrace_page *tmp_page = NULL;
6407 struct ftrace_page *pg;
6408
6409 mutex_lock(&ftrace_lock);
6410
6411 if (ftrace_disabled)
6412 goto out_unlock;
6413
6414 list_for_each_entry_safe(mod_map, n, &ftrace_mod_maps, list) {
6415 if (mod_map->mod == mod) {
6416 list_del_rcu(&mod_map->list);
6417 call_rcu(&mod_map->rcu, ftrace_free_mod_map);
6418 break;
6419 }
6420 }
6421
6422 /*
6423 * Each module has its own ftrace_pages, remove
6424 * them from the list.
6425 */
6426 last_pg = &ftrace_pages_start;
6427 for (pg = ftrace_pages_start; pg; pg = *last_pg) {
6428 rec = &pg->records[0];
6429 if (within_module_core(rec->ip, mod) ||
6430 within_module_init(rec->ip, mod)) {
6431 /*
6432 * As core pages are first, the first
6433 * page should never be a module page.
6434 */
6435 if (WARN_ON(pg == ftrace_pages_start))
6436 goto out_unlock;
6437
6438 /* Check if we are deleting the last page */
6439 if (pg == ftrace_pages)
6440 ftrace_pages = next_to_ftrace_page(last_pg);
6441
6442 ftrace_update_tot_cnt -= pg->index;
6443 *last_pg = pg->next;
6444
6445 pg->next = tmp_page;
6446 tmp_page = pg;
6447 } else
6448 last_pg = &pg->next;
6449 }
6450 out_unlock:
6451 mutex_unlock(&ftrace_lock);
6452
6453 for (pg = tmp_page; pg; pg = tmp_page) {
6454
6455 /* Needs to be called outside of ftrace_lock */
6456 clear_mod_from_hashes(pg);
6457
6458 if (pg->records) {
6459 free_pages((unsigned long)pg->records, pg->order);
6460 ftrace_number_of_pages -= 1 << pg->order;
6461 }
6462 tmp_page = pg->next;
6463 kfree(pg);
6464 ftrace_number_of_groups--;
6465 }
6466 }
6467
6468 void ftrace_module_enable(struct module *mod)
6469 {
6470 struct dyn_ftrace *rec;
6471 struct ftrace_page *pg;
6472
6473 mutex_lock(&ftrace_lock);
6474
6475 if (ftrace_disabled)
6476 goto out_unlock;
6477
6478 /*
6479 * If the tracing is enabled, go ahead and enable the record.
6480 *
6481 * The reason not to enable the record immediately is the
6482 * inherent check of ftrace_make_nop/ftrace_make_call for
6483 * correct previous instructions. Making first the NOP
6484 * conversion puts the module to the correct state, thus
6485 * passing the ftrace_make_call check.
6486 *
6487 * We also delay this to after the module code already set the
6488 * text to read-only, as we now need to set it back to read-write
6489 * so that we can modify the text.
6490 */
6491 if (ftrace_start_up)
6492 ftrace_arch_code_modify_prepare();
6493
6494 do_for_each_ftrace_rec(pg, rec) {
6495 int cnt;
6496 /*
6497 * do_for_each_ftrace_rec() is a double loop.
6498 * module text shares the pg. If a record is
6499 * not part of this module, then skip this pg,
6500 * which the "break" will do.
6501 */
6502 if (!within_module_core(rec->ip, mod) &&
6503 !within_module_init(rec->ip, mod))
6504 break;
6505
6506 cnt = 0;
6507
6508 /*
6509 * When adding a module, we need to check if tracers are
6510 * currently enabled and if they are, and can trace this record,
6511 * we need to enable the module functions as well as update the
6512 * reference counts for those function records.
6513 */
6514 if (ftrace_start_up)
6515 cnt += referenced_filters(rec);
6516
6517 rec->flags &= ~FTRACE_FL_DISABLED;
6518 rec->flags += cnt;
6519
6520 if (ftrace_start_up && cnt) {
6521 int failed = __ftrace_replace_code(rec, 1);
6522 if (failed) {
6523 ftrace_bug(failed, rec);
6524 goto out_loop;
6525 }
6526 }
6527
6528 } while_for_each_ftrace_rec();
6529
6530 out_loop:
6531 if (ftrace_start_up)
6532 ftrace_arch_code_modify_post_process();
6533
6534 out_unlock:
6535 mutex_unlock(&ftrace_lock);
6536
6537 process_cached_mods(mod->name);
6538 }
6539
6540 void ftrace_module_init(struct module *mod)
6541 {
6542 if (ftrace_disabled || !mod->num_ftrace_callsites)
6543 return;
6544
6545 ftrace_process_locs(mod, mod->ftrace_callsites,
6546 mod->ftrace_callsites + mod->num_ftrace_callsites);
6547 }
6548
6549 static void save_ftrace_mod_rec(struct ftrace_mod_map *mod_map,
6550 struct dyn_ftrace *rec)
6551 {
6552 struct ftrace_mod_func *mod_func;
6553 unsigned long symsize;
6554 unsigned long offset;
6555 char str[KSYM_SYMBOL_LEN];
6556 char *modname;
6557 const char *ret;
6558
6559 ret = kallsyms_lookup(rec->ip, &symsize, &offset, &modname, str);
6560 if (!ret)
6561 return;
6562
6563 mod_func = kmalloc(sizeof(*mod_func), GFP_KERNEL);
6564 if (!mod_func)
6565 return;
6566
6567 mod_func->name = kstrdup(str, GFP_KERNEL);
6568 if (!mod_func->name) {
6569 kfree(mod_func);
6570 return;
6571 }
6572
6573 mod_func->ip = rec->ip - offset;
6574 mod_func->size = symsize;
6575
6576 mod_map->num_funcs++;
6577
6578 list_add_rcu(&mod_func->list, &mod_map->funcs);
6579 }
6580
6581 static struct ftrace_mod_map *
6582 allocate_ftrace_mod_map(struct module *mod,
6583 unsigned long start, unsigned long end)
6584 {
6585 struct ftrace_mod_map *mod_map;
6586
6587 mod_map = kmalloc(sizeof(*mod_map), GFP_KERNEL);
6588 if (!mod_map)
6589 return NULL;
6590
6591 mod_map->mod = mod;
6592 mod_map->start_addr = start;
6593 mod_map->end_addr = end;
6594 mod_map->num_funcs = 0;
6595
6596 INIT_LIST_HEAD_RCU(&mod_map->funcs);
6597
6598 list_add_rcu(&mod_map->list, &ftrace_mod_maps);
6599
6600 return mod_map;
6601 }
6602
6603 static const char *
6604 ftrace_func_address_lookup(struct ftrace_mod_map *mod_map,
6605 unsigned long addr, unsigned long *size,
6606 unsigned long *off, char *sym)
6607 {
6608 struct ftrace_mod_func *found_func = NULL;
6609 struct ftrace_mod_func *mod_func;
6610
6611 list_for_each_entry_rcu(mod_func, &mod_map->funcs, list) {
6612 if (addr >= mod_func->ip &&
6613 addr < mod_func->ip + mod_func->size) {
6614 found_func = mod_func;
6615 break;
6616 }
6617 }
6618
6619 if (found_func) {
6620 if (size)
6621 *size = found_func->size;
6622 if (off)
6623 *off = addr - found_func->ip;
6624 if (sym)
6625 strlcpy(sym, found_func->name, KSYM_NAME_LEN);
6626
6627 return found_func->name;
6628 }
6629
6630 return NULL;
6631 }
6632
6633 const char *
6634 ftrace_mod_address_lookup(unsigned long addr, unsigned long *size,
6635 unsigned long *off, char **modname, char *sym)
6636 {
6637 struct ftrace_mod_map *mod_map;
6638 const char *ret = NULL;
6639
6640 /* mod_map is freed via call_rcu() */
6641 preempt_disable();
6642 list_for_each_entry_rcu(mod_map, &ftrace_mod_maps, list) {
6643 ret = ftrace_func_address_lookup(mod_map, addr, size, off, sym);
6644 if (ret) {
6645 if (modname)
6646 *modname = mod_map->mod->name;
6647 break;
6648 }
6649 }
6650 preempt_enable();
6651
6652 return ret;
6653 }
6654
6655 int ftrace_mod_get_kallsym(unsigned int symnum, unsigned long *value,
6656 char *type, char *name,
6657 char *module_name, int *exported)
6658 {
6659 struct ftrace_mod_map *mod_map;
6660 struct ftrace_mod_func *mod_func;
6661 int ret;
6662
6663 preempt_disable();
6664 list_for_each_entry_rcu(mod_map, &ftrace_mod_maps, list) {
6665
6666 if (symnum >= mod_map->num_funcs) {
6667 symnum -= mod_map->num_funcs;
6668 continue;
6669 }
6670
6671 list_for_each_entry_rcu(mod_func, &mod_map->funcs, list) {
6672 if (symnum > 1) {
6673 symnum--;
6674 continue;
6675 }
6676
6677 *value = mod_func->ip;
6678 *type = 'T';
6679 strlcpy(name, mod_func->name, KSYM_NAME_LEN);
6680 strlcpy(module_name, mod_map->mod->name, MODULE_NAME_LEN);
6681 *exported = 1;
6682 preempt_enable();
6683 return 0;
6684 }
6685 WARN_ON(1);
6686 break;
6687 }
6688 ret = ftrace_get_trampoline_kallsym(symnum, value, type, name,
6689 module_name, exported);
6690 preempt_enable();
6691 return ret;
6692 }
6693
6694 #else
6695 static void save_ftrace_mod_rec(struct ftrace_mod_map *mod_map,
6696 struct dyn_ftrace *rec) { }
6697 static inline struct ftrace_mod_map *
6698 allocate_ftrace_mod_map(struct module *mod,
6699 unsigned long start, unsigned long end)
6700 {
6701 return NULL;
6702 }
6703 int ftrace_mod_get_kallsym(unsigned int symnum, unsigned long *value,
6704 char *type, char *name, char *module_name,
6705 int *exported)
6706 {
6707 int ret;
6708
6709 preempt_disable();
6710 ret = ftrace_get_trampoline_kallsym(symnum, value, type, name,
6711 module_name, exported);
6712 preempt_enable();
6713 return ret;
6714 }
6715 #endif /* CONFIG_MODULES */
6716
6717 struct ftrace_init_func {
6718 struct list_head list;
6719 unsigned long ip;
6720 };
6721
6722 /* Clear any init ips from hashes */
6723 static void
6724 clear_func_from_hash(struct ftrace_init_func *func, struct ftrace_hash *hash)
6725 {
6726 struct ftrace_func_entry *entry;
6727
6728 entry = ftrace_lookup_ip(hash, func->ip);
6729 /*
6730 * Do not allow this rec to match again.
6731 * Yeah, it may waste some memory, but will be removed
6732 * if/when the hash is modified again.
6733 */
6734 if (entry)
6735 entry->ip = 0;
6736 }
6737
6738 static void
6739 clear_func_from_hashes(struct ftrace_init_func *func)
6740 {
6741 struct trace_array *tr;
6742
6743 mutex_lock(&trace_types_lock);
6744 list_for_each_entry(tr, &ftrace_trace_arrays, list) {
6745 if (!tr->ops || !tr->ops->func_hash)
6746 continue;
6747 mutex_lock(&tr->ops->func_hash->regex_lock);
6748 clear_func_from_hash(func, tr->ops->func_hash->filter_hash);
6749 clear_func_from_hash(func, tr->ops->func_hash->notrace_hash);
6750 mutex_unlock(&tr->ops->func_hash->regex_lock);
6751 }
6752 mutex_unlock(&trace_types_lock);
6753 }
6754
6755 static void add_to_clear_hash_list(struct list_head *clear_list,
6756 struct dyn_ftrace *rec)
6757 {
6758 struct ftrace_init_func *func;
6759
6760 func = kmalloc(sizeof(*func), GFP_KERNEL);
6761 if (!func) {
6762 MEM_FAIL(1, "alloc failure, ftrace filter could be stale\n");
6763 return;
6764 }
6765
6766 func->ip = rec->ip;
6767 list_add(&func->list, clear_list);
6768 }
6769
6770 void ftrace_free_mem(struct module *mod, void *start_ptr, void *end_ptr)
6771 {
6772 unsigned long start = (unsigned long)(start_ptr);
6773 unsigned long end = (unsigned long)(end_ptr);
6774 struct ftrace_page **last_pg = &ftrace_pages_start;
6775 struct ftrace_page *pg;
6776 struct dyn_ftrace *rec;
6777 struct dyn_ftrace key;
6778 struct ftrace_mod_map *mod_map = NULL;
6779 struct ftrace_init_func *func, *func_next;
6780 struct list_head clear_hash;
6781
6782 INIT_LIST_HEAD(&clear_hash);
6783
6784 key.ip = start;
6785 key.flags = end; /* overload flags, as it is unsigned long */
6786
6787 mutex_lock(&ftrace_lock);
6788
6789 /*
6790 * If we are freeing module init memory, then check if
6791 * any tracer is active. If so, we need to save a mapping of
6792 * the module functions being freed with the address.
6793 */
6794 if (mod && ftrace_ops_list != &ftrace_list_end)
6795 mod_map = allocate_ftrace_mod_map(mod, start, end);
6796
6797 for (pg = ftrace_pages_start; pg; last_pg = &pg->next, pg = *last_pg) {
6798 if (end < pg->records[0].ip ||
6799 start >= (pg->records[pg->index - 1].ip + MCOUNT_INSN_SIZE))
6800 continue;
6801 again:
6802 rec = bsearch(&key, pg->records, pg->index,
6803 sizeof(struct dyn_ftrace),
6804 ftrace_cmp_recs);
6805 if (!rec)
6806 continue;
6807
6808 /* rec will be cleared from hashes after ftrace_lock unlock */
6809 add_to_clear_hash_list(&clear_hash, rec);
6810
6811 if (mod_map)
6812 save_ftrace_mod_rec(mod_map, rec);
6813
6814 pg->index--;
6815 ftrace_update_tot_cnt--;
6816 if (!pg->index) {
6817 *last_pg = pg->next;
6818 if (pg->records) {
6819 free_pages((unsigned long)pg->records, pg->order);
6820 ftrace_number_of_pages -= 1 << pg->order;
6821 }
6822 ftrace_number_of_groups--;
6823 kfree(pg);
6824 pg = container_of(last_pg, struct ftrace_page, next);
6825 if (!(*last_pg))
6826 ftrace_pages = pg;
6827 continue;
6828 }
6829 memmove(rec, rec + 1,
6830 (pg->index - (rec - pg->records)) * sizeof(*rec));
6831 /* More than one function may be in this block */
6832 goto again;
6833 }
6834 mutex_unlock(&ftrace_lock);
6835
6836 list_for_each_entry_safe(func, func_next, &clear_hash, list) {
6837 clear_func_from_hashes(func);
6838 kfree(func);
6839 }
6840 }
6841
6842 void __init ftrace_free_init_mem(void)
6843 {
6844 void *start = (void *)(&__init_begin);
6845 void *end = (void *)(&__init_end);
6846
6847 ftrace_free_mem(NULL, start, end);
6848 }
6849
6850 void __init ftrace_init(void)
6851 {
6852 extern unsigned long __start_mcount_loc[];
6853 extern unsigned long __stop_mcount_loc[];
6854 unsigned long count, flags;
6855 int ret;
6856
6857 local_irq_save(flags);
6858 ret = ftrace_dyn_arch_init();
6859 local_irq_restore(flags);
6860 if (ret)
6861 goto failed;
6862
6863 count = __stop_mcount_loc - __start_mcount_loc;
6864 if (!count) {
6865 pr_info("ftrace: No functions to be traced?\n");
6866 goto failed;
6867 }
6868
6869 pr_info("ftrace: allocating %ld entries in %ld pages\n",
6870 count, count / ENTRIES_PER_PAGE + 1);
6871
6872 last_ftrace_enabled = ftrace_enabled = 1;
6873
6874 ret = ftrace_process_locs(NULL,
6875 __start_mcount_loc,
6876 __stop_mcount_loc);
6877
6878 pr_info("ftrace: allocated %ld pages with %ld groups\n",
6879 ftrace_number_of_pages, ftrace_number_of_groups);
6880
6881 set_ftrace_early_filters();
6882
6883 return;
6884 failed:
6885 ftrace_disabled = 1;
6886 }
6887
6888 /* Do nothing if arch does not support this */
6889 void __weak arch_ftrace_update_trampoline(struct ftrace_ops *ops)
6890 {
6891 }
6892
6893 static void ftrace_update_trampoline(struct ftrace_ops *ops)
6894 {
6895 unsigned long trampoline = ops->trampoline;
6896
6897 arch_ftrace_update_trampoline(ops);
6898 if (ops->trampoline && ops->trampoline != trampoline &&
6899 (ops->flags & FTRACE_OPS_FL_ALLOC_TRAMP)) {
6900 /* Add to kallsyms before the perf events */
6901 ftrace_add_trampoline_to_kallsyms(ops);
6902 perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_OOL,
6903 ops->trampoline, ops->trampoline_size, false,
6904 FTRACE_TRAMPOLINE_SYM);
6905 /*
6906 * Record the perf text poke event after the ksymbol register
6907 * event.
6908 */
6909 perf_event_text_poke((void *)ops->trampoline, NULL, 0,
6910 (void *)ops->trampoline,
6911 ops->trampoline_size);
6912 }
6913 }
6914
6915 void ftrace_init_trace_array(struct trace_array *tr)
6916 {
6917 INIT_LIST_HEAD(&tr->func_probes);
6918 INIT_LIST_HEAD(&tr->mod_trace);
6919 INIT_LIST_HEAD(&tr->mod_notrace);
6920 }
6921 #else
6922
6923 struct ftrace_ops global_ops = {
6924 .func = ftrace_stub,
6925 .flags = FTRACE_OPS_FL_INITIALIZED |
6926 FTRACE_OPS_FL_PID,
6927 };
6928
6929 static int __init ftrace_nodyn_init(void)
6930 {
6931 ftrace_enabled = 1;
6932 return 0;
6933 }
6934 core_initcall(ftrace_nodyn_init);
6935
6936 static inline int ftrace_init_dyn_tracefs(struct dentry *d_tracer) { return 0; }
6937 static inline void ftrace_startup_enable(int command) { }
6938 static inline void ftrace_startup_all(int command) { }
6939
6940 # define ftrace_startup_sysctl() do { } while (0)
6941 # define ftrace_shutdown_sysctl() do { } while (0)
6942
6943 static void ftrace_update_trampoline(struct ftrace_ops *ops)
6944 {
6945 }
6946
6947 #endif /* CONFIG_DYNAMIC_FTRACE */
6948
6949 __init void ftrace_init_global_array_ops(struct trace_array *tr)
6950 {
6951 tr->ops = &global_ops;
6952 tr->ops->private = tr;
6953 ftrace_init_trace_array(tr);
6954 }
6955
6956 void ftrace_init_array_ops(struct trace_array *tr, ftrace_func_t func)
6957 {
6958 /* If we filter on pids, update to use the pid function */
6959 if (tr->flags & TRACE_ARRAY_FL_GLOBAL) {
6960 if (WARN_ON(tr->ops->func != ftrace_stub))
6961 printk("ftrace ops had %pS for function\n",
6962 tr->ops->func);
6963 }
6964 tr->ops->func = func;
6965 tr->ops->private = tr;
6966 }
6967
6968 void ftrace_reset_array_ops(struct trace_array *tr)
6969 {
6970 tr->ops->func = ftrace_stub;
6971 }
6972
6973 static nokprobe_inline void
6974 __ftrace_ops_list_func(unsigned long ip, unsigned long parent_ip,
6975 struct ftrace_ops *ignored, struct ftrace_regs *fregs)
6976 {
6977 struct pt_regs *regs = ftrace_get_regs(fregs);
6978 struct ftrace_ops *op;
6979 int bit;
6980
6981 bit = trace_test_and_set_recursion(ip, parent_ip, TRACE_LIST_START);
6982 if (bit < 0)
6983 return;
6984
6985 /*
6986 * Some of the ops may be dynamically allocated,
6987 * they must be freed after a synchronize_rcu().
6988 */
6989 preempt_disable_notrace();
6990
6991 do_for_each_ftrace_op(op, ftrace_ops_list) {
6992 /* Stub functions don't need to be called nor tested */
6993 if (op->flags & FTRACE_OPS_FL_STUB)
6994 continue;
6995 /*
6996 * Check the following for each ops before calling their func:
6997 * if RCU flag is set, then rcu_is_watching() must be true
6998 * if PER_CPU is set, then ftrace_function_local_disable()
6999 * must be false
7000 * Otherwise test if the ip matches the ops filter
7001 *
7002 * If any of the above fails then the op->func() is not executed.
7003 */
7004 if ((!(op->flags & FTRACE_OPS_FL_RCU) || rcu_is_watching()) &&
7005 ftrace_ops_test(op, ip, regs)) {
7006 if (FTRACE_WARN_ON(!op->func)) {
7007 pr_warn("op=%p %pS\n", op, op);
7008 goto out;
7009 }
7010 op->func(ip, parent_ip, op, fregs);
7011 }
7012 } while_for_each_ftrace_op(op);
7013 out:
7014 preempt_enable_notrace();
7015 trace_clear_recursion(bit);
7016 }
7017
7018 /*
7019 * Some archs only support passing ip and parent_ip. Even though
7020 * the list function ignores the op parameter, we do not want any
7021 * C side effects, where a function is called without the caller
7022 * sending a third parameter.
7023 * Archs are to support both the regs and ftrace_ops at the same time.
7024 * If they support ftrace_ops, it is assumed they support regs.
7025 * If call backs want to use regs, they must either check for regs
7026 * being NULL, or CONFIG_DYNAMIC_FTRACE_WITH_REGS.
7027 * Note, CONFIG_DYNAMIC_FTRACE_WITH_REGS expects a full regs to be saved.
7028 * An architecture can pass partial regs with ftrace_ops and still
7029 * set the ARCH_SUPPORTS_FTRACE_OPS.
7030 */
7031 #if ARCH_SUPPORTS_FTRACE_OPS
7032 static void ftrace_ops_list_func(unsigned long ip, unsigned long parent_ip,
7033 struct ftrace_ops *op, struct ftrace_regs *fregs)
7034 {
7035 __ftrace_ops_list_func(ip, parent_ip, NULL, fregs);
7036 }
7037 NOKPROBE_SYMBOL(ftrace_ops_list_func);
7038 #else
7039 static void ftrace_ops_no_ops(unsigned long ip, unsigned long parent_ip)
7040 {
7041 __ftrace_ops_list_func(ip, parent_ip, NULL, NULL);
7042 }
7043 NOKPROBE_SYMBOL(ftrace_ops_no_ops);
7044 #endif
7045
7046 /*
7047 * If there's only one function registered but it does not support
7048 * recursion, needs RCU protection and/or requires per cpu handling, then
7049 * this function will be called by the mcount trampoline.
7050 */
7051 static void ftrace_ops_assist_func(unsigned long ip, unsigned long parent_ip,
7052 struct ftrace_ops *op, struct ftrace_regs *fregs)
7053 {
7054 int bit;
7055
7056 bit = trace_test_and_set_recursion(ip, parent_ip, TRACE_LIST_START);
7057 if (bit < 0)
7058 return;
7059
7060 preempt_disable_notrace();
7061
7062 if (!(op->flags & FTRACE_OPS_FL_RCU) || rcu_is_watching())
7063 op->func(ip, parent_ip, op, fregs);
7064
7065 preempt_enable_notrace();
7066 trace_clear_recursion(bit);
7067 }
7068 NOKPROBE_SYMBOL(ftrace_ops_assist_func);
7069
7070 /**
7071 * ftrace_ops_get_func - get the function a trampoline should call
7072 * @ops: the ops to get the function for
7073 *
7074 * Normally the mcount trampoline will call the ops->func, but there
7075 * are times that it should not. For example, if the ops does not
7076 * have its own recursion protection, then it should call the
7077 * ftrace_ops_assist_func() instead.
7078 *
7079 * Returns the function that the trampoline should call for @ops.
7080 */
7081 ftrace_func_t ftrace_ops_get_func(struct ftrace_ops *ops)
7082 {
7083 /*
7084 * If the function does not handle recursion or needs to be RCU safe,
7085 * then we need to call the assist handler.
7086 */
7087 if (ops->flags & (FTRACE_OPS_FL_RECURSION |
7088 FTRACE_OPS_FL_RCU))
7089 return ftrace_ops_assist_func;
7090
7091 return ops->func;
7092 }
7093
7094 static void
7095 ftrace_filter_pid_sched_switch_probe(void *data, bool preempt,
7096 struct task_struct *prev, struct task_struct *next)
7097 {
7098 struct trace_array *tr = data;
7099 struct trace_pid_list *pid_list;
7100 struct trace_pid_list *no_pid_list;
7101
7102 pid_list = rcu_dereference_sched(tr->function_pids);
7103 no_pid_list = rcu_dereference_sched(tr->function_no_pids);
7104
7105 if (trace_ignore_this_task(pid_list, no_pid_list, next))
7106 this_cpu_write(tr->array_buffer.data->ftrace_ignore_pid,
7107 FTRACE_PID_IGNORE);
7108 else
7109 this_cpu_write(tr->array_buffer.data->ftrace_ignore_pid,
7110 next->pid);
7111 }
7112
7113 static void
7114 ftrace_pid_follow_sched_process_fork(void *data,
7115 struct task_struct *self,
7116 struct task_struct *task)
7117 {
7118 struct trace_pid_list *pid_list;
7119 struct trace_array *tr = data;
7120
7121 pid_list = rcu_dereference_sched(tr->function_pids);
7122 trace_filter_add_remove_task(pid_list, self, task);
7123
7124 pid_list = rcu_dereference_sched(tr->function_no_pids);
7125 trace_filter_add_remove_task(pid_list, self, task);
7126 }
7127
7128 static void
7129 ftrace_pid_follow_sched_process_exit(void *data, struct task_struct *task)
7130 {
7131 struct trace_pid_list *pid_list;
7132 struct trace_array *tr = data;
7133
7134 pid_list = rcu_dereference_sched(tr->function_pids);
7135 trace_filter_add_remove_task(pid_list, NULL, task);
7136
7137 pid_list = rcu_dereference_sched(tr->function_no_pids);
7138 trace_filter_add_remove_task(pid_list, NULL, task);
7139 }
7140
7141 void ftrace_pid_follow_fork(struct trace_array *tr, bool enable)
7142 {
7143 if (enable) {
7144 register_trace_sched_process_fork(ftrace_pid_follow_sched_process_fork,
7145 tr);
7146 register_trace_sched_process_free(ftrace_pid_follow_sched_process_exit,
7147 tr);
7148 } else {
7149 unregister_trace_sched_process_fork(ftrace_pid_follow_sched_process_fork,
7150 tr);
7151 unregister_trace_sched_process_free(ftrace_pid_follow_sched_process_exit,
7152 tr);
7153 }
7154 }
7155
7156 static void clear_ftrace_pids(struct trace_array *tr, int type)
7157 {
7158 struct trace_pid_list *pid_list;
7159 struct trace_pid_list *no_pid_list;
7160 int cpu;
7161
7162 pid_list = rcu_dereference_protected(tr->function_pids,
7163 lockdep_is_held(&ftrace_lock));
7164 no_pid_list = rcu_dereference_protected(tr->function_no_pids,
7165 lockdep_is_held(&ftrace_lock));
7166
7167 /* Make sure there's something to do */
7168 if (!pid_type_enabled(type, pid_list, no_pid_list))
7169 return;
7170
7171 /* See if the pids still need to be checked after this */
7172 if (!still_need_pid_events(type, pid_list, no_pid_list)) {
7173 unregister_trace_sched_switch(ftrace_filter_pid_sched_switch_probe, tr);
7174 for_each_possible_cpu(cpu)
7175 per_cpu_ptr(tr->array_buffer.data, cpu)->ftrace_ignore_pid = FTRACE_PID_TRACE;
7176 }
7177
7178 if (type & TRACE_PIDS)
7179 rcu_assign_pointer(tr->function_pids, NULL);
7180
7181 if (type & TRACE_NO_PIDS)
7182 rcu_assign_pointer(tr->function_no_pids, NULL);
7183
7184 /* Wait till all users are no longer using pid filtering */
7185 synchronize_rcu();
7186
7187 if ((type & TRACE_PIDS) && pid_list)
7188 trace_free_pid_list(pid_list);
7189
7190 if ((type & TRACE_NO_PIDS) && no_pid_list)
7191 trace_free_pid_list(no_pid_list);
7192 }
7193
7194 void ftrace_clear_pids(struct trace_array *tr)
7195 {
7196 mutex_lock(&ftrace_lock);
7197
7198 clear_ftrace_pids(tr, TRACE_PIDS | TRACE_NO_PIDS);
7199
7200 mutex_unlock(&ftrace_lock);
7201 }
7202
7203 static void ftrace_pid_reset(struct trace_array *tr, int type)
7204 {
7205 mutex_lock(&ftrace_lock);
7206 clear_ftrace_pids(tr, type);
7207
7208 ftrace_update_pid_func();
7209 ftrace_startup_all(0);
7210
7211 mutex_unlock(&ftrace_lock);
7212 }
7213
7214 /* Greater than any max PID */
7215 #define FTRACE_NO_PIDS (void *)(PID_MAX_LIMIT + 1)
7216
7217 static void *fpid_start(struct seq_file *m, loff_t *pos)
7218 __acquires(RCU)
7219 {
7220 struct trace_pid_list *pid_list;
7221 struct trace_array *tr = m->private;
7222
7223 mutex_lock(&ftrace_lock);
7224 rcu_read_lock_sched();
7225
7226 pid_list = rcu_dereference_sched(tr->function_pids);
7227
7228 if (!pid_list)
7229 return !(*pos) ? FTRACE_NO_PIDS : NULL;
7230
7231 return trace_pid_start(pid_list, pos);
7232 }
7233
7234 static void *fpid_next(struct seq_file *m, void *v, loff_t *pos)
7235 {
7236 struct trace_array *tr = m->private;
7237 struct trace_pid_list *pid_list = rcu_dereference_sched(tr->function_pids);
7238
7239 if (v == FTRACE_NO_PIDS) {
7240 (*pos)++;
7241 return NULL;
7242 }
7243 return trace_pid_next(pid_list, v, pos);
7244 }
7245
7246 static void fpid_stop(struct seq_file *m, void *p)
7247 __releases(RCU)
7248 {
7249 rcu_read_unlock_sched();
7250 mutex_unlock(&ftrace_lock);
7251 }
7252
7253 static int fpid_show(struct seq_file *m, void *v)
7254 {
7255 if (v == FTRACE_NO_PIDS) {
7256 seq_puts(m, "no pid\n");
7257 return 0;
7258 }
7259
7260 return trace_pid_show(m, v);
7261 }
7262
7263 static const struct seq_operations ftrace_pid_sops = {
7264 .start = fpid_start,
7265 .next = fpid_next,
7266 .stop = fpid_stop,
7267 .show = fpid_show,
7268 };
7269
7270 static void *fnpid_start(struct seq_file *m, loff_t *pos)
7271 __acquires(RCU)
7272 {
7273 struct trace_pid_list *pid_list;
7274 struct trace_array *tr = m->private;
7275
7276 mutex_lock(&ftrace_lock);
7277 rcu_read_lock_sched();
7278
7279 pid_list = rcu_dereference_sched(tr->function_no_pids);
7280
7281 if (!pid_list)
7282 return !(*pos) ? FTRACE_NO_PIDS : NULL;
7283
7284 return trace_pid_start(pid_list, pos);
7285 }
7286
7287 static void *fnpid_next(struct seq_file *m, void *v, loff_t *pos)
7288 {
7289 struct trace_array *tr = m->private;
7290 struct trace_pid_list *pid_list = rcu_dereference_sched(tr->function_no_pids);
7291
7292 if (v == FTRACE_NO_PIDS) {
7293 (*pos)++;
7294 return NULL;
7295 }
7296 return trace_pid_next(pid_list, v, pos);
7297 }
7298
7299 static const struct seq_operations ftrace_no_pid_sops = {
7300 .start = fnpid_start,
7301 .next = fnpid_next,
7302 .stop = fpid_stop,
7303 .show = fpid_show,
7304 };
7305
7306 static int pid_open(struct inode *inode, struct file *file, int type)
7307 {
7308 const struct seq_operations *seq_ops;
7309 struct trace_array *tr = inode->i_private;
7310 struct seq_file *m;
7311 int ret = 0;
7312
7313 ret = tracing_check_open_get_tr(tr);
7314 if (ret)
7315 return ret;
7316
7317 if ((file->f_mode & FMODE_WRITE) &&
7318 (file->f_flags & O_TRUNC))
7319 ftrace_pid_reset(tr, type);
7320
7321 switch (type) {
7322 case TRACE_PIDS:
7323 seq_ops = &ftrace_pid_sops;
7324 break;
7325 case TRACE_NO_PIDS:
7326 seq_ops = &ftrace_no_pid_sops;
7327 break;
7328 default:
7329 trace_array_put(tr);
7330 WARN_ON_ONCE(1);
7331 return -EINVAL;
7332 }
7333
7334 ret = seq_open(file, seq_ops);
7335 if (ret < 0) {
7336 trace_array_put(tr);
7337 } else {
7338 m = file->private_data;
7339 /* copy tr over to seq ops */
7340 m->private = tr;
7341 }
7342
7343 return ret;
7344 }
7345
7346 static int
7347 ftrace_pid_open(struct inode *inode, struct file *file)
7348 {
7349 return pid_open(inode, file, TRACE_PIDS);
7350 }
7351
7352 static int
7353 ftrace_no_pid_open(struct inode *inode, struct file *file)
7354 {
7355 return pid_open(inode, file, TRACE_NO_PIDS);
7356 }
7357
7358 static void ignore_task_cpu(void *data)
7359 {
7360 struct trace_array *tr = data;
7361 struct trace_pid_list *pid_list;
7362 struct trace_pid_list *no_pid_list;
7363
7364 /*
7365 * This function is called by on_each_cpu() while the
7366 * event_mutex is held.
7367 */
7368 pid_list = rcu_dereference_protected(tr->function_pids,
7369 mutex_is_locked(&ftrace_lock));
7370 no_pid_list = rcu_dereference_protected(tr->function_no_pids,
7371 mutex_is_locked(&ftrace_lock));
7372
7373 if (trace_ignore_this_task(pid_list, no_pid_list, current))
7374 this_cpu_write(tr->array_buffer.data->ftrace_ignore_pid,
7375 FTRACE_PID_IGNORE);
7376 else
7377 this_cpu_write(tr->array_buffer.data->ftrace_ignore_pid,
7378 current->pid);
7379 }
7380
7381 static ssize_t
7382 pid_write(struct file *filp, const char __user *ubuf,
7383 size_t cnt, loff_t *ppos, int type)
7384 {
7385 struct seq_file *m = filp->private_data;
7386 struct trace_array *tr = m->private;
7387 struct trace_pid_list *filtered_pids;
7388 struct trace_pid_list *other_pids;
7389 struct trace_pid_list *pid_list;
7390 ssize_t ret;
7391
7392 if (!cnt)
7393 return 0;
7394
7395 mutex_lock(&ftrace_lock);
7396
7397 switch (type) {
7398 case TRACE_PIDS:
7399 filtered_pids = rcu_dereference_protected(tr->function_pids,
7400 lockdep_is_held(&ftrace_lock));
7401 other_pids = rcu_dereference_protected(tr->function_no_pids,
7402 lockdep_is_held(&ftrace_lock));
7403 break;
7404 case TRACE_NO_PIDS:
7405 filtered_pids = rcu_dereference_protected(tr->function_no_pids,
7406 lockdep_is_held(&ftrace_lock));
7407 other_pids = rcu_dereference_protected(tr->function_pids,
7408 lockdep_is_held(&ftrace_lock));
7409 break;
7410 default:
7411 ret = -EINVAL;
7412 WARN_ON_ONCE(1);
7413 goto out;
7414 }
7415
7416 ret = trace_pid_write(filtered_pids, &pid_list, ubuf, cnt);
7417 if (ret < 0)
7418 goto out;
7419
7420 switch (type) {
7421 case TRACE_PIDS:
7422 rcu_assign_pointer(tr->function_pids, pid_list);
7423 break;
7424 case TRACE_NO_PIDS:
7425 rcu_assign_pointer(tr->function_no_pids, pid_list);
7426 break;
7427 }
7428
7429
7430 if (filtered_pids) {
7431 synchronize_rcu();
7432 trace_free_pid_list(filtered_pids);
7433 } else if (pid_list && !other_pids) {
7434 /* Register a probe to set whether to ignore the tracing of a task */
7435 register_trace_sched_switch(ftrace_filter_pid_sched_switch_probe, tr);
7436 }
7437
7438 /*
7439 * Ignoring of pids is done at task switch. But we have to
7440 * check for those tasks that are currently running.
7441 * Always do this in case a pid was appended or removed.
7442 */
7443 on_each_cpu(ignore_task_cpu, tr, 1);
7444
7445 ftrace_update_pid_func();
7446 ftrace_startup_all(0);
7447 out:
7448 mutex_unlock(&ftrace_lock);
7449
7450 if (ret > 0)
7451 *ppos += ret;
7452
7453 return ret;
7454 }
7455
7456 static ssize_t
7457 ftrace_pid_write(struct file *filp, const char __user *ubuf,
7458 size_t cnt, loff_t *ppos)
7459 {
7460 return pid_write(filp, ubuf, cnt, ppos, TRACE_PIDS);
7461 }
7462
7463 static ssize_t
7464 ftrace_no_pid_write(struct file *filp, const char __user *ubuf,
7465 size_t cnt, loff_t *ppos)
7466 {
7467 return pid_write(filp, ubuf, cnt, ppos, TRACE_NO_PIDS);
7468 }
7469
7470 static int
7471 ftrace_pid_release(struct inode *inode, struct file *file)
7472 {
7473 struct trace_array *tr = inode->i_private;
7474
7475 trace_array_put(tr);
7476
7477 return seq_release(inode, file);
7478 }
7479
7480 static const struct file_operations ftrace_pid_fops = {
7481 .open = ftrace_pid_open,
7482 .write = ftrace_pid_write,
7483 .read = seq_read,
7484 .llseek = tracing_lseek,
7485 .release = ftrace_pid_release,
7486 };
7487
7488 static const struct file_operations ftrace_no_pid_fops = {
7489 .open = ftrace_no_pid_open,
7490 .write = ftrace_no_pid_write,
7491 .read = seq_read,
7492 .llseek = tracing_lseek,
7493 .release = ftrace_pid_release,
7494 };
7495
7496 void ftrace_init_tracefs(struct trace_array *tr, struct dentry *d_tracer)
7497 {
7498 trace_create_file("set_ftrace_pid", TRACE_MODE_WRITE, d_tracer,
7499 tr, &ftrace_pid_fops);
7500 trace_create_file("set_ftrace_notrace_pid", TRACE_MODE_WRITE,
7501 d_tracer, tr, &ftrace_no_pid_fops);
7502 }
7503
7504 void __init ftrace_init_tracefs_toplevel(struct trace_array *tr,
7505 struct dentry *d_tracer)
7506 {
7507 /* Only the top level directory has the dyn_tracefs and profile */
7508 WARN_ON(!(tr->flags & TRACE_ARRAY_FL_GLOBAL));
7509
7510 ftrace_init_dyn_tracefs(d_tracer);
7511 ftrace_profile_tracefs(d_tracer);
7512 }
7513
7514 /**
7515 * ftrace_kill - kill ftrace
7516 *
7517 * This function should be used by panic code. It stops ftrace
7518 * but in a not so nice way. If you need to simply kill ftrace
7519 * from a non-atomic section, use ftrace_kill.
7520 */
7521 void ftrace_kill(void)
7522 {
7523 ftrace_disabled = 1;
7524 ftrace_enabled = 0;
7525 ftrace_trace_function = ftrace_stub;
7526 }
7527
7528 /**
7529 * ftrace_is_dead - Test if ftrace is dead or not.
7530 *
7531 * Returns 1 if ftrace is "dead", zero otherwise.
7532 */
7533 int ftrace_is_dead(void)
7534 {
7535 return ftrace_disabled;
7536 }
7537
7538 /**
7539 * register_ftrace_function - register a function for profiling
7540 * @ops - ops structure that holds the function for profiling.
7541 *
7542 * Register a function to be called by all functions in the
7543 * kernel.
7544 *
7545 * Note: @ops->func and all the functions it calls must be labeled
7546 * with "notrace", otherwise it will go into a
7547 * recursive loop.
7548 */
7549 int register_ftrace_function(struct ftrace_ops *ops)
7550 {
7551 int ret;
7552
7553 ftrace_ops_init(ops);
7554
7555 mutex_lock(&ftrace_lock);
7556
7557 ret = ftrace_startup(ops, 0);
7558
7559 mutex_unlock(&ftrace_lock);
7560
7561 return ret;
7562 }
7563 EXPORT_SYMBOL_GPL(register_ftrace_function);
7564
7565 /**
7566 * unregister_ftrace_function - unregister a function for profiling.
7567 * @ops - ops structure that holds the function to unregister
7568 *
7569 * Unregister a function that was added to be called by ftrace profiling.
7570 */
7571 int unregister_ftrace_function(struct ftrace_ops *ops)
7572 {
7573 int ret;
7574
7575 mutex_lock(&ftrace_lock);
7576 ret = ftrace_shutdown(ops, 0);
7577 mutex_unlock(&ftrace_lock);
7578
7579 return ret;
7580 }
7581 EXPORT_SYMBOL_GPL(unregister_ftrace_function);
7582
7583 static bool is_permanent_ops_registered(void)
7584 {
7585 struct ftrace_ops *op;
7586
7587 do_for_each_ftrace_op(op, ftrace_ops_list) {
7588 if (op->flags & FTRACE_OPS_FL_PERMANENT)
7589 return true;
7590 } while_for_each_ftrace_op(op);
7591
7592 return false;
7593 }
7594
7595 int
7596 ftrace_enable_sysctl(struct ctl_table *table, int write,
7597 void *buffer, size_t *lenp, loff_t *ppos)
7598 {
7599 int ret = -ENODEV;
7600
7601 mutex_lock(&ftrace_lock);
7602
7603 if (unlikely(ftrace_disabled))
7604 goto out;
7605
7606 ret = proc_dointvec(table, write, buffer, lenp, ppos);
7607
7608 if (ret || !write || (last_ftrace_enabled == !!ftrace_enabled))
7609 goto out;
7610
7611 if (ftrace_enabled) {
7612
7613 /* we are starting ftrace again */
7614 if (rcu_dereference_protected(ftrace_ops_list,
7615 lockdep_is_held(&ftrace_lock)) != &ftrace_list_end)
7616 update_ftrace_function();
7617
7618 ftrace_startup_sysctl();
7619
7620 } else {
7621 if (is_permanent_ops_registered()) {
7622 ftrace_enabled = true;
7623 ret = -EBUSY;
7624 goto out;
7625 }
7626
7627 /* stopping ftrace calls (just send to ftrace_stub) */
7628 ftrace_trace_function = ftrace_stub;
7629
7630 ftrace_shutdown_sysctl();
7631 }
7632
7633 last_ftrace_enabled = !!ftrace_enabled;
7634 out:
7635 mutex_unlock(&ftrace_lock);
7636 return ret;
7637 }