]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - kernel/trace/ring_buffer.c
ring-buffer: Check if memory is available before allocation
[mirror_ubuntu-bionic-kernel.git] / kernel / trace / ring_buffer.c
1 /*
2 * Generic ring buffer
3 *
4 * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
5 */
6 #include <linux/trace_events.h>
7 #include <linux/ring_buffer.h>
8 #include <linux/trace_clock.h>
9 #include <linux/sched/clock.h>
10 #include <linux/trace_seq.h>
11 #include <linux/spinlock.h>
12 #include <linux/irq_work.h>
13 #include <linux/uaccess.h>
14 #include <linux/hardirq.h>
15 #include <linux/kthread.h> /* for self test */
16 #include <linux/module.h>
17 #include <linux/percpu.h>
18 #include <linux/mutex.h>
19 #include <linux/delay.h>
20 #include <linux/slab.h>
21 #include <linux/init.h>
22 #include <linux/hash.h>
23 #include <linux/list.h>
24 #include <linux/cpu.h>
25
26 #include <asm/local.h>
27
28 static void update_pages_handler(struct work_struct *work);
29
30 /*
31 * The ring buffer header is special. We must manually up keep it.
32 */
33 int ring_buffer_print_entry_header(struct trace_seq *s)
34 {
35 trace_seq_puts(s, "# compressed entry header\n");
36 trace_seq_puts(s, "\ttype_len : 5 bits\n");
37 trace_seq_puts(s, "\ttime_delta : 27 bits\n");
38 trace_seq_puts(s, "\tarray : 32 bits\n");
39 trace_seq_putc(s, '\n');
40 trace_seq_printf(s, "\tpadding : type == %d\n",
41 RINGBUF_TYPE_PADDING);
42 trace_seq_printf(s, "\ttime_extend : type == %d\n",
43 RINGBUF_TYPE_TIME_EXTEND);
44 trace_seq_printf(s, "\tdata max type_len == %d\n",
45 RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
46
47 return !trace_seq_has_overflowed(s);
48 }
49
50 /*
51 * The ring buffer is made up of a list of pages. A separate list of pages is
52 * allocated for each CPU. A writer may only write to a buffer that is
53 * associated with the CPU it is currently executing on. A reader may read
54 * from any per cpu buffer.
55 *
56 * The reader is special. For each per cpu buffer, the reader has its own
57 * reader page. When a reader has read the entire reader page, this reader
58 * page is swapped with another page in the ring buffer.
59 *
60 * Now, as long as the writer is off the reader page, the reader can do what
61 * ever it wants with that page. The writer will never write to that page
62 * again (as long as it is out of the ring buffer).
63 *
64 * Here's some silly ASCII art.
65 *
66 * +------+
67 * |reader| RING BUFFER
68 * |page |
69 * +------+ +---+ +---+ +---+
70 * | |-->| |-->| |
71 * +---+ +---+ +---+
72 * ^ |
73 * | |
74 * +---------------+
75 *
76 *
77 * +------+
78 * |reader| RING BUFFER
79 * |page |------------------v
80 * +------+ +---+ +---+ +---+
81 * | |-->| |-->| |
82 * +---+ +---+ +---+
83 * ^ |
84 * | |
85 * +---------------+
86 *
87 *
88 * +------+
89 * |reader| RING BUFFER
90 * |page |------------------v
91 * +------+ +---+ +---+ +---+
92 * ^ | |-->| |-->| |
93 * | +---+ +---+ +---+
94 * | |
95 * | |
96 * +------------------------------+
97 *
98 *
99 * +------+
100 * |buffer| RING BUFFER
101 * |page |------------------v
102 * +------+ +---+ +---+ +---+
103 * ^ | | | |-->| |
104 * | New +---+ +---+ +---+
105 * | Reader------^ |
106 * | page |
107 * +------------------------------+
108 *
109 *
110 * After we make this swap, the reader can hand this page off to the splice
111 * code and be done with it. It can even allocate a new page if it needs to
112 * and swap that into the ring buffer.
113 *
114 * We will be using cmpxchg soon to make all this lockless.
115 *
116 */
117
118 /* Used for individual buffers (after the counter) */
119 #define RB_BUFFER_OFF (1 << 20)
120
121 #define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
122
123 #define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
124 #define RB_ALIGNMENT 4U
125 #define RB_MAX_SMALL_DATA (RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
126 #define RB_EVNT_MIN_SIZE 8U /* two 32bit words */
127
128 #ifndef CONFIG_HAVE_64BIT_ALIGNED_ACCESS
129 # define RB_FORCE_8BYTE_ALIGNMENT 0
130 # define RB_ARCH_ALIGNMENT RB_ALIGNMENT
131 #else
132 # define RB_FORCE_8BYTE_ALIGNMENT 1
133 # define RB_ARCH_ALIGNMENT 8U
134 #endif
135
136 #define RB_ALIGN_DATA __aligned(RB_ARCH_ALIGNMENT)
137
138 /* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */
139 #define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX
140
141 enum {
142 RB_LEN_TIME_EXTEND = 8,
143 RB_LEN_TIME_STAMP = 16,
144 };
145
146 #define skip_time_extend(event) \
147 ((struct ring_buffer_event *)((char *)event + RB_LEN_TIME_EXTEND))
148
149 static inline int rb_null_event(struct ring_buffer_event *event)
150 {
151 return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta;
152 }
153
154 static void rb_event_set_padding(struct ring_buffer_event *event)
155 {
156 /* padding has a NULL time_delta */
157 event->type_len = RINGBUF_TYPE_PADDING;
158 event->time_delta = 0;
159 }
160
161 static unsigned
162 rb_event_data_length(struct ring_buffer_event *event)
163 {
164 unsigned length;
165
166 if (event->type_len)
167 length = event->type_len * RB_ALIGNMENT;
168 else
169 length = event->array[0];
170 return length + RB_EVNT_HDR_SIZE;
171 }
172
173 /*
174 * Return the length of the given event. Will return
175 * the length of the time extend if the event is a
176 * time extend.
177 */
178 static inline unsigned
179 rb_event_length(struct ring_buffer_event *event)
180 {
181 switch (event->type_len) {
182 case RINGBUF_TYPE_PADDING:
183 if (rb_null_event(event))
184 /* undefined */
185 return -1;
186 return event->array[0] + RB_EVNT_HDR_SIZE;
187
188 case RINGBUF_TYPE_TIME_EXTEND:
189 return RB_LEN_TIME_EXTEND;
190
191 case RINGBUF_TYPE_TIME_STAMP:
192 return RB_LEN_TIME_STAMP;
193
194 case RINGBUF_TYPE_DATA:
195 return rb_event_data_length(event);
196 default:
197 BUG();
198 }
199 /* not hit */
200 return 0;
201 }
202
203 /*
204 * Return total length of time extend and data,
205 * or just the event length for all other events.
206 */
207 static inline unsigned
208 rb_event_ts_length(struct ring_buffer_event *event)
209 {
210 unsigned len = 0;
211
212 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) {
213 /* time extends include the data event after it */
214 len = RB_LEN_TIME_EXTEND;
215 event = skip_time_extend(event);
216 }
217 return len + rb_event_length(event);
218 }
219
220 /**
221 * ring_buffer_event_length - return the length of the event
222 * @event: the event to get the length of
223 *
224 * Returns the size of the data load of a data event.
225 * If the event is something other than a data event, it
226 * returns the size of the event itself. With the exception
227 * of a TIME EXTEND, where it still returns the size of the
228 * data load of the data event after it.
229 */
230 unsigned ring_buffer_event_length(struct ring_buffer_event *event)
231 {
232 unsigned length;
233
234 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
235 event = skip_time_extend(event);
236
237 length = rb_event_length(event);
238 if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
239 return length;
240 length -= RB_EVNT_HDR_SIZE;
241 if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0]))
242 length -= sizeof(event->array[0]);
243 return length;
244 }
245 EXPORT_SYMBOL_GPL(ring_buffer_event_length);
246
247 /* inline for ring buffer fast paths */
248 static __always_inline void *
249 rb_event_data(struct ring_buffer_event *event)
250 {
251 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
252 event = skip_time_extend(event);
253 BUG_ON(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
254 /* If length is in len field, then array[0] has the data */
255 if (event->type_len)
256 return (void *)&event->array[0];
257 /* Otherwise length is in array[0] and array[1] has the data */
258 return (void *)&event->array[1];
259 }
260
261 /**
262 * ring_buffer_event_data - return the data of the event
263 * @event: the event to get the data from
264 */
265 void *ring_buffer_event_data(struct ring_buffer_event *event)
266 {
267 return rb_event_data(event);
268 }
269 EXPORT_SYMBOL_GPL(ring_buffer_event_data);
270
271 #define for_each_buffer_cpu(buffer, cpu) \
272 for_each_cpu(cpu, buffer->cpumask)
273
274 #define TS_SHIFT 27
275 #define TS_MASK ((1ULL << TS_SHIFT) - 1)
276 #define TS_DELTA_TEST (~TS_MASK)
277
278 /* Flag when events were overwritten */
279 #define RB_MISSED_EVENTS (1 << 31)
280 /* Missed count stored at end */
281 #define RB_MISSED_STORED (1 << 30)
282
283 #define RB_MISSED_FLAGS (RB_MISSED_EVENTS|RB_MISSED_STORED)
284
285 struct buffer_data_page {
286 u64 time_stamp; /* page time stamp */
287 local_t commit; /* write committed index */
288 unsigned char data[] RB_ALIGN_DATA; /* data of buffer page */
289 };
290
291 /*
292 * Note, the buffer_page list must be first. The buffer pages
293 * are allocated in cache lines, which means that each buffer
294 * page will be at the beginning of a cache line, and thus
295 * the least significant bits will be zero. We use this to
296 * add flags in the list struct pointers, to make the ring buffer
297 * lockless.
298 */
299 struct buffer_page {
300 struct list_head list; /* list of buffer pages */
301 local_t write; /* index for next write */
302 unsigned read; /* index for next read */
303 local_t entries; /* entries on this page */
304 unsigned long real_end; /* real end of data */
305 struct buffer_data_page *page; /* Actual data page */
306 };
307
308 /*
309 * The buffer page counters, write and entries, must be reset
310 * atomically when crossing page boundaries. To synchronize this
311 * update, two counters are inserted into the number. One is
312 * the actual counter for the write position or count on the page.
313 *
314 * The other is a counter of updaters. Before an update happens
315 * the update partition of the counter is incremented. This will
316 * allow the updater to update the counter atomically.
317 *
318 * The counter is 20 bits, and the state data is 12.
319 */
320 #define RB_WRITE_MASK 0xfffff
321 #define RB_WRITE_INTCNT (1 << 20)
322
323 static void rb_init_page(struct buffer_data_page *bpage)
324 {
325 local_set(&bpage->commit, 0);
326 }
327
328 /**
329 * ring_buffer_page_len - the size of data on the page.
330 * @page: The page to read
331 *
332 * Returns the amount of data on the page, including buffer page header.
333 */
334 size_t ring_buffer_page_len(void *page)
335 {
336 struct buffer_data_page *bpage = page;
337
338 return (local_read(&bpage->commit) & ~RB_MISSED_FLAGS)
339 + BUF_PAGE_HDR_SIZE;
340 }
341
342 /*
343 * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing
344 * this issue out.
345 */
346 static void free_buffer_page(struct buffer_page *bpage)
347 {
348 free_page((unsigned long)bpage->page);
349 kfree(bpage);
350 }
351
352 /*
353 * We need to fit the time_stamp delta into 27 bits.
354 */
355 static inline int test_time_stamp(u64 delta)
356 {
357 if (delta & TS_DELTA_TEST)
358 return 1;
359 return 0;
360 }
361
362 #define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE)
363
364 /* Max payload is BUF_PAGE_SIZE - header (8bytes) */
365 #define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2))
366
367 int ring_buffer_print_page_header(struct trace_seq *s)
368 {
369 struct buffer_data_page field;
370
371 trace_seq_printf(s, "\tfield: u64 timestamp;\t"
372 "offset:0;\tsize:%u;\tsigned:%u;\n",
373 (unsigned int)sizeof(field.time_stamp),
374 (unsigned int)is_signed_type(u64));
375
376 trace_seq_printf(s, "\tfield: local_t commit;\t"
377 "offset:%u;\tsize:%u;\tsigned:%u;\n",
378 (unsigned int)offsetof(typeof(field), commit),
379 (unsigned int)sizeof(field.commit),
380 (unsigned int)is_signed_type(long));
381
382 trace_seq_printf(s, "\tfield: int overwrite;\t"
383 "offset:%u;\tsize:%u;\tsigned:%u;\n",
384 (unsigned int)offsetof(typeof(field), commit),
385 1,
386 (unsigned int)is_signed_type(long));
387
388 trace_seq_printf(s, "\tfield: char data;\t"
389 "offset:%u;\tsize:%u;\tsigned:%u;\n",
390 (unsigned int)offsetof(typeof(field), data),
391 (unsigned int)BUF_PAGE_SIZE,
392 (unsigned int)is_signed_type(char));
393
394 return !trace_seq_has_overflowed(s);
395 }
396
397 struct rb_irq_work {
398 struct irq_work work;
399 wait_queue_head_t waiters;
400 wait_queue_head_t full_waiters;
401 bool waiters_pending;
402 bool full_waiters_pending;
403 bool wakeup_full;
404 };
405
406 /*
407 * Structure to hold event state and handle nested events.
408 */
409 struct rb_event_info {
410 u64 ts;
411 u64 delta;
412 unsigned long length;
413 struct buffer_page *tail_page;
414 int add_timestamp;
415 };
416
417 /*
418 * Used for which event context the event is in.
419 * NMI = 0
420 * IRQ = 1
421 * SOFTIRQ = 2
422 * NORMAL = 3
423 *
424 * See trace_recursive_lock() comment below for more details.
425 */
426 enum {
427 RB_CTX_NMI,
428 RB_CTX_IRQ,
429 RB_CTX_SOFTIRQ,
430 RB_CTX_NORMAL,
431 RB_CTX_MAX
432 };
433
434 /*
435 * head_page == tail_page && head == tail then buffer is empty.
436 */
437 struct ring_buffer_per_cpu {
438 int cpu;
439 atomic_t record_disabled;
440 struct ring_buffer *buffer;
441 raw_spinlock_t reader_lock; /* serialize readers */
442 arch_spinlock_t lock;
443 struct lock_class_key lock_key;
444 struct buffer_data_page *free_page;
445 unsigned long nr_pages;
446 unsigned int current_context;
447 struct list_head *pages;
448 struct buffer_page *head_page; /* read from head */
449 struct buffer_page *tail_page; /* write to tail */
450 struct buffer_page *commit_page; /* committed pages */
451 struct buffer_page *reader_page;
452 unsigned long lost_events;
453 unsigned long last_overrun;
454 local_t entries_bytes;
455 local_t entries;
456 local_t overrun;
457 local_t commit_overrun;
458 local_t dropped_events;
459 local_t committing;
460 local_t commits;
461 unsigned long read;
462 unsigned long read_bytes;
463 u64 write_stamp;
464 u64 read_stamp;
465 /* ring buffer pages to update, > 0 to add, < 0 to remove */
466 long nr_pages_to_update;
467 struct list_head new_pages; /* new pages to add */
468 struct work_struct update_pages_work;
469 struct completion update_done;
470
471 struct rb_irq_work irq_work;
472 };
473
474 struct ring_buffer {
475 unsigned flags;
476 int cpus;
477 atomic_t record_disabled;
478 atomic_t resize_disabled;
479 cpumask_var_t cpumask;
480
481 struct lock_class_key *reader_lock_key;
482
483 struct mutex mutex;
484
485 struct ring_buffer_per_cpu **buffers;
486
487 struct hlist_node node;
488 u64 (*clock)(void);
489
490 struct rb_irq_work irq_work;
491 };
492
493 struct ring_buffer_iter {
494 struct ring_buffer_per_cpu *cpu_buffer;
495 unsigned long head;
496 struct buffer_page *head_page;
497 struct buffer_page *cache_reader_page;
498 unsigned long cache_read;
499 u64 read_stamp;
500 };
501
502 /*
503 * rb_wake_up_waiters - wake up tasks waiting for ring buffer input
504 *
505 * Schedules a delayed work to wake up any task that is blocked on the
506 * ring buffer waiters queue.
507 */
508 static void rb_wake_up_waiters(struct irq_work *work)
509 {
510 struct rb_irq_work *rbwork = container_of(work, struct rb_irq_work, work);
511
512 wake_up_all(&rbwork->waiters);
513 if (rbwork->wakeup_full) {
514 rbwork->wakeup_full = false;
515 wake_up_all(&rbwork->full_waiters);
516 }
517 }
518
519 /**
520 * ring_buffer_wait - wait for input to the ring buffer
521 * @buffer: buffer to wait on
522 * @cpu: the cpu buffer to wait on
523 * @full: wait until a full page is available, if @cpu != RING_BUFFER_ALL_CPUS
524 *
525 * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
526 * as data is added to any of the @buffer's cpu buffers. Otherwise
527 * it will wait for data to be added to a specific cpu buffer.
528 */
529 int ring_buffer_wait(struct ring_buffer *buffer, int cpu, bool full)
530 {
531 struct ring_buffer_per_cpu *uninitialized_var(cpu_buffer);
532 DEFINE_WAIT(wait);
533 struct rb_irq_work *work;
534 int ret = 0;
535
536 /*
537 * Depending on what the caller is waiting for, either any
538 * data in any cpu buffer, or a specific buffer, put the
539 * caller on the appropriate wait queue.
540 */
541 if (cpu == RING_BUFFER_ALL_CPUS) {
542 work = &buffer->irq_work;
543 /* Full only makes sense on per cpu reads */
544 full = false;
545 } else {
546 if (!cpumask_test_cpu(cpu, buffer->cpumask))
547 return -ENODEV;
548 cpu_buffer = buffer->buffers[cpu];
549 work = &cpu_buffer->irq_work;
550 }
551
552
553 while (true) {
554 if (full)
555 prepare_to_wait(&work->full_waiters, &wait, TASK_INTERRUPTIBLE);
556 else
557 prepare_to_wait(&work->waiters, &wait, TASK_INTERRUPTIBLE);
558
559 /*
560 * The events can happen in critical sections where
561 * checking a work queue can cause deadlocks.
562 * After adding a task to the queue, this flag is set
563 * only to notify events to try to wake up the queue
564 * using irq_work.
565 *
566 * We don't clear it even if the buffer is no longer
567 * empty. The flag only causes the next event to run
568 * irq_work to do the work queue wake up. The worse
569 * that can happen if we race with !trace_empty() is that
570 * an event will cause an irq_work to try to wake up
571 * an empty queue.
572 *
573 * There's no reason to protect this flag either, as
574 * the work queue and irq_work logic will do the necessary
575 * synchronization for the wake ups. The only thing
576 * that is necessary is that the wake up happens after
577 * a task has been queued. It's OK for spurious wake ups.
578 */
579 if (full)
580 work->full_waiters_pending = true;
581 else
582 work->waiters_pending = true;
583
584 if (signal_pending(current)) {
585 ret = -EINTR;
586 break;
587 }
588
589 if (cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer))
590 break;
591
592 if (cpu != RING_BUFFER_ALL_CPUS &&
593 !ring_buffer_empty_cpu(buffer, cpu)) {
594 unsigned long flags;
595 bool pagebusy;
596
597 if (!full)
598 break;
599
600 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
601 pagebusy = cpu_buffer->reader_page == cpu_buffer->commit_page;
602 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
603
604 if (!pagebusy)
605 break;
606 }
607
608 schedule();
609 }
610
611 if (full)
612 finish_wait(&work->full_waiters, &wait);
613 else
614 finish_wait(&work->waiters, &wait);
615
616 return ret;
617 }
618
619 /**
620 * ring_buffer_poll_wait - poll on buffer input
621 * @buffer: buffer to wait on
622 * @cpu: the cpu buffer to wait on
623 * @filp: the file descriptor
624 * @poll_table: The poll descriptor
625 *
626 * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
627 * as data is added to any of the @buffer's cpu buffers. Otherwise
628 * it will wait for data to be added to a specific cpu buffer.
629 *
630 * Returns POLLIN | POLLRDNORM if data exists in the buffers,
631 * zero otherwise.
632 */
633 int ring_buffer_poll_wait(struct ring_buffer *buffer, int cpu,
634 struct file *filp, poll_table *poll_table)
635 {
636 struct ring_buffer_per_cpu *cpu_buffer;
637 struct rb_irq_work *work;
638
639 if (cpu == RING_BUFFER_ALL_CPUS)
640 work = &buffer->irq_work;
641 else {
642 if (!cpumask_test_cpu(cpu, buffer->cpumask))
643 return -EINVAL;
644
645 cpu_buffer = buffer->buffers[cpu];
646 work = &cpu_buffer->irq_work;
647 }
648
649 poll_wait(filp, &work->waiters, poll_table);
650 work->waiters_pending = true;
651 /*
652 * There's a tight race between setting the waiters_pending and
653 * checking if the ring buffer is empty. Once the waiters_pending bit
654 * is set, the next event will wake the task up, but we can get stuck
655 * if there's only a single event in.
656 *
657 * FIXME: Ideally, we need a memory barrier on the writer side as well,
658 * but adding a memory barrier to all events will cause too much of a
659 * performance hit in the fast path. We only need a memory barrier when
660 * the buffer goes from empty to having content. But as this race is
661 * extremely small, and it's not a problem if another event comes in, we
662 * will fix it later.
663 */
664 smp_mb();
665
666 if ((cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer)) ||
667 (cpu != RING_BUFFER_ALL_CPUS && !ring_buffer_empty_cpu(buffer, cpu)))
668 return POLLIN | POLLRDNORM;
669 return 0;
670 }
671
672 /* buffer may be either ring_buffer or ring_buffer_per_cpu */
673 #define RB_WARN_ON(b, cond) \
674 ({ \
675 int _____ret = unlikely(cond); \
676 if (_____ret) { \
677 if (__same_type(*(b), struct ring_buffer_per_cpu)) { \
678 struct ring_buffer_per_cpu *__b = \
679 (void *)b; \
680 atomic_inc(&__b->buffer->record_disabled); \
681 } else \
682 atomic_inc(&b->record_disabled); \
683 WARN_ON(1); \
684 } \
685 _____ret; \
686 })
687
688 /* Up this if you want to test the TIME_EXTENTS and normalization */
689 #define DEBUG_SHIFT 0
690
691 static inline u64 rb_time_stamp(struct ring_buffer *buffer)
692 {
693 /* shift to debug/test normalization and TIME_EXTENTS */
694 return buffer->clock() << DEBUG_SHIFT;
695 }
696
697 u64 ring_buffer_time_stamp(struct ring_buffer *buffer, int cpu)
698 {
699 u64 time;
700
701 preempt_disable_notrace();
702 time = rb_time_stamp(buffer);
703 preempt_enable_no_resched_notrace();
704
705 return time;
706 }
707 EXPORT_SYMBOL_GPL(ring_buffer_time_stamp);
708
709 void ring_buffer_normalize_time_stamp(struct ring_buffer *buffer,
710 int cpu, u64 *ts)
711 {
712 /* Just stupid testing the normalize function and deltas */
713 *ts >>= DEBUG_SHIFT;
714 }
715 EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp);
716
717 /*
718 * Making the ring buffer lockless makes things tricky.
719 * Although writes only happen on the CPU that they are on,
720 * and they only need to worry about interrupts. Reads can
721 * happen on any CPU.
722 *
723 * The reader page is always off the ring buffer, but when the
724 * reader finishes with a page, it needs to swap its page with
725 * a new one from the buffer. The reader needs to take from
726 * the head (writes go to the tail). But if a writer is in overwrite
727 * mode and wraps, it must push the head page forward.
728 *
729 * Here lies the problem.
730 *
731 * The reader must be careful to replace only the head page, and
732 * not another one. As described at the top of the file in the
733 * ASCII art, the reader sets its old page to point to the next
734 * page after head. It then sets the page after head to point to
735 * the old reader page. But if the writer moves the head page
736 * during this operation, the reader could end up with the tail.
737 *
738 * We use cmpxchg to help prevent this race. We also do something
739 * special with the page before head. We set the LSB to 1.
740 *
741 * When the writer must push the page forward, it will clear the
742 * bit that points to the head page, move the head, and then set
743 * the bit that points to the new head page.
744 *
745 * We also don't want an interrupt coming in and moving the head
746 * page on another writer. Thus we use the second LSB to catch
747 * that too. Thus:
748 *
749 * head->list->prev->next bit 1 bit 0
750 * ------- -------
751 * Normal page 0 0
752 * Points to head page 0 1
753 * New head page 1 0
754 *
755 * Note we can not trust the prev pointer of the head page, because:
756 *
757 * +----+ +-----+ +-----+
758 * | |------>| T |---X--->| N |
759 * | |<------| | | |
760 * +----+ +-----+ +-----+
761 * ^ ^ |
762 * | +-----+ | |
763 * +----------| R |----------+ |
764 * | |<-----------+
765 * +-----+
766 *
767 * Key: ---X--> HEAD flag set in pointer
768 * T Tail page
769 * R Reader page
770 * N Next page
771 *
772 * (see __rb_reserve_next() to see where this happens)
773 *
774 * What the above shows is that the reader just swapped out
775 * the reader page with a page in the buffer, but before it
776 * could make the new header point back to the new page added
777 * it was preempted by a writer. The writer moved forward onto
778 * the new page added by the reader and is about to move forward
779 * again.
780 *
781 * You can see, it is legitimate for the previous pointer of
782 * the head (or any page) not to point back to itself. But only
783 * temporarially.
784 */
785
786 #define RB_PAGE_NORMAL 0UL
787 #define RB_PAGE_HEAD 1UL
788 #define RB_PAGE_UPDATE 2UL
789
790
791 #define RB_FLAG_MASK 3UL
792
793 /* PAGE_MOVED is not part of the mask */
794 #define RB_PAGE_MOVED 4UL
795
796 /*
797 * rb_list_head - remove any bit
798 */
799 static struct list_head *rb_list_head(struct list_head *list)
800 {
801 unsigned long val = (unsigned long)list;
802
803 return (struct list_head *)(val & ~RB_FLAG_MASK);
804 }
805
806 /*
807 * rb_is_head_page - test if the given page is the head page
808 *
809 * Because the reader may move the head_page pointer, we can
810 * not trust what the head page is (it may be pointing to
811 * the reader page). But if the next page is a header page,
812 * its flags will be non zero.
813 */
814 static inline int
815 rb_is_head_page(struct ring_buffer_per_cpu *cpu_buffer,
816 struct buffer_page *page, struct list_head *list)
817 {
818 unsigned long val;
819
820 val = (unsigned long)list->next;
821
822 if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list)
823 return RB_PAGE_MOVED;
824
825 return val & RB_FLAG_MASK;
826 }
827
828 /*
829 * rb_is_reader_page
830 *
831 * The unique thing about the reader page, is that, if the
832 * writer is ever on it, the previous pointer never points
833 * back to the reader page.
834 */
835 static bool rb_is_reader_page(struct buffer_page *page)
836 {
837 struct list_head *list = page->list.prev;
838
839 return rb_list_head(list->next) != &page->list;
840 }
841
842 /*
843 * rb_set_list_to_head - set a list_head to be pointing to head.
844 */
845 static void rb_set_list_to_head(struct ring_buffer_per_cpu *cpu_buffer,
846 struct list_head *list)
847 {
848 unsigned long *ptr;
849
850 ptr = (unsigned long *)&list->next;
851 *ptr |= RB_PAGE_HEAD;
852 *ptr &= ~RB_PAGE_UPDATE;
853 }
854
855 /*
856 * rb_head_page_activate - sets up head page
857 */
858 static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer)
859 {
860 struct buffer_page *head;
861
862 head = cpu_buffer->head_page;
863 if (!head)
864 return;
865
866 /*
867 * Set the previous list pointer to have the HEAD flag.
868 */
869 rb_set_list_to_head(cpu_buffer, head->list.prev);
870 }
871
872 static void rb_list_head_clear(struct list_head *list)
873 {
874 unsigned long *ptr = (unsigned long *)&list->next;
875
876 *ptr &= ~RB_FLAG_MASK;
877 }
878
879 /*
880 * rb_head_page_dactivate - clears head page ptr (for free list)
881 */
882 static void
883 rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer)
884 {
885 struct list_head *hd;
886
887 /* Go through the whole list and clear any pointers found. */
888 rb_list_head_clear(cpu_buffer->pages);
889
890 list_for_each(hd, cpu_buffer->pages)
891 rb_list_head_clear(hd);
892 }
893
894 static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer,
895 struct buffer_page *head,
896 struct buffer_page *prev,
897 int old_flag, int new_flag)
898 {
899 struct list_head *list;
900 unsigned long val = (unsigned long)&head->list;
901 unsigned long ret;
902
903 list = &prev->list;
904
905 val &= ~RB_FLAG_MASK;
906
907 ret = cmpxchg((unsigned long *)&list->next,
908 val | old_flag, val | new_flag);
909
910 /* check if the reader took the page */
911 if ((ret & ~RB_FLAG_MASK) != val)
912 return RB_PAGE_MOVED;
913
914 return ret & RB_FLAG_MASK;
915 }
916
917 static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer,
918 struct buffer_page *head,
919 struct buffer_page *prev,
920 int old_flag)
921 {
922 return rb_head_page_set(cpu_buffer, head, prev,
923 old_flag, RB_PAGE_UPDATE);
924 }
925
926 static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer,
927 struct buffer_page *head,
928 struct buffer_page *prev,
929 int old_flag)
930 {
931 return rb_head_page_set(cpu_buffer, head, prev,
932 old_flag, RB_PAGE_HEAD);
933 }
934
935 static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer,
936 struct buffer_page *head,
937 struct buffer_page *prev,
938 int old_flag)
939 {
940 return rb_head_page_set(cpu_buffer, head, prev,
941 old_flag, RB_PAGE_NORMAL);
942 }
943
944 static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer,
945 struct buffer_page **bpage)
946 {
947 struct list_head *p = rb_list_head((*bpage)->list.next);
948
949 *bpage = list_entry(p, struct buffer_page, list);
950 }
951
952 static struct buffer_page *
953 rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer)
954 {
955 struct buffer_page *head;
956 struct buffer_page *page;
957 struct list_head *list;
958 int i;
959
960 if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page))
961 return NULL;
962
963 /* sanity check */
964 list = cpu_buffer->pages;
965 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list))
966 return NULL;
967
968 page = head = cpu_buffer->head_page;
969 /*
970 * It is possible that the writer moves the header behind
971 * where we started, and we miss in one loop.
972 * A second loop should grab the header, but we'll do
973 * three loops just because I'm paranoid.
974 */
975 for (i = 0; i < 3; i++) {
976 do {
977 if (rb_is_head_page(cpu_buffer, page, page->list.prev)) {
978 cpu_buffer->head_page = page;
979 return page;
980 }
981 rb_inc_page(cpu_buffer, &page);
982 } while (page != head);
983 }
984
985 RB_WARN_ON(cpu_buffer, 1);
986
987 return NULL;
988 }
989
990 static int rb_head_page_replace(struct buffer_page *old,
991 struct buffer_page *new)
992 {
993 unsigned long *ptr = (unsigned long *)&old->list.prev->next;
994 unsigned long val;
995 unsigned long ret;
996
997 val = *ptr & ~RB_FLAG_MASK;
998 val |= RB_PAGE_HEAD;
999
1000 ret = cmpxchg(ptr, val, (unsigned long)&new->list);
1001
1002 return ret == val;
1003 }
1004
1005 /*
1006 * rb_tail_page_update - move the tail page forward
1007 */
1008 static void rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer,
1009 struct buffer_page *tail_page,
1010 struct buffer_page *next_page)
1011 {
1012 unsigned long old_entries;
1013 unsigned long old_write;
1014
1015 /*
1016 * The tail page now needs to be moved forward.
1017 *
1018 * We need to reset the tail page, but without messing
1019 * with possible erasing of data brought in by interrupts
1020 * that have moved the tail page and are currently on it.
1021 *
1022 * We add a counter to the write field to denote this.
1023 */
1024 old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write);
1025 old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries);
1026
1027 /*
1028 * Just make sure we have seen our old_write and synchronize
1029 * with any interrupts that come in.
1030 */
1031 barrier();
1032
1033 /*
1034 * If the tail page is still the same as what we think
1035 * it is, then it is up to us to update the tail
1036 * pointer.
1037 */
1038 if (tail_page == READ_ONCE(cpu_buffer->tail_page)) {
1039 /* Zero the write counter */
1040 unsigned long val = old_write & ~RB_WRITE_MASK;
1041 unsigned long eval = old_entries & ~RB_WRITE_MASK;
1042
1043 /*
1044 * This will only succeed if an interrupt did
1045 * not come in and change it. In which case, we
1046 * do not want to modify it.
1047 *
1048 * We add (void) to let the compiler know that we do not care
1049 * about the return value of these functions. We use the
1050 * cmpxchg to only update if an interrupt did not already
1051 * do it for us. If the cmpxchg fails, we don't care.
1052 */
1053 (void)local_cmpxchg(&next_page->write, old_write, val);
1054 (void)local_cmpxchg(&next_page->entries, old_entries, eval);
1055
1056 /*
1057 * No need to worry about races with clearing out the commit.
1058 * it only can increment when a commit takes place. But that
1059 * only happens in the outer most nested commit.
1060 */
1061 local_set(&next_page->page->commit, 0);
1062
1063 /* Again, either we update tail_page or an interrupt does */
1064 (void)cmpxchg(&cpu_buffer->tail_page, tail_page, next_page);
1065 }
1066 }
1067
1068 static int rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer,
1069 struct buffer_page *bpage)
1070 {
1071 unsigned long val = (unsigned long)bpage;
1072
1073 if (RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK))
1074 return 1;
1075
1076 return 0;
1077 }
1078
1079 /**
1080 * rb_check_list - make sure a pointer to a list has the last bits zero
1081 */
1082 static int rb_check_list(struct ring_buffer_per_cpu *cpu_buffer,
1083 struct list_head *list)
1084 {
1085 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev) != list->prev))
1086 return 1;
1087 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->next) != list->next))
1088 return 1;
1089 return 0;
1090 }
1091
1092 /**
1093 * rb_check_pages - integrity check of buffer pages
1094 * @cpu_buffer: CPU buffer with pages to test
1095 *
1096 * As a safety measure we check to make sure the data pages have not
1097 * been corrupted.
1098 */
1099 static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
1100 {
1101 struct list_head *head = cpu_buffer->pages;
1102 struct buffer_page *bpage, *tmp;
1103
1104 /* Reset the head page if it exists */
1105 if (cpu_buffer->head_page)
1106 rb_set_head_page(cpu_buffer);
1107
1108 rb_head_page_deactivate(cpu_buffer);
1109
1110 if (RB_WARN_ON(cpu_buffer, head->next->prev != head))
1111 return -1;
1112 if (RB_WARN_ON(cpu_buffer, head->prev->next != head))
1113 return -1;
1114
1115 if (rb_check_list(cpu_buffer, head))
1116 return -1;
1117
1118 list_for_each_entry_safe(bpage, tmp, head, list) {
1119 if (RB_WARN_ON(cpu_buffer,
1120 bpage->list.next->prev != &bpage->list))
1121 return -1;
1122 if (RB_WARN_ON(cpu_buffer,
1123 bpage->list.prev->next != &bpage->list))
1124 return -1;
1125 if (rb_check_list(cpu_buffer, &bpage->list))
1126 return -1;
1127 }
1128
1129 rb_head_page_activate(cpu_buffer);
1130
1131 return 0;
1132 }
1133
1134 static int __rb_allocate_pages(long nr_pages, struct list_head *pages, int cpu)
1135 {
1136 struct buffer_page *bpage, *tmp;
1137 long i;
1138
1139 /* Check if the available memory is there first */
1140 i = si_mem_available();
1141 if (i < nr_pages)
1142 return -ENOMEM;
1143
1144 for (i = 0; i < nr_pages; i++) {
1145 struct page *page;
1146 /*
1147 * __GFP_RETRY_MAYFAIL flag makes sure that the allocation fails
1148 * gracefully without invoking oom-killer and the system is not
1149 * destabilized.
1150 */
1151 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1152 GFP_KERNEL | __GFP_RETRY_MAYFAIL,
1153 cpu_to_node(cpu));
1154 if (!bpage)
1155 goto free_pages;
1156
1157 list_add(&bpage->list, pages);
1158
1159 page = alloc_pages_node(cpu_to_node(cpu),
1160 GFP_KERNEL | __GFP_RETRY_MAYFAIL, 0);
1161 if (!page)
1162 goto free_pages;
1163 bpage->page = page_address(page);
1164 rb_init_page(bpage->page);
1165 }
1166
1167 return 0;
1168
1169 free_pages:
1170 list_for_each_entry_safe(bpage, tmp, pages, list) {
1171 list_del_init(&bpage->list);
1172 free_buffer_page(bpage);
1173 }
1174
1175 return -ENOMEM;
1176 }
1177
1178 static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
1179 unsigned long nr_pages)
1180 {
1181 LIST_HEAD(pages);
1182
1183 WARN_ON(!nr_pages);
1184
1185 if (__rb_allocate_pages(nr_pages, &pages, cpu_buffer->cpu))
1186 return -ENOMEM;
1187
1188 /*
1189 * The ring buffer page list is a circular list that does not
1190 * start and end with a list head. All page list items point to
1191 * other pages.
1192 */
1193 cpu_buffer->pages = pages.next;
1194 list_del(&pages);
1195
1196 cpu_buffer->nr_pages = nr_pages;
1197
1198 rb_check_pages(cpu_buffer);
1199
1200 return 0;
1201 }
1202
1203 static struct ring_buffer_per_cpu *
1204 rb_allocate_cpu_buffer(struct ring_buffer *buffer, long nr_pages, int cpu)
1205 {
1206 struct ring_buffer_per_cpu *cpu_buffer;
1207 struct buffer_page *bpage;
1208 struct page *page;
1209 int ret;
1210
1211 cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
1212 GFP_KERNEL, cpu_to_node(cpu));
1213 if (!cpu_buffer)
1214 return NULL;
1215
1216 cpu_buffer->cpu = cpu;
1217 cpu_buffer->buffer = buffer;
1218 raw_spin_lock_init(&cpu_buffer->reader_lock);
1219 lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key);
1220 cpu_buffer->lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
1221 INIT_WORK(&cpu_buffer->update_pages_work, update_pages_handler);
1222 init_completion(&cpu_buffer->update_done);
1223 init_irq_work(&cpu_buffer->irq_work.work, rb_wake_up_waiters);
1224 init_waitqueue_head(&cpu_buffer->irq_work.waiters);
1225 init_waitqueue_head(&cpu_buffer->irq_work.full_waiters);
1226
1227 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1228 GFP_KERNEL, cpu_to_node(cpu));
1229 if (!bpage)
1230 goto fail_free_buffer;
1231
1232 rb_check_bpage(cpu_buffer, bpage);
1233
1234 cpu_buffer->reader_page = bpage;
1235 page = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL, 0);
1236 if (!page)
1237 goto fail_free_reader;
1238 bpage->page = page_address(page);
1239 rb_init_page(bpage->page);
1240
1241 INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
1242 INIT_LIST_HEAD(&cpu_buffer->new_pages);
1243
1244 ret = rb_allocate_pages(cpu_buffer, nr_pages);
1245 if (ret < 0)
1246 goto fail_free_reader;
1247
1248 cpu_buffer->head_page
1249 = list_entry(cpu_buffer->pages, struct buffer_page, list);
1250 cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
1251
1252 rb_head_page_activate(cpu_buffer);
1253
1254 return cpu_buffer;
1255
1256 fail_free_reader:
1257 free_buffer_page(cpu_buffer->reader_page);
1258
1259 fail_free_buffer:
1260 kfree(cpu_buffer);
1261 return NULL;
1262 }
1263
1264 static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
1265 {
1266 struct list_head *head = cpu_buffer->pages;
1267 struct buffer_page *bpage, *tmp;
1268
1269 free_buffer_page(cpu_buffer->reader_page);
1270
1271 rb_head_page_deactivate(cpu_buffer);
1272
1273 if (head) {
1274 list_for_each_entry_safe(bpage, tmp, head, list) {
1275 list_del_init(&bpage->list);
1276 free_buffer_page(bpage);
1277 }
1278 bpage = list_entry(head, struct buffer_page, list);
1279 free_buffer_page(bpage);
1280 }
1281
1282 kfree(cpu_buffer);
1283 }
1284
1285 /**
1286 * __ring_buffer_alloc - allocate a new ring_buffer
1287 * @size: the size in bytes per cpu that is needed.
1288 * @flags: attributes to set for the ring buffer.
1289 *
1290 * Currently the only flag that is available is the RB_FL_OVERWRITE
1291 * flag. This flag means that the buffer will overwrite old data
1292 * when the buffer wraps. If this flag is not set, the buffer will
1293 * drop data when the tail hits the head.
1294 */
1295 struct ring_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags,
1296 struct lock_class_key *key)
1297 {
1298 struct ring_buffer *buffer;
1299 long nr_pages;
1300 int bsize;
1301 int cpu;
1302 int ret;
1303
1304 /* keep it in its own cache line */
1305 buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
1306 GFP_KERNEL);
1307 if (!buffer)
1308 return NULL;
1309
1310 if (!zalloc_cpumask_var(&buffer->cpumask, GFP_KERNEL))
1311 goto fail_free_buffer;
1312
1313 nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1314 buffer->flags = flags;
1315 buffer->clock = trace_clock_local;
1316 buffer->reader_lock_key = key;
1317
1318 init_irq_work(&buffer->irq_work.work, rb_wake_up_waiters);
1319 init_waitqueue_head(&buffer->irq_work.waiters);
1320
1321 /* need at least two pages */
1322 if (nr_pages < 2)
1323 nr_pages = 2;
1324
1325 buffer->cpus = nr_cpu_ids;
1326
1327 bsize = sizeof(void *) * nr_cpu_ids;
1328 buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
1329 GFP_KERNEL);
1330 if (!buffer->buffers)
1331 goto fail_free_cpumask;
1332
1333 cpu = raw_smp_processor_id();
1334 cpumask_set_cpu(cpu, buffer->cpumask);
1335 buffer->buffers[cpu] = rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
1336 if (!buffer->buffers[cpu])
1337 goto fail_free_buffers;
1338
1339 ret = cpuhp_state_add_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node);
1340 if (ret < 0)
1341 goto fail_free_buffers;
1342
1343 mutex_init(&buffer->mutex);
1344
1345 return buffer;
1346
1347 fail_free_buffers:
1348 for_each_buffer_cpu(buffer, cpu) {
1349 if (buffer->buffers[cpu])
1350 rb_free_cpu_buffer(buffer->buffers[cpu]);
1351 }
1352 kfree(buffer->buffers);
1353
1354 fail_free_cpumask:
1355 free_cpumask_var(buffer->cpumask);
1356
1357 fail_free_buffer:
1358 kfree(buffer);
1359 return NULL;
1360 }
1361 EXPORT_SYMBOL_GPL(__ring_buffer_alloc);
1362
1363 /**
1364 * ring_buffer_free - free a ring buffer.
1365 * @buffer: the buffer to free.
1366 */
1367 void
1368 ring_buffer_free(struct ring_buffer *buffer)
1369 {
1370 int cpu;
1371
1372 cpuhp_state_remove_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node);
1373
1374 for_each_buffer_cpu(buffer, cpu)
1375 rb_free_cpu_buffer(buffer->buffers[cpu]);
1376
1377 kfree(buffer->buffers);
1378 free_cpumask_var(buffer->cpumask);
1379
1380 kfree(buffer);
1381 }
1382 EXPORT_SYMBOL_GPL(ring_buffer_free);
1383
1384 void ring_buffer_set_clock(struct ring_buffer *buffer,
1385 u64 (*clock)(void))
1386 {
1387 buffer->clock = clock;
1388 }
1389
1390 static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer);
1391
1392 static inline unsigned long rb_page_entries(struct buffer_page *bpage)
1393 {
1394 return local_read(&bpage->entries) & RB_WRITE_MASK;
1395 }
1396
1397 static inline unsigned long rb_page_write(struct buffer_page *bpage)
1398 {
1399 return local_read(&bpage->write) & RB_WRITE_MASK;
1400 }
1401
1402 static int
1403 rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned long nr_pages)
1404 {
1405 struct list_head *tail_page, *to_remove, *next_page;
1406 struct buffer_page *to_remove_page, *tmp_iter_page;
1407 struct buffer_page *last_page, *first_page;
1408 unsigned long nr_removed;
1409 unsigned long head_bit;
1410 int page_entries;
1411
1412 head_bit = 0;
1413
1414 raw_spin_lock_irq(&cpu_buffer->reader_lock);
1415 atomic_inc(&cpu_buffer->record_disabled);
1416 /*
1417 * We don't race with the readers since we have acquired the reader
1418 * lock. We also don't race with writers after disabling recording.
1419 * This makes it easy to figure out the first and the last page to be
1420 * removed from the list. We unlink all the pages in between including
1421 * the first and last pages. This is done in a busy loop so that we
1422 * lose the least number of traces.
1423 * The pages are freed after we restart recording and unlock readers.
1424 */
1425 tail_page = &cpu_buffer->tail_page->list;
1426
1427 /*
1428 * tail page might be on reader page, we remove the next page
1429 * from the ring buffer
1430 */
1431 if (cpu_buffer->tail_page == cpu_buffer->reader_page)
1432 tail_page = rb_list_head(tail_page->next);
1433 to_remove = tail_page;
1434
1435 /* start of pages to remove */
1436 first_page = list_entry(rb_list_head(to_remove->next),
1437 struct buffer_page, list);
1438
1439 for (nr_removed = 0; nr_removed < nr_pages; nr_removed++) {
1440 to_remove = rb_list_head(to_remove)->next;
1441 head_bit |= (unsigned long)to_remove & RB_PAGE_HEAD;
1442 }
1443
1444 next_page = rb_list_head(to_remove)->next;
1445
1446 /*
1447 * Now we remove all pages between tail_page and next_page.
1448 * Make sure that we have head_bit value preserved for the
1449 * next page
1450 */
1451 tail_page->next = (struct list_head *)((unsigned long)next_page |
1452 head_bit);
1453 next_page = rb_list_head(next_page);
1454 next_page->prev = tail_page;
1455
1456 /* make sure pages points to a valid page in the ring buffer */
1457 cpu_buffer->pages = next_page;
1458
1459 /* update head page */
1460 if (head_bit)
1461 cpu_buffer->head_page = list_entry(next_page,
1462 struct buffer_page, list);
1463
1464 /*
1465 * change read pointer to make sure any read iterators reset
1466 * themselves
1467 */
1468 cpu_buffer->read = 0;
1469
1470 /* pages are removed, resume tracing and then free the pages */
1471 atomic_dec(&cpu_buffer->record_disabled);
1472 raw_spin_unlock_irq(&cpu_buffer->reader_lock);
1473
1474 RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages));
1475
1476 /* last buffer page to remove */
1477 last_page = list_entry(rb_list_head(to_remove), struct buffer_page,
1478 list);
1479 tmp_iter_page = first_page;
1480
1481 do {
1482 to_remove_page = tmp_iter_page;
1483 rb_inc_page(cpu_buffer, &tmp_iter_page);
1484
1485 /* update the counters */
1486 page_entries = rb_page_entries(to_remove_page);
1487 if (page_entries) {
1488 /*
1489 * If something was added to this page, it was full
1490 * since it is not the tail page. So we deduct the
1491 * bytes consumed in ring buffer from here.
1492 * Increment overrun to account for the lost events.
1493 */
1494 local_add(page_entries, &cpu_buffer->overrun);
1495 local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
1496 }
1497
1498 /*
1499 * We have already removed references to this list item, just
1500 * free up the buffer_page and its page
1501 */
1502 free_buffer_page(to_remove_page);
1503 nr_removed--;
1504
1505 } while (to_remove_page != last_page);
1506
1507 RB_WARN_ON(cpu_buffer, nr_removed);
1508
1509 return nr_removed == 0;
1510 }
1511
1512 static int
1513 rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer)
1514 {
1515 struct list_head *pages = &cpu_buffer->new_pages;
1516 int retries, success;
1517
1518 raw_spin_lock_irq(&cpu_buffer->reader_lock);
1519 /*
1520 * We are holding the reader lock, so the reader page won't be swapped
1521 * in the ring buffer. Now we are racing with the writer trying to
1522 * move head page and the tail page.
1523 * We are going to adapt the reader page update process where:
1524 * 1. We first splice the start and end of list of new pages between
1525 * the head page and its previous page.
1526 * 2. We cmpxchg the prev_page->next to point from head page to the
1527 * start of new pages list.
1528 * 3. Finally, we update the head->prev to the end of new list.
1529 *
1530 * We will try this process 10 times, to make sure that we don't keep
1531 * spinning.
1532 */
1533 retries = 10;
1534 success = 0;
1535 while (retries--) {
1536 struct list_head *head_page, *prev_page, *r;
1537 struct list_head *last_page, *first_page;
1538 struct list_head *head_page_with_bit;
1539
1540 head_page = &rb_set_head_page(cpu_buffer)->list;
1541 if (!head_page)
1542 break;
1543 prev_page = head_page->prev;
1544
1545 first_page = pages->next;
1546 last_page = pages->prev;
1547
1548 head_page_with_bit = (struct list_head *)
1549 ((unsigned long)head_page | RB_PAGE_HEAD);
1550
1551 last_page->next = head_page_with_bit;
1552 first_page->prev = prev_page;
1553
1554 r = cmpxchg(&prev_page->next, head_page_with_bit, first_page);
1555
1556 if (r == head_page_with_bit) {
1557 /*
1558 * yay, we replaced the page pointer to our new list,
1559 * now, we just have to update to head page's prev
1560 * pointer to point to end of list
1561 */
1562 head_page->prev = last_page;
1563 success = 1;
1564 break;
1565 }
1566 }
1567
1568 if (success)
1569 INIT_LIST_HEAD(pages);
1570 /*
1571 * If we weren't successful in adding in new pages, warn and stop
1572 * tracing
1573 */
1574 RB_WARN_ON(cpu_buffer, !success);
1575 raw_spin_unlock_irq(&cpu_buffer->reader_lock);
1576
1577 /* free pages if they weren't inserted */
1578 if (!success) {
1579 struct buffer_page *bpage, *tmp;
1580 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1581 list) {
1582 list_del_init(&bpage->list);
1583 free_buffer_page(bpage);
1584 }
1585 }
1586 return success;
1587 }
1588
1589 static void rb_update_pages(struct ring_buffer_per_cpu *cpu_buffer)
1590 {
1591 int success;
1592
1593 if (cpu_buffer->nr_pages_to_update > 0)
1594 success = rb_insert_pages(cpu_buffer);
1595 else
1596 success = rb_remove_pages(cpu_buffer,
1597 -cpu_buffer->nr_pages_to_update);
1598
1599 if (success)
1600 cpu_buffer->nr_pages += cpu_buffer->nr_pages_to_update;
1601 }
1602
1603 static void update_pages_handler(struct work_struct *work)
1604 {
1605 struct ring_buffer_per_cpu *cpu_buffer = container_of(work,
1606 struct ring_buffer_per_cpu, update_pages_work);
1607 rb_update_pages(cpu_buffer);
1608 complete(&cpu_buffer->update_done);
1609 }
1610
1611 /**
1612 * ring_buffer_resize - resize the ring buffer
1613 * @buffer: the buffer to resize.
1614 * @size: the new size.
1615 * @cpu_id: the cpu buffer to resize
1616 *
1617 * Minimum size is 2 * BUF_PAGE_SIZE.
1618 *
1619 * Returns 0 on success and < 0 on failure.
1620 */
1621 int ring_buffer_resize(struct ring_buffer *buffer, unsigned long size,
1622 int cpu_id)
1623 {
1624 struct ring_buffer_per_cpu *cpu_buffer;
1625 unsigned long nr_pages;
1626 int cpu, err = 0;
1627
1628 /*
1629 * Always succeed at resizing a non-existent buffer:
1630 */
1631 if (!buffer)
1632 return size;
1633
1634 /* Make sure the requested buffer exists */
1635 if (cpu_id != RING_BUFFER_ALL_CPUS &&
1636 !cpumask_test_cpu(cpu_id, buffer->cpumask))
1637 return size;
1638
1639 nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1640
1641 /* we need a minimum of two pages */
1642 if (nr_pages < 2)
1643 nr_pages = 2;
1644
1645 size = nr_pages * BUF_PAGE_SIZE;
1646
1647 /*
1648 * Don't succeed if resizing is disabled, as a reader might be
1649 * manipulating the ring buffer and is expecting a sane state while
1650 * this is true.
1651 */
1652 if (atomic_read(&buffer->resize_disabled))
1653 return -EBUSY;
1654
1655 /* prevent another thread from changing buffer sizes */
1656 mutex_lock(&buffer->mutex);
1657
1658 if (cpu_id == RING_BUFFER_ALL_CPUS) {
1659 /* calculate the pages to update */
1660 for_each_buffer_cpu(buffer, cpu) {
1661 cpu_buffer = buffer->buffers[cpu];
1662
1663 cpu_buffer->nr_pages_to_update = nr_pages -
1664 cpu_buffer->nr_pages;
1665 /*
1666 * nothing more to do for removing pages or no update
1667 */
1668 if (cpu_buffer->nr_pages_to_update <= 0)
1669 continue;
1670 /*
1671 * to add pages, make sure all new pages can be
1672 * allocated without receiving ENOMEM
1673 */
1674 INIT_LIST_HEAD(&cpu_buffer->new_pages);
1675 if (__rb_allocate_pages(cpu_buffer->nr_pages_to_update,
1676 &cpu_buffer->new_pages, cpu)) {
1677 /* not enough memory for new pages */
1678 err = -ENOMEM;
1679 goto out_err;
1680 }
1681 }
1682
1683 get_online_cpus();
1684 /*
1685 * Fire off all the required work handlers
1686 * We can't schedule on offline CPUs, but it's not necessary
1687 * since we can change their buffer sizes without any race.
1688 */
1689 for_each_buffer_cpu(buffer, cpu) {
1690 cpu_buffer = buffer->buffers[cpu];
1691 if (!cpu_buffer->nr_pages_to_update)
1692 continue;
1693
1694 /* Can't run something on an offline CPU. */
1695 if (!cpu_online(cpu)) {
1696 rb_update_pages(cpu_buffer);
1697 cpu_buffer->nr_pages_to_update = 0;
1698 } else {
1699 schedule_work_on(cpu,
1700 &cpu_buffer->update_pages_work);
1701 }
1702 }
1703
1704 /* wait for all the updates to complete */
1705 for_each_buffer_cpu(buffer, cpu) {
1706 cpu_buffer = buffer->buffers[cpu];
1707 if (!cpu_buffer->nr_pages_to_update)
1708 continue;
1709
1710 if (cpu_online(cpu))
1711 wait_for_completion(&cpu_buffer->update_done);
1712 cpu_buffer->nr_pages_to_update = 0;
1713 }
1714
1715 put_online_cpus();
1716 } else {
1717 /* Make sure this CPU has been intitialized */
1718 if (!cpumask_test_cpu(cpu_id, buffer->cpumask))
1719 goto out;
1720
1721 cpu_buffer = buffer->buffers[cpu_id];
1722
1723 if (nr_pages == cpu_buffer->nr_pages)
1724 goto out;
1725
1726 cpu_buffer->nr_pages_to_update = nr_pages -
1727 cpu_buffer->nr_pages;
1728
1729 INIT_LIST_HEAD(&cpu_buffer->new_pages);
1730 if (cpu_buffer->nr_pages_to_update > 0 &&
1731 __rb_allocate_pages(cpu_buffer->nr_pages_to_update,
1732 &cpu_buffer->new_pages, cpu_id)) {
1733 err = -ENOMEM;
1734 goto out_err;
1735 }
1736
1737 get_online_cpus();
1738
1739 /* Can't run something on an offline CPU. */
1740 if (!cpu_online(cpu_id))
1741 rb_update_pages(cpu_buffer);
1742 else {
1743 schedule_work_on(cpu_id,
1744 &cpu_buffer->update_pages_work);
1745 wait_for_completion(&cpu_buffer->update_done);
1746 }
1747
1748 cpu_buffer->nr_pages_to_update = 0;
1749 put_online_cpus();
1750 }
1751
1752 out:
1753 /*
1754 * The ring buffer resize can happen with the ring buffer
1755 * enabled, so that the update disturbs the tracing as little
1756 * as possible. But if the buffer is disabled, we do not need
1757 * to worry about that, and we can take the time to verify
1758 * that the buffer is not corrupt.
1759 */
1760 if (atomic_read(&buffer->record_disabled)) {
1761 atomic_inc(&buffer->record_disabled);
1762 /*
1763 * Even though the buffer was disabled, we must make sure
1764 * that it is truly disabled before calling rb_check_pages.
1765 * There could have been a race between checking
1766 * record_disable and incrementing it.
1767 */
1768 synchronize_sched();
1769 for_each_buffer_cpu(buffer, cpu) {
1770 cpu_buffer = buffer->buffers[cpu];
1771 rb_check_pages(cpu_buffer);
1772 }
1773 atomic_dec(&buffer->record_disabled);
1774 }
1775
1776 mutex_unlock(&buffer->mutex);
1777 return size;
1778
1779 out_err:
1780 for_each_buffer_cpu(buffer, cpu) {
1781 struct buffer_page *bpage, *tmp;
1782
1783 cpu_buffer = buffer->buffers[cpu];
1784 cpu_buffer->nr_pages_to_update = 0;
1785
1786 if (list_empty(&cpu_buffer->new_pages))
1787 continue;
1788
1789 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1790 list) {
1791 list_del_init(&bpage->list);
1792 free_buffer_page(bpage);
1793 }
1794 }
1795 mutex_unlock(&buffer->mutex);
1796 return err;
1797 }
1798 EXPORT_SYMBOL_GPL(ring_buffer_resize);
1799
1800 void ring_buffer_change_overwrite(struct ring_buffer *buffer, int val)
1801 {
1802 mutex_lock(&buffer->mutex);
1803 if (val)
1804 buffer->flags |= RB_FL_OVERWRITE;
1805 else
1806 buffer->flags &= ~RB_FL_OVERWRITE;
1807 mutex_unlock(&buffer->mutex);
1808 }
1809 EXPORT_SYMBOL_GPL(ring_buffer_change_overwrite);
1810
1811 static __always_inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
1812 {
1813 return bpage->page->data + index;
1814 }
1815
1816 static __always_inline struct ring_buffer_event *
1817 rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
1818 {
1819 return __rb_page_index(cpu_buffer->reader_page,
1820 cpu_buffer->reader_page->read);
1821 }
1822
1823 static __always_inline struct ring_buffer_event *
1824 rb_iter_head_event(struct ring_buffer_iter *iter)
1825 {
1826 return __rb_page_index(iter->head_page, iter->head);
1827 }
1828
1829 static __always_inline unsigned rb_page_commit(struct buffer_page *bpage)
1830 {
1831 return local_read(&bpage->page->commit);
1832 }
1833
1834 /* Size is determined by what has been committed */
1835 static __always_inline unsigned rb_page_size(struct buffer_page *bpage)
1836 {
1837 return rb_page_commit(bpage);
1838 }
1839
1840 static __always_inline unsigned
1841 rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
1842 {
1843 return rb_page_commit(cpu_buffer->commit_page);
1844 }
1845
1846 static __always_inline unsigned
1847 rb_event_index(struct ring_buffer_event *event)
1848 {
1849 unsigned long addr = (unsigned long)event;
1850
1851 return (addr & ~PAGE_MASK) - BUF_PAGE_HDR_SIZE;
1852 }
1853
1854 static void rb_inc_iter(struct ring_buffer_iter *iter)
1855 {
1856 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
1857
1858 /*
1859 * The iterator could be on the reader page (it starts there).
1860 * But the head could have moved, since the reader was
1861 * found. Check for this case and assign the iterator
1862 * to the head page instead of next.
1863 */
1864 if (iter->head_page == cpu_buffer->reader_page)
1865 iter->head_page = rb_set_head_page(cpu_buffer);
1866 else
1867 rb_inc_page(cpu_buffer, &iter->head_page);
1868
1869 iter->read_stamp = iter->head_page->page->time_stamp;
1870 iter->head = 0;
1871 }
1872
1873 /*
1874 * rb_handle_head_page - writer hit the head page
1875 *
1876 * Returns: +1 to retry page
1877 * 0 to continue
1878 * -1 on error
1879 */
1880 static int
1881 rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer,
1882 struct buffer_page *tail_page,
1883 struct buffer_page *next_page)
1884 {
1885 struct buffer_page *new_head;
1886 int entries;
1887 int type;
1888 int ret;
1889
1890 entries = rb_page_entries(next_page);
1891
1892 /*
1893 * The hard part is here. We need to move the head
1894 * forward, and protect against both readers on
1895 * other CPUs and writers coming in via interrupts.
1896 */
1897 type = rb_head_page_set_update(cpu_buffer, next_page, tail_page,
1898 RB_PAGE_HEAD);
1899
1900 /*
1901 * type can be one of four:
1902 * NORMAL - an interrupt already moved it for us
1903 * HEAD - we are the first to get here.
1904 * UPDATE - we are the interrupt interrupting
1905 * a current move.
1906 * MOVED - a reader on another CPU moved the next
1907 * pointer to its reader page. Give up
1908 * and try again.
1909 */
1910
1911 switch (type) {
1912 case RB_PAGE_HEAD:
1913 /*
1914 * We changed the head to UPDATE, thus
1915 * it is our responsibility to update
1916 * the counters.
1917 */
1918 local_add(entries, &cpu_buffer->overrun);
1919 local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
1920
1921 /*
1922 * The entries will be zeroed out when we move the
1923 * tail page.
1924 */
1925
1926 /* still more to do */
1927 break;
1928
1929 case RB_PAGE_UPDATE:
1930 /*
1931 * This is an interrupt that interrupt the
1932 * previous update. Still more to do.
1933 */
1934 break;
1935 case RB_PAGE_NORMAL:
1936 /*
1937 * An interrupt came in before the update
1938 * and processed this for us.
1939 * Nothing left to do.
1940 */
1941 return 1;
1942 case RB_PAGE_MOVED:
1943 /*
1944 * The reader is on another CPU and just did
1945 * a swap with our next_page.
1946 * Try again.
1947 */
1948 return 1;
1949 default:
1950 RB_WARN_ON(cpu_buffer, 1); /* WTF??? */
1951 return -1;
1952 }
1953
1954 /*
1955 * Now that we are here, the old head pointer is
1956 * set to UPDATE. This will keep the reader from
1957 * swapping the head page with the reader page.
1958 * The reader (on another CPU) will spin till
1959 * we are finished.
1960 *
1961 * We just need to protect against interrupts
1962 * doing the job. We will set the next pointer
1963 * to HEAD. After that, we set the old pointer
1964 * to NORMAL, but only if it was HEAD before.
1965 * otherwise we are an interrupt, and only
1966 * want the outer most commit to reset it.
1967 */
1968 new_head = next_page;
1969 rb_inc_page(cpu_buffer, &new_head);
1970
1971 ret = rb_head_page_set_head(cpu_buffer, new_head, next_page,
1972 RB_PAGE_NORMAL);
1973
1974 /*
1975 * Valid returns are:
1976 * HEAD - an interrupt came in and already set it.
1977 * NORMAL - One of two things:
1978 * 1) We really set it.
1979 * 2) A bunch of interrupts came in and moved
1980 * the page forward again.
1981 */
1982 switch (ret) {
1983 case RB_PAGE_HEAD:
1984 case RB_PAGE_NORMAL:
1985 /* OK */
1986 break;
1987 default:
1988 RB_WARN_ON(cpu_buffer, 1);
1989 return -1;
1990 }
1991
1992 /*
1993 * It is possible that an interrupt came in,
1994 * set the head up, then more interrupts came in
1995 * and moved it again. When we get back here,
1996 * the page would have been set to NORMAL but we
1997 * just set it back to HEAD.
1998 *
1999 * How do you detect this? Well, if that happened
2000 * the tail page would have moved.
2001 */
2002 if (ret == RB_PAGE_NORMAL) {
2003 struct buffer_page *buffer_tail_page;
2004
2005 buffer_tail_page = READ_ONCE(cpu_buffer->tail_page);
2006 /*
2007 * If the tail had moved passed next, then we need
2008 * to reset the pointer.
2009 */
2010 if (buffer_tail_page != tail_page &&
2011 buffer_tail_page != next_page)
2012 rb_head_page_set_normal(cpu_buffer, new_head,
2013 next_page,
2014 RB_PAGE_HEAD);
2015 }
2016
2017 /*
2018 * If this was the outer most commit (the one that
2019 * changed the original pointer from HEAD to UPDATE),
2020 * then it is up to us to reset it to NORMAL.
2021 */
2022 if (type == RB_PAGE_HEAD) {
2023 ret = rb_head_page_set_normal(cpu_buffer, next_page,
2024 tail_page,
2025 RB_PAGE_UPDATE);
2026 if (RB_WARN_ON(cpu_buffer,
2027 ret != RB_PAGE_UPDATE))
2028 return -1;
2029 }
2030
2031 return 0;
2032 }
2033
2034 static inline void
2035 rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer,
2036 unsigned long tail, struct rb_event_info *info)
2037 {
2038 struct buffer_page *tail_page = info->tail_page;
2039 struct ring_buffer_event *event;
2040 unsigned long length = info->length;
2041
2042 /*
2043 * Only the event that crossed the page boundary
2044 * must fill the old tail_page with padding.
2045 */
2046 if (tail >= BUF_PAGE_SIZE) {
2047 /*
2048 * If the page was filled, then we still need
2049 * to update the real_end. Reset it to zero
2050 * and the reader will ignore it.
2051 */
2052 if (tail == BUF_PAGE_SIZE)
2053 tail_page->real_end = 0;
2054
2055 local_sub(length, &tail_page->write);
2056 return;
2057 }
2058
2059 event = __rb_page_index(tail_page, tail);
2060
2061 /* account for padding bytes */
2062 local_add(BUF_PAGE_SIZE - tail, &cpu_buffer->entries_bytes);
2063
2064 /*
2065 * Save the original length to the meta data.
2066 * This will be used by the reader to add lost event
2067 * counter.
2068 */
2069 tail_page->real_end = tail;
2070
2071 /*
2072 * If this event is bigger than the minimum size, then
2073 * we need to be careful that we don't subtract the
2074 * write counter enough to allow another writer to slip
2075 * in on this page.
2076 * We put in a discarded commit instead, to make sure
2077 * that this space is not used again.
2078 *
2079 * If we are less than the minimum size, we don't need to
2080 * worry about it.
2081 */
2082 if (tail > (BUF_PAGE_SIZE - RB_EVNT_MIN_SIZE)) {
2083 /* No room for any events */
2084
2085 /* Mark the rest of the page with padding */
2086 rb_event_set_padding(event);
2087
2088 /* Set the write back to the previous setting */
2089 local_sub(length, &tail_page->write);
2090 return;
2091 }
2092
2093 /* Put in a discarded event */
2094 event->array[0] = (BUF_PAGE_SIZE - tail) - RB_EVNT_HDR_SIZE;
2095 event->type_len = RINGBUF_TYPE_PADDING;
2096 /* time delta must be non zero */
2097 event->time_delta = 1;
2098
2099 /* Set write to end of buffer */
2100 length = (tail + length) - BUF_PAGE_SIZE;
2101 local_sub(length, &tail_page->write);
2102 }
2103
2104 static inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer);
2105
2106 /*
2107 * This is the slow path, force gcc not to inline it.
2108 */
2109 static noinline struct ring_buffer_event *
2110 rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer,
2111 unsigned long tail, struct rb_event_info *info)
2112 {
2113 struct buffer_page *tail_page = info->tail_page;
2114 struct buffer_page *commit_page = cpu_buffer->commit_page;
2115 struct ring_buffer *buffer = cpu_buffer->buffer;
2116 struct buffer_page *next_page;
2117 int ret;
2118
2119 next_page = tail_page;
2120
2121 rb_inc_page(cpu_buffer, &next_page);
2122
2123 /*
2124 * If for some reason, we had an interrupt storm that made
2125 * it all the way around the buffer, bail, and warn
2126 * about it.
2127 */
2128 if (unlikely(next_page == commit_page)) {
2129 local_inc(&cpu_buffer->commit_overrun);
2130 goto out_reset;
2131 }
2132
2133 /*
2134 * This is where the fun begins!
2135 *
2136 * We are fighting against races between a reader that
2137 * could be on another CPU trying to swap its reader
2138 * page with the buffer head.
2139 *
2140 * We are also fighting against interrupts coming in and
2141 * moving the head or tail on us as well.
2142 *
2143 * If the next page is the head page then we have filled
2144 * the buffer, unless the commit page is still on the
2145 * reader page.
2146 */
2147 if (rb_is_head_page(cpu_buffer, next_page, &tail_page->list)) {
2148
2149 /*
2150 * If the commit is not on the reader page, then
2151 * move the header page.
2152 */
2153 if (!rb_is_reader_page(cpu_buffer->commit_page)) {
2154 /*
2155 * If we are not in overwrite mode,
2156 * this is easy, just stop here.
2157 */
2158 if (!(buffer->flags & RB_FL_OVERWRITE)) {
2159 local_inc(&cpu_buffer->dropped_events);
2160 goto out_reset;
2161 }
2162
2163 ret = rb_handle_head_page(cpu_buffer,
2164 tail_page,
2165 next_page);
2166 if (ret < 0)
2167 goto out_reset;
2168 if (ret)
2169 goto out_again;
2170 } else {
2171 /*
2172 * We need to be careful here too. The
2173 * commit page could still be on the reader
2174 * page. We could have a small buffer, and
2175 * have filled up the buffer with events
2176 * from interrupts and such, and wrapped.
2177 *
2178 * Note, if the tail page is also the on the
2179 * reader_page, we let it move out.
2180 */
2181 if (unlikely((cpu_buffer->commit_page !=
2182 cpu_buffer->tail_page) &&
2183 (cpu_buffer->commit_page ==
2184 cpu_buffer->reader_page))) {
2185 local_inc(&cpu_buffer->commit_overrun);
2186 goto out_reset;
2187 }
2188 }
2189 }
2190
2191 rb_tail_page_update(cpu_buffer, tail_page, next_page);
2192
2193 out_again:
2194
2195 rb_reset_tail(cpu_buffer, tail, info);
2196
2197 /* Commit what we have for now. */
2198 rb_end_commit(cpu_buffer);
2199 /* rb_end_commit() decs committing */
2200 local_inc(&cpu_buffer->committing);
2201
2202 /* fail and let the caller try again */
2203 return ERR_PTR(-EAGAIN);
2204
2205 out_reset:
2206 /* reset write */
2207 rb_reset_tail(cpu_buffer, tail, info);
2208
2209 return NULL;
2210 }
2211
2212 /* Slow path, do not inline */
2213 static noinline struct ring_buffer_event *
2214 rb_add_time_stamp(struct ring_buffer_event *event, u64 delta)
2215 {
2216 event->type_len = RINGBUF_TYPE_TIME_EXTEND;
2217
2218 /* Not the first event on the page? */
2219 if (rb_event_index(event)) {
2220 event->time_delta = delta & TS_MASK;
2221 event->array[0] = delta >> TS_SHIFT;
2222 } else {
2223 /* nope, just zero it */
2224 event->time_delta = 0;
2225 event->array[0] = 0;
2226 }
2227
2228 return skip_time_extend(event);
2229 }
2230
2231 static inline bool rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
2232 struct ring_buffer_event *event);
2233
2234 /**
2235 * rb_update_event - update event type and data
2236 * @event: the event to update
2237 * @type: the type of event
2238 * @length: the size of the event field in the ring buffer
2239 *
2240 * Update the type and data fields of the event. The length
2241 * is the actual size that is written to the ring buffer,
2242 * and with this, we can determine what to place into the
2243 * data field.
2244 */
2245 static void
2246 rb_update_event(struct ring_buffer_per_cpu *cpu_buffer,
2247 struct ring_buffer_event *event,
2248 struct rb_event_info *info)
2249 {
2250 unsigned length = info->length;
2251 u64 delta = info->delta;
2252
2253 /* Only a commit updates the timestamp */
2254 if (unlikely(!rb_event_is_commit(cpu_buffer, event)))
2255 delta = 0;
2256
2257 /*
2258 * If we need to add a timestamp, then we
2259 * add it to the start of the resevered space.
2260 */
2261 if (unlikely(info->add_timestamp)) {
2262 event = rb_add_time_stamp(event, delta);
2263 length -= RB_LEN_TIME_EXTEND;
2264 delta = 0;
2265 }
2266
2267 event->time_delta = delta;
2268 length -= RB_EVNT_HDR_SIZE;
2269 if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) {
2270 event->type_len = 0;
2271 event->array[0] = length;
2272 } else
2273 event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT);
2274 }
2275
2276 static unsigned rb_calculate_event_length(unsigned length)
2277 {
2278 struct ring_buffer_event event; /* Used only for sizeof array */
2279
2280 /* zero length can cause confusions */
2281 if (!length)
2282 length++;
2283
2284 if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT)
2285 length += sizeof(event.array[0]);
2286
2287 length += RB_EVNT_HDR_SIZE;
2288 length = ALIGN(length, RB_ARCH_ALIGNMENT);
2289
2290 /*
2291 * In case the time delta is larger than the 27 bits for it
2292 * in the header, we need to add a timestamp. If another
2293 * event comes in when trying to discard this one to increase
2294 * the length, then the timestamp will be added in the allocated
2295 * space of this event. If length is bigger than the size needed
2296 * for the TIME_EXTEND, then padding has to be used. The events
2297 * length must be either RB_LEN_TIME_EXTEND, or greater than or equal
2298 * to RB_LEN_TIME_EXTEND + 8, as 8 is the minimum size for padding.
2299 * As length is a multiple of 4, we only need to worry if it
2300 * is 12 (RB_LEN_TIME_EXTEND + 4).
2301 */
2302 if (length == RB_LEN_TIME_EXTEND + RB_ALIGNMENT)
2303 length += RB_ALIGNMENT;
2304
2305 return length;
2306 }
2307
2308 #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
2309 static inline bool sched_clock_stable(void)
2310 {
2311 return true;
2312 }
2313 #endif
2314
2315 static inline int
2316 rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer,
2317 struct ring_buffer_event *event)
2318 {
2319 unsigned long new_index, old_index;
2320 struct buffer_page *bpage;
2321 unsigned long index;
2322 unsigned long addr;
2323
2324 new_index = rb_event_index(event);
2325 old_index = new_index + rb_event_ts_length(event);
2326 addr = (unsigned long)event;
2327 addr &= PAGE_MASK;
2328
2329 bpage = READ_ONCE(cpu_buffer->tail_page);
2330
2331 if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) {
2332 unsigned long write_mask =
2333 local_read(&bpage->write) & ~RB_WRITE_MASK;
2334 unsigned long event_length = rb_event_length(event);
2335 /*
2336 * This is on the tail page. It is possible that
2337 * a write could come in and move the tail page
2338 * and write to the next page. That is fine
2339 * because we just shorten what is on this page.
2340 */
2341 old_index += write_mask;
2342 new_index += write_mask;
2343 index = local_cmpxchg(&bpage->write, old_index, new_index);
2344 if (index == old_index) {
2345 /* update counters */
2346 local_sub(event_length, &cpu_buffer->entries_bytes);
2347 return 1;
2348 }
2349 }
2350
2351 /* could not discard */
2352 return 0;
2353 }
2354
2355 static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer)
2356 {
2357 local_inc(&cpu_buffer->committing);
2358 local_inc(&cpu_buffer->commits);
2359 }
2360
2361 static __always_inline void
2362 rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
2363 {
2364 unsigned long max_count;
2365
2366 /*
2367 * We only race with interrupts and NMIs on this CPU.
2368 * If we own the commit event, then we can commit
2369 * all others that interrupted us, since the interruptions
2370 * are in stack format (they finish before they come
2371 * back to us). This allows us to do a simple loop to
2372 * assign the commit to the tail.
2373 */
2374 again:
2375 max_count = cpu_buffer->nr_pages * 100;
2376
2377 while (cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page)) {
2378 if (RB_WARN_ON(cpu_buffer, !(--max_count)))
2379 return;
2380 if (RB_WARN_ON(cpu_buffer,
2381 rb_is_reader_page(cpu_buffer->tail_page)))
2382 return;
2383 local_set(&cpu_buffer->commit_page->page->commit,
2384 rb_page_write(cpu_buffer->commit_page));
2385 rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
2386 /* Only update the write stamp if the page has an event */
2387 if (rb_page_write(cpu_buffer->commit_page))
2388 cpu_buffer->write_stamp =
2389 cpu_buffer->commit_page->page->time_stamp;
2390 /* add barrier to keep gcc from optimizing too much */
2391 barrier();
2392 }
2393 while (rb_commit_index(cpu_buffer) !=
2394 rb_page_write(cpu_buffer->commit_page)) {
2395
2396 local_set(&cpu_buffer->commit_page->page->commit,
2397 rb_page_write(cpu_buffer->commit_page));
2398 RB_WARN_ON(cpu_buffer,
2399 local_read(&cpu_buffer->commit_page->page->commit) &
2400 ~RB_WRITE_MASK);
2401 barrier();
2402 }
2403
2404 /* again, keep gcc from optimizing */
2405 barrier();
2406
2407 /*
2408 * If an interrupt came in just after the first while loop
2409 * and pushed the tail page forward, we will be left with
2410 * a dangling commit that will never go forward.
2411 */
2412 if (unlikely(cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page)))
2413 goto again;
2414 }
2415
2416 static __always_inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer)
2417 {
2418 unsigned long commits;
2419
2420 if (RB_WARN_ON(cpu_buffer,
2421 !local_read(&cpu_buffer->committing)))
2422 return;
2423
2424 again:
2425 commits = local_read(&cpu_buffer->commits);
2426 /* synchronize with interrupts */
2427 barrier();
2428 if (local_read(&cpu_buffer->committing) == 1)
2429 rb_set_commit_to_write(cpu_buffer);
2430
2431 local_dec(&cpu_buffer->committing);
2432
2433 /* synchronize with interrupts */
2434 barrier();
2435
2436 /*
2437 * Need to account for interrupts coming in between the
2438 * updating of the commit page and the clearing of the
2439 * committing counter.
2440 */
2441 if (unlikely(local_read(&cpu_buffer->commits) != commits) &&
2442 !local_read(&cpu_buffer->committing)) {
2443 local_inc(&cpu_buffer->committing);
2444 goto again;
2445 }
2446 }
2447
2448 static inline void rb_event_discard(struct ring_buffer_event *event)
2449 {
2450 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
2451 event = skip_time_extend(event);
2452
2453 /* array[0] holds the actual length for the discarded event */
2454 event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE;
2455 event->type_len = RINGBUF_TYPE_PADDING;
2456 /* time delta must be non zero */
2457 if (!event->time_delta)
2458 event->time_delta = 1;
2459 }
2460
2461 static __always_inline bool
2462 rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
2463 struct ring_buffer_event *event)
2464 {
2465 unsigned long addr = (unsigned long)event;
2466 unsigned long index;
2467
2468 index = rb_event_index(event);
2469 addr &= PAGE_MASK;
2470
2471 return cpu_buffer->commit_page->page == (void *)addr &&
2472 rb_commit_index(cpu_buffer) == index;
2473 }
2474
2475 static __always_inline void
2476 rb_update_write_stamp(struct ring_buffer_per_cpu *cpu_buffer,
2477 struct ring_buffer_event *event)
2478 {
2479 u64 delta;
2480
2481 /*
2482 * The event first in the commit queue updates the
2483 * time stamp.
2484 */
2485 if (rb_event_is_commit(cpu_buffer, event)) {
2486 /*
2487 * A commit event that is first on a page
2488 * updates the write timestamp with the page stamp
2489 */
2490 if (!rb_event_index(event))
2491 cpu_buffer->write_stamp =
2492 cpu_buffer->commit_page->page->time_stamp;
2493 else if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) {
2494 delta = event->array[0];
2495 delta <<= TS_SHIFT;
2496 delta += event->time_delta;
2497 cpu_buffer->write_stamp += delta;
2498 } else
2499 cpu_buffer->write_stamp += event->time_delta;
2500 }
2501 }
2502
2503 static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer,
2504 struct ring_buffer_event *event)
2505 {
2506 local_inc(&cpu_buffer->entries);
2507 rb_update_write_stamp(cpu_buffer, event);
2508 rb_end_commit(cpu_buffer);
2509 }
2510
2511 static __always_inline void
2512 rb_wakeups(struct ring_buffer *buffer, struct ring_buffer_per_cpu *cpu_buffer)
2513 {
2514 bool pagebusy;
2515
2516 if (buffer->irq_work.waiters_pending) {
2517 buffer->irq_work.waiters_pending = false;
2518 /* irq_work_queue() supplies it's own memory barriers */
2519 irq_work_queue(&buffer->irq_work.work);
2520 }
2521
2522 if (cpu_buffer->irq_work.waiters_pending) {
2523 cpu_buffer->irq_work.waiters_pending = false;
2524 /* irq_work_queue() supplies it's own memory barriers */
2525 irq_work_queue(&cpu_buffer->irq_work.work);
2526 }
2527
2528 pagebusy = cpu_buffer->reader_page == cpu_buffer->commit_page;
2529
2530 if (!pagebusy && cpu_buffer->irq_work.full_waiters_pending) {
2531 cpu_buffer->irq_work.wakeup_full = true;
2532 cpu_buffer->irq_work.full_waiters_pending = false;
2533 /* irq_work_queue() supplies it's own memory barriers */
2534 irq_work_queue(&cpu_buffer->irq_work.work);
2535 }
2536 }
2537
2538 /*
2539 * The lock and unlock are done within a preempt disable section.
2540 * The current_context per_cpu variable can only be modified
2541 * by the current task between lock and unlock. But it can
2542 * be modified more than once via an interrupt. To pass this
2543 * information from the lock to the unlock without having to
2544 * access the 'in_interrupt()' functions again (which do show
2545 * a bit of overhead in something as critical as function tracing,
2546 * we use a bitmask trick.
2547 *
2548 * bit 0 = NMI context
2549 * bit 1 = IRQ context
2550 * bit 2 = SoftIRQ context
2551 * bit 3 = normal context.
2552 *
2553 * This works because this is the order of contexts that can
2554 * preempt other contexts. A SoftIRQ never preempts an IRQ
2555 * context.
2556 *
2557 * When the context is determined, the corresponding bit is
2558 * checked and set (if it was set, then a recursion of that context
2559 * happened).
2560 *
2561 * On unlock, we need to clear this bit. To do so, just subtract
2562 * 1 from the current_context and AND it to itself.
2563 *
2564 * (binary)
2565 * 101 - 1 = 100
2566 * 101 & 100 = 100 (clearing bit zero)
2567 *
2568 * 1010 - 1 = 1001
2569 * 1010 & 1001 = 1000 (clearing bit 1)
2570 *
2571 * The least significant bit can be cleared this way, and it
2572 * just so happens that it is the same bit corresponding to
2573 * the current context.
2574 */
2575
2576 static __always_inline int
2577 trace_recursive_lock(struct ring_buffer_per_cpu *cpu_buffer)
2578 {
2579 unsigned int val = cpu_buffer->current_context;
2580 unsigned long pc = preempt_count();
2581 int bit;
2582
2583 if (!(pc & (NMI_MASK | HARDIRQ_MASK | SOFTIRQ_OFFSET)))
2584 bit = RB_CTX_NORMAL;
2585 else
2586 bit = pc & NMI_MASK ? RB_CTX_NMI :
2587 pc & HARDIRQ_MASK ? RB_CTX_IRQ : RB_CTX_SOFTIRQ;
2588
2589 if (unlikely(val & (1 << bit)))
2590 return 1;
2591
2592 val |= (1 << bit);
2593 cpu_buffer->current_context = val;
2594
2595 return 0;
2596 }
2597
2598 static __always_inline void
2599 trace_recursive_unlock(struct ring_buffer_per_cpu *cpu_buffer)
2600 {
2601 cpu_buffer->current_context &= cpu_buffer->current_context - 1;
2602 }
2603
2604 /**
2605 * ring_buffer_unlock_commit - commit a reserved
2606 * @buffer: The buffer to commit to
2607 * @event: The event pointer to commit.
2608 *
2609 * This commits the data to the ring buffer, and releases any locks held.
2610 *
2611 * Must be paired with ring_buffer_lock_reserve.
2612 */
2613 int ring_buffer_unlock_commit(struct ring_buffer *buffer,
2614 struct ring_buffer_event *event)
2615 {
2616 struct ring_buffer_per_cpu *cpu_buffer;
2617 int cpu = raw_smp_processor_id();
2618
2619 cpu_buffer = buffer->buffers[cpu];
2620
2621 rb_commit(cpu_buffer, event);
2622
2623 rb_wakeups(buffer, cpu_buffer);
2624
2625 trace_recursive_unlock(cpu_buffer);
2626
2627 preempt_enable_notrace();
2628
2629 return 0;
2630 }
2631 EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit);
2632
2633 static noinline void
2634 rb_handle_timestamp(struct ring_buffer_per_cpu *cpu_buffer,
2635 struct rb_event_info *info)
2636 {
2637 WARN_ONCE(info->delta > (1ULL << 59),
2638 KERN_WARNING "Delta way too big! %llu ts=%llu write stamp = %llu\n%s",
2639 (unsigned long long)info->delta,
2640 (unsigned long long)info->ts,
2641 (unsigned long long)cpu_buffer->write_stamp,
2642 sched_clock_stable() ? "" :
2643 "If you just came from a suspend/resume,\n"
2644 "please switch to the trace global clock:\n"
2645 " echo global > /sys/kernel/debug/tracing/trace_clock\n");
2646 info->add_timestamp = 1;
2647 }
2648
2649 static struct ring_buffer_event *
2650 __rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
2651 struct rb_event_info *info)
2652 {
2653 struct ring_buffer_event *event;
2654 struct buffer_page *tail_page;
2655 unsigned long tail, write;
2656
2657 /*
2658 * If the time delta since the last event is too big to
2659 * hold in the time field of the event, then we append a
2660 * TIME EXTEND event ahead of the data event.
2661 */
2662 if (unlikely(info->add_timestamp))
2663 info->length += RB_LEN_TIME_EXTEND;
2664
2665 /* Don't let the compiler play games with cpu_buffer->tail_page */
2666 tail_page = info->tail_page = READ_ONCE(cpu_buffer->tail_page);
2667 write = local_add_return(info->length, &tail_page->write);
2668
2669 /* set write to only the index of the write */
2670 write &= RB_WRITE_MASK;
2671 tail = write - info->length;
2672
2673 /*
2674 * If this is the first commit on the page, then it has the same
2675 * timestamp as the page itself.
2676 */
2677 if (!tail)
2678 info->delta = 0;
2679
2680 /* See if we shot pass the end of this buffer page */
2681 if (unlikely(write > BUF_PAGE_SIZE))
2682 return rb_move_tail(cpu_buffer, tail, info);
2683
2684 /* We reserved something on the buffer */
2685
2686 event = __rb_page_index(tail_page, tail);
2687 rb_update_event(cpu_buffer, event, info);
2688
2689 local_inc(&tail_page->entries);
2690
2691 /*
2692 * If this is the first commit on the page, then update
2693 * its timestamp.
2694 */
2695 if (!tail)
2696 tail_page->page->time_stamp = info->ts;
2697
2698 /* account for these added bytes */
2699 local_add(info->length, &cpu_buffer->entries_bytes);
2700
2701 return event;
2702 }
2703
2704 static __always_inline struct ring_buffer_event *
2705 rb_reserve_next_event(struct ring_buffer *buffer,
2706 struct ring_buffer_per_cpu *cpu_buffer,
2707 unsigned long length)
2708 {
2709 struct ring_buffer_event *event;
2710 struct rb_event_info info;
2711 int nr_loops = 0;
2712 u64 diff;
2713
2714 rb_start_commit(cpu_buffer);
2715
2716 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
2717 /*
2718 * Due to the ability to swap a cpu buffer from a buffer
2719 * it is possible it was swapped before we committed.
2720 * (committing stops a swap). We check for it here and
2721 * if it happened, we have to fail the write.
2722 */
2723 barrier();
2724 if (unlikely(READ_ONCE(cpu_buffer->buffer) != buffer)) {
2725 local_dec(&cpu_buffer->committing);
2726 local_dec(&cpu_buffer->commits);
2727 return NULL;
2728 }
2729 #endif
2730
2731 info.length = rb_calculate_event_length(length);
2732 again:
2733 info.add_timestamp = 0;
2734 info.delta = 0;
2735
2736 /*
2737 * We allow for interrupts to reenter here and do a trace.
2738 * If one does, it will cause this original code to loop
2739 * back here. Even with heavy interrupts happening, this
2740 * should only happen a few times in a row. If this happens
2741 * 1000 times in a row, there must be either an interrupt
2742 * storm or we have something buggy.
2743 * Bail!
2744 */
2745 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
2746 goto out_fail;
2747
2748 info.ts = rb_time_stamp(cpu_buffer->buffer);
2749 diff = info.ts - cpu_buffer->write_stamp;
2750
2751 /* make sure this diff is calculated here */
2752 barrier();
2753
2754 /* Did the write stamp get updated already? */
2755 if (likely(info.ts >= cpu_buffer->write_stamp)) {
2756 info.delta = diff;
2757 if (unlikely(test_time_stamp(info.delta)))
2758 rb_handle_timestamp(cpu_buffer, &info);
2759 }
2760
2761 event = __rb_reserve_next(cpu_buffer, &info);
2762
2763 if (unlikely(PTR_ERR(event) == -EAGAIN)) {
2764 if (info.add_timestamp)
2765 info.length -= RB_LEN_TIME_EXTEND;
2766 goto again;
2767 }
2768
2769 if (!event)
2770 goto out_fail;
2771
2772 return event;
2773
2774 out_fail:
2775 rb_end_commit(cpu_buffer);
2776 return NULL;
2777 }
2778
2779 /**
2780 * ring_buffer_lock_reserve - reserve a part of the buffer
2781 * @buffer: the ring buffer to reserve from
2782 * @length: the length of the data to reserve (excluding event header)
2783 *
2784 * Returns a reseverd event on the ring buffer to copy directly to.
2785 * The user of this interface will need to get the body to write into
2786 * and can use the ring_buffer_event_data() interface.
2787 *
2788 * The length is the length of the data needed, not the event length
2789 * which also includes the event header.
2790 *
2791 * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
2792 * If NULL is returned, then nothing has been allocated or locked.
2793 */
2794 struct ring_buffer_event *
2795 ring_buffer_lock_reserve(struct ring_buffer *buffer, unsigned long length)
2796 {
2797 struct ring_buffer_per_cpu *cpu_buffer;
2798 struct ring_buffer_event *event;
2799 int cpu;
2800
2801 /* If we are tracing schedule, we don't want to recurse */
2802 preempt_disable_notrace();
2803
2804 if (unlikely(atomic_read(&buffer->record_disabled)))
2805 goto out;
2806
2807 cpu = raw_smp_processor_id();
2808
2809 if (unlikely(!cpumask_test_cpu(cpu, buffer->cpumask)))
2810 goto out;
2811
2812 cpu_buffer = buffer->buffers[cpu];
2813
2814 if (unlikely(atomic_read(&cpu_buffer->record_disabled)))
2815 goto out;
2816
2817 if (unlikely(length > BUF_MAX_DATA_SIZE))
2818 goto out;
2819
2820 if (unlikely(trace_recursive_lock(cpu_buffer)))
2821 goto out;
2822
2823 event = rb_reserve_next_event(buffer, cpu_buffer, length);
2824 if (!event)
2825 goto out_unlock;
2826
2827 return event;
2828
2829 out_unlock:
2830 trace_recursive_unlock(cpu_buffer);
2831 out:
2832 preempt_enable_notrace();
2833 return NULL;
2834 }
2835 EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve);
2836
2837 /*
2838 * Decrement the entries to the page that an event is on.
2839 * The event does not even need to exist, only the pointer
2840 * to the page it is on. This may only be called before the commit
2841 * takes place.
2842 */
2843 static inline void
2844 rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer,
2845 struct ring_buffer_event *event)
2846 {
2847 unsigned long addr = (unsigned long)event;
2848 struct buffer_page *bpage = cpu_buffer->commit_page;
2849 struct buffer_page *start;
2850
2851 addr &= PAGE_MASK;
2852
2853 /* Do the likely case first */
2854 if (likely(bpage->page == (void *)addr)) {
2855 local_dec(&bpage->entries);
2856 return;
2857 }
2858
2859 /*
2860 * Because the commit page may be on the reader page we
2861 * start with the next page and check the end loop there.
2862 */
2863 rb_inc_page(cpu_buffer, &bpage);
2864 start = bpage;
2865 do {
2866 if (bpage->page == (void *)addr) {
2867 local_dec(&bpage->entries);
2868 return;
2869 }
2870 rb_inc_page(cpu_buffer, &bpage);
2871 } while (bpage != start);
2872
2873 /* commit not part of this buffer?? */
2874 RB_WARN_ON(cpu_buffer, 1);
2875 }
2876
2877 /**
2878 * ring_buffer_commit_discard - discard an event that has not been committed
2879 * @buffer: the ring buffer
2880 * @event: non committed event to discard
2881 *
2882 * Sometimes an event that is in the ring buffer needs to be ignored.
2883 * This function lets the user discard an event in the ring buffer
2884 * and then that event will not be read later.
2885 *
2886 * This function only works if it is called before the the item has been
2887 * committed. It will try to free the event from the ring buffer
2888 * if another event has not been added behind it.
2889 *
2890 * If another event has been added behind it, it will set the event
2891 * up as discarded, and perform the commit.
2892 *
2893 * If this function is called, do not call ring_buffer_unlock_commit on
2894 * the event.
2895 */
2896 void ring_buffer_discard_commit(struct ring_buffer *buffer,
2897 struct ring_buffer_event *event)
2898 {
2899 struct ring_buffer_per_cpu *cpu_buffer;
2900 int cpu;
2901
2902 /* The event is discarded regardless */
2903 rb_event_discard(event);
2904
2905 cpu = smp_processor_id();
2906 cpu_buffer = buffer->buffers[cpu];
2907
2908 /*
2909 * This must only be called if the event has not been
2910 * committed yet. Thus we can assume that preemption
2911 * is still disabled.
2912 */
2913 RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing));
2914
2915 rb_decrement_entry(cpu_buffer, event);
2916 if (rb_try_to_discard(cpu_buffer, event))
2917 goto out;
2918
2919 /*
2920 * The commit is still visible by the reader, so we
2921 * must still update the timestamp.
2922 */
2923 rb_update_write_stamp(cpu_buffer, event);
2924 out:
2925 rb_end_commit(cpu_buffer);
2926
2927 trace_recursive_unlock(cpu_buffer);
2928
2929 preempt_enable_notrace();
2930
2931 }
2932 EXPORT_SYMBOL_GPL(ring_buffer_discard_commit);
2933
2934 /**
2935 * ring_buffer_write - write data to the buffer without reserving
2936 * @buffer: The ring buffer to write to.
2937 * @length: The length of the data being written (excluding the event header)
2938 * @data: The data to write to the buffer.
2939 *
2940 * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
2941 * one function. If you already have the data to write to the buffer, it
2942 * may be easier to simply call this function.
2943 *
2944 * Note, like ring_buffer_lock_reserve, the length is the length of the data
2945 * and not the length of the event which would hold the header.
2946 */
2947 int ring_buffer_write(struct ring_buffer *buffer,
2948 unsigned long length,
2949 void *data)
2950 {
2951 struct ring_buffer_per_cpu *cpu_buffer;
2952 struct ring_buffer_event *event;
2953 void *body;
2954 int ret = -EBUSY;
2955 int cpu;
2956
2957 preempt_disable_notrace();
2958
2959 if (atomic_read(&buffer->record_disabled))
2960 goto out;
2961
2962 cpu = raw_smp_processor_id();
2963
2964 if (!cpumask_test_cpu(cpu, buffer->cpumask))
2965 goto out;
2966
2967 cpu_buffer = buffer->buffers[cpu];
2968
2969 if (atomic_read(&cpu_buffer->record_disabled))
2970 goto out;
2971
2972 if (length > BUF_MAX_DATA_SIZE)
2973 goto out;
2974
2975 if (unlikely(trace_recursive_lock(cpu_buffer)))
2976 goto out;
2977
2978 event = rb_reserve_next_event(buffer, cpu_buffer, length);
2979 if (!event)
2980 goto out_unlock;
2981
2982 body = rb_event_data(event);
2983
2984 memcpy(body, data, length);
2985
2986 rb_commit(cpu_buffer, event);
2987
2988 rb_wakeups(buffer, cpu_buffer);
2989
2990 ret = 0;
2991
2992 out_unlock:
2993 trace_recursive_unlock(cpu_buffer);
2994
2995 out:
2996 preempt_enable_notrace();
2997
2998 return ret;
2999 }
3000 EXPORT_SYMBOL_GPL(ring_buffer_write);
3001
3002 static bool rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
3003 {
3004 struct buffer_page *reader = cpu_buffer->reader_page;
3005 struct buffer_page *head = rb_set_head_page(cpu_buffer);
3006 struct buffer_page *commit = cpu_buffer->commit_page;
3007
3008 /* In case of error, head will be NULL */
3009 if (unlikely(!head))
3010 return true;
3011
3012 return reader->read == rb_page_commit(reader) &&
3013 (commit == reader ||
3014 (commit == head &&
3015 head->read == rb_page_commit(commit)));
3016 }
3017
3018 /**
3019 * ring_buffer_record_disable - stop all writes into the buffer
3020 * @buffer: The ring buffer to stop writes to.
3021 *
3022 * This prevents all writes to the buffer. Any attempt to write
3023 * to the buffer after this will fail and return NULL.
3024 *
3025 * The caller should call synchronize_sched() after this.
3026 */
3027 void ring_buffer_record_disable(struct ring_buffer *buffer)
3028 {
3029 atomic_inc(&buffer->record_disabled);
3030 }
3031 EXPORT_SYMBOL_GPL(ring_buffer_record_disable);
3032
3033 /**
3034 * ring_buffer_record_enable - enable writes to the buffer
3035 * @buffer: The ring buffer to enable writes
3036 *
3037 * Note, multiple disables will need the same number of enables
3038 * to truly enable the writing (much like preempt_disable).
3039 */
3040 void ring_buffer_record_enable(struct ring_buffer *buffer)
3041 {
3042 atomic_dec(&buffer->record_disabled);
3043 }
3044 EXPORT_SYMBOL_GPL(ring_buffer_record_enable);
3045
3046 /**
3047 * ring_buffer_record_off - stop all writes into the buffer
3048 * @buffer: The ring buffer to stop writes to.
3049 *
3050 * This prevents all writes to the buffer. Any attempt to write
3051 * to the buffer after this will fail and return NULL.
3052 *
3053 * This is different than ring_buffer_record_disable() as
3054 * it works like an on/off switch, where as the disable() version
3055 * must be paired with a enable().
3056 */
3057 void ring_buffer_record_off(struct ring_buffer *buffer)
3058 {
3059 unsigned int rd;
3060 unsigned int new_rd;
3061
3062 do {
3063 rd = atomic_read(&buffer->record_disabled);
3064 new_rd = rd | RB_BUFFER_OFF;
3065 } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
3066 }
3067 EXPORT_SYMBOL_GPL(ring_buffer_record_off);
3068
3069 /**
3070 * ring_buffer_record_on - restart writes into the buffer
3071 * @buffer: The ring buffer to start writes to.
3072 *
3073 * This enables all writes to the buffer that was disabled by
3074 * ring_buffer_record_off().
3075 *
3076 * This is different than ring_buffer_record_enable() as
3077 * it works like an on/off switch, where as the enable() version
3078 * must be paired with a disable().
3079 */
3080 void ring_buffer_record_on(struct ring_buffer *buffer)
3081 {
3082 unsigned int rd;
3083 unsigned int new_rd;
3084
3085 do {
3086 rd = atomic_read(&buffer->record_disabled);
3087 new_rd = rd & ~RB_BUFFER_OFF;
3088 } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
3089 }
3090 EXPORT_SYMBOL_GPL(ring_buffer_record_on);
3091
3092 /**
3093 * ring_buffer_record_is_on - return true if the ring buffer can write
3094 * @buffer: The ring buffer to see if write is enabled
3095 *
3096 * Returns true if the ring buffer is in a state that it accepts writes.
3097 */
3098 int ring_buffer_record_is_on(struct ring_buffer *buffer)
3099 {
3100 return !atomic_read(&buffer->record_disabled);
3101 }
3102
3103 /**
3104 * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
3105 * @buffer: The ring buffer to stop writes to.
3106 * @cpu: The CPU buffer to stop
3107 *
3108 * This prevents all writes to the buffer. Any attempt to write
3109 * to the buffer after this will fail and return NULL.
3110 *
3111 * The caller should call synchronize_sched() after this.
3112 */
3113 void ring_buffer_record_disable_cpu(struct ring_buffer *buffer, int cpu)
3114 {
3115 struct ring_buffer_per_cpu *cpu_buffer;
3116
3117 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3118 return;
3119
3120 cpu_buffer = buffer->buffers[cpu];
3121 atomic_inc(&cpu_buffer->record_disabled);
3122 }
3123 EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu);
3124
3125 /**
3126 * ring_buffer_record_enable_cpu - enable writes to the buffer
3127 * @buffer: The ring buffer to enable writes
3128 * @cpu: The CPU to enable.
3129 *
3130 * Note, multiple disables will need the same number of enables
3131 * to truly enable the writing (much like preempt_disable).
3132 */
3133 void ring_buffer_record_enable_cpu(struct ring_buffer *buffer, int cpu)
3134 {
3135 struct ring_buffer_per_cpu *cpu_buffer;
3136
3137 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3138 return;
3139
3140 cpu_buffer = buffer->buffers[cpu];
3141 atomic_dec(&cpu_buffer->record_disabled);
3142 }
3143 EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu);
3144
3145 /*
3146 * The total entries in the ring buffer is the running counter
3147 * of entries entered into the ring buffer, minus the sum of
3148 * the entries read from the ring buffer and the number of
3149 * entries that were overwritten.
3150 */
3151 static inline unsigned long
3152 rb_num_of_entries(struct ring_buffer_per_cpu *cpu_buffer)
3153 {
3154 return local_read(&cpu_buffer->entries) -
3155 (local_read(&cpu_buffer->overrun) + cpu_buffer->read);
3156 }
3157
3158 /**
3159 * ring_buffer_oldest_event_ts - get the oldest event timestamp from the buffer
3160 * @buffer: The ring buffer
3161 * @cpu: The per CPU buffer to read from.
3162 */
3163 u64 ring_buffer_oldest_event_ts(struct ring_buffer *buffer, int cpu)
3164 {
3165 unsigned long flags;
3166 struct ring_buffer_per_cpu *cpu_buffer;
3167 struct buffer_page *bpage;
3168 u64 ret = 0;
3169
3170 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3171 return 0;
3172
3173 cpu_buffer = buffer->buffers[cpu];
3174 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3175 /*
3176 * if the tail is on reader_page, oldest time stamp is on the reader
3177 * page
3178 */
3179 if (cpu_buffer->tail_page == cpu_buffer->reader_page)
3180 bpage = cpu_buffer->reader_page;
3181 else
3182 bpage = rb_set_head_page(cpu_buffer);
3183 if (bpage)
3184 ret = bpage->page->time_stamp;
3185 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3186
3187 return ret;
3188 }
3189 EXPORT_SYMBOL_GPL(ring_buffer_oldest_event_ts);
3190
3191 /**
3192 * ring_buffer_bytes_cpu - get the number of bytes consumed in a cpu buffer
3193 * @buffer: The ring buffer
3194 * @cpu: The per CPU buffer to read from.
3195 */
3196 unsigned long ring_buffer_bytes_cpu(struct ring_buffer *buffer, int cpu)
3197 {
3198 struct ring_buffer_per_cpu *cpu_buffer;
3199 unsigned long ret;
3200
3201 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3202 return 0;
3203
3204 cpu_buffer = buffer->buffers[cpu];
3205 ret = local_read(&cpu_buffer->entries_bytes) - cpu_buffer->read_bytes;
3206
3207 return ret;
3208 }
3209 EXPORT_SYMBOL_GPL(ring_buffer_bytes_cpu);
3210
3211 /**
3212 * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
3213 * @buffer: The ring buffer
3214 * @cpu: The per CPU buffer to get the entries from.
3215 */
3216 unsigned long ring_buffer_entries_cpu(struct ring_buffer *buffer, int cpu)
3217 {
3218 struct ring_buffer_per_cpu *cpu_buffer;
3219
3220 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3221 return 0;
3222
3223 cpu_buffer = buffer->buffers[cpu];
3224
3225 return rb_num_of_entries(cpu_buffer);
3226 }
3227 EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu);
3228
3229 /**
3230 * ring_buffer_overrun_cpu - get the number of overruns caused by the ring
3231 * buffer wrapping around (only if RB_FL_OVERWRITE is on).
3232 * @buffer: The ring buffer
3233 * @cpu: The per CPU buffer to get the number of overruns from
3234 */
3235 unsigned long ring_buffer_overrun_cpu(struct ring_buffer *buffer, int cpu)
3236 {
3237 struct ring_buffer_per_cpu *cpu_buffer;
3238 unsigned long ret;
3239
3240 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3241 return 0;
3242
3243 cpu_buffer = buffer->buffers[cpu];
3244 ret = local_read(&cpu_buffer->overrun);
3245
3246 return ret;
3247 }
3248 EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu);
3249
3250 /**
3251 * ring_buffer_commit_overrun_cpu - get the number of overruns caused by
3252 * commits failing due to the buffer wrapping around while there are uncommitted
3253 * events, such as during an interrupt storm.
3254 * @buffer: The ring buffer
3255 * @cpu: The per CPU buffer to get the number of overruns from
3256 */
3257 unsigned long
3258 ring_buffer_commit_overrun_cpu(struct ring_buffer *buffer, int cpu)
3259 {
3260 struct ring_buffer_per_cpu *cpu_buffer;
3261 unsigned long ret;
3262
3263 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3264 return 0;
3265
3266 cpu_buffer = buffer->buffers[cpu];
3267 ret = local_read(&cpu_buffer->commit_overrun);
3268
3269 return ret;
3270 }
3271 EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu);
3272
3273 /**
3274 * ring_buffer_dropped_events_cpu - get the number of dropped events caused by
3275 * the ring buffer filling up (only if RB_FL_OVERWRITE is off).
3276 * @buffer: The ring buffer
3277 * @cpu: The per CPU buffer to get the number of overruns from
3278 */
3279 unsigned long
3280 ring_buffer_dropped_events_cpu(struct ring_buffer *buffer, int cpu)
3281 {
3282 struct ring_buffer_per_cpu *cpu_buffer;
3283 unsigned long ret;
3284
3285 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3286 return 0;
3287
3288 cpu_buffer = buffer->buffers[cpu];
3289 ret = local_read(&cpu_buffer->dropped_events);
3290
3291 return ret;
3292 }
3293 EXPORT_SYMBOL_GPL(ring_buffer_dropped_events_cpu);
3294
3295 /**
3296 * ring_buffer_read_events_cpu - get the number of events successfully read
3297 * @buffer: The ring buffer
3298 * @cpu: The per CPU buffer to get the number of events read
3299 */
3300 unsigned long
3301 ring_buffer_read_events_cpu(struct ring_buffer *buffer, int cpu)
3302 {
3303 struct ring_buffer_per_cpu *cpu_buffer;
3304
3305 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3306 return 0;
3307
3308 cpu_buffer = buffer->buffers[cpu];
3309 return cpu_buffer->read;
3310 }
3311 EXPORT_SYMBOL_GPL(ring_buffer_read_events_cpu);
3312
3313 /**
3314 * ring_buffer_entries - get the number of entries in a buffer
3315 * @buffer: The ring buffer
3316 *
3317 * Returns the total number of entries in the ring buffer
3318 * (all CPU entries)
3319 */
3320 unsigned long ring_buffer_entries(struct ring_buffer *buffer)
3321 {
3322 struct ring_buffer_per_cpu *cpu_buffer;
3323 unsigned long entries = 0;
3324 int cpu;
3325
3326 /* if you care about this being correct, lock the buffer */
3327 for_each_buffer_cpu(buffer, cpu) {
3328 cpu_buffer = buffer->buffers[cpu];
3329 entries += rb_num_of_entries(cpu_buffer);
3330 }
3331
3332 return entries;
3333 }
3334 EXPORT_SYMBOL_GPL(ring_buffer_entries);
3335
3336 /**
3337 * ring_buffer_overruns - get the number of overruns in buffer
3338 * @buffer: The ring buffer
3339 *
3340 * Returns the total number of overruns in the ring buffer
3341 * (all CPU entries)
3342 */
3343 unsigned long ring_buffer_overruns(struct ring_buffer *buffer)
3344 {
3345 struct ring_buffer_per_cpu *cpu_buffer;
3346 unsigned long overruns = 0;
3347 int cpu;
3348
3349 /* if you care about this being correct, lock the buffer */
3350 for_each_buffer_cpu(buffer, cpu) {
3351 cpu_buffer = buffer->buffers[cpu];
3352 overruns += local_read(&cpu_buffer->overrun);
3353 }
3354
3355 return overruns;
3356 }
3357 EXPORT_SYMBOL_GPL(ring_buffer_overruns);
3358
3359 static void rb_iter_reset(struct ring_buffer_iter *iter)
3360 {
3361 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3362
3363 /* Iterator usage is expected to have record disabled */
3364 iter->head_page = cpu_buffer->reader_page;
3365 iter->head = cpu_buffer->reader_page->read;
3366
3367 iter->cache_reader_page = iter->head_page;
3368 iter->cache_read = cpu_buffer->read;
3369
3370 if (iter->head)
3371 iter->read_stamp = cpu_buffer->read_stamp;
3372 else
3373 iter->read_stamp = iter->head_page->page->time_stamp;
3374 }
3375
3376 /**
3377 * ring_buffer_iter_reset - reset an iterator
3378 * @iter: The iterator to reset
3379 *
3380 * Resets the iterator, so that it will start from the beginning
3381 * again.
3382 */
3383 void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
3384 {
3385 struct ring_buffer_per_cpu *cpu_buffer;
3386 unsigned long flags;
3387
3388 if (!iter)
3389 return;
3390
3391 cpu_buffer = iter->cpu_buffer;
3392
3393 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3394 rb_iter_reset(iter);
3395 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3396 }
3397 EXPORT_SYMBOL_GPL(ring_buffer_iter_reset);
3398
3399 /**
3400 * ring_buffer_iter_empty - check if an iterator has no more to read
3401 * @iter: The iterator to check
3402 */
3403 int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
3404 {
3405 struct ring_buffer_per_cpu *cpu_buffer;
3406 struct buffer_page *reader;
3407 struct buffer_page *head_page;
3408 struct buffer_page *commit_page;
3409 unsigned commit;
3410
3411 cpu_buffer = iter->cpu_buffer;
3412
3413 /* Remember, trace recording is off when iterator is in use */
3414 reader = cpu_buffer->reader_page;
3415 head_page = cpu_buffer->head_page;
3416 commit_page = cpu_buffer->commit_page;
3417 commit = rb_page_commit(commit_page);
3418
3419 return ((iter->head_page == commit_page && iter->head == commit) ||
3420 (iter->head_page == reader && commit_page == head_page &&
3421 head_page->read == commit &&
3422 iter->head == rb_page_commit(cpu_buffer->reader_page)));
3423 }
3424 EXPORT_SYMBOL_GPL(ring_buffer_iter_empty);
3425
3426 static void
3427 rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
3428 struct ring_buffer_event *event)
3429 {
3430 u64 delta;
3431
3432 switch (event->type_len) {
3433 case RINGBUF_TYPE_PADDING:
3434 return;
3435
3436 case RINGBUF_TYPE_TIME_EXTEND:
3437 delta = event->array[0];
3438 delta <<= TS_SHIFT;
3439 delta += event->time_delta;
3440 cpu_buffer->read_stamp += delta;
3441 return;
3442
3443 case RINGBUF_TYPE_TIME_STAMP:
3444 /* FIXME: not implemented */
3445 return;
3446
3447 case RINGBUF_TYPE_DATA:
3448 cpu_buffer->read_stamp += event->time_delta;
3449 return;
3450
3451 default:
3452 BUG();
3453 }
3454 return;
3455 }
3456
3457 static void
3458 rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
3459 struct ring_buffer_event *event)
3460 {
3461 u64 delta;
3462
3463 switch (event->type_len) {
3464 case RINGBUF_TYPE_PADDING:
3465 return;
3466
3467 case RINGBUF_TYPE_TIME_EXTEND:
3468 delta = event->array[0];
3469 delta <<= TS_SHIFT;
3470 delta += event->time_delta;
3471 iter->read_stamp += delta;
3472 return;
3473
3474 case RINGBUF_TYPE_TIME_STAMP:
3475 /* FIXME: not implemented */
3476 return;
3477
3478 case RINGBUF_TYPE_DATA:
3479 iter->read_stamp += event->time_delta;
3480 return;
3481
3482 default:
3483 BUG();
3484 }
3485 return;
3486 }
3487
3488 static struct buffer_page *
3489 rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
3490 {
3491 struct buffer_page *reader = NULL;
3492 unsigned long overwrite;
3493 unsigned long flags;
3494 int nr_loops = 0;
3495 int ret;
3496
3497 local_irq_save(flags);
3498 arch_spin_lock(&cpu_buffer->lock);
3499
3500 again:
3501 /*
3502 * This should normally only loop twice. But because the
3503 * start of the reader inserts an empty page, it causes
3504 * a case where we will loop three times. There should be no
3505 * reason to loop four times (that I know of).
3506 */
3507 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
3508 reader = NULL;
3509 goto out;
3510 }
3511
3512 reader = cpu_buffer->reader_page;
3513
3514 /* If there's more to read, return this page */
3515 if (cpu_buffer->reader_page->read < rb_page_size(reader))
3516 goto out;
3517
3518 /* Never should we have an index greater than the size */
3519 if (RB_WARN_ON(cpu_buffer,
3520 cpu_buffer->reader_page->read > rb_page_size(reader)))
3521 goto out;
3522
3523 /* check if we caught up to the tail */
3524 reader = NULL;
3525 if (cpu_buffer->commit_page == cpu_buffer->reader_page)
3526 goto out;
3527
3528 /* Don't bother swapping if the ring buffer is empty */
3529 if (rb_num_of_entries(cpu_buffer) == 0)
3530 goto out;
3531
3532 /*
3533 * Reset the reader page to size zero.
3534 */
3535 local_set(&cpu_buffer->reader_page->write, 0);
3536 local_set(&cpu_buffer->reader_page->entries, 0);
3537 local_set(&cpu_buffer->reader_page->page->commit, 0);
3538 cpu_buffer->reader_page->real_end = 0;
3539
3540 spin:
3541 /*
3542 * Splice the empty reader page into the list around the head.
3543 */
3544 reader = rb_set_head_page(cpu_buffer);
3545 if (!reader)
3546 goto out;
3547 cpu_buffer->reader_page->list.next = rb_list_head(reader->list.next);
3548 cpu_buffer->reader_page->list.prev = reader->list.prev;
3549
3550 /*
3551 * cpu_buffer->pages just needs to point to the buffer, it
3552 * has no specific buffer page to point to. Lets move it out
3553 * of our way so we don't accidentally swap it.
3554 */
3555 cpu_buffer->pages = reader->list.prev;
3556
3557 /* The reader page will be pointing to the new head */
3558 rb_set_list_to_head(cpu_buffer, &cpu_buffer->reader_page->list);
3559
3560 /*
3561 * We want to make sure we read the overruns after we set up our
3562 * pointers to the next object. The writer side does a
3563 * cmpxchg to cross pages which acts as the mb on the writer
3564 * side. Note, the reader will constantly fail the swap
3565 * while the writer is updating the pointers, so this
3566 * guarantees that the overwrite recorded here is the one we
3567 * want to compare with the last_overrun.
3568 */
3569 smp_mb();
3570 overwrite = local_read(&(cpu_buffer->overrun));
3571
3572 /*
3573 * Here's the tricky part.
3574 *
3575 * We need to move the pointer past the header page.
3576 * But we can only do that if a writer is not currently
3577 * moving it. The page before the header page has the
3578 * flag bit '1' set if it is pointing to the page we want.
3579 * but if the writer is in the process of moving it
3580 * than it will be '2' or already moved '0'.
3581 */
3582
3583 ret = rb_head_page_replace(reader, cpu_buffer->reader_page);
3584
3585 /*
3586 * If we did not convert it, then we must try again.
3587 */
3588 if (!ret)
3589 goto spin;
3590
3591 /*
3592 * Yeah! We succeeded in replacing the page.
3593 *
3594 * Now make the new head point back to the reader page.
3595 */
3596 rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list;
3597 rb_inc_page(cpu_buffer, &cpu_buffer->head_page);
3598
3599 /* Finally update the reader page to the new head */
3600 cpu_buffer->reader_page = reader;
3601 cpu_buffer->reader_page->read = 0;
3602
3603 if (overwrite != cpu_buffer->last_overrun) {
3604 cpu_buffer->lost_events = overwrite - cpu_buffer->last_overrun;
3605 cpu_buffer->last_overrun = overwrite;
3606 }
3607
3608 goto again;
3609
3610 out:
3611 /* Update the read_stamp on the first event */
3612 if (reader && reader->read == 0)
3613 cpu_buffer->read_stamp = reader->page->time_stamp;
3614
3615 arch_spin_unlock(&cpu_buffer->lock);
3616 local_irq_restore(flags);
3617
3618 return reader;
3619 }
3620
3621 static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
3622 {
3623 struct ring_buffer_event *event;
3624 struct buffer_page *reader;
3625 unsigned length;
3626
3627 reader = rb_get_reader_page(cpu_buffer);
3628
3629 /* This function should not be called when buffer is empty */
3630 if (RB_WARN_ON(cpu_buffer, !reader))
3631 return;
3632
3633 event = rb_reader_event(cpu_buffer);
3634
3635 if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
3636 cpu_buffer->read++;
3637
3638 rb_update_read_stamp(cpu_buffer, event);
3639
3640 length = rb_event_length(event);
3641 cpu_buffer->reader_page->read += length;
3642 }
3643
3644 static void rb_advance_iter(struct ring_buffer_iter *iter)
3645 {
3646 struct ring_buffer_per_cpu *cpu_buffer;
3647 struct ring_buffer_event *event;
3648 unsigned length;
3649
3650 cpu_buffer = iter->cpu_buffer;
3651
3652 /*
3653 * Check if we are at the end of the buffer.
3654 */
3655 if (iter->head >= rb_page_size(iter->head_page)) {
3656 /* discarded commits can make the page empty */
3657 if (iter->head_page == cpu_buffer->commit_page)
3658 return;
3659 rb_inc_iter(iter);
3660 return;
3661 }
3662
3663 event = rb_iter_head_event(iter);
3664
3665 length = rb_event_length(event);
3666
3667 /*
3668 * This should not be called to advance the header if we are
3669 * at the tail of the buffer.
3670 */
3671 if (RB_WARN_ON(cpu_buffer,
3672 (iter->head_page == cpu_buffer->commit_page) &&
3673 (iter->head + length > rb_commit_index(cpu_buffer))))
3674 return;
3675
3676 rb_update_iter_read_stamp(iter, event);
3677
3678 iter->head += length;
3679
3680 /* check for end of page padding */
3681 if ((iter->head >= rb_page_size(iter->head_page)) &&
3682 (iter->head_page != cpu_buffer->commit_page))
3683 rb_inc_iter(iter);
3684 }
3685
3686 static int rb_lost_events(struct ring_buffer_per_cpu *cpu_buffer)
3687 {
3688 return cpu_buffer->lost_events;
3689 }
3690
3691 static struct ring_buffer_event *
3692 rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts,
3693 unsigned long *lost_events)
3694 {
3695 struct ring_buffer_event *event;
3696 struct buffer_page *reader;
3697 int nr_loops = 0;
3698
3699 again:
3700 /*
3701 * We repeat when a time extend is encountered.
3702 * Since the time extend is always attached to a data event,
3703 * we should never loop more than once.
3704 * (We never hit the following condition more than twice).
3705 */
3706 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2))
3707 return NULL;
3708
3709 reader = rb_get_reader_page(cpu_buffer);
3710 if (!reader)
3711 return NULL;
3712
3713 event = rb_reader_event(cpu_buffer);
3714
3715 switch (event->type_len) {
3716 case RINGBUF_TYPE_PADDING:
3717 if (rb_null_event(event))
3718 RB_WARN_ON(cpu_buffer, 1);
3719 /*
3720 * Because the writer could be discarding every
3721 * event it creates (which would probably be bad)
3722 * if we were to go back to "again" then we may never
3723 * catch up, and will trigger the warn on, or lock
3724 * the box. Return the padding, and we will release
3725 * the current locks, and try again.
3726 */
3727 return event;
3728
3729 case RINGBUF_TYPE_TIME_EXTEND:
3730 /* Internal data, OK to advance */
3731 rb_advance_reader(cpu_buffer);
3732 goto again;
3733
3734 case RINGBUF_TYPE_TIME_STAMP:
3735 /* FIXME: not implemented */
3736 rb_advance_reader(cpu_buffer);
3737 goto again;
3738
3739 case RINGBUF_TYPE_DATA:
3740 if (ts) {
3741 *ts = cpu_buffer->read_stamp + event->time_delta;
3742 ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
3743 cpu_buffer->cpu, ts);
3744 }
3745 if (lost_events)
3746 *lost_events = rb_lost_events(cpu_buffer);
3747 return event;
3748
3749 default:
3750 BUG();
3751 }
3752
3753 return NULL;
3754 }
3755 EXPORT_SYMBOL_GPL(ring_buffer_peek);
3756
3757 static struct ring_buffer_event *
3758 rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
3759 {
3760 struct ring_buffer *buffer;
3761 struct ring_buffer_per_cpu *cpu_buffer;
3762 struct ring_buffer_event *event;
3763 int nr_loops = 0;
3764
3765 cpu_buffer = iter->cpu_buffer;
3766 buffer = cpu_buffer->buffer;
3767
3768 /*
3769 * Check if someone performed a consuming read to
3770 * the buffer. A consuming read invalidates the iterator
3771 * and we need to reset the iterator in this case.
3772 */
3773 if (unlikely(iter->cache_read != cpu_buffer->read ||
3774 iter->cache_reader_page != cpu_buffer->reader_page))
3775 rb_iter_reset(iter);
3776
3777 again:
3778 if (ring_buffer_iter_empty(iter))
3779 return NULL;
3780
3781 /*
3782 * We repeat when a time extend is encountered or we hit
3783 * the end of the page. Since the time extend is always attached
3784 * to a data event, we should never loop more than three times.
3785 * Once for going to next page, once on time extend, and
3786 * finally once to get the event.
3787 * (We never hit the following condition more than thrice).
3788 */
3789 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3))
3790 return NULL;
3791
3792 if (rb_per_cpu_empty(cpu_buffer))
3793 return NULL;
3794
3795 if (iter->head >= rb_page_size(iter->head_page)) {
3796 rb_inc_iter(iter);
3797 goto again;
3798 }
3799
3800 event = rb_iter_head_event(iter);
3801
3802 switch (event->type_len) {
3803 case RINGBUF_TYPE_PADDING:
3804 if (rb_null_event(event)) {
3805 rb_inc_iter(iter);
3806 goto again;
3807 }
3808 rb_advance_iter(iter);
3809 return event;
3810
3811 case RINGBUF_TYPE_TIME_EXTEND:
3812 /* Internal data, OK to advance */
3813 rb_advance_iter(iter);
3814 goto again;
3815
3816 case RINGBUF_TYPE_TIME_STAMP:
3817 /* FIXME: not implemented */
3818 rb_advance_iter(iter);
3819 goto again;
3820
3821 case RINGBUF_TYPE_DATA:
3822 if (ts) {
3823 *ts = iter->read_stamp + event->time_delta;
3824 ring_buffer_normalize_time_stamp(buffer,
3825 cpu_buffer->cpu, ts);
3826 }
3827 return event;
3828
3829 default:
3830 BUG();
3831 }
3832
3833 return NULL;
3834 }
3835 EXPORT_SYMBOL_GPL(ring_buffer_iter_peek);
3836
3837 static inline bool rb_reader_lock(struct ring_buffer_per_cpu *cpu_buffer)
3838 {
3839 if (likely(!in_nmi())) {
3840 raw_spin_lock(&cpu_buffer->reader_lock);
3841 return true;
3842 }
3843
3844 /*
3845 * If an NMI die dumps out the content of the ring buffer
3846 * trylock must be used to prevent a deadlock if the NMI
3847 * preempted a task that holds the ring buffer locks. If
3848 * we get the lock then all is fine, if not, then continue
3849 * to do the read, but this can corrupt the ring buffer,
3850 * so it must be permanently disabled from future writes.
3851 * Reading from NMI is a oneshot deal.
3852 */
3853 if (raw_spin_trylock(&cpu_buffer->reader_lock))
3854 return true;
3855
3856 /* Continue without locking, but disable the ring buffer */
3857 atomic_inc(&cpu_buffer->record_disabled);
3858 return false;
3859 }
3860
3861 static inline void
3862 rb_reader_unlock(struct ring_buffer_per_cpu *cpu_buffer, bool locked)
3863 {
3864 if (likely(locked))
3865 raw_spin_unlock(&cpu_buffer->reader_lock);
3866 return;
3867 }
3868
3869 /**
3870 * ring_buffer_peek - peek at the next event to be read
3871 * @buffer: The ring buffer to read
3872 * @cpu: The cpu to peak at
3873 * @ts: The timestamp counter of this event.
3874 * @lost_events: a variable to store if events were lost (may be NULL)
3875 *
3876 * This will return the event that will be read next, but does
3877 * not consume the data.
3878 */
3879 struct ring_buffer_event *
3880 ring_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts,
3881 unsigned long *lost_events)
3882 {
3883 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
3884 struct ring_buffer_event *event;
3885 unsigned long flags;
3886 bool dolock;
3887
3888 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3889 return NULL;
3890
3891 again:
3892 local_irq_save(flags);
3893 dolock = rb_reader_lock(cpu_buffer);
3894 event = rb_buffer_peek(cpu_buffer, ts, lost_events);
3895 if (event && event->type_len == RINGBUF_TYPE_PADDING)
3896 rb_advance_reader(cpu_buffer);
3897 rb_reader_unlock(cpu_buffer, dolock);
3898 local_irq_restore(flags);
3899
3900 if (event && event->type_len == RINGBUF_TYPE_PADDING)
3901 goto again;
3902
3903 return event;
3904 }
3905
3906 /**
3907 * ring_buffer_iter_peek - peek at the next event to be read
3908 * @iter: The ring buffer iterator
3909 * @ts: The timestamp counter of this event.
3910 *
3911 * This will return the event that will be read next, but does
3912 * not increment the iterator.
3913 */
3914 struct ring_buffer_event *
3915 ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
3916 {
3917 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3918 struct ring_buffer_event *event;
3919 unsigned long flags;
3920
3921 again:
3922 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3923 event = rb_iter_peek(iter, ts);
3924 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3925
3926 if (event && event->type_len == RINGBUF_TYPE_PADDING)
3927 goto again;
3928
3929 return event;
3930 }
3931
3932 /**
3933 * ring_buffer_consume - return an event and consume it
3934 * @buffer: The ring buffer to get the next event from
3935 * @cpu: the cpu to read the buffer from
3936 * @ts: a variable to store the timestamp (may be NULL)
3937 * @lost_events: a variable to store if events were lost (may be NULL)
3938 *
3939 * Returns the next event in the ring buffer, and that event is consumed.
3940 * Meaning, that sequential reads will keep returning a different event,
3941 * and eventually empty the ring buffer if the producer is slower.
3942 */
3943 struct ring_buffer_event *
3944 ring_buffer_consume(struct ring_buffer *buffer, int cpu, u64 *ts,
3945 unsigned long *lost_events)
3946 {
3947 struct ring_buffer_per_cpu *cpu_buffer;
3948 struct ring_buffer_event *event = NULL;
3949 unsigned long flags;
3950 bool dolock;
3951
3952 again:
3953 /* might be called in atomic */
3954 preempt_disable();
3955
3956 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3957 goto out;
3958
3959 cpu_buffer = buffer->buffers[cpu];
3960 local_irq_save(flags);
3961 dolock = rb_reader_lock(cpu_buffer);
3962
3963 event = rb_buffer_peek(cpu_buffer, ts, lost_events);
3964 if (event) {
3965 cpu_buffer->lost_events = 0;
3966 rb_advance_reader(cpu_buffer);
3967 }
3968
3969 rb_reader_unlock(cpu_buffer, dolock);
3970 local_irq_restore(flags);
3971
3972 out:
3973 preempt_enable();
3974
3975 if (event && event->type_len == RINGBUF_TYPE_PADDING)
3976 goto again;
3977
3978 return event;
3979 }
3980 EXPORT_SYMBOL_GPL(ring_buffer_consume);
3981
3982 /**
3983 * ring_buffer_read_prepare - Prepare for a non consuming read of the buffer
3984 * @buffer: The ring buffer to read from
3985 * @cpu: The cpu buffer to iterate over
3986 *
3987 * This performs the initial preparations necessary to iterate
3988 * through the buffer. Memory is allocated, buffer recording
3989 * is disabled, and the iterator pointer is returned to the caller.
3990 *
3991 * Disabling buffer recordng prevents the reading from being
3992 * corrupted. This is not a consuming read, so a producer is not
3993 * expected.
3994 *
3995 * After a sequence of ring_buffer_read_prepare calls, the user is
3996 * expected to make at least one call to ring_buffer_read_prepare_sync.
3997 * Afterwards, ring_buffer_read_start is invoked to get things going
3998 * for real.
3999 *
4000 * This overall must be paired with ring_buffer_read_finish.
4001 */
4002 struct ring_buffer_iter *
4003 ring_buffer_read_prepare(struct ring_buffer *buffer, int cpu)
4004 {
4005 struct ring_buffer_per_cpu *cpu_buffer;
4006 struct ring_buffer_iter *iter;
4007
4008 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4009 return NULL;
4010
4011 iter = kmalloc(sizeof(*iter), GFP_KERNEL);
4012 if (!iter)
4013 return NULL;
4014
4015 cpu_buffer = buffer->buffers[cpu];
4016
4017 iter->cpu_buffer = cpu_buffer;
4018
4019 atomic_inc(&buffer->resize_disabled);
4020 atomic_inc(&cpu_buffer->record_disabled);
4021
4022 return iter;
4023 }
4024 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare);
4025
4026 /**
4027 * ring_buffer_read_prepare_sync - Synchronize a set of prepare calls
4028 *
4029 * All previously invoked ring_buffer_read_prepare calls to prepare
4030 * iterators will be synchronized. Afterwards, read_buffer_read_start
4031 * calls on those iterators are allowed.
4032 */
4033 void
4034 ring_buffer_read_prepare_sync(void)
4035 {
4036 synchronize_sched();
4037 }
4038 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare_sync);
4039
4040 /**
4041 * ring_buffer_read_start - start a non consuming read of the buffer
4042 * @iter: The iterator returned by ring_buffer_read_prepare
4043 *
4044 * This finalizes the startup of an iteration through the buffer.
4045 * The iterator comes from a call to ring_buffer_read_prepare and
4046 * an intervening ring_buffer_read_prepare_sync must have been
4047 * performed.
4048 *
4049 * Must be paired with ring_buffer_read_finish.
4050 */
4051 void
4052 ring_buffer_read_start(struct ring_buffer_iter *iter)
4053 {
4054 struct ring_buffer_per_cpu *cpu_buffer;
4055 unsigned long flags;
4056
4057 if (!iter)
4058 return;
4059
4060 cpu_buffer = iter->cpu_buffer;
4061
4062 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4063 arch_spin_lock(&cpu_buffer->lock);
4064 rb_iter_reset(iter);
4065 arch_spin_unlock(&cpu_buffer->lock);
4066 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4067 }
4068 EXPORT_SYMBOL_GPL(ring_buffer_read_start);
4069
4070 /**
4071 * ring_buffer_read_finish - finish reading the iterator of the buffer
4072 * @iter: The iterator retrieved by ring_buffer_start
4073 *
4074 * This re-enables the recording to the buffer, and frees the
4075 * iterator.
4076 */
4077 void
4078 ring_buffer_read_finish(struct ring_buffer_iter *iter)
4079 {
4080 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4081 unsigned long flags;
4082
4083 /*
4084 * Ring buffer is disabled from recording, here's a good place
4085 * to check the integrity of the ring buffer.
4086 * Must prevent readers from trying to read, as the check
4087 * clears the HEAD page and readers require it.
4088 */
4089 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4090 rb_check_pages(cpu_buffer);
4091 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4092
4093 atomic_dec(&cpu_buffer->record_disabled);
4094 atomic_dec(&cpu_buffer->buffer->resize_disabled);
4095 kfree(iter);
4096 }
4097 EXPORT_SYMBOL_GPL(ring_buffer_read_finish);
4098
4099 /**
4100 * ring_buffer_read - read the next item in the ring buffer by the iterator
4101 * @iter: The ring buffer iterator
4102 * @ts: The time stamp of the event read.
4103 *
4104 * This reads the next event in the ring buffer and increments the iterator.
4105 */
4106 struct ring_buffer_event *
4107 ring_buffer_read(struct ring_buffer_iter *iter, u64 *ts)
4108 {
4109 struct ring_buffer_event *event;
4110 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4111 unsigned long flags;
4112
4113 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4114 again:
4115 event = rb_iter_peek(iter, ts);
4116 if (!event)
4117 goto out;
4118
4119 if (event->type_len == RINGBUF_TYPE_PADDING)
4120 goto again;
4121
4122 rb_advance_iter(iter);
4123 out:
4124 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4125
4126 return event;
4127 }
4128 EXPORT_SYMBOL_GPL(ring_buffer_read);
4129
4130 /**
4131 * ring_buffer_size - return the size of the ring buffer (in bytes)
4132 * @buffer: The ring buffer.
4133 */
4134 unsigned long ring_buffer_size(struct ring_buffer *buffer, int cpu)
4135 {
4136 /*
4137 * Earlier, this method returned
4138 * BUF_PAGE_SIZE * buffer->nr_pages
4139 * Since the nr_pages field is now removed, we have converted this to
4140 * return the per cpu buffer value.
4141 */
4142 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4143 return 0;
4144
4145 return BUF_PAGE_SIZE * buffer->buffers[cpu]->nr_pages;
4146 }
4147 EXPORT_SYMBOL_GPL(ring_buffer_size);
4148
4149 static void
4150 rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
4151 {
4152 rb_head_page_deactivate(cpu_buffer);
4153
4154 cpu_buffer->head_page
4155 = list_entry(cpu_buffer->pages, struct buffer_page, list);
4156 local_set(&cpu_buffer->head_page->write, 0);
4157 local_set(&cpu_buffer->head_page->entries, 0);
4158 local_set(&cpu_buffer->head_page->page->commit, 0);
4159
4160 cpu_buffer->head_page->read = 0;
4161
4162 cpu_buffer->tail_page = cpu_buffer->head_page;
4163 cpu_buffer->commit_page = cpu_buffer->head_page;
4164
4165 INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
4166 INIT_LIST_HEAD(&cpu_buffer->new_pages);
4167 local_set(&cpu_buffer->reader_page->write, 0);
4168 local_set(&cpu_buffer->reader_page->entries, 0);
4169 local_set(&cpu_buffer->reader_page->page->commit, 0);
4170 cpu_buffer->reader_page->read = 0;
4171
4172 local_set(&cpu_buffer->entries_bytes, 0);
4173 local_set(&cpu_buffer->overrun, 0);
4174 local_set(&cpu_buffer->commit_overrun, 0);
4175 local_set(&cpu_buffer->dropped_events, 0);
4176 local_set(&cpu_buffer->entries, 0);
4177 local_set(&cpu_buffer->committing, 0);
4178 local_set(&cpu_buffer->commits, 0);
4179 cpu_buffer->read = 0;
4180 cpu_buffer->read_bytes = 0;
4181
4182 cpu_buffer->write_stamp = 0;
4183 cpu_buffer->read_stamp = 0;
4184
4185 cpu_buffer->lost_events = 0;
4186 cpu_buffer->last_overrun = 0;
4187
4188 rb_head_page_activate(cpu_buffer);
4189 }
4190
4191 /**
4192 * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
4193 * @buffer: The ring buffer to reset a per cpu buffer of
4194 * @cpu: The CPU buffer to be reset
4195 */
4196 void ring_buffer_reset_cpu(struct ring_buffer *buffer, int cpu)
4197 {
4198 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4199 unsigned long flags;
4200
4201 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4202 return;
4203
4204 atomic_inc(&buffer->resize_disabled);
4205 atomic_inc(&cpu_buffer->record_disabled);
4206
4207 /* Make sure all commits have finished */
4208 synchronize_sched();
4209
4210 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4211
4212 if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing)))
4213 goto out;
4214
4215 arch_spin_lock(&cpu_buffer->lock);
4216
4217 rb_reset_cpu(cpu_buffer);
4218
4219 arch_spin_unlock(&cpu_buffer->lock);
4220
4221 out:
4222 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4223
4224 atomic_dec(&cpu_buffer->record_disabled);
4225 atomic_dec(&buffer->resize_disabled);
4226 }
4227 EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu);
4228
4229 /**
4230 * ring_buffer_reset - reset a ring buffer
4231 * @buffer: The ring buffer to reset all cpu buffers
4232 */
4233 void ring_buffer_reset(struct ring_buffer *buffer)
4234 {
4235 int cpu;
4236
4237 for_each_buffer_cpu(buffer, cpu)
4238 ring_buffer_reset_cpu(buffer, cpu);
4239 }
4240 EXPORT_SYMBOL_GPL(ring_buffer_reset);
4241
4242 /**
4243 * rind_buffer_empty - is the ring buffer empty?
4244 * @buffer: The ring buffer to test
4245 */
4246 bool ring_buffer_empty(struct ring_buffer *buffer)
4247 {
4248 struct ring_buffer_per_cpu *cpu_buffer;
4249 unsigned long flags;
4250 bool dolock;
4251 int cpu;
4252 int ret;
4253
4254 /* yes this is racy, but if you don't like the race, lock the buffer */
4255 for_each_buffer_cpu(buffer, cpu) {
4256 cpu_buffer = buffer->buffers[cpu];
4257 local_irq_save(flags);
4258 dolock = rb_reader_lock(cpu_buffer);
4259 ret = rb_per_cpu_empty(cpu_buffer);
4260 rb_reader_unlock(cpu_buffer, dolock);
4261 local_irq_restore(flags);
4262
4263 if (!ret)
4264 return false;
4265 }
4266
4267 return true;
4268 }
4269 EXPORT_SYMBOL_GPL(ring_buffer_empty);
4270
4271 /**
4272 * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
4273 * @buffer: The ring buffer
4274 * @cpu: The CPU buffer to test
4275 */
4276 bool ring_buffer_empty_cpu(struct ring_buffer *buffer, int cpu)
4277 {
4278 struct ring_buffer_per_cpu *cpu_buffer;
4279 unsigned long flags;
4280 bool dolock;
4281 int ret;
4282
4283 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4284 return true;
4285
4286 cpu_buffer = buffer->buffers[cpu];
4287 local_irq_save(flags);
4288 dolock = rb_reader_lock(cpu_buffer);
4289 ret = rb_per_cpu_empty(cpu_buffer);
4290 rb_reader_unlock(cpu_buffer, dolock);
4291 local_irq_restore(flags);
4292
4293 return ret;
4294 }
4295 EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu);
4296
4297 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
4298 /**
4299 * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
4300 * @buffer_a: One buffer to swap with
4301 * @buffer_b: The other buffer to swap with
4302 *
4303 * This function is useful for tracers that want to take a "snapshot"
4304 * of a CPU buffer and has another back up buffer lying around.
4305 * it is expected that the tracer handles the cpu buffer not being
4306 * used at the moment.
4307 */
4308 int ring_buffer_swap_cpu(struct ring_buffer *buffer_a,
4309 struct ring_buffer *buffer_b, int cpu)
4310 {
4311 struct ring_buffer_per_cpu *cpu_buffer_a;
4312 struct ring_buffer_per_cpu *cpu_buffer_b;
4313 int ret = -EINVAL;
4314
4315 if (!cpumask_test_cpu(cpu, buffer_a->cpumask) ||
4316 !cpumask_test_cpu(cpu, buffer_b->cpumask))
4317 goto out;
4318
4319 cpu_buffer_a = buffer_a->buffers[cpu];
4320 cpu_buffer_b = buffer_b->buffers[cpu];
4321
4322 /* At least make sure the two buffers are somewhat the same */
4323 if (cpu_buffer_a->nr_pages != cpu_buffer_b->nr_pages)
4324 goto out;
4325
4326 ret = -EAGAIN;
4327
4328 if (atomic_read(&buffer_a->record_disabled))
4329 goto out;
4330
4331 if (atomic_read(&buffer_b->record_disabled))
4332 goto out;
4333
4334 if (atomic_read(&cpu_buffer_a->record_disabled))
4335 goto out;
4336
4337 if (atomic_read(&cpu_buffer_b->record_disabled))
4338 goto out;
4339
4340 /*
4341 * We can't do a synchronize_sched here because this
4342 * function can be called in atomic context.
4343 * Normally this will be called from the same CPU as cpu.
4344 * If not it's up to the caller to protect this.
4345 */
4346 atomic_inc(&cpu_buffer_a->record_disabled);
4347 atomic_inc(&cpu_buffer_b->record_disabled);
4348
4349 ret = -EBUSY;
4350 if (local_read(&cpu_buffer_a->committing))
4351 goto out_dec;
4352 if (local_read(&cpu_buffer_b->committing))
4353 goto out_dec;
4354
4355 buffer_a->buffers[cpu] = cpu_buffer_b;
4356 buffer_b->buffers[cpu] = cpu_buffer_a;
4357
4358 cpu_buffer_b->buffer = buffer_a;
4359 cpu_buffer_a->buffer = buffer_b;
4360
4361 ret = 0;
4362
4363 out_dec:
4364 atomic_dec(&cpu_buffer_a->record_disabled);
4365 atomic_dec(&cpu_buffer_b->record_disabled);
4366 out:
4367 return ret;
4368 }
4369 EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu);
4370 #endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */
4371
4372 /**
4373 * ring_buffer_alloc_read_page - allocate a page to read from buffer
4374 * @buffer: the buffer to allocate for.
4375 * @cpu: the cpu buffer to allocate.
4376 *
4377 * This function is used in conjunction with ring_buffer_read_page.
4378 * When reading a full page from the ring buffer, these functions
4379 * can be used to speed up the process. The calling function should
4380 * allocate a few pages first with this function. Then when it
4381 * needs to get pages from the ring buffer, it passes the result
4382 * of this function into ring_buffer_read_page, which will swap
4383 * the page that was allocated, with the read page of the buffer.
4384 *
4385 * Returns:
4386 * The page allocated, or ERR_PTR
4387 */
4388 void *ring_buffer_alloc_read_page(struct ring_buffer *buffer, int cpu)
4389 {
4390 struct ring_buffer_per_cpu *cpu_buffer;
4391 struct buffer_data_page *bpage = NULL;
4392 unsigned long flags;
4393 struct page *page;
4394
4395 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4396 return ERR_PTR(-ENODEV);
4397
4398 cpu_buffer = buffer->buffers[cpu];
4399 local_irq_save(flags);
4400 arch_spin_lock(&cpu_buffer->lock);
4401
4402 if (cpu_buffer->free_page) {
4403 bpage = cpu_buffer->free_page;
4404 cpu_buffer->free_page = NULL;
4405 }
4406
4407 arch_spin_unlock(&cpu_buffer->lock);
4408 local_irq_restore(flags);
4409
4410 if (bpage)
4411 goto out;
4412
4413 page = alloc_pages_node(cpu_to_node(cpu),
4414 GFP_KERNEL | __GFP_NORETRY, 0);
4415 if (!page)
4416 return ERR_PTR(-ENOMEM);
4417
4418 bpage = page_address(page);
4419
4420 out:
4421 rb_init_page(bpage);
4422
4423 return bpage;
4424 }
4425 EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page);
4426
4427 /**
4428 * ring_buffer_free_read_page - free an allocated read page
4429 * @buffer: the buffer the page was allocate for
4430 * @cpu: the cpu buffer the page came from
4431 * @data: the page to free
4432 *
4433 * Free a page allocated from ring_buffer_alloc_read_page.
4434 */
4435 void ring_buffer_free_read_page(struct ring_buffer *buffer, int cpu, void *data)
4436 {
4437 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4438 struct buffer_data_page *bpage = data;
4439 struct page *page = virt_to_page(bpage);
4440 unsigned long flags;
4441
4442 /* If the page is still in use someplace else, we can't reuse it */
4443 if (page_ref_count(page) > 1)
4444 goto out;
4445
4446 local_irq_save(flags);
4447 arch_spin_lock(&cpu_buffer->lock);
4448
4449 if (!cpu_buffer->free_page) {
4450 cpu_buffer->free_page = bpage;
4451 bpage = NULL;
4452 }
4453
4454 arch_spin_unlock(&cpu_buffer->lock);
4455 local_irq_restore(flags);
4456
4457 out:
4458 free_page((unsigned long)bpage);
4459 }
4460 EXPORT_SYMBOL_GPL(ring_buffer_free_read_page);
4461
4462 /**
4463 * ring_buffer_read_page - extract a page from the ring buffer
4464 * @buffer: buffer to extract from
4465 * @data_page: the page to use allocated from ring_buffer_alloc_read_page
4466 * @len: amount to extract
4467 * @cpu: the cpu of the buffer to extract
4468 * @full: should the extraction only happen when the page is full.
4469 *
4470 * This function will pull out a page from the ring buffer and consume it.
4471 * @data_page must be the address of the variable that was returned
4472 * from ring_buffer_alloc_read_page. This is because the page might be used
4473 * to swap with a page in the ring buffer.
4474 *
4475 * for example:
4476 * rpage = ring_buffer_alloc_read_page(buffer, cpu);
4477 * if (IS_ERR(rpage))
4478 * return PTR_ERR(rpage);
4479 * ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0);
4480 * if (ret >= 0)
4481 * process_page(rpage, ret);
4482 *
4483 * When @full is set, the function will not return true unless
4484 * the writer is off the reader page.
4485 *
4486 * Note: it is up to the calling functions to handle sleeps and wakeups.
4487 * The ring buffer can be used anywhere in the kernel and can not
4488 * blindly call wake_up. The layer that uses the ring buffer must be
4489 * responsible for that.
4490 *
4491 * Returns:
4492 * >=0 if data has been transferred, returns the offset of consumed data.
4493 * <0 if no data has been transferred.
4494 */
4495 int ring_buffer_read_page(struct ring_buffer *buffer,
4496 void **data_page, size_t len, int cpu, int full)
4497 {
4498 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4499 struct ring_buffer_event *event;
4500 struct buffer_data_page *bpage;
4501 struct buffer_page *reader;
4502 unsigned long missed_events;
4503 unsigned long flags;
4504 unsigned int commit;
4505 unsigned int read;
4506 u64 save_timestamp;
4507 int ret = -1;
4508
4509 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4510 goto out;
4511
4512 /*
4513 * If len is not big enough to hold the page header, then
4514 * we can not copy anything.
4515 */
4516 if (len <= BUF_PAGE_HDR_SIZE)
4517 goto out;
4518
4519 len -= BUF_PAGE_HDR_SIZE;
4520
4521 if (!data_page)
4522 goto out;
4523
4524 bpage = *data_page;
4525 if (!bpage)
4526 goto out;
4527
4528 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4529
4530 reader = rb_get_reader_page(cpu_buffer);
4531 if (!reader)
4532 goto out_unlock;
4533
4534 event = rb_reader_event(cpu_buffer);
4535
4536 read = reader->read;
4537 commit = rb_page_commit(reader);
4538
4539 /* Check if any events were dropped */
4540 missed_events = cpu_buffer->lost_events;
4541
4542 /*
4543 * If this page has been partially read or
4544 * if len is not big enough to read the rest of the page or
4545 * a writer is still on the page, then
4546 * we must copy the data from the page to the buffer.
4547 * Otherwise, we can simply swap the page with the one passed in.
4548 */
4549 if (read || (len < (commit - read)) ||
4550 cpu_buffer->reader_page == cpu_buffer->commit_page) {
4551 struct buffer_data_page *rpage = cpu_buffer->reader_page->page;
4552 unsigned int rpos = read;
4553 unsigned int pos = 0;
4554 unsigned int size;
4555
4556 if (full)
4557 goto out_unlock;
4558
4559 if (len > (commit - read))
4560 len = (commit - read);
4561
4562 /* Always keep the time extend and data together */
4563 size = rb_event_ts_length(event);
4564
4565 if (len < size)
4566 goto out_unlock;
4567
4568 /* save the current timestamp, since the user will need it */
4569 save_timestamp = cpu_buffer->read_stamp;
4570
4571 /* Need to copy one event at a time */
4572 do {
4573 /* We need the size of one event, because
4574 * rb_advance_reader only advances by one event,
4575 * whereas rb_event_ts_length may include the size of
4576 * one or two events.
4577 * We have already ensured there's enough space if this
4578 * is a time extend. */
4579 size = rb_event_length(event);
4580 memcpy(bpage->data + pos, rpage->data + rpos, size);
4581
4582 len -= size;
4583
4584 rb_advance_reader(cpu_buffer);
4585 rpos = reader->read;
4586 pos += size;
4587
4588 if (rpos >= commit)
4589 break;
4590
4591 event = rb_reader_event(cpu_buffer);
4592 /* Always keep the time extend and data together */
4593 size = rb_event_ts_length(event);
4594 } while (len >= size);
4595
4596 /* update bpage */
4597 local_set(&bpage->commit, pos);
4598 bpage->time_stamp = save_timestamp;
4599
4600 /* we copied everything to the beginning */
4601 read = 0;
4602 } else {
4603 /* update the entry counter */
4604 cpu_buffer->read += rb_page_entries(reader);
4605 cpu_buffer->read_bytes += BUF_PAGE_SIZE;
4606
4607 /* swap the pages */
4608 rb_init_page(bpage);
4609 bpage = reader->page;
4610 reader->page = *data_page;
4611 local_set(&reader->write, 0);
4612 local_set(&reader->entries, 0);
4613 reader->read = 0;
4614 *data_page = bpage;
4615
4616 /*
4617 * Use the real_end for the data size,
4618 * This gives us a chance to store the lost events
4619 * on the page.
4620 */
4621 if (reader->real_end)
4622 local_set(&bpage->commit, reader->real_end);
4623 }
4624 ret = read;
4625
4626 cpu_buffer->lost_events = 0;
4627
4628 commit = local_read(&bpage->commit);
4629 /*
4630 * Set a flag in the commit field if we lost events
4631 */
4632 if (missed_events) {
4633 /* If there is room at the end of the page to save the
4634 * missed events, then record it there.
4635 */
4636 if (BUF_PAGE_SIZE - commit >= sizeof(missed_events)) {
4637 memcpy(&bpage->data[commit], &missed_events,
4638 sizeof(missed_events));
4639 local_add(RB_MISSED_STORED, &bpage->commit);
4640 commit += sizeof(missed_events);
4641 }
4642 local_add(RB_MISSED_EVENTS, &bpage->commit);
4643 }
4644
4645 /*
4646 * This page may be off to user land. Zero it out here.
4647 */
4648 if (commit < BUF_PAGE_SIZE)
4649 memset(&bpage->data[commit], 0, BUF_PAGE_SIZE - commit);
4650
4651 out_unlock:
4652 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4653
4654 out:
4655 return ret;
4656 }
4657 EXPORT_SYMBOL_GPL(ring_buffer_read_page);
4658
4659 /*
4660 * We only allocate new buffers, never free them if the CPU goes down.
4661 * If we were to free the buffer, then the user would lose any trace that was in
4662 * the buffer.
4663 */
4664 int trace_rb_cpu_prepare(unsigned int cpu, struct hlist_node *node)
4665 {
4666 struct ring_buffer *buffer;
4667 long nr_pages_same;
4668 int cpu_i;
4669 unsigned long nr_pages;
4670
4671 buffer = container_of(node, struct ring_buffer, node);
4672 if (cpumask_test_cpu(cpu, buffer->cpumask))
4673 return 0;
4674
4675 nr_pages = 0;
4676 nr_pages_same = 1;
4677 /* check if all cpu sizes are same */
4678 for_each_buffer_cpu(buffer, cpu_i) {
4679 /* fill in the size from first enabled cpu */
4680 if (nr_pages == 0)
4681 nr_pages = buffer->buffers[cpu_i]->nr_pages;
4682 if (nr_pages != buffer->buffers[cpu_i]->nr_pages) {
4683 nr_pages_same = 0;
4684 break;
4685 }
4686 }
4687 /* allocate minimum pages, user can later expand it */
4688 if (!nr_pages_same)
4689 nr_pages = 2;
4690 buffer->buffers[cpu] =
4691 rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
4692 if (!buffer->buffers[cpu]) {
4693 WARN(1, "failed to allocate ring buffer on CPU %u\n",
4694 cpu);
4695 return -ENOMEM;
4696 }
4697 smp_wmb();
4698 cpumask_set_cpu(cpu, buffer->cpumask);
4699 return 0;
4700 }
4701
4702 #ifdef CONFIG_RING_BUFFER_STARTUP_TEST
4703 /*
4704 * This is a basic integrity check of the ring buffer.
4705 * Late in the boot cycle this test will run when configured in.
4706 * It will kick off a thread per CPU that will go into a loop
4707 * writing to the per cpu ring buffer various sizes of data.
4708 * Some of the data will be large items, some small.
4709 *
4710 * Another thread is created that goes into a spin, sending out
4711 * IPIs to the other CPUs to also write into the ring buffer.
4712 * this is to test the nesting ability of the buffer.
4713 *
4714 * Basic stats are recorded and reported. If something in the
4715 * ring buffer should happen that's not expected, a big warning
4716 * is displayed and all ring buffers are disabled.
4717 */
4718 static struct task_struct *rb_threads[NR_CPUS] __initdata;
4719
4720 struct rb_test_data {
4721 struct ring_buffer *buffer;
4722 unsigned long events;
4723 unsigned long bytes_written;
4724 unsigned long bytes_alloc;
4725 unsigned long bytes_dropped;
4726 unsigned long events_nested;
4727 unsigned long bytes_written_nested;
4728 unsigned long bytes_alloc_nested;
4729 unsigned long bytes_dropped_nested;
4730 int min_size_nested;
4731 int max_size_nested;
4732 int max_size;
4733 int min_size;
4734 int cpu;
4735 int cnt;
4736 };
4737
4738 static struct rb_test_data rb_data[NR_CPUS] __initdata;
4739
4740 /* 1 meg per cpu */
4741 #define RB_TEST_BUFFER_SIZE 1048576
4742
4743 static char rb_string[] __initdata =
4744 "abcdefghijklmnopqrstuvwxyz1234567890!@#$%^&*()?+\\"
4745 "?+|:';\",.<>/?abcdefghijklmnopqrstuvwxyz1234567890"
4746 "!@#$%^&*()?+\\?+|:';\",.<>/?abcdefghijklmnopqrstuv";
4747
4748 static bool rb_test_started __initdata;
4749
4750 struct rb_item {
4751 int size;
4752 char str[];
4753 };
4754
4755 static __init int rb_write_something(struct rb_test_data *data, bool nested)
4756 {
4757 struct ring_buffer_event *event;
4758 struct rb_item *item;
4759 bool started;
4760 int event_len;
4761 int size;
4762 int len;
4763 int cnt;
4764
4765 /* Have nested writes different that what is written */
4766 cnt = data->cnt + (nested ? 27 : 0);
4767
4768 /* Multiply cnt by ~e, to make some unique increment */
4769 size = (data->cnt * 68 / 25) % (sizeof(rb_string) - 1);
4770
4771 len = size + sizeof(struct rb_item);
4772
4773 started = rb_test_started;
4774 /* read rb_test_started before checking buffer enabled */
4775 smp_rmb();
4776
4777 event = ring_buffer_lock_reserve(data->buffer, len);
4778 if (!event) {
4779 /* Ignore dropped events before test starts. */
4780 if (started) {
4781 if (nested)
4782 data->bytes_dropped += len;
4783 else
4784 data->bytes_dropped_nested += len;
4785 }
4786 return len;
4787 }
4788
4789 event_len = ring_buffer_event_length(event);
4790
4791 if (RB_WARN_ON(data->buffer, event_len < len))
4792 goto out;
4793
4794 item = ring_buffer_event_data(event);
4795 item->size = size;
4796 memcpy(item->str, rb_string, size);
4797
4798 if (nested) {
4799 data->bytes_alloc_nested += event_len;
4800 data->bytes_written_nested += len;
4801 data->events_nested++;
4802 if (!data->min_size_nested || len < data->min_size_nested)
4803 data->min_size_nested = len;
4804 if (len > data->max_size_nested)
4805 data->max_size_nested = len;
4806 } else {
4807 data->bytes_alloc += event_len;
4808 data->bytes_written += len;
4809 data->events++;
4810 if (!data->min_size || len < data->min_size)
4811 data->max_size = len;
4812 if (len > data->max_size)
4813 data->max_size = len;
4814 }
4815
4816 out:
4817 ring_buffer_unlock_commit(data->buffer, event);
4818
4819 return 0;
4820 }
4821
4822 static __init int rb_test(void *arg)
4823 {
4824 struct rb_test_data *data = arg;
4825
4826 while (!kthread_should_stop()) {
4827 rb_write_something(data, false);
4828 data->cnt++;
4829
4830 set_current_state(TASK_INTERRUPTIBLE);
4831 /* Now sleep between a min of 100-300us and a max of 1ms */
4832 usleep_range(((data->cnt % 3) + 1) * 100, 1000);
4833 }
4834
4835 return 0;
4836 }
4837
4838 static __init void rb_ipi(void *ignore)
4839 {
4840 struct rb_test_data *data;
4841 int cpu = smp_processor_id();
4842
4843 data = &rb_data[cpu];
4844 rb_write_something(data, true);
4845 }
4846
4847 static __init int rb_hammer_test(void *arg)
4848 {
4849 while (!kthread_should_stop()) {
4850
4851 /* Send an IPI to all cpus to write data! */
4852 smp_call_function(rb_ipi, NULL, 1);
4853 /* No sleep, but for non preempt, let others run */
4854 schedule();
4855 }
4856
4857 return 0;
4858 }
4859
4860 static __init int test_ringbuffer(void)
4861 {
4862 struct task_struct *rb_hammer;
4863 struct ring_buffer *buffer;
4864 int cpu;
4865 int ret = 0;
4866
4867 pr_info("Running ring buffer tests...\n");
4868
4869 buffer = ring_buffer_alloc(RB_TEST_BUFFER_SIZE, RB_FL_OVERWRITE);
4870 if (WARN_ON(!buffer))
4871 return 0;
4872
4873 /* Disable buffer so that threads can't write to it yet */
4874 ring_buffer_record_off(buffer);
4875
4876 for_each_online_cpu(cpu) {
4877 rb_data[cpu].buffer = buffer;
4878 rb_data[cpu].cpu = cpu;
4879 rb_data[cpu].cnt = cpu;
4880 rb_threads[cpu] = kthread_create(rb_test, &rb_data[cpu],
4881 "rbtester/%d", cpu);
4882 if (WARN_ON(IS_ERR(rb_threads[cpu]))) {
4883 pr_cont("FAILED\n");
4884 ret = PTR_ERR(rb_threads[cpu]);
4885 goto out_free;
4886 }
4887
4888 kthread_bind(rb_threads[cpu], cpu);
4889 wake_up_process(rb_threads[cpu]);
4890 }
4891
4892 /* Now create the rb hammer! */
4893 rb_hammer = kthread_run(rb_hammer_test, NULL, "rbhammer");
4894 if (WARN_ON(IS_ERR(rb_hammer))) {
4895 pr_cont("FAILED\n");
4896 ret = PTR_ERR(rb_hammer);
4897 goto out_free;
4898 }
4899
4900 ring_buffer_record_on(buffer);
4901 /*
4902 * Show buffer is enabled before setting rb_test_started.
4903 * Yes there's a small race window where events could be
4904 * dropped and the thread wont catch it. But when a ring
4905 * buffer gets enabled, there will always be some kind of
4906 * delay before other CPUs see it. Thus, we don't care about
4907 * those dropped events. We care about events dropped after
4908 * the threads see that the buffer is active.
4909 */
4910 smp_wmb();
4911 rb_test_started = true;
4912
4913 set_current_state(TASK_INTERRUPTIBLE);
4914 /* Just run for 10 seconds */;
4915 schedule_timeout(10 * HZ);
4916
4917 kthread_stop(rb_hammer);
4918
4919 out_free:
4920 for_each_online_cpu(cpu) {
4921 if (!rb_threads[cpu])
4922 break;
4923 kthread_stop(rb_threads[cpu]);
4924 }
4925 if (ret) {
4926 ring_buffer_free(buffer);
4927 return ret;
4928 }
4929
4930 /* Report! */
4931 pr_info("finished\n");
4932 for_each_online_cpu(cpu) {
4933 struct ring_buffer_event *event;
4934 struct rb_test_data *data = &rb_data[cpu];
4935 struct rb_item *item;
4936 unsigned long total_events;
4937 unsigned long total_dropped;
4938 unsigned long total_written;
4939 unsigned long total_alloc;
4940 unsigned long total_read = 0;
4941 unsigned long total_size = 0;
4942 unsigned long total_len = 0;
4943 unsigned long total_lost = 0;
4944 unsigned long lost;
4945 int big_event_size;
4946 int small_event_size;
4947
4948 ret = -1;
4949
4950 total_events = data->events + data->events_nested;
4951 total_written = data->bytes_written + data->bytes_written_nested;
4952 total_alloc = data->bytes_alloc + data->bytes_alloc_nested;
4953 total_dropped = data->bytes_dropped + data->bytes_dropped_nested;
4954
4955 big_event_size = data->max_size + data->max_size_nested;
4956 small_event_size = data->min_size + data->min_size_nested;
4957
4958 pr_info("CPU %d:\n", cpu);
4959 pr_info(" events: %ld\n", total_events);
4960 pr_info(" dropped bytes: %ld\n", total_dropped);
4961 pr_info(" alloced bytes: %ld\n", total_alloc);
4962 pr_info(" written bytes: %ld\n", total_written);
4963 pr_info(" biggest event: %d\n", big_event_size);
4964 pr_info(" smallest event: %d\n", small_event_size);
4965
4966 if (RB_WARN_ON(buffer, total_dropped))
4967 break;
4968
4969 ret = 0;
4970
4971 while ((event = ring_buffer_consume(buffer, cpu, NULL, &lost))) {
4972 total_lost += lost;
4973 item = ring_buffer_event_data(event);
4974 total_len += ring_buffer_event_length(event);
4975 total_size += item->size + sizeof(struct rb_item);
4976 if (memcmp(&item->str[0], rb_string, item->size) != 0) {
4977 pr_info("FAILED!\n");
4978 pr_info("buffer had: %.*s\n", item->size, item->str);
4979 pr_info("expected: %.*s\n", item->size, rb_string);
4980 RB_WARN_ON(buffer, 1);
4981 ret = -1;
4982 break;
4983 }
4984 total_read++;
4985 }
4986 if (ret)
4987 break;
4988
4989 ret = -1;
4990
4991 pr_info(" read events: %ld\n", total_read);
4992 pr_info(" lost events: %ld\n", total_lost);
4993 pr_info(" total events: %ld\n", total_lost + total_read);
4994 pr_info(" recorded len bytes: %ld\n", total_len);
4995 pr_info(" recorded size bytes: %ld\n", total_size);
4996 if (total_lost)
4997 pr_info(" With dropped events, record len and size may not match\n"
4998 " alloced and written from above\n");
4999 if (!total_lost) {
5000 if (RB_WARN_ON(buffer, total_len != total_alloc ||
5001 total_size != total_written))
5002 break;
5003 }
5004 if (RB_WARN_ON(buffer, total_lost + total_read != total_events))
5005 break;
5006
5007 ret = 0;
5008 }
5009 if (!ret)
5010 pr_info("Ring buffer PASSED!\n");
5011
5012 ring_buffer_free(buffer);
5013 return 0;
5014 }
5015
5016 late_initcall(test_ringbuffer);
5017 #endif /* CONFIG_RING_BUFFER_STARTUP_TEST */