]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - kernel/trace/ring_buffer.c
clk-bcm2835: Read max core clock from firmware
[mirror_ubuntu-zesty-kernel.git] / kernel / trace / ring_buffer.c
1 /*
2 * Generic ring buffer
3 *
4 * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
5 */
6 #include <linux/trace_events.h>
7 #include <linux/ring_buffer.h>
8 #include <linux/trace_clock.h>
9 #include <linux/trace_seq.h>
10 #include <linux/spinlock.h>
11 #include <linux/irq_work.h>
12 #include <linux/uaccess.h>
13 #include <linux/hardirq.h>
14 #include <linux/kthread.h> /* for self test */
15 #include <linux/kmemcheck.h>
16 #include <linux/module.h>
17 #include <linux/percpu.h>
18 #include <linux/mutex.h>
19 #include <linux/delay.h>
20 #include <linux/slab.h>
21 #include <linux/init.h>
22 #include <linux/hash.h>
23 #include <linux/list.h>
24 #include <linux/cpu.h>
25
26 #include <asm/local.h>
27
28 static void update_pages_handler(struct work_struct *work);
29
30 /*
31 * The ring buffer header is special. We must manually up keep it.
32 */
33 int ring_buffer_print_entry_header(struct trace_seq *s)
34 {
35 trace_seq_puts(s, "# compressed entry header\n");
36 trace_seq_puts(s, "\ttype_len : 5 bits\n");
37 trace_seq_puts(s, "\ttime_delta : 27 bits\n");
38 trace_seq_puts(s, "\tarray : 32 bits\n");
39 trace_seq_putc(s, '\n');
40 trace_seq_printf(s, "\tpadding : type == %d\n",
41 RINGBUF_TYPE_PADDING);
42 trace_seq_printf(s, "\ttime_extend : type == %d\n",
43 RINGBUF_TYPE_TIME_EXTEND);
44 trace_seq_printf(s, "\tdata max type_len == %d\n",
45 RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
46
47 return !trace_seq_has_overflowed(s);
48 }
49
50 /*
51 * The ring buffer is made up of a list of pages. A separate list of pages is
52 * allocated for each CPU. A writer may only write to a buffer that is
53 * associated with the CPU it is currently executing on. A reader may read
54 * from any per cpu buffer.
55 *
56 * The reader is special. For each per cpu buffer, the reader has its own
57 * reader page. When a reader has read the entire reader page, this reader
58 * page is swapped with another page in the ring buffer.
59 *
60 * Now, as long as the writer is off the reader page, the reader can do what
61 * ever it wants with that page. The writer will never write to that page
62 * again (as long as it is out of the ring buffer).
63 *
64 * Here's some silly ASCII art.
65 *
66 * +------+
67 * |reader| RING BUFFER
68 * |page |
69 * +------+ +---+ +---+ +---+
70 * | |-->| |-->| |
71 * +---+ +---+ +---+
72 * ^ |
73 * | |
74 * +---------------+
75 *
76 *
77 * +------+
78 * |reader| RING BUFFER
79 * |page |------------------v
80 * +------+ +---+ +---+ +---+
81 * | |-->| |-->| |
82 * +---+ +---+ +---+
83 * ^ |
84 * | |
85 * +---------------+
86 *
87 *
88 * +------+
89 * |reader| RING BUFFER
90 * |page |------------------v
91 * +------+ +---+ +---+ +---+
92 * ^ | |-->| |-->| |
93 * | +---+ +---+ +---+
94 * | |
95 * | |
96 * +------------------------------+
97 *
98 *
99 * +------+
100 * |buffer| RING BUFFER
101 * |page |------------------v
102 * +------+ +---+ +---+ +---+
103 * ^ | | | |-->| |
104 * | New +---+ +---+ +---+
105 * | Reader------^ |
106 * | page |
107 * +------------------------------+
108 *
109 *
110 * After we make this swap, the reader can hand this page off to the splice
111 * code and be done with it. It can even allocate a new page if it needs to
112 * and swap that into the ring buffer.
113 *
114 * We will be using cmpxchg soon to make all this lockless.
115 *
116 */
117
118 /* Used for individual buffers (after the counter) */
119 #define RB_BUFFER_OFF (1 << 20)
120
121 #define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
122
123 #define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
124 #define RB_ALIGNMENT 4U
125 #define RB_MAX_SMALL_DATA (RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
126 #define RB_EVNT_MIN_SIZE 8U /* two 32bit words */
127
128 #ifndef CONFIG_HAVE_64BIT_ALIGNED_ACCESS
129 # define RB_FORCE_8BYTE_ALIGNMENT 0
130 # define RB_ARCH_ALIGNMENT RB_ALIGNMENT
131 #else
132 # define RB_FORCE_8BYTE_ALIGNMENT 1
133 # define RB_ARCH_ALIGNMENT 8U
134 #endif
135
136 #define RB_ALIGN_DATA __aligned(RB_ARCH_ALIGNMENT)
137
138 /* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */
139 #define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX
140
141 enum {
142 RB_LEN_TIME_EXTEND = 8,
143 RB_LEN_TIME_STAMP = 16,
144 };
145
146 #define skip_time_extend(event) \
147 ((struct ring_buffer_event *)((char *)event + RB_LEN_TIME_EXTEND))
148
149 static inline int rb_null_event(struct ring_buffer_event *event)
150 {
151 return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta;
152 }
153
154 static void rb_event_set_padding(struct ring_buffer_event *event)
155 {
156 /* padding has a NULL time_delta */
157 event->type_len = RINGBUF_TYPE_PADDING;
158 event->time_delta = 0;
159 }
160
161 static unsigned
162 rb_event_data_length(struct ring_buffer_event *event)
163 {
164 unsigned length;
165
166 if (event->type_len)
167 length = event->type_len * RB_ALIGNMENT;
168 else
169 length = event->array[0];
170 return length + RB_EVNT_HDR_SIZE;
171 }
172
173 /*
174 * Return the length of the given event. Will return
175 * the length of the time extend if the event is a
176 * time extend.
177 */
178 static inline unsigned
179 rb_event_length(struct ring_buffer_event *event)
180 {
181 switch (event->type_len) {
182 case RINGBUF_TYPE_PADDING:
183 if (rb_null_event(event))
184 /* undefined */
185 return -1;
186 return event->array[0] + RB_EVNT_HDR_SIZE;
187
188 case RINGBUF_TYPE_TIME_EXTEND:
189 return RB_LEN_TIME_EXTEND;
190
191 case RINGBUF_TYPE_TIME_STAMP:
192 return RB_LEN_TIME_STAMP;
193
194 case RINGBUF_TYPE_DATA:
195 return rb_event_data_length(event);
196 default:
197 BUG();
198 }
199 /* not hit */
200 return 0;
201 }
202
203 /*
204 * Return total length of time extend and data,
205 * or just the event length for all other events.
206 */
207 static inline unsigned
208 rb_event_ts_length(struct ring_buffer_event *event)
209 {
210 unsigned len = 0;
211
212 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) {
213 /* time extends include the data event after it */
214 len = RB_LEN_TIME_EXTEND;
215 event = skip_time_extend(event);
216 }
217 return len + rb_event_length(event);
218 }
219
220 /**
221 * ring_buffer_event_length - return the length of the event
222 * @event: the event to get the length of
223 *
224 * Returns the size of the data load of a data event.
225 * If the event is something other than a data event, it
226 * returns the size of the event itself. With the exception
227 * of a TIME EXTEND, where it still returns the size of the
228 * data load of the data event after it.
229 */
230 unsigned ring_buffer_event_length(struct ring_buffer_event *event)
231 {
232 unsigned length;
233
234 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
235 event = skip_time_extend(event);
236
237 length = rb_event_length(event);
238 if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
239 return length;
240 length -= RB_EVNT_HDR_SIZE;
241 if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0]))
242 length -= sizeof(event->array[0]);
243 return length;
244 }
245 EXPORT_SYMBOL_GPL(ring_buffer_event_length);
246
247 /* inline for ring buffer fast paths */
248 static __always_inline void *
249 rb_event_data(struct ring_buffer_event *event)
250 {
251 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
252 event = skip_time_extend(event);
253 BUG_ON(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
254 /* If length is in len field, then array[0] has the data */
255 if (event->type_len)
256 return (void *)&event->array[0];
257 /* Otherwise length is in array[0] and array[1] has the data */
258 return (void *)&event->array[1];
259 }
260
261 /**
262 * ring_buffer_event_data - return the data of the event
263 * @event: the event to get the data from
264 */
265 void *ring_buffer_event_data(struct ring_buffer_event *event)
266 {
267 return rb_event_data(event);
268 }
269 EXPORT_SYMBOL_GPL(ring_buffer_event_data);
270
271 #define for_each_buffer_cpu(buffer, cpu) \
272 for_each_cpu(cpu, buffer->cpumask)
273
274 #define TS_SHIFT 27
275 #define TS_MASK ((1ULL << TS_SHIFT) - 1)
276 #define TS_DELTA_TEST (~TS_MASK)
277
278 /* Flag when events were overwritten */
279 #define RB_MISSED_EVENTS (1 << 31)
280 /* Missed count stored at end */
281 #define RB_MISSED_STORED (1 << 30)
282
283 struct buffer_data_page {
284 u64 time_stamp; /* page time stamp */
285 local_t commit; /* write committed index */
286 unsigned char data[] RB_ALIGN_DATA; /* data of buffer page */
287 };
288
289 /*
290 * Note, the buffer_page list must be first. The buffer pages
291 * are allocated in cache lines, which means that each buffer
292 * page will be at the beginning of a cache line, and thus
293 * the least significant bits will be zero. We use this to
294 * add flags in the list struct pointers, to make the ring buffer
295 * lockless.
296 */
297 struct buffer_page {
298 struct list_head list; /* list of buffer pages */
299 local_t write; /* index for next write */
300 unsigned read; /* index for next read */
301 local_t entries; /* entries on this page */
302 unsigned long real_end; /* real end of data */
303 struct buffer_data_page *page; /* Actual data page */
304 };
305
306 /*
307 * The buffer page counters, write and entries, must be reset
308 * atomically when crossing page boundaries. To synchronize this
309 * update, two counters are inserted into the number. One is
310 * the actual counter for the write position or count on the page.
311 *
312 * The other is a counter of updaters. Before an update happens
313 * the update partition of the counter is incremented. This will
314 * allow the updater to update the counter atomically.
315 *
316 * The counter is 20 bits, and the state data is 12.
317 */
318 #define RB_WRITE_MASK 0xfffff
319 #define RB_WRITE_INTCNT (1 << 20)
320
321 static void rb_init_page(struct buffer_data_page *bpage)
322 {
323 local_set(&bpage->commit, 0);
324 }
325
326 /**
327 * ring_buffer_page_len - the size of data on the page.
328 * @page: The page to read
329 *
330 * Returns the amount of data on the page, including buffer page header.
331 */
332 size_t ring_buffer_page_len(void *page)
333 {
334 return local_read(&((struct buffer_data_page *)page)->commit)
335 + BUF_PAGE_HDR_SIZE;
336 }
337
338 /*
339 * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing
340 * this issue out.
341 */
342 static void free_buffer_page(struct buffer_page *bpage)
343 {
344 free_page((unsigned long)bpage->page);
345 kfree(bpage);
346 }
347
348 /*
349 * We need to fit the time_stamp delta into 27 bits.
350 */
351 static inline int test_time_stamp(u64 delta)
352 {
353 if (delta & TS_DELTA_TEST)
354 return 1;
355 return 0;
356 }
357
358 #define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE)
359
360 /* Max payload is BUF_PAGE_SIZE - header (8bytes) */
361 #define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2))
362
363 int ring_buffer_print_page_header(struct trace_seq *s)
364 {
365 struct buffer_data_page field;
366
367 trace_seq_printf(s, "\tfield: u64 timestamp;\t"
368 "offset:0;\tsize:%u;\tsigned:%u;\n",
369 (unsigned int)sizeof(field.time_stamp),
370 (unsigned int)is_signed_type(u64));
371
372 trace_seq_printf(s, "\tfield: local_t commit;\t"
373 "offset:%u;\tsize:%u;\tsigned:%u;\n",
374 (unsigned int)offsetof(typeof(field), commit),
375 (unsigned int)sizeof(field.commit),
376 (unsigned int)is_signed_type(long));
377
378 trace_seq_printf(s, "\tfield: int overwrite;\t"
379 "offset:%u;\tsize:%u;\tsigned:%u;\n",
380 (unsigned int)offsetof(typeof(field), commit),
381 1,
382 (unsigned int)is_signed_type(long));
383
384 trace_seq_printf(s, "\tfield: char data;\t"
385 "offset:%u;\tsize:%u;\tsigned:%u;\n",
386 (unsigned int)offsetof(typeof(field), data),
387 (unsigned int)BUF_PAGE_SIZE,
388 (unsigned int)is_signed_type(char));
389
390 return !trace_seq_has_overflowed(s);
391 }
392
393 struct rb_irq_work {
394 struct irq_work work;
395 wait_queue_head_t waiters;
396 wait_queue_head_t full_waiters;
397 bool waiters_pending;
398 bool full_waiters_pending;
399 bool wakeup_full;
400 };
401
402 /*
403 * Structure to hold event state and handle nested events.
404 */
405 struct rb_event_info {
406 u64 ts;
407 u64 delta;
408 unsigned long length;
409 struct buffer_page *tail_page;
410 int add_timestamp;
411 };
412
413 /*
414 * Used for which event context the event is in.
415 * NMI = 0
416 * IRQ = 1
417 * SOFTIRQ = 2
418 * NORMAL = 3
419 *
420 * See trace_recursive_lock() comment below for more details.
421 */
422 enum {
423 RB_CTX_NMI,
424 RB_CTX_IRQ,
425 RB_CTX_SOFTIRQ,
426 RB_CTX_NORMAL,
427 RB_CTX_MAX
428 };
429
430 /*
431 * head_page == tail_page && head == tail then buffer is empty.
432 */
433 struct ring_buffer_per_cpu {
434 int cpu;
435 atomic_t record_disabled;
436 struct ring_buffer *buffer;
437 raw_spinlock_t reader_lock; /* serialize readers */
438 arch_spinlock_t lock;
439 struct lock_class_key lock_key;
440 unsigned long nr_pages;
441 unsigned int current_context;
442 struct list_head *pages;
443 struct buffer_page *head_page; /* read from head */
444 struct buffer_page *tail_page; /* write to tail */
445 struct buffer_page *commit_page; /* committed pages */
446 struct buffer_page *reader_page;
447 unsigned long lost_events;
448 unsigned long last_overrun;
449 local_t entries_bytes;
450 local_t entries;
451 local_t overrun;
452 local_t commit_overrun;
453 local_t dropped_events;
454 local_t committing;
455 local_t commits;
456 unsigned long read;
457 unsigned long read_bytes;
458 u64 write_stamp;
459 u64 read_stamp;
460 /* ring buffer pages to update, > 0 to add, < 0 to remove */
461 long nr_pages_to_update;
462 struct list_head new_pages; /* new pages to add */
463 struct work_struct update_pages_work;
464 struct completion update_done;
465
466 struct rb_irq_work irq_work;
467 };
468
469 struct ring_buffer {
470 unsigned flags;
471 int cpus;
472 atomic_t record_disabled;
473 atomic_t resize_disabled;
474 cpumask_var_t cpumask;
475
476 struct lock_class_key *reader_lock_key;
477
478 struct mutex mutex;
479
480 struct ring_buffer_per_cpu **buffers;
481
482 struct hlist_node node;
483 u64 (*clock)(void);
484
485 struct rb_irq_work irq_work;
486 };
487
488 struct ring_buffer_iter {
489 struct ring_buffer_per_cpu *cpu_buffer;
490 unsigned long head;
491 struct buffer_page *head_page;
492 struct buffer_page *cache_reader_page;
493 unsigned long cache_read;
494 u64 read_stamp;
495 };
496
497 /*
498 * rb_wake_up_waiters - wake up tasks waiting for ring buffer input
499 *
500 * Schedules a delayed work to wake up any task that is blocked on the
501 * ring buffer waiters queue.
502 */
503 static void rb_wake_up_waiters(struct irq_work *work)
504 {
505 struct rb_irq_work *rbwork = container_of(work, struct rb_irq_work, work);
506
507 wake_up_all(&rbwork->waiters);
508 if (rbwork->wakeup_full) {
509 rbwork->wakeup_full = false;
510 wake_up_all(&rbwork->full_waiters);
511 }
512 }
513
514 /**
515 * ring_buffer_wait - wait for input to the ring buffer
516 * @buffer: buffer to wait on
517 * @cpu: the cpu buffer to wait on
518 * @full: wait until a full page is available, if @cpu != RING_BUFFER_ALL_CPUS
519 *
520 * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
521 * as data is added to any of the @buffer's cpu buffers. Otherwise
522 * it will wait for data to be added to a specific cpu buffer.
523 */
524 int ring_buffer_wait(struct ring_buffer *buffer, int cpu, bool full)
525 {
526 struct ring_buffer_per_cpu *uninitialized_var(cpu_buffer);
527 DEFINE_WAIT(wait);
528 struct rb_irq_work *work;
529 int ret = 0;
530
531 /*
532 * Depending on what the caller is waiting for, either any
533 * data in any cpu buffer, or a specific buffer, put the
534 * caller on the appropriate wait queue.
535 */
536 if (cpu == RING_BUFFER_ALL_CPUS) {
537 work = &buffer->irq_work;
538 /* Full only makes sense on per cpu reads */
539 full = false;
540 } else {
541 if (!cpumask_test_cpu(cpu, buffer->cpumask))
542 return -ENODEV;
543 cpu_buffer = buffer->buffers[cpu];
544 work = &cpu_buffer->irq_work;
545 }
546
547
548 while (true) {
549 if (full)
550 prepare_to_wait(&work->full_waiters, &wait, TASK_INTERRUPTIBLE);
551 else
552 prepare_to_wait(&work->waiters, &wait, TASK_INTERRUPTIBLE);
553
554 /*
555 * The events can happen in critical sections where
556 * checking a work queue can cause deadlocks.
557 * After adding a task to the queue, this flag is set
558 * only to notify events to try to wake up the queue
559 * using irq_work.
560 *
561 * We don't clear it even if the buffer is no longer
562 * empty. The flag only causes the next event to run
563 * irq_work to do the work queue wake up. The worse
564 * that can happen if we race with !trace_empty() is that
565 * an event will cause an irq_work to try to wake up
566 * an empty queue.
567 *
568 * There's no reason to protect this flag either, as
569 * the work queue and irq_work logic will do the necessary
570 * synchronization for the wake ups. The only thing
571 * that is necessary is that the wake up happens after
572 * a task has been queued. It's OK for spurious wake ups.
573 */
574 if (full)
575 work->full_waiters_pending = true;
576 else
577 work->waiters_pending = true;
578
579 if (signal_pending(current)) {
580 ret = -EINTR;
581 break;
582 }
583
584 if (cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer))
585 break;
586
587 if (cpu != RING_BUFFER_ALL_CPUS &&
588 !ring_buffer_empty_cpu(buffer, cpu)) {
589 unsigned long flags;
590 bool pagebusy;
591
592 if (!full)
593 break;
594
595 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
596 pagebusy = cpu_buffer->reader_page == cpu_buffer->commit_page;
597 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
598
599 if (!pagebusy)
600 break;
601 }
602
603 schedule();
604 }
605
606 if (full)
607 finish_wait(&work->full_waiters, &wait);
608 else
609 finish_wait(&work->waiters, &wait);
610
611 return ret;
612 }
613
614 /**
615 * ring_buffer_poll_wait - poll on buffer input
616 * @buffer: buffer to wait on
617 * @cpu: the cpu buffer to wait on
618 * @filp: the file descriptor
619 * @poll_table: The poll descriptor
620 *
621 * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
622 * as data is added to any of the @buffer's cpu buffers. Otherwise
623 * it will wait for data to be added to a specific cpu buffer.
624 *
625 * Returns POLLIN | POLLRDNORM if data exists in the buffers,
626 * zero otherwise.
627 */
628 int ring_buffer_poll_wait(struct ring_buffer *buffer, int cpu,
629 struct file *filp, poll_table *poll_table)
630 {
631 struct ring_buffer_per_cpu *cpu_buffer;
632 struct rb_irq_work *work;
633
634 if (cpu == RING_BUFFER_ALL_CPUS)
635 work = &buffer->irq_work;
636 else {
637 if (!cpumask_test_cpu(cpu, buffer->cpumask))
638 return -EINVAL;
639
640 cpu_buffer = buffer->buffers[cpu];
641 work = &cpu_buffer->irq_work;
642 }
643
644 poll_wait(filp, &work->waiters, poll_table);
645 work->waiters_pending = true;
646 /*
647 * There's a tight race between setting the waiters_pending and
648 * checking if the ring buffer is empty. Once the waiters_pending bit
649 * is set, the next event will wake the task up, but we can get stuck
650 * if there's only a single event in.
651 *
652 * FIXME: Ideally, we need a memory barrier on the writer side as well,
653 * but adding a memory barrier to all events will cause too much of a
654 * performance hit in the fast path. We only need a memory barrier when
655 * the buffer goes from empty to having content. But as this race is
656 * extremely small, and it's not a problem if another event comes in, we
657 * will fix it later.
658 */
659 smp_mb();
660
661 if ((cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer)) ||
662 (cpu != RING_BUFFER_ALL_CPUS && !ring_buffer_empty_cpu(buffer, cpu)))
663 return POLLIN | POLLRDNORM;
664 return 0;
665 }
666
667 /* buffer may be either ring_buffer or ring_buffer_per_cpu */
668 #define RB_WARN_ON(b, cond) \
669 ({ \
670 int _____ret = unlikely(cond); \
671 if (_____ret) { \
672 if (__same_type(*(b), struct ring_buffer_per_cpu)) { \
673 struct ring_buffer_per_cpu *__b = \
674 (void *)b; \
675 atomic_inc(&__b->buffer->record_disabled); \
676 } else \
677 atomic_inc(&b->record_disabled); \
678 WARN_ON(1); \
679 } \
680 _____ret; \
681 })
682
683 /* Up this if you want to test the TIME_EXTENTS and normalization */
684 #define DEBUG_SHIFT 0
685
686 static inline u64 rb_time_stamp(struct ring_buffer *buffer)
687 {
688 /* shift to debug/test normalization and TIME_EXTENTS */
689 return buffer->clock() << DEBUG_SHIFT;
690 }
691
692 u64 ring_buffer_time_stamp(struct ring_buffer *buffer, int cpu)
693 {
694 u64 time;
695
696 preempt_disable_notrace();
697 time = rb_time_stamp(buffer);
698 preempt_enable_no_resched_notrace();
699
700 return time;
701 }
702 EXPORT_SYMBOL_GPL(ring_buffer_time_stamp);
703
704 void ring_buffer_normalize_time_stamp(struct ring_buffer *buffer,
705 int cpu, u64 *ts)
706 {
707 /* Just stupid testing the normalize function and deltas */
708 *ts >>= DEBUG_SHIFT;
709 }
710 EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp);
711
712 /*
713 * Making the ring buffer lockless makes things tricky.
714 * Although writes only happen on the CPU that they are on,
715 * and they only need to worry about interrupts. Reads can
716 * happen on any CPU.
717 *
718 * The reader page is always off the ring buffer, but when the
719 * reader finishes with a page, it needs to swap its page with
720 * a new one from the buffer. The reader needs to take from
721 * the head (writes go to the tail). But if a writer is in overwrite
722 * mode and wraps, it must push the head page forward.
723 *
724 * Here lies the problem.
725 *
726 * The reader must be careful to replace only the head page, and
727 * not another one. As described at the top of the file in the
728 * ASCII art, the reader sets its old page to point to the next
729 * page after head. It then sets the page after head to point to
730 * the old reader page. But if the writer moves the head page
731 * during this operation, the reader could end up with the tail.
732 *
733 * We use cmpxchg to help prevent this race. We also do something
734 * special with the page before head. We set the LSB to 1.
735 *
736 * When the writer must push the page forward, it will clear the
737 * bit that points to the head page, move the head, and then set
738 * the bit that points to the new head page.
739 *
740 * We also don't want an interrupt coming in and moving the head
741 * page on another writer. Thus we use the second LSB to catch
742 * that too. Thus:
743 *
744 * head->list->prev->next bit 1 bit 0
745 * ------- -------
746 * Normal page 0 0
747 * Points to head page 0 1
748 * New head page 1 0
749 *
750 * Note we can not trust the prev pointer of the head page, because:
751 *
752 * +----+ +-----+ +-----+
753 * | |------>| T |---X--->| N |
754 * | |<------| | | |
755 * +----+ +-----+ +-----+
756 * ^ ^ |
757 * | +-----+ | |
758 * +----------| R |----------+ |
759 * | |<-----------+
760 * +-----+
761 *
762 * Key: ---X--> HEAD flag set in pointer
763 * T Tail page
764 * R Reader page
765 * N Next page
766 *
767 * (see __rb_reserve_next() to see where this happens)
768 *
769 * What the above shows is that the reader just swapped out
770 * the reader page with a page in the buffer, but before it
771 * could make the new header point back to the new page added
772 * it was preempted by a writer. The writer moved forward onto
773 * the new page added by the reader and is about to move forward
774 * again.
775 *
776 * You can see, it is legitimate for the previous pointer of
777 * the head (or any page) not to point back to itself. But only
778 * temporarially.
779 */
780
781 #define RB_PAGE_NORMAL 0UL
782 #define RB_PAGE_HEAD 1UL
783 #define RB_PAGE_UPDATE 2UL
784
785
786 #define RB_FLAG_MASK 3UL
787
788 /* PAGE_MOVED is not part of the mask */
789 #define RB_PAGE_MOVED 4UL
790
791 /*
792 * rb_list_head - remove any bit
793 */
794 static struct list_head *rb_list_head(struct list_head *list)
795 {
796 unsigned long val = (unsigned long)list;
797
798 return (struct list_head *)(val & ~RB_FLAG_MASK);
799 }
800
801 /*
802 * rb_is_head_page - test if the given page is the head page
803 *
804 * Because the reader may move the head_page pointer, we can
805 * not trust what the head page is (it may be pointing to
806 * the reader page). But if the next page is a header page,
807 * its flags will be non zero.
808 */
809 static inline int
810 rb_is_head_page(struct ring_buffer_per_cpu *cpu_buffer,
811 struct buffer_page *page, struct list_head *list)
812 {
813 unsigned long val;
814
815 val = (unsigned long)list->next;
816
817 if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list)
818 return RB_PAGE_MOVED;
819
820 return val & RB_FLAG_MASK;
821 }
822
823 /*
824 * rb_is_reader_page
825 *
826 * The unique thing about the reader page, is that, if the
827 * writer is ever on it, the previous pointer never points
828 * back to the reader page.
829 */
830 static bool rb_is_reader_page(struct buffer_page *page)
831 {
832 struct list_head *list = page->list.prev;
833
834 return rb_list_head(list->next) != &page->list;
835 }
836
837 /*
838 * rb_set_list_to_head - set a list_head to be pointing to head.
839 */
840 static void rb_set_list_to_head(struct ring_buffer_per_cpu *cpu_buffer,
841 struct list_head *list)
842 {
843 unsigned long *ptr;
844
845 ptr = (unsigned long *)&list->next;
846 *ptr |= RB_PAGE_HEAD;
847 *ptr &= ~RB_PAGE_UPDATE;
848 }
849
850 /*
851 * rb_head_page_activate - sets up head page
852 */
853 static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer)
854 {
855 struct buffer_page *head;
856
857 head = cpu_buffer->head_page;
858 if (!head)
859 return;
860
861 /*
862 * Set the previous list pointer to have the HEAD flag.
863 */
864 rb_set_list_to_head(cpu_buffer, head->list.prev);
865 }
866
867 static void rb_list_head_clear(struct list_head *list)
868 {
869 unsigned long *ptr = (unsigned long *)&list->next;
870
871 *ptr &= ~RB_FLAG_MASK;
872 }
873
874 /*
875 * rb_head_page_dactivate - clears head page ptr (for free list)
876 */
877 static void
878 rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer)
879 {
880 struct list_head *hd;
881
882 /* Go through the whole list and clear any pointers found. */
883 rb_list_head_clear(cpu_buffer->pages);
884
885 list_for_each(hd, cpu_buffer->pages)
886 rb_list_head_clear(hd);
887 }
888
889 static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer,
890 struct buffer_page *head,
891 struct buffer_page *prev,
892 int old_flag, int new_flag)
893 {
894 struct list_head *list;
895 unsigned long val = (unsigned long)&head->list;
896 unsigned long ret;
897
898 list = &prev->list;
899
900 val &= ~RB_FLAG_MASK;
901
902 ret = cmpxchg((unsigned long *)&list->next,
903 val | old_flag, val | new_flag);
904
905 /* check if the reader took the page */
906 if ((ret & ~RB_FLAG_MASK) != val)
907 return RB_PAGE_MOVED;
908
909 return ret & RB_FLAG_MASK;
910 }
911
912 static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer,
913 struct buffer_page *head,
914 struct buffer_page *prev,
915 int old_flag)
916 {
917 return rb_head_page_set(cpu_buffer, head, prev,
918 old_flag, RB_PAGE_UPDATE);
919 }
920
921 static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer,
922 struct buffer_page *head,
923 struct buffer_page *prev,
924 int old_flag)
925 {
926 return rb_head_page_set(cpu_buffer, head, prev,
927 old_flag, RB_PAGE_HEAD);
928 }
929
930 static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer,
931 struct buffer_page *head,
932 struct buffer_page *prev,
933 int old_flag)
934 {
935 return rb_head_page_set(cpu_buffer, head, prev,
936 old_flag, RB_PAGE_NORMAL);
937 }
938
939 static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer,
940 struct buffer_page **bpage)
941 {
942 struct list_head *p = rb_list_head((*bpage)->list.next);
943
944 *bpage = list_entry(p, struct buffer_page, list);
945 }
946
947 static struct buffer_page *
948 rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer)
949 {
950 struct buffer_page *head;
951 struct buffer_page *page;
952 struct list_head *list;
953 int i;
954
955 if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page))
956 return NULL;
957
958 /* sanity check */
959 list = cpu_buffer->pages;
960 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list))
961 return NULL;
962
963 page = head = cpu_buffer->head_page;
964 /*
965 * It is possible that the writer moves the header behind
966 * where we started, and we miss in one loop.
967 * A second loop should grab the header, but we'll do
968 * three loops just because I'm paranoid.
969 */
970 for (i = 0; i < 3; i++) {
971 do {
972 if (rb_is_head_page(cpu_buffer, page, page->list.prev)) {
973 cpu_buffer->head_page = page;
974 return page;
975 }
976 rb_inc_page(cpu_buffer, &page);
977 } while (page != head);
978 }
979
980 RB_WARN_ON(cpu_buffer, 1);
981
982 return NULL;
983 }
984
985 static int rb_head_page_replace(struct buffer_page *old,
986 struct buffer_page *new)
987 {
988 unsigned long *ptr = (unsigned long *)&old->list.prev->next;
989 unsigned long val;
990 unsigned long ret;
991
992 val = *ptr & ~RB_FLAG_MASK;
993 val |= RB_PAGE_HEAD;
994
995 ret = cmpxchg(ptr, val, (unsigned long)&new->list);
996
997 return ret == val;
998 }
999
1000 /*
1001 * rb_tail_page_update - move the tail page forward
1002 */
1003 static void rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer,
1004 struct buffer_page *tail_page,
1005 struct buffer_page *next_page)
1006 {
1007 unsigned long old_entries;
1008 unsigned long old_write;
1009
1010 /*
1011 * The tail page now needs to be moved forward.
1012 *
1013 * We need to reset the tail page, but without messing
1014 * with possible erasing of data brought in by interrupts
1015 * that have moved the tail page and are currently on it.
1016 *
1017 * We add a counter to the write field to denote this.
1018 */
1019 old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write);
1020 old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries);
1021
1022 /*
1023 * Just make sure we have seen our old_write and synchronize
1024 * with any interrupts that come in.
1025 */
1026 barrier();
1027
1028 /*
1029 * If the tail page is still the same as what we think
1030 * it is, then it is up to us to update the tail
1031 * pointer.
1032 */
1033 if (tail_page == READ_ONCE(cpu_buffer->tail_page)) {
1034 /* Zero the write counter */
1035 unsigned long val = old_write & ~RB_WRITE_MASK;
1036 unsigned long eval = old_entries & ~RB_WRITE_MASK;
1037
1038 /*
1039 * This will only succeed if an interrupt did
1040 * not come in and change it. In which case, we
1041 * do not want to modify it.
1042 *
1043 * We add (void) to let the compiler know that we do not care
1044 * about the return value of these functions. We use the
1045 * cmpxchg to only update if an interrupt did not already
1046 * do it for us. If the cmpxchg fails, we don't care.
1047 */
1048 (void)local_cmpxchg(&next_page->write, old_write, val);
1049 (void)local_cmpxchg(&next_page->entries, old_entries, eval);
1050
1051 /*
1052 * No need to worry about races with clearing out the commit.
1053 * it only can increment when a commit takes place. But that
1054 * only happens in the outer most nested commit.
1055 */
1056 local_set(&next_page->page->commit, 0);
1057
1058 /* Again, either we update tail_page or an interrupt does */
1059 (void)cmpxchg(&cpu_buffer->tail_page, tail_page, next_page);
1060 }
1061 }
1062
1063 static int rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer,
1064 struct buffer_page *bpage)
1065 {
1066 unsigned long val = (unsigned long)bpage;
1067
1068 if (RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK))
1069 return 1;
1070
1071 return 0;
1072 }
1073
1074 /**
1075 * rb_check_list - make sure a pointer to a list has the last bits zero
1076 */
1077 static int rb_check_list(struct ring_buffer_per_cpu *cpu_buffer,
1078 struct list_head *list)
1079 {
1080 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev) != list->prev))
1081 return 1;
1082 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->next) != list->next))
1083 return 1;
1084 return 0;
1085 }
1086
1087 /**
1088 * rb_check_pages - integrity check of buffer pages
1089 * @cpu_buffer: CPU buffer with pages to test
1090 *
1091 * As a safety measure we check to make sure the data pages have not
1092 * been corrupted.
1093 */
1094 static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
1095 {
1096 struct list_head *head = cpu_buffer->pages;
1097 struct buffer_page *bpage, *tmp;
1098
1099 /* Reset the head page if it exists */
1100 if (cpu_buffer->head_page)
1101 rb_set_head_page(cpu_buffer);
1102
1103 rb_head_page_deactivate(cpu_buffer);
1104
1105 if (RB_WARN_ON(cpu_buffer, head->next->prev != head))
1106 return -1;
1107 if (RB_WARN_ON(cpu_buffer, head->prev->next != head))
1108 return -1;
1109
1110 if (rb_check_list(cpu_buffer, head))
1111 return -1;
1112
1113 list_for_each_entry_safe(bpage, tmp, head, list) {
1114 if (RB_WARN_ON(cpu_buffer,
1115 bpage->list.next->prev != &bpage->list))
1116 return -1;
1117 if (RB_WARN_ON(cpu_buffer,
1118 bpage->list.prev->next != &bpage->list))
1119 return -1;
1120 if (rb_check_list(cpu_buffer, &bpage->list))
1121 return -1;
1122 }
1123
1124 rb_head_page_activate(cpu_buffer);
1125
1126 return 0;
1127 }
1128
1129 static int __rb_allocate_pages(long nr_pages, struct list_head *pages, int cpu)
1130 {
1131 struct buffer_page *bpage, *tmp;
1132 long i;
1133
1134 for (i = 0; i < nr_pages; i++) {
1135 struct page *page;
1136 /*
1137 * __GFP_NORETRY flag makes sure that the allocation fails
1138 * gracefully without invoking oom-killer and the system is
1139 * not destabilized.
1140 */
1141 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1142 GFP_KERNEL | __GFP_NORETRY,
1143 cpu_to_node(cpu));
1144 if (!bpage)
1145 goto free_pages;
1146
1147 list_add(&bpage->list, pages);
1148
1149 page = alloc_pages_node(cpu_to_node(cpu),
1150 GFP_KERNEL | __GFP_NORETRY, 0);
1151 if (!page)
1152 goto free_pages;
1153 bpage->page = page_address(page);
1154 rb_init_page(bpage->page);
1155 }
1156
1157 return 0;
1158
1159 free_pages:
1160 list_for_each_entry_safe(bpage, tmp, pages, list) {
1161 list_del_init(&bpage->list);
1162 free_buffer_page(bpage);
1163 }
1164
1165 return -ENOMEM;
1166 }
1167
1168 static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
1169 unsigned long nr_pages)
1170 {
1171 LIST_HEAD(pages);
1172
1173 WARN_ON(!nr_pages);
1174
1175 if (__rb_allocate_pages(nr_pages, &pages, cpu_buffer->cpu))
1176 return -ENOMEM;
1177
1178 /*
1179 * The ring buffer page list is a circular list that does not
1180 * start and end with a list head. All page list items point to
1181 * other pages.
1182 */
1183 cpu_buffer->pages = pages.next;
1184 list_del(&pages);
1185
1186 cpu_buffer->nr_pages = nr_pages;
1187
1188 rb_check_pages(cpu_buffer);
1189
1190 return 0;
1191 }
1192
1193 static struct ring_buffer_per_cpu *
1194 rb_allocate_cpu_buffer(struct ring_buffer *buffer, long nr_pages, int cpu)
1195 {
1196 struct ring_buffer_per_cpu *cpu_buffer;
1197 struct buffer_page *bpage;
1198 struct page *page;
1199 int ret;
1200
1201 cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
1202 GFP_KERNEL, cpu_to_node(cpu));
1203 if (!cpu_buffer)
1204 return NULL;
1205
1206 cpu_buffer->cpu = cpu;
1207 cpu_buffer->buffer = buffer;
1208 raw_spin_lock_init(&cpu_buffer->reader_lock);
1209 lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key);
1210 cpu_buffer->lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
1211 INIT_WORK(&cpu_buffer->update_pages_work, update_pages_handler);
1212 init_completion(&cpu_buffer->update_done);
1213 init_irq_work(&cpu_buffer->irq_work.work, rb_wake_up_waiters);
1214 init_waitqueue_head(&cpu_buffer->irq_work.waiters);
1215 init_waitqueue_head(&cpu_buffer->irq_work.full_waiters);
1216
1217 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1218 GFP_KERNEL, cpu_to_node(cpu));
1219 if (!bpage)
1220 goto fail_free_buffer;
1221
1222 rb_check_bpage(cpu_buffer, bpage);
1223
1224 cpu_buffer->reader_page = bpage;
1225 page = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL, 0);
1226 if (!page)
1227 goto fail_free_reader;
1228 bpage->page = page_address(page);
1229 rb_init_page(bpage->page);
1230
1231 INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
1232 INIT_LIST_HEAD(&cpu_buffer->new_pages);
1233
1234 ret = rb_allocate_pages(cpu_buffer, nr_pages);
1235 if (ret < 0)
1236 goto fail_free_reader;
1237
1238 cpu_buffer->head_page
1239 = list_entry(cpu_buffer->pages, struct buffer_page, list);
1240 cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
1241
1242 rb_head_page_activate(cpu_buffer);
1243
1244 return cpu_buffer;
1245
1246 fail_free_reader:
1247 free_buffer_page(cpu_buffer->reader_page);
1248
1249 fail_free_buffer:
1250 kfree(cpu_buffer);
1251 return NULL;
1252 }
1253
1254 static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
1255 {
1256 struct list_head *head = cpu_buffer->pages;
1257 struct buffer_page *bpage, *tmp;
1258
1259 free_buffer_page(cpu_buffer->reader_page);
1260
1261 rb_head_page_deactivate(cpu_buffer);
1262
1263 if (head) {
1264 list_for_each_entry_safe(bpage, tmp, head, list) {
1265 list_del_init(&bpage->list);
1266 free_buffer_page(bpage);
1267 }
1268 bpage = list_entry(head, struct buffer_page, list);
1269 free_buffer_page(bpage);
1270 }
1271
1272 kfree(cpu_buffer);
1273 }
1274
1275 /**
1276 * __ring_buffer_alloc - allocate a new ring_buffer
1277 * @size: the size in bytes per cpu that is needed.
1278 * @flags: attributes to set for the ring buffer.
1279 *
1280 * Currently the only flag that is available is the RB_FL_OVERWRITE
1281 * flag. This flag means that the buffer will overwrite old data
1282 * when the buffer wraps. If this flag is not set, the buffer will
1283 * drop data when the tail hits the head.
1284 */
1285 struct ring_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags,
1286 struct lock_class_key *key)
1287 {
1288 struct ring_buffer *buffer;
1289 long nr_pages;
1290 int bsize;
1291 int cpu;
1292 int ret;
1293
1294 /* keep it in its own cache line */
1295 buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
1296 GFP_KERNEL);
1297 if (!buffer)
1298 return NULL;
1299
1300 if (!zalloc_cpumask_var(&buffer->cpumask, GFP_KERNEL))
1301 goto fail_free_buffer;
1302
1303 nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1304 buffer->flags = flags;
1305 buffer->clock = trace_clock_local;
1306 buffer->reader_lock_key = key;
1307
1308 init_irq_work(&buffer->irq_work.work, rb_wake_up_waiters);
1309 init_waitqueue_head(&buffer->irq_work.waiters);
1310
1311 /* need at least two pages */
1312 if (nr_pages < 2)
1313 nr_pages = 2;
1314
1315 buffer->cpus = nr_cpu_ids;
1316
1317 bsize = sizeof(void *) * nr_cpu_ids;
1318 buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
1319 GFP_KERNEL);
1320 if (!buffer->buffers)
1321 goto fail_free_cpumask;
1322
1323 cpu = raw_smp_processor_id();
1324 cpumask_set_cpu(cpu, buffer->cpumask);
1325 buffer->buffers[cpu] = rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
1326 if (!buffer->buffers[cpu])
1327 goto fail_free_buffers;
1328
1329 ret = cpuhp_state_add_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node);
1330 if (ret < 0)
1331 goto fail_free_buffers;
1332
1333 mutex_init(&buffer->mutex);
1334
1335 return buffer;
1336
1337 fail_free_buffers:
1338 for_each_buffer_cpu(buffer, cpu) {
1339 if (buffer->buffers[cpu])
1340 rb_free_cpu_buffer(buffer->buffers[cpu]);
1341 }
1342 kfree(buffer->buffers);
1343
1344 fail_free_cpumask:
1345 free_cpumask_var(buffer->cpumask);
1346
1347 fail_free_buffer:
1348 kfree(buffer);
1349 return NULL;
1350 }
1351 EXPORT_SYMBOL_GPL(__ring_buffer_alloc);
1352
1353 /**
1354 * ring_buffer_free - free a ring buffer.
1355 * @buffer: the buffer to free.
1356 */
1357 void
1358 ring_buffer_free(struct ring_buffer *buffer)
1359 {
1360 int cpu;
1361
1362 cpuhp_state_remove_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node);
1363
1364 for_each_buffer_cpu(buffer, cpu)
1365 rb_free_cpu_buffer(buffer->buffers[cpu]);
1366
1367 kfree(buffer->buffers);
1368 free_cpumask_var(buffer->cpumask);
1369
1370 kfree(buffer);
1371 }
1372 EXPORT_SYMBOL_GPL(ring_buffer_free);
1373
1374 void ring_buffer_set_clock(struct ring_buffer *buffer,
1375 u64 (*clock)(void))
1376 {
1377 buffer->clock = clock;
1378 }
1379
1380 static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer);
1381
1382 static inline unsigned long rb_page_entries(struct buffer_page *bpage)
1383 {
1384 return local_read(&bpage->entries) & RB_WRITE_MASK;
1385 }
1386
1387 static inline unsigned long rb_page_write(struct buffer_page *bpage)
1388 {
1389 return local_read(&bpage->write) & RB_WRITE_MASK;
1390 }
1391
1392 static int
1393 rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned long nr_pages)
1394 {
1395 struct list_head *tail_page, *to_remove, *next_page;
1396 struct buffer_page *to_remove_page, *tmp_iter_page;
1397 struct buffer_page *last_page, *first_page;
1398 unsigned long nr_removed;
1399 unsigned long head_bit;
1400 int page_entries;
1401
1402 head_bit = 0;
1403
1404 raw_spin_lock_irq(&cpu_buffer->reader_lock);
1405 atomic_inc(&cpu_buffer->record_disabled);
1406 /*
1407 * We don't race with the readers since we have acquired the reader
1408 * lock. We also don't race with writers after disabling recording.
1409 * This makes it easy to figure out the first and the last page to be
1410 * removed from the list. We unlink all the pages in between including
1411 * the first and last pages. This is done in a busy loop so that we
1412 * lose the least number of traces.
1413 * The pages are freed after we restart recording and unlock readers.
1414 */
1415 tail_page = &cpu_buffer->tail_page->list;
1416
1417 /*
1418 * tail page might be on reader page, we remove the next page
1419 * from the ring buffer
1420 */
1421 if (cpu_buffer->tail_page == cpu_buffer->reader_page)
1422 tail_page = rb_list_head(tail_page->next);
1423 to_remove = tail_page;
1424
1425 /* start of pages to remove */
1426 first_page = list_entry(rb_list_head(to_remove->next),
1427 struct buffer_page, list);
1428
1429 for (nr_removed = 0; nr_removed < nr_pages; nr_removed++) {
1430 to_remove = rb_list_head(to_remove)->next;
1431 head_bit |= (unsigned long)to_remove & RB_PAGE_HEAD;
1432 }
1433
1434 next_page = rb_list_head(to_remove)->next;
1435
1436 /*
1437 * Now we remove all pages between tail_page and next_page.
1438 * Make sure that we have head_bit value preserved for the
1439 * next page
1440 */
1441 tail_page->next = (struct list_head *)((unsigned long)next_page |
1442 head_bit);
1443 next_page = rb_list_head(next_page);
1444 next_page->prev = tail_page;
1445
1446 /* make sure pages points to a valid page in the ring buffer */
1447 cpu_buffer->pages = next_page;
1448
1449 /* update head page */
1450 if (head_bit)
1451 cpu_buffer->head_page = list_entry(next_page,
1452 struct buffer_page, list);
1453
1454 /*
1455 * change read pointer to make sure any read iterators reset
1456 * themselves
1457 */
1458 cpu_buffer->read = 0;
1459
1460 /* pages are removed, resume tracing and then free the pages */
1461 atomic_dec(&cpu_buffer->record_disabled);
1462 raw_spin_unlock_irq(&cpu_buffer->reader_lock);
1463
1464 RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages));
1465
1466 /* last buffer page to remove */
1467 last_page = list_entry(rb_list_head(to_remove), struct buffer_page,
1468 list);
1469 tmp_iter_page = first_page;
1470
1471 do {
1472 to_remove_page = tmp_iter_page;
1473 rb_inc_page(cpu_buffer, &tmp_iter_page);
1474
1475 /* update the counters */
1476 page_entries = rb_page_entries(to_remove_page);
1477 if (page_entries) {
1478 /*
1479 * If something was added to this page, it was full
1480 * since it is not the tail page. So we deduct the
1481 * bytes consumed in ring buffer from here.
1482 * Increment overrun to account for the lost events.
1483 */
1484 local_add(page_entries, &cpu_buffer->overrun);
1485 local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
1486 }
1487
1488 /*
1489 * We have already removed references to this list item, just
1490 * free up the buffer_page and its page
1491 */
1492 free_buffer_page(to_remove_page);
1493 nr_removed--;
1494
1495 } while (to_remove_page != last_page);
1496
1497 RB_WARN_ON(cpu_buffer, nr_removed);
1498
1499 return nr_removed == 0;
1500 }
1501
1502 static int
1503 rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer)
1504 {
1505 struct list_head *pages = &cpu_buffer->new_pages;
1506 int retries, success;
1507
1508 raw_spin_lock_irq(&cpu_buffer->reader_lock);
1509 /*
1510 * We are holding the reader lock, so the reader page won't be swapped
1511 * in the ring buffer. Now we are racing with the writer trying to
1512 * move head page and the tail page.
1513 * We are going to adapt the reader page update process where:
1514 * 1. We first splice the start and end of list of new pages between
1515 * the head page and its previous page.
1516 * 2. We cmpxchg the prev_page->next to point from head page to the
1517 * start of new pages list.
1518 * 3. Finally, we update the head->prev to the end of new list.
1519 *
1520 * We will try this process 10 times, to make sure that we don't keep
1521 * spinning.
1522 */
1523 retries = 10;
1524 success = 0;
1525 while (retries--) {
1526 struct list_head *head_page, *prev_page, *r;
1527 struct list_head *last_page, *first_page;
1528 struct list_head *head_page_with_bit;
1529
1530 head_page = &rb_set_head_page(cpu_buffer)->list;
1531 if (!head_page)
1532 break;
1533 prev_page = head_page->prev;
1534
1535 first_page = pages->next;
1536 last_page = pages->prev;
1537
1538 head_page_with_bit = (struct list_head *)
1539 ((unsigned long)head_page | RB_PAGE_HEAD);
1540
1541 last_page->next = head_page_with_bit;
1542 first_page->prev = prev_page;
1543
1544 r = cmpxchg(&prev_page->next, head_page_with_bit, first_page);
1545
1546 if (r == head_page_with_bit) {
1547 /*
1548 * yay, we replaced the page pointer to our new list,
1549 * now, we just have to update to head page's prev
1550 * pointer to point to end of list
1551 */
1552 head_page->prev = last_page;
1553 success = 1;
1554 break;
1555 }
1556 }
1557
1558 if (success)
1559 INIT_LIST_HEAD(pages);
1560 /*
1561 * If we weren't successful in adding in new pages, warn and stop
1562 * tracing
1563 */
1564 RB_WARN_ON(cpu_buffer, !success);
1565 raw_spin_unlock_irq(&cpu_buffer->reader_lock);
1566
1567 /* free pages if they weren't inserted */
1568 if (!success) {
1569 struct buffer_page *bpage, *tmp;
1570 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1571 list) {
1572 list_del_init(&bpage->list);
1573 free_buffer_page(bpage);
1574 }
1575 }
1576 return success;
1577 }
1578
1579 static void rb_update_pages(struct ring_buffer_per_cpu *cpu_buffer)
1580 {
1581 int success;
1582
1583 if (cpu_buffer->nr_pages_to_update > 0)
1584 success = rb_insert_pages(cpu_buffer);
1585 else
1586 success = rb_remove_pages(cpu_buffer,
1587 -cpu_buffer->nr_pages_to_update);
1588
1589 if (success)
1590 cpu_buffer->nr_pages += cpu_buffer->nr_pages_to_update;
1591 }
1592
1593 static void update_pages_handler(struct work_struct *work)
1594 {
1595 struct ring_buffer_per_cpu *cpu_buffer = container_of(work,
1596 struct ring_buffer_per_cpu, update_pages_work);
1597 rb_update_pages(cpu_buffer);
1598 complete(&cpu_buffer->update_done);
1599 }
1600
1601 /**
1602 * ring_buffer_resize - resize the ring buffer
1603 * @buffer: the buffer to resize.
1604 * @size: the new size.
1605 * @cpu_id: the cpu buffer to resize
1606 *
1607 * Minimum size is 2 * BUF_PAGE_SIZE.
1608 *
1609 * Returns 0 on success and < 0 on failure.
1610 */
1611 int ring_buffer_resize(struct ring_buffer *buffer, unsigned long size,
1612 int cpu_id)
1613 {
1614 struct ring_buffer_per_cpu *cpu_buffer;
1615 unsigned long nr_pages;
1616 int cpu, err = 0;
1617
1618 /*
1619 * Always succeed at resizing a non-existent buffer:
1620 */
1621 if (!buffer)
1622 return size;
1623
1624 /* Make sure the requested buffer exists */
1625 if (cpu_id != RING_BUFFER_ALL_CPUS &&
1626 !cpumask_test_cpu(cpu_id, buffer->cpumask))
1627 return size;
1628
1629 nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1630
1631 /* we need a minimum of two pages */
1632 if (nr_pages < 2)
1633 nr_pages = 2;
1634
1635 size = nr_pages * BUF_PAGE_SIZE;
1636
1637 /*
1638 * Don't succeed if resizing is disabled, as a reader might be
1639 * manipulating the ring buffer and is expecting a sane state while
1640 * this is true.
1641 */
1642 if (atomic_read(&buffer->resize_disabled))
1643 return -EBUSY;
1644
1645 /* prevent another thread from changing buffer sizes */
1646 mutex_lock(&buffer->mutex);
1647
1648 if (cpu_id == RING_BUFFER_ALL_CPUS) {
1649 /* calculate the pages to update */
1650 for_each_buffer_cpu(buffer, cpu) {
1651 cpu_buffer = buffer->buffers[cpu];
1652
1653 cpu_buffer->nr_pages_to_update = nr_pages -
1654 cpu_buffer->nr_pages;
1655 /*
1656 * nothing more to do for removing pages or no update
1657 */
1658 if (cpu_buffer->nr_pages_to_update <= 0)
1659 continue;
1660 /*
1661 * to add pages, make sure all new pages can be
1662 * allocated without receiving ENOMEM
1663 */
1664 INIT_LIST_HEAD(&cpu_buffer->new_pages);
1665 if (__rb_allocate_pages(cpu_buffer->nr_pages_to_update,
1666 &cpu_buffer->new_pages, cpu)) {
1667 /* not enough memory for new pages */
1668 err = -ENOMEM;
1669 goto out_err;
1670 }
1671 }
1672
1673 get_online_cpus();
1674 /*
1675 * Fire off all the required work handlers
1676 * We can't schedule on offline CPUs, but it's not necessary
1677 * since we can change their buffer sizes without any race.
1678 */
1679 for_each_buffer_cpu(buffer, cpu) {
1680 cpu_buffer = buffer->buffers[cpu];
1681 if (!cpu_buffer->nr_pages_to_update)
1682 continue;
1683
1684 /* Can't run something on an offline CPU. */
1685 if (!cpu_online(cpu)) {
1686 rb_update_pages(cpu_buffer);
1687 cpu_buffer->nr_pages_to_update = 0;
1688 } else {
1689 schedule_work_on(cpu,
1690 &cpu_buffer->update_pages_work);
1691 }
1692 }
1693
1694 /* wait for all the updates to complete */
1695 for_each_buffer_cpu(buffer, cpu) {
1696 cpu_buffer = buffer->buffers[cpu];
1697 if (!cpu_buffer->nr_pages_to_update)
1698 continue;
1699
1700 if (cpu_online(cpu))
1701 wait_for_completion(&cpu_buffer->update_done);
1702 cpu_buffer->nr_pages_to_update = 0;
1703 }
1704
1705 put_online_cpus();
1706 } else {
1707 /* Make sure this CPU has been intitialized */
1708 if (!cpumask_test_cpu(cpu_id, buffer->cpumask))
1709 goto out;
1710
1711 cpu_buffer = buffer->buffers[cpu_id];
1712
1713 if (nr_pages == cpu_buffer->nr_pages)
1714 goto out;
1715
1716 cpu_buffer->nr_pages_to_update = nr_pages -
1717 cpu_buffer->nr_pages;
1718
1719 INIT_LIST_HEAD(&cpu_buffer->new_pages);
1720 if (cpu_buffer->nr_pages_to_update > 0 &&
1721 __rb_allocate_pages(cpu_buffer->nr_pages_to_update,
1722 &cpu_buffer->new_pages, cpu_id)) {
1723 err = -ENOMEM;
1724 goto out_err;
1725 }
1726
1727 get_online_cpus();
1728
1729 /* Can't run something on an offline CPU. */
1730 if (!cpu_online(cpu_id))
1731 rb_update_pages(cpu_buffer);
1732 else {
1733 schedule_work_on(cpu_id,
1734 &cpu_buffer->update_pages_work);
1735 wait_for_completion(&cpu_buffer->update_done);
1736 }
1737
1738 cpu_buffer->nr_pages_to_update = 0;
1739 put_online_cpus();
1740 }
1741
1742 out:
1743 /*
1744 * The ring buffer resize can happen with the ring buffer
1745 * enabled, so that the update disturbs the tracing as little
1746 * as possible. But if the buffer is disabled, we do not need
1747 * to worry about that, and we can take the time to verify
1748 * that the buffer is not corrupt.
1749 */
1750 if (atomic_read(&buffer->record_disabled)) {
1751 atomic_inc(&buffer->record_disabled);
1752 /*
1753 * Even though the buffer was disabled, we must make sure
1754 * that it is truly disabled before calling rb_check_pages.
1755 * There could have been a race between checking
1756 * record_disable and incrementing it.
1757 */
1758 synchronize_sched();
1759 for_each_buffer_cpu(buffer, cpu) {
1760 cpu_buffer = buffer->buffers[cpu];
1761 rb_check_pages(cpu_buffer);
1762 }
1763 atomic_dec(&buffer->record_disabled);
1764 }
1765
1766 mutex_unlock(&buffer->mutex);
1767 return size;
1768
1769 out_err:
1770 for_each_buffer_cpu(buffer, cpu) {
1771 struct buffer_page *bpage, *tmp;
1772
1773 cpu_buffer = buffer->buffers[cpu];
1774 cpu_buffer->nr_pages_to_update = 0;
1775
1776 if (list_empty(&cpu_buffer->new_pages))
1777 continue;
1778
1779 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1780 list) {
1781 list_del_init(&bpage->list);
1782 free_buffer_page(bpage);
1783 }
1784 }
1785 mutex_unlock(&buffer->mutex);
1786 return err;
1787 }
1788 EXPORT_SYMBOL_GPL(ring_buffer_resize);
1789
1790 void ring_buffer_change_overwrite(struct ring_buffer *buffer, int val)
1791 {
1792 mutex_lock(&buffer->mutex);
1793 if (val)
1794 buffer->flags |= RB_FL_OVERWRITE;
1795 else
1796 buffer->flags &= ~RB_FL_OVERWRITE;
1797 mutex_unlock(&buffer->mutex);
1798 }
1799 EXPORT_SYMBOL_GPL(ring_buffer_change_overwrite);
1800
1801 static __always_inline void *
1802 __rb_data_page_index(struct buffer_data_page *bpage, unsigned index)
1803 {
1804 return bpage->data + index;
1805 }
1806
1807 static __always_inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
1808 {
1809 return bpage->page->data + index;
1810 }
1811
1812 static __always_inline struct ring_buffer_event *
1813 rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
1814 {
1815 return __rb_page_index(cpu_buffer->reader_page,
1816 cpu_buffer->reader_page->read);
1817 }
1818
1819 static __always_inline struct ring_buffer_event *
1820 rb_iter_head_event(struct ring_buffer_iter *iter)
1821 {
1822 return __rb_page_index(iter->head_page, iter->head);
1823 }
1824
1825 static __always_inline unsigned rb_page_commit(struct buffer_page *bpage)
1826 {
1827 return local_read(&bpage->page->commit);
1828 }
1829
1830 /* Size is determined by what has been committed */
1831 static __always_inline unsigned rb_page_size(struct buffer_page *bpage)
1832 {
1833 return rb_page_commit(bpage);
1834 }
1835
1836 static __always_inline unsigned
1837 rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
1838 {
1839 return rb_page_commit(cpu_buffer->commit_page);
1840 }
1841
1842 static __always_inline unsigned
1843 rb_event_index(struct ring_buffer_event *event)
1844 {
1845 unsigned long addr = (unsigned long)event;
1846
1847 return (addr & ~PAGE_MASK) - BUF_PAGE_HDR_SIZE;
1848 }
1849
1850 static void rb_inc_iter(struct ring_buffer_iter *iter)
1851 {
1852 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
1853
1854 /*
1855 * The iterator could be on the reader page (it starts there).
1856 * But the head could have moved, since the reader was
1857 * found. Check for this case and assign the iterator
1858 * to the head page instead of next.
1859 */
1860 if (iter->head_page == cpu_buffer->reader_page)
1861 iter->head_page = rb_set_head_page(cpu_buffer);
1862 else
1863 rb_inc_page(cpu_buffer, &iter->head_page);
1864
1865 iter->read_stamp = iter->head_page->page->time_stamp;
1866 iter->head = 0;
1867 }
1868
1869 /*
1870 * rb_handle_head_page - writer hit the head page
1871 *
1872 * Returns: +1 to retry page
1873 * 0 to continue
1874 * -1 on error
1875 */
1876 static int
1877 rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer,
1878 struct buffer_page *tail_page,
1879 struct buffer_page *next_page)
1880 {
1881 struct buffer_page *new_head;
1882 int entries;
1883 int type;
1884 int ret;
1885
1886 entries = rb_page_entries(next_page);
1887
1888 /*
1889 * The hard part is here. We need to move the head
1890 * forward, and protect against both readers on
1891 * other CPUs and writers coming in via interrupts.
1892 */
1893 type = rb_head_page_set_update(cpu_buffer, next_page, tail_page,
1894 RB_PAGE_HEAD);
1895
1896 /*
1897 * type can be one of four:
1898 * NORMAL - an interrupt already moved it for us
1899 * HEAD - we are the first to get here.
1900 * UPDATE - we are the interrupt interrupting
1901 * a current move.
1902 * MOVED - a reader on another CPU moved the next
1903 * pointer to its reader page. Give up
1904 * and try again.
1905 */
1906
1907 switch (type) {
1908 case RB_PAGE_HEAD:
1909 /*
1910 * We changed the head to UPDATE, thus
1911 * it is our responsibility to update
1912 * the counters.
1913 */
1914 local_add(entries, &cpu_buffer->overrun);
1915 local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
1916
1917 /*
1918 * The entries will be zeroed out when we move the
1919 * tail page.
1920 */
1921
1922 /* still more to do */
1923 break;
1924
1925 case RB_PAGE_UPDATE:
1926 /*
1927 * This is an interrupt that interrupt the
1928 * previous update. Still more to do.
1929 */
1930 break;
1931 case RB_PAGE_NORMAL:
1932 /*
1933 * An interrupt came in before the update
1934 * and processed this for us.
1935 * Nothing left to do.
1936 */
1937 return 1;
1938 case RB_PAGE_MOVED:
1939 /*
1940 * The reader is on another CPU and just did
1941 * a swap with our next_page.
1942 * Try again.
1943 */
1944 return 1;
1945 default:
1946 RB_WARN_ON(cpu_buffer, 1); /* WTF??? */
1947 return -1;
1948 }
1949
1950 /*
1951 * Now that we are here, the old head pointer is
1952 * set to UPDATE. This will keep the reader from
1953 * swapping the head page with the reader page.
1954 * The reader (on another CPU) will spin till
1955 * we are finished.
1956 *
1957 * We just need to protect against interrupts
1958 * doing the job. We will set the next pointer
1959 * to HEAD. After that, we set the old pointer
1960 * to NORMAL, but only if it was HEAD before.
1961 * otherwise we are an interrupt, and only
1962 * want the outer most commit to reset it.
1963 */
1964 new_head = next_page;
1965 rb_inc_page(cpu_buffer, &new_head);
1966
1967 ret = rb_head_page_set_head(cpu_buffer, new_head, next_page,
1968 RB_PAGE_NORMAL);
1969
1970 /*
1971 * Valid returns are:
1972 * HEAD - an interrupt came in and already set it.
1973 * NORMAL - One of two things:
1974 * 1) We really set it.
1975 * 2) A bunch of interrupts came in and moved
1976 * the page forward again.
1977 */
1978 switch (ret) {
1979 case RB_PAGE_HEAD:
1980 case RB_PAGE_NORMAL:
1981 /* OK */
1982 break;
1983 default:
1984 RB_WARN_ON(cpu_buffer, 1);
1985 return -1;
1986 }
1987
1988 /*
1989 * It is possible that an interrupt came in,
1990 * set the head up, then more interrupts came in
1991 * and moved it again. When we get back here,
1992 * the page would have been set to NORMAL but we
1993 * just set it back to HEAD.
1994 *
1995 * How do you detect this? Well, if that happened
1996 * the tail page would have moved.
1997 */
1998 if (ret == RB_PAGE_NORMAL) {
1999 struct buffer_page *buffer_tail_page;
2000
2001 buffer_tail_page = READ_ONCE(cpu_buffer->tail_page);
2002 /*
2003 * If the tail had moved passed next, then we need
2004 * to reset the pointer.
2005 */
2006 if (buffer_tail_page != tail_page &&
2007 buffer_tail_page != next_page)
2008 rb_head_page_set_normal(cpu_buffer, new_head,
2009 next_page,
2010 RB_PAGE_HEAD);
2011 }
2012
2013 /*
2014 * If this was the outer most commit (the one that
2015 * changed the original pointer from HEAD to UPDATE),
2016 * then it is up to us to reset it to NORMAL.
2017 */
2018 if (type == RB_PAGE_HEAD) {
2019 ret = rb_head_page_set_normal(cpu_buffer, next_page,
2020 tail_page,
2021 RB_PAGE_UPDATE);
2022 if (RB_WARN_ON(cpu_buffer,
2023 ret != RB_PAGE_UPDATE))
2024 return -1;
2025 }
2026
2027 return 0;
2028 }
2029
2030 static inline void
2031 rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer,
2032 unsigned long tail, struct rb_event_info *info)
2033 {
2034 struct buffer_page *tail_page = info->tail_page;
2035 struct ring_buffer_event *event;
2036 unsigned long length = info->length;
2037
2038 /*
2039 * Only the event that crossed the page boundary
2040 * must fill the old tail_page with padding.
2041 */
2042 if (tail >= BUF_PAGE_SIZE) {
2043 /*
2044 * If the page was filled, then we still need
2045 * to update the real_end. Reset it to zero
2046 * and the reader will ignore it.
2047 */
2048 if (tail == BUF_PAGE_SIZE)
2049 tail_page->real_end = 0;
2050
2051 local_sub(length, &tail_page->write);
2052 return;
2053 }
2054
2055 event = __rb_page_index(tail_page, tail);
2056 kmemcheck_annotate_bitfield(event, bitfield);
2057
2058 /* account for padding bytes */
2059 local_add(BUF_PAGE_SIZE - tail, &cpu_buffer->entries_bytes);
2060
2061 /*
2062 * Save the original length to the meta data.
2063 * This will be used by the reader to add lost event
2064 * counter.
2065 */
2066 tail_page->real_end = tail;
2067
2068 /*
2069 * If this event is bigger than the minimum size, then
2070 * we need to be careful that we don't subtract the
2071 * write counter enough to allow another writer to slip
2072 * in on this page.
2073 * We put in a discarded commit instead, to make sure
2074 * that this space is not used again.
2075 *
2076 * If we are less than the minimum size, we don't need to
2077 * worry about it.
2078 */
2079 if (tail > (BUF_PAGE_SIZE - RB_EVNT_MIN_SIZE)) {
2080 /* No room for any events */
2081
2082 /* Mark the rest of the page with padding */
2083 rb_event_set_padding(event);
2084
2085 /* Set the write back to the previous setting */
2086 local_sub(length, &tail_page->write);
2087 return;
2088 }
2089
2090 /* Put in a discarded event */
2091 event->array[0] = (BUF_PAGE_SIZE - tail) - RB_EVNT_HDR_SIZE;
2092 event->type_len = RINGBUF_TYPE_PADDING;
2093 /* time delta must be non zero */
2094 event->time_delta = 1;
2095
2096 /* Set write to end of buffer */
2097 length = (tail + length) - BUF_PAGE_SIZE;
2098 local_sub(length, &tail_page->write);
2099 }
2100
2101 static inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer);
2102
2103 /*
2104 * This is the slow path, force gcc not to inline it.
2105 */
2106 static noinline struct ring_buffer_event *
2107 rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer,
2108 unsigned long tail, struct rb_event_info *info)
2109 {
2110 struct buffer_page *tail_page = info->tail_page;
2111 struct buffer_page *commit_page = cpu_buffer->commit_page;
2112 struct ring_buffer *buffer = cpu_buffer->buffer;
2113 struct buffer_page *next_page;
2114 int ret;
2115
2116 next_page = tail_page;
2117
2118 rb_inc_page(cpu_buffer, &next_page);
2119
2120 /*
2121 * If for some reason, we had an interrupt storm that made
2122 * it all the way around the buffer, bail, and warn
2123 * about it.
2124 */
2125 if (unlikely(next_page == commit_page)) {
2126 local_inc(&cpu_buffer->commit_overrun);
2127 goto out_reset;
2128 }
2129
2130 /*
2131 * This is where the fun begins!
2132 *
2133 * We are fighting against races between a reader that
2134 * could be on another CPU trying to swap its reader
2135 * page with the buffer head.
2136 *
2137 * We are also fighting against interrupts coming in and
2138 * moving the head or tail on us as well.
2139 *
2140 * If the next page is the head page then we have filled
2141 * the buffer, unless the commit page is still on the
2142 * reader page.
2143 */
2144 if (rb_is_head_page(cpu_buffer, next_page, &tail_page->list)) {
2145
2146 /*
2147 * If the commit is not on the reader page, then
2148 * move the header page.
2149 */
2150 if (!rb_is_reader_page(cpu_buffer->commit_page)) {
2151 /*
2152 * If we are not in overwrite mode,
2153 * this is easy, just stop here.
2154 */
2155 if (!(buffer->flags & RB_FL_OVERWRITE)) {
2156 local_inc(&cpu_buffer->dropped_events);
2157 goto out_reset;
2158 }
2159
2160 ret = rb_handle_head_page(cpu_buffer,
2161 tail_page,
2162 next_page);
2163 if (ret < 0)
2164 goto out_reset;
2165 if (ret)
2166 goto out_again;
2167 } else {
2168 /*
2169 * We need to be careful here too. The
2170 * commit page could still be on the reader
2171 * page. We could have a small buffer, and
2172 * have filled up the buffer with events
2173 * from interrupts and such, and wrapped.
2174 *
2175 * Note, if the tail page is also the on the
2176 * reader_page, we let it move out.
2177 */
2178 if (unlikely((cpu_buffer->commit_page !=
2179 cpu_buffer->tail_page) &&
2180 (cpu_buffer->commit_page ==
2181 cpu_buffer->reader_page))) {
2182 local_inc(&cpu_buffer->commit_overrun);
2183 goto out_reset;
2184 }
2185 }
2186 }
2187
2188 rb_tail_page_update(cpu_buffer, tail_page, next_page);
2189
2190 out_again:
2191
2192 rb_reset_tail(cpu_buffer, tail, info);
2193
2194 /* Commit what we have for now. */
2195 rb_end_commit(cpu_buffer);
2196 /* rb_end_commit() decs committing */
2197 local_inc(&cpu_buffer->committing);
2198
2199 /* fail and let the caller try again */
2200 return ERR_PTR(-EAGAIN);
2201
2202 out_reset:
2203 /* reset write */
2204 rb_reset_tail(cpu_buffer, tail, info);
2205
2206 return NULL;
2207 }
2208
2209 /* Slow path, do not inline */
2210 static noinline struct ring_buffer_event *
2211 rb_add_time_stamp(struct ring_buffer_event *event, u64 delta)
2212 {
2213 event->type_len = RINGBUF_TYPE_TIME_EXTEND;
2214
2215 /* Not the first event on the page? */
2216 if (rb_event_index(event)) {
2217 event->time_delta = delta & TS_MASK;
2218 event->array[0] = delta >> TS_SHIFT;
2219 } else {
2220 /* nope, just zero it */
2221 event->time_delta = 0;
2222 event->array[0] = 0;
2223 }
2224
2225 return skip_time_extend(event);
2226 }
2227
2228 static inline bool rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
2229 struct ring_buffer_event *event);
2230
2231 /**
2232 * rb_update_event - update event type and data
2233 * @event: the event to update
2234 * @type: the type of event
2235 * @length: the size of the event field in the ring buffer
2236 *
2237 * Update the type and data fields of the event. The length
2238 * is the actual size that is written to the ring buffer,
2239 * and with this, we can determine what to place into the
2240 * data field.
2241 */
2242 static void
2243 rb_update_event(struct ring_buffer_per_cpu *cpu_buffer,
2244 struct ring_buffer_event *event,
2245 struct rb_event_info *info)
2246 {
2247 unsigned length = info->length;
2248 u64 delta = info->delta;
2249
2250 /* Only a commit updates the timestamp */
2251 if (unlikely(!rb_event_is_commit(cpu_buffer, event)))
2252 delta = 0;
2253
2254 /*
2255 * If we need to add a timestamp, then we
2256 * add it to the start of the resevered space.
2257 */
2258 if (unlikely(info->add_timestamp)) {
2259 event = rb_add_time_stamp(event, delta);
2260 length -= RB_LEN_TIME_EXTEND;
2261 delta = 0;
2262 }
2263
2264 event->time_delta = delta;
2265 length -= RB_EVNT_HDR_SIZE;
2266 if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) {
2267 event->type_len = 0;
2268 event->array[0] = length;
2269 } else
2270 event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT);
2271 }
2272
2273 static unsigned rb_calculate_event_length(unsigned length)
2274 {
2275 struct ring_buffer_event event; /* Used only for sizeof array */
2276
2277 /* zero length can cause confusions */
2278 if (!length)
2279 length++;
2280
2281 if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT)
2282 length += sizeof(event.array[0]);
2283
2284 length += RB_EVNT_HDR_SIZE;
2285 length = ALIGN(length, RB_ARCH_ALIGNMENT);
2286
2287 /*
2288 * In case the time delta is larger than the 27 bits for it
2289 * in the header, we need to add a timestamp. If another
2290 * event comes in when trying to discard this one to increase
2291 * the length, then the timestamp will be added in the allocated
2292 * space of this event. If length is bigger than the size needed
2293 * for the TIME_EXTEND, then padding has to be used. The events
2294 * length must be either RB_LEN_TIME_EXTEND, or greater than or equal
2295 * to RB_LEN_TIME_EXTEND + 8, as 8 is the minimum size for padding.
2296 * As length is a multiple of 4, we only need to worry if it
2297 * is 12 (RB_LEN_TIME_EXTEND + 4).
2298 */
2299 if (length == RB_LEN_TIME_EXTEND + RB_ALIGNMENT)
2300 length += RB_ALIGNMENT;
2301
2302 return length;
2303 }
2304
2305 #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
2306 static inline bool sched_clock_stable(void)
2307 {
2308 return true;
2309 }
2310 #endif
2311
2312 static inline int
2313 rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer,
2314 struct ring_buffer_event *event)
2315 {
2316 unsigned long new_index, old_index;
2317 struct buffer_page *bpage;
2318 unsigned long index;
2319 unsigned long addr;
2320
2321 new_index = rb_event_index(event);
2322 old_index = new_index + rb_event_ts_length(event);
2323 addr = (unsigned long)event;
2324 addr &= PAGE_MASK;
2325
2326 bpage = READ_ONCE(cpu_buffer->tail_page);
2327
2328 if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) {
2329 unsigned long write_mask =
2330 local_read(&bpage->write) & ~RB_WRITE_MASK;
2331 unsigned long event_length = rb_event_length(event);
2332 /*
2333 * This is on the tail page. It is possible that
2334 * a write could come in and move the tail page
2335 * and write to the next page. That is fine
2336 * because we just shorten what is on this page.
2337 */
2338 old_index += write_mask;
2339 new_index += write_mask;
2340 index = local_cmpxchg(&bpage->write, old_index, new_index);
2341 if (index == old_index) {
2342 /* update counters */
2343 local_sub(event_length, &cpu_buffer->entries_bytes);
2344 return 1;
2345 }
2346 }
2347
2348 /* could not discard */
2349 return 0;
2350 }
2351
2352 static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer)
2353 {
2354 local_inc(&cpu_buffer->committing);
2355 local_inc(&cpu_buffer->commits);
2356 }
2357
2358 static __always_inline void
2359 rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
2360 {
2361 unsigned long max_count;
2362
2363 /*
2364 * We only race with interrupts and NMIs on this CPU.
2365 * If we own the commit event, then we can commit
2366 * all others that interrupted us, since the interruptions
2367 * are in stack format (they finish before they come
2368 * back to us). This allows us to do a simple loop to
2369 * assign the commit to the tail.
2370 */
2371 again:
2372 max_count = cpu_buffer->nr_pages * 100;
2373
2374 while (cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page)) {
2375 if (RB_WARN_ON(cpu_buffer, !(--max_count)))
2376 return;
2377 if (RB_WARN_ON(cpu_buffer,
2378 rb_is_reader_page(cpu_buffer->tail_page)))
2379 return;
2380 local_set(&cpu_buffer->commit_page->page->commit,
2381 rb_page_write(cpu_buffer->commit_page));
2382 rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
2383 /* Only update the write stamp if the page has an event */
2384 if (rb_page_write(cpu_buffer->commit_page))
2385 cpu_buffer->write_stamp =
2386 cpu_buffer->commit_page->page->time_stamp;
2387 /* add barrier to keep gcc from optimizing too much */
2388 barrier();
2389 }
2390 while (rb_commit_index(cpu_buffer) !=
2391 rb_page_write(cpu_buffer->commit_page)) {
2392
2393 local_set(&cpu_buffer->commit_page->page->commit,
2394 rb_page_write(cpu_buffer->commit_page));
2395 RB_WARN_ON(cpu_buffer,
2396 local_read(&cpu_buffer->commit_page->page->commit) &
2397 ~RB_WRITE_MASK);
2398 barrier();
2399 }
2400
2401 /* again, keep gcc from optimizing */
2402 barrier();
2403
2404 /*
2405 * If an interrupt came in just after the first while loop
2406 * and pushed the tail page forward, we will be left with
2407 * a dangling commit that will never go forward.
2408 */
2409 if (unlikely(cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page)))
2410 goto again;
2411 }
2412
2413 static __always_inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer)
2414 {
2415 unsigned long commits;
2416
2417 if (RB_WARN_ON(cpu_buffer,
2418 !local_read(&cpu_buffer->committing)))
2419 return;
2420
2421 again:
2422 commits = local_read(&cpu_buffer->commits);
2423 /* synchronize with interrupts */
2424 barrier();
2425 if (local_read(&cpu_buffer->committing) == 1)
2426 rb_set_commit_to_write(cpu_buffer);
2427
2428 local_dec(&cpu_buffer->committing);
2429
2430 /* synchronize with interrupts */
2431 barrier();
2432
2433 /*
2434 * Need to account for interrupts coming in between the
2435 * updating of the commit page and the clearing of the
2436 * committing counter.
2437 */
2438 if (unlikely(local_read(&cpu_buffer->commits) != commits) &&
2439 !local_read(&cpu_buffer->committing)) {
2440 local_inc(&cpu_buffer->committing);
2441 goto again;
2442 }
2443 }
2444
2445 static inline void rb_event_discard(struct ring_buffer_event *event)
2446 {
2447 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
2448 event = skip_time_extend(event);
2449
2450 /* array[0] holds the actual length for the discarded event */
2451 event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE;
2452 event->type_len = RINGBUF_TYPE_PADDING;
2453 /* time delta must be non zero */
2454 if (!event->time_delta)
2455 event->time_delta = 1;
2456 }
2457
2458 static __always_inline bool
2459 rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
2460 struct ring_buffer_event *event)
2461 {
2462 unsigned long addr = (unsigned long)event;
2463 unsigned long index;
2464
2465 index = rb_event_index(event);
2466 addr &= PAGE_MASK;
2467
2468 return cpu_buffer->commit_page->page == (void *)addr &&
2469 rb_commit_index(cpu_buffer) == index;
2470 }
2471
2472 static __always_inline void
2473 rb_update_write_stamp(struct ring_buffer_per_cpu *cpu_buffer,
2474 struct ring_buffer_event *event)
2475 {
2476 u64 delta;
2477
2478 /*
2479 * The event first in the commit queue updates the
2480 * time stamp.
2481 */
2482 if (rb_event_is_commit(cpu_buffer, event)) {
2483 /*
2484 * A commit event that is first on a page
2485 * updates the write timestamp with the page stamp
2486 */
2487 if (!rb_event_index(event))
2488 cpu_buffer->write_stamp =
2489 cpu_buffer->commit_page->page->time_stamp;
2490 else if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) {
2491 delta = event->array[0];
2492 delta <<= TS_SHIFT;
2493 delta += event->time_delta;
2494 cpu_buffer->write_stamp += delta;
2495 } else
2496 cpu_buffer->write_stamp += event->time_delta;
2497 }
2498 }
2499
2500 static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer,
2501 struct ring_buffer_event *event)
2502 {
2503 local_inc(&cpu_buffer->entries);
2504 rb_update_write_stamp(cpu_buffer, event);
2505 rb_end_commit(cpu_buffer);
2506 }
2507
2508 static __always_inline void
2509 rb_wakeups(struct ring_buffer *buffer, struct ring_buffer_per_cpu *cpu_buffer)
2510 {
2511 bool pagebusy;
2512
2513 if (buffer->irq_work.waiters_pending) {
2514 buffer->irq_work.waiters_pending = false;
2515 /* irq_work_queue() supplies it's own memory barriers */
2516 irq_work_queue(&buffer->irq_work.work);
2517 }
2518
2519 if (cpu_buffer->irq_work.waiters_pending) {
2520 cpu_buffer->irq_work.waiters_pending = false;
2521 /* irq_work_queue() supplies it's own memory barriers */
2522 irq_work_queue(&cpu_buffer->irq_work.work);
2523 }
2524
2525 pagebusy = cpu_buffer->reader_page == cpu_buffer->commit_page;
2526
2527 if (!pagebusy && cpu_buffer->irq_work.full_waiters_pending) {
2528 cpu_buffer->irq_work.wakeup_full = true;
2529 cpu_buffer->irq_work.full_waiters_pending = false;
2530 /* irq_work_queue() supplies it's own memory barriers */
2531 irq_work_queue(&cpu_buffer->irq_work.work);
2532 }
2533 }
2534
2535 /*
2536 * The lock and unlock are done within a preempt disable section.
2537 * The current_context per_cpu variable can only be modified
2538 * by the current task between lock and unlock. But it can
2539 * be modified more than once via an interrupt. To pass this
2540 * information from the lock to the unlock without having to
2541 * access the 'in_interrupt()' functions again (which do show
2542 * a bit of overhead in something as critical as function tracing,
2543 * we use a bitmask trick.
2544 *
2545 * bit 0 = NMI context
2546 * bit 1 = IRQ context
2547 * bit 2 = SoftIRQ context
2548 * bit 3 = normal context.
2549 *
2550 * This works because this is the order of contexts that can
2551 * preempt other contexts. A SoftIRQ never preempts an IRQ
2552 * context.
2553 *
2554 * When the context is determined, the corresponding bit is
2555 * checked and set (if it was set, then a recursion of that context
2556 * happened).
2557 *
2558 * On unlock, we need to clear this bit. To do so, just subtract
2559 * 1 from the current_context and AND it to itself.
2560 *
2561 * (binary)
2562 * 101 - 1 = 100
2563 * 101 & 100 = 100 (clearing bit zero)
2564 *
2565 * 1010 - 1 = 1001
2566 * 1010 & 1001 = 1000 (clearing bit 1)
2567 *
2568 * The least significant bit can be cleared this way, and it
2569 * just so happens that it is the same bit corresponding to
2570 * the current context.
2571 */
2572
2573 static __always_inline int
2574 trace_recursive_lock(struct ring_buffer_per_cpu *cpu_buffer)
2575 {
2576 unsigned int val = cpu_buffer->current_context;
2577 int bit;
2578
2579 if (in_interrupt()) {
2580 if (in_nmi())
2581 bit = RB_CTX_NMI;
2582 else if (in_irq())
2583 bit = RB_CTX_IRQ;
2584 else
2585 bit = RB_CTX_SOFTIRQ;
2586 } else
2587 bit = RB_CTX_NORMAL;
2588
2589 if (unlikely(val & (1 << bit)))
2590 return 1;
2591
2592 val |= (1 << bit);
2593 cpu_buffer->current_context = val;
2594
2595 return 0;
2596 }
2597
2598 static __always_inline void
2599 trace_recursive_unlock(struct ring_buffer_per_cpu *cpu_buffer)
2600 {
2601 cpu_buffer->current_context &= cpu_buffer->current_context - 1;
2602 }
2603
2604 /**
2605 * ring_buffer_unlock_commit - commit a reserved
2606 * @buffer: The buffer to commit to
2607 * @event: The event pointer to commit.
2608 *
2609 * This commits the data to the ring buffer, and releases any locks held.
2610 *
2611 * Must be paired with ring_buffer_lock_reserve.
2612 */
2613 int ring_buffer_unlock_commit(struct ring_buffer *buffer,
2614 struct ring_buffer_event *event)
2615 {
2616 struct ring_buffer_per_cpu *cpu_buffer;
2617 int cpu = raw_smp_processor_id();
2618
2619 cpu_buffer = buffer->buffers[cpu];
2620
2621 rb_commit(cpu_buffer, event);
2622
2623 rb_wakeups(buffer, cpu_buffer);
2624
2625 trace_recursive_unlock(cpu_buffer);
2626
2627 preempt_enable_notrace();
2628
2629 return 0;
2630 }
2631 EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit);
2632
2633 static noinline void
2634 rb_handle_timestamp(struct ring_buffer_per_cpu *cpu_buffer,
2635 struct rb_event_info *info)
2636 {
2637 WARN_ONCE(info->delta > (1ULL << 59),
2638 KERN_WARNING "Delta way too big! %llu ts=%llu write stamp = %llu\n%s",
2639 (unsigned long long)info->delta,
2640 (unsigned long long)info->ts,
2641 (unsigned long long)cpu_buffer->write_stamp,
2642 sched_clock_stable() ? "" :
2643 "If you just came from a suspend/resume,\n"
2644 "please switch to the trace global clock:\n"
2645 " echo global > /sys/kernel/debug/tracing/trace_clock\n");
2646 info->add_timestamp = 1;
2647 }
2648
2649 static struct ring_buffer_event *
2650 __rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
2651 struct rb_event_info *info)
2652 {
2653 struct ring_buffer_event *event;
2654 struct buffer_page *tail_page;
2655 unsigned long tail, write;
2656
2657 /*
2658 * If the time delta since the last event is too big to
2659 * hold in the time field of the event, then we append a
2660 * TIME EXTEND event ahead of the data event.
2661 */
2662 if (unlikely(info->add_timestamp))
2663 info->length += RB_LEN_TIME_EXTEND;
2664
2665 /* Don't let the compiler play games with cpu_buffer->tail_page */
2666 tail_page = info->tail_page = READ_ONCE(cpu_buffer->tail_page);
2667 write = local_add_return(info->length, &tail_page->write);
2668
2669 /* set write to only the index of the write */
2670 write &= RB_WRITE_MASK;
2671 tail = write - info->length;
2672
2673 /*
2674 * If this is the first commit on the page, then it has the same
2675 * timestamp as the page itself.
2676 */
2677 if (!tail)
2678 info->delta = 0;
2679
2680 /* See if we shot pass the end of this buffer page */
2681 if (unlikely(write > BUF_PAGE_SIZE))
2682 return rb_move_tail(cpu_buffer, tail, info);
2683
2684 /* We reserved something on the buffer */
2685
2686 event = __rb_page_index(tail_page, tail);
2687 kmemcheck_annotate_bitfield(event, bitfield);
2688 rb_update_event(cpu_buffer, event, info);
2689
2690 local_inc(&tail_page->entries);
2691
2692 /*
2693 * If this is the first commit on the page, then update
2694 * its timestamp.
2695 */
2696 if (!tail)
2697 tail_page->page->time_stamp = info->ts;
2698
2699 /* account for these added bytes */
2700 local_add(info->length, &cpu_buffer->entries_bytes);
2701
2702 return event;
2703 }
2704
2705 static __always_inline struct ring_buffer_event *
2706 rb_reserve_next_event(struct ring_buffer *buffer,
2707 struct ring_buffer_per_cpu *cpu_buffer,
2708 unsigned long length)
2709 {
2710 struct ring_buffer_event *event;
2711 struct rb_event_info info;
2712 int nr_loops = 0;
2713 u64 diff;
2714
2715 rb_start_commit(cpu_buffer);
2716
2717 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
2718 /*
2719 * Due to the ability to swap a cpu buffer from a buffer
2720 * it is possible it was swapped before we committed.
2721 * (committing stops a swap). We check for it here and
2722 * if it happened, we have to fail the write.
2723 */
2724 barrier();
2725 if (unlikely(ACCESS_ONCE(cpu_buffer->buffer) != buffer)) {
2726 local_dec(&cpu_buffer->committing);
2727 local_dec(&cpu_buffer->commits);
2728 return NULL;
2729 }
2730 #endif
2731
2732 info.length = rb_calculate_event_length(length);
2733 again:
2734 info.add_timestamp = 0;
2735 info.delta = 0;
2736
2737 /*
2738 * We allow for interrupts to reenter here and do a trace.
2739 * If one does, it will cause this original code to loop
2740 * back here. Even with heavy interrupts happening, this
2741 * should only happen a few times in a row. If this happens
2742 * 1000 times in a row, there must be either an interrupt
2743 * storm or we have something buggy.
2744 * Bail!
2745 */
2746 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
2747 goto out_fail;
2748
2749 info.ts = rb_time_stamp(cpu_buffer->buffer);
2750 diff = info.ts - cpu_buffer->write_stamp;
2751
2752 /* make sure this diff is calculated here */
2753 barrier();
2754
2755 /* Did the write stamp get updated already? */
2756 if (likely(info.ts >= cpu_buffer->write_stamp)) {
2757 info.delta = diff;
2758 if (unlikely(test_time_stamp(info.delta)))
2759 rb_handle_timestamp(cpu_buffer, &info);
2760 }
2761
2762 event = __rb_reserve_next(cpu_buffer, &info);
2763
2764 if (unlikely(PTR_ERR(event) == -EAGAIN)) {
2765 if (info.add_timestamp)
2766 info.length -= RB_LEN_TIME_EXTEND;
2767 goto again;
2768 }
2769
2770 if (!event)
2771 goto out_fail;
2772
2773 return event;
2774
2775 out_fail:
2776 rb_end_commit(cpu_buffer);
2777 return NULL;
2778 }
2779
2780 /**
2781 * ring_buffer_lock_reserve - reserve a part of the buffer
2782 * @buffer: the ring buffer to reserve from
2783 * @length: the length of the data to reserve (excluding event header)
2784 *
2785 * Returns a reseverd event on the ring buffer to copy directly to.
2786 * The user of this interface will need to get the body to write into
2787 * and can use the ring_buffer_event_data() interface.
2788 *
2789 * The length is the length of the data needed, not the event length
2790 * which also includes the event header.
2791 *
2792 * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
2793 * If NULL is returned, then nothing has been allocated or locked.
2794 */
2795 struct ring_buffer_event *
2796 ring_buffer_lock_reserve(struct ring_buffer *buffer, unsigned long length)
2797 {
2798 struct ring_buffer_per_cpu *cpu_buffer;
2799 struct ring_buffer_event *event;
2800 int cpu;
2801
2802 /* If we are tracing schedule, we don't want to recurse */
2803 preempt_disable_notrace();
2804
2805 if (unlikely(atomic_read(&buffer->record_disabled)))
2806 goto out;
2807
2808 cpu = raw_smp_processor_id();
2809
2810 if (unlikely(!cpumask_test_cpu(cpu, buffer->cpumask)))
2811 goto out;
2812
2813 cpu_buffer = buffer->buffers[cpu];
2814
2815 if (unlikely(atomic_read(&cpu_buffer->record_disabled)))
2816 goto out;
2817
2818 if (unlikely(length > BUF_MAX_DATA_SIZE))
2819 goto out;
2820
2821 if (unlikely(trace_recursive_lock(cpu_buffer)))
2822 goto out;
2823
2824 event = rb_reserve_next_event(buffer, cpu_buffer, length);
2825 if (!event)
2826 goto out_unlock;
2827
2828 return event;
2829
2830 out_unlock:
2831 trace_recursive_unlock(cpu_buffer);
2832 out:
2833 preempt_enable_notrace();
2834 return NULL;
2835 }
2836 EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve);
2837
2838 /*
2839 * Decrement the entries to the page that an event is on.
2840 * The event does not even need to exist, only the pointer
2841 * to the page it is on. This may only be called before the commit
2842 * takes place.
2843 */
2844 static inline void
2845 rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer,
2846 struct ring_buffer_event *event)
2847 {
2848 unsigned long addr = (unsigned long)event;
2849 struct buffer_page *bpage = cpu_buffer->commit_page;
2850 struct buffer_page *start;
2851
2852 addr &= PAGE_MASK;
2853
2854 /* Do the likely case first */
2855 if (likely(bpage->page == (void *)addr)) {
2856 local_dec(&bpage->entries);
2857 return;
2858 }
2859
2860 /*
2861 * Because the commit page may be on the reader page we
2862 * start with the next page and check the end loop there.
2863 */
2864 rb_inc_page(cpu_buffer, &bpage);
2865 start = bpage;
2866 do {
2867 if (bpage->page == (void *)addr) {
2868 local_dec(&bpage->entries);
2869 return;
2870 }
2871 rb_inc_page(cpu_buffer, &bpage);
2872 } while (bpage != start);
2873
2874 /* commit not part of this buffer?? */
2875 RB_WARN_ON(cpu_buffer, 1);
2876 }
2877
2878 /**
2879 * ring_buffer_commit_discard - discard an event that has not been committed
2880 * @buffer: the ring buffer
2881 * @event: non committed event to discard
2882 *
2883 * Sometimes an event that is in the ring buffer needs to be ignored.
2884 * This function lets the user discard an event in the ring buffer
2885 * and then that event will not be read later.
2886 *
2887 * This function only works if it is called before the the item has been
2888 * committed. It will try to free the event from the ring buffer
2889 * if another event has not been added behind it.
2890 *
2891 * If another event has been added behind it, it will set the event
2892 * up as discarded, and perform the commit.
2893 *
2894 * If this function is called, do not call ring_buffer_unlock_commit on
2895 * the event.
2896 */
2897 void ring_buffer_discard_commit(struct ring_buffer *buffer,
2898 struct ring_buffer_event *event)
2899 {
2900 struct ring_buffer_per_cpu *cpu_buffer;
2901 int cpu;
2902
2903 /* The event is discarded regardless */
2904 rb_event_discard(event);
2905
2906 cpu = smp_processor_id();
2907 cpu_buffer = buffer->buffers[cpu];
2908
2909 /*
2910 * This must only be called if the event has not been
2911 * committed yet. Thus we can assume that preemption
2912 * is still disabled.
2913 */
2914 RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing));
2915
2916 rb_decrement_entry(cpu_buffer, event);
2917 if (rb_try_to_discard(cpu_buffer, event))
2918 goto out;
2919
2920 /*
2921 * The commit is still visible by the reader, so we
2922 * must still update the timestamp.
2923 */
2924 rb_update_write_stamp(cpu_buffer, event);
2925 out:
2926 rb_end_commit(cpu_buffer);
2927
2928 trace_recursive_unlock(cpu_buffer);
2929
2930 preempt_enable_notrace();
2931
2932 }
2933 EXPORT_SYMBOL_GPL(ring_buffer_discard_commit);
2934
2935 /**
2936 * ring_buffer_write - write data to the buffer without reserving
2937 * @buffer: The ring buffer to write to.
2938 * @length: The length of the data being written (excluding the event header)
2939 * @data: The data to write to the buffer.
2940 *
2941 * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
2942 * one function. If you already have the data to write to the buffer, it
2943 * may be easier to simply call this function.
2944 *
2945 * Note, like ring_buffer_lock_reserve, the length is the length of the data
2946 * and not the length of the event which would hold the header.
2947 */
2948 int ring_buffer_write(struct ring_buffer *buffer,
2949 unsigned long length,
2950 void *data)
2951 {
2952 struct ring_buffer_per_cpu *cpu_buffer;
2953 struct ring_buffer_event *event;
2954 void *body;
2955 int ret = -EBUSY;
2956 int cpu;
2957
2958 preempt_disable_notrace();
2959
2960 if (atomic_read(&buffer->record_disabled))
2961 goto out;
2962
2963 cpu = raw_smp_processor_id();
2964
2965 if (!cpumask_test_cpu(cpu, buffer->cpumask))
2966 goto out;
2967
2968 cpu_buffer = buffer->buffers[cpu];
2969
2970 if (atomic_read(&cpu_buffer->record_disabled))
2971 goto out;
2972
2973 if (length > BUF_MAX_DATA_SIZE)
2974 goto out;
2975
2976 if (unlikely(trace_recursive_lock(cpu_buffer)))
2977 goto out;
2978
2979 event = rb_reserve_next_event(buffer, cpu_buffer, length);
2980 if (!event)
2981 goto out_unlock;
2982
2983 body = rb_event_data(event);
2984
2985 memcpy(body, data, length);
2986
2987 rb_commit(cpu_buffer, event);
2988
2989 rb_wakeups(buffer, cpu_buffer);
2990
2991 ret = 0;
2992
2993 out_unlock:
2994 trace_recursive_unlock(cpu_buffer);
2995
2996 out:
2997 preempt_enable_notrace();
2998
2999 return ret;
3000 }
3001 EXPORT_SYMBOL_GPL(ring_buffer_write);
3002
3003 static bool rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
3004 {
3005 struct buffer_page *reader = cpu_buffer->reader_page;
3006 struct buffer_page *head = rb_set_head_page(cpu_buffer);
3007 struct buffer_page *commit = cpu_buffer->commit_page;
3008
3009 /* In case of error, head will be NULL */
3010 if (unlikely(!head))
3011 return true;
3012
3013 return reader->read == rb_page_commit(reader) &&
3014 (commit == reader ||
3015 (commit == head &&
3016 head->read == rb_page_commit(commit)));
3017 }
3018
3019 /**
3020 * ring_buffer_record_disable - stop all writes into the buffer
3021 * @buffer: The ring buffer to stop writes to.
3022 *
3023 * This prevents all writes to the buffer. Any attempt to write
3024 * to the buffer after this will fail and return NULL.
3025 *
3026 * The caller should call synchronize_sched() after this.
3027 */
3028 void ring_buffer_record_disable(struct ring_buffer *buffer)
3029 {
3030 atomic_inc(&buffer->record_disabled);
3031 }
3032 EXPORT_SYMBOL_GPL(ring_buffer_record_disable);
3033
3034 /**
3035 * ring_buffer_record_enable - enable writes to the buffer
3036 * @buffer: The ring buffer to enable writes
3037 *
3038 * Note, multiple disables will need the same number of enables
3039 * to truly enable the writing (much like preempt_disable).
3040 */
3041 void ring_buffer_record_enable(struct ring_buffer *buffer)
3042 {
3043 atomic_dec(&buffer->record_disabled);
3044 }
3045 EXPORT_SYMBOL_GPL(ring_buffer_record_enable);
3046
3047 /**
3048 * ring_buffer_record_off - stop all writes into the buffer
3049 * @buffer: The ring buffer to stop writes to.
3050 *
3051 * This prevents all writes to the buffer. Any attempt to write
3052 * to the buffer after this will fail and return NULL.
3053 *
3054 * This is different than ring_buffer_record_disable() as
3055 * it works like an on/off switch, where as the disable() version
3056 * must be paired with a enable().
3057 */
3058 void ring_buffer_record_off(struct ring_buffer *buffer)
3059 {
3060 unsigned int rd;
3061 unsigned int new_rd;
3062
3063 do {
3064 rd = atomic_read(&buffer->record_disabled);
3065 new_rd = rd | RB_BUFFER_OFF;
3066 } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
3067 }
3068 EXPORT_SYMBOL_GPL(ring_buffer_record_off);
3069
3070 /**
3071 * ring_buffer_record_on - restart writes into the buffer
3072 * @buffer: The ring buffer to start writes to.
3073 *
3074 * This enables all writes to the buffer that was disabled by
3075 * ring_buffer_record_off().
3076 *
3077 * This is different than ring_buffer_record_enable() as
3078 * it works like an on/off switch, where as the enable() version
3079 * must be paired with a disable().
3080 */
3081 void ring_buffer_record_on(struct ring_buffer *buffer)
3082 {
3083 unsigned int rd;
3084 unsigned int new_rd;
3085
3086 do {
3087 rd = atomic_read(&buffer->record_disabled);
3088 new_rd = rd & ~RB_BUFFER_OFF;
3089 } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
3090 }
3091 EXPORT_SYMBOL_GPL(ring_buffer_record_on);
3092
3093 /**
3094 * ring_buffer_record_is_on - return true if the ring buffer can write
3095 * @buffer: The ring buffer to see if write is enabled
3096 *
3097 * Returns true if the ring buffer is in a state that it accepts writes.
3098 */
3099 int ring_buffer_record_is_on(struct ring_buffer *buffer)
3100 {
3101 return !atomic_read(&buffer->record_disabled);
3102 }
3103
3104 /**
3105 * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
3106 * @buffer: The ring buffer to stop writes to.
3107 * @cpu: The CPU buffer to stop
3108 *
3109 * This prevents all writes to the buffer. Any attempt to write
3110 * to the buffer after this will fail and return NULL.
3111 *
3112 * The caller should call synchronize_sched() after this.
3113 */
3114 void ring_buffer_record_disable_cpu(struct ring_buffer *buffer, int cpu)
3115 {
3116 struct ring_buffer_per_cpu *cpu_buffer;
3117
3118 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3119 return;
3120
3121 cpu_buffer = buffer->buffers[cpu];
3122 atomic_inc(&cpu_buffer->record_disabled);
3123 }
3124 EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu);
3125
3126 /**
3127 * ring_buffer_record_enable_cpu - enable writes to the buffer
3128 * @buffer: The ring buffer to enable writes
3129 * @cpu: The CPU to enable.
3130 *
3131 * Note, multiple disables will need the same number of enables
3132 * to truly enable the writing (much like preempt_disable).
3133 */
3134 void ring_buffer_record_enable_cpu(struct ring_buffer *buffer, int cpu)
3135 {
3136 struct ring_buffer_per_cpu *cpu_buffer;
3137
3138 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3139 return;
3140
3141 cpu_buffer = buffer->buffers[cpu];
3142 atomic_dec(&cpu_buffer->record_disabled);
3143 }
3144 EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu);
3145
3146 /*
3147 * The total entries in the ring buffer is the running counter
3148 * of entries entered into the ring buffer, minus the sum of
3149 * the entries read from the ring buffer and the number of
3150 * entries that were overwritten.
3151 */
3152 static inline unsigned long
3153 rb_num_of_entries(struct ring_buffer_per_cpu *cpu_buffer)
3154 {
3155 return local_read(&cpu_buffer->entries) -
3156 (local_read(&cpu_buffer->overrun) + cpu_buffer->read);
3157 }
3158
3159 /**
3160 * ring_buffer_oldest_event_ts - get the oldest event timestamp from the buffer
3161 * @buffer: The ring buffer
3162 * @cpu: The per CPU buffer to read from.
3163 */
3164 u64 ring_buffer_oldest_event_ts(struct ring_buffer *buffer, int cpu)
3165 {
3166 unsigned long flags;
3167 struct ring_buffer_per_cpu *cpu_buffer;
3168 struct buffer_page *bpage;
3169 u64 ret = 0;
3170
3171 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3172 return 0;
3173
3174 cpu_buffer = buffer->buffers[cpu];
3175 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3176 /*
3177 * if the tail is on reader_page, oldest time stamp is on the reader
3178 * page
3179 */
3180 if (cpu_buffer->tail_page == cpu_buffer->reader_page)
3181 bpage = cpu_buffer->reader_page;
3182 else
3183 bpage = rb_set_head_page(cpu_buffer);
3184 if (bpage)
3185 ret = bpage->page->time_stamp;
3186 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3187
3188 return ret;
3189 }
3190 EXPORT_SYMBOL_GPL(ring_buffer_oldest_event_ts);
3191
3192 /**
3193 * ring_buffer_bytes_cpu - get the number of bytes consumed in a cpu buffer
3194 * @buffer: The ring buffer
3195 * @cpu: The per CPU buffer to read from.
3196 */
3197 unsigned long ring_buffer_bytes_cpu(struct ring_buffer *buffer, int cpu)
3198 {
3199 struct ring_buffer_per_cpu *cpu_buffer;
3200 unsigned long ret;
3201
3202 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3203 return 0;
3204
3205 cpu_buffer = buffer->buffers[cpu];
3206 ret = local_read(&cpu_buffer->entries_bytes) - cpu_buffer->read_bytes;
3207
3208 return ret;
3209 }
3210 EXPORT_SYMBOL_GPL(ring_buffer_bytes_cpu);
3211
3212 /**
3213 * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
3214 * @buffer: The ring buffer
3215 * @cpu: The per CPU buffer to get the entries from.
3216 */
3217 unsigned long ring_buffer_entries_cpu(struct ring_buffer *buffer, int cpu)
3218 {
3219 struct ring_buffer_per_cpu *cpu_buffer;
3220
3221 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3222 return 0;
3223
3224 cpu_buffer = buffer->buffers[cpu];
3225
3226 return rb_num_of_entries(cpu_buffer);
3227 }
3228 EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu);
3229
3230 /**
3231 * ring_buffer_overrun_cpu - get the number of overruns caused by the ring
3232 * buffer wrapping around (only if RB_FL_OVERWRITE is on).
3233 * @buffer: The ring buffer
3234 * @cpu: The per CPU buffer to get the number of overruns from
3235 */
3236 unsigned long ring_buffer_overrun_cpu(struct ring_buffer *buffer, int cpu)
3237 {
3238 struct ring_buffer_per_cpu *cpu_buffer;
3239 unsigned long ret;
3240
3241 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3242 return 0;
3243
3244 cpu_buffer = buffer->buffers[cpu];
3245 ret = local_read(&cpu_buffer->overrun);
3246
3247 return ret;
3248 }
3249 EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu);
3250
3251 /**
3252 * ring_buffer_commit_overrun_cpu - get the number of overruns caused by
3253 * commits failing due to the buffer wrapping around while there are uncommitted
3254 * events, such as during an interrupt storm.
3255 * @buffer: The ring buffer
3256 * @cpu: The per CPU buffer to get the number of overruns from
3257 */
3258 unsigned long
3259 ring_buffer_commit_overrun_cpu(struct ring_buffer *buffer, int cpu)
3260 {
3261 struct ring_buffer_per_cpu *cpu_buffer;
3262 unsigned long ret;
3263
3264 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3265 return 0;
3266
3267 cpu_buffer = buffer->buffers[cpu];
3268 ret = local_read(&cpu_buffer->commit_overrun);
3269
3270 return ret;
3271 }
3272 EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu);
3273
3274 /**
3275 * ring_buffer_dropped_events_cpu - get the number of dropped events caused by
3276 * the ring buffer filling up (only if RB_FL_OVERWRITE is off).
3277 * @buffer: The ring buffer
3278 * @cpu: The per CPU buffer to get the number of overruns from
3279 */
3280 unsigned long
3281 ring_buffer_dropped_events_cpu(struct ring_buffer *buffer, int cpu)
3282 {
3283 struct ring_buffer_per_cpu *cpu_buffer;
3284 unsigned long ret;
3285
3286 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3287 return 0;
3288
3289 cpu_buffer = buffer->buffers[cpu];
3290 ret = local_read(&cpu_buffer->dropped_events);
3291
3292 return ret;
3293 }
3294 EXPORT_SYMBOL_GPL(ring_buffer_dropped_events_cpu);
3295
3296 /**
3297 * ring_buffer_read_events_cpu - get the number of events successfully read
3298 * @buffer: The ring buffer
3299 * @cpu: The per CPU buffer to get the number of events read
3300 */
3301 unsigned long
3302 ring_buffer_read_events_cpu(struct ring_buffer *buffer, int cpu)
3303 {
3304 struct ring_buffer_per_cpu *cpu_buffer;
3305
3306 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3307 return 0;
3308
3309 cpu_buffer = buffer->buffers[cpu];
3310 return cpu_buffer->read;
3311 }
3312 EXPORT_SYMBOL_GPL(ring_buffer_read_events_cpu);
3313
3314 /**
3315 * ring_buffer_entries - get the number of entries in a buffer
3316 * @buffer: The ring buffer
3317 *
3318 * Returns the total number of entries in the ring buffer
3319 * (all CPU entries)
3320 */
3321 unsigned long ring_buffer_entries(struct ring_buffer *buffer)
3322 {
3323 struct ring_buffer_per_cpu *cpu_buffer;
3324 unsigned long entries = 0;
3325 int cpu;
3326
3327 /* if you care about this being correct, lock the buffer */
3328 for_each_buffer_cpu(buffer, cpu) {
3329 cpu_buffer = buffer->buffers[cpu];
3330 entries += rb_num_of_entries(cpu_buffer);
3331 }
3332
3333 return entries;
3334 }
3335 EXPORT_SYMBOL_GPL(ring_buffer_entries);
3336
3337 /**
3338 * ring_buffer_overruns - get the number of overruns in buffer
3339 * @buffer: The ring buffer
3340 *
3341 * Returns the total number of overruns in the ring buffer
3342 * (all CPU entries)
3343 */
3344 unsigned long ring_buffer_overruns(struct ring_buffer *buffer)
3345 {
3346 struct ring_buffer_per_cpu *cpu_buffer;
3347 unsigned long overruns = 0;
3348 int cpu;
3349
3350 /* if you care about this being correct, lock the buffer */
3351 for_each_buffer_cpu(buffer, cpu) {
3352 cpu_buffer = buffer->buffers[cpu];
3353 overruns += local_read(&cpu_buffer->overrun);
3354 }
3355
3356 return overruns;
3357 }
3358 EXPORT_SYMBOL_GPL(ring_buffer_overruns);
3359
3360 static void rb_iter_reset(struct ring_buffer_iter *iter)
3361 {
3362 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3363
3364 /* Iterator usage is expected to have record disabled */
3365 iter->head_page = cpu_buffer->reader_page;
3366 iter->head = cpu_buffer->reader_page->read;
3367
3368 iter->cache_reader_page = iter->head_page;
3369 iter->cache_read = cpu_buffer->read;
3370
3371 if (iter->head)
3372 iter->read_stamp = cpu_buffer->read_stamp;
3373 else
3374 iter->read_stamp = iter->head_page->page->time_stamp;
3375 }
3376
3377 /**
3378 * ring_buffer_iter_reset - reset an iterator
3379 * @iter: The iterator to reset
3380 *
3381 * Resets the iterator, so that it will start from the beginning
3382 * again.
3383 */
3384 void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
3385 {
3386 struct ring_buffer_per_cpu *cpu_buffer;
3387 unsigned long flags;
3388
3389 if (!iter)
3390 return;
3391
3392 cpu_buffer = iter->cpu_buffer;
3393
3394 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3395 rb_iter_reset(iter);
3396 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3397 }
3398 EXPORT_SYMBOL_GPL(ring_buffer_iter_reset);
3399
3400 /**
3401 * ring_buffer_iter_empty - check if an iterator has no more to read
3402 * @iter: The iterator to check
3403 */
3404 int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
3405 {
3406 struct ring_buffer_per_cpu *cpu_buffer;
3407 struct buffer_page *reader;
3408 struct buffer_page *head_page;
3409 struct buffer_page *commit_page;
3410 unsigned commit;
3411
3412 cpu_buffer = iter->cpu_buffer;
3413
3414 /* Remember, trace recording is off when iterator is in use */
3415 reader = cpu_buffer->reader_page;
3416 head_page = cpu_buffer->head_page;
3417 commit_page = cpu_buffer->commit_page;
3418 commit = rb_page_commit(commit_page);
3419
3420 return ((iter->head_page == commit_page && iter->head == commit) ||
3421 (iter->head_page == reader && commit_page == head_page &&
3422 head_page->read == commit &&
3423 iter->head == rb_page_commit(cpu_buffer->reader_page)));
3424 }
3425 EXPORT_SYMBOL_GPL(ring_buffer_iter_empty);
3426
3427 static void
3428 rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
3429 struct ring_buffer_event *event)
3430 {
3431 u64 delta;
3432
3433 switch (event->type_len) {
3434 case RINGBUF_TYPE_PADDING:
3435 return;
3436
3437 case RINGBUF_TYPE_TIME_EXTEND:
3438 delta = event->array[0];
3439 delta <<= TS_SHIFT;
3440 delta += event->time_delta;
3441 cpu_buffer->read_stamp += delta;
3442 return;
3443
3444 case RINGBUF_TYPE_TIME_STAMP:
3445 /* FIXME: not implemented */
3446 return;
3447
3448 case RINGBUF_TYPE_DATA:
3449 cpu_buffer->read_stamp += event->time_delta;
3450 return;
3451
3452 default:
3453 BUG();
3454 }
3455 return;
3456 }
3457
3458 static void
3459 rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
3460 struct ring_buffer_event *event)
3461 {
3462 u64 delta;
3463
3464 switch (event->type_len) {
3465 case RINGBUF_TYPE_PADDING:
3466 return;
3467
3468 case RINGBUF_TYPE_TIME_EXTEND:
3469 delta = event->array[0];
3470 delta <<= TS_SHIFT;
3471 delta += event->time_delta;
3472 iter->read_stamp += delta;
3473 return;
3474
3475 case RINGBUF_TYPE_TIME_STAMP:
3476 /* FIXME: not implemented */
3477 return;
3478
3479 case RINGBUF_TYPE_DATA:
3480 iter->read_stamp += event->time_delta;
3481 return;
3482
3483 default:
3484 BUG();
3485 }
3486 return;
3487 }
3488
3489 static struct buffer_page *
3490 rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
3491 {
3492 struct buffer_page *reader = NULL;
3493 unsigned long overwrite;
3494 unsigned long flags;
3495 int nr_loops = 0;
3496 int ret;
3497
3498 local_irq_save(flags);
3499 arch_spin_lock(&cpu_buffer->lock);
3500
3501 again:
3502 /*
3503 * This should normally only loop twice. But because the
3504 * start of the reader inserts an empty page, it causes
3505 * a case where we will loop three times. There should be no
3506 * reason to loop four times (that I know of).
3507 */
3508 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
3509 reader = NULL;
3510 goto out;
3511 }
3512
3513 reader = cpu_buffer->reader_page;
3514
3515 /* If there's more to read, return this page */
3516 if (cpu_buffer->reader_page->read < rb_page_size(reader))
3517 goto out;
3518
3519 /* Never should we have an index greater than the size */
3520 if (RB_WARN_ON(cpu_buffer,
3521 cpu_buffer->reader_page->read > rb_page_size(reader)))
3522 goto out;
3523
3524 /* check if we caught up to the tail */
3525 reader = NULL;
3526 if (cpu_buffer->commit_page == cpu_buffer->reader_page)
3527 goto out;
3528
3529 /* Don't bother swapping if the ring buffer is empty */
3530 if (rb_num_of_entries(cpu_buffer) == 0)
3531 goto out;
3532
3533 /*
3534 * Reset the reader page to size zero.
3535 */
3536 local_set(&cpu_buffer->reader_page->write, 0);
3537 local_set(&cpu_buffer->reader_page->entries, 0);
3538 local_set(&cpu_buffer->reader_page->page->commit, 0);
3539 cpu_buffer->reader_page->real_end = 0;
3540
3541 spin:
3542 /*
3543 * Splice the empty reader page into the list around the head.
3544 */
3545 reader = rb_set_head_page(cpu_buffer);
3546 if (!reader)
3547 goto out;
3548 cpu_buffer->reader_page->list.next = rb_list_head(reader->list.next);
3549 cpu_buffer->reader_page->list.prev = reader->list.prev;
3550
3551 /*
3552 * cpu_buffer->pages just needs to point to the buffer, it
3553 * has no specific buffer page to point to. Lets move it out
3554 * of our way so we don't accidentally swap it.
3555 */
3556 cpu_buffer->pages = reader->list.prev;
3557
3558 /* The reader page will be pointing to the new head */
3559 rb_set_list_to_head(cpu_buffer, &cpu_buffer->reader_page->list);
3560
3561 /*
3562 * We want to make sure we read the overruns after we set up our
3563 * pointers to the next object. The writer side does a
3564 * cmpxchg to cross pages which acts as the mb on the writer
3565 * side. Note, the reader will constantly fail the swap
3566 * while the writer is updating the pointers, so this
3567 * guarantees that the overwrite recorded here is the one we
3568 * want to compare with the last_overrun.
3569 */
3570 smp_mb();
3571 overwrite = local_read(&(cpu_buffer->overrun));
3572
3573 /*
3574 * Here's the tricky part.
3575 *
3576 * We need to move the pointer past the header page.
3577 * But we can only do that if a writer is not currently
3578 * moving it. The page before the header page has the
3579 * flag bit '1' set if it is pointing to the page we want.
3580 * but if the writer is in the process of moving it
3581 * than it will be '2' or already moved '0'.
3582 */
3583
3584 ret = rb_head_page_replace(reader, cpu_buffer->reader_page);
3585
3586 /*
3587 * If we did not convert it, then we must try again.
3588 */
3589 if (!ret)
3590 goto spin;
3591
3592 /*
3593 * Yeah! We succeeded in replacing the page.
3594 *
3595 * Now make the new head point back to the reader page.
3596 */
3597 rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list;
3598 rb_inc_page(cpu_buffer, &cpu_buffer->head_page);
3599
3600 /* Finally update the reader page to the new head */
3601 cpu_buffer->reader_page = reader;
3602 cpu_buffer->reader_page->read = 0;
3603
3604 if (overwrite != cpu_buffer->last_overrun) {
3605 cpu_buffer->lost_events = overwrite - cpu_buffer->last_overrun;
3606 cpu_buffer->last_overrun = overwrite;
3607 }
3608
3609 goto again;
3610
3611 out:
3612 /* Update the read_stamp on the first event */
3613 if (reader && reader->read == 0)
3614 cpu_buffer->read_stamp = reader->page->time_stamp;
3615
3616 arch_spin_unlock(&cpu_buffer->lock);
3617 local_irq_restore(flags);
3618
3619 return reader;
3620 }
3621
3622 static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
3623 {
3624 struct ring_buffer_event *event;
3625 struct buffer_page *reader;
3626 unsigned length;
3627
3628 reader = rb_get_reader_page(cpu_buffer);
3629
3630 /* This function should not be called when buffer is empty */
3631 if (RB_WARN_ON(cpu_buffer, !reader))
3632 return;
3633
3634 event = rb_reader_event(cpu_buffer);
3635
3636 if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
3637 cpu_buffer->read++;
3638
3639 rb_update_read_stamp(cpu_buffer, event);
3640
3641 length = rb_event_length(event);
3642 cpu_buffer->reader_page->read += length;
3643 }
3644
3645 static void rb_advance_iter(struct ring_buffer_iter *iter)
3646 {
3647 struct ring_buffer_per_cpu *cpu_buffer;
3648 struct ring_buffer_event *event;
3649 unsigned length;
3650
3651 cpu_buffer = iter->cpu_buffer;
3652
3653 /*
3654 * Check if we are at the end of the buffer.
3655 */
3656 if (iter->head >= rb_page_size(iter->head_page)) {
3657 /* discarded commits can make the page empty */
3658 if (iter->head_page == cpu_buffer->commit_page)
3659 return;
3660 rb_inc_iter(iter);
3661 return;
3662 }
3663
3664 event = rb_iter_head_event(iter);
3665
3666 length = rb_event_length(event);
3667
3668 /*
3669 * This should not be called to advance the header if we are
3670 * at the tail of the buffer.
3671 */
3672 if (RB_WARN_ON(cpu_buffer,
3673 (iter->head_page == cpu_buffer->commit_page) &&
3674 (iter->head + length > rb_commit_index(cpu_buffer))))
3675 return;
3676
3677 rb_update_iter_read_stamp(iter, event);
3678
3679 iter->head += length;
3680
3681 /* check for end of page padding */
3682 if ((iter->head >= rb_page_size(iter->head_page)) &&
3683 (iter->head_page != cpu_buffer->commit_page))
3684 rb_inc_iter(iter);
3685 }
3686
3687 static int rb_lost_events(struct ring_buffer_per_cpu *cpu_buffer)
3688 {
3689 return cpu_buffer->lost_events;
3690 }
3691
3692 static struct ring_buffer_event *
3693 rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts,
3694 unsigned long *lost_events)
3695 {
3696 struct ring_buffer_event *event;
3697 struct buffer_page *reader;
3698 int nr_loops = 0;
3699
3700 again:
3701 /*
3702 * We repeat when a time extend is encountered.
3703 * Since the time extend is always attached to a data event,
3704 * we should never loop more than once.
3705 * (We never hit the following condition more than twice).
3706 */
3707 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2))
3708 return NULL;
3709
3710 reader = rb_get_reader_page(cpu_buffer);
3711 if (!reader)
3712 return NULL;
3713
3714 event = rb_reader_event(cpu_buffer);
3715
3716 switch (event->type_len) {
3717 case RINGBUF_TYPE_PADDING:
3718 if (rb_null_event(event))
3719 RB_WARN_ON(cpu_buffer, 1);
3720 /*
3721 * Because the writer could be discarding every
3722 * event it creates (which would probably be bad)
3723 * if we were to go back to "again" then we may never
3724 * catch up, and will trigger the warn on, or lock
3725 * the box. Return the padding, and we will release
3726 * the current locks, and try again.
3727 */
3728 return event;
3729
3730 case RINGBUF_TYPE_TIME_EXTEND:
3731 /* Internal data, OK to advance */
3732 rb_advance_reader(cpu_buffer);
3733 goto again;
3734
3735 case RINGBUF_TYPE_TIME_STAMP:
3736 /* FIXME: not implemented */
3737 rb_advance_reader(cpu_buffer);
3738 goto again;
3739
3740 case RINGBUF_TYPE_DATA:
3741 if (ts) {
3742 *ts = cpu_buffer->read_stamp + event->time_delta;
3743 ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
3744 cpu_buffer->cpu, ts);
3745 }
3746 if (lost_events)
3747 *lost_events = rb_lost_events(cpu_buffer);
3748 return event;
3749
3750 default:
3751 BUG();
3752 }
3753
3754 return NULL;
3755 }
3756 EXPORT_SYMBOL_GPL(ring_buffer_peek);
3757
3758 static struct ring_buffer_event *
3759 rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
3760 {
3761 struct ring_buffer *buffer;
3762 struct ring_buffer_per_cpu *cpu_buffer;
3763 struct ring_buffer_event *event;
3764 int nr_loops = 0;
3765
3766 cpu_buffer = iter->cpu_buffer;
3767 buffer = cpu_buffer->buffer;
3768
3769 /*
3770 * Check if someone performed a consuming read to
3771 * the buffer. A consuming read invalidates the iterator
3772 * and we need to reset the iterator in this case.
3773 */
3774 if (unlikely(iter->cache_read != cpu_buffer->read ||
3775 iter->cache_reader_page != cpu_buffer->reader_page))
3776 rb_iter_reset(iter);
3777
3778 again:
3779 if (ring_buffer_iter_empty(iter))
3780 return NULL;
3781
3782 /*
3783 * We repeat when a time extend is encountered or we hit
3784 * the end of the page. Since the time extend is always attached
3785 * to a data event, we should never loop more than three times.
3786 * Once for going to next page, once on time extend, and
3787 * finally once to get the event.
3788 * (We never hit the following condition more than thrice).
3789 */
3790 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3))
3791 return NULL;
3792
3793 if (rb_per_cpu_empty(cpu_buffer))
3794 return NULL;
3795
3796 if (iter->head >= rb_page_size(iter->head_page)) {
3797 rb_inc_iter(iter);
3798 goto again;
3799 }
3800
3801 event = rb_iter_head_event(iter);
3802
3803 switch (event->type_len) {
3804 case RINGBUF_TYPE_PADDING:
3805 if (rb_null_event(event)) {
3806 rb_inc_iter(iter);
3807 goto again;
3808 }
3809 rb_advance_iter(iter);
3810 return event;
3811
3812 case RINGBUF_TYPE_TIME_EXTEND:
3813 /* Internal data, OK to advance */
3814 rb_advance_iter(iter);
3815 goto again;
3816
3817 case RINGBUF_TYPE_TIME_STAMP:
3818 /* FIXME: not implemented */
3819 rb_advance_iter(iter);
3820 goto again;
3821
3822 case RINGBUF_TYPE_DATA:
3823 if (ts) {
3824 *ts = iter->read_stamp + event->time_delta;
3825 ring_buffer_normalize_time_stamp(buffer,
3826 cpu_buffer->cpu, ts);
3827 }
3828 return event;
3829
3830 default:
3831 BUG();
3832 }
3833
3834 return NULL;
3835 }
3836 EXPORT_SYMBOL_GPL(ring_buffer_iter_peek);
3837
3838 static inline bool rb_reader_lock(struct ring_buffer_per_cpu *cpu_buffer)
3839 {
3840 if (likely(!in_nmi())) {
3841 raw_spin_lock(&cpu_buffer->reader_lock);
3842 return true;
3843 }
3844
3845 /*
3846 * If an NMI die dumps out the content of the ring buffer
3847 * trylock must be used to prevent a deadlock if the NMI
3848 * preempted a task that holds the ring buffer locks. If
3849 * we get the lock then all is fine, if not, then continue
3850 * to do the read, but this can corrupt the ring buffer,
3851 * so it must be permanently disabled from future writes.
3852 * Reading from NMI is a oneshot deal.
3853 */
3854 if (raw_spin_trylock(&cpu_buffer->reader_lock))
3855 return true;
3856
3857 /* Continue without locking, but disable the ring buffer */
3858 atomic_inc(&cpu_buffer->record_disabled);
3859 return false;
3860 }
3861
3862 static inline void
3863 rb_reader_unlock(struct ring_buffer_per_cpu *cpu_buffer, bool locked)
3864 {
3865 if (likely(locked))
3866 raw_spin_unlock(&cpu_buffer->reader_lock);
3867 return;
3868 }
3869
3870 /**
3871 * ring_buffer_peek - peek at the next event to be read
3872 * @buffer: The ring buffer to read
3873 * @cpu: The cpu to peak at
3874 * @ts: The timestamp counter of this event.
3875 * @lost_events: a variable to store if events were lost (may be NULL)
3876 *
3877 * This will return the event that will be read next, but does
3878 * not consume the data.
3879 */
3880 struct ring_buffer_event *
3881 ring_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts,
3882 unsigned long *lost_events)
3883 {
3884 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
3885 struct ring_buffer_event *event;
3886 unsigned long flags;
3887 bool dolock;
3888
3889 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3890 return NULL;
3891
3892 again:
3893 local_irq_save(flags);
3894 dolock = rb_reader_lock(cpu_buffer);
3895 event = rb_buffer_peek(cpu_buffer, ts, lost_events);
3896 if (event && event->type_len == RINGBUF_TYPE_PADDING)
3897 rb_advance_reader(cpu_buffer);
3898 rb_reader_unlock(cpu_buffer, dolock);
3899 local_irq_restore(flags);
3900
3901 if (event && event->type_len == RINGBUF_TYPE_PADDING)
3902 goto again;
3903
3904 return event;
3905 }
3906
3907 /**
3908 * ring_buffer_iter_peek - peek at the next event to be read
3909 * @iter: The ring buffer iterator
3910 * @ts: The timestamp counter of this event.
3911 *
3912 * This will return the event that will be read next, but does
3913 * not increment the iterator.
3914 */
3915 struct ring_buffer_event *
3916 ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
3917 {
3918 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3919 struct ring_buffer_event *event;
3920 unsigned long flags;
3921
3922 again:
3923 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3924 event = rb_iter_peek(iter, ts);
3925 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3926
3927 if (event && event->type_len == RINGBUF_TYPE_PADDING)
3928 goto again;
3929
3930 return event;
3931 }
3932
3933 /**
3934 * ring_buffer_consume - return an event and consume it
3935 * @buffer: The ring buffer to get the next event from
3936 * @cpu: the cpu to read the buffer from
3937 * @ts: a variable to store the timestamp (may be NULL)
3938 * @lost_events: a variable to store if events were lost (may be NULL)
3939 *
3940 * Returns the next event in the ring buffer, and that event is consumed.
3941 * Meaning, that sequential reads will keep returning a different event,
3942 * and eventually empty the ring buffer if the producer is slower.
3943 */
3944 struct ring_buffer_event *
3945 ring_buffer_consume(struct ring_buffer *buffer, int cpu, u64 *ts,
3946 unsigned long *lost_events)
3947 {
3948 struct ring_buffer_per_cpu *cpu_buffer;
3949 struct ring_buffer_event *event = NULL;
3950 unsigned long flags;
3951 bool dolock;
3952
3953 again:
3954 /* might be called in atomic */
3955 preempt_disable();
3956
3957 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3958 goto out;
3959
3960 cpu_buffer = buffer->buffers[cpu];
3961 local_irq_save(flags);
3962 dolock = rb_reader_lock(cpu_buffer);
3963
3964 event = rb_buffer_peek(cpu_buffer, ts, lost_events);
3965 if (event) {
3966 cpu_buffer->lost_events = 0;
3967 rb_advance_reader(cpu_buffer);
3968 }
3969
3970 rb_reader_unlock(cpu_buffer, dolock);
3971 local_irq_restore(flags);
3972
3973 out:
3974 preempt_enable();
3975
3976 if (event && event->type_len == RINGBUF_TYPE_PADDING)
3977 goto again;
3978
3979 return event;
3980 }
3981 EXPORT_SYMBOL_GPL(ring_buffer_consume);
3982
3983 /**
3984 * ring_buffer_read_prepare - Prepare for a non consuming read of the buffer
3985 * @buffer: The ring buffer to read from
3986 * @cpu: The cpu buffer to iterate over
3987 *
3988 * This performs the initial preparations necessary to iterate
3989 * through the buffer. Memory is allocated, buffer recording
3990 * is disabled, and the iterator pointer is returned to the caller.
3991 *
3992 * Disabling buffer recordng prevents the reading from being
3993 * corrupted. This is not a consuming read, so a producer is not
3994 * expected.
3995 *
3996 * After a sequence of ring_buffer_read_prepare calls, the user is
3997 * expected to make at least one call to ring_buffer_read_prepare_sync.
3998 * Afterwards, ring_buffer_read_start is invoked to get things going
3999 * for real.
4000 *
4001 * This overall must be paired with ring_buffer_read_finish.
4002 */
4003 struct ring_buffer_iter *
4004 ring_buffer_read_prepare(struct ring_buffer *buffer, int cpu)
4005 {
4006 struct ring_buffer_per_cpu *cpu_buffer;
4007 struct ring_buffer_iter *iter;
4008
4009 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4010 return NULL;
4011
4012 iter = kmalloc(sizeof(*iter), GFP_KERNEL);
4013 if (!iter)
4014 return NULL;
4015
4016 cpu_buffer = buffer->buffers[cpu];
4017
4018 iter->cpu_buffer = cpu_buffer;
4019
4020 atomic_inc(&buffer->resize_disabled);
4021 atomic_inc(&cpu_buffer->record_disabled);
4022
4023 return iter;
4024 }
4025 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare);
4026
4027 /**
4028 * ring_buffer_read_prepare_sync - Synchronize a set of prepare calls
4029 *
4030 * All previously invoked ring_buffer_read_prepare calls to prepare
4031 * iterators will be synchronized. Afterwards, read_buffer_read_start
4032 * calls on those iterators are allowed.
4033 */
4034 void
4035 ring_buffer_read_prepare_sync(void)
4036 {
4037 synchronize_sched();
4038 }
4039 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare_sync);
4040
4041 /**
4042 * ring_buffer_read_start - start a non consuming read of the buffer
4043 * @iter: The iterator returned by ring_buffer_read_prepare
4044 *
4045 * This finalizes the startup of an iteration through the buffer.
4046 * The iterator comes from a call to ring_buffer_read_prepare and
4047 * an intervening ring_buffer_read_prepare_sync must have been
4048 * performed.
4049 *
4050 * Must be paired with ring_buffer_read_finish.
4051 */
4052 void
4053 ring_buffer_read_start(struct ring_buffer_iter *iter)
4054 {
4055 struct ring_buffer_per_cpu *cpu_buffer;
4056 unsigned long flags;
4057
4058 if (!iter)
4059 return;
4060
4061 cpu_buffer = iter->cpu_buffer;
4062
4063 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4064 arch_spin_lock(&cpu_buffer->lock);
4065 rb_iter_reset(iter);
4066 arch_spin_unlock(&cpu_buffer->lock);
4067 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4068 }
4069 EXPORT_SYMBOL_GPL(ring_buffer_read_start);
4070
4071 /**
4072 * ring_buffer_read_finish - finish reading the iterator of the buffer
4073 * @iter: The iterator retrieved by ring_buffer_start
4074 *
4075 * This re-enables the recording to the buffer, and frees the
4076 * iterator.
4077 */
4078 void
4079 ring_buffer_read_finish(struct ring_buffer_iter *iter)
4080 {
4081 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4082 unsigned long flags;
4083
4084 /*
4085 * Ring buffer is disabled from recording, here's a good place
4086 * to check the integrity of the ring buffer.
4087 * Must prevent readers from trying to read, as the check
4088 * clears the HEAD page and readers require it.
4089 */
4090 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4091 rb_check_pages(cpu_buffer);
4092 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4093
4094 atomic_dec(&cpu_buffer->record_disabled);
4095 atomic_dec(&cpu_buffer->buffer->resize_disabled);
4096 kfree(iter);
4097 }
4098 EXPORT_SYMBOL_GPL(ring_buffer_read_finish);
4099
4100 /**
4101 * ring_buffer_read - read the next item in the ring buffer by the iterator
4102 * @iter: The ring buffer iterator
4103 * @ts: The time stamp of the event read.
4104 *
4105 * This reads the next event in the ring buffer and increments the iterator.
4106 */
4107 struct ring_buffer_event *
4108 ring_buffer_read(struct ring_buffer_iter *iter, u64 *ts)
4109 {
4110 struct ring_buffer_event *event;
4111 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4112 unsigned long flags;
4113
4114 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4115 again:
4116 event = rb_iter_peek(iter, ts);
4117 if (!event)
4118 goto out;
4119
4120 if (event->type_len == RINGBUF_TYPE_PADDING)
4121 goto again;
4122
4123 rb_advance_iter(iter);
4124 out:
4125 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4126
4127 return event;
4128 }
4129 EXPORT_SYMBOL_GPL(ring_buffer_read);
4130
4131 /**
4132 * ring_buffer_size - return the size of the ring buffer (in bytes)
4133 * @buffer: The ring buffer.
4134 */
4135 unsigned long ring_buffer_size(struct ring_buffer *buffer, int cpu)
4136 {
4137 /*
4138 * Earlier, this method returned
4139 * BUF_PAGE_SIZE * buffer->nr_pages
4140 * Since the nr_pages field is now removed, we have converted this to
4141 * return the per cpu buffer value.
4142 */
4143 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4144 return 0;
4145
4146 return BUF_PAGE_SIZE * buffer->buffers[cpu]->nr_pages;
4147 }
4148 EXPORT_SYMBOL_GPL(ring_buffer_size);
4149
4150 static void
4151 rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
4152 {
4153 rb_head_page_deactivate(cpu_buffer);
4154
4155 cpu_buffer->head_page
4156 = list_entry(cpu_buffer->pages, struct buffer_page, list);
4157 local_set(&cpu_buffer->head_page->write, 0);
4158 local_set(&cpu_buffer->head_page->entries, 0);
4159 local_set(&cpu_buffer->head_page->page->commit, 0);
4160
4161 cpu_buffer->head_page->read = 0;
4162
4163 cpu_buffer->tail_page = cpu_buffer->head_page;
4164 cpu_buffer->commit_page = cpu_buffer->head_page;
4165
4166 INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
4167 INIT_LIST_HEAD(&cpu_buffer->new_pages);
4168 local_set(&cpu_buffer->reader_page->write, 0);
4169 local_set(&cpu_buffer->reader_page->entries, 0);
4170 local_set(&cpu_buffer->reader_page->page->commit, 0);
4171 cpu_buffer->reader_page->read = 0;
4172
4173 local_set(&cpu_buffer->entries_bytes, 0);
4174 local_set(&cpu_buffer->overrun, 0);
4175 local_set(&cpu_buffer->commit_overrun, 0);
4176 local_set(&cpu_buffer->dropped_events, 0);
4177 local_set(&cpu_buffer->entries, 0);
4178 local_set(&cpu_buffer->committing, 0);
4179 local_set(&cpu_buffer->commits, 0);
4180 cpu_buffer->read = 0;
4181 cpu_buffer->read_bytes = 0;
4182
4183 cpu_buffer->write_stamp = 0;
4184 cpu_buffer->read_stamp = 0;
4185
4186 cpu_buffer->lost_events = 0;
4187 cpu_buffer->last_overrun = 0;
4188
4189 rb_head_page_activate(cpu_buffer);
4190 }
4191
4192 /**
4193 * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
4194 * @buffer: The ring buffer to reset a per cpu buffer of
4195 * @cpu: The CPU buffer to be reset
4196 */
4197 void ring_buffer_reset_cpu(struct ring_buffer *buffer, int cpu)
4198 {
4199 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4200 unsigned long flags;
4201
4202 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4203 return;
4204
4205 atomic_inc(&buffer->resize_disabled);
4206 atomic_inc(&cpu_buffer->record_disabled);
4207
4208 /* Make sure all commits have finished */
4209 synchronize_sched();
4210
4211 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4212
4213 if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing)))
4214 goto out;
4215
4216 arch_spin_lock(&cpu_buffer->lock);
4217
4218 rb_reset_cpu(cpu_buffer);
4219
4220 arch_spin_unlock(&cpu_buffer->lock);
4221
4222 out:
4223 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4224
4225 atomic_dec(&cpu_buffer->record_disabled);
4226 atomic_dec(&buffer->resize_disabled);
4227 }
4228 EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu);
4229
4230 /**
4231 * ring_buffer_reset - reset a ring buffer
4232 * @buffer: The ring buffer to reset all cpu buffers
4233 */
4234 void ring_buffer_reset(struct ring_buffer *buffer)
4235 {
4236 int cpu;
4237
4238 for_each_buffer_cpu(buffer, cpu)
4239 ring_buffer_reset_cpu(buffer, cpu);
4240 }
4241 EXPORT_SYMBOL_GPL(ring_buffer_reset);
4242
4243 /**
4244 * rind_buffer_empty - is the ring buffer empty?
4245 * @buffer: The ring buffer to test
4246 */
4247 bool ring_buffer_empty(struct ring_buffer *buffer)
4248 {
4249 struct ring_buffer_per_cpu *cpu_buffer;
4250 unsigned long flags;
4251 bool dolock;
4252 int cpu;
4253 int ret;
4254
4255 /* yes this is racy, but if you don't like the race, lock the buffer */
4256 for_each_buffer_cpu(buffer, cpu) {
4257 cpu_buffer = buffer->buffers[cpu];
4258 local_irq_save(flags);
4259 dolock = rb_reader_lock(cpu_buffer);
4260 ret = rb_per_cpu_empty(cpu_buffer);
4261 rb_reader_unlock(cpu_buffer, dolock);
4262 local_irq_restore(flags);
4263
4264 if (!ret)
4265 return false;
4266 }
4267
4268 return true;
4269 }
4270 EXPORT_SYMBOL_GPL(ring_buffer_empty);
4271
4272 /**
4273 * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
4274 * @buffer: The ring buffer
4275 * @cpu: The CPU buffer to test
4276 */
4277 bool ring_buffer_empty_cpu(struct ring_buffer *buffer, int cpu)
4278 {
4279 struct ring_buffer_per_cpu *cpu_buffer;
4280 unsigned long flags;
4281 bool dolock;
4282 int ret;
4283
4284 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4285 return true;
4286
4287 cpu_buffer = buffer->buffers[cpu];
4288 local_irq_save(flags);
4289 dolock = rb_reader_lock(cpu_buffer);
4290 ret = rb_per_cpu_empty(cpu_buffer);
4291 rb_reader_unlock(cpu_buffer, dolock);
4292 local_irq_restore(flags);
4293
4294 return ret;
4295 }
4296 EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu);
4297
4298 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
4299 /**
4300 * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
4301 * @buffer_a: One buffer to swap with
4302 * @buffer_b: The other buffer to swap with
4303 *
4304 * This function is useful for tracers that want to take a "snapshot"
4305 * of a CPU buffer and has another back up buffer lying around.
4306 * it is expected that the tracer handles the cpu buffer not being
4307 * used at the moment.
4308 */
4309 int ring_buffer_swap_cpu(struct ring_buffer *buffer_a,
4310 struct ring_buffer *buffer_b, int cpu)
4311 {
4312 struct ring_buffer_per_cpu *cpu_buffer_a;
4313 struct ring_buffer_per_cpu *cpu_buffer_b;
4314 int ret = -EINVAL;
4315
4316 if (!cpumask_test_cpu(cpu, buffer_a->cpumask) ||
4317 !cpumask_test_cpu(cpu, buffer_b->cpumask))
4318 goto out;
4319
4320 cpu_buffer_a = buffer_a->buffers[cpu];
4321 cpu_buffer_b = buffer_b->buffers[cpu];
4322
4323 /* At least make sure the two buffers are somewhat the same */
4324 if (cpu_buffer_a->nr_pages != cpu_buffer_b->nr_pages)
4325 goto out;
4326
4327 ret = -EAGAIN;
4328
4329 if (atomic_read(&buffer_a->record_disabled))
4330 goto out;
4331
4332 if (atomic_read(&buffer_b->record_disabled))
4333 goto out;
4334
4335 if (atomic_read(&cpu_buffer_a->record_disabled))
4336 goto out;
4337
4338 if (atomic_read(&cpu_buffer_b->record_disabled))
4339 goto out;
4340
4341 /*
4342 * We can't do a synchronize_sched here because this
4343 * function can be called in atomic context.
4344 * Normally this will be called from the same CPU as cpu.
4345 * If not it's up to the caller to protect this.
4346 */
4347 atomic_inc(&cpu_buffer_a->record_disabled);
4348 atomic_inc(&cpu_buffer_b->record_disabled);
4349
4350 ret = -EBUSY;
4351 if (local_read(&cpu_buffer_a->committing))
4352 goto out_dec;
4353 if (local_read(&cpu_buffer_b->committing))
4354 goto out_dec;
4355
4356 buffer_a->buffers[cpu] = cpu_buffer_b;
4357 buffer_b->buffers[cpu] = cpu_buffer_a;
4358
4359 cpu_buffer_b->buffer = buffer_a;
4360 cpu_buffer_a->buffer = buffer_b;
4361
4362 ret = 0;
4363
4364 out_dec:
4365 atomic_dec(&cpu_buffer_a->record_disabled);
4366 atomic_dec(&cpu_buffer_b->record_disabled);
4367 out:
4368 return ret;
4369 }
4370 EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu);
4371 #endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */
4372
4373 /**
4374 * ring_buffer_alloc_read_page - allocate a page to read from buffer
4375 * @buffer: the buffer to allocate for.
4376 * @cpu: the cpu buffer to allocate.
4377 *
4378 * This function is used in conjunction with ring_buffer_read_page.
4379 * When reading a full page from the ring buffer, these functions
4380 * can be used to speed up the process. The calling function should
4381 * allocate a few pages first with this function. Then when it
4382 * needs to get pages from the ring buffer, it passes the result
4383 * of this function into ring_buffer_read_page, which will swap
4384 * the page that was allocated, with the read page of the buffer.
4385 *
4386 * Returns:
4387 * The page allocated, or NULL on error.
4388 */
4389 void *ring_buffer_alloc_read_page(struct ring_buffer *buffer, int cpu)
4390 {
4391 struct buffer_data_page *bpage;
4392 struct page *page;
4393
4394 page = alloc_pages_node(cpu_to_node(cpu),
4395 GFP_KERNEL | __GFP_NORETRY, 0);
4396 if (!page)
4397 return NULL;
4398
4399 bpage = page_address(page);
4400
4401 rb_init_page(bpage);
4402
4403 return bpage;
4404 }
4405 EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page);
4406
4407 /**
4408 * ring_buffer_free_read_page - free an allocated read page
4409 * @buffer: the buffer the page was allocate for
4410 * @data: the page to free
4411 *
4412 * Free a page allocated from ring_buffer_alloc_read_page.
4413 */
4414 void ring_buffer_free_read_page(struct ring_buffer *buffer, void *data)
4415 {
4416 free_page((unsigned long)data);
4417 }
4418 EXPORT_SYMBOL_GPL(ring_buffer_free_read_page);
4419
4420 /**
4421 * ring_buffer_read_page - extract a page from the ring buffer
4422 * @buffer: buffer to extract from
4423 * @data_page: the page to use allocated from ring_buffer_alloc_read_page
4424 * @len: amount to extract
4425 * @cpu: the cpu of the buffer to extract
4426 * @full: should the extraction only happen when the page is full.
4427 *
4428 * This function will pull out a page from the ring buffer and consume it.
4429 * @data_page must be the address of the variable that was returned
4430 * from ring_buffer_alloc_read_page. This is because the page might be used
4431 * to swap with a page in the ring buffer.
4432 *
4433 * for example:
4434 * rpage = ring_buffer_alloc_read_page(buffer, cpu);
4435 * if (!rpage)
4436 * return error;
4437 * ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0);
4438 * if (ret >= 0)
4439 * process_page(rpage, ret);
4440 *
4441 * When @full is set, the function will not return true unless
4442 * the writer is off the reader page.
4443 *
4444 * Note: it is up to the calling functions to handle sleeps and wakeups.
4445 * The ring buffer can be used anywhere in the kernel and can not
4446 * blindly call wake_up. The layer that uses the ring buffer must be
4447 * responsible for that.
4448 *
4449 * Returns:
4450 * >=0 if data has been transferred, returns the offset of consumed data.
4451 * <0 if no data has been transferred.
4452 */
4453 int ring_buffer_read_page(struct ring_buffer *buffer,
4454 void **data_page, size_t len, int cpu, int full)
4455 {
4456 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4457 struct ring_buffer_event *event;
4458 struct buffer_data_page *bpage;
4459 struct buffer_page *reader;
4460 unsigned long missed_events;
4461 unsigned long flags;
4462 unsigned int commit;
4463 unsigned int read;
4464 u64 save_timestamp;
4465 int ret = -1;
4466
4467 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4468 goto out;
4469
4470 /*
4471 * If len is not big enough to hold the page header, then
4472 * we can not copy anything.
4473 */
4474 if (len <= BUF_PAGE_HDR_SIZE)
4475 goto out;
4476
4477 len -= BUF_PAGE_HDR_SIZE;
4478
4479 if (!data_page)
4480 goto out;
4481
4482 bpage = *data_page;
4483 if (!bpage)
4484 goto out;
4485
4486 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4487
4488 reader = rb_get_reader_page(cpu_buffer);
4489 if (!reader)
4490 goto out_unlock;
4491
4492 event = rb_reader_event(cpu_buffer);
4493
4494 read = reader->read;
4495 commit = rb_page_commit(reader);
4496
4497 /* Check if any events were dropped */
4498 missed_events = cpu_buffer->lost_events;
4499
4500 /*
4501 * If this page has been partially read or
4502 * if len is not big enough to read the rest of the page or
4503 * a writer is still on the page, then
4504 * we must copy the data from the page to the buffer.
4505 * Otherwise, we can simply swap the page with the one passed in.
4506 */
4507 if (read || (len < (commit - read)) ||
4508 cpu_buffer->reader_page == cpu_buffer->commit_page) {
4509 struct buffer_data_page *rpage = cpu_buffer->reader_page->page;
4510 unsigned int rpos = read;
4511 unsigned int pos = 0;
4512 unsigned int size;
4513
4514 if (full)
4515 goto out_unlock;
4516
4517 if (len > (commit - read))
4518 len = (commit - read);
4519
4520 /* Always keep the time extend and data together */
4521 size = rb_event_ts_length(event);
4522
4523 if (len < size)
4524 goto out_unlock;
4525
4526 /* save the current timestamp, since the user will need it */
4527 save_timestamp = cpu_buffer->read_stamp;
4528
4529 /* Need to copy one event at a time */
4530 do {
4531 /* We need the size of one event, because
4532 * rb_advance_reader only advances by one event,
4533 * whereas rb_event_ts_length may include the size of
4534 * one or two events.
4535 * We have already ensured there's enough space if this
4536 * is a time extend. */
4537 size = rb_event_length(event);
4538 memcpy(bpage->data + pos, rpage->data + rpos, size);
4539
4540 len -= size;
4541
4542 rb_advance_reader(cpu_buffer);
4543 rpos = reader->read;
4544 pos += size;
4545
4546 if (rpos >= commit)
4547 break;
4548
4549 event = rb_reader_event(cpu_buffer);
4550 /* Always keep the time extend and data together */
4551 size = rb_event_ts_length(event);
4552 } while (len >= size);
4553
4554 /* update bpage */
4555 local_set(&bpage->commit, pos);
4556 bpage->time_stamp = save_timestamp;
4557
4558 /* we copied everything to the beginning */
4559 read = 0;
4560 } else {
4561 /* update the entry counter */
4562 cpu_buffer->read += rb_page_entries(reader);
4563 cpu_buffer->read_bytes += BUF_PAGE_SIZE;
4564
4565 /* swap the pages */
4566 rb_init_page(bpage);
4567 bpage = reader->page;
4568 reader->page = *data_page;
4569 local_set(&reader->write, 0);
4570 local_set(&reader->entries, 0);
4571 reader->read = 0;
4572 *data_page = bpage;
4573
4574 /*
4575 * Use the real_end for the data size,
4576 * This gives us a chance to store the lost events
4577 * on the page.
4578 */
4579 if (reader->real_end)
4580 local_set(&bpage->commit, reader->real_end);
4581 }
4582 ret = read;
4583
4584 cpu_buffer->lost_events = 0;
4585
4586 commit = local_read(&bpage->commit);
4587 /*
4588 * Set a flag in the commit field if we lost events
4589 */
4590 if (missed_events) {
4591 /* If there is room at the end of the page to save the
4592 * missed events, then record it there.
4593 */
4594 if (BUF_PAGE_SIZE - commit >= sizeof(missed_events)) {
4595 memcpy(&bpage->data[commit], &missed_events,
4596 sizeof(missed_events));
4597 local_add(RB_MISSED_STORED, &bpage->commit);
4598 commit += sizeof(missed_events);
4599 }
4600 local_add(RB_MISSED_EVENTS, &bpage->commit);
4601 }
4602
4603 /*
4604 * This page may be off to user land. Zero it out here.
4605 */
4606 if (commit < BUF_PAGE_SIZE)
4607 memset(&bpage->data[commit], 0, BUF_PAGE_SIZE - commit);
4608
4609 out_unlock:
4610 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4611
4612 out:
4613 return ret;
4614 }
4615 EXPORT_SYMBOL_GPL(ring_buffer_read_page);
4616
4617 /*
4618 * We only allocate new buffers, never free them if the CPU goes down.
4619 * If we were to free the buffer, then the user would lose any trace that was in
4620 * the buffer.
4621 */
4622 int trace_rb_cpu_prepare(unsigned int cpu, struct hlist_node *node)
4623 {
4624 struct ring_buffer *buffer;
4625 long nr_pages_same;
4626 int cpu_i;
4627 unsigned long nr_pages;
4628
4629 buffer = container_of(node, struct ring_buffer, node);
4630 if (cpumask_test_cpu(cpu, buffer->cpumask))
4631 return 0;
4632
4633 nr_pages = 0;
4634 nr_pages_same = 1;
4635 /* check if all cpu sizes are same */
4636 for_each_buffer_cpu(buffer, cpu_i) {
4637 /* fill in the size from first enabled cpu */
4638 if (nr_pages == 0)
4639 nr_pages = buffer->buffers[cpu_i]->nr_pages;
4640 if (nr_pages != buffer->buffers[cpu_i]->nr_pages) {
4641 nr_pages_same = 0;
4642 break;
4643 }
4644 }
4645 /* allocate minimum pages, user can later expand it */
4646 if (!nr_pages_same)
4647 nr_pages = 2;
4648 buffer->buffers[cpu] =
4649 rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
4650 if (!buffer->buffers[cpu]) {
4651 WARN(1, "failed to allocate ring buffer on CPU %u\n",
4652 cpu);
4653 return -ENOMEM;
4654 }
4655 smp_wmb();
4656 cpumask_set_cpu(cpu, buffer->cpumask);
4657 return 0;
4658 }
4659
4660 #ifdef CONFIG_RING_BUFFER_STARTUP_TEST
4661 /*
4662 * This is a basic integrity check of the ring buffer.
4663 * Late in the boot cycle this test will run when configured in.
4664 * It will kick off a thread per CPU that will go into a loop
4665 * writing to the per cpu ring buffer various sizes of data.
4666 * Some of the data will be large items, some small.
4667 *
4668 * Another thread is created that goes into a spin, sending out
4669 * IPIs to the other CPUs to also write into the ring buffer.
4670 * this is to test the nesting ability of the buffer.
4671 *
4672 * Basic stats are recorded and reported. If something in the
4673 * ring buffer should happen that's not expected, a big warning
4674 * is displayed and all ring buffers are disabled.
4675 */
4676 static struct task_struct *rb_threads[NR_CPUS] __initdata;
4677
4678 struct rb_test_data {
4679 struct ring_buffer *buffer;
4680 unsigned long events;
4681 unsigned long bytes_written;
4682 unsigned long bytes_alloc;
4683 unsigned long bytes_dropped;
4684 unsigned long events_nested;
4685 unsigned long bytes_written_nested;
4686 unsigned long bytes_alloc_nested;
4687 unsigned long bytes_dropped_nested;
4688 int min_size_nested;
4689 int max_size_nested;
4690 int max_size;
4691 int min_size;
4692 int cpu;
4693 int cnt;
4694 };
4695
4696 static struct rb_test_data rb_data[NR_CPUS] __initdata;
4697
4698 /* 1 meg per cpu */
4699 #define RB_TEST_BUFFER_SIZE 1048576
4700
4701 static char rb_string[] __initdata =
4702 "abcdefghijklmnopqrstuvwxyz1234567890!@#$%^&*()?+\\"
4703 "?+|:';\",.<>/?abcdefghijklmnopqrstuvwxyz1234567890"
4704 "!@#$%^&*()?+\\?+|:';\",.<>/?abcdefghijklmnopqrstuv";
4705
4706 static bool rb_test_started __initdata;
4707
4708 struct rb_item {
4709 int size;
4710 char str[];
4711 };
4712
4713 static __init int rb_write_something(struct rb_test_data *data, bool nested)
4714 {
4715 struct ring_buffer_event *event;
4716 struct rb_item *item;
4717 bool started;
4718 int event_len;
4719 int size;
4720 int len;
4721 int cnt;
4722
4723 /* Have nested writes different that what is written */
4724 cnt = data->cnt + (nested ? 27 : 0);
4725
4726 /* Multiply cnt by ~e, to make some unique increment */
4727 size = (data->cnt * 68 / 25) % (sizeof(rb_string) - 1);
4728
4729 len = size + sizeof(struct rb_item);
4730
4731 started = rb_test_started;
4732 /* read rb_test_started before checking buffer enabled */
4733 smp_rmb();
4734
4735 event = ring_buffer_lock_reserve(data->buffer, len);
4736 if (!event) {
4737 /* Ignore dropped events before test starts. */
4738 if (started) {
4739 if (nested)
4740 data->bytes_dropped += len;
4741 else
4742 data->bytes_dropped_nested += len;
4743 }
4744 return len;
4745 }
4746
4747 event_len = ring_buffer_event_length(event);
4748
4749 if (RB_WARN_ON(data->buffer, event_len < len))
4750 goto out;
4751
4752 item = ring_buffer_event_data(event);
4753 item->size = size;
4754 memcpy(item->str, rb_string, size);
4755
4756 if (nested) {
4757 data->bytes_alloc_nested += event_len;
4758 data->bytes_written_nested += len;
4759 data->events_nested++;
4760 if (!data->min_size_nested || len < data->min_size_nested)
4761 data->min_size_nested = len;
4762 if (len > data->max_size_nested)
4763 data->max_size_nested = len;
4764 } else {
4765 data->bytes_alloc += event_len;
4766 data->bytes_written += len;
4767 data->events++;
4768 if (!data->min_size || len < data->min_size)
4769 data->max_size = len;
4770 if (len > data->max_size)
4771 data->max_size = len;
4772 }
4773
4774 out:
4775 ring_buffer_unlock_commit(data->buffer, event);
4776
4777 return 0;
4778 }
4779
4780 static __init int rb_test(void *arg)
4781 {
4782 struct rb_test_data *data = arg;
4783
4784 while (!kthread_should_stop()) {
4785 rb_write_something(data, false);
4786 data->cnt++;
4787
4788 set_current_state(TASK_INTERRUPTIBLE);
4789 /* Now sleep between a min of 100-300us and a max of 1ms */
4790 usleep_range(((data->cnt % 3) + 1) * 100, 1000);
4791 }
4792
4793 return 0;
4794 }
4795
4796 static __init void rb_ipi(void *ignore)
4797 {
4798 struct rb_test_data *data;
4799 int cpu = smp_processor_id();
4800
4801 data = &rb_data[cpu];
4802 rb_write_something(data, true);
4803 }
4804
4805 static __init int rb_hammer_test(void *arg)
4806 {
4807 while (!kthread_should_stop()) {
4808
4809 /* Send an IPI to all cpus to write data! */
4810 smp_call_function(rb_ipi, NULL, 1);
4811 /* No sleep, but for non preempt, let others run */
4812 schedule();
4813 }
4814
4815 return 0;
4816 }
4817
4818 static __init int test_ringbuffer(void)
4819 {
4820 struct task_struct *rb_hammer;
4821 struct ring_buffer *buffer;
4822 int cpu;
4823 int ret = 0;
4824
4825 pr_info("Running ring buffer tests...\n");
4826
4827 buffer = ring_buffer_alloc(RB_TEST_BUFFER_SIZE, RB_FL_OVERWRITE);
4828 if (WARN_ON(!buffer))
4829 return 0;
4830
4831 /* Disable buffer so that threads can't write to it yet */
4832 ring_buffer_record_off(buffer);
4833
4834 for_each_online_cpu(cpu) {
4835 rb_data[cpu].buffer = buffer;
4836 rb_data[cpu].cpu = cpu;
4837 rb_data[cpu].cnt = cpu;
4838 rb_threads[cpu] = kthread_create(rb_test, &rb_data[cpu],
4839 "rbtester/%d", cpu);
4840 if (WARN_ON(IS_ERR(rb_threads[cpu]))) {
4841 pr_cont("FAILED\n");
4842 ret = PTR_ERR(rb_threads[cpu]);
4843 goto out_free;
4844 }
4845
4846 kthread_bind(rb_threads[cpu], cpu);
4847 wake_up_process(rb_threads[cpu]);
4848 }
4849
4850 /* Now create the rb hammer! */
4851 rb_hammer = kthread_run(rb_hammer_test, NULL, "rbhammer");
4852 if (WARN_ON(IS_ERR(rb_hammer))) {
4853 pr_cont("FAILED\n");
4854 ret = PTR_ERR(rb_hammer);
4855 goto out_free;
4856 }
4857
4858 ring_buffer_record_on(buffer);
4859 /*
4860 * Show buffer is enabled before setting rb_test_started.
4861 * Yes there's a small race window where events could be
4862 * dropped and the thread wont catch it. But when a ring
4863 * buffer gets enabled, there will always be some kind of
4864 * delay before other CPUs see it. Thus, we don't care about
4865 * those dropped events. We care about events dropped after
4866 * the threads see that the buffer is active.
4867 */
4868 smp_wmb();
4869 rb_test_started = true;
4870
4871 set_current_state(TASK_INTERRUPTIBLE);
4872 /* Just run for 10 seconds */;
4873 schedule_timeout(10 * HZ);
4874
4875 kthread_stop(rb_hammer);
4876
4877 out_free:
4878 for_each_online_cpu(cpu) {
4879 if (!rb_threads[cpu])
4880 break;
4881 kthread_stop(rb_threads[cpu]);
4882 }
4883 if (ret) {
4884 ring_buffer_free(buffer);
4885 return ret;
4886 }
4887
4888 /* Report! */
4889 pr_info("finished\n");
4890 for_each_online_cpu(cpu) {
4891 struct ring_buffer_event *event;
4892 struct rb_test_data *data = &rb_data[cpu];
4893 struct rb_item *item;
4894 unsigned long total_events;
4895 unsigned long total_dropped;
4896 unsigned long total_written;
4897 unsigned long total_alloc;
4898 unsigned long total_read = 0;
4899 unsigned long total_size = 0;
4900 unsigned long total_len = 0;
4901 unsigned long total_lost = 0;
4902 unsigned long lost;
4903 int big_event_size;
4904 int small_event_size;
4905
4906 ret = -1;
4907
4908 total_events = data->events + data->events_nested;
4909 total_written = data->bytes_written + data->bytes_written_nested;
4910 total_alloc = data->bytes_alloc + data->bytes_alloc_nested;
4911 total_dropped = data->bytes_dropped + data->bytes_dropped_nested;
4912
4913 big_event_size = data->max_size + data->max_size_nested;
4914 small_event_size = data->min_size + data->min_size_nested;
4915
4916 pr_info("CPU %d:\n", cpu);
4917 pr_info(" events: %ld\n", total_events);
4918 pr_info(" dropped bytes: %ld\n", total_dropped);
4919 pr_info(" alloced bytes: %ld\n", total_alloc);
4920 pr_info(" written bytes: %ld\n", total_written);
4921 pr_info(" biggest event: %d\n", big_event_size);
4922 pr_info(" smallest event: %d\n", small_event_size);
4923
4924 if (RB_WARN_ON(buffer, total_dropped))
4925 break;
4926
4927 ret = 0;
4928
4929 while ((event = ring_buffer_consume(buffer, cpu, NULL, &lost))) {
4930 total_lost += lost;
4931 item = ring_buffer_event_data(event);
4932 total_len += ring_buffer_event_length(event);
4933 total_size += item->size + sizeof(struct rb_item);
4934 if (memcmp(&item->str[0], rb_string, item->size) != 0) {
4935 pr_info("FAILED!\n");
4936 pr_info("buffer had: %.*s\n", item->size, item->str);
4937 pr_info("expected: %.*s\n", item->size, rb_string);
4938 RB_WARN_ON(buffer, 1);
4939 ret = -1;
4940 break;
4941 }
4942 total_read++;
4943 }
4944 if (ret)
4945 break;
4946
4947 ret = -1;
4948
4949 pr_info(" read events: %ld\n", total_read);
4950 pr_info(" lost events: %ld\n", total_lost);
4951 pr_info(" total events: %ld\n", total_lost + total_read);
4952 pr_info(" recorded len bytes: %ld\n", total_len);
4953 pr_info(" recorded size bytes: %ld\n", total_size);
4954 if (total_lost)
4955 pr_info(" With dropped events, record len and size may not match\n"
4956 " alloced and written from above\n");
4957 if (!total_lost) {
4958 if (RB_WARN_ON(buffer, total_len != total_alloc ||
4959 total_size != total_written))
4960 break;
4961 }
4962 if (RB_WARN_ON(buffer, total_lost + total_read != total_events))
4963 break;
4964
4965 ret = 0;
4966 }
4967 if (!ret)
4968 pr_info("Ring buffer PASSED!\n");
4969
4970 ring_buffer_free(buffer);
4971 return 0;
4972 }
4973
4974 late_initcall(test_ringbuffer);
4975 #endif /* CONFIG_RING_BUFFER_STARTUP_TEST */