]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - kernel/trace/ring_buffer.c
tracing: kdb: Fix ftdump to not sleep
[mirror_ubuntu-bionic-kernel.git] / kernel / trace / ring_buffer.c
1 /*
2 * Generic ring buffer
3 *
4 * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
5 */
6 #include <linux/trace_events.h>
7 #include <linux/ring_buffer.h>
8 #include <linux/trace_clock.h>
9 #include <linux/sched/clock.h>
10 #include <linux/trace_seq.h>
11 #include <linux/spinlock.h>
12 #include <linux/irq_work.h>
13 #include <linux/uaccess.h>
14 #include <linux/hardirq.h>
15 #include <linux/kthread.h> /* for self test */
16 #include <linux/module.h>
17 #include <linux/percpu.h>
18 #include <linux/mutex.h>
19 #include <linux/delay.h>
20 #include <linux/slab.h>
21 #include <linux/init.h>
22 #include <linux/hash.h>
23 #include <linux/list.h>
24 #include <linux/cpu.h>
25
26 #include <asm/local.h>
27
28 static void update_pages_handler(struct work_struct *work);
29
30 /*
31 * The ring buffer header is special. We must manually up keep it.
32 */
33 int ring_buffer_print_entry_header(struct trace_seq *s)
34 {
35 trace_seq_puts(s, "# compressed entry header\n");
36 trace_seq_puts(s, "\ttype_len : 5 bits\n");
37 trace_seq_puts(s, "\ttime_delta : 27 bits\n");
38 trace_seq_puts(s, "\tarray : 32 bits\n");
39 trace_seq_putc(s, '\n');
40 trace_seq_printf(s, "\tpadding : type == %d\n",
41 RINGBUF_TYPE_PADDING);
42 trace_seq_printf(s, "\ttime_extend : type == %d\n",
43 RINGBUF_TYPE_TIME_EXTEND);
44 trace_seq_printf(s, "\tdata max type_len == %d\n",
45 RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
46
47 return !trace_seq_has_overflowed(s);
48 }
49
50 /*
51 * The ring buffer is made up of a list of pages. A separate list of pages is
52 * allocated for each CPU. A writer may only write to a buffer that is
53 * associated with the CPU it is currently executing on. A reader may read
54 * from any per cpu buffer.
55 *
56 * The reader is special. For each per cpu buffer, the reader has its own
57 * reader page. When a reader has read the entire reader page, this reader
58 * page is swapped with another page in the ring buffer.
59 *
60 * Now, as long as the writer is off the reader page, the reader can do what
61 * ever it wants with that page. The writer will never write to that page
62 * again (as long as it is out of the ring buffer).
63 *
64 * Here's some silly ASCII art.
65 *
66 * +------+
67 * |reader| RING BUFFER
68 * |page |
69 * +------+ +---+ +---+ +---+
70 * | |-->| |-->| |
71 * +---+ +---+ +---+
72 * ^ |
73 * | |
74 * +---------------+
75 *
76 *
77 * +------+
78 * |reader| RING BUFFER
79 * |page |------------------v
80 * +------+ +---+ +---+ +---+
81 * | |-->| |-->| |
82 * +---+ +---+ +---+
83 * ^ |
84 * | |
85 * +---------------+
86 *
87 *
88 * +------+
89 * |reader| RING BUFFER
90 * |page |------------------v
91 * +------+ +---+ +---+ +---+
92 * ^ | |-->| |-->| |
93 * | +---+ +---+ +---+
94 * | |
95 * | |
96 * +------------------------------+
97 *
98 *
99 * +------+
100 * |buffer| RING BUFFER
101 * |page |------------------v
102 * +------+ +---+ +---+ +---+
103 * ^ | | | |-->| |
104 * | New +---+ +---+ +---+
105 * | Reader------^ |
106 * | page |
107 * +------------------------------+
108 *
109 *
110 * After we make this swap, the reader can hand this page off to the splice
111 * code and be done with it. It can even allocate a new page if it needs to
112 * and swap that into the ring buffer.
113 *
114 * We will be using cmpxchg soon to make all this lockless.
115 *
116 */
117
118 /* Used for individual buffers (after the counter) */
119 #define RB_BUFFER_OFF (1 << 20)
120
121 #define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
122
123 #define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
124 #define RB_ALIGNMENT 4U
125 #define RB_MAX_SMALL_DATA (RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
126 #define RB_EVNT_MIN_SIZE 8U /* two 32bit words */
127
128 #ifndef CONFIG_HAVE_64BIT_ALIGNED_ACCESS
129 # define RB_FORCE_8BYTE_ALIGNMENT 0
130 # define RB_ARCH_ALIGNMENT RB_ALIGNMENT
131 #else
132 # define RB_FORCE_8BYTE_ALIGNMENT 1
133 # define RB_ARCH_ALIGNMENT 8U
134 #endif
135
136 #define RB_ALIGN_DATA __aligned(RB_ARCH_ALIGNMENT)
137
138 /* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */
139 #define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX
140
141 enum {
142 RB_LEN_TIME_EXTEND = 8,
143 RB_LEN_TIME_STAMP = 16,
144 };
145
146 #define skip_time_extend(event) \
147 ((struct ring_buffer_event *)((char *)event + RB_LEN_TIME_EXTEND))
148
149 static inline int rb_null_event(struct ring_buffer_event *event)
150 {
151 return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta;
152 }
153
154 static void rb_event_set_padding(struct ring_buffer_event *event)
155 {
156 /* padding has a NULL time_delta */
157 event->type_len = RINGBUF_TYPE_PADDING;
158 event->time_delta = 0;
159 }
160
161 static unsigned
162 rb_event_data_length(struct ring_buffer_event *event)
163 {
164 unsigned length;
165
166 if (event->type_len)
167 length = event->type_len * RB_ALIGNMENT;
168 else
169 length = event->array[0];
170 return length + RB_EVNT_HDR_SIZE;
171 }
172
173 /*
174 * Return the length of the given event. Will return
175 * the length of the time extend if the event is a
176 * time extend.
177 */
178 static inline unsigned
179 rb_event_length(struct ring_buffer_event *event)
180 {
181 switch (event->type_len) {
182 case RINGBUF_TYPE_PADDING:
183 if (rb_null_event(event))
184 /* undefined */
185 return -1;
186 return event->array[0] + RB_EVNT_HDR_SIZE;
187
188 case RINGBUF_TYPE_TIME_EXTEND:
189 return RB_LEN_TIME_EXTEND;
190
191 case RINGBUF_TYPE_TIME_STAMP:
192 return RB_LEN_TIME_STAMP;
193
194 case RINGBUF_TYPE_DATA:
195 return rb_event_data_length(event);
196 default:
197 BUG();
198 }
199 /* not hit */
200 return 0;
201 }
202
203 /*
204 * Return total length of time extend and data,
205 * or just the event length for all other events.
206 */
207 static inline unsigned
208 rb_event_ts_length(struct ring_buffer_event *event)
209 {
210 unsigned len = 0;
211
212 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) {
213 /* time extends include the data event after it */
214 len = RB_LEN_TIME_EXTEND;
215 event = skip_time_extend(event);
216 }
217 return len + rb_event_length(event);
218 }
219
220 /**
221 * ring_buffer_event_length - return the length of the event
222 * @event: the event to get the length of
223 *
224 * Returns the size of the data load of a data event.
225 * If the event is something other than a data event, it
226 * returns the size of the event itself. With the exception
227 * of a TIME EXTEND, where it still returns the size of the
228 * data load of the data event after it.
229 */
230 unsigned ring_buffer_event_length(struct ring_buffer_event *event)
231 {
232 unsigned length;
233
234 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
235 event = skip_time_extend(event);
236
237 length = rb_event_length(event);
238 if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
239 return length;
240 length -= RB_EVNT_HDR_SIZE;
241 if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0]))
242 length -= sizeof(event->array[0]);
243 return length;
244 }
245 EXPORT_SYMBOL_GPL(ring_buffer_event_length);
246
247 /* inline for ring buffer fast paths */
248 static __always_inline void *
249 rb_event_data(struct ring_buffer_event *event)
250 {
251 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
252 event = skip_time_extend(event);
253 BUG_ON(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
254 /* If length is in len field, then array[0] has the data */
255 if (event->type_len)
256 return (void *)&event->array[0];
257 /* Otherwise length is in array[0] and array[1] has the data */
258 return (void *)&event->array[1];
259 }
260
261 /**
262 * ring_buffer_event_data - return the data of the event
263 * @event: the event to get the data from
264 */
265 void *ring_buffer_event_data(struct ring_buffer_event *event)
266 {
267 return rb_event_data(event);
268 }
269 EXPORT_SYMBOL_GPL(ring_buffer_event_data);
270
271 #define for_each_buffer_cpu(buffer, cpu) \
272 for_each_cpu(cpu, buffer->cpumask)
273
274 #define TS_SHIFT 27
275 #define TS_MASK ((1ULL << TS_SHIFT) - 1)
276 #define TS_DELTA_TEST (~TS_MASK)
277
278 /* Flag when events were overwritten */
279 #define RB_MISSED_EVENTS (1 << 31)
280 /* Missed count stored at end */
281 #define RB_MISSED_STORED (1 << 30)
282
283 #define RB_MISSED_FLAGS (RB_MISSED_EVENTS|RB_MISSED_STORED)
284
285 struct buffer_data_page {
286 u64 time_stamp; /* page time stamp */
287 local_t commit; /* write committed index */
288 unsigned char data[] RB_ALIGN_DATA; /* data of buffer page */
289 };
290
291 /*
292 * Note, the buffer_page list must be first. The buffer pages
293 * are allocated in cache lines, which means that each buffer
294 * page will be at the beginning of a cache line, and thus
295 * the least significant bits will be zero. We use this to
296 * add flags in the list struct pointers, to make the ring buffer
297 * lockless.
298 */
299 struct buffer_page {
300 struct list_head list; /* list of buffer pages */
301 local_t write; /* index for next write */
302 unsigned read; /* index for next read */
303 local_t entries; /* entries on this page */
304 unsigned long real_end; /* real end of data */
305 struct buffer_data_page *page; /* Actual data page */
306 };
307
308 /*
309 * The buffer page counters, write and entries, must be reset
310 * atomically when crossing page boundaries. To synchronize this
311 * update, two counters are inserted into the number. One is
312 * the actual counter for the write position or count on the page.
313 *
314 * The other is a counter of updaters. Before an update happens
315 * the update partition of the counter is incremented. This will
316 * allow the updater to update the counter atomically.
317 *
318 * The counter is 20 bits, and the state data is 12.
319 */
320 #define RB_WRITE_MASK 0xfffff
321 #define RB_WRITE_INTCNT (1 << 20)
322
323 static void rb_init_page(struct buffer_data_page *bpage)
324 {
325 local_set(&bpage->commit, 0);
326 }
327
328 /**
329 * ring_buffer_page_len - the size of data on the page.
330 * @page: The page to read
331 *
332 * Returns the amount of data on the page, including buffer page header.
333 */
334 size_t ring_buffer_page_len(void *page)
335 {
336 struct buffer_data_page *bpage = page;
337
338 return (local_read(&bpage->commit) & ~RB_MISSED_FLAGS)
339 + BUF_PAGE_HDR_SIZE;
340 }
341
342 /*
343 * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing
344 * this issue out.
345 */
346 static void free_buffer_page(struct buffer_page *bpage)
347 {
348 free_page((unsigned long)bpage->page);
349 kfree(bpage);
350 }
351
352 /*
353 * We need to fit the time_stamp delta into 27 bits.
354 */
355 static inline int test_time_stamp(u64 delta)
356 {
357 if (delta & TS_DELTA_TEST)
358 return 1;
359 return 0;
360 }
361
362 #define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE)
363
364 /* Max payload is BUF_PAGE_SIZE - header (8bytes) */
365 #define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2))
366
367 int ring_buffer_print_page_header(struct trace_seq *s)
368 {
369 struct buffer_data_page field;
370
371 trace_seq_printf(s, "\tfield: u64 timestamp;\t"
372 "offset:0;\tsize:%u;\tsigned:%u;\n",
373 (unsigned int)sizeof(field.time_stamp),
374 (unsigned int)is_signed_type(u64));
375
376 trace_seq_printf(s, "\tfield: local_t commit;\t"
377 "offset:%u;\tsize:%u;\tsigned:%u;\n",
378 (unsigned int)offsetof(typeof(field), commit),
379 (unsigned int)sizeof(field.commit),
380 (unsigned int)is_signed_type(long));
381
382 trace_seq_printf(s, "\tfield: int overwrite;\t"
383 "offset:%u;\tsize:%u;\tsigned:%u;\n",
384 (unsigned int)offsetof(typeof(field), commit),
385 1,
386 (unsigned int)is_signed_type(long));
387
388 trace_seq_printf(s, "\tfield: char data;\t"
389 "offset:%u;\tsize:%u;\tsigned:%u;\n",
390 (unsigned int)offsetof(typeof(field), data),
391 (unsigned int)BUF_PAGE_SIZE,
392 (unsigned int)is_signed_type(char));
393
394 return !trace_seq_has_overflowed(s);
395 }
396
397 struct rb_irq_work {
398 struct irq_work work;
399 wait_queue_head_t waiters;
400 wait_queue_head_t full_waiters;
401 bool waiters_pending;
402 bool full_waiters_pending;
403 bool wakeup_full;
404 };
405
406 /*
407 * Structure to hold event state and handle nested events.
408 */
409 struct rb_event_info {
410 u64 ts;
411 u64 delta;
412 unsigned long length;
413 struct buffer_page *tail_page;
414 int add_timestamp;
415 };
416
417 /*
418 * Used for which event context the event is in.
419 * NMI = 0
420 * IRQ = 1
421 * SOFTIRQ = 2
422 * NORMAL = 3
423 *
424 * See trace_recursive_lock() comment below for more details.
425 */
426 enum {
427 RB_CTX_NMI,
428 RB_CTX_IRQ,
429 RB_CTX_SOFTIRQ,
430 RB_CTX_NORMAL,
431 RB_CTX_MAX
432 };
433
434 /*
435 * head_page == tail_page && head == tail then buffer is empty.
436 */
437 struct ring_buffer_per_cpu {
438 int cpu;
439 atomic_t record_disabled;
440 struct ring_buffer *buffer;
441 raw_spinlock_t reader_lock; /* serialize readers */
442 arch_spinlock_t lock;
443 struct lock_class_key lock_key;
444 struct buffer_data_page *free_page;
445 unsigned long nr_pages;
446 unsigned int current_context;
447 struct list_head *pages;
448 struct buffer_page *head_page; /* read from head */
449 struct buffer_page *tail_page; /* write to tail */
450 struct buffer_page *commit_page; /* committed pages */
451 struct buffer_page *reader_page;
452 unsigned long lost_events;
453 unsigned long last_overrun;
454 local_t entries_bytes;
455 local_t entries;
456 local_t overrun;
457 local_t commit_overrun;
458 local_t dropped_events;
459 local_t committing;
460 local_t commits;
461 unsigned long read;
462 unsigned long read_bytes;
463 u64 write_stamp;
464 u64 read_stamp;
465 /* ring buffer pages to update, > 0 to add, < 0 to remove */
466 long nr_pages_to_update;
467 struct list_head new_pages; /* new pages to add */
468 struct work_struct update_pages_work;
469 struct completion update_done;
470
471 struct rb_irq_work irq_work;
472 };
473
474 struct ring_buffer {
475 unsigned flags;
476 int cpus;
477 atomic_t record_disabled;
478 atomic_t resize_disabled;
479 cpumask_var_t cpumask;
480
481 struct lock_class_key *reader_lock_key;
482
483 struct mutex mutex;
484
485 struct ring_buffer_per_cpu **buffers;
486
487 struct hlist_node node;
488 u64 (*clock)(void);
489
490 struct rb_irq_work irq_work;
491 };
492
493 struct ring_buffer_iter {
494 struct ring_buffer_per_cpu *cpu_buffer;
495 unsigned long head;
496 struct buffer_page *head_page;
497 struct buffer_page *cache_reader_page;
498 unsigned long cache_read;
499 u64 read_stamp;
500 };
501
502 /*
503 * rb_wake_up_waiters - wake up tasks waiting for ring buffer input
504 *
505 * Schedules a delayed work to wake up any task that is blocked on the
506 * ring buffer waiters queue.
507 */
508 static void rb_wake_up_waiters(struct irq_work *work)
509 {
510 struct rb_irq_work *rbwork = container_of(work, struct rb_irq_work, work);
511
512 wake_up_all(&rbwork->waiters);
513 if (rbwork->wakeup_full) {
514 rbwork->wakeup_full = false;
515 wake_up_all(&rbwork->full_waiters);
516 }
517 }
518
519 /**
520 * ring_buffer_wait - wait for input to the ring buffer
521 * @buffer: buffer to wait on
522 * @cpu: the cpu buffer to wait on
523 * @full: wait until a full page is available, if @cpu != RING_BUFFER_ALL_CPUS
524 *
525 * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
526 * as data is added to any of the @buffer's cpu buffers. Otherwise
527 * it will wait for data to be added to a specific cpu buffer.
528 */
529 int ring_buffer_wait(struct ring_buffer *buffer, int cpu, bool full)
530 {
531 struct ring_buffer_per_cpu *uninitialized_var(cpu_buffer);
532 DEFINE_WAIT(wait);
533 struct rb_irq_work *work;
534 int ret = 0;
535
536 /*
537 * Depending on what the caller is waiting for, either any
538 * data in any cpu buffer, or a specific buffer, put the
539 * caller on the appropriate wait queue.
540 */
541 if (cpu == RING_BUFFER_ALL_CPUS) {
542 work = &buffer->irq_work;
543 /* Full only makes sense on per cpu reads */
544 full = false;
545 } else {
546 if (!cpumask_test_cpu(cpu, buffer->cpumask))
547 return -ENODEV;
548 cpu_buffer = buffer->buffers[cpu];
549 work = &cpu_buffer->irq_work;
550 }
551
552
553 while (true) {
554 if (full)
555 prepare_to_wait(&work->full_waiters, &wait, TASK_INTERRUPTIBLE);
556 else
557 prepare_to_wait(&work->waiters, &wait, TASK_INTERRUPTIBLE);
558
559 /*
560 * The events can happen in critical sections where
561 * checking a work queue can cause deadlocks.
562 * After adding a task to the queue, this flag is set
563 * only to notify events to try to wake up the queue
564 * using irq_work.
565 *
566 * We don't clear it even if the buffer is no longer
567 * empty. The flag only causes the next event to run
568 * irq_work to do the work queue wake up. The worse
569 * that can happen if we race with !trace_empty() is that
570 * an event will cause an irq_work to try to wake up
571 * an empty queue.
572 *
573 * There's no reason to protect this flag either, as
574 * the work queue and irq_work logic will do the necessary
575 * synchronization for the wake ups. The only thing
576 * that is necessary is that the wake up happens after
577 * a task has been queued. It's OK for spurious wake ups.
578 */
579 if (full)
580 work->full_waiters_pending = true;
581 else
582 work->waiters_pending = true;
583
584 if (signal_pending(current)) {
585 ret = -EINTR;
586 break;
587 }
588
589 if (cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer))
590 break;
591
592 if (cpu != RING_BUFFER_ALL_CPUS &&
593 !ring_buffer_empty_cpu(buffer, cpu)) {
594 unsigned long flags;
595 bool pagebusy;
596
597 if (!full)
598 break;
599
600 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
601 pagebusy = cpu_buffer->reader_page == cpu_buffer->commit_page;
602 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
603
604 if (!pagebusy)
605 break;
606 }
607
608 schedule();
609 }
610
611 if (full)
612 finish_wait(&work->full_waiters, &wait);
613 else
614 finish_wait(&work->waiters, &wait);
615
616 return ret;
617 }
618
619 /**
620 * ring_buffer_poll_wait - poll on buffer input
621 * @buffer: buffer to wait on
622 * @cpu: the cpu buffer to wait on
623 * @filp: the file descriptor
624 * @poll_table: The poll descriptor
625 *
626 * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
627 * as data is added to any of the @buffer's cpu buffers. Otherwise
628 * it will wait for data to be added to a specific cpu buffer.
629 *
630 * Returns POLLIN | POLLRDNORM if data exists in the buffers,
631 * zero otherwise.
632 */
633 int ring_buffer_poll_wait(struct ring_buffer *buffer, int cpu,
634 struct file *filp, poll_table *poll_table)
635 {
636 struct ring_buffer_per_cpu *cpu_buffer;
637 struct rb_irq_work *work;
638
639 if (cpu == RING_BUFFER_ALL_CPUS)
640 work = &buffer->irq_work;
641 else {
642 if (!cpumask_test_cpu(cpu, buffer->cpumask))
643 return -EINVAL;
644
645 cpu_buffer = buffer->buffers[cpu];
646 work = &cpu_buffer->irq_work;
647 }
648
649 poll_wait(filp, &work->waiters, poll_table);
650 work->waiters_pending = true;
651 /*
652 * There's a tight race between setting the waiters_pending and
653 * checking if the ring buffer is empty. Once the waiters_pending bit
654 * is set, the next event will wake the task up, but we can get stuck
655 * if there's only a single event in.
656 *
657 * FIXME: Ideally, we need a memory barrier on the writer side as well,
658 * but adding a memory barrier to all events will cause too much of a
659 * performance hit in the fast path. We only need a memory barrier when
660 * the buffer goes from empty to having content. But as this race is
661 * extremely small, and it's not a problem if another event comes in, we
662 * will fix it later.
663 */
664 smp_mb();
665
666 if ((cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer)) ||
667 (cpu != RING_BUFFER_ALL_CPUS && !ring_buffer_empty_cpu(buffer, cpu)))
668 return POLLIN | POLLRDNORM;
669 return 0;
670 }
671
672 /* buffer may be either ring_buffer or ring_buffer_per_cpu */
673 #define RB_WARN_ON(b, cond) \
674 ({ \
675 int _____ret = unlikely(cond); \
676 if (_____ret) { \
677 if (__same_type(*(b), struct ring_buffer_per_cpu)) { \
678 struct ring_buffer_per_cpu *__b = \
679 (void *)b; \
680 atomic_inc(&__b->buffer->record_disabled); \
681 } else \
682 atomic_inc(&b->record_disabled); \
683 WARN_ON(1); \
684 } \
685 _____ret; \
686 })
687
688 /* Up this if you want to test the TIME_EXTENTS and normalization */
689 #define DEBUG_SHIFT 0
690
691 static inline u64 rb_time_stamp(struct ring_buffer *buffer)
692 {
693 /* shift to debug/test normalization and TIME_EXTENTS */
694 return buffer->clock() << DEBUG_SHIFT;
695 }
696
697 u64 ring_buffer_time_stamp(struct ring_buffer *buffer, int cpu)
698 {
699 u64 time;
700
701 preempt_disable_notrace();
702 time = rb_time_stamp(buffer);
703 preempt_enable_no_resched_notrace();
704
705 return time;
706 }
707 EXPORT_SYMBOL_GPL(ring_buffer_time_stamp);
708
709 void ring_buffer_normalize_time_stamp(struct ring_buffer *buffer,
710 int cpu, u64 *ts)
711 {
712 /* Just stupid testing the normalize function and deltas */
713 *ts >>= DEBUG_SHIFT;
714 }
715 EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp);
716
717 /*
718 * Making the ring buffer lockless makes things tricky.
719 * Although writes only happen on the CPU that they are on,
720 * and they only need to worry about interrupts. Reads can
721 * happen on any CPU.
722 *
723 * The reader page is always off the ring buffer, but when the
724 * reader finishes with a page, it needs to swap its page with
725 * a new one from the buffer. The reader needs to take from
726 * the head (writes go to the tail). But if a writer is in overwrite
727 * mode and wraps, it must push the head page forward.
728 *
729 * Here lies the problem.
730 *
731 * The reader must be careful to replace only the head page, and
732 * not another one. As described at the top of the file in the
733 * ASCII art, the reader sets its old page to point to the next
734 * page after head. It then sets the page after head to point to
735 * the old reader page. But if the writer moves the head page
736 * during this operation, the reader could end up with the tail.
737 *
738 * We use cmpxchg to help prevent this race. We also do something
739 * special with the page before head. We set the LSB to 1.
740 *
741 * When the writer must push the page forward, it will clear the
742 * bit that points to the head page, move the head, and then set
743 * the bit that points to the new head page.
744 *
745 * We also don't want an interrupt coming in and moving the head
746 * page on another writer. Thus we use the second LSB to catch
747 * that too. Thus:
748 *
749 * head->list->prev->next bit 1 bit 0
750 * ------- -------
751 * Normal page 0 0
752 * Points to head page 0 1
753 * New head page 1 0
754 *
755 * Note we can not trust the prev pointer of the head page, because:
756 *
757 * +----+ +-----+ +-----+
758 * | |------>| T |---X--->| N |
759 * | |<------| | | |
760 * +----+ +-----+ +-----+
761 * ^ ^ |
762 * | +-----+ | |
763 * +----------| R |----------+ |
764 * | |<-----------+
765 * +-----+
766 *
767 * Key: ---X--> HEAD flag set in pointer
768 * T Tail page
769 * R Reader page
770 * N Next page
771 *
772 * (see __rb_reserve_next() to see where this happens)
773 *
774 * What the above shows is that the reader just swapped out
775 * the reader page with a page in the buffer, but before it
776 * could make the new header point back to the new page added
777 * it was preempted by a writer. The writer moved forward onto
778 * the new page added by the reader and is about to move forward
779 * again.
780 *
781 * You can see, it is legitimate for the previous pointer of
782 * the head (or any page) not to point back to itself. But only
783 * temporarially.
784 */
785
786 #define RB_PAGE_NORMAL 0UL
787 #define RB_PAGE_HEAD 1UL
788 #define RB_PAGE_UPDATE 2UL
789
790
791 #define RB_FLAG_MASK 3UL
792
793 /* PAGE_MOVED is not part of the mask */
794 #define RB_PAGE_MOVED 4UL
795
796 /*
797 * rb_list_head - remove any bit
798 */
799 static struct list_head *rb_list_head(struct list_head *list)
800 {
801 unsigned long val = (unsigned long)list;
802
803 return (struct list_head *)(val & ~RB_FLAG_MASK);
804 }
805
806 /*
807 * rb_is_head_page - test if the given page is the head page
808 *
809 * Because the reader may move the head_page pointer, we can
810 * not trust what the head page is (it may be pointing to
811 * the reader page). But if the next page is a header page,
812 * its flags will be non zero.
813 */
814 static inline int
815 rb_is_head_page(struct ring_buffer_per_cpu *cpu_buffer,
816 struct buffer_page *page, struct list_head *list)
817 {
818 unsigned long val;
819
820 val = (unsigned long)list->next;
821
822 if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list)
823 return RB_PAGE_MOVED;
824
825 return val & RB_FLAG_MASK;
826 }
827
828 /*
829 * rb_is_reader_page
830 *
831 * The unique thing about the reader page, is that, if the
832 * writer is ever on it, the previous pointer never points
833 * back to the reader page.
834 */
835 static bool rb_is_reader_page(struct buffer_page *page)
836 {
837 struct list_head *list = page->list.prev;
838
839 return rb_list_head(list->next) != &page->list;
840 }
841
842 /*
843 * rb_set_list_to_head - set a list_head to be pointing to head.
844 */
845 static void rb_set_list_to_head(struct ring_buffer_per_cpu *cpu_buffer,
846 struct list_head *list)
847 {
848 unsigned long *ptr;
849
850 ptr = (unsigned long *)&list->next;
851 *ptr |= RB_PAGE_HEAD;
852 *ptr &= ~RB_PAGE_UPDATE;
853 }
854
855 /*
856 * rb_head_page_activate - sets up head page
857 */
858 static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer)
859 {
860 struct buffer_page *head;
861
862 head = cpu_buffer->head_page;
863 if (!head)
864 return;
865
866 /*
867 * Set the previous list pointer to have the HEAD flag.
868 */
869 rb_set_list_to_head(cpu_buffer, head->list.prev);
870 }
871
872 static void rb_list_head_clear(struct list_head *list)
873 {
874 unsigned long *ptr = (unsigned long *)&list->next;
875
876 *ptr &= ~RB_FLAG_MASK;
877 }
878
879 /*
880 * rb_head_page_dactivate - clears head page ptr (for free list)
881 */
882 static void
883 rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer)
884 {
885 struct list_head *hd;
886
887 /* Go through the whole list and clear any pointers found. */
888 rb_list_head_clear(cpu_buffer->pages);
889
890 list_for_each(hd, cpu_buffer->pages)
891 rb_list_head_clear(hd);
892 }
893
894 static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer,
895 struct buffer_page *head,
896 struct buffer_page *prev,
897 int old_flag, int new_flag)
898 {
899 struct list_head *list;
900 unsigned long val = (unsigned long)&head->list;
901 unsigned long ret;
902
903 list = &prev->list;
904
905 val &= ~RB_FLAG_MASK;
906
907 ret = cmpxchg((unsigned long *)&list->next,
908 val | old_flag, val | new_flag);
909
910 /* check if the reader took the page */
911 if ((ret & ~RB_FLAG_MASK) != val)
912 return RB_PAGE_MOVED;
913
914 return ret & RB_FLAG_MASK;
915 }
916
917 static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer,
918 struct buffer_page *head,
919 struct buffer_page *prev,
920 int old_flag)
921 {
922 return rb_head_page_set(cpu_buffer, head, prev,
923 old_flag, RB_PAGE_UPDATE);
924 }
925
926 static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer,
927 struct buffer_page *head,
928 struct buffer_page *prev,
929 int old_flag)
930 {
931 return rb_head_page_set(cpu_buffer, head, prev,
932 old_flag, RB_PAGE_HEAD);
933 }
934
935 static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer,
936 struct buffer_page *head,
937 struct buffer_page *prev,
938 int old_flag)
939 {
940 return rb_head_page_set(cpu_buffer, head, prev,
941 old_flag, RB_PAGE_NORMAL);
942 }
943
944 static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer,
945 struct buffer_page **bpage)
946 {
947 struct list_head *p = rb_list_head((*bpage)->list.next);
948
949 *bpage = list_entry(p, struct buffer_page, list);
950 }
951
952 static struct buffer_page *
953 rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer)
954 {
955 struct buffer_page *head;
956 struct buffer_page *page;
957 struct list_head *list;
958 int i;
959
960 if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page))
961 return NULL;
962
963 /* sanity check */
964 list = cpu_buffer->pages;
965 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list))
966 return NULL;
967
968 page = head = cpu_buffer->head_page;
969 /*
970 * It is possible that the writer moves the header behind
971 * where we started, and we miss in one loop.
972 * A second loop should grab the header, but we'll do
973 * three loops just because I'm paranoid.
974 */
975 for (i = 0; i < 3; i++) {
976 do {
977 if (rb_is_head_page(cpu_buffer, page, page->list.prev)) {
978 cpu_buffer->head_page = page;
979 return page;
980 }
981 rb_inc_page(cpu_buffer, &page);
982 } while (page != head);
983 }
984
985 RB_WARN_ON(cpu_buffer, 1);
986
987 return NULL;
988 }
989
990 static int rb_head_page_replace(struct buffer_page *old,
991 struct buffer_page *new)
992 {
993 unsigned long *ptr = (unsigned long *)&old->list.prev->next;
994 unsigned long val;
995 unsigned long ret;
996
997 val = *ptr & ~RB_FLAG_MASK;
998 val |= RB_PAGE_HEAD;
999
1000 ret = cmpxchg(ptr, val, (unsigned long)&new->list);
1001
1002 return ret == val;
1003 }
1004
1005 /*
1006 * rb_tail_page_update - move the tail page forward
1007 */
1008 static void rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer,
1009 struct buffer_page *tail_page,
1010 struct buffer_page *next_page)
1011 {
1012 unsigned long old_entries;
1013 unsigned long old_write;
1014
1015 /*
1016 * The tail page now needs to be moved forward.
1017 *
1018 * We need to reset the tail page, but without messing
1019 * with possible erasing of data brought in by interrupts
1020 * that have moved the tail page and are currently on it.
1021 *
1022 * We add a counter to the write field to denote this.
1023 */
1024 old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write);
1025 old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries);
1026
1027 /*
1028 * Just make sure we have seen our old_write and synchronize
1029 * with any interrupts that come in.
1030 */
1031 barrier();
1032
1033 /*
1034 * If the tail page is still the same as what we think
1035 * it is, then it is up to us to update the tail
1036 * pointer.
1037 */
1038 if (tail_page == READ_ONCE(cpu_buffer->tail_page)) {
1039 /* Zero the write counter */
1040 unsigned long val = old_write & ~RB_WRITE_MASK;
1041 unsigned long eval = old_entries & ~RB_WRITE_MASK;
1042
1043 /*
1044 * This will only succeed if an interrupt did
1045 * not come in and change it. In which case, we
1046 * do not want to modify it.
1047 *
1048 * We add (void) to let the compiler know that we do not care
1049 * about the return value of these functions. We use the
1050 * cmpxchg to only update if an interrupt did not already
1051 * do it for us. If the cmpxchg fails, we don't care.
1052 */
1053 (void)local_cmpxchg(&next_page->write, old_write, val);
1054 (void)local_cmpxchg(&next_page->entries, old_entries, eval);
1055
1056 /*
1057 * No need to worry about races with clearing out the commit.
1058 * it only can increment when a commit takes place. But that
1059 * only happens in the outer most nested commit.
1060 */
1061 local_set(&next_page->page->commit, 0);
1062
1063 /* Again, either we update tail_page or an interrupt does */
1064 (void)cmpxchg(&cpu_buffer->tail_page, tail_page, next_page);
1065 }
1066 }
1067
1068 static int rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer,
1069 struct buffer_page *bpage)
1070 {
1071 unsigned long val = (unsigned long)bpage;
1072
1073 if (RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK))
1074 return 1;
1075
1076 return 0;
1077 }
1078
1079 /**
1080 * rb_check_list - make sure a pointer to a list has the last bits zero
1081 */
1082 static int rb_check_list(struct ring_buffer_per_cpu *cpu_buffer,
1083 struct list_head *list)
1084 {
1085 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev) != list->prev))
1086 return 1;
1087 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->next) != list->next))
1088 return 1;
1089 return 0;
1090 }
1091
1092 /**
1093 * rb_check_pages - integrity check of buffer pages
1094 * @cpu_buffer: CPU buffer with pages to test
1095 *
1096 * As a safety measure we check to make sure the data pages have not
1097 * been corrupted.
1098 */
1099 static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
1100 {
1101 struct list_head *head = cpu_buffer->pages;
1102 struct buffer_page *bpage, *tmp;
1103
1104 /* Reset the head page if it exists */
1105 if (cpu_buffer->head_page)
1106 rb_set_head_page(cpu_buffer);
1107
1108 rb_head_page_deactivate(cpu_buffer);
1109
1110 if (RB_WARN_ON(cpu_buffer, head->next->prev != head))
1111 return -1;
1112 if (RB_WARN_ON(cpu_buffer, head->prev->next != head))
1113 return -1;
1114
1115 if (rb_check_list(cpu_buffer, head))
1116 return -1;
1117
1118 list_for_each_entry_safe(bpage, tmp, head, list) {
1119 if (RB_WARN_ON(cpu_buffer,
1120 bpage->list.next->prev != &bpage->list))
1121 return -1;
1122 if (RB_WARN_ON(cpu_buffer,
1123 bpage->list.prev->next != &bpage->list))
1124 return -1;
1125 if (rb_check_list(cpu_buffer, &bpage->list))
1126 return -1;
1127 }
1128
1129 rb_head_page_activate(cpu_buffer);
1130
1131 return 0;
1132 }
1133
1134 static int __rb_allocate_pages(long nr_pages, struct list_head *pages, int cpu)
1135 {
1136 struct buffer_page *bpage, *tmp;
1137 long i;
1138
1139 /* Check if the available memory is there first */
1140 i = si_mem_available();
1141 if (i < nr_pages)
1142 return -ENOMEM;
1143
1144 for (i = 0; i < nr_pages; i++) {
1145 struct page *page;
1146 /*
1147 * __GFP_RETRY_MAYFAIL flag makes sure that the allocation fails
1148 * gracefully without invoking oom-killer and the system is not
1149 * destabilized.
1150 */
1151 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1152 GFP_KERNEL | __GFP_RETRY_MAYFAIL,
1153 cpu_to_node(cpu));
1154 if (!bpage)
1155 goto free_pages;
1156
1157 list_add(&bpage->list, pages);
1158
1159 page = alloc_pages_node(cpu_to_node(cpu),
1160 GFP_KERNEL | __GFP_RETRY_MAYFAIL, 0);
1161 if (!page)
1162 goto free_pages;
1163 bpage->page = page_address(page);
1164 rb_init_page(bpage->page);
1165 }
1166
1167 return 0;
1168
1169 free_pages:
1170 list_for_each_entry_safe(bpage, tmp, pages, list) {
1171 list_del_init(&bpage->list);
1172 free_buffer_page(bpage);
1173 }
1174
1175 return -ENOMEM;
1176 }
1177
1178 static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
1179 unsigned long nr_pages)
1180 {
1181 LIST_HEAD(pages);
1182
1183 WARN_ON(!nr_pages);
1184
1185 if (__rb_allocate_pages(nr_pages, &pages, cpu_buffer->cpu))
1186 return -ENOMEM;
1187
1188 /*
1189 * The ring buffer page list is a circular list that does not
1190 * start and end with a list head. All page list items point to
1191 * other pages.
1192 */
1193 cpu_buffer->pages = pages.next;
1194 list_del(&pages);
1195
1196 cpu_buffer->nr_pages = nr_pages;
1197
1198 rb_check_pages(cpu_buffer);
1199
1200 return 0;
1201 }
1202
1203 static struct ring_buffer_per_cpu *
1204 rb_allocate_cpu_buffer(struct ring_buffer *buffer, long nr_pages, int cpu)
1205 {
1206 struct ring_buffer_per_cpu *cpu_buffer;
1207 struct buffer_page *bpage;
1208 struct page *page;
1209 int ret;
1210
1211 cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
1212 GFP_KERNEL, cpu_to_node(cpu));
1213 if (!cpu_buffer)
1214 return NULL;
1215
1216 cpu_buffer->cpu = cpu;
1217 cpu_buffer->buffer = buffer;
1218 raw_spin_lock_init(&cpu_buffer->reader_lock);
1219 lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key);
1220 cpu_buffer->lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
1221 INIT_WORK(&cpu_buffer->update_pages_work, update_pages_handler);
1222 init_completion(&cpu_buffer->update_done);
1223 init_irq_work(&cpu_buffer->irq_work.work, rb_wake_up_waiters);
1224 init_waitqueue_head(&cpu_buffer->irq_work.waiters);
1225 init_waitqueue_head(&cpu_buffer->irq_work.full_waiters);
1226
1227 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1228 GFP_KERNEL, cpu_to_node(cpu));
1229 if (!bpage)
1230 goto fail_free_buffer;
1231
1232 rb_check_bpage(cpu_buffer, bpage);
1233
1234 cpu_buffer->reader_page = bpage;
1235 page = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL, 0);
1236 if (!page)
1237 goto fail_free_reader;
1238 bpage->page = page_address(page);
1239 rb_init_page(bpage->page);
1240
1241 INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
1242 INIT_LIST_HEAD(&cpu_buffer->new_pages);
1243
1244 ret = rb_allocate_pages(cpu_buffer, nr_pages);
1245 if (ret < 0)
1246 goto fail_free_reader;
1247
1248 cpu_buffer->head_page
1249 = list_entry(cpu_buffer->pages, struct buffer_page, list);
1250 cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
1251
1252 rb_head_page_activate(cpu_buffer);
1253
1254 return cpu_buffer;
1255
1256 fail_free_reader:
1257 free_buffer_page(cpu_buffer->reader_page);
1258
1259 fail_free_buffer:
1260 kfree(cpu_buffer);
1261 return NULL;
1262 }
1263
1264 static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
1265 {
1266 struct list_head *head = cpu_buffer->pages;
1267 struct buffer_page *bpage, *tmp;
1268
1269 free_buffer_page(cpu_buffer->reader_page);
1270
1271 rb_head_page_deactivate(cpu_buffer);
1272
1273 if (head) {
1274 list_for_each_entry_safe(bpage, tmp, head, list) {
1275 list_del_init(&bpage->list);
1276 free_buffer_page(bpage);
1277 }
1278 bpage = list_entry(head, struct buffer_page, list);
1279 free_buffer_page(bpage);
1280 }
1281
1282 kfree(cpu_buffer);
1283 }
1284
1285 /**
1286 * __ring_buffer_alloc - allocate a new ring_buffer
1287 * @size: the size in bytes per cpu that is needed.
1288 * @flags: attributes to set for the ring buffer.
1289 *
1290 * Currently the only flag that is available is the RB_FL_OVERWRITE
1291 * flag. This flag means that the buffer will overwrite old data
1292 * when the buffer wraps. If this flag is not set, the buffer will
1293 * drop data when the tail hits the head.
1294 */
1295 struct ring_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags,
1296 struct lock_class_key *key)
1297 {
1298 struct ring_buffer *buffer;
1299 long nr_pages;
1300 int bsize;
1301 int cpu;
1302 int ret;
1303
1304 /* keep it in its own cache line */
1305 buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
1306 GFP_KERNEL);
1307 if (!buffer)
1308 return NULL;
1309
1310 if (!zalloc_cpumask_var(&buffer->cpumask, GFP_KERNEL))
1311 goto fail_free_buffer;
1312
1313 nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1314 buffer->flags = flags;
1315 buffer->clock = trace_clock_local;
1316 buffer->reader_lock_key = key;
1317
1318 init_irq_work(&buffer->irq_work.work, rb_wake_up_waiters);
1319 init_waitqueue_head(&buffer->irq_work.waiters);
1320
1321 /* need at least two pages */
1322 if (nr_pages < 2)
1323 nr_pages = 2;
1324
1325 buffer->cpus = nr_cpu_ids;
1326
1327 bsize = sizeof(void *) * nr_cpu_ids;
1328 buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
1329 GFP_KERNEL);
1330 if (!buffer->buffers)
1331 goto fail_free_cpumask;
1332
1333 cpu = raw_smp_processor_id();
1334 cpumask_set_cpu(cpu, buffer->cpumask);
1335 buffer->buffers[cpu] = rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
1336 if (!buffer->buffers[cpu])
1337 goto fail_free_buffers;
1338
1339 ret = cpuhp_state_add_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node);
1340 if (ret < 0)
1341 goto fail_free_buffers;
1342
1343 mutex_init(&buffer->mutex);
1344
1345 return buffer;
1346
1347 fail_free_buffers:
1348 for_each_buffer_cpu(buffer, cpu) {
1349 if (buffer->buffers[cpu])
1350 rb_free_cpu_buffer(buffer->buffers[cpu]);
1351 }
1352 kfree(buffer->buffers);
1353
1354 fail_free_cpumask:
1355 free_cpumask_var(buffer->cpumask);
1356
1357 fail_free_buffer:
1358 kfree(buffer);
1359 return NULL;
1360 }
1361 EXPORT_SYMBOL_GPL(__ring_buffer_alloc);
1362
1363 /**
1364 * ring_buffer_free - free a ring buffer.
1365 * @buffer: the buffer to free.
1366 */
1367 void
1368 ring_buffer_free(struct ring_buffer *buffer)
1369 {
1370 int cpu;
1371
1372 cpuhp_state_remove_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node);
1373
1374 for_each_buffer_cpu(buffer, cpu)
1375 rb_free_cpu_buffer(buffer->buffers[cpu]);
1376
1377 kfree(buffer->buffers);
1378 free_cpumask_var(buffer->cpumask);
1379
1380 kfree(buffer);
1381 }
1382 EXPORT_SYMBOL_GPL(ring_buffer_free);
1383
1384 void ring_buffer_set_clock(struct ring_buffer *buffer,
1385 u64 (*clock)(void))
1386 {
1387 buffer->clock = clock;
1388 }
1389
1390 static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer);
1391
1392 static inline unsigned long rb_page_entries(struct buffer_page *bpage)
1393 {
1394 return local_read(&bpage->entries) & RB_WRITE_MASK;
1395 }
1396
1397 static inline unsigned long rb_page_write(struct buffer_page *bpage)
1398 {
1399 return local_read(&bpage->write) & RB_WRITE_MASK;
1400 }
1401
1402 static int
1403 rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned long nr_pages)
1404 {
1405 struct list_head *tail_page, *to_remove, *next_page;
1406 struct buffer_page *to_remove_page, *tmp_iter_page;
1407 struct buffer_page *last_page, *first_page;
1408 unsigned long nr_removed;
1409 unsigned long head_bit;
1410 int page_entries;
1411
1412 head_bit = 0;
1413
1414 raw_spin_lock_irq(&cpu_buffer->reader_lock);
1415 atomic_inc(&cpu_buffer->record_disabled);
1416 /*
1417 * We don't race with the readers since we have acquired the reader
1418 * lock. We also don't race with writers after disabling recording.
1419 * This makes it easy to figure out the first and the last page to be
1420 * removed from the list. We unlink all the pages in between including
1421 * the first and last pages. This is done in a busy loop so that we
1422 * lose the least number of traces.
1423 * The pages are freed after we restart recording and unlock readers.
1424 */
1425 tail_page = &cpu_buffer->tail_page->list;
1426
1427 /*
1428 * tail page might be on reader page, we remove the next page
1429 * from the ring buffer
1430 */
1431 if (cpu_buffer->tail_page == cpu_buffer->reader_page)
1432 tail_page = rb_list_head(tail_page->next);
1433 to_remove = tail_page;
1434
1435 /* start of pages to remove */
1436 first_page = list_entry(rb_list_head(to_remove->next),
1437 struct buffer_page, list);
1438
1439 for (nr_removed = 0; nr_removed < nr_pages; nr_removed++) {
1440 to_remove = rb_list_head(to_remove)->next;
1441 head_bit |= (unsigned long)to_remove & RB_PAGE_HEAD;
1442 }
1443
1444 next_page = rb_list_head(to_remove)->next;
1445
1446 /*
1447 * Now we remove all pages between tail_page and next_page.
1448 * Make sure that we have head_bit value preserved for the
1449 * next page
1450 */
1451 tail_page->next = (struct list_head *)((unsigned long)next_page |
1452 head_bit);
1453 next_page = rb_list_head(next_page);
1454 next_page->prev = tail_page;
1455
1456 /* make sure pages points to a valid page in the ring buffer */
1457 cpu_buffer->pages = next_page;
1458
1459 /* update head page */
1460 if (head_bit)
1461 cpu_buffer->head_page = list_entry(next_page,
1462 struct buffer_page, list);
1463
1464 /*
1465 * change read pointer to make sure any read iterators reset
1466 * themselves
1467 */
1468 cpu_buffer->read = 0;
1469
1470 /* pages are removed, resume tracing and then free the pages */
1471 atomic_dec(&cpu_buffer->record_disabled);
1472 raw_spin_unlock_irq(&cpu_buffer->reader_lock);
1473
1474 RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages));
1475
1476 /* last buffer page to remove */
1477 last_page = list_entry(rb_list_head(to_remove), struct buffer_page,
1478 list);
1479 tmp_iter_page = first_page;
1480
1481 do {
1482 cond_resched();
1483
1484 to_remove_page = tmp_iter_page;
1485 rb_inc_page(cpu_buffer, &tmp_iter_page);
1486
1487 /* update the counters */
1488 page_entries = rb_page_entries(to_remove_page);
1489 if (page_entries) {
1490 /*
1491 * If something was added to this page, it was full
1492 * since it is not the tail page. So we deduct the
1493 * bytes consumed in ring buffer from here.
1494 * Increment overrun to account for the lost events.
1495 */
1496 local_add(page_entries, &cpu_buffer->overrun);
1497 local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
1498 }
1499
1500 /*
1501 * We have already removed references to this list item, just
1502 * free up the buffer_page and its page
1503 */
1504 free_buffer_page(to_remove_page);
1505 nr_removed--;
1506
1507 } while (to_remove_page != last_page);
1508
1509 RB_WARN_ON(cpu_buffer, nr_removed);
1510
1511 return nr_removed == 0;
1512 }
1513
1514 static int
1515 rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer)
1516 {
1517 struct list_head *pages = &cpu_buffer->new_pages;
1518 int retries, success;
1519
1520 raw_spin_lock_irq(&cpu_buffer->reader_lock);
1521 /*
1522 * We are holding the reader lock, so the reader page won't be swapped
1523 * in the ring buffer. Now we are racing with the writer trying to
1524 * move head page and the tail page.
1525 * We are going to adapt the reader page update process where:
1526 * 1. We first splice the start and end of list of new pages between
1527 * the head page and its previous page.
1528 * 2. We cmpxchg the prev_page->next to point from head page to the
1529 * start of new pages list.
1530 * 3. Finally, we update the head->prev to the end of new list.
1531 *
1532 * We will try this process 10 times, to make sure that we don't keep
1533 * spinning.
1534 */
1535 retries = 10;
1536 success = 0;
1537 while (retries--) {
1538 struct list_head *head_page, *prev_page, *r;
1539 struct list_head *last_page, *first_page;
1540 struct list_head *head_page_with_bit;
1541
1542 head_page = &rb_set_head_page(cpu_buffer)->list;
1543 if (!head_page)
1544 break;
1545 prev_page = head_page->prev;
1546
1547 first_page = pages->next;
1548 last_page = pages->prev;
1549
1550 head_page_with_bit = (struct list_head *)
1551 ((unsigned long)head_page | RB_PAGE_HEAD);
1552
1553 last_page->next = head_page_with_bit;
1554 first_page->prev = prev_page;
1555
1556 r = cmpxchg(&prev_page->next, head_page_with_bit, first_page);
1557
1558 if (r == head_page_with_bit) {
1559 /*
1560 * yay, we replaced the page pointer to our new list,
1561 * now, we just have to update to head page's prev
1562 * pointer to point to end of list
1563 */
1564 head_page->prev = last_page;
1565 success = 1;
1566 break;
1567 }
1568 }
1569
1570 if (success)
1571 INIT_LIST_HEAD(pages);
1572 /*
1573 * If we weren't successful in adding in new pages, warn and stop
1574 * tracing
1575 */
1576 RB_WARN_ON(cpu_buffer, !success);
1577 raw_spin_unlock_irq(&cpu_buffer->reader_lock);
1578
1579 /* free pages if they weren't inserted */
1580 if (!success) {
1581 struct buffer_page *bpage, *tmp;
1582 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1583 list) {
1584 list_del_init(&bpage->list);
1585 free_buffer_page(bpage);
1586 }
1587 }
1588 return success;
1589 }
1590
1591 static void rb_update_pages(struct ring_buffer_per_cpu *cpu_buffer)
1592 {
1593 int success;
1594
1595 if (cpu_buffer->nr_pages_to_update > 0)
1596 success = rb_insert_pages(cpu_buffer);
1597 else
1598 success = rb_remove_pages(cpu_buffer,
1599 -cpu_buffer->nr_pages_to_update);
1600
1601 if (success)
1602 cpu_buffer->nr_pages += cpu_buffer->nr_pages_to_update;
1603 }
1604
1605 static void update_pages_handler(struct work_struct *work)
1606 {
1607 struct ring_buffer_per_cpu *cpu_buffer = container_of(work,
1608 struct ring_buffer_per_cpu, update_pages_work);
1609 rb_update_pages(cpu_buffer);
1610 complete(&cpu_buffer->update_done);
1611 }
1612
1613 /**
1614 * ring_buffer_resize - resize the ring buffer
1615 * @buffer: the buffer to resize.
1616 * @size: the new size.
1617 * @cpu_id: the cpu buffer to resize
1618 *
1619 * Minimum size is 2 * BUF_PAGE_SIZE.
1620 *
1621 * Returns 0 on success and < 0 on failure.
1622 */
1623 int ring_buffer_resize(struct ring_buffer *buffer, unsigned long size,
1624 int cpu_id)
1625 {
1626 struct ring_buffer_per_cpu *cpu_buffer;
1627 unsigned long nr_pages;
1628 int cpu, err = 0;
1629
1630 /*
1631 * Always succeed at resizing a non-existent buffer:
1632 */
1633 if (!buffer)
1634 return size;
1635
1636 /* Make sure the requested buffer exists */
1637 if (cpu_id != RING_BUFFER_ALL_CPUS &&
1638 !cpumask_test_cpu(cpu_id, buffer->cpumask))
1639 return size;
1640
1641 nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1642
1643 /* we need a minimum of two pages */
1644 if (nr_pages < 2)
1645 nr_pages = 2;
1646
1647 size = nr_pages * BUF_PAGE_SIZE;
1648
1649 /*
1650 * Don't succeed if resizing is disabled, as a reader might be
1651 * manipulating the ring buffer and is expecting a sane state while
1652 * this is true.
1653 */
1654 if (atomic_read(&buffer->resize_disabled))
1655 return -EBUSY;
1656
1657 /* prevent another thread from changing buffer sizes */
1658 mutex_lock(&buffer->mutex);
1659
1660 if (cpu_id == RING_BUFFER_ALL_CPUS) {
1661 /* calculate the pages to update */
1662 for_each_buffer_cpu(buffer, cpu) {
1663 cpu_buffer = buffer->buffers[cpu];
1664
1665 cpu_buffer->nr_pages_to_update = nr_pages -
1666 cpu_buffer->nr_pages;
1667 /*
1668 * nothing more to do for removing pages or no update
1669 */
1670 if (cpu_buffer->nr_pages_to_update <= 0)
1671 continue;
1672 /*
1673 * to add pages, make sure all new pages can be
1674 * allocated without receiving ENOMEM
1675 */
1676 INIT_LIST_HEAD(&cpu_buffer->new_pages);
1677 if (__rb_allocate_pages(cpu_buffer->nr_pages_to_update,
1678 &cpu_buffer->new_pages, cpu)) {
1679 /* not enough memory for new pages */
1680 err = -ENOMEM;
1681 goto out_err;
1682 }
1683 }
1684
1685 get_online_cpus();
1686 /*
1687 * Fire off all the required work handlers
1688 * We can't schedule on offline CPUs, but it's not necessary
1689 * since we can change their buffer sizes without any race.
1690 */
1691 for_each_buffer_cpu(buffer, cpu) {
1692 cpu_buffer = buffer->buffers[cpu];
1693 if (!cpu_buffer->nr_pages_to_update)
1694 continue;
1695
1696 /* Can't run something on an offline CPU. */
1697 if (!cpu_online(cpu)) {
1698 rb_update_pages(cpu_buffer);
1699 cpu_buffer->nr_pages_to_update = 0;
1700 } else {
1701 schedule_work_on(cpu,
1702 &cpu_buffer->update_pages_work);
1703 }
1704 }
1705
1706 /* wait for all the updates to complete */
1707 for_each_buffer_cpu(buffer, cpu) {
1708 cpu_buffer = buffer->buffers[cpu];
1709 if (!cpu_buffer->nr_pages_to_update)
1710 continue;
1711
1712 if (cpu_online(cpu))
1713 wait_for_completion(&cpu_buffer->update_done);
1714 cpu_buffer->nr_pages_to_update = 0;
1715 }
1716
1717 put_online_cpus();
1718 } else {
1719 /* Make sure this CPU has been intitialized */
1720 if (!cpumask_test_cpu(cpu_id, buffer->cpumask))
1721 goto out;
1722
1723 cpu_buffer = buffer->buffers[cpu_id];
1724
1725 if (nr_pages == cpu_buffer->nr_pages)
1726 goto out;
1727
1728 cpu_buffer->nr_pages_to_update = nr_pages -
1729 cpu_buffer->nr_pages;
1730
1731 INIT_LIST_HEAD(&cpu_buffer->new_pages);
1732 if (cpu_buffer->nr_pages_to_update > 0 &&
1733 __rb_allocate_pages(cpu_buffer->nr_pages_to_update,
1734 &cpu_buffer->new_pages, cpu_id)) {
1735 err = -ENOMEM;
1736 goto out_err;
1737 }
1738
1739 get_online_cpus();
1740
1741 /* Can't run something on an offline CPU. */
1742 if (!cpu_online(cpu_id))
1743 rb_update_pages(cpu_buffer);
1744 else {
1745 schedule_work_on(cpu_id,
1746 &cpu_buffer->update_pages_work);
1747 wait_for_completion(&cpu_buffer->update_done);
1748 }
1749
1750 cpu_buffer->nr_pages_to_update = 0;
1751 put_online_cpus();
1752 }
1753
1754 out:
1755 /*
1756 * The ring buffer resize can happen with the ring buffer
1757 * enabled, so that the update disturbs the tracing as little
1758 * as possible. But if the buffer is disabled, we do not need
1759 * to worry about that, and we can take the time to verify
1760 * that the buffer is not corrupt.
1761 */
1762 if (atomic_read(&buffer->record_disabled)) {
1763 atomic_inc(&buffer->record_disabled);
1764 /*
1765 * Even though the buffer was disabled, we must make sure
1766 * that it is truly disabled before calling rb_check_pages.
1767 * There could have been a race between checking
1768 * record_disable and incrementing it.
1769 */
1770 synchronize_sched();
1771 for_each_buffer_cpu(buffer, cpu) {
1772 cpu_buffer = buffer->buffers[cpu];
1773 rb_check_pages(cpu_buffer);
1774 }
1775 atomic_dec(&buffer->record_disabled);
1776 }
1777
1778 mutex_unlock(&buffer->mutex);
1779 return size;
1780
1781 out_err:
1782 for_each_buffer_cpu(buffer, cpu) {
1783 struct buffer_page *bpage, *tmp;
1784
1785 cpu_buffer = buffer->buffers[cpu];
1786 cpu_buffer->nr_pages_to_update = 0;
1787
1788 if (list_empty(&cpu_buffer->new_pages))
1789 continue;
1790
1791 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1792 list) {
1793 list_del_init(&bpage->list);
1794 free_buffer_page(bpage);
1795 }
1796 }
1797 mutex_unlock(&buffer->mutex);
1798 return err;
1799 }
1800 EXPORT_SYMBOL_GPL(ring_buffer_resize);
1801
1802 void ring_buffer_change_overwrite(struct ring_buffer *buffer, int val)
1803 {
1804 mutex_lock(&buffer->mutex);
1805 if (val)
1806 buffer->flags |= RB_FL_OVERWRITE;
1807 else
1808 buffer->flags &= ~RB_FL_OVERWRITE;
1809 mutex_unlock(&buffer->mutex);
1810 }
1811 EXPORT_SYMBOL_GPL(ring_buffer_change_overwrite);
1812
1813 static __always_inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
1814 {
1815 return bpage->page->data + index;
1816 }
1817
1818 static __always_inline struct ring_buffer_event *
1819 rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
1820 {
1821 return __rb_page_index(cpu_buffer->reader_page,
1822 cpu_buffer->reader_page->read);
1823 }
1824
1825 static __always_inline struct ring_buffer_event *
1826 rb_iter_head_event(struct ring_buffer_iter *iter)
1827 {
1828 return __rb_page_index(iter->head_page, iter->head);
1829 }
1830
1831 static __always_inline unsigned rb_page_commit(struct buffer_page *bpage)
1832 {
1833 return local_read(&bpage->page->commit);
1834 }
1835
1836 /* Size is determined by what has been committed */
1837 static __always_inline unsigned rb_page_size(struct buffer_page *bpage)
1838 {
1839 return rb_page_commit(bpage);
1840 }
1841
1842 static __always_inline unsigned
1843 rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
1844 {
1845 return rb_page_commit(cpu_buffer->commit_page);
1846 }
1847
1848 static __always_inline unsigned
1849 rb_event_index(struct ring_buffer_event *event)
1850 {
1851 unsigned long addr = (unsigned long)event;
1852
1853 return (addr & ~PAGE_MASK) - BUF_PAGE_HDR_SIZE;
1854 }
1855
1856 static void rb_inc_iter(struct ring_buffer_iter *iter)
1857 {
1858 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
1859
1860 /*
1861 * The iterator could be on the reader page (it starts there).
1862 * But the head could have moved, since the reader was
1863 * found. Check for this case and assign the iterator
1864 * to the head page instead of next.
1865 */
1866 if (iter->head_page == cpu_buffer->reader_page)
1867 iter->head_page = rb_set_head_page(cpu_buffer);
1868 else
1869 rb_inc_page(cpu_buffer, &iter->head_page);
1870
1871 iter->read_stamp = iter->head_page->page->time_stamp;
1872 iter->head = 0;
1873 }
1874
1875 /*
1876 * rb_handle_head_page - writer hit the head page
1877 *
1878 * Returns: +1 to retry page
1879 * 0 to continue
1880 * -1 on error
1881 */
1882 static int
1883 rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer,
1884 struct buffer_page *tail_page,
1885 struct buffer_page *next_page)
1886 {
1887 struct buffer_page *new_head;
1888 int entries;
1889 int type;
1890 int ret;
1891
1892 entries = rb_page_entries(next_page);
1893
1894 /*
1895 * The hard part is here. We need to move the head
1896 * forward, and protect against both readers on
1897 * other CPUs and writers coming in via interrupts.
1898 */
1899 type = rb_head_page_set_update(cpu_buffer, next_page, tail_page,
1900 RB_PAGE_HEAD);
1901
1902 /*
1903 * type can be one of four:
1904 * NORMAL - an interrupt already moved it for us
1905 * HEAD - we are the first to get here.
1906 * UPDATE - we are the interrupt interrupting
1907 * a current move.
1908 * MOVED - a reader on another CPU moved the next
1909 * pointer to its reader page. Give up
1910 * and try again.
1911 */
1912
1913 switch (type) {
1914 case RB_PAGE_HEAD:
1915 /*
1916 * We changed the head to UPDATE, thus
1917 * it is our responsibility to update
1918 * the counters.
1919 */
1920 local_add(entries, &cpu_buffer->overrun);
1921 local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
1922
1923 /*
1924 * The entries will be zeroed out when we move the
1925 * tail page.
1926 */
1927
1928 /* still more to do */
1929 break;
1930
1931 case RB_PAGE_UPDATE:
1932 /*
1933 * This is an interrupt that interrupt the
1934 * previous update. Still more to do.
1935 */
1936 break;
1937 case RB_PAGE_NORMAL:
1938 /*
1939 * An interrupt came in before the update
1940 * and processed this for us.
1941 * Nothing left to do.
1942 */
1943 return 1;
1944 case RB_PAGE_MOVED:
1945 /*
1946 * The reader is on another CPU and just did
1947 * a swap with our next_page.
1948 * Try again.
1949 */
1950 return 1;
1951 default:
1952 RB_WARN_ON(cpu_buffer, 1); /* WTF??? */
1953 return -1;
1954 }
1955
1956 /*
1957 * Now that we are here, the old head pointer is
1958 * set to UPDATE. This will keep the reader from
1959 * swapping the head page with the reader page.
1960 * The reader (on another CPU) will spin till
1961 * we are finished.
1962 *
1963 * We just need to protect against interrupts
1964 * doing the job. We will set the next pointer
1965 * to HEAD. After that, we set the old pointer
1966 * to NORMAL, but only if it was HEAD before.
1967 * otherwise we are an interrupt, and only
1968 * want the outer most commit to reset it.
1969 */
1970 new_head = next_page;
1971 rb_inc_page(cpu_buffer, &new_head);
1972
1973 ret = rb_head_page_set_head(cpu_buffer, new_head, next_page,
1974 RB_PAGE_NORMAL);
1975
1976 /*
1977 * Valid returns are:
1978 * HEAD - an interrupt came in and already set it.
1979 * NORMAL - One of two things:
1980 * 1) We really set it.
1981 * 2) A bunch of interrupts came in and moved
1982 * the page forward again.
1983 */
1984 switch (ret) {
1985 case RB_PAGE_HEAD:
1986 case RB_PAGE_NORMAL:
1987 /* OK */
1988 break;
1989 default:
1990 RB_WARN_ON(cpu_buffer, 1);
1991 return -1;
1992 }
1993
1994 /*
1995 * It is possible that an interrupt came in,
1996 * set the head up, then more interrupts came in
1997 * and moved it again. When we get back here,
1998 * the page would have been set to NORMAL but we
1999 * just set it back to HEAD.
2000 *
2001 * How do you detect this? Well, if that happened
2002 * the tail page would have moved.
2003 */
2004 if (ret == RB_PAGE_NORMAL) {
2005 struct buffer_page *buffer_tail_page;
2006
2007 buffer_tail_page = READ_ONCE(cpu_buffer->tail_page);
2008 /*
2009 * If the tail had moved passed next, then we need
2010 * to reset the pointer.
2011 */
2012 if (buffer_tail_page != tail_page &&
2013 buffer_tail_page != next_page)
2014 rb_head_page_set_normal(cpu_buffer, new_head,
2015 next_page,
2016 RB_PAGE_HEAD);
2017 }
2018
2019 /*
2020 * If this was the outer most commit (the one that
2021 * changed the original pointer from HEAD to UPDATE),
2022 * then it is up to us to reset it to NORMAL.
2023 */
2024 if (type == RB_PAGE_HEAD) {
2025 ret = rb_head_page_set_normal(cpu_buffer, next_page,
2026 tail_page,
2027 RB_PAGE_UPDATE);
2028 if (RB_WARN_ON(cpu_buffer,
2029 ret != RB_PAGE_UPDATE))
2030 return -1;
2031 }
2032
2033 return 0;
2034 }
2035
2036 static inline void
2037 rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer,
2038 unsigned long tail, struct rb_event_info *info)
2039 {
2040 struct buffer_page *tail_page = info->tail_page;
2041 struct ring_buffer_event *event;
2042 unsigned long length = info->length;
2043
2044 /*
2045 * Only the event that crossed the page boundary
2046 * must fill the old tail_page with padding.
2047 */
2048 if (tail >= BUF_PAGE_SIZE) {
2049 /*
2050 * If the page was filled, then we still need
2051 * to update the real_end. Reset it to zero
2052 * and the reader will ignore it.
2053 */
2054 if (tail == BUF_PAGE_SIZE)
2055 tail_page->real_end = 0;
2056
2057 local_sub(length, &tail_page->write);
2058 return;
2059 }
2060
2061 event = __rb_page_index(tail_page, tail);
2062
2063 /* account for padding bytes */
2064 local_add(BUF_PAGE_SIZE - tail, &cpu_buffer->entries_bytes);
2065
2066 /*
2067 * Save the original length to the meta data.
2068 * This will be used by the reader to add lost event
2069 * counter.
2070 */
2071 tail_page->real_end = tail;
2072
2073 /*
2074 * If this event is bigger than the minimum size, then
2075 * we need to be careful that we don't subtract the
2076 * write counter enough to allow another writer to slip
2077 * in on this page.
2078 * We put in a discarded commit instead, to make sure
2079 * that this space is not used again.
2080 *
2081 * If we are less than the minimum size, we don't need to
2082 * worry about it.
2083 */
2084 if (tail > (BUF_PAGE_SIZE - RB_EVNT_MIN_SIZE)) {
2085 /* No room for any events */
2086
2087 /* Mark the rest of the page with padding */
2088 rb_event_set_padding(event);
2089
2090 /* Set the write back to the previous setting */
2091 local_sub(length, &tail_page->write);
2092 return;
2093 }
2094
2095 /* Put in a discarded event */
2096 event->array[0] = (BUF_PAGE_SIZE - tail) - RB_EVNT_HDR_SIZE;
2097 event->type_len = RINGBUF_TYPE_PADDING;
2098 /* time delta must be non zero */
2099 event->time_delta = 1;
2100
2101 /* Set write to end of buffer */
2102 length = (tail + length) - BUF_PAGE_SIZE;
2103 local_sub(length, &tail_page->write);
2104 }
2105
2106 static inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer);
2107
2108 /*
2109 * This is the slow path, force gcc not to inline it.
2110 */
2111 static noinline struct ring_buffer_event *
2112 rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer,
2113 unsigned long tail, struct rb_event_info *info)
2114 {
2115 struct buffer_page *tail_page = info->tail_page;
2116 struct buffer_page *commit_page = cpu_buffer->commit_page;
2117 struct ring_buffer *buffer = cpu_buffer->buffer;
2118 struct buffer_page *next_page;
2119 int ret;
2120
2121 next_page = tail_page;
2122
2123 rb_inc_page(cpu_buffer, &next_page);
2124
2125 /*
2126 * If for some reason, we had an interrupt storm that made
2127 * it all the way around the buffer, bail, and warn
2128 * about it.
2129 */
2130 if (unlikely(next_page == commit_page)) {
2131 local_inc(&cpu_buffer->commit_overrun);
2132 goto out_reset;
2133 }
2134
2135 /*
2136 * This is where the fun begins!
2137 *
2138 * We are fighting against races between a reader that
2139 * could be on another CPU trying to swap its reader
2140 * page with the buffer head.
2141 *
2142 * We are also fighting against interrupts coming in and
2143 * moving the head or tail on us as well.
2144 *
2145 * If the next page is the head page then we have filled
2146 * the buffer, unless the commit page is still on the
2147 * reader page.
2148 */
2149 if (rb_is_head_page(cpu_buffer, next_page, &tail_page->list)) {
2150
2151 /*
2152 * If the commit is not on the reader page, then
2153 * move the header page.
2154 */
2155 if (!rb_is_reader_page(cpu_buffer->commit_page)) {
2156 /*
2157 * If we are not in overwrite mode,
2158 * this is easy, just stop here.
2159 */
2160 if (!(buffer->flags & RB_FL_OVERWRITE)) {
2161 local_inc(&cpu_buffer->dropped_events);
2162 goto out_reset;
2163 }
2164
2165 ret = rb_handle_head_page(cpu_buffer,
2166 tail_page,
2167 next_page);
2168 if (ret < 0)
2169 goto out_reset;
2170 if (ret)
2171 goto out_again;
2172 } else {
2173 /*
2174 * We need to be careful here too. The
2175 * commit page could still be on the reader
2176 * page. We could have a small buffer, and
2177 * have filled up the buffer with events
2178 * from interrupts and such, and wrapped.
2179 *
2180 * Note, if the tail page is also the on the
2181 * reader_page, we let it move out.
2182 */
2183 if (unlikely((cpu_buffer->commit_page !=
2184 cpu_buffer->tail_page) &&
2185 (cpu_buffer->commit_page ==
2186 cpu_buffer->reader_page))) {
2187 local_inc(&cpu_buffer->commit_overrun);
2188 goto out_reset;
2189 }
2190 }
2191 }
2192
2193 rb_tail_page_update(cpu_buffer, tail_page, next_page);
2194
2195 out_again:
2196
2197 rb_reset_tail(cpu_buffer, tail, info);
2198
2199 /* Commit what we have for now. */
2200 rb_end_commit(cpu_buffer);
2201 /* rb_end_commit() decs committing */
2202 local_inc(&cpu_buffer->committing);
2203
2204 /* fail and let the caller try again */
2205 return ERR_PTR(-EAGAIN);
2206
2207 out_reset:
2208 /* reset write */
2209 rb_reset_tail(cpu_buffer, tail, info);
2210
2211 return NULL;
2212 }
2213
2214 /* Slow path, do not inline */
2215 static noinline struct ring_buffer_event *
2216 rb_add_time_stamp(struct ring_buffer_event *event, u64 delta)
2217 {
2218 event->type_len = RINGBUF_TYPE_TIME_EXTEND;
2219
2220 /* Not the first event on the page? */
2221 if (rb_event_index(event)) {
2222 event->time_delta = delta & TS_MASK;
2223 event->array[0] = delta >> TS_SHIFT;
2224 } else {
2225 /* nope, just zero it */
2226 event->time_delta = 0;
2227 event->array[0] = 0;
2228 }
2229
2230 return skip_time_extend(event);
2231 }
2232
2233 static inline bool rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
2234 struct ring_buffer_event *event);
2235
2236 /**
2237 * rb_update_event - update event type and data
2238 * @event: the event to update
2239 * @type: the type of event
2240 * @length: the size of the event field in the ring buffer
2241 *
2242 * Update the type and data fields of the event. The length
2243 * is the actual size that is written to the ring buffer,
2244 * and with this, we can determine what to place into the
2245 * data field.
2246 */
2247 static void
2248 rb_update_event(struct ring_buffer_per_cpu *cpu_buffer,
2249 struct ring_buffer_event *event,
2250 struct rb_event_info *info)
2251 {
2252 unsigned length = info->length;
2253 u64 delta = info->delta;
2254
2255 /* Only a commit updates the timestamp */
2256 if (unlikely(!rb_event_is_commit(cpu_buffer, event)))
2257 delta = 0;
2258
2259 /*
2260 * If we need to add a timestamp, then we
2261 * add it to the start of the resevered space.
2262 */
2263 if (unlikely(info->add_timestamp)) {
2264 event = rb_add_time_stamp(event, delta);
2265 length -= RB_LEN_TIME_EXTEND;
2266 delta = 0;
2267 }
2268
2269 event->time_delta = delta;
2270 length -= RB_EVNT_HDR_SIZE;
2271 if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) {
2272 event->type_len = 0;
2273 event->array[0] = length;
2274 } else
2275 event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT);
2276 }
2277
2278 static unsigned rb_calculate_event_length(unsigned length)
2279 {
2280 struct ring_buffer_event event; /* Used only for sizeof array */
2281
2282 /* zero length can cause confusions */
2283 if (!length)
2284 length++;
2285
2286 if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT)
2287 length += sizeof(event.array[0]);
2288
2289 length += RB_EVNT_HDR_SIZE;
2290 length = ALIGN(length, RB_ARCH_ALIGNMENT);
2291
2292 /*
2293 * In case the time delta is larger than the 27 bits for it
2294 * in the header, we need to add a timestamp. If another
2295 * event comes in when trying to discard this one to increase
2296 * the length, then the timestamp will be added in the allocated
2297 * space of this event. If length is bigger than the size needed
2298 * for the TIME_EXTEND, then padding has to be used. The events
2299 * length must be either RB_LEN_TIME_EXTEND, or greater than or equal
2300 * to RB_LEN_TIME_EXTEND + 8, as 8 is the minimum size for padding.
2301 * As length is a multiple of 4, we only need to worry if it
2302 * is 12 (RB_LEN_TIME_EXTEND + 4).
2303 */
2304 if (length == RB_LEN_TIME_EXTEND + RB_ALIGNMENT)
2305 length += RB_ALIGNMENT;
2306
2307 return length;
2308 }
2309
2310 #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
2311 static inline bool sched_clock_stable(void)
2312 {
2313 return true;
2314 }
2315 #endif
2316
2317 static inline int
2318 rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer,
2319 struct ring_buffer_event *event)
2320 {
2321 unsigned long new_index, old_index;
2322 struct buffer_page *bpage;
2323 unsigned long index;
2324 unsigned long addr;
2325
2326 new_index = rb_event_index(event);
2327 old_index = new_index + rb_event_ts_length(event);
2328 addr = (unsigned long)event;
2329 addr &= PAGE_MASK;
2330
2331 bpage = READ_ONCE(cpu_buffer->tail_page);
2332
2333 if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) {
2334 unsigned long write_mask =
2335 local_read(&bpage->write) & ~RB_WRITE_MASK;
2336 unsigned long event_length = rb_event_length(event);
2337 /*
2338 * This is on the tail page. It is possible that
2339 * a write could come in and move the tail page
2340 * and write to the next page. That is fine
2341 * because we just shorten what is on this page.
2342 */
2343 old_index += write_mask;
2344 new_index += write_mask;
2345 index = local_cmpxchg(&bpage->write, old_index, new_index);
2346 if (index == old_index) {
2347 /* update counters */
2348 local_sub(event_length, &cpu_buffer->entries_bytes);
2349 return 1;
2350 }
2351 }
2352
2353 /* could not discard */
2354 return 0;
2355 }
2356
2357 static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer)
2358 {
2359 local_inc(&cpu_buffer->committing);
2360 local_inc(&cpu_buffer->commits);
2361 }
2362
2363 static __always_inline void
2364 rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
2365 {
2366 unsigned long max_count;
2367
2368 /*
2369 * We only race with interrupts and NMIs on this CPU.
2370 * If we own the commit event, then we can commit
2371 * all others that interrupted us, since the interruptions
2372 * are in stack format (they finish before they come
2373 * back to us). This allows us to do a simple loop to
2374 * assign the commit to the tail.
2375 */
2376 again:
2377 max_count = cpu_buffer->nr_pages * 100;
2378
2379 while (cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page)) {
2380 if (RB_WARN_ON(cpu_buffer, !(--max_count)))
2381 return;
2382 if (RB_WARN_ON(cpu_buffer,
2383 rb_is_reader_page(cpu_buffer->tail_page)))
2384 return;
2385 local_set(&cpu_buffer->commit_page->page->commit,
2386 rb_page_write(cpu_buffer->commit_page));
2387 rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
2388 /* Only update the write stamp if the page has an event */
2389 if (rb_page_write(cpu_buffer->commit_page))
2390 cpu_buffer->write_stamp =
2391 cpu_buffer->commit_page->page->time_stamp;
2392 /* add barrier to keep gcc from optimizing too much */
2393 barrier();
2394 }
2395 while (rb_commit_index(cpu_buffer) !=
2396 rb_page_write(cpu_buffer->commit_page)) {
2397
2398 local_set(&cpu_buffer->commit_page->page->commit,
2399 rb_page_write(cpu_buffer->commit_page));
2400 RB_WARN_ON(cpu_buffer,
2401 local_read(&cpu_buffer->commit_page->page->commit) &
2402 ~RB_WRITE_MASK);
2403 barrier();
2404 }
2405
2406 /* again, keep gcc from optimizing */
2407 barrier();
2408
2409 /*
2410 * If an interrupt came in just after the first while loop
2411 * and pushed the tail page forward, we will be left with
2412 * a dangling commit that will never go forward.
2413 */
2414 if (unlikely(cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page)))
2415 goto again;
2416 }
2417
2418 static __always_inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer)
2419 {
2420 unsigned long commits;
2421
2422 if (RB_WARN_ON(cpu_buffer,
2423 !local_read(&cpu_buffer->committing)))
2424 return;
2425
2426 again:
2427 commits = local_read(&cpu_buffer->commits);
2428 /* synchronize with interrupts */
2429 barrier();
2430 if (local_read(&cpu_buffer->committing) == 1)
2431 rb_set_commit_to_write(cpu_buffer);
2432
2433 local_dec(&cpu_buffer->committing);
2434
2435 /* synchronize with interrupts */
2436 barrier();
2437
2438 /*
2439 * Need to account for interrupts coming in between the
2440 * updating of the commit page and the clearing of the
2441 * committing counter.
2442 */
2443 if (unlikely(local_read(&cpu_buffer->commits) != commits) &&
2444 !local_read(&cpu_buffer->committing)) {
2445 local_inc(&cpu_buffer->committing);
2446 goto again;
2447 }
2448 }
2449
2450 static inline void rb_event_discard(struct ring_buffer_event *event)
2451 {
2452 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
2453 event = skip_time_extend(event);
2454
2455 /* array[0] holds the actual length for the discarded event */
2456 event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE;
2457 event->type_len = RINGBUF_TYPE_PADDING;
2458 /* time delta must be non zero */
2459 if (!event->time_delta)
2460 event->time_delta = 1;
2461 }
2462
2463 static __always_inline bool
2464 rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
2465 struct ring_buffer_event *event)
2466 {
2467 unsigned long addr = (unsigned long)event;
2468 unsigned long index;
2469
2470 index = rb_event_index(event);
2471 addr &= PAGE_MASK;
2472
2473 return cpu_buffer->commit_page->page == (void *)addr &&
2474 rb_commit_index(cpu_buffer) == index;
2475 }
2476
2477 static __always_inline void
2478 rb_update_write_stamp(struct ring_buffer_per_cpu *cpu_buffer,
2479 struct ring_buffer_event *event)
2480 {
2481 u64 delta;
2482
2483 /*
2484 * The event first in the commit queue updates the
2485 * time stamp.
2486 */
2487 if (rb_event_is_commit(cpu_buffer, event)) {
2488 /*
2489 * A commit event that is first on a page
2490 * updates the write timestamp with the page stamp
2491 */
2492 if (!rb_event_index(event))
2493 cpu_buffer->write_stamp =
2494 cpu_buffer->commit_page->page->time_stamp;
2495 else if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) {
2496 delta = event->array[0];
2497 delta <<= TS_SHIFT;
2498 delta += event->time_delta;
2499 cpu_buffer->write_stamp += delta;
2500 } else
2501 cpu_buffer->write_stamp += event->time_delta;
2502 }
2503 }
2504
2505 static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer,
2506 struct ring_buffer_event *event)
2507 {
2508 local_inc(&cpu_buffer->entries);
2509 rb_update_write_stamp(cpu_buffer, event);
2510 rb_end_commit(cpu_buffer);
2511 }
2512
2513 static __always_inline void
2514 rb_wakeups(struct ring_buffer *buffer, struct ring_buffer_per_cpu *cpu_buffer)
2515 {
2516 bool pagebusy;
2517
2518 if (buffer->irq_work.waiters_pending) {
2519 buffer->irq_work.waiters_pending = false;
2520 /* irq_work_queue() supplies it's own memory barriers */
2521 irq_work_queue(&buffer->irq_work.work);
2522 }
2523
2524 if (cpu_buffer->irq_work.waiters_pending) {
2525 cpu_buffer->irq_work.waiters_pending = false;
2526 /* irq_work_queue() supplies it's own memory barriers */
2527 irq_work_queue(&cpu_buffer->irq_work.work);
2528 }
2529
2530 pagebusy = cpu_buffer->reader_page == cpu_buffer->commit_page;
2531
2532 if (!pagebusy && cpu_buffer->irq_work.full_waiters_pending) {
2533 cpu_buffer->irq_work.wakeup_full = true;
2534 cpu_buffer->irq_work.full_waiters_pending = false;
2535 /* irq_work_queue() supplies it's own memory barriers */
2536 irq_work_queue(&cpu_buffer->irq_work.work);
2537 }
2538 }
2539
2540 /*
2541 * The lock and unlock are done within a preempt disable section.
2542 * The current_context per_cpu variable can only be modified
2543 * by the current task between lock and unlock. But it can
2544 * be modified more than once via an interrupt. To pass this
2545 * information from the lock to the unlock without having to
2546 * access the 'in_interrupt()' functions again (which do show
2547 * a bit of overhead in something as critical as function tracing,
2548 * we use a bitmask trick.
2549 *
2550 * bit 0 = NMI context
2551 * bit 1 = IRQ context
2552 * bit 2 = SoftIRQ context
2553 * bit 3 = normal context.
2554 *
2555 * This works because this is the order of contexts that can
2556 * preempt other contexts. A SoftIRQ never preempts an IRQ
2557 * context.
2558 *
2559 * When the context is determined, the corresponding bit is
2560 * checked and set (if it was set, then a recursion of that context
2561 * happened).
2562 *
2563 * On unlock, we need to clear this bit. To do so, just subtract
2564 * 1 from the current_context and AND it to itself.
2565 *
2566 * (binary)
2567 * 101 - 1 = 100
2568 * 101 & 100 = 100 (clearing bit zero)
2569 *
2570 * 1010 - 1 = 1001
2571 * 1010 & 1001 = 1000 (clearing bit 1)
2572 *
2573 * The least significant bit can be cleared this way, and it
2574 * just so happens that it is the same bit corresponding to
2575 * the current context.
2576 */
2577
2578 static __always_inline int
2579 trace_recursive_lock(struct ring_buffer_per_cpu *cpu_buffer)
2580 {
2581 unsigned int val = cpu_buffer->current_context;
2582 unsigned long pc = preempt_count();
2583 int bit;
2584
2585 if (!(pc & (NMI_MASK | HARDIRQ_MASK | SOFTIRQ_OFFSET)))
2586 bit = RB_CTX_NORMAL;
2587 else
2588 bit = pc & NMI_MASK ? RB_CTX_NMI :
2589 pc & HARDIRQ_MASK ? RB_CTX_IRQ : RB_CTX_SOFTIRQ;
2590
2591 if (unlikely(val & (1 << bit)))
2592 return 1;
2593
2594 val |= (1 << bit);
2595 cpu_buffer->current_context = val;
2596
2597 return 0;
2598 }
2599
2600 static __always_inline void
2601 trace_recursive_unlock(struct ring_buffer_per_cpu *cpu_buffer)
2602 {
2603 cpu_buffer->current_context &= cpu_buffer->current_context - 1;
2604 }
2605
2606 /**
2607 * ring_buffer_unlock_commit - commit a reserved
2608 * @buffer: The buffer to commit to
2609 * @event: The event pointer to commit.
2610 *
2611 * This commits the data to the ring buffer, and releases any locks held.
2612 *
2613 * Must be paired with ring_buffer_lock_reserve.
2614 */
2615 int ring_buffer_unlock_commit(struct ring_buffer *buffer,
2616 struct ring_buffer_event *event)
2617 {
2618 struct ring_buffer_per_cpu *cpu_buffer;
2619 int cpu = raw_smp_processor_id();
2620
2621 cpu_buffer = buffer->buffers[cpu];
2622
2623 rb_commit(cpu_buffer, event);
2624
2625 rb_wakeups(buffer, cpu_buffer);
2626
2627 trace_recursive_unlock(cpu_buffer);
2628
2629 preempt_enable_notrace();
2630
2631 return 0;
2632 }
2633 EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit);
2634
2635 static noinline void
2636 rb_handle_timestamp(struct ring_buffer_per_cpu *cpu_buffer,
2637 struct rb_event_info *info)
2638 {
2639 WARN_ONCE(info->delta > (1ULL << 59),
2640 KERN_WARNING "Delta way too big! %llu ts=%llu write stamp = %llu\n%s",
2641 (unsigned long long)info->delta,
2642 (unsigned long long)info->ts,
2643 (unsigned long long)cpu_buffer->write_stamp,
2644 sched_clock_stable() ? "" :
2645 "If you just came from a suspend/resume,\n"
2646 "please switch to the trace global clock:\n"
2647 " echo global > /sys/kernel/debug/tracing/trace_clock\n");
2648 info->add_timestamp = 1;
2649 }
2650
2651 static struct ring_buffer_event *
2652 __rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
2653 struct rb_event_info *info)
2654 {
2655 struct ring_buffer_event *event;
2656 struct buffer_page *tail_page;
2657 unsigned long tail, write;
2658
2659 /*
2660 * If the time delta since the last event is too big to
2661 * hold in the time field of the event, then we append a
2662 * TIME EXTEND event ahead of the data event.
2663 */
2664 if (unlikely(info->add_timestamp))
2665 info->length += RB_LEN_TIME_EXTEND;
2666
2667 /* Don't let the compiler play games with cpu_buffer->tail_page */
2668 tail_page = info->tail_page = READ_ONCE(cpu_buffer->tail_page);
2669 write = local_add_return(info->length, &tail_page->write);
2670
2671 /* set write to only the index of the write */
2672 write &= RB_WRITE_MASK;
2673 tail = write - info->length;
2674
2675 /*
2676 * If this is the first commit on the page, then it has the same
2677 * timestamp as the page itself.
2678 */
2679 if (!tail)
2680 info->delta = 0;
2681
2682 /* See if we shot pass the end of this buffer page */
2683 if (unlikely(write > BUF_PAGE_SIZE))
2684 return rb_move_tail(cpu_buffer, tail, info);
2685
2686 /* We reserved something on the buffer */
2687
2688 event = __rb_page_index(tail_page, tail);
2689 rb_update_event(cpu_buffer, event, info);
2690
2691 local_inc(&tail_page->entries);
2692
2693 /*
2694 * If this is the first commit on the page, then update
2695 * its timestamp.
2696 */
2697 if (!tail)
2698 tail_page->page->time_stamp = info->ts;
2699
2700 /* account for these added bytes */
2701 local_add(info->length, &cpu_buffer->entries_bytes);
2702
2703 return event;
2704 }
2705
2706 static __always_inline struct ring_buffer_event *
2707 rb_reserve_next_event(struct ring_buffer *buffer,
2708 struct ring_buffer_per_cpu *cpu_buffer,
2709 unsigned long length)
2710 {
2711 struct ring_buffer_event *event;
2712 struct rb_event_info info;
2713 int nr_loops = 0;
2714 u64 diff;
2715
2716 rb_start_commit(cpu_buffer);
2717
2718 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
2719 /*
2720 * Due to the ability to swap a cpu buffer from a buffer
2721 * it is possible it was swapped before we committed.
2722 * (committing stops a swap). We check for it here and
2723 * if it happened, we have to fail the write.
2724 */
2725 barrier();
2726 if (unlikely(READ_ONCE(cpu_buffer->buffer) != buffer)) {
2727 local_dec(&cpu_buffer->committing);
2728 local_dec(&cpu_buffer->commits);
2729 return NULL;
2730 }
2731 #endif
2732
2733 info.length = rb_calculate_event_length(length);
2734 again:
2735 info.add_timestamp = 0;
2736 info.delta = 0;
2737
2738 /*
2739 * We allow for interrupts to reenter here and do a trace.
2740 * If one does, it will cause this original code to loop
2741 * back here. Even with heavy interrupts happening, this
2742 * should only happen a few times in a row. If this happens
2743 * 1000 times in a row, there must be either an interrupt
2744 * storm or we have something buggy.
2745 * Bail!
2746 */
2747 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
2748 goto out_fail;
2749
2750 info.ts = rb_time_stamp(cpu_buffer->buffer);
2751 diff = info.ts - cpu_buffer->write_stamp;
2752
2753 /* make sure this diff is calculated here */
2754 barrier();
2755
2756 /* Did the write stamp get updated already? */
2757 if (likely(info.ts >= cpu_buffer->write_stamp)) {
2758 info.delta = diff;
2759 if (unlikely(test_time_stamp(info.delta)))
2760 rb_handle_timestamp(cpu_buffer, &info);
2761 }
2762
2763 event = __rb_reserve_next(cpu_buffer, &info);
2764
2765 if (unlikely(PTR_ERR(event) == -EAGAIN)) {
2766 if (info.add_timestamp)
2767 info.length -= RB_LEN_TIME_EXTEND;
2768 goto again;
2769 }
2770
2771 if (!event)
2772 goto out_fail;
2773
2774 return event;
2775
2776 out_fail:
2777 rb_end_commit(cpu_buffer);
2778 return NULL;
2779 }
2780
2781 /**
2782 * ring_buffer_lock_reserve - reserve a part of the buffer
2783 * @buffer: the ring buffer to reserve from
2784 * @length: the length of the data to reserve (excluding event header)
2785 *
2786 * Returns a reseverd event on the ring buffer to copy directly to.
2787 * The user of this interface will need to get the body to write into
2788 * and can use the ring_buffer_event_data() interface.
2789 *
2790 * The length is the length of the data needed, not the event length
2791 * which also includes the event header.
2792 *
2793 * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
2794 * If NULL is returned, then nothing has been allocated or locked.
2795 */
2796 struct ring_buffer_event *
2797 ring_buffer_lock_reserve(struct ring_buffer *buffer, unsigned long length)
2798 {
2799 struct ring_buffer_per_cpu *cpu_buffer;
2800 struct ring_buffer_event *event;
2801 int cpu;
2802
2803 /* If we are tracing schedule, we don't want to recurse */
2804 preempt_disable_notrace();
2805
2806 if (unlikely(atomic_read(&buffer->record_disabled)))
2807 goto out;
2808
2809 cpu = raw_smp_processor_id();
2810
2811 if (unlikely(!cpumask_test_cpu(cpu, buffer->cpumask)))
2812 goto out;
2813
2814 cpu_buffer = buffer->buffers[cpu];
2815
2816 if (unlikely(atomic_read(&cpu_buffer->record_disabled)))
2817 goto out;
2818
2819 if (unlikely(length > BUF_MAX_DATA_SIZE))
2820 goto out;
2821
2822 if (unlikely(trace_recursive_lock(cpu_buffer)))
2823 goto out;
2824
2825 event = rb_reserve_next_event(buffer, cpu_buffer, length);
2826 if (!event)
2827 goto out_unlock;
2828
2829 return event;
2830
2831 out_unlock:
2832 trace_recursive_unlock(cpu_buffer);
2833 out:
2834 preempt_enable_notrace();
2835 return NULL;
2836 }
2837 EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve);
2838
2839 /*
2840 * Decrement the entries to the page that an event is on.
2841 * The event does not even need to exist, only the pointer
2842 * to the page it is on. This may only be called before the commit
2843 * takes place.
2844 */
2845 static inline void
2846 rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer,
2847 struct ring_buffer_event *event)
2848 {
2849 unsigned long addr = (unsigned long)event;
2850 struct buffer_page *bpage = cpu_buffer->commit_page;
2851 struct buffer_page *start;
2852
2853 addr &= PAGE_MASK;
2854
2855 /* Do the likely case first */
2856 if (likely(bpage->page == (void *)addr)) {
2857 local_dec(&bpage->entries);
2858 return;
2859 }
2860
2861 /*
2862 * Because the commit page may be on the reader page we
2863 * start with the next page and check the end loop there.
2864 */
2865 rb_inc_page(cpu_buffer, &bpage);
2866 start = bpage;
2867 do {
2868 if (bpage->page == (void *)addr) {
2869 local_dec(&bpage->entries);
2870 return;
2871 }
2872 rb_inc_page(cpu_buffer, &bpage);
2873 } while (bpage != start);
2874
2875 /* commit not part of this buffer?? */
2876 RB_WARN_ON(cpu_buffer, 1);
2877 }
2878
2879 /**
2880 * ring_buffer_commit_discard - discard an event that has not been committed
2881 * @buffer: the ring buffer
2882 * @event: non committed event to discard
2883 *
2884 * Sometimes an event that is in the ring buffer needs to be ignored.
2885 * This function lets the user discard an event in the ring buffer
2886 * and then that event will not be read later.
2887 *
2888 * This function only works if it is called before the the item has been
2889 * committed. It will try to free the event from the ring buffer
2890 * if another event has not been added behind it.
2891 *
2892 * If another event has been added behind it, it will set the event
2893 * up as discarded, and perform the commit.
2894 *
2895 * If this function is called, do not call ring_buffer_unlock_commit on
2896 * the event.
2897 */
2898 void ring_buffer_discard_commit(struct ring_buffer *buffer,
2899 struct ring_buffer_event *event)
2900 {
2901 struct ring_buffer_per_cpu *cpu_buffer;
2902 int cpu;
2903
2904 /* The event is discarded regardless */
2905 rb_event_discard(event);
2906
2907 cpu = smp_processor_id();
2908 cpu_buffer = buffer->buffers[cpu];
2909
2910 /*
2911 * This must only be called if the event has not been
2912 * committed yet. Thus we can assume that preemption
2913 * is still disabled.
2914 */
2915 RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing));
2916
2917 rb_decrement_entry(cpu_buffer, event);
2918 if (rb_try_to_discard(cpu_buffer, event))
2919 goto out;
2920
2921 /*
2922 * The commit is still visible by the reader, so we
2923 * must still update the timestamp.
2924 */
2925 rb_update_write_stamp(cpu_buffer, event);
2926 out:
2927 rb_end_commit(cpu_buffer);
2928
2929 trace_recursive_unlock(cpu_buffer);
2930
2931 preempt_enable_notrace();
2932
2933 }
2934 EXPORT_SYMBOL_GPL(ring_buffer_discard_commit);
2935
2936 /**
2937 * ring_buffer_write - write data to the buffer without reserving
2938 * @buffer: The ring buffer to write to.
2939 * @length: The length of the data being written (excluding the event header)
2940 * @data: The data to write to the buffer.
2941 *
2942 * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
2943 * one function. If you already have the data to write to the buffer, it
2944 * may be easier to simply call this function.
2945 *
2946 * Note, like ring_buffer_lock_reserve, the length is the length of the data
2947 * and not the length of the event which would hold the header.
2948 */
2949 int ring_buffer_write(struct ring_buffer *buffer,
2950 unsigned long length,
2951 void *data)
2952 {
2953 struct ring_buffer_per_cpu *cpu_buffer;
2954 struct ring_buffer_event *event;
2955 void *body;
2956 int ret = -EBUSY;
2957 int cpu;
2958
2959 preempt_disable_notrace();
2960
2961 if (atomic_read(&buffer->record_disabled))
2962 goto out;
2963
2964 cpu = raw_smp_processor_id();
2965
2966 if (!cpumask_test_cpu(cpu, buffer->cpumask))
2967 goto out;
2968
2969 cpu_buffer = buffer->buffers[cpu];
2970
2971 if (atomic_read(&cpu_buffer->record_disabled))
2972 goto out;
2973
2974 if (length > BUF_MAX_DATA_SIZE)
2975 goto out;
2976
2977 if (unlikely(trace_recursive_lock(cpu_buffer)))
2978 goto out;
2979
2980 event = rb_reserve_next_event(buffer, cpu_buffer, length);
2981 if (!event)
2982 goto out_unlock;
2983
2984 body = rb_event_data(event);
2985
2986 memcpy(body, data, length);
2987
2988 rb_commit(cpu_buffer, event);
2989
2990 rb_wakeups(buffer, cpu_buffer);
2991
2992 ret = 0;
2993
2994 out_unlock:
2995 trace_recursive_unlock(cpu_buffer);
2996
2997 out:
2998 preempt_enable_notrace();
2999
3000 return ret;
3001 }
3002 EXPORT_SYMBOL_GPL(ring_buffer_write);
3003
3004 static bool rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
3005 {
3006 struct buffer_page *reader = cpu_buffer->reader_page;
3007 struct buffer_page *head = rb_set_head_page(cpu_buffer);
3008 struct buffer_page *commit = cpu_buffer->commit_page;
3009
3010 /* In case of error, head will be NULL */
3011 if (unlikely(!head))
3012 return true;
3013
3014 return reader->read == rb_page_commit(reader) &&
3015 (commit == reader ||
3016 (commit == head &&
3017 head->read == rb_page_commit(commit)));
3018 }
3019
3020 /**
3021 * ring_buffer_record_disable - stop all writes into the buffer
3022 * @buffer: The ring buffer to stop writes to.
3023 *
3024 * This prevents all writes to the buffer. Any attempt to write
3025 * to the buffer after this will fail and return NULL.
3026 *
3027 * The caller should call synchronize_sched() after this.
3028 */
3029 void ring_buffer_record_disable(struct ring_buffer *buffer)
3030 {
3031 atomic_inc(&buffer->record_disabled);
3032 }
3033 EXPORT_SYMBOL_GPL(ring_buffer_record_disable);
3034
3035 /**
3036 * ring_buffer_record_enable - enable writes to the buffer
3037 * @buffer: The ring buffer to enable writes
3038 *
3039 * Note, multiple disables will need the same number of enables
3040 * to truly enable the writing (much like preempt_disable).
3041 */
3042 void ring_buffer_record_enable(struct ring_buffer *buffer)
3043 {
3044 atomic_dec(&buffer->record_disabled);
3045 }
3046 EXPORT_SYMBOL_GPL(ring_buffer_record_enable);
3047
3048 /**
3049 * ring_buffer_record_off - stop all writes into the buffer
3050 * @buffer: The ring buffer to stop writes to.
3051 *
3052 * This prevents all writes to the buffer. Any attempt to write
3053 * to the buffer after this will fail and return NULL.
3054 *
3055 * This is different than ring_buffer_record_disable() as
3056 * it works like an on/off switch, where as the disable() version
3057 * must be paired with a enable().
3058 */
3059 void ring_buffer_record_off(struct ring_buffer *buffer)
3060 {
3061 unsigned int rd;
3062 unsigned int new_rd;
3063
3064 do {
3065 rd = atomic_read(&buffer->record_disabled);
3066 new_rd = rd | RB_BUFFER_OFF;
3067 } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
3068 }
3069 EXPORT_SYMBOL_GPL(ring_buffer_record_off);
3070
3071 /**
3072 * ring_buffer_record_on - restart writes into the buffer
3073 * @buffer: The ring buffer to start writes to.
3074 *
3075 * This enables all writes to the buffer that was disabled by
3076 * ring_buffer_record_off().
3077 *
3078 * This is different than ring_buffer_record_enable() as
3079 * it works like an on/off switch, where as the enable() version
3080 * must be paired with a disable().
3081 */
3082 void ring_buffer_record_on(struct ring_buffer *buffer)
3083 {
3084 unsigned int rd;
3085 unsigned int new_rd;
3086
3087 do {
3088 rd = atomic_read(&buffer->record_disabled);
3089 new_rd = rd & ~RB_BUFFER_OFF;
3090 } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
3091 }
3092 EXPORT_SYMBOL_GPL(ring_buffer_record_on);
3093
3094 /**
3095 * ring_buffer_record_is_on - return true if the ring buffer can write
3096 * @buffer: The ring buffer to see if write is enabled
3097 *
3098 * Returns true if the ring buffer is in a state that it accepts writes.
3099 */
3100 int ring_buffer_record_is_on(struct ring_buffer *buffer)
3101 {
3102 return !atomic_read(&buffer->record_disabled);
3103 }
3104
3105 /**
3106 * ring_buffer_record_is_set_on - return true if the ring buffer is set writable
3107 * @buffer: The ring buffer to see if write is set enabled
3108 *
3109 * Returns true if the ring buffer is set writable by ring_buffer_record_on().
3110 * Note that this does NOT mean it is in a writable state.
3111 *
3112 * It may return true when the ring buffer has been disabled by
3113 * ring_buffer_record_disable(), as that is a temporary disabling of
3114 * the ring buffer.
3115 */
3116 int ring_buffer_record_is_set_on(struct ring_buffer *buffer)
3117 {
3118 return !(atomic_read(&buffer->record_disabled) & RB_BUFFER_OFF);
3119 }
3120
3121 /**
3122 * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
3123 * @buffer: The ring buffer to stop writes to.
3124 * @cpu: The CPU buffer to stop
3125 *
3126 * This prevents all writes to the buffer. Any attempt to write
3127 * to the buffer after this will fail and return NULL.
3128 *
3129 * The caller should call synchronize_sched() after this.
3130 */
3131 void ring_buffer_record_disable_cpu(struct ring_buffer *buffer, int cpu)
3132 {
3133 struct ring_buffer_per_cpu *cpu_buffer;
3134
3135 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3136 return;
3137
3138 cpu_buffer = buffer->buffers[cpu];
3139 atomic_inc(&cpu_buffer->record_disabled);
3140 }
3141 EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu);
3142
3143 /**
3144 * ring_buffer_record_enable_cpu - enable writes to the buffer
3145 * @buffer: The ring buffer to enable writes
3146 * @cpu: The CPU to enable.
3147 *
3148 * Note, multiple disables will need the same number of enables
3149 * to truly enable the writing (much like preempt_disable).
3150 */
3151 void ring_buffer_record_enable_cpu(struct ring_buffer *buffer, int cpu)
3152 {
3153 struct ring_buffer_per_cpu *cpu_buffer;
3154
3155 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3156 return;
3157
3158 cpu_buffer = buffer->buffers[cpu];
3159 atomic_dec(&cpu_buffer->record_disabled);
3160 }
3161 EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu);
3162
3163 /*
3164 * The total entries in the ring buffer is the running counter
3165 * of entries entered into the ring buffer, minus the sum of
3166 * the entries read from the ring buffer and the number of
3167 * entries that were overwritten.
3168 */
3169 static inline unsigned long
3170 rb_num_of_entries(struct ring_buffer_per_cpu *cpu_buffer)
3171 {
3172 return local_read(&cpu_buffer->entries) -
3173 (local_read(&cpu_buffer->overrun) + cpu_buffer->read);
3174 }
3175
3176 /**
3177 * ring_buffer_oldest_event_ts - get the oldest event timestamp from the buffer
3178 * @buffer: The ring buffer
3179 * @cpu: The per CPU buffer to read from.
3180 */
3181 u64 ring_buffer_oldest_event_ts(struct ring_buffer *buffer, int cpu)
3182 {
3183 unsigned long flags;
3184 struct ring_buffer_per_cpu *cpu_buffer;
3185 struct buffer_page *bpage;
3186 u64 ret = 0;
3187
3188 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3189 return 0;
3190
3191 cpu_buffer = buffer->buffers[cpu];
3192 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3193 /*
3194 * if the tail is on reader_page, oldest time stamp is on the reader
3195 * page
3196 */
3197 if (cpu_buffer->tail_page == cpu_buffer->reader_page)
3198 bpage = cpu_buffer->reader_page;
3199 else
3200 bpage = rb_set_head_page(cpu_buffer);
3201 if (bpage)
3202 ret = bpage->page->time_stamp;
3203 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3204
3205 return ret;
3206 }
3207 EXPORT_SYMBOL_GPL(ring_buffer_oldest_event_ts);
3208
3209 /**
3210 * ring_buffer_bytes_cpu - get the number of bytes consumed in a cpu buffer
3211 * @buffer: The ring buffer
3212 * @cpu: The per CPU buffer to read from.
3213 */
3214 unsigned long ring_buffer_bytes_cpu(struct ring_buffer *buffer, int cpu)
3215 {
3216 struct ring_buffer_per_cpu *cpu_buffer;
3217 unsigned long ret;
3218
3219 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3220 return 0;
3221
3222 cpu_buffer = buffer->buffers[cpu];
3223 ret = local_read(&cpu_buffer->entries_bytes) - cpu_buffer->read_bytes;
3224
3225 return ret;
3226 }
3227 EXPORT_SYMBOL_GPL(ring_buffer_bytes_cpu);
3228
3229 /**
3230 * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
3231 * @buffer: The ring buffer
3232 * @cpu: The per CPU buffer to get the entries from.
3233 */
3234 unsigned long ring_buffer_entries_cpu(struct ring_buffer *buffer, int cpu)
3235 {
3236 struct ring_buffer_per_cpu *cpu_buffer;
3237
3238 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3239 return 0;
3240
3241 cpu_buffer = buffer->buffers[cpu];
3242
3243 return rb_num_of_entries(cpu_buffer);
3244 }
3245 EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu);
3246
3247 /**
3248 * ring_buffer_overrun_cpu - get the number of overruns caused by the ring
3249 * buffer wrapping around (only if RB_FL_OVERWRITE is on).
3250 * @buffer: The ring buffer
3251 * @cpu: The per CPU buffer to get the number of overruns from
3252 */
3253 unsigned long ring_buffer_overrun_cpu(struct ring_buffer *buffer, int cpu)
3254 {
3255 struct ring_buffer_per_cpu *cpu_buffer;
3256 unsigned long ret;
3257
3258 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3259 return 0;
3260
3261 cpu_buffer = buffer->buffers[cpu];
3262 ret = local_read(&cpu_buffer->overrun);
3263
3264 return ret;
3265 }
3266 EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu);
3267
3268 /**
3269 * ring_buffer_commit_overrun_cpu - get the number of overruns caused by
3270 * commits failing due to the buffer wrapping around while there are uncommitted
3271 * events, such as during an interrupt storm.
3272 * @buffer: The ring buffer
3273 * @cpu: The per CPU buffer to get the number of overruns from
3274 */
3275 unsigned long
3276 ring_buffer_commit_overrun_cpu(struct ring_buffer *buffer, int cpu)
3277 {
3278 struct ring_buffer_per_cpu *cpu_buffer;
3279 unsigned long ret;
3280
3281 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3282 return 0;
3283
3284 cpu_buffer = buffer->buffers[cpu];
3285 ret = local_read(&cpu_buffer->commit_overrun);
3286
3287 return ret;
3288 }
3289 EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu);
3290
3291 /**
3292 * ring_buffer_dropped_events_cpu - get the number of dropped events caused by
3293 * the ring buffer filling up (only if RB_FL_OVERWRITE is off).
3294 * @buffer: The ring buffer
3295 * @cpu: The per CPU buffer to get the number of overruns from
3296 */
3297 unsigned long
3298 ring_buffer_dropped_events_cpu(struct ring_buffer *buffer, int cpu)
3299 {
3300 struct ring_buffer_per_cpu *cpu_buffer;
3301 unsigned long ret;
3302
3303 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3304 return 0;
3305
3306 cpu_buffer = buffer->buffers[cpu];
3307 ret = local_read(&cpu_buffer->dropped_events);
3308
3309 return ret;
3310 }
3311 EXPORT_SYMBOL_GPL(ring_buffer_dropped_events_cpu);
3312
3313 /**
3314 * ring_buffer_read_events_cpu - get the number of events successfully read
3315 * @buffer: The ring buffer
3316 * @cpu: The per CPU buffer to get the number of events read
3317 */
3318 unsigned long
3319 ring_buffer_read_events_cpu(struct ring_buffer *buffer, int cpu)
3320 {
3321 struct ring_buffer_per_cpu *cpu_buffer;
3322
3323 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3324 return 0;
3325
3326 cpu_buffer = buffer->buffers[cpu];
3327 return cpu_buffer->read;
3328 }
3329 EXPORT_SYMBOL_GPL(ring_buffer_read_events_cpu);
3330
3331 /**
3332 * ring_buffer_entries - get the number of entries in a buffer
3333 * @buffer: The ring buffer
3334 *
3335 * Returns the total number of entries in the ring buffer
3336 * (all CPU entries)
3337 */
3338 unsigned long ring_buffer_entries(struct ring_buffer *buffer)
3339 {
3340 struct ring_buffer_per_cpu *cpu_buffer;
3341 unsigned long entries = 0;
3342 int cpu;
3343
3344 /* if you care about this being correct, lock the buffer */
3345 for_each_buffer_cpu(buffer, cpu) {
3346 cpu_buffer = buffer->buffers[cpu];
3347 entries += rb_num_of_entries(cpu_buffer);
3348 }
3349
3350 return entries;
3351 }
3352 EXPORT_SYMBOL_GPL(ring_buffer_entries);
3353
3354 /**
3355 * ring_buffer_overruns - get the number of overruns in buffer
3356 * @buffer: The ring buffer
3357 *
3358 * Returns the total number of overruns in the ring buffer
3359 * (all CPU entries)
3360 */
3361 unsigned long ring_buffer_overruns(struct ring_buffer *buffer)
3362 {
3363 struct ring_buffer_per_cpu *cpu_buffer;
3364 unsigned long overruns = 0;
3365 int cpu;
3366
3367 /* if you care about this being correct, lock the buffer */
3368 for_each_buffer_cpu(buffer, cpu) {
3369 cpu_buffer = buffer->buffers[cpu];
3370 overruns += local_read(&cpu_buffer->overrun);
3371 }
3372
3373 return overruns;
3374 }
3375 EXPORT_SYMBOL_GPL(ring_buffer_overruns);
3376
3377 static void rb_iter_reset(struct ring_buffer_iter *iter)
3378 {
3379 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3380
3381 /* Iterator usage is expected to have record disabled */
3382 iter->head_page = cpu_buffer->reader_page;
3383 iter->head = cpu_buffer->reader_page->read;
3384
3385 iter->cache_reader_page = iter->head_page;
3386 iter->cache_read = cpu_buffer->read;
3387
3388 if (iter->head)
3389 iter->read_stamp = cpu_buffer->read_stamp;
3390 else
3391 iter->read_stamp = iter->head_page->page->time_stamp;
3392 }
3393
3394 /**
3395 * ring_buffer_iter_reset - reset an iterator
3396 * @iter: The iterator to reset
3397 *
3398 * Resets the iterator, so that it will start from the beginning
3399 * again.
3400 */
3401 void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
3402 {
3403 struct ring_buffer_per_cpu *cpu_buffer;
3404 unsigned long flags;
3405
3406 if (!iter)
3407 return;
3408
3409 cpu_buffer = iter->cpu_buffer;
3410
3411 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3412 rb_iter_reset(iter);
3413 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3414 }
3415 EXPORT_SYMBOL_GPL(ring_buffer_iter_reset);
3416
3417 /**
3418 * ring_buffer_iter_empty - check if an iterator has no more to read
3419 * @iter: The iterator to check
3420 */
3421 int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
3422 {
3423 struct ring_buffer_per_cpu *cpu_buffer;
3424 struct buffer_page *reader;
3425 struct buffer_page *head_page;
3426 struct buffer_page *commit_page;
3427 unsigned commit;
3428
3429 cpu_buffer = iter->cpu_buffer;
3430
3431 /* Remember, trace recording is off when iterator is in use */
3432 reader = cpu_buffer->reader_page;
3433 head_page = cpu_buffer->head_page;
3434 commit_page = cpu_buffer->commit_page;
3435 commit = rb_page_commit(commit_page);
3436
3437 return ((iter->head_page == commit_page && iter->head == commit) ||
3438 (iter->head_page == reader && commit_page == head_page &&
3439 head_page->read == commit &&
3440 iter->head == rb_page_commit(cpu_buffer->reader_page)));
3441 }
3442 EXPORT_SYMBOL_GPL(ring_buffer_iter_empty);
3443
3444 static void
3445 rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
3446 struct ring_buffer_event *event)
3447 {
3448 u64 delta;
3449
3450 switch (event->type_len) {
3451 case RINGBUF_TYPE_PADDING:
3452 return;
3453
3454 case RINGBUF_TYPE_TIME_EXTEND:
3455 delta = event->array[0];
3456 delta <<= TS_SHIFT;
3457 delta += event->time_delta;
3458 cpu_buffer->read_stamp += delta;
3459 return;
3460
3461 case RINGBUF_TYPE_TIME_STAMP:
3462 /* FIXME: not implemented */
3463 return;
3464
3465 case RINGBUF_TYPE_DATA:
3466 cpu_buffer->read_stamp += event->time_delta;
3467 return;
3468
3469 default:
3470 BUG();
3471 }
3472 return;
3473 }
3474
3475 static void
3476 rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
3477 struct ring_buffer_event *event)
3478 {
3479 u64 delta;
3480
3481 switch (event->type_len) {
3482 case RINGBUF_TYPE_PADDING:
3483 return;
3484
3485 case RINGBUF_TYPE_TIME_EXTEND:
3486 delta = event->array[0];
3487 delta <<= TS_SHIFT;
3488 delta += event->time_delta;
3489 iter->read_stamp += delta;
3490 return;
3491
3492 case RINGBUF_TYPE_TIME_STAMP:
3493 /* FIXME: not implemented */
3494 return;
3495
3496 case RINGBUF_TYPE_DATA:
3497 iter->read_stamp += event->time_delta;
3498 return;
3499
3500 default:
3501 BUG();
3502 }
3503 return;
3504 }
3505
3506 static struct buffer_page *
3507 rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
3508 {
3509 struct buffer_page *reader = NULL;
3510 unsigned long overwrite;
3511 unsigned long flags;
3512 int nr_loops = 0;
3513 int ret;
3514
3515 local_irq_save(flags);
3516 arch_spin_lock(&cpu_buffer->lock);
3517
3518 again:
3519 /*
3520 * This should normally only loop twice. But because the
3521 * start of the reader inserts an empty page, it causes
3522 * a case where we will loop three times. There should be no
3523 * reason to loop four times (that I know of).
3524 */
3525 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
3526 reader = NULL;
3527 goto out;
3528 }
3529
3530 reader = cpu_buffer->reader_page;
3531
3532 /* If there's more to read, return this page */
3533 if (cpu_buffer->reader_page->read < rb_page_size(reader))
3534 goto out;
3535
3536 /* Never should we have an index greater than the size */
3537 if (RB_WARN_ON(cpu_buffer,
3538 cpu_buffer->reader_page->read > rb_page_size(reader)))
3539 goto out;
3540
3541 /* check if we caught up to the tail */
3542 reader = NULL;
3543 if (cpu_buffer->commit_page == cpu_buffer->reader_page)
3544 goto out;
3545
3546 /* Don't bother swapping if the ring buffer is empty */
3547 if (rb_num_of_entries(cpu_buffer) == 0)
3548 goto out;
3549
3550 /*
3551 * Reset the reader page to size zero.
3552 */
3553 local_set(&cpu_buffer->reader_page->write, 0);
3554 local_set(&cpu_buffer->reader_page->entries, 0);
3555 local_set(&cpu_buffer->reader_page->page->commit, 0);
3556 cpu_buffer->reader_page->real_end = 0;
3557
3558 spin:
3559 /*
3560 * Splice the empty reader page into the list around the head.
3561 */
3562 reader = rb_set_head_page(cpu_buffer);
3563 if (!reader)
3564 goto out;
3565 cpu_buffer->reader_page->list.next = rb_list_head(reader->list.next);
3566 cpu_buffer->reader_page->list.prev = reader->list.prev;
3567
3568 /*
3569 * cpu_buffer->pages just needs to point to the buffer, it
3570 * has no specific buffer page to point to. Lets move it out
3571 * of our way so we don't accidentally swap it.
3572 */
3573 cpu_buffer->pages = reader->list.prev;
3574
3575 /* The reader page will be pointing to the new head */
3576 rb_set_list_to_head(cpu_buffer, &cpu_buffer->reader_page->list);
3577
3578 /*
3579 * We want to make sure we read the overruns after we set up our
3580 * pointers to the next object. The writer side does a
3581 * cmpxchg to cross pages which acts as the mb on the writer
3582 * side. Note, the reader will constantly fail the swap
3583 * while the writer is updating the pointers, so this
3584 * guarantees that the overwrite recorded here is the one we
3585 * want to compare with the last_overrun.
3586 */
3587 smp_mb();
3588 overwrite = local_read(&(cpu_buffer->overrun));
3589
3590 /*
3591 * Here's the tricky part.
3592 *
3593 * We need to move the pointer past the header page.
3594 * But we can only do that if a writer is not currently
3595 * moving it. The page before the header page has the
3596 * flag bit '1' set if it is pointing to the page we want.
3597 * but if the writer is in the process of moving it
3598 * than it will be '2' or already moved '0'.
3599 */
3600
3601 ret = rb_head_page_replace(reader, cpu_buffer->reader_page);
3602
3603 /*
3604 * If we did not convert it, then we must try again.
3605 */
3606 if (!ret)
3607 goto spin;
3608
3609 /*
3610 * Yeah! We succeeded in replacing the page.
3611 *
3612 * Now make the new head point back to the reader page.
3613 */
3614 rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list;
3615 rb_inc_page(cpu_buffer, &cpu_buffer->head_page);
3616
3617 /* Finally update the reader page to the new head */
3618 cpu_buffer->reader_page = reader;
3619 cpu_buffer->reader_page->read = 0;
3620
3621 if (overwrite != cpu_buffer->last_overrun) {
3622 cpu_buffer->lost_events = overwrite - cpu_buffer->last_overrun;
3623 cpu_buffer->last_overrun = overwrite;
3624 }
3625
3626 goto again;
3627
3628 out:
3629 /* Update the read_stamp on the first event */
3630 if (reader && reader->read == 0)
3631 cpu_buffer->read_stamp = reader->page->time_stamp;
3632
3633 arch_spin_unlock(&cpu_buffer->lock);
3634 local_irq_restore(flags);
3635
3636 return reader;
3637 }
3638
3639 static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
3640 {
3641 struct ring_buffer_event *event;
3642 struct buffer_page *reader;
3643 unsigned length;
3644
3645 reader = rb_get_reader_page(cpu_buffer);
3646
3647 /* This function should not be called when buffer is empty */
3648 if (RB_WARN_ON(cpu_buffer, !reader))
3649 return;
3650
3651 event = rb_reader_event(cpu_buffer);
3652
3653 if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
3654 cpu_buffer->read++;
3655
3656 rb_update_read_stamp(cpu_buffer, event);
3657
3658 length = rb_event_length(event);
3659 cpu_buffer->reader_page->read += length;
3660 }
3661
3662 static void rb_advance_iter(struct ring_buffer_iter *iter)
3663 {
3664 struct ring_buffer_per_cpu *cpu_buffer;
3665 struct ring_buffer_event *event;
3666 unsigned length;
3667
3668 cpu_buffer = iter->cpu_buffer;
3669
3670 /*
3671 * Check if we are at the end of the buffer.
3672 */
3673 if (iter->head >= rb_page_size(iter->head_page)) {
3674 /* discarded commits can make the page empty */
3675 if (iter->head_page == cpu_buffer->commit_page)
3676 return;
3677 rb_inc_iter(iter);
3678 return;
3679 }
3680
3681 event = rb_iter_head_event(iter);
3682
3683 length = rb_event_length(event);
3684
3685 /*
3686 * This should not be called to advance the header if we are
3687 * at the tail of the buffer.
3688 */
3689 if (RB_WARN_ON(cpu_buffer,
3690 (iter->head_page == cpu_buffer->commit_page) &&
3691 (iter->head + length > rb_commit_index(cpu_buffer))))
3692 return;
3693
3694 rb_update_iter_read_stamp(iter, event);
3695
3696 iter->head += length;
3697
3698 /* check for end of page padding */
3699 if ((iter->head >= rb_page_size(iter->head_page)) &&
3700 (iter->head_page != cpu_buffer->commit_page))
3701 rb_inc_iter(iter);
3702 }
3703
3704 static int rb_lost_events(struct ring_buffer_per_cpu *cpu_buffer)
3705 {
3706 return cpu_buffer->lost_events;
3707 }
3708
3709 static struct ring_buffer_event *
3710 rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts,
3711 unsigned long *lost_events)
3712 {
3713 struct ring_buffer_event *event;
3714 struct buffer_page *reader;
3715 int nr_loops = 0;
3716
3717 again:
3718 /*
3719 * We repeat when a time extend is encountered.
3720 * Since the time extend is always attached to a data event,
3721 * we should never loop more than once.
3722 * (We never hit the following condition more than twice).
3723 */
3724 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2))
3725 return NULL;
3726
3727 reader = rb_get_reader_page(cpu_buffer);
3728 if (!reader)
3729 return NULL;
3730
3731 event = rb_reader_event(cpu_buffer);
3732
3733 switch (event->type_len) {
3734 case RINGBUF_TYPE_PADDING:
3735 if (rb_null_event(event))
3736 RB_WARN_ON(cpu_buffer, 1);
3737 /*
3738 * Because the writer could be discarding every
3739 * event it creates (which would probably be bad)
3740 * if we were to go back to "again" then we may never
3741 * catch up, and will trigger the warn on, or lock
3742 * the box. Return the padding, and we will release
3743 * the current locks, and try again.
3744 */
3745 return event;
3746
3747 case RINGBUF_TYPE_TIME_EXTEND:
3748 /* Internal data, OK to advance */
3749 rb_advance_reader(cpu_buffer);
3750 goto again;
3751
3752 case RINGBUF_TYPE_TIME_STAMP:
3753 /* FIXME: not implemented */
3754 rb_advance_reader(cpu_buffer);
3755 goto again;
3756
3757 case RINGBUF_TYPE_DATA:
3758 if (ts) {
3759 *ts = cpu_buffer->read_stamp + event->time_delta;
3760 ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
3761 cpu_buffer->cpu, ts);
3762 }
3763 if (lost_events)
3764 *lost_events = rb_lost_events(cpu_buffer);
3765 return event;
3766
3767 default:
3768 BUG();
3769 }
3770
3771 return NULL;
3772 }
3773 EXPORT_SYMBOL_GPL(ring_buffer_peek);
3774
3775 static struct ring_buffer_event *
3776 rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
3777 {
3778 struct ring_buffer *buffer;
3779 struct ring_buffer_per_cpu *cpu_buffer;
3780 struct ring_buffer_event *event;
3781 int nr_loops = 0;
3782
3783 cpu_buffer = iter->cpu_buffer;
3784 buffer = cpu_buffer->buffer;
3785
3786 /*
3787 * Check if someone performed a consuming read to
3788 * the buffer. A consuming read invalidates the iterator
3789 * and we need to reset the iterator in this case.
3790 */
3791 if (unlikely(iter->cache_read != cpu_buffer->read ||
3792 iter->cache_reader_page != cpu_buffer->reader_page))
3793 rb_iter_reset(iter);
3794
3795 again:
3796 if (ring_buffer_iter_empty(iter))
3797 return NULL;
3798
3799 /*
3800 * We repeat when a time extend is encountered or we hit
3801 * the end of the page. Since the time extend is always attached
3802 * to a data event, we should never loop more than three times.
3803 * Once for going to next page, once on time extend, and
3804 * finally once to get the event.
3805 * (We never hit the following condition more than thrice).
3806 */
3807 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3))
3808 return NULL;
3809
3810 if (rb_per_cpu_empty(cpu_buffer))
3811 return NULL;
3812
3813 if (iter->head >= rb_page_size(iter->head_page)) {
3814 rb_inc_iter(iter);
3815 goto again;
3816 }
3817
3818 event = rb_iter_head_event(iter);
3819
3820 switch (event->type_len) {
3821 case RINGBUF_TYPE_PADDING:
3822 if (rb_null_event(event)) {
3823 rb_inc_iter(iter);
3824 goto again;
3825 }
3826 rb_advance_iter(iter);
3827 return event;
3828
3829 case RINGBUF_TYPE_TIME_EXTEND:
3830 /* Internal data, OK to advance */
3831 rb_advance_iter(iter);
3832 goto again;
3833
3834 case RINGBUF_TYPE_TIME_STAMP:
3835 /* FIXME: not implemented */
3836 rb_advance_iter(iter);
3837 goto again;
3838
3839 case RINGBUF_TYPE_DATA:
3840 if (ts) {
3841 *ts = iter->read_stamp + event->time_delta;
3842 ring_buffer_normalize_time_stamp(buffer,
3843 cpu_buffer->cpu, ts);
3844 }
3845 return event;
3846
3847 default:
3848 BUG();
3849 }
3850
3851 return NULL;
3852 }
3853 EXPORT_SYMBOL_GPL(ring_buffer_iter_peek);
3854
3855 static inline bool rb_reader_lock(struct ring_buffer_per_cpu *cpu_buffer)
3856 {
3857 if (likely(!in_nmi())) {
3858 raw_spin_lock(&cpu_buffer->reader_lock);
3859 return true;
3860 }
3861
3862 /*
3863 * If an NMI die dumps out the content of the ring buffer
3864 * trylock must be used to prevent a deadlock if the NMI
3865 * preempted a task that holds the ring buffer locks. If
3866 * we get the lock then all is fine, if not, then continue
3867 * to do the read, but this can corrupt the ring buffer,
3868 * so it must be permanently disabled from future writes.
3869 * Reading from NMI is a oneshot deal.
3870 */
3871 if (raw_spin_trylock(&cpu_buffer->reader_lock))
3872 return true;
3873
3874 /* Continue without locking, but disable the ring buffer */
3875 atomic_inc(&cpu_buffer->record_disabled);
3876 return false;
3877 }
3878
3879 static inline void
3880 rb_reader_unlock(struct ring_buffer_per_cpu *cpu_buffer, bool locked)
3881 {
3882 if (likely(locked))
3883 raw_spin_unlock(&cpu_buffer->reader_lock);
3884 return;
3885 }
3886
3887 /**
3888 * ring_buffer_peek - peek at the next event to be read
3889 * @buffer: The ring buffer to read
3890 * @cpu: The cpu to peak at
3891 * @ts: The timestamp counter of this event.
3892 * @lost_events: a variable to store if events were lost (may be NULL)
3893 *
3894 * This will return the event that will be read next, but does
3895 * not consume the data.
3896 */
3897 struct ring_buffer_event *
3898 ring_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts,
3899 unsigned long *lost_events)
3900 {
3901 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
3902 struct ring_buffer_event *event;
3903 unsigned long flags;
3904 bool dolock;
3905
3906 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3907 return NULL;
3908
3909 again:
3910 local_irq_save(flags);
3911 dolock = rb_reader_lock(cpu_buffer);
3912 event = rb_buffer_peek(cpu_buffer, ts, lost_events);
3913 if (event && event->type_len == RINGBUF_TYPE_PADDING)
3914 rb_advance_reader(cpu_buffer);
3915 rb_reader_unlock(cpu_buffer, dolock);
3916 local_irq_restore(flags);
3917
3918 if (event && event->type_len == RINGBUF_TYPE_PADDING)
3919 goto again;
3920
3921 return event;
3922 }
3923
3924 /**
3925 * ring_buffer_iter_peek - peek at the next event to be read
3926 * @iter: The ring buffer iterator
3927 * @ts: The timestamp counter of this event.
3928 *
3929 * This will return the event that will be read next, but does
3930 * not increment the iterator.
3931 */
3932 struct ring_buffer_event *
3933 ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
3934 {
3935 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3936 struct ring_buffer_event *event;
3937 unsigned long flags;
3938
3939 again:
3940 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3941 event = rb_iter_peek(iter, ts);
3942 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3943
3944 if (event && event->type_len == RINGBUF_TYPE_PADDING)
3945 goto again;
3946
3947 return event;
3948 }
3949
3950 /**
3951 * ring_buffer_consume - return an event and consume it
3952 * @buffer: The ring buffer to get the next event from
3953 * @cpu: the cpu to read the buffer from
3954 * @ts: a variable to store the timestamp (may be NULL)
3955 * @lost_events: a variable to store if events were lost (may be NULL)
3956 *
3957 * Returns the next event in the ring buffer, and that event is consumed.
3958 * Meaning, that sequential reads will keep returning a different event,
3959 * and eventually empty the ring buffer if the producer is slower.
3960 */
3961 struct ring_buffer_event *
3962 ring_buffer_consume(struct ring_buffer *buffer, int cpu, u64 *ts,
3963 unsigned long *lost_events)
3964 {
3965 struct ring_buffer_per_cpu *cpu_buffer;
3966 struct ring_buffer_event *event = NULL;
3967 unsigned long flags;
3968 bool dolock;
3969
3970 again:
3971 /* might be called in atomic */
3972 preempt_disable();
3973
3974 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3975 goto out;
3976
3977 cpu_buffer = buffer->buffers[cpu];
3978 local_irq_save(flags);
3979 dolock = rb_reader_lock(cpu_buffer);
3980
3981 event = rb_buffer_peek(cpu_buffer, ts, lost_events);
3982 if (event) {
3983 cpu_buffer->lost_events = 0;
3984 rb_advance_reader(cpu_buffer);
3985 }
3986
3987 rb_reader_unlock(cpu_buffer, dolock);
3988 local_irq_restore(flags);
3989
3990 out:
3991 preempt_enable();
3992
3993 if (event && event->type_len == RINGBUF_TYPE_PADDING)
3994 goto again;
3995
3996 return event;
3997 }
3998 EXPORT_SYMBOL_GPL(ring_buffer_consume);
3999
4000 /**
4001 * ring_buffer_read_prepare - Prepare for a non consuming read of the buffer
4002 * @buffer: The ring buffer to read from
4003 * @cpu: The cpu buffer to iterate over
4004 * @flags: gfp flags to use for memory allocation
4005 *
4006 * This performs the initial preparations necessary to iterate
4007 * through the buffer. Memory is allocated, buffer recording
4008 * is disabled, and the iterator pointer is returned to the caller.
4009 *
4010 * Disabling buffer recordng prevents the reading from being
4011 * corrupted. This is not a consuming read, so a producer is not
4012 * expected.
4013 *
4014 * After a sequence of ring_buffer_read_prepare calls, the user is
4015 * expected to make at least one call to ring_buffer_read_prepare_sync.
4016 * Afterwards, ring_buffer_read_start is invoked to get things going
4017 * for real.
4018 *
4019 * This overall must be paired with ring_buffer_read_finish.
4020 */
4021 struct ring_buffer_iter *
4022 ring_buffer_read_prepare(struct ring_buffer *buffer, int cpu, gfp_t flags)
4023 {
4024 struct ring_buffer_per_cpu *cpu_buffer;
4025 struct ring_buffer_iter *iter;
4026
4027 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4028 return NULL;
4029
4030 iter = kmalloc(sizeof(*iter), flags);
4031 if (!iter)
4032 return NULL;
4033
4034 cpu_buffer = buffer->buffers[cpu];
4035
4036 iter->cpu_buffer = cpu_buffer;
4037
4038 atomic_inc(&buffer->resize_disabled);
4039 atomic_inc(&cpu_buffer->record_disabled);
4040
4041 return iter;
4042 }
4043 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare);
4044
4045 /**
4046 * ring_buffer_read_prepare_sync - Synchronize a set of prepare calls
4047 *
4048 * All previously invoked ring_buffer_read_prepare calls to prepare
4049 * iterators will be synchronized. Afterwards, read_buffer_read_start
4050 * calls on those iterators are allowed.
4051 */
4052 void
4053 ring_buffer_read_prepare_sync(void)
4054 {
4055 synchronize_sched();
4056 }
4057 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare_sync);
4058
4059 /**
4060 * ring_buffer_read_start - start a non consuming read of the buffer
4061 * @iter: The iterator returned by ring_buffer_read_prepare
4062 *
4063 * This finalizes the startup of an iteration through the buffer.
4064 * The iterator comes from a call to ring_buffer_read_prepare and
4065 * an intervening ring_buffer_read_prepare_sync must have been
4066 * performed.
4067 *
4068 * Must be paired with ring_buffer_read_finish.
4069 */
4070 void
4071 ring_buffer_read_start(struct ring_buffer_iter *iter)
4072 {
4073 struct ring_buffer_per_cpu *cpu_buffer;
4074 unsigned long flags;
4075
4076 if (!iter)
4077 return;
4078
4079 cpu_buffer = iter->cpu_buffer;
4080
4081 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4082 arch_spin_lock(&cpu_buffer->lock);
4083 rb_iter_reset(iter);
4084 arch_spin_unlock(&cpu_buffer->lock);
4085 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4086 }
4087 EXPORT_SYMBOL_GPL(ring_buffer_read_start);
4088
4089 /**
4090 * ring_buffer_read_finish - finish reading the iterator of the buffer
4091 * @iter: The iterator retrieved by ring_buffer_start
4092 *
4093 * This re-enables the recording to the buffer, and frees the
4094 * iterator.
4095 */
4096 void
4097 ring_buffer_read_finish(struct ring_buffer_iter *iter)
4098 {
4099 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4100 unsigned long flags;
4101
4102 /*
4103 * Ring buffer is disabled from recording, here's a good place
4104 * to check the integrity of the ring buffer.
4105 * Must prevent readers from trying to read, as the check
4106 * clears the HEAD page and readers require it.
4107 */
4108 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4109 rb_check_pages(cpu_buffer);
4110 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4111
4112 atomic_dec(&cpu_buffer->record_disabled);
4113 atomic_dec(&cpu_buffer->buffer->resize_disabled);
4114 kfree(iter);
4115 }
4116 EXPORT_SYMBOL_GPL(ring_buffer_read_finish);
4117
4118 /**
4119 * ring_buffer_read - read the next item in the ring buffer by the iterator
4120 * @iter: The ring buffer iterator
4121 * @ts: The time stamp of the event read.
4122 *
4123 * This reads the next event in the ring buffer and increments the iterator.
4124 */
4125 struct ring_buffer_event *
4126 ring_buffer_read(struct ring_buffer_iter *iter, u64 *ts)
4127 {
4128 struct ring_buffer_event *event;
4129 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4130 unsigned long flags;
4131
4132 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4133 again:
4134 event = rb_iter_peek(iter, ts);
4135 if (!event)
4136 goto out;
4137
4138 if (event->type_len == RINGBUF_TYPE_PADDING)
4139 goto again;
4140
4141 rb_advance_iter(iter);
4142 out:
4143 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4144
4145 return event;
4146 }
4147 EXPORT_SYMBOL_GPL(ring_buffer_read);
4148
4149 /**
4150 * ring_buffer_size - return the size of the ring buffer (in bytes)
4151 * @buffer: The ring buffer.
4152 */
4153 unsigned long ring_buffer_size(struct ring_buffer *buffer, int cpu)
4154 {
4155 /*
4156 * Earlier, this method returned
4157 * BUF_PAGE_SIZE * buffer->nr_pages
4158 * Since the nr_pages field is now removed, we have converted this to
4159 * return the per cpu buffer value.
4160 */
4161 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4162 return 0;
4163
4164 return BUF_PAGE_SIZE * buffer->buffers[cpu]->nr_pages;
4165 }
4166 EXPORT_SYMBOL_GPL(ring_buffer_size);
4167
4168 static void
4169 rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
4170 {
4171 rb_head_page_deactivate(cpu_buffer);
4172
4173 cpu_buffer->head_page
4174 = list_entry(cpu_buffer->pages, struct buffer_page, list);
4175 local_set(&cpu_buffer->head_page->write, 0);
4176 local_set(&cpu_buffer->head_page->entries, 0);
4177 local_set(&cpu_buffer->head_page->page->commit, 0);
4178
4179 cpu_buffer->head_page->read = 0;
4180
4181 cpu_buffer->tail_page = cpu_buffer->head_page;
4182 cpu_buffer->commit_page = cpu_buffer->head_page;
4183
4184 INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
4185 INIT_LIST_HEAD(&cpu_buffer->new_pages);
4186 local_set(&cpu_buffer->reader_page->write, 0);
4187 local_set(&cpu_buffer->reader_page->entries, 0);
4188 local_set(&cpu_buffer->reader_page->page->commit, 0);
4189 cpu_buffer->reader_page->read = 0;
4190
4191 local_set(&cpu_buffer->entries_bytes, 0);
4192 local_set(&cpu_buffer->overrun, 0);
4193 local_set(&cpu_buffer->commit_overrun, 0);
4194 local_set(&cpu_buffer->dropped_events, 0);
4195 local_set(&cpu_buffer->entries, 0);
4196 local_set(&cpu_buffer->committing, 0);
4197 local_set(&cpu_buffer->commits, 0);
4198 cpu_buffer->read = 0;
4199 cpu_buffer->read_bytes = 0;
4200
4201 cpu_buffer->write_stamp = 0;
4202 cpu_buffer->read_stamp = 0;
4203
4204 cpu_buffer->lost_events = 0;
4205 cpu_buffer->last_overrun = 0;
4206
4207 rb_head_page_activate(cpu_buffer);
4208 }
4209
4210 /**
4211 * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
4212 * @buffer: The ring buffer to reset a per cpu buffer of
4213 * @cpu: The CPU buffer to be reset
4214 */
4215 void ring_buffer_reset_cpu(struct ring_buffer *buffer, int cpu)
4216 {
4217 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4218 unsigned long flags;
4219
4220 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4221 return;
4222
4223 atomic_inc(&buffer->resize_disabled);
4224 atomic_inc(&cpu_buffer->record_disabled);
4225
4226 /* Make sure all commits have finished */
4227 synchronize_sched();
4228
4229 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4230
4231 if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing)))
4232 goto out;
4233
4234 arch_spin_lock(&cpu_buffer->lock);
4235
4236 rb_reset_cpu(cpu_buffer);
4237
4238 arch_spin_unlock(&cpu_buffer->lock);
4239
4240 out:
4241 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4242
4243 atomic_dec(&cpu_buffer->record_disabled);
4244 atomic_dec(&buffer->resize_disabled);
4245 }
4246 EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu);
4247
4248 /**
4249 * ring_buffer_reset - reset a ring buffer
4250 * @buffer: The ring buffer to reset all cpu buffers
4251 */
4252 void ring_buffer_reset(struct ring_buffer *buffer)
4253 {
4254 int cpu;
4255
4256 for_each_buffer_cpu(buffer, cpu)
4257 ring_buffer_reset_cpu(buffer, cpu);
4258 }
4259 EXPORT_SYMBOL_GPL(ring_buffer_reset);
4260
4261 /**
4262 * rind_buffer_empty - is the ring buffer empty?
4263 * @buffer: The ring buffer to test
4264 */
4265 bool ring_buffer_empty(struct ring_buffer *buffer)
4266 {
4267 struct ring_buffer_per_cpu *cpu_buffer;
4268 unsigned long flags;
4269 bool dolock;
4270 int cpu;
4271 int ret;
4272
4273 /* yes this is racy, but if you don't like the race, lock the buffer */
4274 for_each_buffer_cpu(buffer, cpu) {
4275 cpu_buffer = buffer->buffers[cpu];
4276 local_irq_save(flags);
4277 dolock = rb_reader_lock(cpu_buffer);
4278 ret = rb_per_cpu_empty(cpu_buffer);
4279 rb_reader_unlock(cpu_buffer, dolock);
4280 local_irq_restore(flags);
4281
4282 if (!ret)
4283 return false;
4284 }
4285
4286 return true;
4287 }
4288 EXPORT_SYMBOL_GPL(ring_buffer_empty);
4289
4290 /**
4291 * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
4292 * @buffer: The ring buffer
4293 * @cpu: The CPU buffer to test
4294 */
4295 bool ring_buffer_empty_cpu(struct ring_buffer *buffer, int cpu)
4296 {
4297 struct ring_buffer_per_cpu *cpu_buffer;
4298 unsigned long flags;
4299 bool dolock;
4300 int ret;
4301
4302 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4303 return true;
4304
4305 cpu_buffer = buffer->buffers[cpu];
4306 local_irq_save(flags);
4307 dolock = rb_reader_lock(cpu_buffer);
4308 ret = rb_per_cpu_empty(cpu_buffer);
4309 rb_reader_unlock(cpu_buffer, dolock);
4310 local_irq_restore(flags);
4311
4312 return ret;
4313 }
4314 EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu);
4315
4316 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
4317 /**
4318 * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
4319 * @buffer_a: One buffer to swap with
4320 * @buffer_b: The other buffer to swap with
4321 *
4322 * This function is useful for tracers that want to take a "snapshot"
4323 * of a CPU buffer and has another back up buffer lying around.
4324 * it is expected that the tracer handles the cpu buffer not being
4325 * used at the moment.
4326 */
4327 int ring_buffer_swap_cpu(struct ring_buffer *buffer_a,
4328 struct ring_buffer *buffer_b, int cpu)
4329 {
4330 struct ring_buffer_per_cpu *cpu_buffer_a;
4331 struct ring_buffer_per_cpu *cpu_buffer_b;
4332 int ret = -EINVAL;
4333
4334 if (!cpumask_test_cpu(cpu, buffer_a->cpumask) ||
4335 !cpumask_test_cpu(cpu, buffer_b->cpumask))
4336 goto out;
4337
4338 cpu_buffer_a = buffer_a->buffers[cpu];
4339 cpu_buffer_b = buffer_b->buffers[cpu];
4340
4341 /* At least make sure the two buffers are somewhat the same */
4342 if (cpu_buffer_a->nr_pages != cpu_buffer_b->nr_pages)
4343 goto out;
4344
4345 ret = -EAGAIN;
4346
4347 if (atomic_read(&buffer_a->record_disabled))
4348 goto out;
4349
4350 if (atomic_read(&buffer_b->record_disabled))
4351 goto out;
4352
4353 if (atomic_read(&cpu_buffer_a->record_disabled))
4354 goto out;
4355
4356 if (atomic_read(&cpu_buffer_b->record_disabled))
4357 goto out;
4358
4359 /*
4360 * We can't do a synchronize_sched here because this
4361 * function can be called in atomic context.
4362 * Normally this will be called from the same CPU as cpu.
4363 * If not it's up to the caller to protect this.
4364 */
4365 atomic_inc(&cpu_buffer_a->record_disabled);
4366 atomic_inc(&cpu_buffer_b->record_disabled);
4367
4368 ret = -EBUSY;
4369 if (local_read(&cpu_buffer_a->committing))
4370 goto out_dec;
4371 if (local_read(&cpu_buffer_b->committing))
4372 goto out_dec;
4373
4374 buffer_a->buffers[cpu] = cpu_buffer_b;
4375 buffer_b->buffers[cpu] = cpu_buffer_a;
4376
4377 cpu_buffer_b->buffer = buffer_a;
4378 cpu_buffer_a->buffer = buffer_b;
4379
4380 ret = 0;
4381
4382 out_dec:
4383 atomic_dec(&cpu_buffer_a->record_disabled);
4384 atomic_dec(&cpu_buffer_b->record_disabled);
4385 out:
4386 return ret;
4387 }
4388 EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu);
4389 #endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */
4390
4391 /**
4392 * ring_buffer_alloc_read_page - allocate a page to read from buffer
4393 * @buffer: the buffer to allocate for.
4394 * @cpu: the cpu buffer to allocate.
4395 *
4396 * This function is used in conjunction with ring_buffer_read_page.
4397 * When reading a full page from the ring buffer, these functions
4398 * can be used to speed up the process. The calling function should
4399 * allocate a few pages first with this function. Then when it
4400 * needs to get pages from the ring buffer, it passes the result
4401 * of this function into ring_buffer_read_page, which will swap
4402 * the page that was allocated, with the read page of the buffer.
4403 *
4404 * Returns:
4405 * The page allocated, or ERR_PTR
4406 */
4407 void *ring_buffer_alloc_read_page(struct ring_buffer *buffer, int cpu)
4408 {
4409 struct ring_buffer_per_cpu *cpu_buffer;
4410 struct buffer_data_page *bpage = NULL;
4411 unsigned long flags;
4412 struct page *page;
4413
4414 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4415 return ERR_PTR(-ENODEV);
4416
4417 cpu_buffer = buffer->buffers[cpu];
4418 local_irq_save(flags);
4419 arch_spin_lock(&cpu_buffer->lock);
4420
4421 if (cpu_buffer->free_page) {
4422 bpage = cpu_buffer->free_page;
4423 cpu_buffer->free_page = NULL;
4424 }
4425
4426 arch_spin_unlock(&cpu_buffer->lock);
4427 local_irq_restore(flags);
4428
4429 if (bpage)
4430 goto out;
4431
4432 page = alloc_pages_node(cpu_to_node(cpu),
4433 GFP_KERNEL | __GFP_NORETRY, 0);
4434 if (!page)
4435 return ERR_PTR(-ENOMEM);
4436
4437 bpage = page_address(page);
4438
4439 out:
4440 rb_init_page(bpage);
4441
4442 return bpage;
4443 }
4444 EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page);
4445
4446 /**
4447 * ring_buffer_free_read_page - free an allocated read page
4448 * @buffer: the buffer the page was allocate for
4449 * @cpu: the cpu buffer the page came from
4450 * @data: the page to free
4451 *
4452 * Free a page allocated from ring_buffer_alloc_read_page.
4453 */
4454 void ring_buffer_free_read_page(struct ring_buffer *buffer, int cpu, void *data)
4455 {
4456 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4457 struct buffer_data_page *bpage = data;
4458 struct page *page = virt_to_page(bpage);
4459 unsigned long flags;
4460
4461 /* If the page is still in use someplace else, we can't reuse it */
4462 if (page_ref_count(page) > 1)
4463 goto out;
4464
4465 local_irq_save(flags);
4466 arch_spin_lock(&cpu_buffer->lock);
4467
4468 if (!cpu_buffer->free_page) {
4469 cpu_buffer->free_page = bpage;
4470 bpage = NULL;
4471 }
4472
4473 arch_spin_unlock(&cpu_buffer->lock);
4474 local_irq_restore(flags);
4475
4476 out:
4477 free_page((unsigned long)bpage);
4478 }
4479 EXPORT_SYMBOL_GPL(ring_buffer_free_read_page);
4480
4481 /**
4482 * ring_buffer_read_page - extract a page from the ring buffer
4483 * @buffer: buffer to extract from
4484 * @data_page: the page to use allocated from ring_buffer_alloc_read_page
4485 * @len: amount to extract
4486 * @cpu: the cpu of the buffer to extract
4487 * @full: should the extraction only happen when the page is full.
4488 *
4489 * This function will pull out a page from the ring buffer and consume it.
4490 * @data_page must be the address of the variable that was returned
4491 * from ring_buffer_alloc_read_page. This is because the page might be used
4492 * to swap with a page in the ring buffer.
4493 *
4494 * for example:
4495 * rpage = ring_buffer_alloc_read_page(buffer, cpu);
4496 * if (IS_ERR(rpage))
4497 * return PTR_ERR(rpage);
4498 * ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0);
4499 * if (ret >= 0)
4500 * process_page(rpage, ret);
4501 *
4502 * When @full is set, the function will not return true unless
4503 * the writer is off the reader page.
4504 *
4505 * Note: it is up to the calling functions to handle sleeps and wakeups.
4506 * The ring buffer can be used anywhere in the kernel and can not
4507 * blindly call wake_up. The layer that uses the ring buffer must be
4508 * responsible for that.
4509 *
4510 * Returns:
4511 * >=0 if data has been transferred, returns the offset of consumed data.
4512 * <0 if no data has been transferred.
4513 */
4514 int ring_buffer_read_page(struct ring_buffer *buffer,
4515 void **data_page, size_t len, int cpu, int full)
4516 {
4517 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4518 struct ring_buffer_event *event;
4519 struct buffer_data_page *bpage;
4520 struct buffer_page *reader;
4521 unsigned long missed_events;
4522 unsigned long flags;
4523 unsigned int commit;
4524 unsigned int read;
4525 u64 save_timestamp;
4526 int ret = -1;
4527
4528 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4529 goto out;
4530
4531 /*
4532 * If len is not big enough to hold the page header, then
4533 * we can not copy anything.
4534 */
4535 if (len <= BUF_PAGE_HDR_SIZE)
4536 goto out;
4537
4538 len -= BUF_PAGE_HDR_SIZE;
4539
4540 if (!data_page)
4541 goto out;
4542
4543 bpage = *data_page;
4544 if (!bpage)
4545 goto out;
4546
4547 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4548
4549 reader = rb_get_reader_page(cpu_buffer);
4550 if (!reader)
4551 goto out_unlock;
4552
4553 event = rb_reader_event(cpu_buffer);
4554
4555 read = reader->read;
4556 commit = rb_page_commit(reader);
4557
4558 /* Check if any events were dropped */
4559 missed_events = cpu_buffer->lost_events;
4560
4561 /*
4562 * If this page has been partially read or
4563 * if len is not big enough to read the rest of the page or
4564 * a writer is still on the page, then
4565 * we must copy the data from the page to the buffer.
4566 * Otherwise, we can simply swap the page with the one passed in.
4567 */
4568 if (read || (len < (commit - read)) ||
4569 cpu_buffer->reader_page == cpu_buffer->commit_page) {
4570 struct buffer_data_page *rpage = cpu_buffer->reader_page->page;
4571 unsigned int rpos = read;
4572 unsigned int pos = 0;
4573 unsigned int size;
4574
4575 if (full)
4576 goto out_unlock;
4577
4578 if (len > (commit - read))
4579 len = (commit - read);
4580
4581 /* Always keep the time extend and data together */
4582 size = rb_event_ts_length(event);
4583
4584 if (len < size)
4585 goto out_unlock;
4586
4587 /* save the current timestamp, since the user will need it */
4588 save_timestamp = cpu_buffer->read_stamp;
4589
4590 /* Need to copy one event at a time */
4591 do {
4592 /* We need the size of one event, because
4593 * rb_advance_reader only advances by one event,
4594 * whereas rb_event_ts_length may include the size of
4595 * one or two events.
4596 * We have already ensured there's enough space if this
4597 * is a time extend. */
4598 size = rb_event_length(event);
4599 memcpy(bpage->data + pos, rpage->data + rpos, size);
4600
4601 len -= size;
4602
4603 rb_advance_reader(cpu_buffer);
4604 rpos = reader->read;
4605 pos += size;
4606
4607 if (rpos >= commit)
4608 break;
4609
4610 event = rb_reader_event(cpu_buffer);
4611 /* Always keep the time extend and data together */
4612 size = rb_event_ts_length(event);
4613 } while (len >= size);
4614
4615 /* update bpage */
4616 local_set(&bpage->commit, pos);
4617 bpage->time_stamp = save_timestamp;
4618
4619 /* we copied everything to the beginning */
4620 read = 0;
4621 } else {
4622 /* update the entry counter */
4623 cpu_buffer->read += rb_page_entries(reader);
4624 cpu_buffer->read_bytes += BUF_PAGE_SIZE;
4625
4626 /* swap the pages */
4627 rb_init_page(bpage);
4628 bpage = reader->page;
4629 reader->page = *data_page;
4630 local_set(&reader->write, 0);
4631 local_set(&reader->entries, 0);
4632 reader->read = 0;
4633 *data_page = bpage;
4634
4635 /*
4636 * Use the real_end for the data size,
4637 * This gives us a chance to store the lost events
4638 * on the page.
4639 */
4640 if (reader->real_end)
4641 local_set(&bpage->commit, reader->real_end);
4642 }
4643 ret = read;
4644
4645 cpu_buffer->lost_events = 0;
4646
4647 commit = local_read(&bpage->commit);
4648 /*
4649 * Set a flag in the commit field if we lost events
4650 */
4651 if (missed_events) {
4652 /* If there is room at the end of the page to save the
4653 * missed events, then record it there.
4654 */
4655 if (BUF_PAGE_SIZE - commit >= sizeof(missed_events)) {
4656 memcpy(&bpage->data[commit], &missed_events,
4657 sizeof(missed_events));
4658 local_add(RB_MISSED_STORED, &bpage->commit);
4659 commit += sizeof(missed_events);
4660 }
4661 local_add(RB_MISSED_EVENTS, &bpage->commit);
4662 }
4663
4664 /*
4665 * This page may be off to user land. Zero it out here.
4666 */
4667 if (commit < BUF_PAGE_SIZE)
4668 memset(&bpage->data[commit], 0, BUF_PAGE_SIZE - commit);
4669
4670 out_unlock:
4671 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4672
4673 out:
4674 return ret;
4675 }
4676 EXPORT_SYMBOL_GPL(ring_buffer_read_page);
4677
4678 /*
4679 * We only allocate new buffers, never free them if the CPU goes down.
4680 * If we were to free the buffer, then the user would lose any trace that was in
4681 * the buffer.
4682 */
4683 int trace_rb_cpu_prepare(unsigned int cpu, struct hlist_node *node)
4684 {
4685 struct ring_buffer *buffer;
4686 long nr_pages_same;
4687 int cpu_i;
4688 unsigned long nr_pages;
4689
4690 buffer = container_of(node, struct ring_buffer, node);
4691 if (cpumask_test_cpu(cpu, buffer->cpumask))
4692 return 0;
4693
4694 nr_pages = 0;
4695 nr_pages_same = 1;
4696 /* check if all cpu sizes are same */
4697 for_each_buffer_cpu(buffer, cpu_i) {
4698 /* fill in the size from first enabled cpu */
4699 if (nr_pages == 0)
4700 nr_pages = buffer->buffers[cpu_i]->nr_pages;
4701 if (nr_pages != buffer->buffers[cpu_i]->nr_pages) {
4702 nr_pages_same = 0;
4703 break;
4704 }
4705 }
4706 /* allocate minimum pages, user can later expand it */
4707 if (!nr_pages_same)
4708 nr_pages = 2;
4709 buffer->buffers[cpu] =
4710 rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
4711 if (!buffer->buffers[cpu]) {
4712 WARN(1, "failed to allocate ring buffer on CPU %u\n",
4713 cpu);
4714 return -ENOMEM;
4715 }
4716 smp_wmb();
4717 cpumask_set_cpu(cpu, buffer->cpumask);
4718 return 0;
4719 }
4720
4721 #ifdef CONFIG_RING_BUFFER_STARTUP_TEST
4722 /*
4723 * This is a basic integrity check of the ring buffer.
4724 * Late in the boot cycle this test will run when configured in.
4725 * It will kick off a thread per CPU that will go into a loop
4726 * writing to the per cpu ring buffer various sizes of data.
4727 * Some of the data will be large items, some small.
4728 *
4729 * Another thread is created that goes into a spin, sending out
4730 * IPIs to the other CPUs to also write into the ring buffer.
4731 * this is to test the nesting ability of the buffer.
4732 *
4733 * Basic stats are recorded and reported. If something in the
4734 * ring buffer should happen that's not expected, a big warning
4735 * is displayed and all ring buffers are disabled.
4736 */
4737 static struct task_struct *rb_threads[NR_CPUS] __initdata;
4738
4739 struct rb_test_data {
4740 struct ring_buffer *buffer;
4741 unsigned long events;
4742 unsigned long bytes_written;
4743 unsigned long bytes_alloc;
4744 unsigned long bytes_dropped;
4745 unsigned long events_nested;
4746 unsigned long bytes_written_nested;
4747 unsigned long bytes_alloc_nested;
4748 unsigned long bytes_dropped_nested;
4749 int min_size_nested;
4750 int max_size_nested;
4751 int max_size;
4752 int min_size;
4753 int cpu;
4754 int cnt;
4755 };
4756
4757 static struct rb_test_data rb_data[NR_CPUS] __initdata;
4758
4759 /* 1 meg per cpu */
4760 #define RB_TEST_BUFFER_SIZE 1048576
4761
4762 static char rb_string[] __initdata =
4763 "abcdefghijklmnopqrstuvwxyz1234567890!@#$%^&*()?+\\"
4764 "?+|:';\",.<>/?abcdefghijklmnopqrstuvwxyz1234567890"
4765 "!@#$%^&*()?+\\?+|:';\",.<>/?abcdefghijklmnopqrstuv";
4766
4767 static bool rb_test_started __initdata;
4768
4769 struct rb_item {
4770 int size;
4771 char str[];
4772 };
4773
4774 static __init int rb_write_something(struct rb_test_data *data, bool nested)
4775 {
4776 struct ring_buffer_event *event;
4777 struct rb_item *item;
4778 bool started;
4779 int event_len;
4780 int size;
4781 int len;
4782 int cnt;
4783
4784 /* Have nested writes different that what is written */
4785 cnt = data->cnt + (nested ? 27 : 0);
4786
4787 /* Multiply cnt by ~e, to make some unique increment */
4788 size = (data->cnt * 68 / 25) % (sizeof(rb_string) - 1);
4789
4790 len = size + sizeof(struct rb_item);
4791
4792 started = rb_test_started;
4793 /* read rb_test_started before checking buffer enabled */
4794 smp_rmb();
4795
4796 event = ring_buffer_lock_reserve(data->buffer, len);
4797 if (!event) {
4798 /* Ignore dropped events before test starts. */
4799 if (started) {
4800 if (nested)
4801 data->bytes_dropped += len;
4802 else
4803 data->bytes_dropped_nested += len;
4804 }
4805 return len;
4806 }
4807
4808 event_len = ring_buffer_event_length(event);
4809
4810 if (RB_WARN_ON(data->buffer, event_len < len))
4811 goto out;
4812
4813 item = ring_buffer_event_data(event);
4814 item->size = size;
4815 memcpy(item->str, rb_string, size);
4816
4817 if (nested) {
4818 data->bytes_alloc_nested += event_len;
4819 data->bytes_written_nested += len;
4820 data->events_nested++;
4821 if (!data->min_size_nested || len < data->min_size_nested)
4822 data->min_size_nested = len;
4823 if (len > data->max_size_nested)
4824 data->max_size_nested = len;
4825 } else {
4826 data->bytes_alloc += event_len;
4827 data->bytes_written += len;
4828 data->events++;
4829 if (!data->min_size || len < data->min_size)
4830 data->max_size = len;
4831 if (len > data->max_size)
4832 data->max_size = len;
4833 }
4834
4835 out:
4836 ring_buffer_unlock_commit(data->buffer, event);
4837
4838 return 0;
4839 }
4840
4841 static __init int rb_test(void *arg)
4842 {
4843 struct rb_test_data *data = arg;
4844
4845 while (!kthread_should_stop()) {
4846 rb_write_something(data, false);
4847 data->cnt++;
4848
4849 set_current_state(TASK_INTERRUPTIBLE);
4850 /* Now sleep between a min of 100-300us and a max of 1ms */
4851 usleep_range(((data->cnt % 3) + 1) * 100, 1000);
4852 }
4853
4854 return 0;
4855 }
4856
4857 static __init void rb_ipi(void *ignore)
4858 {
4859 struct rb_test_data *data;
4860 int cpu = smp_processor_id();
4861
4862 data = &rb_data[cpu];
4863 rb_write_something(data, true);
4864 }
4865
4866 static __init int rb_hammer_test(void *arg)
4867 {
4868 while (!kthread_should_stop()) {
4869
4870 /* Send an IPI to all cpus to write data! */
4871 smp_call_function(rb_ipi, NULL, 1);
4872 /* No sleep, but for non preempt, let others run */
4873 schedule();
4874 }
4875
4876 return 0;
4877 }
4878
4879 static __init int test_ringbuffer(void)
4880 {
4881 struct task_struct *rb_hammer;
4882 struct ring_buffer *buffer;
4883 int cpu;
4884 int ret = 0;
4885
4886 pr_info("Running ring buffer tests...\n");
4887
4888 buffer = ring_buffer_alloc(RB_TEST_BUFFER_SIZE, RB_FL_OVERWRITE);
4889 if (WARN_ON(!buffer))
4890 return 0;
4891
4892 /* Disable buffer so that threads can't write to it yet */
4893 ring_buffer_record_off(buffer);
4894
4895 for_each_online_cpu(cpu) {
4896 rb_data[cpu].buffer = buffer;
4897 rb_data[cpu].cpu = cpu;
4898 rb_data[cpu].cnt = cpu;
4899 rb_threads[cpu] = kthread_create(rb_test, &rb_data[cpu],
4900 "rbtester/%d", cpu);
4901 if (WARN_ON(IS_ERR(rb_threads[cpu]))) {
4902 pr_cont("FAILED\n");
4903 ret = PTR_ERR(rb_threads[cpu]);
4904 goto out_free;
4905 }
4906
4907 kthread_bind(rb_threads[cpu], cpu);
4908 wake_up_process(rb_threads[cpu]);
4909 }
4910
4911 /* Now create the rb hammer! */
4912 rb_hammer = kthread_run(rb_hammer_test, NULL, "rbhammer");
4913 if (WARN_ON(IS_ERR(rb_hammer))) {
4914 pr_cont("FAILED\n");
4915 ret = PTR_ERR(rb_hammer);
4916 goto out_free;
4917 }
4918
4919 ring_buffer_record_on(buffer);
4920 /*
4921 * Show buffer is enabled before setting rb_test_started.
4922 * Yes there's a small race window where events could be
4923 * dropped and the thread wont catch it. But when a ring
4924 * buffer gets enabled, there will always be some kind of
4925 * delay before other CPUs see it. Thus, we don't care about
4926 * those dropped events. We care about events dropped after
4927 * the threads see that the buffer is active.
4928 */
4929 smp_wmb();
4930 rb_test_started = true;
4931
4932 set_current_state(TASK_INTERRUPTIBLE);
4933 /* Just run for 10 seconds */;
4934 schedule_timeout(10 * HZ);
4935
4936 kthread_stop(rb_hammer);
4937
4938 out_free:
4939 for_each_online_cpu(cpu) {
4940 if (!rb_threads[cpu])
4941 break;
4942 kthread_stop(rb_threads[cpu]);
4943 }
4944 if (ret) {
4945 ring_buffer_free(buffer);
4946 return ret;
4947 }
4948
4949 /* Report! */
4950 pr_info("finished\n");
4951 for_each_online_cpu(cpu) {
4952 struct ring_buffer_event *event;
4953 struct rb_test_data *data = &rb_data[cpu];
4954 struct rb_item *item;
4955 unsigned long total_events;
4956 unsigned long total_dropped;
4957 unsigned long total_written;
4958 unsigned long total_alloc;
4959 unsigned long total_read = 0;
4960 unsigned long total_size = 0;
4961 unsigned long total_len = 0;
4962 unsigned long total_lost = 0;
4963 unsigned long lost;
4964 int big_event_size;
4965 int small_event_size;
4966
4967 ret = -1;
4968
4969 total_events = data->events + data->events_nested;
4970 total_written = data->bytes_written + data->bytes_written_nested;
4971 total_alloc = data->bytes_alloc + data->bytes_alloc_nested;
4972 total_dropped = data->bytes_dropped + data->bytes_dropped_nested;
4973
4974 big_event_size = data->max_size + data->max_size_nested;
4975 small_event_size = data->min_size + data->min_size_nested;
4976
4977 pr_info("CPU %d:\n", cpu);
4978 pr_info(" events: %ld\n", total_events);
4979 pr_info(" dropped bytes: %ld\n", total_dropped);
4980 pr_info(" alloced bytes: %ld\n", total_alloc);
4981 pr_info(" written bytes: %ld\n", total_written);
4982 pr_info(" biggest event: %d\n", big_event_size);
4983 pr_info(" smallest event: %d\n", small_event_size);
4984
4985 if (RB_WARN_ON(buffer, total_dropped))
4986 break;
4987
4988 ret = 0;
4989
4990 while ((event = ring_buffer_consume(buffer, cpu, NULL, &lost))) {
4991 total_lost += lost;
4992 item = ring_buffer_event_data(event);
4993 total_len += ring_buffer_event_length(event);
4994 total_size += item->size + sizeof(struct rb_item);
4995 if (memcmp(&item->str[0], rb_string, item->size) != 0) {
4996 pr_info("FAILED!\n");
4997 pr_info("buffer had: %.*s\n", item->size, item->str);
4998 pr_info("expected: %.*s\n", item->size, rb_string);
4999 RB_WARN_ON(buffer, 1);
5000 ret = -1;
5001 break;
5002 }
5003 total_read++;
5004 }
5005 if (ret)
5006 break;
5007
5008 ret = -1;
5009
5010 pr_info(" read events: %ld\n", total_read);
5011 pr_info(" lost events: %ld\n", total_lost);
5012 pr_info(" total events: %ld\n", total_lost + total_read);
5013 pr_info(" recorded len bytes: %ld\n", total_len);
5014 pr_info(" recorded size bytes: %ld\n", total_size);
5015 if (total_lost)
5016 pr_info(" With dropped events, record len and size may not match\n"
5017 " alloced and written from above\n");
5018 if (!total_lost) {
5019 if (RB_WARN_ON(buffer, total_len != total_alloc ||
5020 total_size != total_written))
5021 break;
5022 }
5023 if (RB_WARN_ON(buffer, total_lost + total_read != total_events))
5024 break;
5025
5026 ret = 0;
5027 }
5028 if (!ret)
5029 pr_info("Ring buffer PASSED!\n");
5030
5031 ring_buffer_free(buffer);
5032 return 0;
5033 }
5034
5035 late_initcall(test_ringbuffer);
5036 #endif /* CONFIG_RING_BUFFER_STARTUP_TEST */