]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - kernel/trace/ring_buffer.c
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit...
[mirror_ubuntu-artful-kernel.git] / kernel / trace / ring_buffer.c
1 /*
2 * Generic ring buffer
3 *
4 * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
5 */
6 #include <linux/ring_buffer.h>
7 #include <linux/trace_clock.h>
8 #include <linux/ftrace_irq.h>
9 #include <linux/spinlock.h>
10 #include <linux/debugfs.h>
11 #include <linux/uaccess.h>
12 #include <linux/hardirq.h>
13 #include <linux/kmemcheck.h>
14 #include <linux/module.h>
15 #include <linux/percpu.h>
16 #include <linux/mutex.h>
17 #include <linux/slab.h>
18 #include <linux/init.h>
19 #include <linux/hash.h>
20 #include <linux/list.h>
21 #include <linux/cpu.h>
22 #include <linux/fs.h>
23
24 #include <asm/local.h>
25 #include "trace.h"
26
27 /*
28 * The ring buffer header is special. We must manually up keep it.
29 */
30 int ring_buffer_print_entry_header(struct trace_seq *s)
31 {
32 int ret;
33
34 ret = trace_seq_printf(s, "# compressed entry header\n");
35 ret = trace_seq_printf(s, "\ttype_len : 5 bits\n");
36 ret = trace_seq_printf(s, "\ttime_delta : 27 bits\n");
37 ret = trace_seq_printf(s, "\tarray : 32 bits\n");
38 ret = trace_seq_printf(s, "\n");
39 ret = trace_seq_printf(s, "\tpadding : type == %d\n",
40 RINGBUF_TYPE_PADDING);
41 ret = trace_seq_printf(s, "\ttime_extend : type == %d\n",
42 RINGBUF_TYPE_TIME_EXTEND);
43 ret = trace_seq_printf(s, "\tdata max type_len == %d\n",
44 RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
45
46 return ret;
47 }
48
49 /*
50 * The ring buffer is made up of a list of pages. A separate list of pages is
51 * allocated for each CPU. A writer may only write to a buffer that is
52 * associated with the CPU it is currently executing on. A reader may read
53 * from any per cpu buffer.
54 *
55 * The reader is special. For each per cpu buffer, the reader has its own
56 * reader page. When a reader has read the entire reader page, this reader
57 * page is swapped with another page in the ring buffer.
58 *
59 * Now, as long as the writer is off the reader page, the reader can do what
60 * ever it wants with that page. The writer will never write to that page
61 * again (as long as it is out of the ring buffer).
62 *
63 * Here's some silly ASCII art.
64 *
65 * +------+
66 * |reader| RING BUFFER
67 * |page |
68 * +------+ +---+ +---+ +---+
69 * | |-->| |-->| |
70 * +---+ +---+ +---+
71 * ^ |
72 * | |
73 * +---------------+
74 *
75 *
76 * +------+
77 * |reader| RING BUFFER
78 * |page |------------------v
79 * +------+ +---+ +---+ +---+
80 * | |-->| |-->| |
81 * +---+ +---+ +---+
82 * ^ |
83 * | |
84 * +---------------+
85 *
86 *
87 * +------+
88 * |reader| RING BUFFER
89 * |page |------------------v
90 * +------+ +---+ +---+ +---+
91 * ^ | |-->| |-->| |
92 * | +---+ +---+ +---+
93 * | |
94 * | |
95 * +------------------------------+
96 *
97 *
98 * +------+
99 * |buffer| RING BUFFER
100 * |page |------------------v
101 * +------+ +---+ +---+ +---+
102 * ^ | | | |-->| |
103 * | New +---+ +---+ +---+
104 * | Reader------^ |
105 * | page |
106 * +------------------------------+
107 *
108 *
109 * After we make this swap, the reader can hand this page off to the splice
110 * code and be done with it. It can even allocate a new page if it needs to
111 * and swap that into the ring buffer.
112 *
113 * We will be using cmpxchg soon to make all this lockless.
114 *
115 */
116
117 /*
118 * A fast way to enable or disable all ring buffers is to
119 * call tracing_on or tracing_off. Turning off the ring buffers
120 * prevents all ring buffers from being recorded to.
121 * Turning this switch on, makes it OK to write to the
122 * ring buffer, if the ring buffer is enabled itself.
123 *
124 * There's three layers that must be on in order to write
125 * to the ring buffer.
126 *
127 * 1) This global flag must be set.
128 * 2) The ring buffer must be enabled for recording.
129 * 3) The per cpu buffer must be enabled for recording.
130 *
131 * In case of an anomaly, this global flag has a bit set that
132 * will permantly disable all ring buffers.
133 */
134
135 /*
136 * Global flag to disable all recording to ring buffers
137 * This has two bits: ON, DISABLED
138 *
139 * ON DISABLED
140 * ---- ----------
141 * 0 0 : ring buffers are off
142 * 1 0 : ring buffers are on
143 * X 1 : ring buffers are permanently disabled
144 */
145
146 enum {
147 RB_BUFFERS_ON_BIT = 0,
148 RB_BUFFERS_DISABLED_BIT = 1,
149 };
150
151 enum {
152 RB_BUFFERS_ON = 1 << RB_BUFFERS_ON_BIT,
153 RB_BUFFERS_DISABLED = 1 << RB_BUFFERS_DISABLED_BIT,
154 };
155
156 static unsigned long ring_buffer_flags __read_mostly = RB_BUFFERS_ON;
157
158 #define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
159
160 /**
161 * tracing_on - enable all tracing buffers
162 *
163 * This function enables all tracing buffers that may have been
164 * disabled with tracing_off.
165 */
166 void tracing_on(void)
167 {
168 set_bit(RB_BUFFERS_ON_BIT, &ring_buffer_flags);
169 }
170 EXPORT_SYMBOL_GPL(tracing_on);
171
172 /**
173 * tracing_off - turn off all tracing buffers
174 *
175 * This function stops all tracing buffers from recording data.
176 * It does not disable any overhead the tracers themselves may
177 * be causing. This function simply causes all recording to
178 * the ring buffers to fail.
179 */
180 void tracing_off(void)
181 {
182 clear_bit(RB_BUFFERS_ON_BIT, &ring_buffer_flags);
183 }
184 EXPORT_SYMBOL_GPL(tracing_off);
185
186 /**
187 * tracing_off_permanent - permanently disable ring buffers
188 *
189 * This function, once called, will disable all ring buffers
190 * permanently.
191 */
192 void tracing_off_permanent(void)
193 {
194 set_bit(RB_BUFFERS_DISABLED_BIT, &ring_buffer_flags);
195 }
196
197 /**
198 * tracing_is_on - show state of ring buffers enabled
199 */
200 int tracing_is_on(void)
201 {
202 return ring_buffer_flags == RB_BUFFERS_ON;
203 }
204 EXPORT_SYMBOL_GPL(tracing_is_on);
205
206 #define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
207 #define RB_ALIGNMENT 4U
208 #define RB_MAX_SMALL_DATA (RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
209 #define RB_EVNT_MIN_SIZE 8U /* two 32bit words */
210
211 #if !defined(CONFIG_64BIT) || defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS)
212 # define RB_FORCE_8BYTE_ALIGNMENT 0
213 # define RB_ARCH_ALIGNMENT RB_ALIGNMENT
214 #else
215 # define RB_FORCE_8BYTE_ALIGNMENT 1
216 # define RB_ARCH_ALIGNMENT 8U
217 #endif
218
219 /* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */
220 #define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX
221
222 enum {
223 RB_LEN_TIME_EXTEND = 8,
224 RB_LEN_TIME_STAMP = 16,
225 };
226
227 static inline int rb_null_event(struct ring_buffer_event *event)
228 {
229 return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta;
230 }
231
232 static void rb_event_set_padding(struct ring_buffer_event *event)
233 {
234 /* padding has a NULL time_delta */
235 event->type_len = RINGBUF_TYPE_PADDING;
236 event->time_delta = 0;
237 }
238
239 static unsigned
240 rb_event_data_length(struct ring_buffer_event *event)
241 {
242 unsigned length;
243
244 if (event->type_len)
245 length = event->type_len * RB_ALIGNMENT;
246 else
247 length = event->array[0];
248 return length + RB_EVNT_HDR_SIZE;
249 }
250
251 /* inline for ring buffer fast paths */
252 static unsigned
253 rb_event_length(struct ring_buffer_event *event)
254 {
255 switch (event->type_len) {
256 case RINGBUF_TYPE_PADDING:
257 if (rb_null_event(event))
258 /* undefined */
259 return -1;
260 return event->array[0] + RB_EVNT_HDR_SIZE;
261
262 case RINGBUF_TYPE_TIME_EXTEND:
263 return RB_LEN_TIME_EXTEND;
264
265 case RINGBUF_TYPE_TIME_STAMP:
266 return RB_LEN_TIME_STAMP;
267
268 case RINGBUF_TYPE_DATA:
269 return rb_event_data_length(event);
270 default:
271 BUG();
272 }
273 /* not hit */
274 return 0;
275 }
276
277 /**
278 * ring_buffer_event_length - return the length of the event
279 * @event: the event to get the length of
280 */
281 unsigned ring_buffer_event_length(struct ring_buffer_event *event)
282 {
283 unsigned length = rb_event_length(event);
284 if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
285 return length;
286 length -= RB_EVNT_HDR_SIZE;
287 if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0]))
288 length -= sizeof(event->array[0]);
289 return length;
290 }
291 EXPORT_SYMBOL_GPL(ring_buffer_event_length);
292
293 /* inline for ring buffer fast paths */
294 static void *
295 rb_event_data(struct ring_buffer_event *event)
296 {
297 BUG_ON(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
298 /* If length is in len field, then array[0] has the data */
299 if (event->type_len)
300 return (void *)&event->array[0];
301 /* Otherwise length is in array[0] and array[1] has the data */
302 return (void *)&event->array[1];
303 }
304
305 /**
306 * ring_buffer_event_data - return the data of the event
307 * @event: the event to get the data from
308 */
309 void *ring_buffer_event_data(struct ring_buffer_event *event)
310 {
311 return rb_event_data(event);
312 }
313 EXPORT_SYMBOL_GPL(ring_buffer_event_data);
314
315 #define for_each_buffer_cpu(buffer, cpu) \
316 for_each_cpu(cpu, buffer->cpumask)
317
318 #define TS_SHIFT 27
319 #define TS_MASK ((1ULL << TS_SHIFT) - 1)
320 #define TS_DELTA_TEST (~TS_MASK)
321
322 struct buffer_data_page {
323 u64 time_stamp; /* page time stamp */
324 local_t commit; /* write committed index */
325 unsigned char data[]; /* data of buffer page */
326 };
327
328 /*
329 * Note, the buffer_page list must be first. The buffer pages
330 * are allocated in cache lines, which means that each buffer
331 * page will be at the beginning of a cache line, and thus
332 * the least significant bits will be zero. We use this to
333 * add flags in the list struct pointers, to make the ring buffer
334 * lockless.
335 */
336 struct buffer_page {
337 struct list_head list; /* list of buffer pages */
338 local_t write; /* index for next write */
339 unsigned read; /* index for next read */
340 local_t entries; /* entries on this page */
341 struct buffer_data_page *page; /* Actual data page */
342 };
343
344 /*
345 * The buffer page counters, write and entries, must be reset
346 * atomically when crossing page boundaries. To synchronize this
347 * update, two counters are inserted into the number. One is
348 * the actual counter for the write position or count on the page.
349 *
350 * The other is a counter of updaters. Before an update happens
351 * the update partition of the counter is incremented. This will
352 * allow the updater to update the counter atomically.
353 *
354 * The counter is 20 bits, and the state data is 12.
355 */
356 #define RB_WRITE_MASK 0xfffff
357 #define RB_WRITE_INTCNT (1 << 20)
358
359 static void rb_init_page(struct buffer_data_page *bpage)
360 {
361 local_set(&bpage->commit, 0);
362 }
363
364 /**
365 * ring_buffer_page_len - the size of data on the page.
366 * @page: The page to read
367 *
368 * Returns the amount of data on the page, including buffer page header.
369 */
370 size_t ring_buffer_page_len(void *page)
371 {
372 return local_read(&((struct buffer_data_page *)page)->commit)
373 + BUF_PAGE_HDR_SIZE;
374 }
375
376 /*
377 * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing
378 * this issue out.
379 */
380 static void free_buffer_page(struct buffer_page *bpage)
381 {
382 free_page((unsigned long)bpage->page);
383 kfree(bpage);
384 }
385
386 /*
387 * We need to fit the time_stamp delta into 27 bits.
388 */
389 static inline int test_time_stamp(u64 delta)
390 {
391 if (delta & TS_DELTA_TEST)
392 return 1;
393 return 0;
394 }
395
396 #define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE)
397
398 /* Max payload is BUF_PAGE_SIZE - header (8bytes) */
399 #define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2))
400
401 /* Max number of timestamps that can fit on a page */
402 #define RB_TIMESTAMPS_PER_PAGE (BUF_PAGE_SIZE / RB_LEN_TIME_STAMP)
403
404 int ring_buffer_print_page_header(struct trace_seq *s)
405 {
406 struct buffer_data_page field;
407 int ret;
408
409 ret = trace_seq_printf(s, "\tfield: u64 timestamp;\t"
410 "offset:0;\tsize:%u;\tsigned:%u;\n",
411 (unsigned int)sizeof(field.time_stamp),
412 (unsigned int)is_signed_type(u64));
413
414 ret = trace_seq_printf(s, "\tfield: local_t commit;\t"
415 "offset:%u;\tsize:%u;\tsigned:%u;\n",
416 (unsigned int)offsetof(typeof(field), commit),
417 (unsigned int)sizeof(field.commit),
418 (unsigned int)is_signed_type(long));
419
420 ret = trace_seq_printf(s, "\tfield: char data;\t"
421 "offset:%u;\tsize:%u;\tsigned:%u;\n",
422 (unsigned int)offsetof(typeof(field), data),
423 (unsigned int)BUF_PAGE_SIZE,
424 (unsigned int)is_signed_type(char));
425
426 return ret;
427 }
428
429 /*
430 * head_page == tail_page && head == tail then buffer is empty.
431 */
432 struct ring_buffer_per_cpu {
433 int cpu;
434 struct ring_buffer *buffer;
435 spinlock_t reader_lock; /* serialize readers */
436 arch_spinlock_t lock;
437 struct lock_class_key lock_key;
438 struct list_head *pages;
439 struct buffer_page *head_page; /* read from head */
440 struct buffer_page *tail_page; /* write to tail */
441 struct buffer_page *commit_page; /* committed pages */
442 struct buffer_page *reader_page;
443 local_t commit_overrun;
444 local_t overrun;
445 local_t entries;
446 local_t committing;
447 local_t commits;
448 unsigned long read;
449 u64 write_stamp;
450 u64 read_stamp;
451 atomic_t record_disabled;
452 };
453
454 struct ring_buffer {
455 unsigned pages;
456 unsigned flags;
457 int cpus;
458 atomic_t record_disabled;
459 cpumask_var_t cpumask;
460
461 struct lock_class_key *reader_lock_key;
462
463 struct mutex mutex;
464
465 struct ring_buffer_per_cpu **buffers;
466
467 #ifdef CONFIG_HOTPLUG_CPU
468 struct notifier_block cpu_notify;
469 #endif
470 u64 (*clock)(void);
471 };
472
473 struct ring_buffer_iter {
474 struct ring_buffer_per_cpu *cpu_buffer;
475 unsigned long head;
476 struct buffer_page *head_page;
477 struct buffer_page *cache_reader_page;
478 unsigned long cache_read;
479 u64 read_stamp;
480 };
481
482 /* buffer may be either ring_buffer or ring_buffer_per_cpu */
483 #define RB_WARN_ON(b, cond) \
484 ({ \
485 int _____ret = unlikely(cond); \
486 if (_____ret) { \
487 if (__same_type(*(b), struct ring_buffer_per_cpu)) { \
488 struct ring_buffer_per_cpu *__b = \
489 (void *)b; \
490 atomic_inc(&__b->buffer->record_disabled); \
491 } else \
492 atomic_inc(&b->record_disabled); \
493 WARN_ON(1); \
494 } \
495 _____ret; \
496 })
497
498 /* Up this if you want to test the TIME_EXTENTS and normalization */
499 #define DEBUG_SHIFT 0
500
501 static inline u64 rb_time_stamp(struct ring_buffer *buffer)
502 {
503 /* shift to debug/test normalization and TIME_EXTENTS */
504 return buffer->clock() << DEBUG_SHIFT;
505 }
506
507 u64 ring_buffer_time_stamp(struct ring_buffer *buffer, int cpu)
508 {
509 u64 time;
510
511 preempt_disable_notrace();
512 time = rb_time_stamp(buffer);
513 preempt_enable_no_resched_notrace();
514
515 return time;
516 }
517 EXPORT_SYMBOL_GPL(ring_buffer_time_stamp);
518
519 void ring_buffer_normalize_time_stamp(struct ring_buffer *buffer,
520 int cpu, u64 *ts)
521 {
522 /* Just stupid testing the normalize function and deltas */
523 *ts >>= DEBUG_SHIFT;
524 }
525 EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp);
526
527 /*
528 * Making the ring buffer lockless makes things tricky.
529 * Although writes only happen on the CPU that they are on,
530 * and they only need to worry about interrupts. Reads can
531 * happen on any CPU.
532 *
533 * The reader page is always off the ring buffer, but when the
534 * reader finishes with a page, it needs to swap its page with
535 * a new one from the buffer. The reader needs to take from
536 * the head (writes go to the tail). But if a writer is in overwrite
537 * mode and wraps, it must push the head page forward.
538 *
539 * Here lies the problem.
540 *
541 * The reader must be careful to replace only the head page, and
542 * not another one. As described at the top of the file in the
543 * ASCII art, the reader sets its old page to point to the next
544 * page after head. It then sets the page after head to point to
545 * the old reader page. But if the writer moves the head page
546 * during this operation, the reader could end up with the tail.
547 *
548 * We use cmpxchg to help prevent this race. We also do something
549 * special with the page before head. We set the LSB to 1.
550 *
551 * When the writer must push the page forward, it will clear the
552 * bit that points to the head page, move the head, and then set
553 * the bit that points to the new head page.
554 *
555 * We also don't want an interrupt coming in and moving the head
556 * page on another writer. Thus we use the second LSB to catch
557 * that too. Thus:
558 *
559 * head->list->prev->next bit 1 bit 0
560 * ------- -------
561 * Normal page 0 0
562 * Points to head page 0 1
563 * New head page 1 0
564 *
565 * Note we can not trust the prev pointer of the head page, because:
566 *
567 * +----+ +-----+ +-----+
568 * | |------>| T |---X--->| N |
569 * | |<------| | | |
570 * +----+ +-----+ +-----+
571 * ^ ^ |
572 * | +-----+ | |
573 * +----------| R |----------+ |
574 * | |<-----------+
575 * +-----+
576 *
577 * Key: ---X--> HEAD flag set in pointer
578 * T Tail page
579 * R Reader page
580 * N Next page
581 *
582 * (see __rb_reserve_next() to see where this happens)
583 *
584 * What the above shows is that the reader just swapped out
585 * the reader page with a page in the buffer, but before it
586 * could make the new header point back to the new page added
587 * it was preempted by a writer. The writer moved forward onto
588 * the new page added by the reader and is about to move forward
589 * again.
590 *
591 * You can see, it is legitimate for the previous pointer of
592 * the head (or any page) not to point back to itself. But only
593 * temporarially.
594 */
595
596 #define RB_PAGE_NORMAL 0UL
597 #define RB_PAGE_HEAD 1UL
598 #define RB_PAGE_UPDATE 2UL
599
600
601 #define RB_FLAG_MASK 3UL
602
603 /* PAGE_MOVED is not part of the mask */
604 #define RB_PAGE_MOVED 4UL
605
606 /*
607 * rb_list_head - remove any bit
608 */
609 static struct list_head *rb_list_head(struct list_head *list)
610 {
611 unsigned long val = (unsigned long)list;
612
613 return (struct list_head *)(val & ~RB_FLAG_MASK);
614 }
615
616 /*
617 * rb_is_head_page - test if the given page is the head page
618 *
619 * Because the reader may move the head_page pointer, we can
620 * not trust what the head page is (it may be pointing to
621 * the reader page). But if the next page is a header page,
622 * its flags will be non zero.
623 */
624 static int inline
625 rb_is_head_page(struct ring_buffer_per_cpu *cpu_buffer,
626 struct buffer_page *page, struct list_head *list)
627 {
628 unsigned long val;
629
630 val = (unsigned long)list->next;
631
632 if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list)
633 return RB_PAGE_MOVED;
634
635 return val & RB_FLAG_MASK;
636 }
637
638 /*
639 * rb_is_reader_page
640 *
641 * The unique thing about the reader page, is that, if the
642 * writer is ever on it, the previous pointer never points
643 * back to the reader page.
644 */
645 static int rb_is_reader_page(struct buffer_page *page)
646 {
647 struct list_head *list = page->list.prev;
648
649 return rb_list_head(list->next) != &page->list;
650 }
651
652 /*
653 * rb_set_list_to_head - set a list_head to be pointing to head.
654 */
655 static void rb_set_list_to_head(struct ring_buffer_per_cpu *cpu_buffer,
656 struct list_head *list)
657 {
658 unsigned long *ptr;
659
660 ptr = (unsigned long *)&list->next;
661 *ptr |= RB_PAGE_HEAD;
662 *ptr &= ~RB_PAGE_UPDATE;
663 }
664
665 /*
666 * rb_head_page_activate - sets up head page
667 */
668 static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer)
669 {
670 struct buffer_page *head;
671
672 head = cpu_buffer->head_page;
673 if (!head)
674 return;
675
676 /*
677 * Set the previous list pointer to have the HEAD flag.
678 */
679 rb_set_list_to_head(cpu_buffer, head->list.prev);
680 }
681
682 static void rb_list_head_clear(struct list_head *list)
683 {
684 unsigned long *ptr = (unsigned long *)&list->next;
685
686 *ptr &= ~RB_FLAG_MASK;
687 }
688
689 /*
690 * rb_head_page_dactivate - clears head page ptr (for free list)
691 */
692 static void
693 rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer)
694 {
695 struct list_head *hd;
696
697 /* Go through the whole list and clear any pointers found. */
698 rb_list_head_clear(cpu_buffer->pages);
699
700 list_for_each(hd, cpu_buffer->pages)
701 rb_list_head_clear(hd);
702 }
703
704 static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer,
705 struct buffer_page *head,
706 struct buffer_page *prev,
707 int old_flag, int new_flag)
708 {
709 struct list_head *list;
710 unsigned long val = (unsigned long)&head->list;
711 unsigned long ret;
712
713 list = &prev->list;
714
715 val &= ~RB_FLAG_MASK;
716
717 ret = cmpxchg((unsigned long *)&list->next,
718 val | old_flag, val | new_flag);
719
720 /* check if the reader took the page */
721 if ((ret & ~RB_FLAG_MASK) != val)
722 return RB_PAGE_MOVED;
723
724 return ret & RB_FLAG_MASK;
725 }
726
727 static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer,
728 struct buffer_page *head,
729 struct buffer_page *prev,
730 int old_flag)
731 {
732 return rb_head_page_set(cpu_buffer, head, prev,
733 old_flag, RB_PAGE_UPDATE);
734 }
735
736 static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer,
737 struct buffer_page *head,
738 struct buffer_page *prev,
739 int old_flag)
740 {
741 return rb_head_page_set(cpu_buffer, head, prev,
742 old_flag, RB_PAGE_HEAD);
743 }
744
745 static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer,
746 struct buffer_page *head,
747 struct buffer_page *prev,
748 int old_flag)
749 {
750 return rb_head_page_set(cpu_buffer, head, prev,
751 old_flag, RB_PAGE_NORMAL);
752 }
753
754 static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer,
755 struct buffer_page **bpage)
756 {
757 struct list_head *p = rb_list_head((*bpage)->list.next);
758
759 *bpage = list_entry(p, struct buffer_page, list);
760 }
761
762 static struct buffer_page *
763 rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer)
764 {
765 struct buffer_page *head;
766 struct buffer_page *page;
767 struct list_head *list;
768 int i;
769
770 if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page))
771 return NULL;
772
773 /* sanity check */
774 list = cpu_buffer->pages;
775 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list))
776 return NULL;
777
778 page = head = cpu_buffer->head_page;
779 /*
780 * It is possible that the writer moves the header behind
781 * where we started, and we miss in one loop.
782 * A second loop should grab the header, but we'll do
783 * three loops just because I'm paranoid.
784 */
785 for (i = 0; i < 3; i++) {
786 do {
787 if (rb_is_head_page(cpu_buffer, page, page->list.prev)) {
788 cpu_buffer->head_page = page;
789 return page;
790 }
791 rb_inc_page(cpu_buffer, &page);
792 } while (page != head);
793 }
794
795 RB_WARN_ON(cpu_buffer, 1);
796
797 return NULL;
798 }
799
800 static int rb_head_page_replace(struct buffer_page *old,
801 struct buffer_page *new)
802 {
803 unsigned long *ptr = (unsigned long *)&old->list.prev->next;
804 unsigned long val;
805 unsigned long ret;
806
807 val = *ptr & ~RB_FLAG_MASK;
808 val |= RB_PAGE_HEAD;
809
810 ret = cmpxchg(ptr, val, (unsigned long)&new->list);
811
812 return ret == val;
813 }
814
815 /*
816 * rb_tail_page_update - move the tail page forward
817 *
818 * Returns 1 if moved tail page, 0 if someone else did.
819 */
820 static int rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer,
821 struct buffer_page *tail_page,
822 struct buffer_page *next_page)
823 {
824 struct buffer_page *old_tail;
825 unsigned long old_entries;
826 unsigned long old_write;
827 int ret = 0;
828
829 /*
830 * The tail page now needs to be moved forward.
831 *
832 * We need to reset the tail page, but without messing
833 * with possible erasing of data brought in by interrupts
834 * that have moved the tail page and are currently on it.
835 *
836 * We add a counter to the write field to denote this.
837 */
838 old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write);
839 old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries);
840
841 /*
842 * Just make sure we have seen our old_write and synchronize
843 * with any interrupts that come in.
844 */
845 barrier();
846
847 /*
848 * If the tail page is still the same as what we think
849 * it is, then it is up to us to update the tail
850 * pointer.
851 */
852 if (tail_page == cpu_buffer->tail_page) {
853 /* Zero the write counter */
854 unsigned long val = old_write & ~RB_WRITE_MASK;
855 unsigned long eval = old_entries & ~RB_WRITE_MASK;
856
857 /*
858 * This will only succeed if an interrupt did
859 * not come in and change it. In which case, we
860 * do not want to modify it.
861 *
862 * We add (void) to let the compiler know that we do not care
863 * about the return value of these functions. We use the
864 * cmpxchg to only update if an interrupt did not already
865 * do it for us. If the cmpxchg fails, we don't care.
866 */
867 (void)local_cmpxchg(&next_page->write, old_write, val);
868 (void)local_cmpxchg(&next_page->entries, old_entries, eval);
869
870 /*
871 * No need to worry about races with clearing out the commit.
872 * it only can increment when a commit takes place. But that
873 * only happens in the outer most nested commit.
874 */
875 local_set(&next_page->page->commit, 0);
876
877 old_tail = cmpxchg(&cpu_buffer->tail_page,
878 tail_page, next_page);
879
880 if (old_tail == tail_page)
881 ret = 1;
882 }
883
884 return ret;
885 }
886
887 static int rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer,
888 struct buffer_page *bpage)
889 {
890 unsigned long val = (unsigned long)bpage;
891
892 if (RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK))
893 return 1;
894
895 return 0;
896 }
897
898 /**
899 * rb_check_list - make sure a pointer to a list has the last bits zero
900 */
901 static int rb_check_list(struct ring_buffer_per_cpu *cpu_buffer,
902 struct list_head *list)
903 {
904 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev) != list->prev))
905 return 1;
906 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->next) != list->next))
907 return 1;
908 return 0;
909 }
910
911 /**
912 * check_pages - integrity check of buffer pages
913 * @cpu_buffer: CPU buffer with pages to test
914 *
915 * As a safety measure we check to make sure the data pages have not
916 * been corrupted.
917 */
918 static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
919 {
920 struct list_head *head = cpu_buffer->pages;
921 struct buffer_page *bpage, *tmp;
922
923 rb_head_page_deactivate(cpu_buffer);
924
925 if (RB_WARN_ON(cpu_buffer, head->next->prev != head))
926 return -1;
927 if (RB_WARN_ON(cpu_buffer, head->prev->next != head))
928 return -1;
929
930 if (rb_check_list(cpu_buffer, head))
931 return -1;
932
933 list_for_each_entry_safe(bpage, tmp, head, list) {
934 if (RB_WARN_ON(cpu_buffer,
935 bpage->list.next->prev != &bpage->list))
936 return -1;
937 if (RB_WARN_ON(cpu_buffer,
938 bpage->list.prev->next != &bpage->list))
939 return -1;
940 if (rb_check_list(cpu_buffer, &bpage->list))
941 return -1;
942 }
943
944 rb_head_page_activate(cpu_buffer);
945
946 return 0;
947 }
948
949 static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
950 unsigned nr_pages)
951 {
952 struct buffer_page *bpage, *tmp;
953 unsigned long addr;
954 LIST_HEAD(pages);
955 unsigned i;
956
957 WARN_ON(!nr_pages);
958
959 for (i = 0; i < nr_pages; i++) {
960 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
961 GFP_KERNEL, cpu_to_node(cpu_buffer->cpu));
962 if (!bpage)
963 goto free_pages;
964
965 rb_check_bpage(cpu_buffer, bpage);
966
967 list_add(&bpage->list, &pages);
968
969 addr = __get_free_page(GFP_KERNEL);
970 if (!addr)
971 goto free_pages;
972 bpage->page = (void *)addr;
973 rb_init_page(bpage->page);
974 }
975
976 /*
977 * The ring buffer page list is a circular list that does not
978 * start and end with a list head. All page list items point to
979 * other pages.
980 */
981 cpu_buffer->pages = pages.next;
982 list_del(&pages);
983
984 rb_check_pages(cpu_buffer);
985
986 return 0;
987
988 free_pages:
989 list_for_each_entry_safe(bpage, tmp, &pages, list) {
990 list_del_init(&bpage->list);
991 free_buffer_page(bpage);
992 }
993 return -ENOMEM;
994 }
995
996 static struct ring_buffer_per_cpu *
997 rb_allocate_cpu_buffer(struct ring_buffer *buffer, int cpu)
998 {
999 struct ring_buffer_per_cpu *cpu_buffer;
1000 struct buffer_page *bpage;
1001 unsigned long addr;
1002 int ret;
1003
1004 cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
1005 GFP_KERNEL, cpu_to_node(cpu));
1006 if (!cpu_buffer)
1007 return NULL;
1008
1009 cpu_buffer->cpu = cpu;
1010 cpu_buffer->buffer = buffer;
1011 spin_lock_init(&cpu_buffer->reader_lock);
1012 lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key);
1013 cpu_buffer->lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
1014
1015 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1016 GFP_KERNEL, cpu_to_node(cpu));
1017 if (!bpage)
1018 goto fail_free_buffer;
1019
1020 rb_check_bpage(cpu_buffer, bpage);
1021
1022 cpu_buffer->reader_page = bpage;
1023 addr = __get_free_page(GFP_KERNEL);
1024 if (!addr)
1025 goto fail_free_reader;
1026 bpage->page = (void *)addr;
1027 rb_init_page(bpage->page);
1028
1029 INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
1030
1031 ret = rb_allocate_pages(cpu_buffer, buffer->pages);
1032 if (ret < 0)
1033 goto fail_free_reader;
1034
1035 cpu_buffer->head_page
1036 = list_entry(cpu_buffer->pages, struct buffer_page, list);
1037 cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
1038
1039 rb_head_page_activate(cpu_buffer);
1040
1041 return cpu_buffer;
1042
1043 fail_free_reader:
1044 free_buffer_page(cpu_buffer->reader_page);
1045
1046 fail_free_buffer:
1047 kfree(cpu_buffer);
1048 return NULL;
1049 }
1050
1051 static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
1052 {
1053 struct list_head *head = cpu_buffer->pages;
1054 struct buffer_page *bpage, *tmp;
1055
1056 free_buffer_page(cpu_buffer->reader_page);
1057
1058 rb_head_page_deactivate(cpu_buffer);
1059
1060 if (head) {
1061 list_for_each_entry_safe(bpage, tmp, head, list) {
1062 list_del_init(&bpage->list);
1063 free_buffer_page(bpage);
1064 }
1065 bpage = list_entry(head, struct buffer_page, list);
1066 free_buffer_page(bpage);
1067 }
1068
1069 kfree(cpu_buffer);
1070 }
1071
1072 #ifdef CONFIG_HOTPLUG_CPU
1073 static int rb_cpu_notify(struct notifier_block *self,
1074 unsigned long action, void *hcpu);
1075 #endif
1076
1077 /**
1078 * ring_buffer_alloc - allocate a new ring_buffer
1079 * @size: the size in bytes per cpu that is needed.
1080 * @flags: attributes to set for the ring buffer.
1081 *
1082 * Currently the only flag that is available is the RB_FL_OVERWRITE
1083 * flag. This flag means that the buffer will overwrite old data
1084 * when the buffer wraps. If this flag is not set, the buffer will
1085 * drop data when the tail hits the head.
1086 */
1087 struct ring_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags,
1088 struct lock_class_key *key)
1089 {
1090 struct ring_buffer *buffer;
1091 int bsize;
1092 int cpu;
1093
1094 /* keep it in its own cache line */
1095 buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
1096 GFP_KERNEL);
1097 if (!buffer)
1098 return NULL;
1099
1100 if (!alloc_cpumask_var(&buffer->cpumask, GFP_KERNEL))
1101 goto fail_free_buffer;
1102
1103 buffer->pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1104 buffer->flags = flags;
1105 buffer->clock = trace_clock_local;
1106 buffer->reader_lock_key = key;
1107
1108 /* need at least two pages */
1109 if (buffer->pages < 2)
1110 buffer->pages = 2;
1111
1112 /*
1113 * In case of non-hotplug cpu, if the ring-buffer is allocated
1114 * in early initcall, it will not be notified of secondary cpus.
1115 * In that off case, we need to allocate for all possible cpus.
1116 */
1117 #ifdef CONFIG_HOTPLUG_CPU
1118 get_online_cpus();
1119 cpumask_copy(buffer->cpumask, cpu_online_mask);
1120 #else
1121 cpumask_copy(buffer->cpumask, cpu_possible_mask);
1122 #endif
1123 buffer->cpus = nr_cpu_ids;
1124
1125 bsize = sizeof(void *) * nr_cpu_ids;
1126 buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
1127 GFP_KERNEL);
1128 if (!buffer->buffers)
1129 goto fail_free_cpumask;
1130
1131 for_each_buffer_cpu(buffer, cpu) {
1132 buffer->buffers[cpu] =
1133 rb_allocate_cpu_buffer(buffer, cpu);
1134 if (!buffer->buffers[cpu])
1135 goto fail_free_buffers;
1136 }
1137
1138 #ifdef CONFIG_HOTPLUG_CPU
1139 buffer->cpu_notify.notifier_call = rb_cpu_notify;
1140 buffer->cpu_notify.priority = 0;
1141 register_cpu_notifier(&buffer->cpu_notify);
1142 #endif
1143
1144 put_online_cpus();
1145 mutex_init(&buffer->mutex);
1146
1147 return buffer;
1148
1149 fail_free_buffers:
1150 for_each_buffer_cpu(buffer, cpu) {
1151 if (buffer->buffers[cpu])
1152 rb_free_cpu_buffer(buffer->buffers[cpu]);
1153 }
1154 kfree(buffer->buffers);
1155
1156 fail_free_cpumask:
1157 free_cpumask_var(buffer->cpumask);
1158 put_online_cpus();
1159
1160 fail_free_buffer:
1161 kfree(buffer);
1162 return NULL;
1163 }
1164 EXPORT_SYMBOL_GPL(__ring_buffer_alloc);
1165
1166 /**
1167 * ring_buffer_free - free a ring buffer.
1168 * @buffer: the buffer to free.
1169 */
1170 void
1171 ring_buffer_free(struct ring_buffer *buffer)
1172 {
1173 int cpu;
1174
1175 get_online_cpus();
1176
1177 #ifdef CONFIG_HOTPLUG_CPU
1178 unregister_cpu_notifier(&buffer->cpu_notify);
1179 #endif
1180
1181 for_each_buffer_cpu(buffer, cpu)
1182 rb_free_cpu_buffer(buffer->buffers[cpu]);
1183
1184 put_online_cpus();
1185
1186 kfree(buffer->buffers);
1187 free_cpumask_var(buffer->cpumask);
1188
1189 kfree(buffer);
1190 }
1191 EXPORT_SYMBOL_GPL(ring_buffer_free);
1192
1193 void ring_buffer_set_clock(struct ring_buffer *buffer,
1194 u64 (*clock)(void))
1195 {
1196 buffer->clock = clock;
1197 }
1198
1199 static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer);
1200
1201 static void
1202 rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned nr_pages)
1203 {
1204 struct buffer_page *bpage;
1205 struct list_head *p;
1206 unsigned i;
1207
1208 spin_lock_irq(&cpu_buffer->reader_lock);
1209 rb_head_page_deactivate(cpu_buffer);
1210
1211 for (i = 0; i < nr_pages; i++) {
1212 if (RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages)))
1213 return;
1214 p = cpu_buffer->pages->next;
1215 bpage = list_entry(p, struct buffer_page, list);
1216 list_del_init(&bpage->list);
1217 free_buffer_page(bpage);
1218 }
1219 if (RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages)))
1220 return;
1221
1222 rb_reset_cpu(cpu_buffer);
1223 rb_check_pages(cpu_buffer);
1224
1225 spin_unlock_irq(&cpu_buffer->reader_lock);
1226 }
1227
1228 static void
1229 rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer,
1230 struct list_head *pages, unsigned nr_pages)
1231 {
1232 struct buffer_page *bpage;
1233 struct list_head *p;
1234 unsigned i;
1235
1236 spin_lock_irq(&cpu_buffer->reader_lock);
1237 rb_head_page_deactivate(cpu_buffer);
1238
1239 for (i = 0; i < nr_pages; i++) {
1240 if (RB_WARN_ON(cpu_buffer, list_empty(pages)))
1241 return;
1242 p = pages->next;
1243 bpage = list_entry(p, struct buffer_page, list);
1244 list_del_init(&bpage->list);
1245 list_add_tail(&bpage->list, cpu_buffer->pages);
1246 }
1247 rb_reset_cpu(cpu_buffer);
1248 rb_check_pages(cpu_buffer);
1249
1250 spin_unlock_irq(&cpu_buffer->reader_lock);
1251 }
1252
1253 /**
1254 * ring_buffer_resize - resize the ring buffer
1255 * @buffer: the buffer to resize.
1256 * @size: the new size.
1257 *
1258 * Minimum size is 2 * BUF_PAGE_SIZE.
1259 *
1260 * Returns -1 on failure.
1261 */
1262 int ring_buffer_resize(struct ring_buffer *buffer, unsigned long size)
1263 {
1264 struct ring_buffer_per_cpu *cpu_buffer;
1265 unsigned nr_pages, rm_pages, new_pages;
1266 struct buffer_page *bpage, *tmp;
1267 unsigned long buffer_size;
1268 unsigned long addr;
1269 LIST_HEAD(pages);
1270 int i, cpu;
1271
1272 /*
1273 * Always succeed at resizing a non-existent buffer:
1274 */
1275 if (!buffer)
1276 return size;
1277
1278 size = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1279 size *= BUF_PAGE_SIZE;
1280 buffer_size = buffer->pages * BUF_PAGE_SIZE;
1281
1282 /* we need a minimum of two pages */
1283 if (size < BUF_PAGE_SIZE * 2)
1284 size = BUF_PAGE_SIZE * 2;
1285
1286 if (size == buffer_size)
1287 return size;
1288
1289 atomic_inc(&buffer->record_disabled);
1290
1291 /* Make sure all writers are done with this buffer. */
1292 synchronize_sched();
1293
1294 mutex_lock(&buffer->mutex);
1295 get_online_cpus();
1296
1297 nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1298
1299 if (size < buffer_size) {
1300
1301 /* easy case, just free pages */
1302 if (RB_WARN_ON(buffer, nr_pages >= buffer->pages))
1303 goto out_fail;
1304
1305 rm_pages = buffer->pages - nr_pages;
1306
1307 for_each_buffer_cpu(buffer, cpu) {
1308 cpu_buffer = buffer->buffers[cpu];
1309 rb_remove_pages(cpu_buffer, rm_pages);
1310 }
1311 goto out;
1312 }
1313
1314 /*
1315 * This is a bit more difficult. We only want to add pages
1316 * when we can allocate enough for all CPUs. We do this
1317 * by allocating all the pages and storing them on a local
1318 * link list. If we succeed in our allocation, then we
1319 * add these pages to the cpu_buffers. Otherwise we just free
1320 * them all and return -ENOMEM;
1321 */
1322 if (RB_WARN_ON(buffer, nr_pages <= buffer->pages))
1323 goto out_fail;
1324
1325 new_pages = nr_pages - buffer->pages;
1326
1327 for_each_buffer_cpu(buffer, cpu) {
1328 for (i = 0; i < new_pages; i++) {
1329 bpage = kzalloc_node(ALIGN(sizeof(*bpage),
1330 cache_line_size()),
1331 GFP_KERNEL, cpu_to_node(cpu));
1332 if (!bpage)
1333 goto free_pages;
1334 list_add(&bpage->list, &pages);
1335 addr = __get_free_page(GFP_KERNEL);
1336 if (!addr)
1337 goto free_pages;
1338 bpage->page = (void *)addr;
1339 rb_init_page(bpage->page);
1340 }
1341 }
1342
1343 for_each_buffer_cpu(buffer, cpu) {
1344 cpu_buffer = buffer->buffers[cpu];
1345 rb_insert_pages(cpu_buffer, &pages, new_pages);
1346 }
1347
1348 if (RB_WARN_ON(buffer, !list_empty(&pages)))
1349 goto out_fail;
1350
1351 out:
1352 buffer->pages = nr_pages;
1353 put_online_cpus();
1354 mutex_unlock(&buffer->mutex);
1355
1356 atomic_dec(&buffer->record_disabled);
1357
1358 return size;
1359
1360 free_pages:
1361 list_for_each_entry_safe(bpage, tmp, &pages, list) {
1362 list_del_init(&bpage->list);
1363 free_buffer_page(bpage);
1364 }
1365 put_online_cpus();
1366 mutex_unlock(&buffer->mutex);
1367 atomic_dec(&buffer->record_disabled);
1368 return -ENOMEM;
1369
1370 /*
1371 * Something went totally wrong, and we are too paranoid
1372 * to even clean up the mess.
1373 */
1374 out_fail:
1375 put_online_cpus();
1376 mutex_unlock(&buffer->mutex);
1377 atomic_dec(&buffer->record_disabled);
1378 return -1;
1379 }
1380 EXPORT_SYMBOL_GPL(ring_buffer_resize);
1381
1382 static inline void *
1383 __rb_data_page_index(struct buffer_data_page *bpage, unsigned index)
1384 {
1385 return bpage->data + index;
1386 }
1387
1388 static inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
1389 {
1390 return bpage->page->data + index;
1391 }
1392
1393 static inline struct ring_buffer_event *
1394 rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
1395 {
1396 return __rb_page_index(cpu_buffer->reader_page,
1397 cpu_buffer->reader_page->read);
1398 }
1399
1400 static inline struct ring_buffer_event *
1401 rb_iter_head_event(struct ring_buffer_iter *iter)
1402 {
1403 return __rb_page_index(iter->head_page, iter->head);
1404 }
1405
1406 static inline unsigned long rb_page_write(struct buffer_page *bpage)
1407 {
1408 return local_read(&bpage->write) & RB_WRITE_MASK;
1409 }
1410
1411 static inline unsigned rb_page_commit(struct buffer_page *bpage)
1412 {
1413 return local_read(&bpage->page->commit);
1414 }
1415
1416 static inline unsigned long rb_page_entries(struct buffer_page *bpage)
1417 {
1418 return local_read(&bpage->entries) & RB_WRITE_MASK;
1419 }
1420
1421 /* Size is determined by what has been commited */
1422 static inline unsigned rb_page_size(struct buffer_page *bpage)
1423 {
1424 return rb_page_commit(bpage);
1425 }
1426
1427 static inline unsigned
1428 rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
1429 {
1430 return rb_page_commit(cpu_buffer->commit_page);
1431 }
1432
1433 static inline unsigned
1434 rb_event_index(struct ring_buffer_event *event)
1435 {
1436 unsigned long addr = (unsigned long)event;
1437
1438 return (addr & ~PAGE_MASK) - BUF_PAGE_HDR_SIZE;
1439 }
1440
1441 static inline int
1442 rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
1443 struct ring_buffer_event *event)
1444 {
1445 unsigned long addr = (unsigned long)event;
1446 unsigned long index;
1447
1448 index = rb_event_index(event);
1449 addr &= PAGE_MASK;
1450
1451 return cpu_buffer->commit_page->page == (void *)addr &&
1452 rb_commit_index(cpu_buffer) == index;
1453 }
1454
1455 static void
1456 rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
1457 {
1458 unsigned long max_count;
1459
1460 /*
1461 * We only race with interrupts and NMIs on this CPU.
1462 * If we own the commit event, then we can commit
1463 * all others that interrupted us, since the interruptions
1464 * are in stack format (they finish before they come
1465 * back to us). This allows us to do a simple loop to
1466 * assign the commit to the tail.
1467 */
1468 again:
1469 max_count = cpu_buffer->buffer->pages * 100;
1470
1471 while (cpu_buffer->commit_page != cpu_buffer->tail_page) {
1472 if (RB_WARN_ON(cpu_buffer, !(--max_count)))
1473 return;
1474 if (RB_WARN_ON(cpu_buffer,
1475 rb_is_reader_page(cpu_buffer->tail_page)))
1476 return;
1477 local_set(&cpu_buffer->commit_page->page->commit,
1478 rb_page_write(cpu_buffer->commit_page));
1479 rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
1480 cpu_buffer->write_stamp =
1481 cpu_buffer->commit_page->page->time_stamp;
1482 /* add barrier to keep gcc from optimizing too much */
1483 barrier();
1484 }
1485 while (rb_commit_index(cpu_buffer) !=
1486 rb_page_write(cpu_buffer->commit_page)) {
1487
1488 local_set(&cpu_buffer->commit_page->page->commit,
1489 rb_page_write(cpu_buffer->commit_page));
1490 RB_WARN_ON(cpu_buffer,
1491 local_read(&cpu_buffer->commit_page->page->commit) &
1492 ~RB_WRITE_MASK);
1493 barrier();
1494 }
1495
1496 /* again, keep gcc from optimizing */
1497 barrier();
1498
1499 /*
1500 * If an interrupt came in just after the first while loop
1501 * and pushed the tail page forward, we will be left with
1502 * a dangling commit that will never go forward.
1503 */
1504 if (unlikely(cpu_buffer->commit_page != cpu_buffer->tail_page))
1505 goto again;
1506 }
1507
1508 static void rb_reset_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
1509 {
1510 cpu_buffer->read_stamp = cpu_buffer->reader_page->page->time_stamp;
1511 cpu_buffer->reader_page->read = 0;
1512 }
1513
1514 static void rb_inc_iter(struct ring_buffer_iter *iter)
1515 {
1516 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
1517
1518 /*
1519 * The iterator could be on the reader page (it starts there).
1520 * But the head could have moved, since the reader was
1521 * found. Check for this case and assign the iterator
1522 * to the head page instead of next.
1523 */
1524 if (iter->head_page == cpu_buffer->reader_page)
1525 iter->head_page = rb_set_head_page(cpu_buffer);
1526 else
1527 rb_inc_page(cpu_buffer, &iter->head_page);
1528
1529 iter->read_stamp = iter->head_page->page->time_stamp;
1530 iter->head = 0;
1531 }
1532
1533 /**
1534 * ring_buffer_update_event - update event type and data
1535 * @event: the even to update
1536 * @type: the type of event
1537 * @length: the size of the event field in the ring buffer
1538 *
1539 * Update the type and data fields of the event. The length
1540 * is the actual size that is written to the ring buffer,
1541 * and with this, we can determine what to place into the
1542 * data field.
1543 */
1544 static void
1545 rb_update_event(struct ring_buffer_event *event,
1546 unsigned type, unsigned length)
1547 {
1548 event->type_len = type;
1549
1550 switch (type) {
1551
1552 case RINGBUF_TYPE_PADDING:
1553 case RINGBUF_TYPE_TIME_EXTEND:
1554 case RINGBUF_TYPE_TIME_STAMP:
1555 break;
1556
1557 case 0:
1558 length -= RB_EVNT_HDR_SIZE;
1559 if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT)
1560 event->array[0] = length;
1561 else
1562 event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT);
1563 break;
1564 default:
1565 BUG();
1566 }
1567 }
1568
1569 /*
1570 * rb_handle_head_page - writer hit the head page
1571 *
1572 * Returns: +1 to retry page
1573 * 0 to continue
1574 * -1 on error
1575 */
1576 static int
1577 rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer,
1578 struct buffer_page *tail_page,
1579 struct buffer_page *next_page)
1580 {
1581 struct buffer_page *new_head;
1582 int entries;
1583 int type;
1584 int ret;
1585
1586 entries = rb_page_entries(next_page);
1587
1588 /*
1589 * The hard part is here. We need to move the head
1590 * forward, and protect against both readers on
1591 * other CPUs and writers coming in via interrupts.
1592 */
1593 type = rb_head_page_set_update(cpu_buffer, next_page, tail_page,
1594 RB_PAGE_HEAD);
1595
1596 /*
1597 * type can be one of four:
1598 * NORMAL - an interrupt already moved it for us
1599 * HEAD - we are the first to get here.
1600 * UPDATE - we are the interrupt interrupting
1601 * a current move.
1602 * MOVED - a reader on another CPU moved the next
1603 * pointer to its reader page. Give up
1604 * and try again.
1605 */
1606
1607 switch (type) {
1608 case RB_PAGE_HEAD:
1609 /*
1610 * We changed the head to UPDATE, thus
1611 * it is our responsibility to update
1612 * the counters.
1613 */
1614 local_add(entries, &cpu_buffer->overrun);
1615
1616 /*
1617 * The entries will be zeroed out when we move the
1618 * tail page.
1619 */
1620
1621 /* still more to do */
1622 break;
1623
1624 case RB_PAGE_UPDATE:
1625 /*
1626 * This is an interrupt that interrupt the
1627 * previous update. Still more to do.
1628 */
1629 break;
1630 case RB_PAGE_NORMAL:
1631 /*
1632 * An interrupt came in before the update
1633 * and processed this for us.
1634 * Nothing left to do.
1635 */
1636 return 1;
1637 case RB_PAGE_MOVED:
1638 /*
1639 * The reader is on another CPU and just did
1640 * a swap with our next_page.
1641 * Try again.
1642 */
1643 return 1;
1644 default:
1645 RB_WARN_ON(cpu_buffer, 1); /* WTF??? */
1646 return -1;
1647 }
1648
1649 /*
1650 * Now that we are here, the old head pointer is
1651 * set to UPDATE. This will keep the reader from
1652 * swapping the head page with the reader page.
1653 * The reader (on another CPU) will spin till
1654 * we are finished.
1655 *
1656 * We just need to protect against interrupts
1657 * doing the job. We will set the next pointer
1658 * to HEAD. After that, we set the old pointer
1659 * to NORMAL, but only if it was HEAD before.
1660 * otherwise we are an interrupt, and only
1661 * want the outer most commit to reset it.
1662 */
1663 new_head = next_page;
1664 rb_inc_page(cpu_buffer, &new_head);
1665
1666 ret = rb_head_page_set_head(cpu_buffer, new_head, next_page,
1667 RB_PAGE_NORMAL);
1668
1669 /*
1670 * Valid returns are:
1671 * HEAD - an interrupt came in and already set it.
1672 * NORMAL - One of two things:
1673 * 1) We really set it.
1674 * 2) A bunch of interrupts came in and moved
1675 * the page forward again.
1676 */
1677 switch (ret) {
1678 case RB_PAGE_HEAD:
1679 case RB_PAGE_NORMAL:
1680 /* OK */
1681 break;
1682 default:
1683 RB_WARN_ON(cpu_buffer, 1);
1684 return -1;
1685 }
1686
1687 /*
1688 * It is possible that an interrupt came in,
1689 * set the head up, then more interrupts came in
1690 * and moved it again. When we get back here,
1691 * the page would have been set to NORMAL but we
1692 * just set it back to HEAD.
1693 *
1694 * How do you detect this? Well, if that happened
1695 * the tail page would have moved.
1696 */
1697 if (ret == RB_PAGE_NORMAL) {
1698 /*
1699 * If the tail had moved passed next, then we need
1700 * to reset the pointer.
1701 */
1702 if (cpu_buffer->tail_page != tail_page &&
1703 cpu_buffer->tail_page != next_page)
1704 rb_head_page_set_normal(cpu_buffer, new_head,
1705 next_page,
1706 RB_PAGE_HEAD);
1707 }
1708
1709 /*
1710 * If this was the outer most commit (the one that
1711 * changed the original pointer from HEAD to UPDATE),
1712 * then it is up to us to reset it to NORMAL.
1713 */
1714 if (type == RB_PAGE_HEAD) {
1715 ret = rb_head_page_set_normal(cpu_buffer, next_page,
1716 tail_page,
1717 RB_PAGE_UPDATE);
1718 if (RB_WARN_ON(cpu_buffer,
1719 ret != RB_PAGE_UPDATE))
1720 return -1;
1721 }
1722
1723 return 0;
1724 }
1725
1726 static unsigned rb_calculate_event_length(unsigned length)
1727 {
1728 struct ring_buffer_event event; /* Used only for sizeof array */
1729
1730 /* zero length can cause confusions */
1731 if (!length)
1732 length = 1;
1733
1734 if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT)
1735 length += sizeof(event.array[0]);
1736
1737 length += RB_EVNT_HDR_SIZE;
1738 length = ALIGN(length, RB_ARCH_ALIGNMENT);
1739
1740 return length;
1741 }
1742
1743 static inline void
1744 rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer,
1745 struct buffer_page *tail_page,
1746 unsigned long tail, unsigned long length)
1747 {
1748 struct ring_buffer_event *event;
1749
1750 /*
1751 * Only the event that crossed the page boundary
1752 * must fill the old tail_page with padding.
1753 */
1754 if (tail >= BUF_PAGE_SIZE) {
1755 local_sub(length, &tail_page->write);
1756 return;
1757 }
1758
1759 event = __rb_page_index(tail_page, tail);
1760 kmemcheck_annotate_bitfield(event, bitfield);
1761
1762 /*
1763 * If this event is bigger than the minimum size, then
1764 * we need to be careful that we don't subtract the
1765 * write counter enough to allow another writer to slip
1766 * in on this page.
1767 * We put in a discarded commit instead, to make sure
1768 * that this space is not used again.
1769 *
1770 * If we are less than the minimum size, we don't need to
1771 * worry about it.
1772 */
1773 if (tail > (BUF_PAGE_SIZE - RB_EVNT_MIN_SIZE)) {
1774 /* No room for any events */
1775
1776 /* Mark the rest of the page with padding */
1777 rb_event_set_padding(event);
1778
1779 /* Set the write back to the previous setting */
1780 local_sub(length, &tail_page->write);
1781 return;
1782 }
1783
1784 /* Put in a discarded event */
1785 event->array[0] = (BUF_PAGE_SIZE - tail) - RB_EVNT_HDR_SIZE;
1786 event->type_len = RINGBUF_TYPE_PADDING;
1787 /* time delta must be non zero */
1788 event->time_delta = 1;
1789
1790 /* Set write to end of buffer */
1791 length = (tail + length) - BUF_PAGE_SIZE;
1792 local_sub(length, &tail_page->write);
1793 }
1794
1795 static struct ring_buffer_event *
1796 rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer,
1797 unsigned long length, unsigned long tail,
1798 struct buffer_page *tail_page, u64 *ts)
1799 {
1800 struct buffer_page *commit_page = cpu_buffer->commit_page;
1801 struct ring_buffer *buffer = cpu_buffer->buffer;
1802 struct buffer_page *next_page;
1803 int ret;
1804
1805 next_page = tail_page;
1806
1807 rb_inc_page(cpu_buffer, &next_page);
1808
1809 /*
1810 * If for some reason, we had an interrupt storm that made
1811 * it all the way around the buffer, bail, and warn
1812 * about it.
1813 */
1814 if (unlikely(next_page == commit_page)) {
1815 local_inc(&cpu_buffer->commit_overrun);
1816 goto out_reset;
1817 }
1818
1819 /*
1820 * This is where the fun begins!
1821 *
1822 * We are fighting against races between a reader that
1823 * could be on another CPU trying to swap its reader
1824 * page with the buffer head.
1825 *
1826 * We are also fighting against interrupts coming in and
1827 * moving the head or tail on us as well.
1828 *
1829 * If the next page is the head page then we have filled
1830 * the buffer, unless the commit page is still on the
1831 * reader page.
1832 */
1833 if (rb_is_head_page(cpu_buffer, next_page, &tail_page->list)) {
1834
1835 /*
1836 * If the commit is not on the reader page, then
1837 * move the header page.
1838 */
1839 if (!rb_is_reader_page(cpu_buffer->commit_page)) {
1840 /*
1841 * If we are not in overwrite mode,
1842 * this is easy, just stop here.
1843 */
1844 if (!(buffer->flags & RB_FL_OVERWRITE))
1845 goto out_reset;
1846
1847 ret = rb_handle_head_page(cpu_buffer,
1848 tail_page,
1849 next_page);
1850 if (ret < 0)
1851 goto out_reset;
1852 if (ret)
1853 goto out_again;
1854 } else {
1855 /*
1856 * We need to be careful here too. The
1857 * commit page could still be on the reader
1858 * page. We could have a small buffer, and
1859 * have filled up the buffer with events
1860 * from interrupts and such, and wrapped.
1861 *
1862 * Note, if the tail page is also the on the
1863 * reader_page, we let it move out.
1864 */
1865 if (unlikely((cpu_buffer->commit_page !=
1866 cpu_buffer->tail_page) &&
1867 (cpu_buffer->commit_page ==
1868 cpu_buffer->reader_page))) {
1869 local_inc(&cpu_buffer->commit_overrun);
1870 goto out_reset;
1871 }
1872 }
1873 }
1874
1875 ret = rb_tail_page_update(cpu_buffer, tail_page, next_page);
1876 if (ret) {
1877 /*
1878 * Nested commits always have zero deltas, so
1879 * just reread the time stamp
1880 */
1881 *ts = rb_time_stamp(buffer);
1882 next_page->page->time_stamp = *ts;
1883 }
1884
1885 out_again:
1886
1887 rb_reset_tail(cpu_buffer, tail_page, tail, length);
1888
1889 /* fail and let the caller try again */
1890 return ERR_PTR(-EAGAIN);
1891
1892 out_reset:
1893 /* reset write */
1894 rb_reset_tail(cpu_buffer, tail_page, tail, length);
1895
1896 return NULL;
1897 }
1898
1899 static struct ring_buffer_event *
1900 __rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
1901 unsigned type, unsigned long length, u64 *ts)
1902 {
1903 struct buffer_page *tail_page;
1904 struct ring_buffer_event *event;
1905 unsigned long tail, write;
1906
1907 tail_page = cpu_buffer->tail_page;
1908 write = local_add_return(length, &tail_page->write);
1909
1910 /* set write to only the index of the write */
1911 write &= RB_WRITE_MASK;
1912 tail = write - length;
1913
1914 /* See if we shot pass the end of this buffer page */
1915 if (write > BUF_PAGE_SIZE)
1916 return rb_move_tail(cpu_buffer, length, tail,
1917 tail_page, ts);
1918
1919 /* We reserved something on the buffer */
1920
1921 event = __rb_page_index(tail_page, tail);
1922 kmemcheck_annotate_bitfield(event, bitfield);
1923 rb_update_event(event, type, length);
1924
1925 /* The passed in type is zero for DATA */
1926 if (likely(!type))
1927 local_inc(&tail_page->entries);
1928
1929 /*
1930 * If this is the first commit on the page, then update
1931 * its timestamp.
1932 */
1933 if (!tail)
1934 tail_page->page->time_stamp = *ts;
1935
1936 return event;
1937 }
1938
1939 static inline int
1940 rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer,
1941 struct ring_buffer_event *event)
1942 {
1943 unsigned long new_index, old_index;
1944 struct buffer_page *bpage;
1945 unsigned long index;
1946 unsigned long addr;
1947
1948 new_index = rb_event_index(event);
1949 old_index = new_index + rb_event_length(event);
1950 addr = (unsigned long)event;
1951 addr &= PAGE_MASK;
1952
1953 bpage = cpu_buffer->tail_page;
1954
1955 if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) {
1956 unsigned long write_mask =
1957 local_read(&bpage->write) & ~RB_WRITE_MASK;
1958 /*
1959 * This is on the tail page. It is possible that
1960 * a write could come in and move the tail page
1961 * and write to the next page. That is fine
1962 * because we just shorten what is on this page.
1963 */
1964 old_index += write_mask;
1965 new_index += write_mask;
1966 index = local_cmpxchg(&bpage->write, old_index, new_index);
1967 if (index == old_index)
1968 return 1;
1969 }
1970
1971 /* could not discard */
1972 return 0;
1973 }
1974
1975 static int
1976 rb_add_time_stamp(struct ring_buffer_per_cpu *cpu_buffer,
1977 u64 *ts, u64 *delta)
1978 {
1979 struct ring_buffer_event *event;
1980 static int once;
1981 int ret;
1982
1983 if (unlikely(*delta > (1ULL << 59) && !once++)) {
1984 printk(KERN_WARNING "Delta way too big! %llu"
1985 " ts=%llu write stamp = %llu\n",
1986 (unsigned long long)*delta,
1987 (unsigned long long)*ts,
1988 (unsigned long long)cpu_buffer->write_stamp);
1989 WARN_ON(1);
1990 }
1991
1992 /*
1993 * The delta is too big, we to add a
1994 * new timestamp.
1995 */
1996 event = __rb_reserve_next(cpu_buffer,
1997 RINGBUF_TYPE_TIME_EXTEND,
1998 RB_LEN_TIME_EXTEND,
1999 ts);
2000 if (!event)
2001 return -EBUSY;
2002
2003 if (PTR_ERR(event) == -EAGAIN)
2004 return -EAGAIN;
2005
2006 /* Only a commited time event can update the write stamp */
2007 if (rb_event_is_commit(cpu_buffer, event)) {
2008 /*
2009 * If this is the first on the page, then it was
2010 * updated with the page itself. Try to discard it
2011 * and if we can't just make it zero.
2012 */
2013 if (rb_event_index(event)) {
2014 event->time_delta = *delta & TS_MASK;
2015 event->array[0] = *delta >> TS_SHIFT;
2016 } else {
2017 /* try to discard, since we do not need this */
2018 if (!rb_try_to_discard(cpu_buffer, event)) {
2019 /* nope, just zero it */
2020 event->time_delta = 0;
2021 event->array[0] = 0;
2022 }
2023 }
2024 cpu_buffer->write_stamp = *ts;
2025 /* let the caller know this was the commit */
2026 ret = 1;
2027 } else {
2028 /* Try to discard the event */
2029 if (!rb_try_to_discard(cpu_buffer, event)) {
2030 /* Darn, this is just wasted space */
2031 event->time_delta = 0;
2032 event->array[0] = 0;
2033 }
2034 ret = 0;
2035 }
2036
2037 *delta = 0;
2038
2039 return ret;
2040 }
2041
2042 static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer)
2043 {
2044 local_inc(&cpu_buffer->committing);
2045 local_inc(&cpu_buffer->commits);
2046 }
2047
2048 static void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer)
2049 {
2050 unsigned long commits;
2051
2052 if (RB_WARN_ON(cpu_buffer,
2053 !local_read(&cpu_buffer->committing)))
2054 return;
2055
2056 again:
2057 commits = local_read(&cpu_buffer->commits);
2058 /* synchronize with interrupts */
2059 barrier();
2060 if (local_read(&cpu_buffer->committing) == 1)
2061 rb_set_commit_to_write(cpu_buffer);
2062
2063 local_dec(&cpu_buffer->committing);
2064
2065 /* synchronize with interrupts */
2066 barrier();
2067
2068 /*
2069 * Need to account for interrupts coming in between the
2070 * updating of the commit page and the clearing of the
2071 * committing counter.
2072 */
2073 if (unlikely(local_read(&cpu_buffer->commits) != commits) &&
2074 !local_read(&cpu_buffer->committing)) {
2075 local_inc(&cpu_buffer->committing);
2076 goto again;
2077 }
2078 }
2079
2080 static struct ring_buffer_event *
2081 rb_reserve_next_event(struct ring_buffer *buffer,
2082 struct ring_buffer_per_cpu *cpu_buffer,
2083 unsigned long length)
2084 {
2085 struct ring_buffer_event *event;
2086 u64 ts, delta = 0;
2087 int commit = 0;
2088 int nr_loops = 0;
2089
2090 rb_start_commit(cpu_buffer);
2091
2092 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
2093 /*
2094 * Due to the ability to swap a cpu buffer from a buffer
2095 * it is possible it was swapped before we committed.
2096 * (committing stops a swap). We check for it here and
2097 * if it happened, we have to fail the write.
2098 */
2099 barrier();
2100 if (unlikely(ACCESS_ONCE(cpu_buffer->buffer) != buffer)) {
2101 local_dec(&cpu_buffer->committing);
2102 local_dec(&cpu_buffer->commits);
2103 return NULL;
2104 }
2105 #endif
2106
2107 length = rb_calculate_event_length(length);
2108 again:
2109 /*
2110 * We allow for interrupts to reenter here and do a trace.
2111 * If one does, it will cause this original code to loop
2112 * back here. Even with heavy interrupts happening, this
2113 * should only happen a few times in a row. If this happens
2114 * 1000 times in a row, there must be either an interrupt
2115 * storm or we have something buggy.
2116 * Bail!
2117 */
2118 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
2119 goto out_fail;
2120
2121 ts = rb_time_stamp(cpu_buffer->buffer);
2122
2123 /*
2124 * Only the first commit can update the timestamp.
2125 * Yes there is a race here. If an interrupt comes in
2126 * just after the conditional and it traces too, then it
2127 * will also check the deltas. More than one timestamp may
2128 * also be made. But only the entry that did the actual
2129 * commit will be something other than zero.
2130 */
2131 if (likely(cpu_buffer->tail_page == cpu_buffer->commit_page &&
2132 rb_page_write(cpu_buffer->tail_page) ==
2133 rb_commit_index(cpu_buffer))) {
2134 u64 diff;
2135
2136 diff = ts - cpu_buffer->write_stamp;
2137
2138 /* make sure this diff is calculated here */
2139 barrier();
2140
2141 /* Did the write stamp get updated already? */
2142 if (unlikely(ts < cpu_buffer->write_stamp))
2143 goto get_event;
2144
2145 delta = diff;
2146 if (unlikely(test_time_stamp(delta))) {
2147
2148 commit = rb_add_time_stamp(cpu_buffer, &ts, &delta);
2149 if (commit == -EBUSY)
2150 goto out_fail;
2151
2152 if (commit == -EAGAIN)
2153 goto again;
2154
2155 RB_WARN_ON(cpu_buffer, commit < 0);
2156 }
2157 }
2158
2159 get_event:
2160 event = __rb_reserve_next(cpu_buffer, 0, length, &ts);
2161 if (unlikely(PTR_ERR(event) == -EAGAIN))
2162 goto again;
2163
2164 if (!event)
2165 goto out_fail;
2166
2167 if (!rb_event_is_commit(cpu_buffer, event))
2168 delta = 0;
2169
2170 event->time_delta = delta;
2171
2172 return event;
2173
2174 out_fail:
2175 rb_end_commit(cpu_buffer);
2176 return NULL;
2177 }
2178
2179 #ifdef CONFIG_TRACING
2180
2181 #define TRACE_RECURSIVE_DEPTH 16
2182
2183 static int trace_recursive_lock(void)
2184 {
2185 current->trace_recursion++;
2186
2187 if (likely(current->trace_recursion < TRACE_RECURSIVE_DEPTH))
2188 return 0;
2189
2190 /* Disable all tracing before we do anything else */
2191 tracing_off_permanent();
2192
2193 printk_once(KERN_WARNING "Tracing recursion: depth[%ld]:"
2194 "HC[%lu]:SC[%lu]:NMI[%lu]\n",
2195 current->trace_recursion,
2196 hardirq_count() >> HARDIRQ_SHIFT,
2197 softirq_count() >> SOFTIRQ_SHIFT,
2198 in_nmi());
2199
2200 WARN_ON_ONCE(1);
2201 return -1;
2202 }
2203
2204 static void trace_recursive_unlock(void)
2205 {
2206 WARN_ON_ONCE(!current->trace_recursion);
2207
2208 current->trace_recursion--;
2209 }
2210
2211 #else
2212
2213 #define trace_recursive_lock() (0)
2214 #define trace_recursive_unlock() do { } while (0)
2215
2216 #endif
2217
2218 static DEFINE_PER_CPU(int, rb_need_resched);
2219
2220 /**
2221 * ring_buffer_lock_reserve - reserve a part of the buffer
2222 * @buffer: the ring buffer to reserve from
2223 * @length: the length of the data to reserve (excluding event header)
2224 *
2225 * Returns a reseverd event on the ring buffer to copy directly to.
2226 * The user of this interface will need to get the body to write into
2227 * and can use the ring_buffer_event_data() interface.
2228 *
2229 * The length is the length of the data needed, not the event length
2230 * which also includes the event header.
2231 *
2232 * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
2233 * If NULL is returned, then nothing has been allocated or locked.
2234 */
2235 struct ring_buffer_event *
2236 ring_buffer_lock_reserve(struct ring_buffer *buffer, unsigned long length)
2237 {
2238 struct ring_buffer_per_cpu *cpu_buffer;
2239 struct ring_buffer_event *event;
2240 int cpu, resched;
2241
2242 if (ring_buffer_flags != RB_BUFFERS_ON)
2243 return NULL;
2244
2245 /* If we are tracing schedule, we don't want to recurse */
2246 resched = ftrace_preempt_disable();
2247
2248 if (atomic_read(&buffer->record_disabled))
2249 goto out_nocheck;
2250
2251 if (trace_recursive_lock())
2252 goto out_nocheck;
2253
2254 cpu = raw_smp_processor_id();
2255
2256 if (!cpumask_test_cpu(cpu, buffer->cpumask))
2257 goto out;
2258
2259 cpu_buffer = buffer->buffers[cpu];
2260
2261 if (atomic_read(&cpu_buffer->record_disabled))
2262 goto out;
2263
2264 if (length > BUF_MAX_DATA_SIZE)
2265 goto out;
2266
2267 event = rb_reserve_next_event(buffer, cpu_buffer, length);
2268 if (!event)
2269 goto out;
2270
2271 /*
2272 * Need to store resched state on this cpu.
2273 * Only the first needs to.
2274 */
2275
2276 if (preempt_count() == 1)
2277 per_cpu(rb_need_resched, cpu) = resched;
2278
2279 return event;
2280
2281 out:
2282 trace_recursive_unlock();
2283
2284 out_nocheck:
2285 ftrace_preempt_enable(resched);
2286 return NULL;
2287 }
2288 EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve);
2289
2290 static void
2291 rb_update_write_stamp(struct ring_buffer_per_cpu *cpu_buffer,
2292 struct ring_buffer_event *event)
2293 {
2294 /*
2295 * The event first in the commit queue updates the
2296 * time stamp.
2297 */
2298 if (rb_event_is_commit(cpu_buffer, event))
2299 cpu_buffer->write_stamp += event->time_delta;
2300 }
2301
2302 static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer,
2303 struct ring_buffer_event *event)
2304 {
2305 local_inc(&cpu_buffer->entries);
2306 rb_update_write_stamp(cpu_buffer, event);
2307 rb_end_commit(cpu_buffer);
2308 }
2309
2310 /**
2311 * ring_buffer_unlock_commit - commit a reserved
2312 * @buffer: The buffer to commit to
2313 * @event: The event pointer to commit.
2314 *
2315 * This commits the data to the ring buffer, and releases any locks held.
2316 *
2317 * Must be paired with ring_buffer_lock_reserve.
2318 */
2319 int ring_buffer_unlock_commit(struct ring_buffer *buffer,
2320 struct ring_buffer_event *event)
2321 {
2322 struct ring_buffer_per_cpu *cpu_buffer;
2323 int cpu = raw_smp_processor_id();
2324
2325 cpu_buffer = buffer->buffers[cpu];
2326
2327 rb_commit(cpu_buffer, event);
2328
2329 trace_recursive_unlock();
2330
2331 /*
2332 * Only the last preempt count needs to restore preemption.
2333 */
2334 if (preempt_count() == 1)
2335 ftrace_preempt_enable(per_cpu(rb_need_resched, cpu));
2336 else
2337 preempt_enable_no_resched_notrace();
2338
2339 return 0;
2340 }
2341 EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit);
2342
2343 static inline void rb_event_discard(struct ring_buffer_event *event)
2344 {
2345 /* array[0] holds the actual length for the discarded event */
2346 event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE;
2347 event->type_len = RINGBUF_TYPE_PADDING;
2348 /* time delta must be non zero */
2349 if (!event->time_delta)
2350 event->time_delta = 1;
2351 }
2352
2353 /*
2354 * Decrement the entries to the page that an event is on.
2355 * The event does not even need to exist, only the pointer
2356 * to the page it is on. This may only be called before the commit
2357 * takes place.
2358 */
2359 static inline void
2360 rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer,
2361 struct ring_buffer_event *event)
2362 {
2363 unsigned long addr = (unsigned long)event;
2364 struct buffer_page *bpage = cpu_buffer->commit_page;
2365 struct buffer_page *start;
2366
2367 addr &= PAGE_MASK;
2368
2369 /* Do the likely case first */
2370 if (likely(bpage->page == (void *)addr)) {
2371 local_dec(&bpage->entries);
2372 return;
2373 }
2374
2375 /*
2376 * Because the commit page may be on the reader page we
2377 * start with the next page and check the end loop there.
2378 */
2379 rb_inc_page(cpu_buffer, &bpage);
2380 start = bpage;
2381 do {
2382 if (bpage->page == (void *)addr) {
2383 local_dec(&bpage->entries);
2384 return;
2385 }
2386 rb_inc_page(cpu_buffer, &bpage);
2387 } while (bpage != start);
2388
2389 /* commit not part of this buffer?? */
2390 RB_WARN_ON(cpu_buffer, 1);
2391 }
2392
2393 /**
2394 * ring_buffer_commit_discard - discard an event that has not been committed
2395 * @buffer: the ring buffer
2396 * @event: non committed event to discard
2397 *
2398 * Sometimes an event that is in the ring buffer needs to be ignored.
2399 * This function lets the user discard an event in the ring buffer
2400 * and then that event will not be read later.
2401 *
2402 * This function only works if it is called before the the item has been
2403 * committed. It will try to free the event from the ring buffer
2404 * if another event has not been added behind it.
2405 *
2406 * If another event has been added behind it, it will set the event
2407 * up as discarded, and perform the commit.
2408 *
2409 * If this function is called, do not call ring_buffer_unlock_commit on
2410 * the event.
2411 */
2412 void ring_buffer_discard_commit(struct ring_buffer *buffer,
2413 struct ring_buffer_event *event)
2414 {
2415 struct ring_buffer_per_cpu *cpu_buffer;
2416 int cpu;
2417
2418 /* The event is discarded regardless */
2419 rb_event_discard(event);
2420
2421 cpu = smp_processor_id();
2422 cpu_buffer = buffer->buffers[cpu];
2423
2424 /*
2425 * This must only be called if the event has not been
2426 * committed yet. Thus we can assume that preemption
2427 * is still disabled.
2428 */
2429 RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing));
2430
2431 rb_decrement_entry(cpu_buffer, event);
2432 if (rb_try_to_discard(cpu_buffer, event))
2433 goto out;
2434
2435 /*
2436 * The commit is still visible by the reader, so we
2437 * must still update the timestamp.
2438 */
2439 rb_update_write_stamp(cpu_buffer, event);
2440 out:
2441 rb_end_commit(cpu_buffer);
2442
2443 trace_recursive_unlock();
2444
2445 /*
2446 * Only the last preempt count needs to restore preemption.
2447 */
2448 if (preempt_count() == 1)
2449 ftrace_preempt_enable(per_cpu(rb_need_resched, cpu));
2450 else
2451 preempt_enable_no_resched_notrace();
2452
2453 }
2454 EXPORT_SYMBOL_GPL(ring_buffer_discard_commit);
2455
2456 /**
2457 * ring_buffer_write - write data to the buffer without reserving
2458 * @buffer: The ring buffer to write to.
2459 * @length: The length of the data being written (excluding the event header)
2460 * @data: The data to write to the buffer.
2461 *
2462 * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
2463 * one function. If you already have the data to write to the buffer, it
2464 * may be easier to simply call this function.
2465 *
2466 * Note, like ring_buffer_lock_reserve, the length is the length of the data
2467 * and not the length of the event which would hold the header.
2468 */
2469 int ring_buffer_write(struct ring_buffer *buffer,
2470 unsigned long length,
2471 void *data)
2472 {
2473 struct ring_buffer_per_cpu *cpu_buffer;
2474 struct ring_buffer_event *event;
2475 void *body;
2476 int ret = -EBUSY;
2477 int cpu, resched;
2478
2479 if (ring_buffer_flags != RB_BUFFERS_ON)
2480 return -EBUSY;
2481
2482 resched = ftrace_preempt_disable();
2483
2484 if (atomic_read(&buffer->record_disabled))
2485 goto out;
2486
2487 cpu = raw_smp_processor_id();
2488
2489 if (!cpumask_test_cpu(cpu, buffer->cpumask))
2490 goto out;
2491
2492 cpu_buffer = buffer->buffers[cpu];
2493
2494 if (atomic_read(&cpu_buffer->record_disabled))
2495 goto out;
2496
2497 if (length > BUF_MAX_DATA_SIZE)
2498 goto out;
2499
2500 event = rb_reserve_next_event(buffer, cpu_buffer, length);
2501 if (!event)
2502 goto out;
2503
2504 body = rb_event_data(event);
2505
2506 memcpy(body, data, length);
2507
2508 rb_commit(cpu_buffer, event);
2509
2510 ret = 0;
2511 out:
2512 ftrace_preempt_enable(resched);
2513
2514 return ret;
2515 }
2516 EXPORT_SYMBOL_GPL(ring_buffer_write);
2517
2518 static int rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
2519 {
2520 struct buffer_page *reader = cpu_buffer->reader_page;
2521 struct buffer_page *head = rb_set_head_page(cpu_buffer);
2522 struct buffer_page *commit = cpu_buffer->commit_page;
2523
2524 /* In case of error, head will be NULL */
2525 if (unlikely(!head))
2526 return 1;
2527
2528 return reader->read == rb_page_commit(reader) &&
2529 (commit == reader ||
2530 (commit == head &&
2531 head->read == rb_page_commit(commit)));
2532 }
2533
2534 /**
2535 * ring_buffer_record_disable - stop all writes into the buffer
2536 * @buffer: The ring buffer to stop writes to.
2537 *
2538 * This prevents all writes to the buffer. Any attempt to write
2539 * to the buffer after this will fail and return NULL.
2540 *
2541 * The caller should call synchronize_sched() after this.
2542 */
2543 void ring_buffer_record_disable(struct ring_buffer *buffer)
2544 {
2545 atomic_inc(&buffer->record_disabled);
2546 }
2547 EXPORT_SYMBOL_GPL(ring_buffer_record_disable);
2548
2549 /**
2550 * ring_buffer_record_enable - enable writes to the buffer
2551 * @buffer: The ring buffer to enable writes
2552 *
2553 * Note, multiple disables will need the same number of enables
2554 * to truly enable the writing (much like preempt_disable).
2555 */
2556 void ring_buffer_record_enable(struct ring_buffer *buffer)
2557 {
2558 atomic_dec(&buffer->record_disabled);
2559 }
2560 EXPORT_SYMBOL_GPL(ring_buffer_record_enable);
2561
2562 /**
2563 * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
2564 * @buffer: The ring buffer to stop writes to.
2565 * @cpu: The CPU buffer to stop
2566 *
2567 * This prevents all writes to the buffer. Any attempt to write
2568 * to the buffer after this will fail and return NULL.
2569 *
2570 * The caller should call synchronize_sched() after this.
2571 */
2572 void ring_buffer_record_disable_cpu(struct ring_buffer *buffer, int cpu)
2573 {
2574 struct ring_buffer_per_cpu *cpu_buffer;
2575
2576 if (!cpumask_test_cpu(cpu, buffer->cpumask))
2577 return;
2578
2579 cpu_buffer = buffer->buffers[cpu];
2580 atomic_inc(&cpu_buffer->record_disabled);
2581 }
2582 EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu);
2583
2584 /**
2585 * ring_buffer_record_enable_cpu - enable writes to the buffer
2586 * @buffer: The ring buffer to enable writes
2587 * @cpu: The CPU to enable.
2588 *
2589 * Note, multiple disables will need the same number of enables
2590 * to truly enable the writing (much like preempt_disable).
2591 */
2592 void ring_buffer_record_enable_cpu(struct ring_buffer *buffer, int cpu)
2593 {
2594 struct ring_buffer_per_cpu *cpu_buffer;
2595
2596 if (!cpumask_test_cpu(cpu, buffer->cpumask))
2597 return;
2598
2599 cpu_buffer = buffer->buffers[cpu];
2600 atomic_dec(&cpu_buffer->record_disabled);
2601 }
2602 EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu);
2603
2604 /**
2605 * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
2606 * @buffer: The ring buffer
2607 * @cpu: The per CPU buffer to get the entries from.
2608 */
2609 unsigned long ring_buffer_entries_cpu(struct ring_buffer *buffer, int cpu)
2610 {
2611 struct ring_buffer_per_cpu *cpu_buffer;
2612 unsigned long ret;
2613
2614 if (!cpumask_test_cpu(cpu, buffer->cpumask))
2615 return 0;
2616
2617 cpu_buffer = buffer->buffers[cpu];
2618 ret = (local_read(&cpu_buffer->entries) - local_read(&cpu_buffer->overrun))
2619 - cpu_buffer->read;
2620
2621 return ret;
2622 }
2623 EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu);
2624
2625 /**
2626 * ring_buffer_overrun_cpu - get the number of overruns in a cpu_buffer
2627 * @buffer: The ring buffer
2628 * @cpu: The per CPU buffer to get the number of overruns from
2629 */
2630 unsigned long ring_buffer_overrun_cpu(struct ring_buffer *buffer, int cpu)
2631 {
2632 struct ring_buffer_per_cpu *cpu_buffer;
2633 unsigned long ret;
2634
2635 if (!cpumask_test_cpu(cpu, buffer->cpumask))
2636 return 0;
2637
2638 cpu_buffer = buffer->buffers[cpu];
2639 ret = local_read(&cpu_buffer->overrun);
2640
2641 return ret;
2642 }
2643 EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu);
2644
2645 /**
2646 * ring_buffer_commit_overrun_cpu - get the number of overruns caused by commits
2647 * @buffer: The ring buffer
2648 * @cpu: The per CPU buffer to get the number of overruns from
2649 */
2650 unsigned long
2651 ring_buffer_commit_overrun_cpu(struct ring_buffer *buffer, int cpu)
2652 {
2653 struct ring_buffer_per_cpu *cpu_buffer;
2654 unsigned long ret;
2655
2656 if (!cpumask_test_cpu(cpu, buffer->cpumask))
2657 return 0;
2658
2659 cpu_buffer = buffer->buffers[cpu];
2660 ret = local_read(&cpu_buffer->commit_overrun);
2661
2662 return ret;
2663 }
2664 EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu);
2665
2666 /**
2667 * ring_buffer_entries - get the number of entries in a buffer
2668 * @buffer: The ring buffer
2669 *
2670 * Returns the total number of entries in the ring buffer
2671 * (all CPU entries)
2672 */
2673 unsigned long ring_buffer_entries(struct ring_buffer *buffer)
2674 {
2675 struct ring_buffer_per_cpu *cpu_buffer;
2676 unsigned long entries = 0;
2677 int cpu;
2678
2679 /* if you care about this being correct, lock the buffer */
2680 for_each_buffer_cpu(buffer, cpu) {
2681 cpu_buffer = buffer->buffers[cpu];
2682 entries += (local_read(&cpu_buffer->entries) -
2683 local_read(&cpu_buffer->overrun)) - cpu_buffer->read;
2684 }
2685
2686 return entries;
2687 }
2688 EXPORT_SYMBOL_GPL(ring_buffer_entries);
2689
2690 /**
2691 * ring_buffer_overruns - get the number of overruns in buffer
2692 * @buffer: The ring buffer
2693 *
2694 * Returns the total number of overruns in the ring buffer
2695 * (all CPU entries)
2696 */
2697 unsigned long ring_buffer_overruns(struct ring_buffer *buffer)
2698 {
2699 struct ring_buffer_per_cpu *cpu_buffer;
2700 unsigned long overruns = 0;
2701 int cpu;
2702
2703 /* if you care about this being correct, lock the buffer */
2704 for_each_buffer_cpu(buffer, cpu) {
2705 cpu_buffer = buffer->buffers[cpu];
2706 overruns += local_read(&cpu_buffer->overrun);
2707 }
2708
2709 return overruns;
2710 }
2711 EXPORT_SYMBOL_GPL(ring_buffer_overruns);
2712
2713 static void rb_iter_reset(struct ring_buffer_iter *iter)
2714 {
2715 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
2716
2717 /* Iterator usage is expected to have record disabled */
2718 if (list_empty(&cpu_buffer->reader_page->list)) {
2719 iter->head_page = rb_set_head_page(cpu_buffer);
2720 if (unlikely(!iter->head_page))
2721 return;
2722 iter->head = iter->head_page->read;
2723 } else {
2724 iter->head_page = cpu_buffer->reader_page;
2725 iter->head = cpu_buffer->reader_page->read;
2726 }
2727 if (iter->head)
2728 iter->read_stamp = cpu_buffer->read_stamp;
2729 else
2730 iter->read_stamp = iter->head_page->page->time_stamp;
2731 iter->cache_reader_page = cpu_buffer->reader_page;
2732 iter->cache_read = cpu_buffer->read;
2733 }
2734
2735 /**
2736 * ring_buffer_iter_reset - reset an iterator
2737 * @iter: The iterator to reset
2738 *
2739 * Resets the iterator, so that it will start from the beginning
2740 * again.
2741 */
2742 void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
2743 {
2744 struct ring_buffer_per_cpu *cpu_buffer;
2745 unsigned long flags;
2746
2747 if (!iter)
2748 return;
2749
2750 cpu_buffer = iter->cpu_buffer;
2751
2752 spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2753 rb_iter_reset(iter);
2754 spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2755 }
2756 EXPORT_SYMBOL_GPL(ring_buffer_iter_reset);
2757
2758 /**
2759 * ring_buffer_iter_empty - check if an iterator has no more to read
2760 * @iter: The iterator to check
2761 */
2762 int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
2763 {
2764 struct ring_buffer_per_cpu *cpu_buffer;
2765
2766 cpu_buffer = iter->cpu_buffer;
2767
2768 return iter->head_page == cpu_buffer->commit_page &&
2769 iter->head == rb_commit_index(cpu_buffer);
2770 }
2771 EXPORT_SYMBOL_GPL(ring_buffer_iter_empty);
2772
2773 static void
2774 rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
2775 struct ring_buffer_event *event)
2776 {
2777 u64 delta;
2778
2779 switch (event->type_len) {
2780 case RINGBUF_TYPE_PADDING:
2781 return;
2782
2783 case RINGBUF_TYPE_TIME_EXTEND:
2784 delta = event->array[0];
2785 delta <<= TS_SHIFT;
2786 delta += event->time_delta;
2787 cpu_buffer->read_stamp += delta;
2788 return;
2789
2790 case RINGBUF_TYPE_TIME_STAMP:
2791 /* FIXME: not implemented */
2792 return;
2793
2794 case RINGBUF_TYPE_DATA:
2795 cpu_buffer->read_stamp += event->time_delta;
2796 return;
2797
2798 default:
2799 BUG();
2800 }
2801 return;
2802 }
2803
2804 static void
2805 rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
2806 struct ring_buffer_event *event)
2807 {
2808 u64 delta;
2809
2810 switch (event->type_len) {
2811 case RINGBUF_TYPE_PADDING:
2812 return;
2813
2814 case RINGBUF_TYPE_TIME_EXTEND:
2815 delta = event->array[0];
2816 delta <<= TS_SHIFT;
2817 delta += event->time_delta;
2818 iter->read_stamp += delta;
2819 return;
2820
2821 case RINGBUF_TYPE_TIME_STAMP:
2822 /* FIXME: not implemented */
2823 return;
2824
2825 case RINGBUF_TYPE_DATA:
2826 iter->read_stamp += event->time_delta;
2827 return;
2828
2829 default:
2830 BUG();
2831 }
2832 return;
2833 }
2834
2835 static struct buffer_page *
2836 rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
2837 {
2838 struct buffer_page *reader = NULL;
2839 unsigned long flags;
2840 int nr_loops = 0;
2841 int ret;
2842
2843 local_irq_save(flags);
2844 arch_spin_lock(&cpu_buffer->lock);
2845
2846 again:
2847 /*
2848 * This should normally only loop twice. But because the
2849 * start of the reader inserts an empty page, it causes
2850 * a case where we will loop three times. There should be no
2851 * reason to loop four times (that I know of).
2852 */
2853 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
2854 reader = NULL;
2855 goto out;
2856 }
2857
2858 reader = cpu_buffer->reader_page;
2859
2860 /* If there's more to read, return this page */
2861 if (cpu_buffer->reader_page->read < rb_page_size(reader))
2862 goto out;
2863
2864 /* Never should we have an index greater than the size */
2865 if (RB_WARN_ON(cpu_buffer,
2866 cpu_buffer->reader_page->read > rb_page_size(reader)))
2867 goto out;
2868
2869 /* check if we caught up to the tail */
2870 reader = NULL;
2871 if (cpu_buffer->commit_page == cpu_buffer->reader_page)
2872 goto out;
2873
2874 /*
2875 * Reset the reader page to size zero.
2876 */
2877 local_set(&cpu_buffer->reader_page->write, 0);
2878 local_set(&cpu_buffer->reader_page->entries, 0);
2879 local_set(&cpu_buffer->reader_page->page->commit, 0);
2880
2881 spin:
2882 /*
2883 * Splice the empty reader page into the list around the head.
2884 */
2885 reader = rb_set_head_page(cpu_buffer);
2886 cpu_buffer->reader_page->list.next = rb_list_head(reader->list.next);
2887 cpu_buffer->reader_page->list.prev = reader->list.prev;
2888
2889 /*
2890 * cpu_buffer->pages just needs to point to the buffer, it
2891 * has no specific buffer page to point to. Lets move it out
2892 * of our way so we don't accidently swap it.
2893 */
2894 cpu_buffer->pages = reader->list.prev;
2895
2896 /* The reader page will be pointing to the new head */
2897 rb_set_list_to_head(cpu_buffer, &cpu_buffer->reader_page->list);
2898
2899 /*
2900 * Here's the tricky part.
2901 *
2902 * We need to move the pointer past the header page.
2903 * But we can only do that if a writer is not currently
2904 * moving it. The page before the header page has the
2905 * flag bit '1' set if it is pointing to the page we want.
2906 * but if the writer is in the process of moving it
2907 * than it will be '2' or already moved '0'.
2908 */
2909
2910 ret = rb_head_page_replace(reader, cpu_buffer->reader_page);
2911
2912 /*
2913 * If we did not convert it, then we must try again.
2914 */
2915 if (!ret)
2916 goto spin;
2917
2918 /*
2919 * Yeah! We succeeded in replacing the page.
2920 *
2921 * Now make the new head point back to the reader page.
2922 */
2923 rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list;
2924 rb_inc_page(cpu_buffer, &cpu_buffer->head_page);
2925
2926 /* Finally update the reader page to the new head */
2927 cpu_buffer->reader_page = reader;
2928 rb_reset_reader_page(cpu_buffer);
2929
2930 goto again;
2931
2932 out:
2933 arch_spin_unlock(&cpu_buffer->lock);
2934 local_irq_restore(flags);
2935
2936 return reader;
2937 }
2938
2939 static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
2940 {
2941 struct ring_buffer_event *event;
2942 struct buffer_page *reader;
2943 unsigned length;
2944
2945 reader = rb_get_reader_page(cpu_buffer);
2946
2947 /* This function should not be called when buffer is empty */
2948 if (RB_WARN_ON(cpu_buffer, !reader))
2949 return;
2950
2951 event = rb_reader_event(cpu_buffer);
2952
2953 if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
2954 cpu_buffer->read++;
2955
2956 rb_update_read_stamp(cpu_buffer, event);
2957
2958 length = rb_event_length(event);
2959 cpu_buffer->reader_page->read += length;
2960 }
2961
2962 static void rb_advance_iter(struct ring_buffer_iter *iter)
2963 {
2964 struct ring_buffer *buffer;
2965 struct ring_buffer_per_cpu *cpu_buffer;
2966 struct ring_buffer_event *event;
2967 unsigned length;
2968
2969 cpu_buffer = iter->cpu_buffer;
2970 buffer = cpu_buffer->buffer;
2971
2972 /*
2973 * Check if we are at the end of the buffer.
2974 */
2975 if (iter->head >= rb_page_size(iter->head_page)) {
2976 /* discarded commits can make the page empty */
2977 if (iter->head_page == cpu_buffer->commit_page)
2978 return;
2979 rb_inc_iter(iter);
2980 return;
2981 }
2982
2983 event = rb_iter_head_event(iter);
2984
2985 length = rb_event_length(event);
2986
2987 /*
2988 * This should not be called to advance the header if we are
2989 * at the tail of the buffer.
2990 */
2991 if (RB_WARN_ON(cpu_buffer,
2992 (iter->head_page == cpu_buffer->commit_page) &&
2993 (iter->head + length > rb_commit_index(cpu_buffer))))
2994 return;
2995
2996 rb_update_iter_read_stamp(iter, event);
2997
2998 iter->head += length;
2999
3000 /* check for end of page padding */
3001 if ((iter->head >= rb_page_size(iter->head_page)) &&
3002 (iter->head_page != cpu_buffer->commit_page))
3003 rb_advance_iter(iter);
3004 }
3005
3006 static struct ring_buffer_event *
3007 rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts)
3008 {
3009 struct ring_buffer_event *event;
3010 struct buffer_page *reader;
3011 int nr_loops = 0;
3012
3013 again:
3014 /*
3015 * We repeat when a timestamp is encountered. It is possible
3016 * to get multiple timestamps from an interrupt entering just
3017 * as one timestamp is about to be written, or from discarded
3018 * commits. The most that we can have is the number on a single page.
3019 */
3020 if (RB_WARN_ON(cpu_buffer, ++nr_loops > RB_TIMESTAMPS_PER_PAGE))
3021 return NULL;
3022
3023 reader = rb_get_reader_page(cpu_buffer);
3024 if (!reader)
3025 return NULL;
3026
3027 event = rb_reader_event(cpu_buffer);
3028
3029 switch (event->type_len) {
3030 case RINGBUF_TYPE_PADDING:
3031 if (rb_null_event(event))
3032 RB_WARN_ON(cpu_buffer, 1);
3033 /*
3034 * Because the writer could be discarding every
3035 * event it creates (which would probably be bad)
3036 * if we were to go back to "again" then we may never
3037 * catch up, and will trigger the warn on, or lock
3038 * the box. Return the padding, and we will release
3039 * the current locks, and try again.
3040 */
3041 return event;
3042
3043 case RINGBUF_TYPE_TIME_EXTEND:
3044 /* Internal data, OK to advance */
3045 rb_advance_reader(cpu_buffer);
3046 goto again;
3047
3048 case RINGBUF_TYPE_TIME_STAMP:
3049 /* FIXME: not implemented */
3050 rb_advance_reader(cpu_buffer);
3051 goto again;
3052
3053 case RINGBUF_TYPE_DATA:
3054 if (ts) {
3055 *ts = cpu_buffer->read_stamp + event->time_delta;
3056 ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
3057 cpu_buffer->cpu, ts);
3058 }
3059 return event;
3060
3061 default:
3062 BUG();
3063 }
3064
3065 return NULL;
3066 }
3067 EXPORT_SYMBOL_GPL(ring_buffer_peek);
3068
3069 static struct ring_buffer_event *
3070 rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
3071 {
3072 struct ring_buffer *buffer;
3073 struct ring_buffer_per_cpu *cpu_buffer;
3074 struct ring_buffer_event *event;
3075 int nr_loops = 0;
3076
3077 cpu_buffer = iter->cpu_buffer;
3078 buffer = cpu_buffer->buffer;
3079
3080 /*
3081 * Check if someone performed a consuming read to
3082 * the buffer. A consuming read invalidates the iterator
3083 * and we need to reset the iterator in this case.
3084 */
3085 if (unlikely(iter->cache_read != cpu_buffer->read ||
3086 iter->cache_reader_page != cpu_buffer->reader_page))
3087 rb_iter_reset(iter);
3088
3089 again:
3090 if (ring_buffer_iter_empty(iter))
3091 return NULL;
3092
3093 /*
3094 * We repeat when a timestamp is encountered.
3095 * We can get multiple timestamps by nested interrupts or also
3096 * if filtering is on (discarding commits). Since discarding
3097 * commits can be frequent we can get a lot of timestamps.
3098 * But we limit them by not adding timestamps if they begin
3099 * at the start of a page.
3100 */
3101 if (RB_WARN_ON(cpu_buffer, ++nr_loops > RB_TIMESTAMPS_PER_PAGE))
3102 return NULL;
3103
3104 if (rb_per_cpu_empty(cpu_buffer))
3105 return NULL;
3106
3107 if (iter->head >= local_read(&iter->head_page->page->commit)) {
3108 rb_inc_iter(iter);
3109 goto again;
3110 }
3111
3112 event = rb_iter_head_event(iter);
3113
3114 switch (event->type_len) {
3115 case RINGBUF_TYPE_PADDING:
3116 if (rb_null_event(event)) {
3117 rb_inc_iter(iter);
3118 goto again;
3119 }
3120 rb_advance_iter(iter);
3121 return event;
3122
3123 case RINGBUF_TYPE_TIME_EXTEND:
3124 /* Internal data, OK to advance */
3125 rb_advance_iter(iter);
3126 goto again;
3127
3128 case RINGBUF_TYPE_TIME_STAMP:
3129 /* FIXME: not implemented */
3130 rb_advance_iter(iter);
3131 goto again;
3132
3133 case RINGBUF_TYPE_DATA:
3134 if (ts) {
3135 *ts = iter->read_stamp + event->time_delta;
3136 ring_buffer_normalize_time_stamp(buffer,
3137 cpu_buffer->cpu, ts);
3138 }
3139 return event;
3140
3141 default:
3142 BUG();
3143 }
3144
3145 return NULL;
3146 }
3147 EXPORT_SYMBOL_GPL(ring_buffer_iter_peek);
3148
3149 static inline int rb_ok_to_lock(void)
3150 {
3151 /*
3152 * If an NMI die dumps out the content of the ring buffer
3153 * do not grab locks. We also permanently disable the ring
3154 * buffer too. A one time deal is all you get from reading
3155 * the ring buffer from an NMI.
3156 */
3157 if (likely(!in_nmi()))
3158 return 1;
3159
3160 tracing_off_permanent();
3161 return 0;
3162 }
3163
3164 /**
3165 * ring_buffer_peek - peek at the next event to be read
3166 * @buffer: The ring buffer to read
3167 * @cpu: The cpu to peak at
3168 * @ts: The timestamp counter of this event.
3169 *
3170 * This will return the event that will be read next, but does
3171 * not consume the data.
3172 */
3173 struct ring_buffer_event *
3174 ring_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts)
3175 {
3176 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
3177 struct ring_buffer_event *event;
3178 unsigned long flags;
3179 int dolock;
3180
3181 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3182 return NULL;
3183
3184 dolock = rb_ok_to_lock();
3185 again:
3186 local_irq_save(flags);
3187 if (dolock)
3188 spin_lock(&cpu_buffer->reader_lock);
3189 event = rb_buffer_peek(cpu_buffer, ts);
3190 if (event && event->type_len == RINGBUF_TYPE_PADDING)
3191 rb_advance_reader(cpu_buffer);
3192 if (dolock)
3193 spin_unlock(&cpu_buffer->reader_lock);
3194 local_irq_restore(flags);
3195
3196 if (event && event->type_len == RINGBUF_TYPE_PADDING)
3197 goto again;
3198
3199 return event;
3200 }
3201
3202 /**
3203 * ring_buffer_iter_peek - peek at the next event to be read
3204 * @iter: The ring buffer iterator
3205 * @ts: The timestamp counter of this event.
3206 *
3207 * This will return the event that will be read next, but does
3208 * not increment the iterator.
3209 */
3210 struct ring_buffer_event *
3211 ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
3212 {
3213 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3214 struct ring_buffer_event *event;
3215 unsigned long flags;
3216
3217 again:
3218 spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3219 event = rb_iter_peek(iter, ts);
3220 spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3221
3222 if (event && event->type_len == RINGBUF_TYPE_PADDING)
3223 goto again;
3224
3225 return event;
3226 }
3227
3228 /**
3229 * ring_buffer_consume - return an event and consume it
3230 * @buffer: The ring buffer to get the next event from
3231 *
3232 * Returns the next event in the ring buffer, and that event is consumed.
3233 * Meaning, that sequential reads will keep returning a different event,
3234 * and eventually empty the ring buffer if the producer is slower.
3235 */
3236 struct ring_buffer_event *
3237 ring_buffer_consume(struct ring_buffer *buffer, int cpu, u64 *ts)
3238 {
3239 struct ring_buffer_per_cpu *cpu_buffer;
3240 struct ring_buffer_event *event = NULL;
3241 unsigned long flags;
3242 int dolock;
3243
3244 dolock = rb_ok_to_lock();
3245
3246 again:
3247 /* might be called in atomic */
3248 preempt_disable();
3249
3250 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3251 goto out;
3252
3253 cpu_buffer = buffer->buffers[cpu];
3254 local_irq_save(flags);
3255 if (dolock)
3256 spin_lock(&cpu_buffer->reader_lock);
3257
3258 event = rb_buffer_peek(cpu_buffer, ts);
3259 if (event)
3260 rb_advance_reader(cpu_buffer);
3261
3262 if (dolock)
3263 spin_unlock(&cpu_buffer->reader_lock);
3264 local_irq_restore(flags);
3265
3266 out:
3267 preempt_enable();
3268
3269 if (event && event->type_len == RINGBUF_TYPE_PADDING)
3270 goto again;
3271
3272 return event;
3273 }
3274 EXPORT_SYMBOL_GPL(ring_buffer_consume);
3275
3276 /**
3277 * ring_buffer_read_start - start a non consuming read of the buffer
3278 * @buffer: The ring buffer to read from
3279 * @cpu: The cpu buffer to iterate over
3280 *
3281 * This starts up an iteration through the buffer. It also disables
3282 * the recording to the buffer until the reading is finished.
3283 * This prevents the reading from being corrupted. This is not
3284 * a consuming read, so a producer is not expected.
3285 *
3286 * Must be paired with ring_buffer_finish.
3287 */
3288 struct ring_buffer_iter *
3289 ring_buffer_read_start(struct ring_buffer *buffer, int cpu)
3290 {
3291 struct ring_buffer_per_cpu *cpu_buffer;
3292 struct ring_buffer_iter *iter;
3293 unsigned long flags;
3294
3295 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3296 return NULL;
3297
3298 iter = kmalloc(sizeof(*iter), GFP_KERNEL);
3299 if (!iter)
3300 return NULL;
3301
3302 cpu_buffer = buffer->buffers[cpu];
3303
3304 iter->cpu_buffer = cpu_buffer;
3305
3306 atomic_inc(&cpu_buffer->record_disabled);
3307 synchronize_sched();
3308
3309 spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3310 arch_spin_lock(&cpu_buffer->lock);
3311 rb_iter_reset(iter);
3312 arch_spin_unlock(&cpu_buffer->lock);
3313 spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3314
3315 return iter;
3316 }
3317 EXPORT_SYMBOL_GPL(ring_buffer_read_start);
3318
3319 /**
3320 * ring_buffer_finish - finish reading the iterator of the buffer
3321 * @iter: The iterator retrieved by ring_buffer_start
3322 *
3323 * This re-enables the recording to the buffer, and frees the
3324 * iterator.
3325 */
3326 void
3327 ring_buffer_read_finish(struct ring_buffer_iter *iter)
3328 {
3329 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3330
3331 atomic_dec(&cpu_buffer->record_disabled);
3332 kfree(iter);
3333 }
3334 EXPORT_SYMBOL_GPL(ring_buffer_read_finish);
3335
3336 /**
3337 * ring_buffer_read - read the next item in the ring buffer by the iterator
3338 * @iter: The ring buffer iterator
3339 * @ts: The time stamp of the event read.
3340 *
3341 * This reads the next event in the ring buffer and increments the iterator.
3342 */
3343 struct ring_buffer_event *
3344 ring_buffer_read(struct ring_buffer_iter *iter, u64 *ts)
3345 {
3346 struct ring_buffer_event *event;
3347 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3348 unsigned long flags;
3349
3350 spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3351 again:
3352 event = rb_iter_peek(iter, ts);
3353 if (!event)
3354 goto out;
3355
3356 if (event->type_len == RINGBUF_TYPE_PADDING)
3357 goto again;
3358
3359 rb_advance_iter(iter);
3360 out:
3361 spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3362
3363 return event;
3364 }
3365 EXPORT_SYMBOL_GPL(ring_buffer_read);
3366
3367 /**
3368 * ring_buffer_size - return the size of the ring buffer (in bytes)
3369 * @buffer: The ring buffer.
3370 */
3371 unsigned long ring_buffer_size(struct ring_buffer *buffer)
3372 {
3373 return BUF_PAGE_SIZE * buffer->pages;
3374 }
3375 EXPORT_SYMBOL_GPL(ring_buffer_size);
3376
3377 static void
3378 rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
3379 {
3380 rb_head_page_deactivate(cpu_buffer);
3381
3382 cpu_buffer->head_page
3383 = list_entry(cpu_buffer->pages, struct buffer_page, list);
3384 local_set(&cpu_buffer->head_page->write, 0);
3385 local_set(&cpu_buffer->head_page->entries, 0);
3386 local_set(&cpu_buffer->head_page->page->commit, 0);
3387
3388 cpu_buffer->head_page->read = 0;
3389
3390 cpu_buffer->tail_page = cpu_buffer->head_page;
3391 cpu_buffer->commit_page = cpu_buffer->head_page;
3392
3393 INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
3394 local_set(&cpu_buffer->reader_page->write, 0);
3395 local_set(&cpu_buffer->reader_page->entries, 0);
3396 local_set(&cpu_buffer->reader_page->page->commit, 0);
3397 cpu_buffer->reader_page->read = 0;
3398
3399 local_set(&cpu_buffer->commit_overrun, 0);
3400 local_set(&cpu_buffer->overrun, 0);
3401 local_set(&cpu_buffer->entries, 0);
3402 local_set(&cpu_buffer->committing, 0);
3403 local_set(&cpu_buffer->commits, 0);
3404 cpu_buffer->read = 0;
3405
3406 cpu_buffer->write_stamp = 0;
3407 cpu_buffer->read_stamp = 0;
3408
3409 rb_head_page_activate(cpu_buffer);
3410 }
3411
3412 /**
3413 * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
3414 * @buffer: The ring buffer to reset a per cpu buffer of
3415 * @cpu: The CPU buffer to be reset
3416 */
3417 void ring_buffer_reset_cpu(struct ring_buffer *buffer, int cpu)
3418 {
3419 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
3420 unsigned long flags;
3421
3422 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3423 return;
3424
3425 atomic_inc(&cpu_buffer->record_disabled);
3426
3427 spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3428
3429 if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing)))
3430 goto out;
3431
3432 arch_spin_lock(&cpu_buffer->lock);
3433
3434 rb_reset_cpu(cpu_buffer);
3435
3436 arch_spin_unlock(&cpu_buffer->lock);
3437
3438 out:
3439 spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3440
3441 atomic_dec(&cpu_buffer->record_disabled);
3442 }
3443 EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu);
3444
3445 /**
3446 * ring_buffer_reset - reset a ring buffer
3447 * @buffer: The ring buffer to reset all cpu buffers
3448 */
3449 void ring_buffer_reset(struct ring_buffer *buffer)
3450 {
3451 int cpu;
3452
3453 for_each_buffer_cpu(buffer, cpu)
3454 ring_buffer_reset_cpu(buffer, cpu);
3455 }
3456 EXPORT_SYMBOL_GPL(ring_buffer_reset);
3457
3458 /**
3459 * rind_buffer_empty - is the ring buffer empty?
3460 * @buffer: The ring buffer to test
3461 */
3462 int ring_buffer_empty(struct ring_buffer *buffer)
3463 {
3464 struct ring_buffer_per_cpu *cpu_buffer;
3465 unsigned long flags;
3466 int dolock;
3467 int cpu;
3468 int ret;
3469
3470 dolock = rb_ok_to_lock();
3471
3472 /* yes this is racy, but if you don't like the race, lock the buffer */
3473 for_each_buffer_cpu(buffer, cpu) {
3474 cpu_buffer = buffer->buffers[cpu];
3475 local_irq_save(flags);
3476 if (dolock)
3477 spin_lock(&cpu_buffer->reader_lock);
3478 ret = rb_per_cpu_empty(cpu_buffer);
3479 if (dolock)
3480 spin_unlock(&cpu_buffer->reader_lock);
3481 local_irq_restore(flags);
3482
3483 if (!ret)
3484 return 0;
3485 }
3486
3487 return 1;
3488 }
3489 EXPORT_SYMBOL_GPL(ring_buffer_empty);
3490
3491 /**
3492 * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
3493 * @buffer: The ring buffer
3494 * @cpu: The CPU buffer to test
3495 */
3496 int ring_buffer_empty_cpu(struct ring_buffer *buffer, int cpu)
3497 {
3498 struct ring_buffer_per_cpu *cpu_buffer;
3499 unsigned long flags;
3500 int dolock;
3501 int ret;
3502
3503 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3504 return 1;
3505
3506 dolock = rb_ok_to_lock();
3507
3508 cpu_buffer = buffer->buffers[cpu];
3509 local_irq_save(flags);
3510 if (dolock)
3511 spin_lock(&cpu_buffer->reader_lock);
3512 ret = rb_per_cpu_empty(cpu_buffer);
3513 if (dolock)
3514 spin_unlock(&cpu_buffer->reader_lock);
3515 local_irq_restore(flags);
3516
3517 return ret;
3518 }
3519 EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu);
3520
3521 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
3522 /**
3523 * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
3524 * @buffer_a: One buffer to swap with
3525 * @buffer_b: The other buffer to swap with
3526 *
3527 * This function is useful for tracers that want to take a "snapshot"
3528 * of a CPU buffer and has another back up buffer lying around.
3529 * it is expected that the tracer handles the cpu buffer not being
3530 * used at the moment.
3531 */
3532 int ring_buffer_swap_cpu(struct ring_buffer *buffer_a,
3533 struct ring_buffer *buffer_b, int cpu)
3534 {
3535 struct ring_buffer_per_cpu *cpu_buffer_a;
3536 struct ring_buffer_per_cpu *cpu_buffer_b;
3537 int ret = -EINVAL;
3538
3539 if (!cpumask_test_cpu(cpu, buffer_a->cpumask) ||
3540 !cpumask_test_cpu(cpu, buffer_b->cpumask))
3541 goto out;
3542
3543 /* At least make sure the two buffers are somewhat the same */
3544 if (buffer_a->pages != buffer_b->pages)
3545 goto out;
3546
3547 ret = -EAGAIN;
3548
3549 if (ring_buffer_flags != RB_BUFFERS_ON)
3550 goto out;
3551
3552 if (atomic_read(&buffer_a->record_disabled))
3553 goto out;
3554
3555 if (atomic_read(&buffer_b->record_disabled))
3556 goto out;
3557
3558 cpu_buffer_a = buffer_a->buffers[cpu];
3559 cpu_buffer_b = buffer_b->buffers[cpu];
3560
3561 if (atomic_read(&cpu_buffer_a->record_disabled))
3562 goto out;
3563
3564 if (atomic_read(&cpu_buffer_b->record_disabled))
3565 goto out;
3566
3567 /*
3568 * We can't do a synchronize_sched here because this
3569 * function can be called in atomic context.
3570 * Normally this will be called from the same CPU as cpu.
3571 * If not it's up to the caller to protect this.
3572 */
3573 atomic_inc(&cpu_buffer_a->record_disabled);
3574 atomic_inc(&cpu_buffer_b->record_disabled);
3575
3576 ret = -EBUSY;
3577 if (local_read(&cpu_buffer_a->committing))
3578 goto out_dec;
3579 if (local_read(&cpu_buffer_b->committing))
3580 goto out_dec;
3581
3582 buffer_a->buffers[cpu] = cpu_buffer_b;
3583 buffer_b->buffers[cpu] = cpu_buffer_a;
3584
3585 cpu_buffer_b->buffer = buffer_a;
3586 cpu_buffer_a->buffer = buffer_b;
3587
3588 ret = 0;
3589
3590 out_dec:
3591 atomic_dec(&cpu_buffer_a->record_disabled);
3592 atomic_dec(&cpu_buffer_b->record_disabled);
3593 out:
3594 return ret;
3595 }
3596 EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu);
3597 #endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */
3598
3599 /**
3600 * ring_buffer_alloc_read_page - allocate a page to read from buffer
3601 * @buffer: the buffer to allocate for.
3602 *
3603 * This function is used in conjunction with ring_buffer_read_page.
3604 * When reading a full page from the ring buffer, these functions
3605 * can be used to speed up the process. The calling function should
3606 * allocate a few pages first with this function. Then when it
3607 * needs to get pages from the ring buffer, it passes the result
3608 * of this function into ring_buffer_read_page, which will swap
3609 * the page that was allocated, with the read page of the buffer.
3610 *
3611 * Returns:
3612 * The page allocated, or NULL on error.
3613 */
3614 void *ring_buffer_alloc_read_page(struct ring_buffer *buffer)
3615 {
3616 struct buffer_data_page *bpage;
3617 unsigned long addr;
3618
3619 addr = __get_free_page(GFP_KERNEL);
3620 if (!addr)
3621 return NULL;
3622
3623 bpage = (void *)addr;
3624
3625 rb_init_page(bpage);
3626
3627 return bpage;
3628 }
3629 EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page);
3630
3631 /**
3632 * ring_buffer_free_read_page - free an allocated read page
3633 * @buffer: the buffer the page was allocate for
3634 * @data: the page to free
3635 *
3636 * Free a page allocated from ring_buffer_alloc_read_page.
3637 */
3638 void ring_buffer_free_read_page(struct ring_buffer *buffer, void *data)
3639 {
3640 free_page((unsigned long)data);
3641 }
3642 EXPORT_SYMBOL_GPL(ring_buffer_free_read_page);
3643
3644 /**
3645 * ring_buffer_read_page - extract a page from the ring buffer
3646 * @buffer: buffer to extract from
3647 * @data_page: the page to use allocated from ring_buffer_alloc_read_page
3648 * @len: amount to extract
3649 * @cpu: the cpu of the buffer to extract
3650 * @full: should the extraction only happen when the page is full.
3651 *
3652 * This function will pull out a page from the ring buffer and consume it.
3653 * @data_page must be the address of the variable that was returned
3654 * from ring_buffer_alloc_read_page. This is because the page might be used
3655 * to swap with a page in the ring buffer.
3656 *
3657 * for example:
3658 * rpage = ring_buffer_alloc_read_page(buffer);
3659 * if (!rpage)
3660 * return error;
3661 * ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0);
3662 * if (ret >= 0)
3663 * process_page(rpage, ret);
3664 *
3665 * When @full is set, the function will not return true unless
3666 * the writer is off the reader page.
3667 *
3668 * Note: it is up to the calling functions to handle sleeps and wakeups.
3669 * The ring buffer can be used anywhere in the kernel and can not
3670 * blindly call wake_up. The layer that uses the ring buffer must be
3671 * responsible for that.
3672 *
3673 * Returns:
3674 * >=0 if data has been transferred, returns the offset of consumed data.
3675 * <0 if no data has been transferred.
3676 */
3677 int ring_buffer_read_page(struct ring_buffer *buffer,
3678 void **data_page, size_t len, int cpu, int full)
3679 {
3680 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
3681 struct ring_buffer_event *event;
3682 struct buffer_data_page *bpage;
3683 struct buffer_page *reader;
3684 unsigned long flags;
3685 unsigned int commit;
3686 unsigned int read;
3687 u64 save_timestamp;
3688 int ret = -1;
3689
3690 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3691 goto out;
3692
3693 /*
3694 * If len is not big enough to hold the page header, then
3695 * we can not copy anything.
3696 */
3697 if (len <= BUF_PAGE_HDR_SIZE)
3698 goto out;
3699
3700 len -= BUF_PAGE_HDR_SIZE;
3701
3702 if (!data_page)
3703 goto out;
3704
3705 bpage = *data_page;
3706 if (!bpage)
3707 goto out;
3708
3709 spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3710
3711 reader = rb_get_reader_page(cpu_buffer);
3712 if (!reader)
3713 goto out_unlock;
3714
3715 event = rb_reader_event(cpu_buffer);
3716
3717 read = reader->read;
3718 commit = rb_page_commit(reader);
3719
3720 /*
3721 * If this page has been partially read or
3722 * if len is not big enough to read the rest of the page or
3723 * a writer is still on the page, then
3724 * we must copy the data from the page to the buffer.
3725 * Otherwise, we can simply swap the page with the one passed in.
3726 */
3727 if (read || (len < (commit - read)) ||
3728 cpu_buffer->reader_page == cpu_buffer->commit_page) {
3729 struct buffer_data_page *rpage = cpu_buffer->reader_page->page;
3730 unsigned int rpos = read;
3731 unsigned int pos = 0;
3732 unsigned int size;
3733
3734 if (full)
3735 goto out_unlock;
3736
3737 if (len > (commit - read))
3738 len = (commit - read);
3739
3740 size = rb_event_length(event);
3741
3742 if (len < size)
3743 goto out_unlock;
3744
3745 /* save the current timestamp, since the user will need it */
3746 save_timestamp = cpu_buffer->read_stamp;
3747
3748 /* Need to copy one event at a time */
3749 do {
3750 memcpy(bpage->data + pos, rpage->data + rpos, size);
3751
3752 len -= size;
3753
3754 rb_advance_reader(cpu_buffer);
3755 rpos = reader->read;
3756 pos += size;
3757
3758 event = rb_reader_event(cpu_buffer);
3759 size = rb_event_length(event);
3760 } while (len > size);
3761
3762 /* update bpage */
3763 local_set(&bpage->commit, pos);
3764 bpage->time_stamp = save_timestamp;
3765
3766 /* we copied everything to the beginning */
3767 read = 0;
3768 } else {
3769 /* update the entry counter */
3770 cpu_buffer->read += rb_page_entries(reader);
3771
3772 /* swap the pages */
3773 rb_init_page(bpage);
3774 bpage = reader->page;
3775 reader->page = *data_page;
3776 local_set(&reader->write, 0);
3777 local_set(&reader->entries, 0);
3778 reader->read = 0;
3779 *data_page = bpage;
3780 }
3781 ret = read;
3782
3783 out_unlock:
3784 spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3785
3786 out:
3787 return ret;
3788 }
3789 EXPORT_SYMBOL_GPL(ring_buffer_read_page);
3790
3791 #ifdef CONFIG_TRACING
3792 static ssize_t
3793 rb_simple_read(struct file *filp, char __user *ubuf,
3794 size_t cnt, loff_t *ppos)
3795 {
3796 unsigned long *p = filp->private_data;
3797 char buf[64];
3798 int r;
3799
3800 if (test_bit(RB_BUFFERS_DISABLED_BIT, p))
3801 r = sprintf(buf, "permanently disabled\n");
3802 else
3803 r = sprintf(buf, "%d\n", test_bit(RB_BUFFERS_ON_BIT, p));
3804
3805 return simple_read_from_buffer(ubuf, cnt, ppos, buf, r);
3806 }
3807
3808 static ssize_t
3809 rb_simple_write(struct file *filp, const char __user *ubuf,
3810 size_t cnt, loff_t *ppos)
3811 {
3812 unsigned long *p = filp->private_data;
3813 char buf[64];
3814 unsigned long val;
3815 int ret;
3816
3817 if (cnt >= sizeof(buf))
3818 return -EINVAL;
3819
3820 if (copy_from_user(&buf, ubuf, cnt))
3821 return -EFAULT;
3822
3823 buf[cnt] = 0;
3824
3825 ret = strict_strtoul(buf, 10, &val);
3826 if (ret < 0)
3827 return ret;
3828
3829 if (val)
3830 set_bit(RB_BUFFERS_ON_BIT, p);
3831 else
3832 clear_bit(RB_BUFFERS_ON_BIT, p);
3833
3834 (*ppos)++;
3835
3836 return cnt;
3837 }
3838
3839 static const struct file_operations rb_simple_fops = {
3840 .open = tracing_open_generic,
3841 .read = rb_simple_read,
3842 .write = rb_simple_write,
3843 };
3844
3845
3846 static __init int rb_init_debugfs(void)
3847 {
3848 struct dentry *d_tracer;
3849
3850 d_tracer = tracing_init_dentry();
3851
3852 trace_create_file("tracing_on", 0644, d_tracer,
3853 &ring_buffer_flags, &rb_simple_fops);
3854
3855 return 0;
3856 }
3857
3858 fs_initcall(rb_init_debugfs);
3859 #endif
3860
3861 #ifdef CONFIG_HOTPLUG_CPU
3862 static int rb_cpu_notify(struct notifier_block *self,
3863 unsigned long action, void *hcpu)
3864 {
3865 struct ring_buffer *buffer =
3866 container_of(self, struct ring_buffer, cpu_notify);
3867 long cpu = (long)hcpu;
3868
3869 switch (action) {
3870 case CPU_UP_PREPARE:
3871 case CPU_UP_PREPARE_FROZEN:
3872 if (cpumask_test_cpu(cpu, buffer->cpumask))
3873 return NOTIFY_OK;
3874
3875 buffer->buffers[cpu] =
3876 rb_allocate_cpu_buffer(buffer, cpu);
3877 if (!buffer->buffers[cpu]) {
3878 WARN(1, "failed to allocate ring buffer on CPU %ld\n",
3879 cpu);
3880 return NOTIFY_OK;
3881 }
3882 smp_wmb();
3883 cpumask_set_cpu(cpu, buffer->cpumask);
3884 break;
3885 case CPU_DOWN_PREPARE:
3886 case CPU_DOWN_PREPARE_FROZEN:
3887 /*
3888 * Do nothing.
3889 * If we were to free the buffer, then the user would
3890 * lose any trace that was in the buffer.
3891 */
3892 break;
3893 default:
3894 break;
3895 }
3896 return NOTIFY_OK;
3897 }
3898 #endif