]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - kernel/trace/ring_buffer.c
Merge tag 'for-linus-20170825' of git://git.infradead.org/linux-mtd
[mirror_ubuntu-artful-kernel.git] / kernel / trace / ring_buffer.c
1 /*
2 * Generic ring buffer
3 *
4 * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
5 */
6 #include <linux/trace_events.h>
7 #include <linux/ring_buffer.h>
8 #include <linux/trace_clock.h>
9 #include <linux/sched/clock.h>
10 #include <linux/trace_seq.h>
11 #include <linux/spinlock.h>
12 #include <linux/irq_work.h>
13 #include <linux/uaccess.h>
14 #include <linux/hardirq.h>
15 #include <linux/kthread.h> /* for self test */
16 #include <linux/kmemcheck.h>
17 #include <linux/module.h>
18 #include <linux/percpu.h>
19 #include <linux/mutex.h>
20 #include <linux/delay.h>
21 #include <linux/slab.h>
22 #include <linux/init.h>
23 #include <linux/hash.h>
24 #include <linux/list.h>
25 #include <linux/cpu.h>
26
27 #include <asm/local.h>
28
29 static void update_pages_handler(struct work_struct *work);
30
31 /*
32 * The ring buffer header is special. We must manually up keep it.
33 */
34 int ring_buffer_print_entry_header(struct trace_seq *s)
35 {
36 trace_seq_puts(s, "# compressed entry header\n");
37 trace_seq_puts(s, "\ttype_len : 5 bits\n");
38 trace_seq_puts(s, "\ttime_delta : 27 bits\n");
39 trace_seq_puts(s, "\tarray : 32 bits\n");
40 trace_seq_putc(s, '\n');
41 trace_seq_printf(s, "\tpadding : type == %d\n",
42 RINGBUF_TYPE_PADDING);
43 trace_seq_printf(s, "\ttime_extend : type == %d\n",
44 RINGBUF_TYPE_TIME_EXTEND);
45 trace_seq_printf(s, "\tdata max type_len == %d\n",
46 RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
47
48 return !trace_seq_has_overflowed(s);
49 }
50
51 /*
52 * The ring buffer is made up of a list of pages. A separate list of pages is
53 * allocated for each CPU. A writer may only write to a buffer that is
54 * associated with the CPU it is currently executing on. A reader may read
55 * from any per cpu buffer.
56 *
57 * The reader is special. For each per cpu buffer, the reader has its own
58 * reader page. When a reader has read the entire reader page, this reader
59 * page is swapped with another page in the ring buffer.
60 *
61 * Now, as long as the writer is off the reader page, the reader can do what
62 * ever it wants with that page. The writer will never write to that page
63 * again (as long as it is out of the ring buffer).
64 *
65 * Here's some silly ASCII art.
66 *
67 * +------+
68 * |reader| RING BUFFER
69 * |page |
70 * +------+ +---+ +---+ +---+
71 * | |-->| |-->| |
72 * +---+ +---+ +---+
73 * ^ |
74 * | |
75 * +---------------+
76 *
77 *
78 * +------+
79 * |reader| RING BUFFER
80 * |page |------------------v
81 * +------+ +---+ +---+ +---+
82 * | |-->| |-->| |
83 * +---+ +---+ +---+
84 * ^ |
85 * | |
86 * +---------------+
87 *
88 *
89 * +------+
90 * |reader| RING BUFFER
91 * |page |------------------v
92 * +------+ +---+ +---+ +---+
93 * ^ | |-->| |-->| |
94 * | +---+ +---+ +---+
95 * | |
96 * | |
97 * +------------------------------+
98 *
99 *
100 * +------+
101 * |buffer| RING BUFFER
102 * |page |------------------v
103 * +------+ +---+ +---+ +---+
104 * ^ | | | |-->| |
105 * | New +---+ +---+ +---+
106 * | Reader------^ |
107 * | page |
108 * +------------------------------+
109 *
110 *
111 * After we make this swap, the reader can hand this page off to the splice
112 * code and be done with it. It can even allocate a new page if it needs to
113 * and swap that into the ring buffer.
114 *
115 * We will be using cmpxchg soon to make all this lockless.
116 *
117 */
118
119 /* Used for individual buffers (after the counter) */
120 #define RB_BUFFER_OFF (1 << 20)
121
122 #define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
123
124 #define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
125 #define RB_ALIGNMENT 4U
126 #define RB_MAX_SMALL_DATA (RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
127 #define RB_EVNT_MIN_SIZE 8U /* two 32bit words */
128
129 #ifndef CONFIG_HAVE_64BIT_ALIGNED_ACCESS
130 # define RB_FORCE_8BYTE_ALIGNMENT 0
131 # define RB_ARCH_ALIGNMENT RB_ALIGNMENT
132 #else
133 # define RB_FORCE_8BYTE_ALIGNMENT 1
134 # define RB_ARCH_ALIGNMENT 8U
135 #endif
136
137 #define RB_ALIGN_DATA __aligned(RB_ARCH_ALIGNMENT)
138
139 /* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */
140 #define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX
141
142 enum {
143 RB_LEN_TIME_EXTEND = 8,
144 RB_LEN_TIME_STAMP = 16,
145 };
146
147 #define skip_time_extend(event) \
148 ((struct ring_buffer_event *)((char *)event + RB_LEN_TIME_EXTEND))
149
150 static inline int rb_null_event(struct ring_buffer_event *event)
151 {
152 return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta;
153 }
154
155 static void rb_event_set_padding(struct ring_buffer_event *event)
156 {
157 /* padding has a NULL time_delta */
158 event->type_len = RINGBUF_TYPE_PADDING;
159 event->time_delta = 0;
160 }
161
162 static unsigned
163 rb_event_data_length(struct ring_buffer_event *event)
164 {
165 unsigned length;
166
167 if (event->type_len)
168 length = event->type_len * RB_ALIGNMENT;
169 else
170 length = event->array[0];
171 return length + RB_EVNT_HDR_SIZE;
172 }
173
174 /*
175 * Return the length of the given event. Will return
176 * the length of the time extend if the event is a
177 * time extend.
178 */
179 static inline unsigned
180 rb_event_length(struct ring_buffer_event *event)
181 {
182 switch (event->type_len) {
183 case RINGBUF_TYPE_PADDING:
184 if (rb_null_event(event))
185 /* undefined */
186 return -1;
187 return event->array[0] + RB_EVNT_HDR_SIZE;
188
189 case RINGBUF_TYPE_TIME_EXTEND:
190 return RB_LEN_TIME_EXTEND;
191
192 case RINGBUF_TYPE_TIME_STAMP:
193 return RB_LEN_TIME_STAMP;
194
195 case RINGBUF_TYPE_DATA:
196 return rb_event_data_length(event);
197 default:
198 BUG();
199 }
200 /* not hit */
201 return 0;
202 }
203
204 /*
205 * Return total length of time extend and data,
206 * or just the event length for all other events.
207 */
208 static inline unsigned
209 rb_event_ts_length(struct ring_buffer_event *event)
210 {
211 unsigned len = 0;
212
213 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) {
214 /* time extends include the data event after it */
215 len = RB_LEN_TIME_EXTEND;
216 event = skip_time_extend(event);
217 }
218 return len + rb_event_length(event);
219 }
220
221 /**
222 * ring_buffer_event_length - return the length of the event
223 * @event: the event to get the length of
224 *
225 * Returns the size of the data load of a data event.
226 * If the event is something other than a data event, it
227 * returns the size of the event itself. With the exception
228 * of a TIME EXTEND, where it still returns the size of the
229 * data load of the data event after it.
230 */
231 unsigned ring_buffer_event_length(struct ring_buffer_event *event)
232 {
233 unsigned length;
234
235 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
236 event = skip_time_extend(event);
237
238 length = rb_event_length(event);
239 if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
240 return length;
241 length -= RB_EVNT_HDR_SIZE;
242 if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0]))
243 length -= sizeof(event->array[0]);
244 return length;
245 }
246 EXPORT_SYMBOL_GPL(ring_buffer_event_length);
247
248 /* inline for ring buffer fast paths */
249 static __always_inline void *
250 rb_event_data(struct ring_buffer_event *event)
251 {
252 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
253 event = skip_time_extend(event);
254 BUG_ON(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
255 /* If length is in len field, then array[0] has the data */
256 if (event->type_len)
257 return (void *)&event->array[0];
258 /* Otherwise length is in array[0] and array[1] has the data */
259 return (void *)&event->array[1];
260 }
261
262 /**
263 * ring_buffer_event_data - return the data of the event
264 * @event: the event to get the data from
265 */
266 void *ring_buffer_event_data(struct ring_buffer_event *event)
267 {
268 return rb_event_data(event);
269 }
270 EXPORT_SYMBOL_GPL(ring_buffer_event_data);
271
272 #define for_each_buffer_cpu(buffer, cpu) \
273 for_each_cpu(cpu, buffer->cpumask)
274
275 #define TS_SHIFT 27
276 #define TS_MASK ((1ULL << TS_SHIFT) - 1)
277 #define TS_DELTA_TEST (~TS_MASK)
278
279 /* Flag when events were overwritten */
280 #define RB_MISSED_EVENTS (1 << 31)
281 /* Missed count stored at end */
282 #define RB_MISSED_STORED (1 << 30)
283
284 struct buffer_data_page {
285 u64 time_stamp; /* page time stamp */
286 local_t commit; /* write committed index */
287 unsigned char data[] RB_ALIGN_DATA; /* data of buffer page */
288 };
289
290 /*
291 * Note, the buffer_page list must be first. The buffer pages
292 * are allocated in cache lines, which means that each buffer
293 * page will be at the beginning of a cache line, and thus
294 * the least significant bits will be zero. We use this to
295 * add flags in the list struct pointers, to make the ring buffer
296 * lockless.
297 */
298 struct buffer_page {
299 struct list_head list; /* list of buffer pages */
300 local_t write; /* index for next write */
301 unsigned read; /* index for next read */
302 local_t entries; /* entries on this page */
303 unsigned long real_end; /* real end of data */
304 struct buffer_data_page *page; /* Actual data page */
305 };
306
307 /*
308 * The buffer page counters, write and entries, must be reset
309 * atomically when crossing page boundaries. To synchronize this
310 * update, two counters are inserted into the number. One is
311 * the actual counter for the write position or count on the page.
312 *
313 * The other is a counter of updaters. Before an update happens
314 * the update partition of the counter is incremented. This will
315 * allow the updater to update the counter atomically.
316 *
317 * The counter is 20 bits, and the state data is 12.
318 */
319 #define RB_WRITE_MASK 0xfffff
320 #define RB_WRITE_INTCNT (1 << 20)
321
322 static void rb_init_page(struct buffer_data_page *bpage)
323 {
324 local_set(&bpage->commit, 0);
325 }
326
327 /**
328 * ring_buffer_page_len - the size of data on the page.
329 * @page: The page to read
330 *
331 * Returns the amount of data on the page, including buffer page header.
332 */
333 size_t ring_buffer_page_len(void *page)
334 {
335 return local_read(&((struct buffer_data_page *)page)->commit)
336 + BUF_PAGE_HDR_SIZE;
337 }
338
339 /*
340 * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing
341 * this issue out.
342 */
343 static void free_buffer_page(struct buffer_page *bpage)
344 {
345 free_page((unsigned long)bpage->page);
346 kfree(bpage);
347 }
348
349 /*
350 * We need to fit the time_stamp delta into 27 bits.
351 */
352 static inline int test_time_stamp(u64 delta)
353 {
354 if (delta & TS_DELTA_TEST)
355 return 1;
356 return 0;
357 }
358
359 #define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE)
360
361 /* Max payload is BUF_PAGE_SIZE - header (8bytes) */
362 #define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2))
363
364 int ring_buffer_print_page_header(struct trace_seq *s)
365 {
366 struct buffer_data_page field;
367
368 trace_seq_printf(s, "\tfield: u64 timestamp;\t"
369 "offset:0;\tsize:%u;\tsigned:%u;\n",
370 (unsigned int)sizeof(field.time_stamp),
371 (unsigned int)is_signed_type(u64));
372
373 trace_seq_printf(s, "\tfield: local_t commit;\t"
374 "offset:%u;\tsize:%u;\tsigned:%u;\n",
375 (unsigned int)offsetof(typeof(field), commit),
376 (unsigned int)sizeof(field.commit),
377 (unsigned int)is_signed_type(long));
378
379 trace_seq_printf(s, "\tfield: int overwrite;\t"
380 "offset:%u;\tsize:%u;\tsigned:%u;\n",
381 (unsigned int)offsetof(typeof(field), commit),
382 1,
383 (unsigned int)is_signed_type(long));
384
385 trace_seq_printf(s, "\tfield: char data;\t"
386 "offset:%u;\tsize:%u;\tsigned:%u;\n",
387 (unsigned int)offsetof(typeof(field), data),
388 (unsigned int)BUF_PAGE_SIZE,
389 (unsigned int)is_signed_type(char));
390
391 return !trace_seq_has_overflowed(s);
392 }
393
394 struct rb_irq_work {
395 struct irq_work work;
396 wait_queue_head_t waiters;
397 wait_queue_head_t full_waiters;
398 bool waiters_pending;
399 bool full_waiters_pending;
400 bool wakeup_full;
401 };
402
403 /*
404 * Structure to hold event state and handle nested events.
405 */
406 struct rb_event_info {
407 u64 ts;
408 u64 delta;
409 unsigned long length;
410 struct buffer_page *tail_page;
411 int add_timestamp;
412 };
413
414 /*
415 * Used for which event context the event is in.
416 * NMI = 0
417 * IRQ = 1
418 * SOFTIRQ = 2
419 * NORMAL = 3
420 *
421 * See trace_recursive_lock() comment below for more details.
422 */
423 enum {
424 RB_CTX_NMI,
425 RB_CTX_IRQ,
426 RB_CTX_SOFTIRQ,
427 RB_CTX_NORMAL,
428 RB_CTX_MAX
429 };
430
431 /*
432 * head_page == tail_page && head == tail then buffer is empty.
433 */
434 struct ring_buffer_per_cpu {
435 int cpu;
436 atomic_t record_disabled;
437 struct ring_buffer *buffer;
438 raw_spinlock_t reader_lock; /* serialize readers */
439 arch_spinlock_t lock;
440 struct lock_class_key lock_key;
441 struct buffer_data_page *free_page;
442 unsigned long nr_pages;
443 unsigned int current_context;
444 struct list_head *pages;
445 struct buffer_page *head_page; /* read from head */
446 struct buffer_page *tail_page; /* write to tail */
447 struct buffer_page *commit_page; /* committed pages */
448 struct buffer_page *reader_page;
449 unsigned long lost_events;
450 unsigned long last_overrun;
451 local_t entries_bytes;
452 local_t entries;
453 local_t overrun;
454 local_t commit_overrun;
455 local_t dropped_events;
456 local_t committing;
457 local_t commits;
458 unsigned long read;
459 unsigned long read_bytes;
460 u64 write_stamp;
461 u64 read_stamp;
462 /* ring buffer pages to update, > 0 to add, < 0 to remove */
463 long nr_pages_to_update;
464 struct list_head new_pages; /* new pages to add */
465 struct work_struct update_pages_work;
466 struct completion update_done;
467
468 struct rb_irq_work irq_work;
469 };
470
471 struct ring_buffer {
472 unsigned flags;
473 int cpus;
474 atomic_t record_disabled;
475 atomic_t resize_disabled;
476 cpumask_var_t cpumask;
477
478 struct lock_class_key *reader_lock_key;
479
480 struct mutex mutex;
481
482 struct ring_buffer_per_cpu **buffers;
483
484 struct hlist_node node;
485 u64 (*clock)(void);
486
487 struct rb_irq_work irq_work;
488 };
489
490 struct ring_buffer_iter {
491 struct ring_buffer_per_cpu *cpu_buffer;
492 unsigned long head;
493 struct buffer_page *head_page;
494 struct buffer_page *cache_reader_page;
495 unsigned long cache_read;
496 u64 read_stamp;
497 };
498
499 /*
500 * rb_wake_up_waiters - wake up tasks waiting for ring buffer input
501 *
502 * Schedules a delayed work to wake up any task that is blocked on the
503 * ring buffer waiters queue.
504 */
505 static void rb_wake_up_waiters(struct irq_work *work)
506 {
507 struct rb_irq_work *rbwork = container_of(work, struct rb_irq_work, work);
508
509 wake_up_all(&rbwork->waiters);
510 if (rbwork->wakeup_full) {
511 rbwork->wakeup_full = false;
512 wake_up_all(&rbwork->full_waiters);
513 }
514 }
515
516 /**
517 * ring_buffer_wait - wait for input to the ring buffer
518 * @buffer: buffer to wait on
519 * @cpu: the cpu buffer to wait on
520 * @full: wait until a full page is available, if @cpu != RING_BUFFER_ALL_CPUS
521 *
522 * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
523 * as data is added to any of the @buffer's cpu buffers. Otherwise
524 * it will wait for data to be added to a specific cpu buffer.
525 */
526 int ring_buffer_wait(struct ring_buffer *buffer, int cpu, bool full)
527 {
528 struct ring_buffer_per_cpu *uninitialized_var(cpu_buffer);
529 DEFINE_WAIT(wait);
530 struct rb_irq_work *work;
531 int ret = 0;
532
533 /*
534 * Depending on what the caller is waiting for, either any
535 * data in any cpu buffer, or a specific buffer, put the
536 * caller on the appropriate wait queue.
537 */
538 if (cpu == RING_BUFFER_ALL_CPUS) {
539 work = &buffer->irq_work;
540 /* Full only makes sense on per cpu reads */
541 full = false;
542 } else {
543 if (!cpumask_test_cpu(cpu, buffer->cpumask))
544 return -ENODEV;
545 cpu_buffer = buffer->buffers[cpu];
546 work = &cpu_buffer->irq_work;
547 }
548
549
550 while (true) {
551 if (full)
552 prepare_to_wait(&work->full_waiters, &wait, TASK_INTERRUPTIBLE);
553 else
554 prepare_to_wait(&work->waiters, &wait, TASK_INTERRUPTIBLE);
555
556 /*
557 * The events can happen in critical sections where
558 * checking a work queue can cause deadlocks.
559 * After adding a task to the queue, this flag is set
560 * only to notify events to try to wake up the queue
561 * using irq_work.
562 *
563 * We don't clear it even if the buffer is no longer
564 * empty. The flag only causes the next event to run
565 * irq_work to do the work queue wake up. The worse
566 * that can happen if we race with !trace_empty() is that
567 * an event will cause an irq_work to try to wake up
568 * an empty queue.
569 *
570 * There's no reason to protect this flag either, as
571 * the work queue and irq_work logic will do the necessary
572 * synchronization for the wake ups. The only thing
573 * that is necessary is that the wake up happens after
574 * a task has been queued. It's OK for spurious wake ups.
575 */
576 if (full)
577 work->full_waiters_pending = true;
578 else
579 work->waiters_pending = true;
580
581 if (signal_pending(current)) {
582 ret = -EINTR;
583 break;
584 }
585
586 if (cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer))
587 break;
588
589 if (cpu != RING_BUFFER_ALL_CPUS &&
590 !ring_buffer_empty_cpu(buffer, cpu)) {
591 unsigned long flags;
592 bool pagebusy;
593
594 if (!full)
595 break;
596
597 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
598 pagebusy = cpu_buffer->reader_page == cpu_buffer->commit_page;
599 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
600
601 if (!pagebusy)
602 break;
603 }
604
605 schedule();
606 }
607
608 if (full)
609 finish_wait(&work->full_waiters, &wait);
610 else
611 finish_wait(&work->waiters, &wait);
612
613 return ret;
614 }
615
616 /**
617 * ring_buffer_poll_wait - poll on buffer input
618 * @buffer: buffer to wait on
619 * @cpu: the cpu buffer to wait on
620 * @filp: the file descriptor
621 * @poll_table: The poll descriptor
622 *
623 * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
624 * as data is added to any of the @buffer's cpu buffers. Otherwise
625 * it will wait for data to be added to a specific cpu buffer.
626 *
627 * Returns POLLIN | POLLRDNORM if data exists in the buffers,
628 * zero otherwise.
629 */
630 int ring_buffer_poll_wait(struct ring_buffer *buffer, int cpu,
631 struct file *filp, poll_table *poll_table)
632 {
633 struct ring_buffer_per_cpu *cpu_buffer;
634 struct rb_irq_work *work;
635
636 if (cpu == RING_BUFFER_ALL_CPUS)
637 work = &buffer->irq_work;
638 else {
639 if (!cpumask_test_cpu(cpu, buffer->cpumask))
640 return -EINVAL;
641
642 cpu_buffer = buffer->buffers[cpu];
643 work = &cpu_buffer->irq_work;
644 }
645
646 poll_wait(filp, &work->waiters, poll_table);
647 work->waiters_pending = true;
648 /*
649 * There's a tight race between setting the waiters_pending and
650 * checking if the ring buffer is empty. Once the waiters_pending bit
651 * is set, the next event will wake the task up, but we can get stuck
652 * if there's only a single event in.
653 *
654 * FIXME: Ideally, we need a memory barrier on the writer side as well,
655 * but adding a memory barrier to all events will cause too much of a
656 * performance hit in the fast path. We only need a memory barrier when
657 * the buffer goes from empty to having content. But as this race is
658 * extremely small, and it's not a problem if another event comes in, we
659 * will fix it later.
660 */
661 smp_mb();
662
663 if ((cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer)) ||
664 (cpu != RING_BUFFER_ALL_CPUS && !ring_buffer_empty_cpu(buffer, cpu)))
665 return POLLIN | POLLRDNORM;
666 return 0;
667 }
668
669 /* buffer may be either ring_buffer or ring_buffer_per_cpu */
670 #define RB_WARN_ON(b, cond) \
671 ({ \
672 int _____ret = unlikely(cond); \
673 if (_____ret) { \
674 if (__same_type(*(b), struct ring_buffer_per_cpu)) { \
675 struct ring_buffer_per_cpu *__b = \
676 (void *)b; \
677 atomic_inc(&__b->buffer->record_disabled); \
678 } else \
679 atomic_inc(&b->record_disabled); \
680 WARN_ON(1); \
681 } \
682 _____ret; \
683 })
684
685 /* Up this if you want to test the TIME_EXTENTS and normalization */
686 #define DEBUG_SHIFT 0
687
688 static inline u64 rb_time_stamp(struct ring_buffer *buffer)
689 {
690 /* shift to debug/test normalization and TIME_EXTENTS */
691 return buffer->clock() << DEBUG_SHIFT;
692 }
693
694 u64 ring_buffer_time_stamp(struct ring_buffer *buffer, int cpu)
695 {
696 u64 time;
697
698 preempt_disable_notrace();
699 time = rb_time_stamp(buffer);
700 preempt_enable_no_resched_notrace();
701
702 return time;
703 }
704 EXPORT_SYMBOL_GPL(ring_buffer_time_stamp);
705
706 void ring_buffer_normalize_time_stamp(struct ring_buffer *buffer,
707 int cpu, u64 *ts)
708 {
709 /* Just stupid testing the normalize function and deltas */
710 *ts >>= DEBUG_SHIFT;
711 }
712 EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp);
713
714 /*
715 * Making the ring buffer lockless makes things tricky.
716 * Although writes only happen on the CPU that they are on,
717 * and they only need to worry about interrupts. Reads can
718 * happen on any CPU.
719 *
720 * The reader page is always off the ring buffer, but when the
721 * reader finishes with a page, it needs to swap its page with
722 * a new one from the buffer. The reader needs to take from
723 * the head (writes go to the tail). But if a writer is in overwrite
724 * mode and wraps, it must push the head page forward.
725 *
726 * Here lies the problem.
727 *
728 * The reader must be careful to replace only the head page, and
729 * not another one. As described at the top of the file in the
730 * ASCII art, the reader sets its old page to point to the next
731 * page after head. It then sets the page after head to point to
732 * the old reader page. But if the writer moves the head page
733 * during this operation, the reader could end up with the tail.
734 *
735 * We use cmpxchg to help prevent this race. We also do something
736 * special with the page before head. We set the LSB to 1.
737 *
738 * When the writer must push the page forward, it will clear the
739 * bit that points to the head page, move the head, and then set
740 * the bit that points to the new head page.
741 *
742 * We also don't want an interrupt coming in and moving the head
743 * page on another writer. Thus we use the second LSB to catch
744 * that too. Thus:
745 *
746 * head->list->prev->next bit 1 bit 0
747 * ------- -------
748 * Normal page 0 0
749 * Points to head page 0 1
750 * New head page 1 0
751 *
752 * Note we can not trust the prev pointer of the head page, because:
753 *
754 * +----+ +-----+ +-----+
755 * | |------>| T |---X--->| N |
756 * | |<------| | | |
757 * +----+ +-----+ +-----+
758 * ^ ^ |
759 * | +-----+ | |
760 * +----------| R |----------+ |
761 * | |<-----------+
762 * +-----+
763 *
764 * Key: ---X--> HEAD flag set in pointer
765 * T Tail page
766 * R Reader page
767 * N Next page
768 *
769 * (see __rb_reserve_next() to see where this happens)
770 *
771 * What the above shows is that the reader just swapped out
772 * the reader page with a page in the buffer, but before it
773 * could make the new header point back to the new page added
774 * it was preempted by a writer. The writer moved forward onto
775 * the new page added by the reader and is about to move forward
776 * again.
777 *
778 * You can see, it is legitimate for the previous pointer of
779 * the head (or any page) not to point back to itself. But only
780 * temporarially.
781 */
782
783 #define RB_PAGE_NORMAL 0UL
784 #define RB_PAGE_HEAD 1UL
785 #define RB_PAGE_UPDATE 2UL
786
787
788 #define RB_FLAG_MASK 3UL
789
790 /* PAGE_MOVED is not part of the mask */
791 #define RB_PAGE_MOVED 4UL
792
793 /*
794 * rb_list_head - remove any bit
795 */
796 static struct list_head *rb_list_head(struct list_head *list)
797 {
798 unsigned long val = (unsigned long)list;
799
800 return (struct list_head *)(val & ~RB_FLAG_MASK);
801 }
802
803 /*
804 * rb_is_head_page - test if the given page is the head page
805 *
806 * Because the reader may move the head_page pointer, we can
807 * not trust what the head page is (it may be pointing to
808 * the reader page). But if the next page is a header page,
809 * its flags will be non zero.
810 */
811 static inline int
812 rb_is_head_page(struct ring_buffer_per_cpu *cpu_buffer,
813 struct buffer_page *page, struct list_head *list)
814 {
815 unsigned long val;
816
817 val = (unsigned long)list->next;
818
819 if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list)
820 return RB_PAGE_MOVED;
821
822 return val & RB_FLAG_MASK;
823 }
824
825 /*
826 * rb_is_reader_page
827 *
828 * The unique thing about the reader page, is that, if the
829 * writer is ever on it, the previous pointer never points
830 * back to the reader page.
831 */
832 static bool rb_is_reader_page(struct buffer_page *page)
833 {
834 struct list_head *list = page->list.prev;
835
836 return rb_list_head(list->next) != &page->list;
837 }
838
839 /*
840 * rb_set_list_to_head - set a list_head to be pointing to head.
841 */
842 static void rb_set_list_to_head(struct ring_buffer_per_cpu *cpu_buffer,
843 struct list_head *list)
844 {
845 unsigned long *ptr;
846
847 ptr = (unsigned long *)&list->next;
848 *ptr |= RB_PAGE_HEAD;
849 *ptr &= ~RB_PAGE_UPDATE;
850 }
851
852 /*
853 * rb_head_page_activate - sets up head page
854 */
855 static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer)
856 {
857 struct buffer_page *head;
858
859 head = cpu_buffer->head_page;
860 if (!head)
861 return;
862
863 /*
864 * Set the previous list pointer to have the HEAD flag.
865 */
866 rb_set_list_to_head(cpu_buffer, head->list.prev);
867 }
868
869 static void rb_list_head_clear(struct list_head *list)
870 {
871 unsigned long *ptr = (unsigned long *)&list->next;
872
873 *ptr &= ~RB_FLAG_MASK;
874 }
875
876 /*
877 * rb_head_page_dactivate - clears head page ptr (for free list)
878 */
879 static void
880 rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer)
881 {
882 struct list_head *hd;
883
884 /* Go through the whole list and clear any pointers found. */
885 rb_list_head_clear(cpu_buffer->pages);
886
887 list_for_each(hd, cpu_buffer->pages)
888 rb_list_head_clear(hd);
889 }
890
891 static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer,
892 struct buffer_page *head,
893 struct buffer_page *prev,
894 int old_flag, int new_flag)
895 {
896 struct list_head *list;
897 unsigned long val = (unsigned long)&head->list;
898 unsigned long ret;
899
900 list = &prev->list;
901
902 val &= ~RB_FLAG_MASK;
903
904 ret = cmpxchg((unsigned long *)&list->next,
905 val | old_flag, val | new_flag);
906
907 /* check if the reader took the page */
908 if ((ret & ~RB_FLAG_MASK) != val)
909 return RB_PAGE_MOVED;
910
911 return ret & RB_FLAG_MASK;
912 }
913
914 static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer,
915 struct buffer_page *head,
916 struct buffer_page *prev,
917 int old_flag)
918 {
919 return rb_head_page_set(cpu_buffer, head, prev,
920 old_flag, RB_PAGE_UPDATE);
921 }
922
923 static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer,
924 struct buffer_page *head,
925 struct buffer_page *prev,
926 int old_flag)
927 {
928 return rb_head_page_set(cpu_buffer, head, prev,
929 old_flag, RB_PAGE_HEAD);
930 }
931
932 static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer,
933 struct buffer_page *head,
934 struct buffer_page *prev,
935 int old_flag)
936 {
937 return rb_head_page_set(cpu_buffer, head, prev,
938 old_flag, RB_PAGE_NORMAL);
939 }
940
941 static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer,
942 struct buffer_page **bpage)
943 {
944 struct list_head *p = rb_list_head((*bpage)->list.next);
945
946 *bpage = list_entry(p, struct buffer_page, list);
947 }
948
949 static struct buffer_page *
950 rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer)
951 {
952 struct buffer_page *head;
953 struct buffer_page *page;
954 struct list_head *list;
955 int i;
956
957 if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page))
958 return NULL;
959
960 /* sanity check */
961 list = cpu_buffer->pages;
962 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list))
963 return NULL;
964
965 page = head = cpu_buffer->head_page;
966 /*
967 * It is possible that the writer moves the header behind
968 * where we started, and we miss in one loop.
969 * A second loop should grab the header, but we'll do
970 * three loops just because I'm paranoid.
971 */
972 for (i = 0; i < 3; i++) {
973 do {
974 if (rb_is_head_page(cpu_buffer, page, page->list.prev)) {
975 cpu_buffer->head_page = page;
976 return page;
977 }
978 rb_inc_page(cpu_buffer, &page);
979 } while (page != head);
980 }
981
982 RB_WARN_ON(cpu_buffer, 1);
983
984 return NULL;
985 }
986
987 static int rb_head_page_replace(struct buffer_page *old,
988 struct buffer_page *new)
989 {
990 unsigned long *ptr = (unsigned long *)&old->list.prev->next;
991 unsigned long val;
992 unsigned long ret;
993
994 val = *ptr & ~RB_FLAG_MASK;
995 val |= RB_PAGE_HEAD;
996
997 ret = cmpxchg(ptr, val, (unsigned long)&new->list);
998
999 return ret == val;
1000 }
1001
1002 /*
1003 * rb_tail_page_update - move the tail page forward
1004 */
1005 static void rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer,
1006 struct buffer_page *tail_page,
1007 struct buffer_page *next_page)
1008 {
1009 unsigned long old_entries;
1010 unsigned long old_write;
1011
1012 /*
1013 * The tail page now needs to be moved forward.
1014 *
1015 * We need to reset the tail page, but without messing
1016 * with possible erasing of data brought in by interrupts
1017 * that have moved the tail page and are currently on it.
1018 *
1019 * We add a counter to the write field to denote this.
1020 */
1021 old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write);
1022 old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries);
1023
1024 /*
1025 * Just make sure we have seen our old_write and synchronize
1026 * with any interrupts that come in.
1027 */
1028 barrier();
1029
1030 /*
1031 * If the tail page is still the same as what we think
1032 * it is, then it is up to us to update the tail
1033 * pointer.
1034 */
1035 if (tail_page == READ_ONCE(cpu_buffer->tail_page)) {
1036 /* Zero the write counter */
1037 unsigned long val = old_write & ~RB_WRITE_MASK;
1038 unsigned long eval = old_entries & ~RB_WRITE_MASK;
1039
1040 /*
1041 * This will only succeed if an interrupt did
1042 * not come in and change it. In which case, we
1043 * do not want to modify it.
1044 *
1045 * We add (void) to let the compiler know that we do not care
1046 * about the return value of these functions. We use the
1047 * cmpxchg to only update if an interrupt did not already
1048 * do it for us. If the cmpxchg fails, we don't care.
1049 */
1050 (void)local_cmpxchg(&next_page->write, old_write, val);
1051 (void)local_cmpxchg(&next_page->entries, old_entries, eval);
1052
1053 /*
1054 * No need to worry about races with clearing out the commit.
1055 * it only can increment when a commit takes place. But that
1056 * only happens in the outer most nested commit.
1057 */
1058 local_set(&next_page->page->commit, 0);
1059
1060 /* Again, either we update tail_page or an interrupt does */
1061 (void)cmpxchg(&cpu_buffer->tail_page, tail_page, next_page);
1062 }
1063 }
1064
1065 static int rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer,
1066 struct buffer_page *bpage)
1067 {
1068 unsigned long val = (unsigned long)bpage;
1069
1070 if (RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK))
1071 return 1;
1072
1073 return 0;
1074 }
1075
1076 /**
1077 * rb_check_list - make sure a pointer to a list has the last bits zero
1078 */
1079 static int rb_check_list(struct ring_buffer_per_cpu *cpu_buffer,
1080 struct list_head *list)
1081 {
1082 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev) != list->prev))
1083 return 1;
1084 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->next) != list->next))
1085 return 1;
1086 return 0;
1087 }
1088
1089 /**
1090 * rb_check_pages - integrity check of buffer pages
1091 * @cpu_buffer: CPU buffer with pages to test
1092 *
1093 * As a safety measure we check to make sure the data pages have not
1094 * been corrupted.
1095 */
1096 static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
1097 {
1098 struct list_head *head = cpu_buffer->pages;
1099 struct buffer_page *bpage, *tmp;
1100
1101 /* Reset the head page if it exists */
1102 if (cpu_buffer->head_page)
1103 rb_set_head_page(cpu_buffer);
1104
1105 rb_head_page_deactivate(cpu_buffer);
1106
1107 if (RB_WARN_ON(cpu_buffer, head->next->prev != head))
1108 return -1;
1109 if (RB_WARN_ON(cpu_buffer, head->prev->next != head))
1110 return -1;
1111
1112 if (rb_check_list(cpu_buffer, head))
1113 return -1;
1114
1115 list_for_each_entry_safe(bpage, tmp, head, list) {
1116 if (RB_WARN_ON(cpu_buffer,
1117 bpage->list.next->prev != &bpage->list))
1118 return -1;
1119 if (RB_WARN_ON(cpu_buffer,
1120 bpage->list.prev->next != &bpage->list))
1121 return -1;
1122 if (rb_check_list(cpu_buffer, &bpage->list))
1123 return -1;
1124 }
1125
1126 rb_head_page_activate(cpu_buffer);
1127
1128 return 0;
1129 }
1130
1131 static int __rb_allocate_pages(long nr_pages, struct list_head *pages, int cpu)
1132 {
1133 struct buffer_page *bpage, *tmp;
1134 long i;
1135
1136 for (i = 0; i < nr_pages; i++) {
1137 struct page *page;
1138 /*
1139 * __GFP_RETRY_MAYFAIL flag makes sure that the allocation fails
1140 * gracefully without invoking oom-killer and the system is not
1141 * destabilized.
1142 */
1143 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1144 GFP_KERNEL | __GFP_RETRY_MAYFAIL,
1145 cpu_to_node(cpu));
1146 if (!bpage)
1147 goto free_pages;
1148
1149 list_add(&bpage->list, pages);
1150
1151 page = alloc_pages_node(cpu_to_node(cpu),
1152 GFP_KERNEL | __GFP_RETRY_MAYFAIL, 0);
1153 if (!page)
1154 goto free_pages;
1155 bpage->page = page_address(page);
1156 rb_init_page(bpage->page);
1157 }
1158
1159 return 0;
1160
1161 free_pages:
1162 list_for_each_entry_safe(bpage, tmp, pages, list) {
1163 list_del_init(&bpage->list);
1164 free_buffer_page(bpage);
1165 }
1166
1167 return -ENOMEM;
1168 }
1169
1170 static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
1171 unsigned long nr_pages)
1172 {
1173 LIST_HEAD(pages);
1174
1175 WARN_ON(!nr_pages);
1176
1177 if (__rb_allocate_pages(nr_pages, &pages, cpu_buffer->cpu))
1178 return -ENOMEM;
1179
1180 /*
1181 * The ring buffer page list is a circular list that does not
1182 * start and end with a list head. All page list items point to
1183 * other pages.
1184 */
1185 cpu_buffer->pages = pages.next;
1186 list_del(&pages);
1187
1188 cpu_buffer->nr_pages = nr_pages;
1189
1190 rb_check_pages(cpu_buffer);
1191
1192 return 0;
1193 }
1194
1195 static struct ring_buffer_per_cpu *
1196 rb_allocate_cpu_buffer(struct ring_buffer *buffer, long nr_pages, int cpu)
1197 {
1198 struct ring_buffer_per_cpu *cpu_buffer;
1199 struct buffer_page *bpage;
1200 struct page *page;
1201 int ret;
1202
1203 cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
1204 GFP_KERNEL, cpu_to_node(cpu));
1205 if (!cpu_buffer)
1206 return NULL;
1207
1208 cpu_buffer->cpu = cpu;
1209 cpu_buffer->buffer = buffer;
1210 raw_spin_lock_init(&cpu_buffer->reader_lock);
1211 lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key);
1212 cpu_buffer->lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
1213 INIT_WORK(&cpu_buffer->update_pages_work, update_pages_handler);
1214 init_completion(&cpu_buffer->update_done);
1215 init_irq_work(&cpu_buffer->irq_work.work, rb_wake_up_waiters);
1216 init_waitqueue_head(&cpu_buffer->irq_work.waiters);
1217 init_waitqueue_head(&cpu_buffer->irq_work.full_waiters);
1218
1219 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1220 GFP_KERNEL, cpu_to_node(cpu));
1221 if (!bpage)
1222 goto fail_free_buffer;
1223
1224 rb_check_bpage(cpu_buffer, bpage);
1225
1226 cpu_buffer->reader_page = bpage;
1227 page = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL, 0);
1228 if (!page)
1229 goto fail_free_reader;
1230 bpage->page = page_address(page);
1231 rb_init_page(bpage->page);
1232
1233 INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
1234 INIT_LIST_HEAD(&cpu_buffer->new_pages);
1235
1236 ret = rb_allocate_pages(cpu_buffer, nr_pages);
1237 if (ret < 0)
1238 goto fail_free_reader;
1239
1240 cpu_buffer->head_page
1241 = list_entry(cpu_buffer->pages, struct buffer_page, list);
1242 cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
1243
1244 rb_head_page_activate(cpu_buffer);
1245
1246 return cpu_buffer;
1247
1248 fail_free_reader:
1249 free_buffer_page(cpu_buffer->reader_page);
1250
1251 fail_free_buffer:
1252 kfree(cpu_buffer);
1253 return NULL;
1254 }
1255
1256 static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
1257 {
1258 struct list_head *head = cpu_buffer->pages;
1259 struct buffer_page *bpage, *tmp;
1260
1261 free_buffer_page(cpu_buffer->reader_page);
1262
1263 rb_head_page_deactivate(cpu_buffer);
1264
1265 if (head) {
1266 list_for_each_entry_safe(bpage, tmp, head, list) {
1267 list_del_init(&bpage->list);
1268 free_buffer_page(bpage);
1269 }
1270 bpage = list_entry(head, struct buffer_page, list);
1271 free_buffer_page(bpage);
1272 }
1273
1274 kfree(cpu_buffer);
1275 }
1276
1277 /**
1278 * __ring_buffer_alloc - allocate a new ring_buffer
1279 * @size: the size in bytes per cpu that is needed.
1280 * @flags: attributes to set for the ring buffer.
1281 *
1282 * Currently the only flag that is available is the RB_FL_OVERWRITE
1283 * flag. This flag means that the buffer will overwrite old data
1284 * when the buffer wraps. If this flag is not set, the buffer will
1285 * drop data when the tail hits the head.
1286 */
1287 struct ring_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags,
1288 struct lock_class_key *key)
1289 {
1290 struct ring_buffer *buffer;
1291 long nr_pages;
1292 int bsize;
1293 int cpu;
1294 int ret;
1295
1296 /* keep it in its own cache line */
1297 buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
1298 GFP_KERNEL);
1299 if (!buffer)
1300 return NULL;
1301
1302 if (!zalloc_cpumask_var(&buffer->cpumask, GFP_KERNEL))
1303 goto fail_free_buffer;
1304
1305 nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1306 buffer->flags = flags;
1307 buffer->clock = trace_clock_local;
1308 buffer->reader_lock_key = key;
1309
1310 init_irq_work(&buffer->irq_work.work, rb_wake_up_waiters);
1311 init_waitqueue_head(&buffer->irq_work.waiters);
1312
1313 /* need at least two pages */
1314 if (nr_pages < 2)
1315 nr_pages = 2;
1316
1317 buffer->cpus = nr_cpu_ids;
1318
1319 bsize = sizeof(void *) * nr_cpu_ids;
1320 buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
1321 GFP_KERNEL);
1322 if (!buffer->buffers)
1323 goto fail_free_cpumask;
1324
1325 cpu = raw_smp_processor_id();
1326 cpumask_set_cpu(cpu, buffer->cpumask);
1327 buffer->buffers[cpu] = rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
1328 if (!buffer->buffers[cpu])
1329 goto fail_free_buffers;
1330
1331 ret = cpuhp_state_add_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node);
1332 if (ret < 0)
1333 goto fail_free_buffers;
1334
1335 mutex_init(&buffer->mutex);
1336
1337 return buffer;
1338
1339 fail_free_buffers:
1340 for_each_buffer_cpu(buffer, cpu) {
1341 if (buffer->buffers[cpu])
1342 rb_free_cpu_buffer(buffer->buffers[cpu]);
1343 }
1344 kfree(buffer->buffers);
1345
1346 fail_free_cpumask:
1347 free_cpumask_var(buffer->cpumask);
1348
1349 fail_free_buffer:
1350 kfree(buffer);
1351 return NULL;
1352 }
1353 EXPORT_SYMBOL_GPL(__ring_buffer_alloc);
1354
1355 /**
1356 * ring_buffer_free - free a ring buffer.
1357 * @buffer: the buffer to free.
1358 */
1359 void
1360 ring_buffer_free(struct ring_buffer *buffer)
1361 {
1362 int cpu;
1363
1364 cpuhp_state_remove_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node);
1365
1366 for_each_buffer_cpu(buffer, cpu)
1367 rb_free_cpu_buffer(buffer->buffers[cpu]);
1368
1369 kfree(buffer->buffers);
1370 free_cpumask_var(buffer->cpumask);
1371
1372 kfree(buffer);
1373 }
1374 EXPORT_SYMBOL_GPL(ring_buffer_free);
1375
1376 void ring_buffer_set_clock(struct ring_buffer *buffer,
1377 u64 (*clock)(void))
1378 {
1379 buffer->clock = clock;
1380 }
1381
1382 static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer);
1383
1384 static inline unsigned long rb_page_entries(struct buffer_page *bpage)
1385 {
1386 return local_read(&bpage->entries) & RB_WRITE_MASK;
1387 }
1388
1389 static inline unsigned long rb_page_write(struct buffer_page *bpage)
1390 {
1391 return local_read(&bpage->write) & RB_WRITE_MASK;
1392 }
1393
1394 static int
1395 rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned long nr_pages)
1396 {
1397 struct list_head *tail_page, *to_remove, *next_page;
1398 struct buffer_page *to_remove_page, *tmp_iter_page;
1399 struct buffer_page *last_page, *first_page;
1400 unsigned long nr_removed;
1401 unsigned long head_bit;
1402 int page_entries;
1403
1404 head_bit = 0;
1405
1406 raw_spin_lock_irq(&cpu_buffer->reader_lock);
1407 atomic_inc(&cpu_buffer->record_disabled);
1408 /*
1409 * We don't race with the readers since we have acquired the reader
1410 * lock. We also don't race with writers after disabling recording.
1411 * This makes it easy to figure out the first and the last page to be
1412 * removed from the list. We unlink all the pages in between including
1413 * the first and last pages. This is done in a busy loop so that we
1414 * lose the least number of traces.
1415 * The pages are freed after we restart recording and unlock readers.
1416 */
1417 tail_page = &cpu_buffer->tail_page->list;
1418
1419 /*
1420 * tail page might be on reader page, we remove the next page
1421 * from the ring buffer
1422 */
1423 if (cpu_buffer->tail_page == cpu_buffer->reader_page)
1424 tail_page = rb_list_head(tail_page->next);
1425 to_remove = tail_page;
1426
1427 /* start of pages to remove */
1428 first_page = list_entry(rb_list_head(to_remove->next),
1429 struct buffer_page, list);
1430
1431 for (nr_removed = 0; nr_removed < nr_pages; nr_removed++) {
1432 to_remove = rb_list_head(to_remove)->next;
1433 head_bit |= (unsigned long)to_remove & RB_PAGE_HEAD;
1434 }
1435
1436 next_page = rb_list_head(to_remove)->next;
1437
1438 /*
1439 * Now we remove all pages between tail_page and next_page.
1440 * Make sure that we have head_bit value preserved for the
1441 * next page
1442 */
1443 tail_page->next = (struct list_head *)((unsigned long)next_page |
1444 head_bit);
1445 next_page = rb_list_head(next_page);
1446 next_page->prev = tail_page;
1447
1448 /* make sure pages points to a valid page in the ring buffer */
1449 cpu_buffer->pages = next_page;
1450
1451 /* update head page */
1452 if (head_bit)
1453 cpu_buffer->head_page = list_entry(next_page,
1454 struct buffer_page, list);
1455
1456 /*
1457 * change read pointer to make sure any read iterators reset
1458 * themselves
1459 */
1460 cpu_buffer->read = 0;
1461
1462 /* pages are removed, resume tracing and then free the pages */
1463 atomic_dec(&cpu_buffer->record_disabled);
1464 raw_spin_unlock_irq(&cpu_buffer->reader_lock);
1465
1466 RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages));
1467
1468 /* last buffer page to remove */
1469 last_page = list_entry(rb_list_head(to_remove), struct buffer_page,
1470 list);
1471 tmp_iter_page = first_page;
1472
1473 do {
1474 to_remove_page = tmp_iter_page;
1475 rb_inc_page(cpu_buffer, &tmp_iter_page);
1476
1477 /* update the counters */
1478 page_entries = rb_page_entries(to_remove_page);
1479 if (page_entries) {
1480 /*
1481 * If something was added to this page, it was full
1482 * since it is not the tail page. So we deduct the
1483 * bytes consumed in ring buffer from here.
1484 * Increment overrun to account for the lost events.
1485 */
1486 local_add(page_entries, &cpu_buffer->overrun);
1487 local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
1488 }
1489
1490 /*
1491 * We have already removed references to this list item, just
1492 * free up the buffer_page and its page
1493 */
1494 free_buffer_page(to_remove_page);
1495 nr_removed--;
1496
1497 } while (to_remove_page != last_page);
1498
1499 RB_WARN_ON(cpu_buffer, nr_removed);
1500
1501 return nr_removed == 0;
1502 }
1503
1504 static int
1505 rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer)
1506 {
1507 struct list_head *pages = &cpu_buffer->new_pages;
1508 int retries, success;
1509
1510 raw_spin_lock_irq(&cpu_buffer->reader_lock);
1511 /*
1512 * We are holding the reader lock, so the reader page won't be swapped
1513 * in the ring buffer. Now we are racing with the writer trying to
1514 * move head page and the tail page.
1515 * We are going to adapt the reader page update process where:
1516 * 1. We first splice the start and end of list of new pages between
1517 * the head page and its previous page.
1518 * 2. We cmpxchg the prev_page->next to point from head page to the
1519 * start of new pages list.
1520 * 3. Finally, we update the head->prev to the end of new list.
1521 *
1522 * We will try this process 10 times, to make sure that we don't keep
1523 * spinning.
1524 */
1525 retries = 10;
1526 success = 0;
1527 while (retries--) {
1528 struct list_head *head_page, *prev_page, *r;
1529 struct list_head *last_page, *first_page;
1530 struct list_head *head_page_with_bit;
1531
1532 head_page = &rb_set_head_page(cpu_buffer)->list;
1533 if (!head_page)
1534 break;
1535 prev_page = head_page->prev;
1536
1537 first_page = pages->next;
1538 last_page = pages->prev;
1539
1540 head_page_with_bit = (struct list_head *)
1541 ((unsigned long)head_page | RB_PAGE_HEAD);
1542
1543 last_page->next = head_page_with_bit;
1544 first_page->prev = prev_page;
1545
1546 r = cmpxchg(&prev_page->next, head_page_with_bit, first_page);
1547
1548 if (r == head_page_with_bit) {
1549 /*
1550 * yay, we replaced the page pointer to our new list,
1551 * now, we just have to update to head page's prev
1552 * pointer to point to end of list
1553 */
1554 head_page->prev = last_page;
1555 success = 1;
1556 break;
1557 }
1558 }
1559
1560 if (success)
1561 INIT_LIST_HEAD(pages);
1562 /*
1563 * If we weren't successful in adding in new pages, warn and stop
1564 * tracing
1565 */
1566 RB_WARN_ON(cpu_buffer, !success);
1567 raw_spin_unlock_irq(&cpu_buffer->reader_lock);
1568
1569 /* free pages if they weren't inserted */
1570 if (!success) {
1571 struct buffer_page *bpage, *tmp;
1572 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1573 list) {
1574 list_del_init(&bpage->list);
1575 free_buffer_page(bpage);
1576 }
1577 }
1578 return success;
1579 }
1580
1581 static void rb_update_pages(struct ring_buffer_per_cpu *cpu_buffer)
1582 {
1583 int success;
1584
1585 if (cpu_buffer->nr_pages_to_update > 0)
1586 success = rb_insert_pages(cpu_buffer);
1587 else
1588 success = rb_remove_pages(cpu_buffer,
1589 -cpu_buffer->nr_pages_to_update);
1590
1591 if (success)
1592 cpu_buffer->nr_pages += cpu_buffer->nr_pages_to_update;
1593 }
1594
1595 static void update_pages_handler(struct work_struct *work)
1596 {
1597 struct ring_buffer_per_cpu *cpu_buffer = container_of(work,
1598 struct ring_buffer_per_cpu, update_pages_work);
1599 rb_update_pages(cpu_buffer);
1600 complete(&cpu_buffer->update_done);
1601 }
1602
1603 /**
1604 * ring_buffer_resize - resize the ring buffer
1605 * @buffer: the buffer to resize.
1606 * @size: the new size.
1607 * @cpu_id: the cpu buffer to resize
1608 *
1609 * Minimum size is 2 * BUF_PAGE_SIZE.
1610 *
1611 * Returns 0 on success and < 0 on failure.
1612 */
1613 int ring_buffer_resize(struct ring_buffer *buffer, unsigned long size,
1614 int cpu_id)
1615 {
1616 struct ring_buffer_per_cpu *cpu_buffer;
1617 unsigned long nr_pages;
1618 int cpu, err = 0;
1619
1620 /*
1621 * Always succeed at resizing a non-existent buffer:
1622 */
1623 if (!buffer)
1624 return size;
1625
1626 /* Make sure the requested buffer exists */
1627 if (cpu_id != RING_BUFFER_ALL_CPUS &&
1628 !cpumask_test_cpu(cpu_id, buffer->cpumask))
1629 return size;
1630
1631 nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1632
1633 /* we need a minimum of two pages */
1634 if (nr_pages < 2)
1635 nr_pages = 2;
1636
1637 size = nr_pages * BUF_PAGE_SIZE;
1638
1639 /*
1640 * Don't succeed if resizing is disabled, as a reader might be
1641 * manipulating the ring buffer and is expecting a sane state while
1642 * this is true.
1643 */
1644 if (atomic_read(&buffer->resize_disabled))
1645 return -EBUSY;
1646
1647 /* prevent another thread from changing buffer sizes */
1648 mutex_lock(&buffer->mutex);
1649
1650 if (cpu_id == RING_BUFFER_ALL_CPUS) {
1651 /* calculate the pages to update */
1652 for_each_buffer_cpu(buffer, cpu) {
1653 cpu_buffer = buffer->buffers[cpu];
1654
1655 cpu_buffer->nr_pages_to_update = nr_pages -
1656 cpu_buffer->nr_pages;
1657 /*
1658 * nothing more to do for removing pages or no update
1659 */
1660 if (cpu_buffer->nr_pages_to_update <= 0)
1661 continue;
1662 /*
1663 * to add pages, make sure all new pages can be
1664 * allocated without receiving ENOMEM
1665 */
1666 INIT_LIST_HEAD(&cpu_buffer->new_pages);
1667 if (__rb_allocate_pages(cpu_buffer->nr_pages_to_update,
1668 &cpu_buffer->new_pages, cpu)) {
1669 /* not enough memory for new pages */
1670 err = -ENOMEM;
1671 goto out_err;
1672 }
1673 }
1674
1675 get_online_cpus();
1676 /*
1677 * Fire off all the required work handlers
1678 * We can't schedule on offline CPUs, but it's not necessary
1679 * since we can change their buffer sizes without any race.
1680 */
1681 for_each_buffer_cpu(buffer, cpu) {
1682 cpu_buffer = buffer->buffers[cpu];
1683 if (!cpu_buffer->nr_pages_to_update)
1684 continue;
1685
1686 /* Can't run something on an offline CPU. */
1687 if (!cpu_online(cpu)) {
1688 rb_update_pages(cpu_buffer);
1689 cpu_buffer->nr_pages_to_update = 0;
1690 } else {
1691 schedule_work_on(cpu,
1692 &cpu_buffer->update_pages_work);
1693 }
1694 }
1695
1696 /* wait for all the updates to complete */
1697 for_each_buffer_cpu(buffer, cpu) {
1698 cpu_buffer = buffer->buffers[cpu];
1699 if (!cpu_buffer->nr_pages_to_update)
1700 continue;
1701
1702 if (cpu_online(cpu))
1703 wait_for_completion(&cpu_buffer->update_done);
1704 cpu_buffer->nr_pages_to_update = 0;
1705 }
1706
1707 put_online_cpus();
1708 } else {
1709 /* Make sure this CPU has been intitialized */
1710 if (!cpumask_test_cpu(cpu_id, buffer->cpumask))
1711 goto out;
1712
1713 cpu_buffer = buffer->buffers[cpu_id];
1714
1715 if (nr_pages == cpu_buffer->nr_pages)
1716 goto out;
1717
1718 cpu_buffer->nr_pages_to_update = nr_pages -
1719 cpu_buffer->nr_pages;
1720
1721 INIT_LIST_HEAD(&cpu_buffer->new_pages);
1722 if (cpu_buffer->nr_pages_to_update > 0 &&
1723 __rb_allocate_pages(cpu_buffer->nr_pages_to_update,
1724 &cpu_buffer->new_pages, cpu_id)) {
1725 err = -ENOMEM;
1726 goto out_err;
1727 }
1728
1729 get_online_cpus();
1730
1731 /* Can't run something on an offline CPU. */
1732 if (!cpu_online(cpu_id))
1733 rb_update_pages(cpu_buffer);
1734 else {
1735 schedule_work_on(cpu_id,
1736 &cpu_buffer->update_pages_work);
1737 wait_for_completion(&cpu_buffer->update_done);
1738 }
1739
1740 cpu_buffer->nr_pages_to_update = 0;
1741 put_online_cpus();
1742 }
1743
1744 out:
1745 /*
1746 * The ring buffer resize can happen with the ring buffer
1747 * enabled, so that the update disturbs the tracing as little
1748 * as possible. But if the buffer is disabled, we do not need
1749 * to worry about that, and we can take the time to verify
1750 * that the buffer is not corrupt.
1751 */
1752 if (atomic_read(&buffer->record_disabled)) {
1753 atomic_inc(&buffer->record_disabled);
1754 /*
1755 * Even though the buffer was disabled, we must make sure
1756 * that it is truly disabled before calling rb_check_pages.
1757 * There could have been a race between checking
1758 * record_disable and incrementing it.
1759 */
1760 synchronize_sched();
1761 for_each_buffer_cpu(buffer, cpu) {
1762 cpu_buffer = buffer->buffers[cpu];
1763 rb_check_pages(cpu_buffer);
1764 }
1765 atomic_dec(&buffer->record_disabled);
1766 }
1767
1768 mutex_unlock(&buffer->mutex);
1769 return size;
1770
1771 out_err:
1772 for_each_buffer_cpu(buffer, cpu) {
1773 struct buffer_page *bpage, *tmp;
1774
1775 cpu_buffer = buffer->buffers[cpu];
1776 cpu_buffer->nr_pages_to_update = 0;
1777
1778 if (list_empty(&cpu_buffer->new_pages))
1779 continue;
1780
1781 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1782 list) {
1783 list_del_init(&bpage->list);
1784 free_buffer_page(bpage);
1785 }
1786 }
1787 mutex_unlock(&buffer->mutex);
1788 return err;
1789 }
1790 EXPORT_SYMBOL_GPL(ring_buffer_resize);
1791
1792 void ring_buffer_change_overwrite(struct ring_buffer *buffer, int val)
1793 {
1794 mutex_lock(&buffer->mutex);
1795 if (val)
1796 buffer->flags |= RB_FL_OVERWRITE;
1797 else
1798 buffer->flags &= ~RB_FL_OVERWRITE;
1799 mutex_unlock(&buffer->mutex);
1800 }
1801 EXPORT_SYMBOL_GPL(ring_buffer_change_overwrite);
1802
1803 static __always_inline void *
1804 __rb_data_page_index(struct buffer_data_page *bpage, unsigned index)
1805 {
1806 return bpage->data + index;
1807 }
1808
1809 static __always_inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
1810 {
1811 return bpage->page->data + index;
1812 }
1813
1814 static __always_inline struct ring_buffer_event *
1815 rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
1816 {
1817 return __rb_page_index(cpu_buffer->reader_page,
1818 cpu_buffer->reader_page->read);
1819 }
1820
1821 static __always_inline struct ring_buffer_event *
1822 rb_iter_head_event(struct ring_buffer_iter *iter)
1823 {
1824 return __rb_page_index(iter->head_page, iter->head);
1825 }
1826
1827 static __always_inline unsigned rb_page_commit(struct buffer_page *bpage)
1828 {
1829 return local_read(&bpage->page->commit);
1830 }
1831
1832 /* Size is determined by what has been committed */
1833 static __always_inline unsigned rb_page_size(struct buffer_page *bpage)
1834 {
1835 return rb_page_commit(bpage);
1836 }
1837
1838 static __always_inline unsigned
1839 rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
1840 {
1841 return rb_page_commit(cpu_buffer->commit_page);
1842 }
1843
1844 static __always_inline unsigned
1845 rb_event_index(struct ring_buffer_event *event)
1846 {
1847 unsigned long addr = (unsigned long)event;
1848
1849 return (addr & ~PAGE_MASK) - BUF_PAGE_HDR_SIZE;
1850 }
1851
1852 static void rb_inc_iter(struct ring_buffer_iter *iter)
1853 {
1854 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
1855
1856 /*
1857 * The iterator could be on the reader page (it starts there).
1858 * But the head could have moved, since the reader was
1859 * found. Check for this case and assign the iterator
1860 * to the head page instead of next.
1861 */
1862 if (iter->head_page == cpu_buffer->reader_page)
1863 iter->head_page = rb_set_head_page(cpu_buffer);
1864 else
1865 rb_inc_page(cpu_buffer, &iter->head_page);
1866
1867 iter->read_stamp = iter->head_page->page->time_stamp;
1868 iter->head = 0;
1869 }
1870
1871 /*
1872 * rb_handle_head_page - writer hit the head page
1873 *
1874 * Returns: +1 to retry page
1875 * 0 to continue
1876 * -1 on error
1877 */
1878 static int
1879 rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer,
1880 struct buffer_page *tail_page,
1881 struct buffer_page *next_page)
1882 {
1883 struct buffer_page *new_head;
1884 int entries;
1885 int type;
1886 int ret;
1887
1888 entries = rb_page_entries(next_page);
1889
1890 /*
1891 * The hard part is here. We need to move the head
1892 * forward, and protect against both readers on
1893 * other CPUs and writers coming in via interrupts.
1894 */
1895 type = rb_head_page_set_update(cpu_buffer, next_page, tail_page,
1896 RB_PAGE_HEAD);
1897
1898 /*
1899 * type can be one of four:
1900 * NORMAL - an interrupt already moved it for us
1901 * HEAD - we are the first to get here.
1902 * UPDATE - we are the interrupt interrupting
1903 * a current move.
1904 * MOVED - a reader on another CPU moved the next
1905 * pointer to its reader page. Give up
1906 * and try again.
1907 */
1908
1909 switch (type) {
1910 case RB_PAGE_HEAD:
1911 /*
1912 * We changed the head to UPDATE, thus
1913 * it is our responsibility to update
1914 * the counters.
1915 */
1916 local_add(entries, &cpu_buffer->overrun);
1917 local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
1918
1919 /*
1920 * The entries will be zeroed out when we move the
1921 * tail page.
1922 */
1923
1924 /* still more to do */
1925 break;
1926
1927 case RB_PAGE_UPDATE:
1928 /*
1929 * This is an interrupt that interrupt the
1930 * previous update. Still more to do.
1931 */
1932 break;
1933 case RB_PAGE_NORMAL:
1934 /*
1935 * An interrupt came in before the update
1936 * and processed this for us.
1937 * Nothing left to do.
1938 */
1939 return 1;
1940 case RB_PAGE_MOVED:
1941 /*
1942 * The reader is on another CPU and just did
1943 * a swap with our next_page.
1944 * Try again.
1945 */
1946 return 1;
1947 default:
1948 RB_WARN_ON(cpu_buffer, 1); /* WTF??? */
1949 return -1;
1950 }
1951
1952 /*
1953 * Now that we are here, the old head pointer is
1954 * set to UPDATE. This will keep the reader from
1955 * swapping the head page with the reader page.
1956 * The reader (on another CPU) will spin till
1957 * we are finished.
1958 *
1959 * We just need to protect against interrupts
1960 * doing the job. We will set the next pointer
1961 * to HEAD. After that, we set the old pointer
1962 * to NORMAL, but only if it was HEAD before.
1963 * otherwise we are an interrupt, and only
1964 * want the outer most commit to reset it.
1965 */
1966 new_head = next_page;
1967 rb_inc_page(cpu_buffer, &new_head);
1968
1969 ret = rb_head_page_set_head(cpu_buffer, new_head, next_page,
1970 RB_PAGE_NORMAL);
1971
1972 /*
1973 * Valid returns are:
1974 * HEAD - an interrupt came in and already set it.
1975 * NORMAL - One of two things:
1976 * 1) We really set it.
1977 * 2) A bunch of interrupts came in and moved
1978 * the page forward again.
1979 */
1980 switch (ret) {
1981 case RB_PAGE_HEAD:
1982 case RB_PAGE_NORMAL:
1983 /* OK */
1984 break;
1985 default:
1986 RB_WARN_ON(cpu_buffer, 1);
1987 return -1;
1988 }
1989
1990 /*
1991 * It is possible that an interrupt came in,
1992 * set the head up, then more interrupts came in
1993 * and moved it again. When we get back here,
1994 * the page would have been set to NORMAL but we
1995 * just set it back to HEAD.
1996 *
1997 * How do you detect this? Well, if that happened
1998 * the tail page would have moved.
1999 */
2000 if (ret == RB_PAGE_NORMAL) {
2001 struct buffer_page *buffer_tail_page;
2002
2003 buffer_tail_page = READ_ONCE(cpu_buffer->tail_page);
2004 /*
2005 * If the tail had moved passed next, then we need
2006 * to reset the pointer.
2007 */
2008 if (buffer_tail_page != tail_page &&
2009 buffer_tail_page != next_page)
2010 rb_head_page_set_normal(cpu_buffer, new_head,
2011 next_page,
2012 RB_PAGE_HEAD);
2013 }
2014
2015 /*
2016 * If this was the outer most commit (the one that
2017 * changed the original pointer from HEAD to UPDATE),
2018 * then it is up to us to reset it to NORMAL.
2019 */
2020 if (type == RB_PAGE_HEAD) {
2021 ret = rb_head_page_set_normal(cpu_buffer, next_page,
2022 tail_page,
2023 RB_PAGE_UPDATE);
2024 if (RB_WARN_ON(cpu_buffer,
2025 ret != RB_PAGE_UPDATE))
2026 return -1;
2027 }
2028
2029 return 0;
2030 }
2031
2032 static inline void
2033 rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer,
2034 unsigned long tail, struct rb_event_info *info)
2035 {
2036 struct buffer_page *tail_page = info->tail_page;
2037 struct ring_buffer_event *event;
2038 unsigned long length = info->length;
2039
2040 /*
2041 * Only the event that crossed the page boundary
2042 * must fill the old tail_page with padding.
2043 */
2044 if (tail >= BUF_PAGE_SIZE) {
2045 /*
2046 * If the page was filled, then we still need
2047 * to update the real_end. Reset it to zero
2048 * and the reader will ignore it.
2049 */
2050 if (tail == BUF_PAGE_SIZE)
2051 tail_page->real_end = 0;
2052
2053 local_sub(length, &tail_page->write);
2054 return;
2055 }
2056
2057 event = __rb_page_index(tail_page, tail);
2058 kmemcheck_annotate_bitfield(event, bitfield);
2059
2060 /* account for padding bytes */
2061 local_add(BUF_PAGE_SIZE - tail, &cpu_buffer->entries_bytes);
2062
2063 /*
2064 * Save the original length to the meta data.
2065 * This will be used by the reader to add lost event
2066 * counter.
2067 */
2068 tail_page->real_end = tail;
2069
2070 /*
2071 * If this event is bigger than the minimum size, then
2072 * we need to be careful that we don't subtract the
2073 * write counter enough to allow another writer to slip
2074 * in on this page.
2075 * We put in a discarded commit instead, to make sure
2076 * that this space is not used again.
2077 *
2078 * If we are less than the minimum size, we don't need to
2079 * worry about it.
2080 */
2081 if (tail > (BUF_PAGE_SIZE - RB_EVNT_MIN_SIZE)) {
2082 /* No room for any events */
2083
2084 /* Mark the rest of the page with padding */
2085 rb_event_set_padding(event);
2086
2087 /* Set the write back to the previous setting */
2088 local_sub(length, &tail_page->write);
2089 return;
2090 }
2091
2092 /* Put in a discarded event */
2093 event->array[0] = (BUF_PAGE_SIZE - tail) - RB_EVNT_HDR_SIZE;
2094 event->type_len = RINGBUF_TYPE_PADDING;
2095 /* time delta must be non zero */
2096 event->time_delta = 1;
2097
2098 /* Set write to end of buffer */
2099 length = (tail + length) - BUF_PAGE_SIZE;
2100 local_sub(length, &tail_page->write);
2101 }
2102
2103 static inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer);
2104
2105 /*
2106 * This is the slow path, force gcc not to inline it.
2107 */
2108 static noinline struct ring_buffer_event *
2109 rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer,
2110 unsigned long tail, struct rb_event_info *info)
2111 {
2112 struct buffer_page *tail_page = info->tail_page;
2113 struct buffer_page *commit_page = cpu_buffer->commit_page;
2114 struct ring_buffer *buffer = cpu_buffer->buffer;
2115 struct buffer_page *next_page;
2116 int ret;
2117
2118 next_page = tail_page;
2119
2120 rb_inc_page(cpu_buffer, &next_page);
2121
2122 /*
2123 * If for some reason, we had an interrupt storm that made
2124 * it all the way around the buffer, bail, and warn
2125 * about it.
2126 */
2127 if (unlikely(next_page == commit_page)) {
2128 local_inc(&cpu_buffer->commit_overrun);
2129 goto out_reset;
2130 }
2131
2132 /*
2133 * This is where the fun begins!
2134 *
2135 * We are fighting against races between a reader that
2136 * could be on another CPU trying to swap its reader
2137 * page with the buffer head.
2138 *
2139 * We are also fighting against interrupts coming in and
2140 * moving the head or tail on us as well.
2141 *
2142 * If the next page is the head page then we have filled
2143 * the buffer, unless the commit page is still on the
2144 * reader page.
2145 */
2146 if (rb_is_head_page(cpu_buffer, next_page, &tail_page->list)) {
2147
2148 /*
2149 * If the commit is not on the reader page, then
2150 * move the header page.
2151 */
2152 if (!rb_is_reader_page(cpu_buffer->commit_page)) {
2153 /*
2154 * If we are not in overwrite mode,
2155 * this is easy, just stop here.
2156 */
2157 if (!(buffer->flags & RB_FL_OVERWRITE)) {
2158 local_inc(&cpu_buffer->dropped_events);
2159 goto out_reset;
2160 }
2161
2162 ret = rb_handle_head_page(cpu_buffer,
2163 tail_page,
2164 next_page);
2165 if (ret < 0)
2166 goto out_reset;
2167 if (ret)
2168 goto out_again;
2169 } else {
2170 /*
2171 * We need to be careful here too. The
2172 * commit page could still be on the reader
2173 * page. We could have a small buffer, and
2174 * have filled up the buffer with events
2175 * from interrupts and such, and wrapped.
2176 *
2177 * Note, if the tail page is also the on the
2178 * reader_page, we let it move out.
2179 */
2180 if (unlikely((cpu_buffer->commit_page !=
2181 cpu_buffer->tail_page) &&
2182 (cpu_buffer->commit_page ==
2183 cpu_buffer->reader_page))) {
2184 local_inc(&cpu_buffer->commit_overrun);
2185 goto out_reset;
2186 }
2187 }
2188 }
2189
2190 rb_tail_page_update(cpu_buffer, tail_page, next_page);
2191
2192 out_again:
2193
2194 rb_reset_tail(cpu_buffer, tail, info);
2195
2196 /* Commit what we have for now. */
2197 rb_end_commit(cpu_buffer);
2198 /* rb_end_commit() decs committing */
2199 local_inc(&cpu_buffer->committing);
2200
2201 /* fail and let the caller try again */
2202 return ERR_PTR(-EAGAIN);
2203
2204 out_reset:
2205 /* reset write */
2206 rb_reset_tail(cpu_buffer, tail, info);
2207
2208 return NULL;
2209 }
2210
2211 /* Slow path, do not inline */
2212 static noinline struct ring_buffer_event *
2213 rb_add_time_stamp(struct ring_buffer_event *event, u64 delta)
2214 {
2215 event->type_len = RINGBUF_TYPE_TIME_EXTEND;
2216
2217 /* Not the first event on the page? */
2218 if (rb_event_index(event)) {
2219 event->time_delta = delta & TS_MASK;
2220 event->array[0] = delta >> TS_SHIFT;
2221 } else {
2222 /* nope, just zero it */
2223 event->time_delta = 0;
2224 event->array[0] = 0;
2225 }
2226
2227 return skip_time_extend(event);
2228 }
2229
2230 static inline bool rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
2231 struct ring_buffer_event *event);
2232
2233 /**
2234 * rb_update_event - update event type and data
2235 * @event: the event to update
2236 * @type: the type of event
2237 * @length: the size of the event field in the ring buffer
2238 *
2239 * Update the type and data fields of the event. The length
2240 * is the actual size that is written to the ring buffer,
2241 * and with this, we can determine what to place into the
2242 * data field.
2243 */
2244 static void
2245 rb_update_event(struct ring_buffer_per_cpu *cpu_buffer,
2246 struct ring_buffer_event *event,
2247 struct rb_event_info *info)
2248 {
2249 unsigned length = info->length;
2250 u64 delta = info->delta;
2251
2252 /* Only a commit updates the timestamp */
2253 if (unlikely(!rb_event_is_commit(cpu_buffer, event)))
2254 delta = 0;
2255
2256 /*
2257 * If we need to add a timestamp, then we
2258 * add it to the start of the resevered space.
2259 */
2260 if (unlikely(info->add_timestamp)) {
2261 event = rb_add_time_stamp(event, delta);
2262 length -= RB_LEN_TIME_EXTEND;
2263 delta = 0;
2264 }
2265
2266 event->time_delta = delta;
2267 length -= RB_EVNT_HDR_SIZE;
2268 if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) {
2269 event->type_len = 0;
2270 event->array[0] = length;
2271 } else
2272 event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT);
2273 }
2274
2275 static unsigned rb_calculate_event_length(unsigned length)
2276 {
2277 struct ring_buffer_event event; /* Used only for sizeof array */
2278
2279 /* zero length can cause confusions */
2280 if (!length)
2281 length++;
2282
2283 if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT)
2284 length += sizeof(event.array[0]);
2285
2286 length += RB_EVNT_HDR_SIZE;
2287 length = ALIGN(length, RB_ARCH_ALIGNMENT);
2288
2289 /*
2290 * In case the time delta is larger than the 27 bits for it
2291 * in the header, we need to add a timestamp. If another
2292 * event comes in when trying to discard this one to increase
2293 * the length, then the timestamp will be added in the allocated
2294 * space of this event. If length is bigger than the size needed
2295 * for the TIME_EXTEND, then padding has to be used. The events
2296 * length must be either RB_LEN_TIME_EXTEND, or greater than or equal
2297 * to RB_LEN_TIME_EXTEND + 8, as 8 is the minimum size for padding.
2298 * As length is a multiple of 4, we only need to worry if it
2299 * is 12 (RB_LEN_TIME_EXTEND + 4).
2300 */
2301 if (length == RB_LEN_TIME_EXTEND + RB_ALIGNMENT)
2302 length += RB_ALIGNMENT;
2303
2304 return length;
2305 }
2306
2307 #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
2308 static inline bool sched_clock_stable(void)
2309 {
2310 return true;
2311 }
2312 #endif
2313
2314 static inline int
2315 rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer,
2316 struct ring_buffer_event *event)
2317 {
2318 unsigned long new_index, old_index;
2319 struct buffer_page *bpage;
2320 unsigned long index;
2321 unsigned long addr;
2322
2323 new_index = rb_event_index(event);
2324 old_index = new_index + rb_event_ts_length(event);
2325 addr = (unsigned long)event;
2326 addr &= PAGE_MASK;
2327
2328 bpage = READ_ONCE(cpu_buffer->tail_page);
2329
2330 if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) {
2331 unsigned long write_mask =
2332 local_read(&bpage->write) & ~RB_WRITE_MASK;
2333 unsigned long event_length = rb_event_length(event);
2334 /*
2335 * This is on the tail page. It is possible that
2336 * a write could come in and move the tail page
2337 * and write to the next page. That is fine
2338 * because we just shorten what is on this page.
2339 */
2340 old_index += write_mask;
2341 new_index += write_mask;
2342 index = local_cmpxchg(&bpage->write, old_index, new_index);
2343 if (index == old_index) {
2344 /* update counters */
2345 local_sub(event_length, &cpu_buffer->entries_bytes);
2346 return 1;
2347 }
2348 }
2349
2350 /* could not discard */
2351 return 0;
2352 }
2353
2354 static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer)
2355 {
2356 local_inc(&cpu_buffer->committing);
2357 local_inc(&cpu_buffer->commits);
2358 }
2359
2360 static __always_inline void
2361 rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
2362 {
2363 unsigned long max_count;
2364
2365 /*
2366 * We only race with interrupts and NMIs on this CPU.
2367 * If we own the commit event, then we can commit
2368 * all others that interrupted us, since the interruptions
2369 * are in stack format (they finish before they come
2370 * back to us). This allows us to do a simple loop to
2371 * assign the commit to the tail.
2372 */
2373 again:
2374 max_count = cpu_buffer->nr_pages * 100;
2375
2376 while (cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page)) {
2377 if (RB_WARN_ON(cpu_buffer, !(--max_count)))
2378 return;
2379 if (RB_WARN_ON(cpu_buffer,
2380 rb_is_reader_page(cpu_buffer->tail_page)))
2381 return;
2382 local_set(&cpu_buffer->commit_page->page->commit,
2383 rb_page_write(cpu_buffer->commit_page));
2384 rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
2385 /* Only update the write stamp if the page has an event */
2386 if (rb_page_write(cpu_buffer->commit_page))
2387 cpu_buffer->write_stamp =
2388 cpu_buffer->commit_page->page->time_stamp;
2389 /* add barrier to keep gcc from optimizing too much */
2390 barrier();
2391 }
2392 while (rb_commit_index(cpu_buffer) !=
2393 rb_page_write(cpu_buffer->commit_page)) {
2394
2395 local_set(&cpu_buffer->commit_page->page->commit,
2396 rb_page_write(cpu_buffer->commit_page));
2397 RB_WARN_ON(cpu_buffer,
2398 local_read(&cpu_buffer->commit_page->page->commit) &
2399 ~RB_WRITE_MASK);
2400 barrier();
2401 }
2402
2403 /* again, keep gcc from optimizing */
2404 barrier();
2405
2406 /*
2407 * If an interrupt came in just after the first while loop
2408 * and pushed the tail page forward, we will be left with
2409 * a dangling commit that will never go forward.
2410 */
2411 if (unlikely(cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page)))
2412 goto again;
2413 }
2414
2415 static __always_inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer)
2416 {
2417 unsigned long commits;
2418
2419 if (RB_WARN_ON(cpu_buffer,
2420 !local_read(&cpu_buffer->committing)))
2421 return;
2422
2423 again:
2424 commits = local_read(&cpu_buffer->commits);
2425 /* synchronize with interrupts */
2426 barrier();
2427 if (local_read(&cpu_buffer->committing) == 1)
2428 rb_set_commit_to_write(cpu_buffer);
2429
2430 local_dec(&cpu_buffer->committing);
2431
2432 /* synchronize with interrupts */
2433 barrier();
2434
2435 /*
2436 * Need to account for interrupts coming in between the
2437 * updating of the commit page and the clearing of the
2438 * committing counter.
2439 */
2440 if (unlikely(local_read(&cpu_buffer->commits) != commits) &&
2441 !local_read(&cpu_buffer->committing)) {
2442 local_inc(&cpu_buffer->committing);
2443 goto again;
2444 }
2445 }
2446
2447 static inline void rb_event_discard(struct ring_buffer_event *event)
2448 {
2449 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
2450 event = skip_time_extend(event);
2451
2452 /* array[0] holds the actual length for the discarded event */
2453 event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE;
2454 event->type_len = RINGBUF_TYPE_PADDING;
2455 /* time delta must be non zero */
2456 if (!event->time_delta)
2457 event->time_delta = 1;
2458 }
2459
2460 static __always_inline bool
2461 rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
2462 struct ring_buffer_event *event)
2463 {
2464 unsigned long addr = (unsigned long)event;
2465 unsigned long index;
2466
2467 index = rb_event_index(event);
2468 addr &= PAGE_MASK;
2469
2470 return cpu_buffer->commit_page->page == (void *)addr &&
2471 rb_commit_index(cpu_buffer) == index;
2472 }
2473
2474 static __always_inline void
2475 rb_update_write_stamp(struct ring_buffer_per_cpu *cpu_buffer,
2476 struct ring_buffer_event *event)
2477 {
2478 u64 delta;
2479
2480 /*
2481 * The event first in the commit queue updates the
2482 * time stamp.
2483 */
2484 if (rb_event_is_commit(cpu_buffer, event)) {
2485 /*
2486 * A commit event that is first on a page
2487 * updates the write timestamp with the page stamp
2488 */
2489 if (!rb_event_index(event))
2490 cpu_buffer->write_stamp =
2491 cpu_buffer->commit_page->page->time_stamp;
2492 else if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) {
2493 delta = event->array[0];
2494 delta <<= TS_SHIFT;
2495 delta += event->time_delta;
2496 cpu_buffer->write_stamp += delta;
2497 } else
2498 cpu_buffer->write_stamp += event->time_delta;
2499 }
2500 }
2501
2502 static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer,
2503 struct ring_buffer_event *event)
2504 {
2505 local_inc(&cpu_buffer->entries);
2506 rb_update_write_stamp(cpu_buffer, event);
2507 rb_end_commit(cpu_buffer);
2508 }
2509
2510 static __always_inline void
2511 rb_wakeups(struct ring_buffer *buffer, struct ring_buffer_per_cpu *cpu_buffer)
2512 {
2513 bool pagebusy;
2514
2515 if (buffer->irq_work.waiters_pending) {
2516 buffer->irq_work.waiters_pending = false;
2517 /* irq_work_queue() supplies it's own memory barriers */
2518 irq_work_queue(&buffer->irq_work.work);
2519 }
2520
2521 if (cpu_buffer->irq_work.waiters_pending) {
2522 cpu_buffer->irq_work.waiters_pending = false;
2523 /* irq_work_queue() supplies it's own memory barriers */
2524 irq_work_queue(&cpu_buffer->irq_work.work);
2525 }
2526
2527 pagebusy = cpu_buffer->reader_page == cpu_buffer->commit_page;
2528
2529 if (!pagebusy && cpu_buffer->irq_work.full_waiters_pending) {
2530 cpu_buffer->irq_work.wakeup_full = true;
2531 cpu_buffer->irq_work.full_waiters_pending = false;
2532 /* irq_work_queue() supplies it's own memory barriers */
2533 irq_work_queue(&cpu_buffer->irq_work.work);
2534 }
2535 }
2536
2537 /*
2538 * The lock and unlock are done within a preempt disable section.
2539 * The current_context per_cpu variable can only be modified
2540 * by the current task between lock and unlock. But it can
2541 * be modified more than once via an interrupt. To pass this
2542 * information from the lock to the unlock without having to
2543 * access the 'in_interrupt()' functions again (which do show
2544 * a bit of overhead in something as critical as function tracing,
2545 * we use a bitmask trick.
2546 *
2547 * bit 0 = NMI context
2548 * bit 1 = IRQ context
2549 * bit 2 = SoftIRQ context
2550 * bit 3 = normal context.
2551 *
2552 * This works because this is the order of contexts that can
2553 * preempt other contexts. A SoftIRQ never preempts an IRQ
2554 * context.
2555 *
2556 * When the context is determined, the corresponding bit is
2557 * checked and set (if it was set, then a recursion of that context
2558 * happened).
2559 *
2560 * On unlock, we need to clear this bit. To do so, just subtract
2561 * 1 from the current_context and AND it to itself.
2562 *
2563 * (binary)
2564 * 101 - 1 = 100
2565 * 101 & 100 = 100 (clearing bit zero)
2566 *
2567 * 1010 - 1 = 1001
2568 * 1010 & 1001 = 1000 (clearing bit 1)
2569 *
2570 * The least significant bit can be cleared this way, and it
2571 * just so happens that it is the same bit corresponding to
2572 * the current context.
2573 */
2574
2575 static __always_inline int
2576 trace_recursive_lock(struct ring_buffer_per_cpu *cpu_buffer)
2577 {
2578 unsigned int val = cpu_buffer->current_context;
2579 int bit;
2580
2581 if (in_interrupt()) {
2582 if (in_nmi())
2583 bit = RB_CTX_NMI;
2584 else if (in_irq())
2585 bit = RB_CTX_IRQ;
2586 else
2587 bit = RB_CTX_SOFTIRQ;
2588 } else
2589 bit = RB_CTX_NORMAL;
2590
2591 if (unlikely(val & (1 << bit)))
2592 return 1;
2593
2594 val |= (1 << bit);
2595 cpu_buffer->current_context = val;
2596
2597 return 0;
2598 }
2599
2600 static __always_inline void
2601 trace_recursive_unlock(struct ring_buffer_per_cpu *cpu_buffer)
2602 {
2603 cpu_buffer->current_context &= cpu_buffer->current_context - 1;
2604 }
2605
2606 /**
2607 * ring_buffer_unlock_commit - commit a reserved
2608 * @buffer: The buffer to commit to
2609 * @event: The event pointer to commit.
2610 *
2611 * This commits the data to the ring buffer, and releases any locks held.
2612 *
2613 * Must be paired with ring_buffer_lock_reserve.
2614 */
2615 int ring_buffer_unlock_commit(struct ring_buffer *buffer,
2616 struct ring_buffer_event *event)
2617 {
2618 struct ring_buffer_per_cpu *cpu_buffer;
2619 int cpu = raw_smp_processor_id();
2620
2621 cpu_buffer = buffer->buffers[cpu];
2622
2623 rb_commit(cpu_buffer, event);
2624
2625 rb_wakeups(buffer, cpu_buffer);
2626
2627 trace_recursive_unlock(cpu_buffer);
2628
2629 preempt_enable_notrace();
2630
2631 return 0;
2632 }
2633 EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit);
2634
2635 static noinline void
2636 rb_handle_timestamp(struct ring_buffer_per_cpu *cpu_buffer,
2637 struct rb_event_info *info)
2638 {
2639 WARN_ONCE(info->delta > (1ULL << 59),
2640 KERN_WARNING "Delta way too big! %llu ts=%llu write stamp = %llu\n%s",
2641 (unsigned long long)info->delta,
2642 (unsigned long long)info->ts,
2643 (unsigned long long)cpu_buffer->write_stamp,
2644 sched_clock_stable() ? "" :
2645 "If you just came from a suspend/resume,\n"
2646 "please switch to the trace global clock:\n"
2647 " echo global > /sys/kernel/debug/tracing/trace_clock\n");
2648 info->add_timestamp = 1;
2649 }
2650
2651 static struct ring_buffer_event *
2652 __rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
2653 struct rb_event_info *info)
2654 {
2655 struct ring_buffer_event *event;
2656 struct buffer_page *tail_page;
2657 unsigned long tail, write;
2658
2659 /*
2660 * If the time delta since the last event is too big to
2661 * hold in the time field of the event, then we append a
2662 * TIME EXTEND event ahead of the data event.
2663 */
2664 if (unlikely(info->add_timestamp))
2665 info->length += RB_LEN_TIME_EXTEND;
2666
2667 /* Don't let the compiler play games with cpu_buffer->tail_page */
2668 tail_page = info->tail_page = READ_ONCE(cpu_buffer->tail_page);
2669 write = local_add_return(info->length, &tail_page->write);
2670
2671 /* set write to only the index of the write */
2672 write &= RB_WRITE_MASK;
2673 tail = write - info->length;
2674
2675 /*
2676 * If this is the first commit on the page, then it has the same
2677 * timestamp as the page itself.
2678 */
2679 if (!tail)
2680 info->delta = 0;
2681
2682 /* See if we shot pass the end of this buffer page */
2683 if (unlikely(write > BUF_PAGE_SIZE))
2684 return rb_move_tail(cpu_buffer, tail, info);
2685
2686 /* We reserved something on the buffer */
2687
2688 event = __rb_page_index(tail_page, tail);
2689 kmemcheck_annotate_bitfield(event, bitfield);
2690 rb_update_event(cpu_buffer, event, info);
2691
2692 local_inc(&tail_page->entries);
2693
2694 /*
2695 * If this is the first commit on the page, then update
2696 * its timestamp.
2697 */
2698 if (!tail)
2699 tail_page->page->time_stamp = info->ts;
2700
2701 /* account for these added bytes */
2702 local_add(info->length, &cpu_buffer->entries_bytes);
2703
2704 return event;
2705 }
2706
2707 static __always_inline struct ring_buffer_event *
2708 rb_reserve_next_event(struct ring_buffer *buffer,
2709 struct ring_buffer_per_cpu *cpu_buffer,
2710 unsigned long length)
2711 {
2712 struct ring_buffer_event *event;
2713 struct rb_event_info info;
2714 int nr_loops = 0;
2715 u64 diff;
2716
2717 rb_start_commit(cpu_buffer);
2718
2719 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
2720 /*
2721 * Due to the ability to swap a cpu buffer from a buffer
2722 * it is possible it was swapped before we committed.
2723 * (committing stops a swap). We check for it here and
2724 * if it happened, we have to fail the write.
2725 */
2726 barrier();
2727 if (unlikely(ACCESS_ONCE(cpu_buffer->buffer) != buffer)) {
2728 local_dec(&cpu_buffer->committing);
2729 local_dec(&cpu_buffer->commits);
2730 return NULL;
2731 }
2732 #endif
2733
2734 info.length = rb_calculate_event_length(length);
2735 again:
2736 info.add_timestamp = 0;
2737 info.delta = 0;
2738
2739 /*
2740 * We allow for interrupts to reenter here and do a trace.
2741 * If one does, it will cause this original code to loop
2742 * back here. Even with heavy interrupts happening, this
2743 * should only happen a few times in a row. If this happens
2744 * 1000 times in a row, there must be either an interrupt
2745 * storm or we have something buggy.
2746 * Bail!
2747 */
2748 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
2749 goto out_fail;
2750
2751 info.ts = rb_time_stamp(cpu_buffer->buffer);
2752 diff = info.ts - cpu_buffer->write_stamp;
2753
2754 /* make sure this diff is calculated here */
2755 barrier();
2756
2757 /* Did the write stamp get updated already? */
2758 if (likely(info.ts >= cpu_buffer->write_stamp)) {
2759 info.delta = diff;
2760 if (unlikely(test_time_stamp(info.delta)))
2761 rb_handle_timestamp(cpu_buffer, &info);
2762 }
2763
2764 event = __rb_reserve_next(cpu_buffer, &info);
2765
2766 if (unlikely(PTR_ERR(event) == -EAGAIN)) {
2767 if (info.add_timestamp)
2768 info.length -= RB_LEN_TIME_EXTEND;
2769 goto again;
2770 }
2771
2772 if (!event)
2773 goto out_fail;
2774
2775 return event;
2776
2777 out_fail:
2778 rb_end_commit(cpu_buffer);
2779 return NULL;
2780 }
2781
2782 /**
2783 * ring_buffer_lock_reserve - reserve a part of the buffer
2784 * @buffer: the ring buffer to reserve from
2785 * @length: the length of the data to reserve (excluding event header)
2786 *
2787 * Returns a reseverd event on the ring buffer to copy directly to.
2788 * The user of this interface will need to get the body to write into
2789 * and can use the ring_buffer_event_data() interface.
2790 *
2791 * The length is the length of the data needed, not the event length
2792 * which also includes the event header.
2793 *
2794 * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
2795 * If NULL is returned, then nothing has been allocated or locked.
2796 */
2797 struct ring_buffer_event *
2798 ring_buffer_lock_reserve(struct ring_buffer *buffer, unsigned long length)
2799 {
2800 struct ring_buffer_per_cpu *cpu_buffer;
2801 struct ring_buffer_event *event;
2802 int cpu;
2803
2804 /* If we are tracing schedule, we don't want to recurse */
2805 preempt_disable_notrace();
2806
2807 if (unlikely(atomic_read(&buffer->record_disabled)))
2808 goto out;
2809
2810 cpu = raw_smp_processor_id();
2811
2812 if (unlikely(!cpumask_test_cpu(cpu, buffer->cpumask)))
2813 goto out;
2814
2815 cpu_buffer = buffer->buffers[cpu];
2816
2817 if (unlikely(atomic_read(&cpu_buffer->record_disabled)))
2818 goto out;
2819
2820 if (unlikely(length > BUF_MAX_DATA_SIZE))
2821 goto out;
2822
2823 if (unlikely(trace_recursive_lock(cpu_buffer)))
2824 goto out;
2825
2826 event = rb_reserve_next_event(buffer, cpu_buffer, length);
2827 if (!event)
2828 goto out_unlock;
2829
2830 return event;
2831
2832 out_unlock:
2833 trace_recursive_unlock(cpu_buffer);
2834 out:
2835 preempt_enable_notrace();
2836 return NULL;
2837 }
2838 EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve);
2839
2840 /*
2841 * Decrement the entries to the page that an event is on.
2842 * The event does not even need to exist, only the pointer
2843 * to the page it is on. This may only be called before the commit
2844 * takes place.
2845 */
2846 static inline void
2847 rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer,
2848 struct ring_buffer_event *event)
2849 {
2850 unsigned long addr = (unsigned long)event;
2851 struct buffer_page *bpage = cpu_buffer->commit_page;
2852 struct buffer_page *start;
2853
2854 addr &= PAGE_MASK;
2855
2856 /* Do the likely case first */
2857 if (likely(bpage->page == (void *)addr)) {
2858 local_dec(&bpage->entries);
2859 return;
2860 }
2861
2862 /*
2863 * Because the commit page may be on the reader page we
2864 * start with the next page and check the end loop there.
2865 */
2866 rb_inc_page(cpu_buffer, &bpage);
2867 start = bpage;
2868 do {
2869 if (bpage->page == (void *)addr) {
2870 local_dec(&bpage->entries);
2871 return;
2872 }
2873 rb_inc_page(cpu_buffer, &bpage);
2874 } while (bpage != start);
2875
2876 /* commit not part of this buffer?? */
2877 RB_WARN_ON(cpu_buffer, 1);
2878 }
2879
2880 /**
2881 * ring_buffer_commit_discard - discard an event that has not been committed
2882 * @buffer: the ring buffer
2883 * @event: non committed event to discard
2884 *
2885 * Sometimes an event that is in the ring buffer needs to be ignored.
2886 * This function lets the user discard an event in the ring buffer
2887 * and then that event will not be read later.
2888 *
2889 * This function only works if it is called before the the item has been
2890 * committed. It will try to free the event from the ring buffer
2891 * if another event has not been added behind it.
2892 *
2893 * If another event has been added behind it, it will set the event
2894 * up as discarded, and perform the commit.
2895 *
2896 * If this function is called, do not call ring_buffer_unlock_commit on
2897 * the event.
2898 */
2899 void ring_buffer_discard_commit(struct ring_buffer *buffer,
2900 struct ring_buffer_event *event)
2901 {
2902 struct ring_buffer_per_cpu *cpu_buffer;
2903 int cpu;
2904
2905 /* The event is discarded regardless */
2906 rb_event_discard(event);
2907
2908 cpu = smp_processor_id();
2909 cpu_buffer = buffer->buffers[cpu];
2910
2911 /*
2912 * This must only be called if the event has not been
2913 * committed yet. Thus we can assume that preemption
2914 * is still disabled.
2915 */
2916 RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing));
2917
2918 rb_decrement_entry(cpu_buffer, event);
2919 if (rb_try_to_discard(cpu_buffer, event))
2920 goto out;
2921
2922 /*
2923 * The commit is still visible by the reader, so we
2924 * must still update the timestamp.
2925 */
2926 rb_update_write_stamp(cpu_buffer, event);
2927 out:
2928 rb_end_commit(cpu_buffer);
2929
2930 trace_recursive_unlock(cpu_buffer);
2931
2932 preempt_enable_notrace();
2933
2934 }
2935 EXPORT_SYMBOL_GPL(ring_buffer_discard_commit);
2936
2937 /**
2938 * ring_buffer_write - write data to the buffer without reserving
2939 * @buffer: The ring buffer to write to.
2940 * @length: The length of the data being written (excluding the event header)
2941 * @data: The data to write to the buffer.
2942 *
2943 * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
2944 * one function. If you already have the data to write to the buffer, it
2945 * may be easier to simply call this function.
2946 *
2947 * Note, like ring_buffer_lock_reserve, the length is the length of the data
2948 * and not the length of the event which would hold the header.
2949 */
2950 int ring_buffer_write(struct ring_buffer *buffer,
2951 unsigned long length,
2952 void *data)
2953 {
2954 struct ring_buffer_per_cpu *cpu_buffer;
2955 struct ring_buffer_event *event;
2956 void *body;
2957 int ret = -EBUSY;
2958 int cpu;
2959
2960 preempt_disable_notrace();
2961
2962 if (atomic_read(&buffer->record_disabled))
2963 goto out;
2964
2965 cpu = raw_smp_processor_id();
2966
2967 if (!cpumask_test_cpu(cpu, buffer->cpumask))
2968 goto out;
2969
2970 cpu_buffer = buffer->buffers[cpu];
2971
2972 if (atomic_read(&cpu_buffer->record_disabled))
2973 goto out;
2974
2975 if (length > BUF_MAX_DATA_SIZE)
2976 goto out;
2977
2978 if (unlikely(trace_recursive_lock(cpu_buffer)))
2979 goto out;
2980
2981 event = rb_reserve_next_event(buffer, cpu_buffer, length);
2982 if (!event)
2983 goto out_unlock;
2984
2985 body = rb_event_data(event);
2986
2987 memcpy(body, data, length);
2988
2989 rb_commit(cpu_buffer, event);
2990
2991 rb_wakeups(buffer, cpu_buffer);
2992
2993 ret = 0;
2994
2995 out_unlock:
2996 trace_recursive_unlock(cpu_buffer);
2997
2998 out:
2999 preempt_enable_notrace();
3000
3001 return ret;
3002 }
3003 EXPORT_SYMBOL_GPL(ring_buffer_write);
3004
3005 static bool rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
3006 {
3007 struct buffer_page *reader = cpu_buffer->reader_page;
3008 struct buffer_page *head = rb_set_head_page(cpu_buffer);
3009 struct buffer_page *commit = cpu_buffer->commit_page;
3010
3011 /* In case of error, head will be NULL */
3012 if (unlikely(!head))
3013 return true;
3014
3015 return reader->read == rb_page_commit(reader) &&
3016 (commit == reader ||
3017 (commit == head &&
3018 head->read == rb_page_commit(commit)));
3019 }
3020
3021 /**
3022 * ring_buffer_record_disable - stop all writes into the buffer
3023 * @buffer: The ring buffer to stop writes to.
3024 *
3025 * This prevents all writes to the buffer. Any attempt to write
3026 * to the buffer after this will fail and return NULL.
3027 *
3028 * The caller should call synchronize_sched() after this.
3029 */
3030 void ring_buffer_record_disable(struct ring_buffer *buffer)
3031 {
3032 atomic_inc(&buffer->record_disabled);
3033 }
3034 EXPORT_SYMBOL_GPL(ring_buffer_record_disable);
3035
3036 /**
3037 * ring_buffer_record_enable - enable writes to the buffer
3038 * @buffer: The ring buffer to enable writes
3039 *
3040 * Note, multiple disables will need the same number of enables
3041 * to truly enable the writing (much like preempt_disable).
3042 */
3043 void ring_buffer_record_enable(struct ring_buffer *buffer)
3044 {
3045 atomic_dec(&buffer->record_disabled);
3046 }
3047 EXPORT_SYMBOL_GPL(ring_buffer_record_enable);
3048
3049 /**
3050 * ring_buffer_record_off - stop all writes into the buffer
3051 * @buffer: The ring buffer to stop writes to.
3052 *
3053 * This prevents all writes to the buffer. Any attempt to write
3054 * to the buffer after this will fail and return NULL.
3055 *
3056 * This is different than ring_buffer_record_disable() as
3057 * it works like an on/off switch, where as the disable() version
3058 * must be paired with a enable().
3059 */
3060 void ring_buffer_record_off(struct ring_buffer *buffer)
3061 {
3062 unsigned int rd;
3063 unsigned int new_rd;
3064
3065 do {
3066 rd = atomic_read(&buffer->record_disabled);
3067 new_rd = rd | RB_BUFFER_OFF;
3068 } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
3069 }
3070 EXPORT_SYMBOL_GPL(ring_buffer_record_off);
3071
3072 /**
3073 * ring_buffer_record_on - restart writes into the buffer
3074 * @buffer: The ring buffer to start writes to.
3075 *
3076 * This enables all writes to the buffer that was disabled by
3077 * ring_buffer_record_off().
3078 *
3079 * This is different than ring_buffer_record_enable() as
3080 * it works like an on/off switch, where as the enable() version
3081 * must be paired with a disable().
3082 */
3083 void ring_buffer_record_on(struct ring_buffer *buffer)
3084 {
3085 unsigned int rd;
3086 unsigned int new_rd;
3087
3088 do {
3089 rd = atomic_read(&buffer->record_disabled);
3090 new_rd = rd & ~RB_BUFFER_OFF;
3091 } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
3092 }
3093 EXPORT_SYMBOL_GPL(ring_buffer_record_on);
3094
3095 /**
3096 * ring_buffer_record_is_on - return true if the ring buffer can write
3097 * @buffer: The ring buffer to see if write is enabled
3098 *
3099 * Returns true if the ring buffer is in a state that it accepts writes.
3100 */
3101 int ring_buffer_record_is_on(struct ring_buffer *buffer)
3102 {
3103 return !atomic_read(&buffer->record_disabled);
3104 }
3105
3106 /**
3107 * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
3108 * @buffer: The ring buffer to stop writes to.
3109 * @cpu: The CPU buffer to stop
3110 *
3111 * This prevents all writes to the buffer. Any attempt to write
3112 * to the buffer after this will fail and return NULL.
3113 *
3114 * The caller should call synchronize_sched() after this.
3115 */
3116 void ring_buffer_record_disable_cpu(struct ring_buffer *buffer, int cpu)
3117 {
3118 struct ring_buffer_per_cpu *cpu_buffer;
3119
3120 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3121 return;
3122
3123 cpu_buffer = buffer->buffers[cpu];
3124 atomic_inc(&cpu_buffer->record_disabled);
3125 }
3126 EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu);
3127
3128 /**
3129 * ring_buffer_record_enable_cpu - enable writes to the buffer
3130 * @buffer: The ring buffer to enable writes
3131 * @cpu: The CPU to enable.
3132 *
3133 * Note, multiple disables will need the same number of enables
3134 * to truly enable the writing (much like preempt_disable).
3135 */
3136 void ring_buffer_record_enable_cpu(struct ring_buffer *buffer, int cpu)
3137 {
3138 struct ring_buffer_per_cpu *cpu_buffer;
3139
3140 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3141 return;
3142
3143 cpu_buffer = buffer->buffers[cpu];
3144 atomic_dec(&cpu_buffer->record_disabled);
3145 }
3146 EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu);
3147
3148 /*
3149 * The total entries in the ring buffer is the running counter
3150 * of entries entered into the ring buffer, minus the sum of
3151 * the entries read from the ring buffer and the number of
3152 * entries that were overwritten.
3153 */
3154 static inline unsigned long
3155 rb_num_of_entries(struct ring_buffer_per_cpu *cpu_buffer)
3156 {
3157 return local_read(&cpu_buffer->entries) -
3158 (local_read(&cpu_buffer->overrun) + cpu_buffer->read);
3159 }
3160
3161 /**
3162 * ring_buffer_oldest_event_ts - get the oldest event timestamp from the buffer
3163 * @buffer: The ring buffer
3164 * @cpu: The per CPU buffer to read from.
3165 */
3166 u64 ring_buffer_oldest_event_ts(struct ring_buffer *buffer, int cpu)
3167 {
3168 unsigned long flags;
3169 struct ring_buffer_per_cpu *cpu_buffer;
3170 struct buffer_page *bpage;
3171 u64 ret = 0;
3172
3173 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3174 return 0;
3175
3176 cpu_buffer = buffer->buffers[cpu];
3177 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3178 /*
3179 * if the tail is on reader_page, oldest time stamp is on the reader
3180 * page
3181 */
3182 if (cpu_buffer->tail_page == cpu_buffer->reader_page)
3183 bpage = cpu_buffer->reader_page;
3184 else
3185 bpage = rb_set_head_page(cpu_buffer);
3186 if (bpage)
3187 ret = bpage->page->time_stamp;
3188 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3189
3190 return ret;
3191 }
3192 EXPORT_SYMBOL_GPL(ring_buffer_oldest_event_ts);
3193
3194 /**
3195 * ring_buffer_bytes_cpu - get the number of bytes consumed in a cpu buffer
3196 * @buffer: The ring buffer
3197 * @cpu: The per CPU buffer to read from.
3198 */
3199 unsigned long ring_buffer_bytes_cpu(struct ring_buffer *buffer, int cpu)
3200 {
3201 struct ring_buffer_per_cpu *cpu_buffer;
3202 unsigned long ret;
3203
3204 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3205 return 0;
3206
3207 cpu_buffer = buffer->buffers[cpu];
3208 ret = local_read(&cpu_buffer->entries_bytes) - cpu_buffer->read_bytes;
3209
3210 return ret;
3211 }
3212 EXPORT_SYMBOL_GPL(ring_buffer_bytes_cpu);
3213
3214 /**
3215 * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
3216 * @buffer: The ring buffer
3217 * @cpu: The per CPU buffer to get the entries from.
3218 */
3219 unsigned long ring_buffer_entries_cpu(struct ring_buffer *buffer, int cpu)
3220 {
3221 struct ring_buffer_per_cpu *cpu_buffer;
3222
3223 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3224 return 0;
3225
3226 cpu_buffer = buffer->buffers[cpu];
3227
3228 return rb_num_of_entries(cpu_buffer);
3229 }
3230 EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu);
3231
3232 /**
3233 * ring_buffer_overrun_cpu - get the number of overruns caused by the ring
3234 * buffer wrapping around (only if RB_FL_OVERWRITE is on).
3235 * @buffer: The ring buffer
3236 * @cpu: The per CPU buffer to get the number of overruns from
3237 */
3238 unsigned long ring_buffer_overrun_cpu(struct ring_buffer *buffer, int cpu)
3239 {
3240 struct ring_buffer_per_cpu *cpu_buffer;
3241 unsigned long ret;
3242
3243 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3244 return 0;
3245
3246 cpu_buffer = buffer->buffers[cpu];
3247 ret = local_read(&cpu_buffer->overrun);
3248
3249 return ret;
3250 }
3251 EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu);
3252
3253 /**
3254 * ring_buffer_commit_overrun_cpu - get the number of overruns caused by
3255 * commits failing due to the buffer wrapping around while there are uncommitted
3256 * events, such as during an interrupt storm.
3257 * @buffer: The ring buffer
3258 * @cpu: The per CPU buffer to get the number of overruns from
3259 */
3260 unsigned long
3261 ring_buffer_commit_overrun_cpu(struct ring_buffer *buffer, int cpu)
3262 {
3263 struct ring_buffer_per_cpu *cpu_buffer;
3264 unsigned long ret;
3265
3266 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3267 return 0;
3268
3269 cpu_buffer = buffer->buffers[cpu];
3270 ret = local_read(&cpu_buffer->commit_overrun);
3271
3272 return ret;
3273 }
3274 EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu);
3275
3276 /**
3277 * ring_buffer_dropped_events_cpu - get the number of dropped events caused by
3278 * the ring buffer filling up (only if RB_FL_OVERWRITE is off).
3279 * @buffer: The ring buffer
3280 * @cpu: The per CPU buffer to get the number of overruns from
3281 */
3282 unsigned long
3283 ring_buffer_dropped_events_cpu(struct ring_buffer *buffer, int cpu)
3284 {
3285 struct ring_buffer_per_cpu *cpu_buffer;
3286 unsigned long ret;
3287
3288 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3289 return 0;
3290
3291 cpu_buffer = buffer->buffers[cpu];
3292 ret = local_read(&cpu_buffer->dropped_events);
3293
3294 return ret;
3295 }
3296 EXPORT_SYMBOL_GPL(ring_buffer_dropped_events_cpu);
3297
3298 /**
3299 * ring_buffer_read_events_cpu - get the number of events successfully read
3300 * @buffer: The ring buffer
3301 * @cpu: The per CPU buffer to get the number of events read
3302 */
3303 unsigned long
3304 ring_buffer_read_events_cpu(struct ring_buffer *buffer, int cpu)
3305 {
3306 struct ring_buffer_per_cpu *cpu_buffer;
3307
3308 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3309 return 0;
3310
3311 cpu_buffer = buffer->buffers[cpu];
3312 return cpu_buffer->read;
3313 }
3314 EXPORT_SYMBOL_GPL(ring_buffer_read_events_cpu);
3315
3316 /**
3317 * ring_buffer_entries - get the number of entries in a buffer
3318 * @buffer: The ring buffer
3319 *
3320 * Returns the total number of entries in the ring buffer
3321 * (all CPU entries)
3322 */
3323 unsigned long ring_buffer_entries(struct ring_buffer *buffer)
3324 {
3325 struct ring_buffer_per_cpu *cpu_buffer;
3326 unsigned long entries = 0;
3327 int cpu;
3328
3329 /* if you care about this being correct, lock the buffer */
3330 for_each_buffer_cpu(buffer, cpu) {
3331 cpu_buffer = buffer->buffers[cpu];
3332 entries += rb_num_of_entries(cpu_buffer);
3333 }
3334
3335 return entries;
3336 }
3337 EXPORT_SYMBOL_GPL(ring_buffer_entries);
3338
3339 /**
3340 * ring_buffer_overruns - get the number of overruns in buffer
3341 * @buffer: The ring buffer
3342 *
3343 * Returns the total number of overruns in the ring buffer
3344 * (all CPU entries)
3345 */
3346 unsigned long ring_buffer_overruns(struct ring_buffer *buffer)
3347 {
3348 struct ring_buffer_per_cpu *cpu_buffer;
3349 unsigned long overruns = 0;
3350 int cpu;
3351
3352 /* if you care about this being correct, lock the buffer */
3353 for_each_buffer_cpu(buffer, cpu) {
3354 cpu_buffer = buffer->buffers[cpu];
3355 overruns += local_read(&cpu_buffer->overrun);
3356 }
3357
3358 return overruns;
3359 }
3360 EXPORT_SYMBOL_GPL(ring_buffer_overruns);
3361
3362 static void rb_iter_reset(struct ring_buffer_iter *iter)
3363 {
3364 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3365
3366 /* Iterator usage is expected to have record disabled */
3367 iter->head_page = cpu_buffer->reader_page;
3368 iter->head = cpu_buffer->reader_page->read;
3369
3370 iter->cache_reader_page = iter->head_page;
3371 iter->cache_read = cpu_buffer->read;
3372
3373 if (iter->head)
3374 iter->read_stamp = cpu_buffer->read_stamp;
3375 else
3376 iter->read_stamp = iter->head_page->page->time_stamp;
3377 }
3378
3379 /**
3380 * ring_buffer_iter_reset - reset an iterator
3381 * @iter: The iterator to reset
3382 *
3383 * Resets the iterator, so that it will start from the beginning
3384 * again.
3385 */
3386 void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
3387 {
3388 struct ring_buffer_per_cpu *cpu_buffer;
3389 unsigned long flags;
3390
3391 if (!iter)
3392 return;
3393
3394 cpu_buffer = iter->cpu_buffer;
3395
3396 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3397 rb_iter_reset(iter);
3398 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3399 }
3400 EXPORT_SYMBOL_GPL(ring_buffer_iter_reset);
3401
3402 /**
3403 * ring_buffer_iter_empty - check if an iterator has no more to read
3404 * @iter: The iterator to check
3405 */
3406 int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
3407 {
3408 struct ring_buffer_per_cpu *cpu_buffer;
3409 struct buffer_page *reader;
3410 struct buffer_page *head_page;
3411 struct buffer_page *commit_page;
3412 unsigned commit;
3413
3414 cpu_buffer = iter->cpu_buffer;
3415
3416 /* Remember, trace recording is off when iterator is in use */
3417 reader = cpu_buffer->reader_page;
3418 head_page = cpu_buffer->head_page;
3419 commit_page = cpu_buffer->commit_page;
3420 commit = rb_page_commit(commit_page);
3421
3422 return ((iter->head_page == commit_page && iter->head == commit) ||
3423 (iter->head_page == reader && commit_page == head_page &&
3424 head_page->read == commit &&
3425 iter->head == rb_page_commit(cpu_buffer->reader_page)));
3426 }
3427 EXPORT_SYMBOL_GPL(ring_buffer_iter_empty);
3428
3429 static void
3430 rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
3431 struct ring_buffer_event *event)
3432 {
3433 u64 delta;
3434
3435 switch (event->type_len) {
3436 case RINGBUF_TYPE_PADDING:
3437 return;
3438
3439 case RINGBUF_TYPE_TIME_EXTEND:
3440 delta = event->array[0];
3441 delta <<= TS_SHIFT;
3442 delta += event->time_delta;
3443 cpu_buffer->read_stamp += delta;
3444 return;
3445
3446 case RINGBUF_TYPE_TIME_STAMP:
3447 /* FIXME: not implemented */
3448 return;
3449
3450 case RINGBUF_TYPE_DATA:
3451 cpu_buffer->read_stamp += event->time_delta;
3452 return;
3453
3454 default:
3455 BUG();
3456 }
3457 return;
3458 }
3459
3460 static void
3461 rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
3462 struct ring_buffer_event *event)
3463 {
3464 u64 delta;
3465
3466 switch (event->type_len) {
3467 case RINGBUF_TYPE_PADDING:
3468 return;
3469
3470 case RINGBUF_TYPE_TIME_EXTEND:
3471 delta = event->array[0];
3472 delta <<= TS_SHIFT;
3473 delta += event->time_delta;
3474 iter->read_stamp += delta;
3475 return;
3476
3477 case RINGBUF_TYPE_TIME_STAMP:
3478 /* FIXME: not implemented */
3479 return;
3480
3481 case RINGBUF_TYPE_DATA:
3482 iter->read_stamp += event->time_delta;
3483 return;
3484
3485 default:
3486 BUG();
3487 }
3488 return;
3489 }
3490
3491 static struct buffer_page *
3492 rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
3493 {
3494 struct buffer_page *reader = NULL;
3495 unsigned long overwrite;
3496 unsigned long flags;
3497 int nr_loops = 0;
3498 int ret;
3499
3500 local_irq_save(flags);
3501 arch_spin_lock(&cpu_buffer->lock);
3502
3503 again:
3504 /*
3505 * This should normally only loop twice. But because the
3506 * start of the reader inserts an empty page, it causes
3507 * a case where we will loop three times. There should be no
3508 * reason to loop four times (that I know of).
3509 */
3510 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
3511 reader = NULL;
3512 goto out;
3513 }
3514
3515 reader = cpu_buffer->reader_page;
3516
3517 /* If there's more to read, return this page */
3518 if (cpu_buffer->reader_page->read < rb_page_size(reader))
3519 goto out;
3520
3521 /* Never should we have an index greater than the size */
3522 if (RB_WARN_ON(cpu_buffer,
3523 cpu_buffer->reader_page->read > rb_page_size(reader)))
3524 goto out;
3525
3526 /* check if we caught up to the tail */
3527 reader = NULL;
3528 if (cpu_buffer->commit_page == cpu_buffer->reader_page)
3529 goto out;
3530
3531 /* Don't bother swapping if the ring buffer is empty */
3532 if (rb_num_of_entries(cpu_buffer) == 0)
3533 goto out;
3534
3535 /*
3536 * Reset the reader page to size zero.
3537 */
3538 local_set(&cpu_buffer->reader_page->write, 0);
3539 local_set(&cpu_buffer->reader_page->entries, 0);
3540 local_set(&cpu_buffer->reader_page->page->commit, 0);
3541 cpu_buffer->reader_page->real_end = 0;
3542
3543 spin:
3544 /*
3545 * Splice the empty reader page into the list around the head.
3546 */
3547 reader = rb_set_head_page(cpu_buffer);
3548 if (!reader)
3549 goto out;
3550 cpu_buffer->reader_page->list.next = rb_list_head(reader->list.next);
3551 cpu_buffer->reader_page->list.prev = reader->list.prev;
3552
3553 /*
3554 * cpu_buffer->pages just needs to point to the buffer, it
3555 * has no specific buffer page to point to. Lets move it out
3556 * of our way so we don't accidentally swap it.
3557 */
3558 cpu_buffer->pages = reader->list.prev;
3559
3560 /* The reader page will be pointing to the new head */
3561 rb_set_list_to_head(cpu_buffer, &cpu_buffer->reader_page->list);
3562
3563 /*
3564 * We want to make sure we read the overruns after we set up our
3565 * pointers to the next object. The writer side does a
3566 * cmpxchg to cross pages which acts as the mb on the writer
3567 * side. Note, the reader will constantly fail the swap
3568 * while the writer is updating the pointers, so this
3569 * guarantees that the overwrite recorded here is the one we
3570 * want to compare with the last_overrun.
3571 */
3572 smp_mb();
3573 overwrite = local_read(&(cpu_buffer->overrun));
3574
3575 /*
3576 * Here's the tricky part.
3577 *
3578 * We need to move the pointer past the header page.
3579 * But we can only do that if a writer is not currently
3580 * moving it. The page before the header page has the
3581 * flag bit '1' set if it is pointing to the page we want.
3582 * but if the writer is in the process of moving it
3583 * than it will be '2' or already moved '0'.
3584 */
3585
3586 ret = rb_head_page_replace(reader, cpu_buffer->reader_page);
3587
3588 /*
3589 * If we did not convert it, then we must try again.
3590 */
3591 if (!ret)
3592 goto spin;
3593
3594 /*
3595 * Yeah! We succeeded in replacing the page.
3596 *
3597 * Now make the new head point back to the reader page.
3598 */
3599 rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list;
3600 rb_inc_page(cpu_buffer, &cpu_buffer->head_page);
3601
3602 /* Finally update the reader page to the new head */
3603 cpu_buffer->reader_page = reader;
3604 cpu_buffer->reader_page->read = 0;
3605
3606 if (overwrite != cpu_buffer->last_overrun) {
3607 cpu_buffer->lost_events = overwrite - cpu_buffer->last_overrun;
3608 cpu_buffer->last_overrun = overwrite;
3609 }
3610
3611 goto again;
3612
3613 out:
3614 /* Update the read_stamp on the first event */
3615 if (reader && reader->read == 0)
3616 cpu_buffer->read_stamp = reader->page->time_stamp;
3617
3618 arch_spin_unlock(&cpu_buffer->lock);
3619 local_irq_restore(flags);
3620
3621 return reader;
3622 }
3623
3624 static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
3625 {
3626 struct ring_buffer_event *event;
3627 struct buffer_page *reader;
3628 unsigned length;
3629
3630 reader = rb_get_reader_page(cpu_buffer);
3631
3632 /* This function should not be called when buffer is empty */
3633 if (RB_WARN_ON(cpu_buffer, !reader))
3634 return;
3635
3636 event = rb_reader_event(cpu_buffer);
3637
3638 if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
3639 cpu_buffer->read++;
3640
3641 rb_update_read_stamp(cpu_buffer, event);
3642
3643 length = rb_event_length(event);
3644 cpu_buffer->reader_page->read += length;
3645 }
3646
3647 static void rb_advance_iter(struct ring_buffer_iter *iter)
3648 {
3649 struct ring_buffer_per_cpu *cpu_buffer;
3650 struct ring_buffer_event *event;
3651 unsigned length;
3652
3653 cpu_buffer = iter->cpu_buffer;
3654
3655 /*
3656 * Check if we are at the end of the buffer.
3657 */
3658 if (iter->head >= rb_page_size(iter->head_page)) {
3659 /* discarded commits can make the page empty */
3660 if (iter->head_page == cpu_buffer->commit_page)
3661 return;
3662 rb_inc_iter(iter);
3663 return;
3664 }
3665
3666 event = rb_iter_head_event(iter);
3667
3668 length = rb_event_length(event);
3669
3670 /*
3671 * This should not be called to advance the header if we are
3672 * at the tail of the buffer.
3673 */
3674 if (RB_WARN_ON(cpu_buffer,
3675 (iter->head_page == cpu_buffer->commit_page) &&
3676 (iter->head + length > rb_commit_index(cpu_buffer))))
3677 return;
3678
3679 rb_update_iter_read_stamp(iter, event);
3680
3681 iter->head += length;
3682
3683 /* check for end of page padding */
3684 if ((iter->head >= rb_page_size(iter->head_page)) &&
3685 (iter->head_page != cpu_buffer->commit_page))
3686 rb_inc_iter(iter);
3687 }
3688
3689 static int rb_lost_events(struct ring_buffer_per_cpu *cpu_buffer)
3690 {
3691 return cpu_buffer->lost_events;
3692 }
3693
3694 static struct ring_buffer_event *
3695 rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts,
3696 unsigned long *lost_events)
3697 {
3698 struct ring_buffer_event *event;
3699 struct buffer_page *reader;
3700 int nr_loops = 0;
3701
3702 again:
3703 /*
3704 * We repeat when a time extend is encountered.
3705 * Since the time extend is always attached to a data event,
3706 * we should never loop more than once.
3707 * (We never hit the following condition more than twice).
3708 */
3709 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2))
3710 return NULL;
3711
3712 reader = rb_get_reader_page(cpu_buffer);
3713 if (!reader)
3714 return NULL;
3715
3716 event = rb_reader_event(cpu_buffer);
3717
3718 switch (event->type_len) {
3719 case RINGBUF_TYPE_PADDING:
3720 if (rb_null_event(event))
3721 RB_WARN_ON(cpu_buffer, 1);
3722 /*
3723 * Because the writer could be discarding every
3724 * event it creates (which would probably be bad)
3725 * if we were to go back to "again" then we may never
3726 * catch up, and will trigger the warn on, or lock
3727 * the box. Return the padding, and we will release
3728 * the current locks, and try again.
3729 */
3730 return event;
3731
3732 case RINGBUF_TYPE_TIME_EXTEND:
3733 /* Internal data, OK to advance */
3734 rb_advance_reader(cpu_buffer);
3735 goto again;
3736
3737 case RINGBUF_TYPE_TIME_STAMP:
3738 /* FIXME: not implemented */
3739 rb_advance_reader(cpu_buffer);
3740 goto again;
3741
3742 case RINGBUF_TYPE_DATA:
3743 if (ts) {
3744 *ts = cpu_buffer->read_stamp + event->time_delta;
3745 ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
3746 cpu_buffer->cpu, ts);
3747 }
3748 if (lost_events)
3749 *lost_events = rb_lost_events(cpu_buffer);
3750 return event;
3751
3752 default:
3753 BUG();
3754 }
3755
3756 return NULL;
3757 }
3758 EXPORT_SYMBOL_GPL(ring_buffer_peek);
3759
3760 static struct ring_buffer_event *
3761 rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
3762 {
3763 struct ring_buffer *buffer;
3764 struct ring_buffer_per_cpu *cpu_buffer;
3765 struct ring_buffer_event *event;
3766 int nr_loops = 0;
3767
3768 cpu_buffer = iter->cpu_buffer;
3769 buffer = cpu_buffer->buffer;
3770
3771 /*
3772 * Check if someone performed a consuming read to
3773 * the buffer. A consuming read invalidates the iterator
3774 * and we need to reset the iterator in this case.
3775 */
3776 if (unlikely(iter->cache_read != cpu_buffer->read ||
3777 iter->cache_reader_page != cpu_buffer->reader_page))
3778 rb_iter_reset(iter);
3779
3780 again:
3781 if (ring_buffer_iter_empty(iter))
3782 return NULL;
3783
3784 /*
3785 * We repeat when a time extend is encountered or we hit
3786 * the end of the page. Since the time extend is always attached
3787 * to a data event, we should never loop more than three times.
3788 * Once for going to next page, once on time extend, and
3789 * finally once to get the event.
3790 * (We never hit the following condition more than thrice).
3791 */
3792 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3))
3793 return NULL;
3794
3795 if (rb_per_cpu_empty(cpu_buffer))
3796 return NULL;
3797
3798 if (iter->head >= rb_page_size(iter->head_page)) {
3799 rb_inc_iter(iter);
3800 goto again;
3801 }
3802
3803 event = rb_iter_head_event(iter);
3804
3805 switch (event->type_len) {
3806 case RINGBUF_TYPE_PADDING:
3807 if (rb_null_event(event)) {
3808 rb_inc_iter(iter);
3809 goto again;
3810 }
3811 rb_advance_iter(iter);
3812 return event;
3813
3814 case RINGBUF_TYPE_TIME_EXTEND:
3815 /* Internal data, OK to advance */
3816 rb_advance_iter(iter);
3817 goto again;
3818
3819 case RINGBUF_TYPE_TIME_STAMP:
3820 /* FIXME: not implemented */
3821 rb_advance_iter(iter);
3822 goto again;
3823
3824 case RINGBUF_TYPE_DATA:
3825 if (ts) {
3826 *ts = iter->read_stamp + event->time_delta;
3827 ring_buffer_normalize_time_stamp(buffer,
3828 cpu_buffer->cpu, ts);
3829 }
3830 return event;
3831
3832 default:
3833 BUG();
3834 }
3835
3836 return NULL;
3837 }
3838 EXPORT_SYMBOL_GPL(ring_buffer_iter_peek);
3839
3840 static inline bool rb_reader_lock(struct ring_buffer_per_cpu *cpu_buffer)
3841 {
3842 if (likely(!in_nmi())) {
3843 raw_spin_lock(&cpu_buffer->reader_lock);
3844 return true;
3845 }
3846
3847 /*
3848 * If an NMI die dumps out the content of the ring buffer
3849 * trylock must be used to prevent a deadlock if the NMI
3850 * preempted a task that holds the ring buffer locks. If
3851 * we get the lock then all is fine, if not, then continue
3852 * to do the read, but this can corrupt the ring buffer,
3853 * so it must be permanently disabled from future writes.
3854 * Reading from NMI is a oneshot deal.
3855 */
3856 if (raw_spin_trylock(&cpu_buffer->reader_lock))
3857 return true;
3858
3859 /* Continue without locking, but disable the ring buffer */
3860 atomic_inc(&cpu_buffer->record_disabled);
3861 return false;
3862 }
3863
3864 static inline void
3865 rb_reader_unlock(struct ring_buffer_per_cpu *cpu_buffer, bool locked)
3866 {
3867 if (likely(locked))
3868 raw_spin_unlock(&cpu_buffer->reader_lock);
3869 return;
3870 }
3871
3872 /**
3873 * ring_buffer_peek - peek at the next event to be read
3874 * @buffer: The ring buffer to read
3875 * @cpu: The cpu to peak at
3876 * @ts: The timestamp counter of this event.
3877 * @lost_events: a variable to store if events were lost (may be NULL)
3878 *
3879 * This will return the event that will be read next, but does
3880 * not consume the data.
3881 */
3882 struct ring_buffer_event *
3883 ring_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts,
3884 unsigned long *lost_events)
3885 {
3886 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
3887 struct ring_buffer_event *event;
3888 unsigned long flags;
3889 bool dolock;
3890
3891 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3892 return NULL;
3893
3894 again:
3895 local_irq_save(flags);
3896 dolock = rb_reader_lock(cpu_buffer);
3897 event = rb_buffer_peek(cpu_buffer, ts, lost_events);
3898 if (event && event->type_len == RINGBUF_TYPE_PADDING)
3899 rb_advance_reader(cpu_buffer);
3900 rb_reader_unlock(cpu_buffer, dolock);
3901 local_irq_restore(flags);
3902
3903 if (event && event->type_len == RINGBUF_TYPE_PADDING)
3904 goto again;
3905
3906 return event;
3907 }
3908
3909 /**
3910 * ring_buffer_iter_peek - peek at the next event to be read
3911 * @iter: The ring buffer iterator
3912 * @ts: The timestamp counter of this event.
3913 *
3914 * This will return the event that will be read next, but does
3915 * not increment the iterator.
3916 */
3917 struct ring_buffer_event *
3918 ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
3919 {
3920 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3921 struct ring_buffer_event *event;
3922 unsigned long flags;
3923
3924 again:
3925 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3926 event = rb_iter_peek(iter, ts);
3927 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3928
3929 if (event && event->type_len == RINGBUF_TYPE_PADDING)
3930 goto again;
3931
3932 return event;
3933 }
3934
3935 /**
3936 * ring_buffer_consume - return an event and consume it
3937 * @buffer: The ring buffer to get the next event from
3938 * @cpu: the cpu to read the buffer from
3939 * @ts: a variable to store the timestamp (may be NULL)
3940 * @lost_events: a variable to store if events were lost (may be NULL)
3941 *
3942 * Returns the next event in the ring buffer, and that event is consumed.
3943 * Meaning, that sequential reads will keep returning a different event,
3944 * and eventually empty the ring buffer if the producer is slower.
3945 */
3946 struct ring_buffer_event *
3947 ring_buffer_consume(struct ring_buffer *buffer, int cpu, u64 *ts,
3948 unsigned long *lost_events)
3949 {
3950 struct ring_buffer_per_cpu *cpu_buffer;
3951 struct ring_buffer_event *event = NULL;
3952 unsigned long flags;
3953 bool dolock;
3954
3955 again:
3956 /* might be called in atomic */
3957 preempt_disable();
3958
3959 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3960 goto out;
3961
3962 cpu_buffer = buffer->buffers[cpu];
3963 local_irq_save(flags);
3964 dolock = rb_reader_lock(cpu_buffer);
3965
3966 event = rb_buffer_peek(cpu_buffer, ts, lost_events);
3967 if (event) {
3968 cpu_buffer->lost_events = 0;
3969 rb_advance_reader(cpu_buffer);
3970 }
3971
3972 rb_reader_unlock(cpu_buffer, dolock);
3973 local_irq_restore(flags);
3974
3975 out:
3976 preempt_enable();
3977
3978 if (event && event->type_len == RINGBUF_TYPE_PADDING)
3979 goto again;
3980
3981 return event;
3982 }
3983 EXPORT_SYMBOL_GPL(ring_buffer_consume);
3984
3985 /**
3986 * ring_buffer_read_prepare - Prepare for a non consuming read of the buffer
3987 * @buffer: The ring buffer to read from
3988 * @cpu: The cpu buffer to iterate over
3989 *
3990 * This performs the initial preparations necessary to iterate
3991 * through the buffer. Memory is allocated, buffer recording
3992 * is disabled, and the iterator pointer is returned to the caller.
3993 *
3994 * Disabling buffer recordng prevents the reading from being
3995 * corrupted. This is not a consuming read, so a producer is not
3996 * expected.
3997 *
3998 * After a sequence of ring_buffer_read_prepare calls, the user is
3999 * expected to make at least one call to ring_buffer_read_prepare_sync.
4000 * Afterwards, ring_buffer_read_start is invoked to get things going
4001 * for real.
4002 *
4003 * This overall must be paired with ring_buffer_read_finish.
4004 */
4005 struct ring_buffer_iter *
4006 ring_buffer_read_prepare(struct ring_buffer *buffer, int cpu)
4007 {
4008 struct ring_buffer_per_cpu *cpu_buffer;
4009 struct ring_buffer_iter *iter;
4010
4011 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4012 return NULL;
4013
4014 iter = kmalloc(sizeof(*iter), GFP_KERNEL);
4015 if (!iter)
4016 return NULL;
4017
4018 cpu_buffer = buffer->buffers[cpu];
4019
4020 iter->cpu_buffer = cpu_buffer;
4021
4022 atomic_inc(&buffer->resize_disabled);
4023 atomic_inc(&cpu_buffer->record_disabled);
4024
4025 return iter;
4026 }
4027 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare);
4028
4029 /**
4030 * ring_buffer_read_prepare_sync - Synchronize a set of prepare calls
4031 *
4032 * All previously invoked ring_buffer_read_prepare calls to prepare
4033 * iterators will be synchronized. Afterwards, read_buffer_read_start
4034 * calls on those iterators are allowed.
4035 */
4036 void
4037 ring_buffer_read_prepare_sync(void)
4038 {
4039 synchronize_sched();
4040 }
4041 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare_sync);
4042
4043 /**
4044 * ring_buffer_read_start - start a non consuming read of the buffer
4045 * @iter: The iterator returned by ring_buffer_read_prepare
4046 *
4047 * This finalizes the startup of an iteration through the buffer.
4048 * The iterator comes from a call to ring_buffer_read_prepare and
4049 * an intervening ring_buffer_read_prepare_sync must have been
4050 * performed.
4051 *
4052 * Must be paired with ring_buffer_read_finish.
4053 */
4054 void
4055 ring_buffer_read_start(struct ring_buffer_iter *iter)
4056 {
4057 struct ring_buffer_per_cpu *cpu_buffer;
4058 unsigned long flags;
4059
4060 if (!iter)
4061 return;
4062
4063 cpu_buffer = iter->cpu_buffer;
4064
4065 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4066 arch_spin_lock(&cpu_buffer->lock);
4067 rb_iter_reset(iter);
4068 arch_spin_unlock(&cpu_buffer->lock);
4069 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4070 }
4071 EXPORT_SYMBOL_GPL(ring_buffer_read_start);
4072
4073 /**
4074 * ring_buffer_read_finish - finish reading the iterator of the buffer
4075 * @iter: The iterator retrieved by ring_buffer_start
4076 *
4077 * This re-enables the recording to the buffer, and frees the
4078 * iterator.
4079 */
4080 void
4081 ring_buffer_read_finish(struct ring_buffer_iter *iter)
4082 {
4083 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4084 unsigned long flags;
4085
4086 /*
4087 * Ring buffer is disabled from recording, here's a good place
4088 * to check the integrity of the ring buffer.
4089 * Must prevent readers from trying to read, as the check
4090 * clears the HEAD page and readers require it.
4091 */
4092 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4093 rb_check_pages(cpu_buffer);
4094 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4095
4096 atomic_dec(&cpu_buffer->record_disabled);
4097 atomic_dec(&cpu_buffer->buffer->resize_disabled);
4098 kfree(iter);
4099 }
4100 EXPORT_SYMBOL_GPL(ring_buffer_read_finish);
4101
4102 /**
4103 * ring_buffer_read - read the next item in the ring buffer by the iterator
4104 * @iter: The ring buffer iterator
4105 * @ts: The time stamp of the event read.
4106 *
4107 * This reads the next event in the ring buffer and increments the iterator.
4108 */
4109 struct ring_buffer_event *
4110 ring_buffer_read(struct ring_buffer_iter *iter, u64 *ts)
4111 {
4112 struct ring_buffer_event *event;
4113 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4114 unsigned long flags;
4115
4116 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4117 again:
4118 event = rb_iter_peek(iter, ts);
4119 if (!event)
4120 goto out;
4121
4122 if (event->type_len == RINGBUF_TYPE_PADDING)
4123 goto again;
4124
4125 rb_advance_iter(iter);
4126 out:
4127 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4128
4129 return event;
4130 }
4131 EXPORT_SYMBOL_GPL(ring_buffer_read);
4132
4133 /**
4134 * ring_buffer_size - return the size of the ring buffer (in bytes)
4135 * @buffer: The ring buffer.
4136 */
4137 unsigned long ring_buffer_size(struct ring_buffer *buffer, int cpu)
4138 {
4139 /*
4140 * Earlier, this method returned
4141 * BUF_PAGE_SIZE * buffer->nr_pages
4142 * Since the nr_pages field is now removed, we have converted this to
4143 * return the per cpu buffer value.
4144 */
4145 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4146 return 0;
4147
4148 return BUF_PAGE_SIZE * buffer->buffers[cpu]->nr_pages;
4149 }
4150 EXPORT_SYMBOL_GPL(ring_buffer_size);
4151
4152 static void
4153 rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
4154 {
4155 rb_head_page_deactivate(cpu_buffer);
4156
4157 cpu_buffer->head_page
4158 = list_entry(cpu_buffer->pages, struct buffer_page, list);
4159 local_set(&cpu_buffer->head_page->write, 0);
4160 local_set(&cpu_buffer->head_page->entries, 0);
4161 local_set(&cpu_buffer->head_page->page->commit, 0);
4162
4163 cpu_buffer->head_page->read = 0;
4164
4165 cpu_buffer->tail_page = cpu_buffer->head_page;
4166 cpu_buffer->commit_page = cpu_buffer->head_page;
4167
4168 INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
4169 INIT_LIST_HEAD(&cpu_buffer->new_pages);
4170 local_set(&cpu_buffer->reader_page->write, 0);
4171 local_set(&cpu_buffer->reader_page->entries, 0);
4172 local_set(&cpu_buffer->reader_page->page->commit, 0);
4173 cpu_buffer->reader_page->read = 0;
4174
4175 local_set(&cpu_buffer->entries_bytes, 0);
4176 local_set(&cpu_buffer->overrun, 0);
4177 local_set(&cpu_buffer->commit_overrun, 0);
4178 local_set(&cpu_buffer->dropped_events, 0);
4179 local_set(&cpu_buffer->entries, 0);
4180 local_set(&cpu_buffer->committing, 0);
4181 local_set(&cpu_buffer->commits, 0);
4182 cpu_buffer->read = 0;
4183 cpu_buffer->read_bytes = 0;
4184
4185 cpu_buffer->write_stamp = 0;
4186 cpu_buffer->read_stamp = 0;
4187
4188 cpu_buffer->lost_events = 0;
4189 cpu_buffer->last_overrun = 0;
4190
4191 rb_head_page_activate(cpu_buffer);
4192 }
4193
4194 /**
4195 * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
4196 * @buffer: The ring buffer to reset a per cpu buffer of
4197 * @cpu: The CPU buffer to be reset
4198 */
4199 void ring_buffer_reset_cpu(struct ring_buffer *buffer, int cpu)
4200 {
4201 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4202 unsigned long flags;
4203
4204 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4205 return;
4206
4207 atomic_inc(&buffer->resize_disabled);
4208 atomic_inc(&cpu_buffer->record_disabled);
4209
4210 /* Make sure all commits have finished */
4211 synchronize_sched();
4212
4213 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4214
4215 if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing)))
4216 goto out;
4217
4218 arch_spin_lock(&cpu_buffer->lock);
4219
4220 rb_reset_cpu(cpu_buffer);
4221
4222 arch_spin_unlock(&cpu_buffer->lock);
4223
4224 out:
4225 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4226
4227 atomic_dec(&cpu_buffer->record_disabled);
4228 atomic_dec(&buffer->resize_disabled);
4229 }
4230 EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu);
4231
4232 /**
4233 * ring_buffer_reset - reset a ring buffer
4234 * @buffer: The ring buffer to reset all cpu buffers
4235 */
4236 void ring_buffer_reset(struct ring_buffer *buffer)
4237 {
4238 int cpu;
4239
4240 for_each_buffer_cpu(buffer, cpu)
4241 ring_buffer_reset_cpu(buffer, cpu);
4242 }
4243 EXPORT_SYMBOL_GPL(ring_buffer_reset);
4244
4245 /**
4246 * rind_buffer_empty - is the ring buffer empty?
4247 * @buffer: The ring buffer to test
4248 */
4249 bool ring_buffer_empty(struct ring_buffer *buffer)
4250 {
4251 struct ring_buffer_per_cpu *cpu_buffer;
4252 unsigned long flags;
4253 bool dolock;
4254 int cpu;
4255 int ret;
4256
4257 /* yes this is racy, but if you don't like the race, lock the buffer */
4258 for_each_buffer_cpu(buffer, cpu) {
4259 cpu_buffer = buffer->buffers[cpu];
4260 local_irq_save(flags);
4261 dolock = rb_reader_lock(cpu_buffer);
4262 ret = rb_per_cpu_empty(cpu_buffer);
4263 rb_reader_unlock(cpu_buffer, dolock);
4264 local_irq_restore(flags);
4265
4266 if (!ret)
4267 return false;
4268 }
4269
4270 return true;
4271 }
4272 EXPORT_SYMBOL_GPL(ring_buffer_empty);
4273
4274 /**
4275 * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
4276 * @buffer: The ring buffer
4277 * @cpu: The CPU buffer to test
4278 */
4279 bool ring_buffer_empty_cpu(struct ring_buffer *buffer, int cpu)
4280 {
4281 struct ring_buffer_per_cpu *cpu_buffer;
4282 unsigned long flags;
4283 bool dolock;
4284 int ret;
4285
4286 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4287 return true;
4288
4289 cpu_buffer = buffer->buffers[cpu];
4290 local_irq_save(flags);
4291 dolock = rb_reader_lock(cpu_buffer);
4292 ret = rb_per_cpu_empty(cpu_buffer);
4293 rb_reader_unlock(cpu_buffer, dolock);
4294 local_irq_restore(flags);
4295
4296 return ret;
4297 }
4298 EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu);
4299
4300 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
4301 /**
4302 * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
4303 * @buffer_a: One buffer to swap with
4304 * @buffer_b: The other buffer to swap with
4305 *
4306 * This function is useful for tracers that want to take a "snapshot"
4307 * of a CPU buffer and has another back up buffer lying around.
4308 * it is expected that the tracer handles the cpu buffer not being
4309 * used at the moment.
4310 */
4311 int ring_buffer_swap_cpu(struct ring_buffer *buffer_a,
4312 struct ring_buffer *buffer_b, int cpu)
4313 {
4314 struct ring_buffer_per_cpu *cpu_buffer_a;
4315 struct ring_buffer_per_cpu *cpu_buffer_b;
4316 int ret = -EINVAL;
4317
4318 if (!cpumask_test_cpu(cpu, buffer_a->cpumask) ||
4319 !cpumask_test_cpu(cpu, buffer_b->cpumask))
4320 goto out;
4321
4322 cpu_buffer_a = buffer_a->buffers[cpu];
4323 cpu_buffer_b = buffer_b->buffers[cpu];
4324
4325 /* At least make sure the two buffers are somewhat the same */
4326 if (cpu_buffer_a->nr_pages != cpu_buffer_b->nr_pages)
4327 goto out;
4328
4329 ret = -EAGAIN;
4330
4331 if (atomic_read(&buffer_a->record_disabled))
4332 goto out;
4333
4334 if (atomic_read(&buffer_b->record_disabled))
4335 goto out;
4336
4337 if (atomic_read(&cpu_buffer_a->record_disabled))
4338 goto out;
4339
4340 if (atomic_read(&cpu_buffer_b->record_disabled))
4341 goto out;
4342
4343 /*
4344 * We can't do a synchronize_sched here because this
4345 * function can be called in atomic context.
4346 * Normally this will be called from the same CPU as cpu.
4347 * If not it's up to the caller to protect this.
4348 */
4349 atomic_inc(&cpu_buffer_a->record_disabled);
4350 atomic_inc(&cpu_buffer_b->record_disabled);
4351
4352 ret = -EBUSY;
4353 if (local_read(&cpu_buffer_a->committing))
4354 goto out_dec;
4355 if (local_read(&cpu_buffer_b->committing))
4356 goto out_dec;
4357
4358 buffer_a->buffers[cpu] = cpu_buffer_b;
4359 buffer_b->buffers[cpu] = cpu_buffer_a;
4360
4361 cpu_buffer_b->buffer = buffer_a;
4362 cpu_buffer_a->buffer = buffer_b;
4363
4364 ret = 0;
4365
4366 out_dec:
4367 atomic_dec(&cpu_buffer_a->record_disabled);
4368 atomic_dec(&cpu_buffer_b->record_disabled);
4369 out:
4370 return ret;
4371 }
4372 EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu);
4373 #endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */
4374
4375 /**
4376 * ring_buffer_alloc_read_page - allocate a page to read from buffer
4377 * @buffer: the buffer to allocate for.
4378 * @cpu: the cpu buffer to allocate.
4379 *
4380 * This function is used in conjunction with ring_buffer_read_page.
4381 * When reading a full page from the ring buffer, these functions
4382 * can be used to speed up the process. The calling function should
4383 * allocate a few pages first with this function. Then when it
4384 * needs to get pages from the ring buffer, it passes the result
4385 * of this function into ring_buffer_read_page, which will swap
4386 * the page that was allocated, with the read page of the buffer.
4387 *
4388 * Returns:
4389 * The page allocated, or ERR_PTR
4390 */
4391 void *ring_buffer_alloc_read_page(struct ring_buffer *buffer, int cpu)
4392 {
4393 struct ring_buffer_per_cpu *cpu_buffer;
4394 struct buffer_data_page *bpage = NULL;
4395 unsigned long flags;
4396 struct page *page;
4397
4398 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4399 return ERR_PTR(-ENODEV);
4400
4401 cpu_buffer = buffer->buffers[cpu];
4402 local_irq_save(flags);
4403 arch_spin_lock(&cpu_buffer->lock);
4404
4405 if (cpu_buffer->free_page) {
4406 bpage = cpu_buffer->free_page;
4407 cpu_buffer->free_page = NULL;
4408 }
4409
4410 arch_spin_unlock(&cpu_buffer->lock);
4411 local_irq_restore(flags);
4412
4413 if (bpage)
4414 goto out;
4415
4416 page = alloc_pages_node(cpu_to_node(cpu),
4417 GFP_KERNEL | __GFP_NORETRY, 0);
4418 if (!page)
4419 return ERR_PTR(-ENOMEM);
4420
4421 bpage = page_address(page);
4422
4423 out:
4424 rb_init_page(bpage);
4425
4426 return bpage;
4427 }
4428 EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page);
4429
4430 /**
4431 * ring_buffer_free_read_page - free an allocated read page
4432 * @buffer: the buffer the page was allocate for
4433 * @cpu: the cpu buffer the page came from
4434 * @data: the page to free
4435 *
4436 * Free a page allocated from ring_buffer_alloc_read_page.
4437 */
4438 void ring_buffer_free_read_page(struct ring_buffer *buffer, int cpu, void *data)
4439 {
4440 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4441 struct buffer_data_page *bpage = data;
4442 unsigned long flags;
4443
4444 local_irq_save(flags);
4445 arch_spin_lock(&cpu_buffer->lock);
4446
4447 if (!cpu_buffer->free_page) {
4448 cpu_buffer->free_page = bpage;
4449 bpage = NULL;
4450 }
4451
4452 arch_spin_unlock(&cpu_buffer->lock);
4453 local_irq_restore(flags);
4454
4455 free_page((unsigned long)bpage);
4456 }
4457 EXPORT_SYMBOL_GPL(ring_buffer_free_read_page);
4458
4459 /**
4460 * ring_buffer_read_page - extract a page from the ring buffer
4461 * @buffer: buffer to extract from
4462 * @data_page: the page to use allocated from ring_buffer_alloc_read_page
4463 * @len: amount to extract
4464 * @cpu: the cpu of the buffer to extract
4465 * @full: should the extraction only happen when the page is full.
4466 *
4467 * This function will pull out a page from the ring buffer and consume it.
4468 * @data_page must be the address of the variable that was returned
4469 * from ring_buffer_alloc_read_page. This is because the page might be used
4470 * to swap with a page in the ring buffer.
4471 *
4472 * for example:
4473 * rpage = ring_buffer_alloc_read_page(buffer, cpu);
4474 * if (IS_ERR(rpage))
4475 * return PTR_ERR(rpage);
4476 * ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0);
4477 * if (ret >= 0)
4478 * process_page(rpage, ret);
4479 *
4480 * When @full is set, the function will not return true unless
4481 * the writer is off the reader page.
4482 *
4483 * Note: it is up to the calling functions to handle sleeps and wakeups.
4484 * The ring buffer can be used anywhere in the kernel and can not
4485 * blindly call wake_up. The layer that uses the ring buffer must be
4486 * responsible for that.
4487 *
4488 * Returns:
4489 * >=0 if data has been transferred, returns the offset of consumed data.
4490 * <0 if no data has been transferred.
4491 */
4492 int ring_buffer_read_page(struct ring_buffer *buffer,
4493 void **data_page, size_t len, int cpu, int full)
4494 {
4495 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4496 struct ring_buffer_event *event;
4497 struct buffer_data_page *bpage;
4498 struct buffer_page *reader;
4499 unsigned long missed_events;
4500 unsigned long flags;
4501 unsigned int commit;
4502 unsigned int read;
4503 u64 save_timestamp;
4504 int ret = -1;
4505
4506 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4507 goto out;
4508
4509 /*
4510 * If len is not big enough to hold the page header, then
4511 * we can not copy anything.
4512 */
4513 if (len <= BUF_PAGE_HDR_SIZE)
4514 goto out;
4515
4516 len -= BUF_PAGE_HDR_SIZE;
4517
4518 if (!data_page)
4519 goto out;
4520
4521 bpage = *data_page;
4522 if (!bpage)
4523 goto out;
4524
4525 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4526
4527 reader = rb_get_reader_page(cpu_buffer);
4528 if (!reader)
4529 goto out_unlock;
4530
4531 event = rb_reader_event(cpu_buffer);
4532
4533 read = reader->read;
4534 commit = rb_page_commit(reader);
4535
4536 /* Check if any events were dropped */
4537 missed_events = cpu_buffer->lost_events;
4538
4539 /*
4540 * If this page has been partially read or
4541 * if len is not big enough to read the rest of the page or
4542 * a writer is still on the page, then
4543 * we must copy the data from the page to the buffer.
4544 * Otherwise, we can simply swap the page with the one passed in.
4545 */
4546 if (read || (len < (commit - read)) ||
4547 cpu_buffer->reader_page == cpu_buffer->commit_page) {
4548 struct buffer_data_page *rpage = cpu_buffer->reader_page->page;
4549 unsigned int rpos = read;
4550 unsigned int pos = 0;
4551 unsigned int size;
4552
4553 if (full)
4554 goto out_unlock;
4555
4556 if (len > (commit - read))
4557 len = (commit - read);
4558
4559 /* Always keep the time extend and data together */
4560 size = rb_event_ts_length(event);
4561
4562 if (len < size)
4563 goto out_unlock;
4564
4565 /* save the current timestamp, since the user will need it */
4566 save_timestamp = cpu_buffer->read_stamp;
4567
4568 /* Need to copy one event at a time */
4569 do {
4570 /* We need the size of one event, because
4571 * rb_advance_reader only advances by one event,
4572 * whereas rb_event_ts_length may include the size of
4573 * one or two events.
4574 * We have already ensured there's enough space if this
4575 * is a time extend. */
4576 size = rb_event_length(event);
4577 memcpy(bpage->data + pos, rpage->data + rpos, size);
4578
4579 len -= size;
4580
4581 rb_advance_reader(cpu_buffer);
4582 rpos = reader->read;
4583 pos += size;
4584
4585 if (rpos >= commit)
4586 break;
4587
4588 event = rb_reader_event(cpu_buffer);
4589 /* Always keep the time extend and data together */
4590 size = rb_event_ts_length(event);
4591 } while (len >= size);
4592
4593 /* update bpage */
4594 local_set(&bpage->commit, pos);
4595 bpage->time_stamp = save_timestamp;
4596
4597 /* we copied everything to the beginning */
4598 read = 0;
4599 } else {
4600 /* update the entry counter */
4601 cpu_buffer->read += rb_page_entries(reader);
4602 cpu_buffer->read_bytes += BUF_PAGE_SIZE;
4603
4604 /* swap the pages */
4605 rb_init_page(bpage);
4606 bpage = reader->page;
4607 reader->page = *data_page;
4608 local_set(&reader->write, 0);
4609 local_set(&reader->entries, 0);
4610 reader->read = 0;
4611 *data_page = bpage;
4612
4613 /*
4614 * Use the real_end for the data size,
4615 * This gives us a chance to store the lost events
4616 * on the page.
4617 */
4618 if (reader->real_end)
4619 local_set(&bpage->commit, reader->real_end);
4620 }
4621 ret = read;
4622
4623 cpu_buffer->lost_events = 0;
4624
4625 commit = local_read(&bpage->commit);
4626 /*
4627 * Set a flag in the commit field if we lost events
4628 */
4629 if (missed_events) {
4630 /* If there is room at the end of the page to save the
4631 * missed events, then record it there.
4632 */
4633 if (BUF_PAGE_SIZE - commit >= sizeof(missed_events)) {
4634 memcpy(&bpage->data[commit], &missed_events,
4635 sizeof(missed_events));
4636 local_add(RB_MISSED_STORED, &bpage->commit);
4637 commit += sizeof(missed_events);
4638 }
4639 local_add(RB_MISSED_EVENTS, &bpage->commit);
4640 }
4641
4642 /*
4643 * This page may be off to user land. Zero it out here.
4644 */
4645 if (commit < BUF_PAGE_SIZE)
4646 memset(&bpage->data[commit], 0, BUF_PAGE_SIZE - commit);
4647
4648 out_unlock:
4649 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4650
4651 out:
4652 return ret;
4653 }
4654 EXPORT_SYMBOL_GPL(ring_buffer_read_page);
4655
4656 /*
4657 * We only allocate new buffers, never free them if the CPU goes down.
4658 * If we were to free the buffer, then the user would lose any trace that was in
4659 * the buffer.
4660 */
4661 int trace_rb_cpu_prepare(unsigned int cpu, struct hlist_node *node)
4662 {
4663 struct ring_buffer *buffer;
4664 long nr_pages_same;
4665 int cpu_i;
4666 unsigned long nr_pages;
4667
4668 buffer = container_of(node, struct ring_buffer, node);
4669 if (cpumask_test_cpu(cpu, buffer->cpumask))
4670 return 0;
4671
4672 nr_pages = 0;
4673 nr_pages_same = 1;
4674 /* check if all cpu sizes are same */
4675 for_each_buffer_cpu(buffer, cpu_i) {
4676 /* fill in the size from first enabled cpu */
4677 if (nr_pages == 0)
4678 nr_pages = buffer->buffers[cpu_i]->nr_pages;
4679 if (nr_pages != buffer->buffers[cpu_i]->nr_pages) {
4680 nr_pages_same = 0;
4681 break;
4682 }
4683 }
4684 /* allocate minimum pages, user can later expand it */
4685 if (!nr_pages_same)
4686 nr_pages = 2;
4687 buffer->buffers[cpu] =
4688 rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
4689 if (!buffer->buffers[cpu]) {
4690 WARN(1, "failed to allocate ring buffer on CPU %u\n",
4691 cpu);
4692 return -ENOMEM;
4693 }
4694 smp_wmb();
4695 cpumask_set_cpu(cpu, buffer->cpumask);
4696 return 0;
4697 }
4698
4699 #ifdef CONFIG_RING_BUFFER_STARTUP_TEST
4700 /*
4701 * This is a basic integrity check of the ring buffer.
4702 * Late in the boot cycle this test will run when configured in.
4703 * It will kick off a thread per CPU that will go into a loop
4704 * writing to the per cpu ring buffer various sizes of data.
4705 * Some of the data will be large items, some small.
4706 *
4707 * Another thread is created that goes into a spin, sending out
4708 * IPIs to the other CPUs to also write into the ring buffer.
4709 * this is to test the nesting ability of the buffer.
4710 *
4711 * Basic stats are recorded and reported. If something in the
4712 * ring buffer should happen that's not expected, a big warning
4713 * is displayed and all ring buffers are disabled.
4714 */
4715 static struct task_struct *rb_threads[NR_CPUS] __initdata;
4716
4717 struct rb_test_data {
4718 struct ring_buffer *buffer;
4719 unsigned long events;
4720 unsigned long bytes_written;
4721 unsigned long bytes_alloc;
4722 unsigned long bytes_dropped;
4723 unsigned long events_nested;
4724 unsigned long bytes_written_nested;
4725 unsigned long bytes_alloc_nested;
4726 unsigned long bytes_dropped_nested;
4727 int min_size_nested;
4728 int max_size_nested;
4729 int max_size;
4730 int min_size;
4731 int cpu;
4732 int cnt;
4733 };
4734
4735 static struct rb_test_data rb_data[NR_CPUS] __initdata;
4736
4737 /* 1 meg per cpu */
4738 #define RB_TEST_BUFFER_SIZE 1048576
4739
4740 static char rb_string[] __initdata =
4741 "abcdefghijklmnopqrstuvwxyz1234567890!@#$%^&*()?+\\"
4742 "?+|:';\",.<>/?abcdefghijklmnopqrstuvwxyz1234567890"
4743 "!@#$%^&*()?+\\?+|:';\",.<>/?abcdefghijklmnopqrstuv";
4744
4745 static bool rb_test_started __initdata;
4746
4747 struct rb_item {
4748 int size;
4749 char str[];
4750 };
4751
4752 static __init int rb_write_something(struct rb_test_data *data, bool nested)
4753 {
4754 struct ring_buffer_event *event;
4755 struct rb_item *item;
4756 bool started;
4757 int event_len;
4758 int size;
4759 int len;
4760 int cnt;
4761
4762 /* Have nested writes different that what is written */
4763 cnt = data->cnt + (nested ? 27 : 0);
4764
4765 /* Multiply cnt by ~e, to make some unique increment */
4766 size = (data->cnt * 68 / 25) % (sizeof(rb_string) - 1);
4767
4768 len = size + sizeof(struct rb_item);
4769
4770 started = rb_test_started;
4771 /* read rb_test_started before checking buffer enabled */
4772 smp_rmb();
4773
4774 event = ring_buffer_lock_reserve(data->buffer, len);
4775 if (!event) {
4776 /* Ignore dropped events before test starts. */
4777 if (started) {
4778 if (nested)
4779 data->bytes_dropped += len;
4780 else
4781 data->bytes_dropped_nested += len;
4782 }
4783 return len;
4784 }
4785
4786 event_len = ring_buffer_event_length(event);
4787
4788 if (RB_WARN_ON(data->buffer, event_len < len))
4789 goto out;
4790
4791 item = ring_buffer_event_data(event);
4792 item->size = size;
4793 memcpy(item->str, rb_string, size);
4794
4795 if (nested) {
4796 data->bytes_alloc_nested += event_len;
4797 data->bytes_written_nested += len;
4798 data->events_nested++;
4799 if (!data->min_size_nested || len < data->min_size_nested)
4800 data->min_size_nested = len;
4801 if (len > data->max_size_nested)
4802 data->max_size_nested = len;
4803 } else {
4804 data->bytes_alloc += event_len;
4805 data->bytes_written += len;
4806 data->events++;
4807 if (!data->min_size || len < data->min_size)
4808 data->max_size = len;
4809 if (len > data->max_size)
4810 data->max_size = len;
4811 }
4812
4813 out:
4814 ring_buffer_unlock_commit(data->buffer, event);
4815
4816 return 0;
4817 }
4818
4819 static __init int rb_test(void *arg)
4820 {
4821 struct rb_test_data *data = arg;
4822
4823 while (!kthread_should_stop()) {
4824 rb_write_something(data, false);
4825 data->cnt++;
4826
4827 set_current_state(TASK_INTERRUPTIBLE);
4828 /* Now sleep between a min of 100-300us and a max of 1ms */
4829 usleep_range(((data->cnt % 3) + 1) * 100, 1000);
4830 }
4831
4832 return 0;
4833 }
4834
4835 static __init void rb_ipi(void *ignore)
4836 {
4837 struct rb_test_data *data;
4838 int cpu = smp_processor_id();
4839
4840 data = &rb_data[cpu];
4841 rb_write_something(data, true);
4842 }
4843
4844 static __init int rb_hammer_test(void *arg)
4845 {
4846 while (!kthread_should_stop()) {
4847
4848 /* Send an IPI to all cpus to write data! */
4849 smp_call_function(rb_ipi, NULL, 1);
4850 /* No sleep, but for non preempt, let others run */
4851 schedule();
4852 }
4853
4854 return 0;
4855 }
4856
4857 static __init int test_ringbuffer(void)
4858 {
4859 struct task_struct *rb_hammer;
4860 struct ring_buffer *buffer;
4861 int cpu;
4862 int ret = 0;
4863
4864 pr_info("Running ring buffer tests...\n");
4865
4866 buffer = ring_buffer_alloc(RB_TEST_BUFFER_SIZE, RB_FL_OVERWRITE);
4867 if (WARN_ON(!buffer))
4868 return 0;
4869
4870 /* Disable buffer so that threads can't write to it yet */
4871 ring_buffer_record_off(buffer);
4872
4873 for_each_online_cpu(cpu) {
4874 rb_data[cpu].buffer = buffer;
4875 rb_data[cpu].cpu = cpu;
4876 rb_data[cpu].cnt = cpu;
4877 rb_threads[cpu] = kthread_create(rb_test, &rb_data[cpu],
4878 "rbtester/%d", cpu);
4879 if (WARN_ON(IS_ERR(rb_threads[cpu]))) {
4880 pr_cont("FAILED\n");
4881 ret = PTR_ERR(rb_threads[cpu]);
4882 goto out_free;
4883 }
4884
4885 kthread_bind(rb_threads[cpu], cpu);
4886 wake_up_process(rb_threads[cpu]);
4887 }
4888
4889 /* Now create the rb hammer! */
4890 rb_hammer = kthread_run(rb_hammer_test, NULL, "rbhammer");
4891 if (WARN_ON(IS_ERR(rb_hammer))) {
4892 pr_cont("FAILED\n");
4893 ret = PTR_ERR(rb_hammer);
4894 goto out_free;
4895 }
4896
4897 ring_buffer_record_on(buffer);
4898 /*
4899 * Show buffer is enabled before setting rb_test_started.
4900 * Yes there's a small race window where events could be
4901 * dropped and the thread wont catch it. But when a ring
4902 * buffer gets enabled, there will always be some kind of
4903 * delay before other CPUs see it. Thus, we don't care about
4904 * those dropped events. We care about events dropped after
4905 * the threads see that the buffer is active.
4906 */
4907 smp_wmb();
4908 rb_test_started = true;
4909
4910 set_current_state(TASK_INTERRUPTIBLE);
4911 /* Just run for 10 seconds */;
4912 schedule_timeout(10 * HZ);
4913
4914 kthread_stop(rb_hammer);
4915
4916 out_free:
4917 for_each_online_cpu(cpu) {
4918 if (!rb_threads[cpu])
4919 break;
4920 kthread_stop(rb_threads[cpu]);
4921 }
4922 if (ret) {
4923 ring_buffer_free(buffer);
4924 return ret;
4925 }
4926
4927 /* Report! */
4928 pr_info("finished\n");
4929 for_each_online_cpu(cpu) {
4930 struct ring_buffer_event *event;
4931 struct rb_test_data *data = &rb_data[cpu];
4932 struct rb_item *item;
4933 unsigned long total_events;
4934 unsigned long total_dropped;
4935 unsigned long total_written;
4936 unsigned long total_alloc;
4937 unsigned long total_read = 0;
4938 unsigned long total_size = 0;
4939 unsigned long total_len = 0;
4940 unsigned long total_lost = 0;
4941 unsigned long lost;
4942 int big_event_size;
4943 int small_event_size;
4944
4945 ret = -1;
4946
4947 total_events = data->events + data->events_nested;
4948 total_written = data->bytes_written + data->bytes_written_nested;
4949 total_alloc = data->bytes_alloc + data->bytes_alloc_nested;
4950 total_dropped = data->bytes_dropped + data->bytes_dropped_nested;
4951
4952 big_event_size = data->max_size + data->max_size_nested;
4953 small_event_size = data->min_size + data->min_size_nested;
4954
4955 pr_info("CPU %d:\n", cpu);
4956 pr_info(" events: %ld\n", total_events);
4957 pr_info(" dropped bytes: %ld\n", total_dropped);
4958 pr_info(" alloced bytes: %ld\n", total_alloc);
4959 pr_info(" written bytes: %ld\n", total_written);
4960 pr_info(" biggest event: %d\n", big_event_size);
4961 pr_info(" smallest event: %d\n", small_event_size);
4962
4963 if (RB_WARN_ON(buffer, total_dropped))
4964 break;
4965
4966 ret = 0;
4967
4968 while ((event = ring_buffer_consume(buffer, cpu, NULL, &lost))) {
4969 total_lost += lost;
4970 item = ring_buffer_event_data(event);
4971 total_len += ring_buffer_event_length(event);
4972 total_size += item->size + sizeof(struct rb_item);
4973 if (memcmp(&item->str[0], rb_string, item->size) != 0) {
4974 pr_info("FAILED!\n");
4975 pr_info("buffer had: %.*s\n", item->size, item->str);
4976 pr_info("expected: %.*s\n", item->size, rb_string);
4977 RB_WARN_ON(buffer, 1);
4978 ret = -1;
4979 break;
4980 }
4981 total_read++;
4982 }
4983 if (ret)
4984 break;
4985
4986 ret = -1;
4987
4988 pr_info(" read events: %ld\n", total_read);
4989 pr_info(" lost events: %ld\n", total_lost);
4990 pr_info(" total events: %ld\n", total_lost + total_read);
4991 pr_info(" recorded len bytes: %ld\n", total_len);
4992 pr_info(" recorded size bytes: %ld\n", total_size);
4993 if (total_lost)
4994 pr_info(" With dropped events, record len and size may not match\n"
4995 " alloced and written from above\n");
4996 if (!total_lost) {
4997 if (RB_WARN_ON(buffer, total_len != total_alloc ||
4998 total_size != total_written))
4999 break;
5000 }
5001 if (RB_WARN_ON(buffer, total_lost + total_read != total_events))
5002 break;
5003
5004 ret = 0;
5005 }
5006 if (!ret)
5007 pr_info("Ring buffer PASSED!\n");
5008
5009 ring_buffer_free(buffer);
5010 return 0;
5011 }
5012
5013 late_initcall(test_ringbuffer);
5014 #endif /* CONFIG_RING_BUFFER_STARTUP_TEST */