]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - kernel/trace/ring_buffer.c
Merge tag 'gpio-v4.15-5' of git://git.kernel.org/pub/scm/linux/kernel/git/linusw...
[mirror_ubuntu-bionic-kernel.git] / kernel / trace / ring_buffer.c
1 /*
2 * Generic ring buffer
3 *
4 * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
5 */
6 #include <linux/trace_events.h>
7 #include <linux/ring_buffer.h>
8 #include <linux/trace_clock.h>
9 #include <linux/sched/clock.h>
10 #include <linux/trace_seq.h>
11 #include <linux/spinlock.h>
12 #include <linux/irq_work.h>
13 #include <linux/uaccess.h>
14 #include <linux/hardirq.h>
15 #include <linux/kthread.h> /* for self test */
16 #include <linux/module.h>
17 #include <linux/percpu.h>
18 #include <linux/mutex.h>
19 #include <linux/delay.h>
20 #include <linux/slab.h>
21 #include <linux/init.h>
22 #include <linux/hash.h>
23 #include <linux/list.h>
24 #include <linux/cpu.h>
25
26 #include <asm/local.h>
27
28 static void update_pages_handler(struct work_struct *work);
29
30 /*
31 * The ring buffer header is special. We must manually up keep it.
32 */
33 int ring_buffer_print_entry_header(struct trace_seq *s)
34 {
35 trace_seq_puts(s, "# compressed entry header\n");
36 trace_seq_puts(s, "\ttype_len : 5 bits\n");
37 trace_seq_puts(s, "\ttime_delta : 27 bits\n");
38 trace_seq_puts(s, "\tarray : 32 bits\n");
39 trace_seq_putc(s, '\n');
40 trace_seq_printf(s, "\tpadding : type == %d\n",
41 RINGBUF_TYPE_PADDING);
42 trace_seq_printf(s, "\ttime_extend : type == %d\n",
43 RINGBUF_TYPE_TIME_EXTEND);
44 trace_seq_printf(s, "\tdata max type_len == %d\n",
45 RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
46
47 return !trace_seq_has_overflowed(s);
48 }
49
50 /*
51 * The ring buffer is made up of a list of pages. A separate list of pages is
52 * allocated for each CPU. A writer may only write to a buffer that is
53 * associated with the CPU it is currently executing on. A reader may read
54 * from any per cpu buffer.
55 *
56 * The reader is special. For each per cpu buffer, the reader has its own
57 * reader page. When a reader has read the entire reader page, this reader
58 * page is swapped with another page in the ring buffer.
59 *
60 * Now, as long as the writer is off the reader page, the reader can do what
61 * ever it wants with that page. The writer will never write to that page
62 * again (as long as it is out of the ring buffer).
63 *
64 * Here's some silly ASCII art.
65 *
66 * +------+
67 * |reader| RING BUFFER
68 * |page |
69 * +------+ +---+ +---+ +---+
70 * | |-->| |-->| |
71 * +---+ +---+ +---+
72 * ^ |
73 * | |
74 * +---------------+
75 *
76 *
77 * +------+
78 * |reader| RING BUFFER
79 * |page |------------------v
80 * +------+ +---+ +---+ +---+
81 * | |-->| |-->| |
82 * +---+ +---+ +---+
83 * ^ |
84 * | |
85 * +---------------+
86 *
87 *
88 * +------+
89 * |reader| RING BUFFER
90 * |page |------------------v
91 * +------+ +---+ +---+ +---+
92 * ^ | |-->| |-->| |
93 * | +---+ +---+ +---+
94 * | |
95 * | |
96 * +------------------------------+
97 *
98 *
99 * +------+
100 * |buffer| RING BUFFER
101 * |page |------------------v
102 * +------+ +---+ +---+ +---+
103 * ^ | | | |-->| |
104 * | New +---+ +---+ +---+
105 * | Reader------^ |
106 * | page |
107 * +------------------------------+
108 *
109 *
110 * After we make this swap, the reader can hand this page off to the splice
111 * code and be done with it. It can even allocate a new page if it needs to
112 * and swap that into the ring buffer.
113 *
114 * We will be using cmpxchg soon to make all this lockless.
115 *
116 */
117
118 /* Used for individual buffers (after the counter) */
119 #define RB_BUFFER_OFF (1 << 20)
120
121 #define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
122
123 #define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
124 #define RB_ALIGNMENT 4U
125 #define RB_MAX_SMALL_DATA (RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
126 #define RB_EVNT_MIN_SIZE 8U /* two 32bit words */
127
128 #ifndef CONFIG_HAVE_64BIT_ALIGNED_ACCESS
129 # define RB_FORCE_8BYTE_ALIGNMENT 0
130 # define RB_ARCH_ALIGNMENT RB_ALIGNMENT
131 #else
132 # define RB_FORCE_8BYTE_ALIGNMENT 1
133 # define RB_ARCH_ALIGNMENT 8U
134 #endif
135
136 #define RB_ALIGN_DATA __aligned(RB_ARCH_ALIGNMENT)
137
138 /* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */
139 #define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX
140
141 enum {
142 RB_LEN_TIME_EXTEND = 8,
143 RB_LEN_TIME_STAMP = 16,
144 };
145
146 #define skip_time_extend(event) \
147 ((struct ring_buffer_event *)((char *)event + RB_LEN_TIME_EXTEND))
148
149 static inline int rb_null_event(struct ring_buffer_event *event)
150 {
151 return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta;
152 }
153
154 static void rb_event_set_padding(struct ring_buffer_event *event)
155 {
156 /* padding has a NULL time_delta */
157 event->type_len = RINGBUF_TYPE_PADDING;
158 event->time_delta = 0;
159 }
160
161 static unsigned
162 rb_event_data_length(struct ring_buffer_event *event)
163 {
164 unsigned length;
165
166 if (event->type_len)
167 length = event->type_len * RB_ALIGNMENT;
168 else
169 length = event->array[0];
170 return length + RB_EVNT_HDR_SIZE;
171 }
172
173 /*
174 * Return the length of the given event. Will return
175 * the length of the time extend if the event is a
176 * time extend.
177 */
178 static inline unsigned
179 rb_event_length(struct ring_buffer_event *event)
180 {
181 switch (event->type_len) {
182 case RINGBUF_TYPE_PADDING:
183 if (rb_null_event(event))
184 /* undefined */
185 return -1;
186 return event->array[0] + RB_EVNT_HDR_SIZE;
187
188 case RINGBUF_TYPE_TIME_EXTEND:
189 return RB_LEN_TIME_EXTEND;
190
191 case RINGBUF_TYPE_TIME_STAMP:
192 return RB_LEN_TIME_STAMP;
193
194 case RINGBUF_TYPE_DATA:
195 return rb_event_data_length(event);
196 default:
197 BUG();
198 }
199 /* not hit */
200 return 0;
201 }
202
203 /*
204 * Return total length of time extend and data,
205 * or just the event length for all other events.
206 */
207 static inline unsigned
208 rb_event_ts_length(struct ring_buffer_event *event)
209 {
210 unsigned len = 0;
211
212 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) {
213 /* time extends include the data event after it */
214 len = RB_LEN_TIME_EXTEND;
215 event = skip_time_extend(event);
216 }
217 return len + rb_event_length(event);
218 }
219
220 /**
221 * ring_buffer_event_length - return the length of the event
222 * @event: the event to get the length of
223 *
224 * Returns the size of the data load of a data event.
225 * If the event is something other than a data event, it
226 * returns the size of the event itself. With the exception
227 * of a TIME EXTEND, where it still returns the size of the
228 * data load of the data event after it.
229 */
230 unsigned ring_buffer_event_length(struct ring_buffer_event *event)
231 {
232 unsigned length;
233
234 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
235 event = skip_time_extend(event);
236
237 length = rb_event_length(event);
238 if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
239 return length;
240 length -= RB_EVNT_HDR_SIZE;
241 if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0]))
242 length -= sizeof(event->array[0]);
243 return length;
244 }
245 EXPORT_SYMBOL_GPL(ring_buffer_event_length);
246
247 /* inline for ring buffer fast paths */
248 static __always_inline void *
249 rb_event_data(struct ring_buffer_event *event)
250 {
251 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
252 event = skip_time_extend(event);
253 BUG_ON(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
254 /* If length is in len field, then array[0] has the data */
255 if (event->type_len)
256 return (void *)&event->array[0];
257 /* Otherwise length is in array[0] and array[1] has the data */
258 return (void *)&event->array[1];
259 }
260
261 /**
262 * ring_buffer_event_data - return the data of the event
263 * @event: the event to get the data from
264 */
265 void *ring_buffer_event_data(struct ring_buffer_event *event)
266 {
267 return rb_event_data(event);
268 }
269 EXPORT_SYMBOL_GPL(ring_buffer_event_data);
270
271 #define for_each_buffer_cpu(buffer, cpu) \
272 for_each_cpu(cpu, buffer->cpumask)
273
274 #define TS_SHIFT 27
275 #define TS_MASK ((1ULL << TS_SHIFT) - 1)
276 #define TS_DELTA_TEST (~TS_MASK)
277
278 /* Flag when events were overwritten */
279 #define RB_MISSED_EVENTS (1 << 31)
280 /* Missed count stored at end */
281 #define RB_MISSED_STORED (1 << 30)
282
283 #define RB_MISSED_FLAGS (RB_MISSED_EVENTS|RB_MISSED_STORED)
284
285 struct buffer_data_page {
286 u64 time_stamp; /* page time stamp */
287 local_t commit; /* write committed index */
288 unsigned char data[] RB_ALIGN_DATA; /* data of buffer page */
289 };
290
291 /*
292 * Note, the buffer_page list must be first. The buffer pages
293 * are allocated in cache lines, which means that each buffer
294 * page will be at the beginning of a cache line, and thus
295 * the least significant bits will be zero. We use this to
296 * add flags in the list struct pointers, to make the ring buffer
297 * lockless.
298 */
299 struct buffer_page {
300 struct list_head list; /* list of buffer pages */
301 local_t write; /* index for next write */
302 unsigned read; /* index for next read */
303 local_t entries; /* entries on this page */
304 unsigned long real_end; /* real end of data */
305 struct buffer_data_page *page; /* Actual data page */
306 };
307
308 /*
309 * The buffer page counters, write and entries, must be reset
310 * atomically when crossing page boundaries. To synchronize this
311 * update, two counters are inserted into the number. One is
312 * the actual counter for the write position or count on the page.
313 *
314 * The other is a counter of updaters. Before an update happens
315 * the update partition of the counter is incremented. This will
316 * allow the updater to update the counter atomically.
317 *
318 * The counter is 20 bits, and the state data is 12.
319 */
320 #define RB_WRITE_MASK 0xfffff
321 #define RB_WRITE_INTCNT (1 << 20)
322
323 static void rb_init_page(struct buffer_data_page *bpage)
324 {
325 local_set(&bpage->commit, 0);
326 }
327
328 /**
329 * ring_buffer_page_len - the size of data on the page.
330 * @page: The page to read
331 *
332 * Returns the amount of data on the page, including buffer page header.
333 */
334 size_t ring_buffer_page_len(void *page)
335 {
336 struct buffer_data_page *bpage = page;
337
338 return (local_read(&bpage->commit) & ~RB_MISSED_FLAGS)
339 + BUF_PAGE_HDR_SIZE;
340 }
341
342 /*
343 * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing
344 * this issue out.
345 */
346 static void free_buffer_page(struct buffer_page *bpage)
347 {
348 free_page((unsigned long)bpage->page);
349 kfree(bpage);
350 }
351
352 /*
353 * We need to fit the time_stamp delta into 27 bits.
354 */
355 static inline int test_time_stamp(u64 delta)
356 {
357 if (delta & TS_DELTA_TEST)
358 return 1;
359 return 0;
360 }
361
362 #define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE)
363
364 /* Max payload is BUF_PAGE_SIZE - header (8bytes) */
365 #define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2))
366
367 int ring_buffer_print_page_header(struct trace_seq *s)
368 {
369 struct buffer_data_page field;
370
371 trace_seq_printf(s, "\tfield: u64 timestamp;\t"
372 "offset:0;\tsize:%u;\tsigned:%u;\n",
373 (unsigned int)sizeof(field.time_stamp),
374 (unsigned int)is_signed_type(u64));
375
376 trace_seq_printf(s, "\tfield: local_t commit;\t"
377 "offset:%u;\tsize:%u;\tsigned:%u;\n",
378 (unsigned int)offsetof(typeof(field), commit),
379 (unsigned int)sizeof(field.commit),
380 (unsigned int)is_signed_type(long));
381
382 trace_seq_printf(s, "\tfield: int overwrite;\t"
383 "offset:%u;\tsize:%u;\tsigned:%u;\n",
384 (unsigned int)offsetof(typeof(field), commit),
385 1,
386 (unsigned int)is_signed_type(long));
387
388 trace_seq_printf(s, "\tfield: char data;\t"
389 "offset:%u;\tsize:%u;\tsigned:%u;\n",
390 (unsigned int)offsetof(typeof(field), data),
391 (unsigned int)BUF_PAGE_SIZE,
392 (unsigned int)is_signed_type(char));
393
394 return !trace_seq_has_overflowed(s);
395 }
396
397 struct rb_irq_work {
398 struct irq_work work;
399 wait_queue_head_t waiters;
400 wait_queue_head_t full_waiters;
401 bool waiters_pending;
402 bool full_waiters_pending;
403 bool wakeup_full;
404 };
405
406 /*
407 * Structure to hold event state and handle nested events.
408 */
409 struct rb_event_info {
410 u64 ts;
411 u64 delta;
412 unsigned long length;
413 struct buffer_page *tail_page;
414 int add_timestamp;
415 };
416
417 /*
418 * Used for which event context the event is in.
419 * NMI = 0
420 * IRQ = 1
421 * SOFTIRQ = 2
422 * NORMAL = 3
423 *
424 * See trace_recursive_lock() comment below for more details.
425 */
426 enum {
427 RB_CTX_NMI,
428 RB_CTX_IRQ,
429 RB_CTX_SOFTIRQ,
430 RB_CTX_NORMAL,
431 RB_CTX_MAX
432 };
433
434 /*
435 * head_page == tail_page && head == tail then buffer is empty.
436 */
437 struct ring_buffer_per_cpu {
438 int cpu;
439 atomic_t record_disabled;
440 struct ring_buffer *buffer;
441 raw_spinlock_t reader_lock; /* serialize readers */
442 arch_spinlock_t lock;
443 struct lock_class_key lock_key;
444 struct buffer_data_page *free_page;
445 unsigned long nr_pages;
446 unsigned int current_context;
447 struct list_head *pages;
448 struct buffer_page *head_page; /* read from head */
449 struct buffer_page *tail_page; /* write to tail */
450 struct buffer_page *commit_page; /* committed pages */
451 struct buffer_page *reader_page;
452 unsigned long lost_events;
453 unsigned long last_overrun;
454 local_t entries_bytes;
455 local_t entries;
456 local_t overrun;
457 local_t commit_overrun;
458 local_t dropped_events;
459 local_t committing;
460 local_t commits;
461 unsigned long read;
462 unsigned long read_bytes;
463 u64 write_stamp;
464 u64 read_stamp;
465 /* ring buffer pages to update, > 0 to add, < 0 to remove */
466 long nr_pages_to_update;
467 struct list_head new_pages; /* new pages to add */
468 struct work_struct update_pages_work;
469 struct completion update_done;
470
471 struct rb_irq_work irq_work;
472 };
473
474 struct ring_buffer {
475 unsigned flags;
476 int cpus;
477 atomic_t record_disabled;
478 atomic_t resize_disabled;
479 cpumask_var_t cpumask;
480
481 struct lock_class_key *reader_lock_key;
482
483 struct mutex mutex;
484
485 struct ring_buffer_per_cpu **buffers;
486
487 struct hlist_node node;
488 u64 (*clock)(void);
489
490 struct rb_irq_work irq_work;
491 };
492
493 struct ring_buffer_iter {
494 struct ring_buffer_per_cpu *cpu_buffer;
495 unsigned long head;
496 struct buffer_page *head_page;
497 struct buffer_page *cache_reader_page;
498 unsigned long cache_read;
499 u64 read_stamp;
500 };
501
502 /*
503 * rb_wake_up_waiters - wake up tasks waiting for ring buffer input
504 *
505 * Schedules a delayed work to wake up any task that is blocked on the
506 * ring buffer waiters queue.
507 */
508 static void rb_wake_up_waiters(struct irq_work *work)
509 {
510 struct rb_irq_work *rbwork = container_of(work, struct rb_irq_work, work);
511
512 wake_up_all(&rbwork->waiters);
513 if (rbwork->wakeup_full) {
514 rbwork->wakeup_full = false;
515 wake_up_all(&rbwork->full_waiters);
516 }
517 }
518
519 /**
520 * ring_buffer_wait - wait for input to the ring buffer
521 * @buffer: buffer to wait on
522 * @cpu: the cpu buffer to wait on
523 * @full: wait until a full page is available, if @cpu != RING_BUFFER_ALL_CPUS
524 *
525 * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
526 * as data is added to any of the @buffer's cpu buffers. Otherwise
527 * it will wait for data to be added to a specific cpu buffer.
528 */
529 int ring_buffer_wait(struct ring_buffer *buffer, int cpu, bool full)
530 {
531 struct ring_buffer_per_cpu *uninitialized_var(cpu_buffer);
532 DEFINE_WAIT(wait);
533 struct rb_irq_work *work;
534 int ret = 0;
535
536 /*
537 * Depending on what the caller is waiting for, either any
538 * data in any cpu buffer, or a specific buffer, put the
539 * caller on the appropriate wait queue.
540 */
541 if (cpu == RING_BUFFER_ALL_CPUS) {
542 work = &buffer->irq_work;
543 /* Full only makes sense on per cpu reads */
544 full = false;
545 } else {
546 if (!cpumask_test_cpu(cpu, buffer->cpumask))
547 return -ENODEV;
548 cpu_buffer = buffer->buffers[cpu];
549 work = &cpu_buffer->irq_work;
550 }
551
552
553 while (true) {
554 if (full)
555 prepare_to_wait(&work->full_waiters, &wait, TASK_INTERRUPTIBLE);
556 else
557 prepare_to_wait(&work->waiters, &wait, TASK_INTERRUPTIBLE);
558
559 /*
560 * The events can happen in critical sections where
561 * checking a work queue can cause deadlocks.
562 * After adding a task to the queue, this flag is set
563 * only to notify events to try to wake up the queue
564 * using irq_work.
565 *
566 * We don't clear it even if the buffer is no longer
567 * empty. The flag only causes the next event to run
568 * irq_work to do the work queue wake up. The worse
569 * that can happen if we race with !trace_empty() is that
570 * an event will cause an irq_work to try to wake up
571 * an empty queue.
572 *
573 * There's no reason to protect this flag either, as
574 * the work queue and irq_work logic will do the necessary
575 * synchronization for the wake ups. The only thing
576 * that is necessary is that the wake up happens after
577 * a task has been queued. It's OK for spurious wake ups.
578 */
579 if (full)
580 work->full_waiters_pending = true;
581 else
582 work->waiters_pending = true;
583
584 if (signal_pending(current)) {
585 ret = -EINTR;
586 break;
587 }
588
589 if (cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer))
590 break;
591
592 if (cpu != RING_BUFFER_ALL_CPUS &&
593 !ring_buffer_empty_cpu(buffer, cpu)) {
594 unsigned long flags;
595 bool pagebusy;
596
597 if (!full)
598 break;
599
600 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
601 pagebusy = cpu_buffer->reader_page == cpu_buffer->commit_page;
602 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
603
604 if (!pagebusy)
605 break;
606 }
607
608 schedule();
609 }
610
611 if (full)
612 finish_wait(&work->full_waiters, &wait);
613 else
614 finish_wait(&work->waiters, &wait);
615
616 return ret;
617 }
618
619 /**
620 * ring_buffer_poll_wait - poll on buffer input
621 * @buffer: buffer to wait on
622 * @cpu: the cpu buffer to wait on
623 * @filp: the file descriptor
624 * @poll_table: The poll descriptor
625 *
626 * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
627 * as data is added to any of the @buffer's cpu buffers. Otherwise
628 * it will wait for data to be added to a specific cpu buffer.
629 *
630 * Returns POLLIN | POLLRDNORM if data exists in the buffers,
631 * zero otherwise.
632 */
633 int ring_buffer_poll_wait(struct ring_buffer *buffer, int cpu,
634 struct file *filp, poll_table *poll_table)
635 {
636 struct ring_buffer_per_cpu *cpu_buffer;
637 struct rb_irq_work *work;
638
639 if (cpu == RING_BUFFER_ALL_CPUS)
640 work = &buffer->irq_work;
641 else {
642 if (!cpumask_test_cpu(cpu, buffer->cpumask))
643 return -EINVAL;
644
645 cpu_buffer = buffer->buffers[cpu];
646 work = &cpu_buffer->irq_work;
647 }
648
649 poll_wait(filp, &work->waiters, poll_table);
650 work->waiters_pending = true;
651 /*
652 * There's a tight race between setting the waiters_pending and
653 * checking if the ring buffer is empty. Once the waiters_pending bit
654 * is set, the next event will wake the task up, but we can get stuck
655 * if there's only a single event in.
656 *
657 * FIXME: Ideally, we need a memory barrier on the writer side as well,
658 * but adding a memory barrier to all events will cause too much of a
659 * performance hit in the fast path. We only need a memory barrier when
660 * the buffer goes from empty to having content. But as this race is
661 * extremely small, and it's not a problem if another event comes in, we
662 * will fix it later.
663 */
664 smp_mb();
665
666 if ((cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer)) ||
667 (cpu != RING_BUFFER_ALL_CPUS && !ring_buffer_empty_cpu(buffer, cpu)))
668 return POLLIN | POLLRDNORM;
669 return 0;
670 }
671
672 /* buffer may be either ring_buffer or ring_buffer_per_cpu */
673 #define RB_WARN_ON(b, cond) \
674 ({ \
675 int _____ret = unlikely(cond); \
676 if (_____ret) { \
677 if (__same_type(*(b), struct ring_buffer_per_cpu)) { \
678 struct ring_buffer_per_cpu *__b = \
679 (void *)b; \
680 atomic_inc(&__b->buffer->record_disabled); \
681 } else \
682 atomic_inc(&b->record_disabled); \
683 WARN_ON(1); \
684 } \
685 _____ret; \
686 })
687
688 /* Up this if you want to test the TIME_EXTENTS and normalization */
689 #define DEBUG_SHIFT 0
690
691 static inline u64 rb_time_stamp(struct ring_buffer *buffer)
692 {
693 /* shift to debug/test normalization and TIME_EXTENTS */
694 return buffer->clock() << DEBUG_SHIFT;
695 }
696
697 u64 ring_buffer_time_stamp(struct ring_buffer *buffer, int cpu)
698 {
699 u64 time;
700
701 preempt_disable_notrace();
702 time = rb_time_stamp(buffer);
703 preempt_enable_no_resched_notrace();
704
705 return time;
706 }
707 EXPORT_SYMBOL_GPL(ring_buffer_time_stamp);
708
709 void ring_buffer_normalize_time_stamp(struct ring_buffer *buffer,
710 int cpu, u64 *ts)
711 {
712 /* Just stupid testing the normalize function and deltas */
713 *ts >>= DEBUG_SHIFT;
714 }
715 EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp);
716
717 /*
718 * Making the ring buffer lockless makes things tricky.
719 * Although writes only happen on the CPU that they are on,
720 * and they only need to worry about interrupts. Reads can
721 * happen on any CPU.
722 *
723 * The reader page is always off the ring buffer, but when the
724 * reader finishes with a page, it needs to swap its page with
725 * a new one from the buffer. The reader needs to take from
726 * the head (writes go to the tail). But if a writer is in overwrite
727 * mode and wraps, it must push the head page forward.
728 *
729 * Here lies the problem.
730 *
731 * The reader must be careful to replace only the head page, and
732 * not another one. As described at the top of the file in the
733 * ASCII art, the reader sets its old page to point to the next
734 * page after head. It then sets the page after head to point to
735 * the old reader page. But if the writer moves the head page
736 * during this operation, the reader could end up with the tail.
737 *
738 * We use cmpxchg to help prevent this race. We also do something
739 * special with the page before head. We set the LSB to 1.
740 *
741 * When the writer must push the page forward, it will clear the
742 * bit that points to the head page, move the head, and then set
743 * the bit that points to the new head page.
744 *
745 * We also don't want an interrupt coming in and moving the head
746 * page on another writer. Thus we use the second LSB to catch
747 * that too. Thus:
748 *
749 * head->list->prev->next bit 1 bit 0
750 * ------- -------
751 * Normal page 0 0
752 * Points to head page 0 1
753 * New head page 1 0
754 *
755 * Note we can not trust the prev pointer of the head page, because:
756 *
757 * +----+ +-----+ +-----+
758 * | |------>| T |---X--->| N |
759 * | |<------| | | |
760 * +----+ +-----+ +-----+
761 * ^ ^ |
762 * | +-----+ | |
763 * +----------| R |----------+ |
764 * | |<-----------+
765 * +-----+
766 *
767 * Key: ---X--> HEAD flag set in pointer
768 * T Tail page
769 * R Reader page
770 * N Next page
771 *
772 * (see __rb_reserve_next() to see where this happens)
773 *
774 * What the above shows is that the reader just swapped out
775 * the reader page with a page in the buffer, but before it
776 * could make the new header point back to the new page added
777 * it was preempted by a writer. The writer moved forward onto
778 * the new page added by the reader and is about to move forward
779 * again.
780 *
781 * You can see, it is legitimate for the previous pointer of
782 * the head (or any page) not to point back to itself. But only
783 * temporarially.
784 */
785
786 #define RB_PAGE_NORMAL 0UL
787 #define RB_PAGE_HEAD 1UL
788 #define RB_PAGE_UPDATE 2UL
789
790
791 #define RB_FLAG_MASK 3UL
792
793 /* PAGE_MOVED is not part of the mask */
794 #define RB_PAGE_MOVED 4UL
795
796 /*
797 * rb_list_head - remove any bit
798 */
799 static struct list_head *rb_list_head(struct list_head *list)
800 {
801 unsigned long val = (unsigned long)list;
802
803 return (struct list_head *)(val & ~RB_FLAG_MASK);
804 }
805
806 /*
807 * rb_is_head_page - test if the given page is the head page
808 *
809 * Because the reader may move the head_page pointer, we can
810 * not trust what the head page is (it may be pointing to
811 * the reader page). But if the next page is a header page,
812 * its flags will be non zero.
813 */
814 static inline int
815 rb_is_head_page(struct ring_buffer_per_cpu *cpu_buffer,
816 struct buffer_page *page, struct list_head *list)
817 {
818 unsigned long val;
819
820 val = (unsigned long)list->next;
821
822 if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list)
823 return RB_PAGE_MOVED;
824
825 return val & RB_FLAG_MASK;
826 }
827
828 /*
829 * rb_is_reader_page
830 *
831 * The unique thing about the reader page, is that, if the
832 * writer is ever on it, the previous pointer never points
833 * back to the reader page.
834 */
835 static bool rb_is_reader_page(struct buffer_page *page)
836 {
837 struct list_head *list = page->list.prev;
838
839 return rb_list_head(list->next) != &page->list;
840 }
841
842 /*
843 * rb_set_list_to_head - set a list_head to be pointing to head.
844 */
845 static void rb_set_list_to_head(struct ring_buffer_per_cpu *cpu_buffer,
846 struct list_head *list)
847 {
848 unsigned long *ptr;
849
850 ptr = (unsigned long *)&list->next;
851 *ptr |= RB_PAGE_HEAD;
852 *ptr &= ~RB_PAGE_UPDATE;
853 }
854
855 /*
856 * rb_head_page_activate - sets up head page
857 */
858 static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer)
859 {
860 struct buffer_page *head;
861
862 head = cpu_buffer->head_page;
863 if (!head)
864 return;
865
866 /*
867 * Set the previous list pointer to have the HEAD flag.
868 */
869 rb_set_list_to_head(cpu_buffer, head->list.prev);
870 }
871
872 static void rb_list_head_clear(struct list_head *list)
873 {
874 unsigned long *ptr = (unsigned long *)&list->next;
875
876 *ptr &= ~RB_FLAG_MASK;
877 }
878
879 /*
880 * rb_head_page_dactivate - clears head page ptr (for free list)
881 */
882 static void
883 rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer)
884 {
885 struct list_head *hd;
886
887 /* Go through the whole list and clear any pointers found. */
888 rb_list_head_clear(cpu_buffer->pages);
889
890 list_for_each(hd, cpu_buffer->pages)
891 rb_list_head_clear(hd);
892 }
893
894 static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer,
895 struct buffer_page *head,
896 struct buffer_page *prev,
897 int old_flag, int new_flag)
898 {
899 struct list_head *list;
900 unsigned long val = (unsigned long)&head->list;
901 unsigned long ret;
902
903 list = &prev->list;
904
905 val &= ~RB_FLAG_MASK;
906
907 ret = cmpxchg((unsigned long *)&list->next,
908 val | old_flag, val | new_flag);
909
910 /* check if the reader took the page */
911 if ((ret & ~RB_FLAG_MASK) != val)
912 return RB_PAGE_MOVED;
913
914 return ret & RB_FLAG_MASK;
915 }
916
917 static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer,
918 struct buffer_page *head,
919 struct buffer_page *prev,
920 int old_flag)
921 {
922 return rb_head_page_set(cpu_buffer, head, prev,
923 old_flag, RB_PAGE_UPDATE);
924 }
925
926 static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer,
927 struct buffer_page *head,
928 struct buffer_page *prev,
929 int old_flag)
930 {
931 return rb_head_page_set(cpu_buffer, head, prev,
932 old_flag, RB_PAGE_HEAD);
933 }
934
935 static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer,
936 struct buffer_page *head,
937 struct buffer_page *prev,
938 int old_flag)
939 {
940 return rb_head_page_set(cpu_buffer, head, prev,
941 old_flag, RB_PAGE_NORMAL);
942 }
943
944 static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer,
945 struct buffer_page **bpage)
946 {
947 struct list_head *p = rb_list_head((*bpage)->list.next);
948
949 *bpage = list_entry(p, struct buffer_page, list);
950 }
951
952 static struct buffer_page *
953 rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer)
954 {
955 struct buffer_page *head;
956 struct buffer_page *page;
957 struct list_head *list;
958 int i;
959
960 if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page))
961 return NULL;
962
963 /* sanity check */
964 list = cpu_buffer->pages;
965 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list))
966 return NULL;
967
968 page = head = cpu_buffer->head_page;
969 /*
970 * It is possible that the writer moves the header behind
971 * where we started, and we miss in one loop.
972 * A second loop should grab the header, but we'll do
973 * three loops just because I'm paranoid.
974 */
975 for (i = 0; i < 3; i++) {
976 do {
977 if (rb_is_head_page(cpu_buffer, page, page->list.prev)) {
978 cpu_buffer->head_page = page;
979 return page;
980 }
981 rb_inc_page(cpu_buffer, &page);
982 } while (page != head);
983 }
984
985 RB_WARN_ON(cpu_buffer, 1);
986
987 return NULL;
988 }
989
990 static int rb_head_page_replace(struct buffer_page *old,
991 struct buffer_page *new)
992 {
993 unsigned long *ptr = (unsigned long *)&old->list.prev->next;
994 unsigned long val;
995 unsigned long ret;
996
997 val = *ptr & ~RB_FLAG_MASK;
998 val |= RB_PAGE_HEAD;
999
1000 ret = cmpxchg(ptr, val, (unsigned long)&new->list);
1001
1002 return ret == val;
1003 }
1004
1005 /*
1006 * rb_tail_page_update - move the tail page forward
1007 */
1008 static void rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer,
1009 struct buffer_page *tail_page,
1010 struct buffer_page *next_page)
1011 {
1012 unsigned long old_entries;
1013 unsigned long old_write;
1014
1015 /*
1016 * The tail page now needs to be moved forward.
1017 *
1018 * We need to reset the tail page, but without messing
1019 * with possible erasing of data brought in by interrupts
1020 * that have moved the tail page and are currently on it.
1021 *
1022 * We add a counter to the write field to denote this.
1023 */
1024 old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write);
1025 old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries);
1026
1027 /*
1028 * Just make sure we have seen our old_write and synchronize
1029 * with any interrupts that come in.
1030 */
1031 barrier();
1032
1033 /*
1034 * If the tail page is still the same as what we think
1035 * it is, then it is up to us to update the tail
1036 * pointer.
1037 */
1038 if (tail_page == READ_ONCE(cpu_buffer->tail_page)) {
1039 /* Zero the write counter */
1040 unsigned long val = old_write & ~RB_WRITE_MASK;
1041 unsigned long eval = old_entries & ~RB_WRITE_MASK;
1042
1043 /*
1044 * This will only succeed if an interrupt did
1045 * not come in and change it. In which case, we
1046 * do not want to modify it.
1047 *
1048 * We add (void) to let the compiler know that we do not care
1049 * about the return value of these functions. We use the
1050 * cmpxchg to only update if an interrupt did not already
1051 * do it for us. If the cmpxchg fails, we don't care.
1052 */
1053 (void)local_cmpxchg(&next_page->write, old_write, val);
1054 (void)local_cmpxchg(&next_page->entries, old_entries, eval);
1055
1056 /*
1057 * No need to worry about races with clearing out the commit.
1058 * it only can increment when a commit takes place. But that
1059 * only happens in the outer most nested commit.
1060 */
1061 local_set(&next_page->page->commit, 0);
1062
1063 /* Again, either we update tail_page or an interrupt does */
1064 (void)cmpxchg(&cpu_buffer->tail_page, tail_page, next_page);
1065 }
1066 }
1067
1068 static int rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer,
1069 struct buffer_page *bpage)
1070 {
1071 unsigned long val = (unsigned long)bpage;
1072
1073 if (RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK))
1074 return 1;
1075
1076 return 0;
1077 }
1078
1079 /**
1080 * rb_check_list - make sure a pointer to a list has the last bits zero
1081 */
1082 static int rb_check_list(struct ring_buffer_per_cpu *cpu_buffer,
1083 struct list_head *list)
1084 {
1085 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev) != list->prev))
1086 return 1;
1087 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->next) != list->next))
1088 return 1;
1089 return 0;
1090 }
1091
1092 /**
1093 * rb_check_pages - integrity check of buffer pages
1094 * @cpu_buffer: CPU buffer with pages to test
1095 *
1096 * As a safety measure we check to make sure the data pages have not
1097 * been corrupted.
1098 */
1099 static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
1100 {
1101 struct list_head *head = cpu_buffer->pages;
1102 struct buffer_page *bpage, *tmp;
1103
1104 /* Reset the head page if it exists */
1105 if (cpu_buffer->head_page)
1106 rb_set_head_page(cpu_buffer);
1107
1108 rb_head_page_deactivate(cpu_buffer);
1109
1110 if (RB_WARN_ON(cpu_buffer, head->next->prev != head))
1111 return -1;
1112 if (RB_WARN_ON(cpu_buffer, head->prev->next != head))
1113 return -1;
1114
1115 if (rb_check_list(cpu_buffer, head))
1116 return -1;
1117
1118 list_for_each_entry_safe(bpage, tmp, head, list) {
1119 if (RB_WARN_ON(cpu_buffer,
1120 bpage->list.next->prev != &bpage->list))
1121 return -1;
1122 if (RB_WARN_ON(cpu_buffer,
1123 bpage->list.prev->next != &bpage->list))
1124 return -1;
1125 if (rb_check_list(cpu_buffer, &bpage->list))
1126 return -1;
1127 }
1128
1129 rb_head_page_activate(cpu_buffer);
1130
1131 return 0;
1132 }
1133
1134 static int __rb_allocate_pages(long nr_pages, struct list_head *pages, int cpu)
1135 {
1136 struct buffer_page *bpage, *tmp;
1137 long i;
1138
1139 for (i = 0; i < nr_pages; i++) {
1140 struct page *page;
1141 /*
1142 * __GFP_RETRY_MAYFAIL flag makes sure that the allocation fails
1143 * gracefully without invoking oom-killer and the system is not
1144 * destabilized.
1145 */
1146 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1147 GFP_KERNEL | __GFP_RETRY_MAYFAIL,
1148 cpu_to_node(cpu));
1149 if (!bpage)
1150 goto free_pages;
1151
1152 list_add(&bpage->list, pages);
1153
1154 page = alloc_pages_node(cpu_to_node(cpu),
1155 GFP_KERNEL | __GFP_RETRY_MAYFAIL, 0);
1156 if (!page)
1157 goto free_pages;
1158 bpage->page = page_address(page);
1159 rb_init_page(bpage->page);
1160 }
1161
1162 return 0;
1163
1164 free_pages:
1165 list_for_each_entry_safe(bpage, tmp, pages, list) {
1166 list_del_init(&bpage->list);
1167 free_buffer_page(bpage);
1168 }
1169
1170 return -ENOMEM;
1171 }
1172
1173 static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
1174 unsigned long nr_pages)
1175 {
1176 LIST_HEAD(pages);
1177
1178 WARN_ON(!nr_pages);
1179
1180 if (__rb_allocate_pages(nr_pages, &pages, cpu_buffer->cpu))
1181 return -ENOMEM;
1182
1183 /*
1184 * The ring buffer page list is a circular list that does not
1185 * start and end with a list head. All page list items point to
1186 * other pages.
1187 */
1188 cpu_buffer->pages = pages.next;
1189 list_del(&pages);
1190
1191 cpu_buffer->nr_pages = nr_pages;
1192
1193 rb_check_pages(cpu_buffer);
1194
1195 return 0;
1196 }
1197
1198 static struct ring_buffer_per_cpu *
1199 rb_allocate_cpu_buffer(struct ring_buffer *buffer, long nr_pages, int cpu)
1200 {
1201 struct ring_buffer_per_cpu *cpu_buffer;
1202 struct buffer_page *bpage;
1203 struct page *page;
1204 int ret;
1205
1206 cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
1207 GFP_KERNEL, cpu_to_node(cpu));
1208 if (!cpu_buffer)
1209 return NULL;
1210
1211 cpu_buffer->cpu = cpu;
1212 cpu_buffer->buffer = buffer;
1213 raw_spin_lock_init(&cpu_buffer->reader_lock);
1214 lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key);
1215 cpu_buffer->lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
1216 INIT_WORK(&cpu_buffer->update_pages_work, update_pages_handler);
1217 init_completion(&cpu_buffer->update_done);
1218 init_irq_work(&cpu_buffer->irq_work.work, rb_wake_up_waiters);
1219 init_waitqueue_head(&cpu_buffer->irq_work.waiters);
1220 init_waitqueue_head(&cpu_buffer->irq_work.full_waiters);
1221
1222 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1223 GFP_KERNEL, cpu_to_node(cpu));
1224 if (!bpage)
1225 goto fail_free_buffer;
1226
1227 rb_check_bpage(cpu_buffer, bpage);
1228
1229 cpu_buffer->reader_page = bpage;
1230 page = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL, 0);
1231 if (!page)
1232 goto fail_free_reader;
1233 bpage->page = page_address(page);
1234 rb_init_page(bpage->page);
1235
1236 INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
1237 INIT_LIST_HEAD(&cpu_buffer->new_pages);
1238
1239 ret = rb_allocate_pages(cpu_buffer, nr_pages);
1240 if (ret < 0)
1241 goto fail_free_reader;
1242
1243 cpu_buffer->head_page
1244 = list_entry(cpu_buffer->pages, struct buffer_page, list);
1245 cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
1246
1247 rb_head_page_activate(cpu_buffer);
1248
1249 return cpu_buffer;
1250
1251 fail_free_reader:
1252 free_buffer_page(cpu_buffer->reader_page);
1253
1254 fail_free_buffer:
1255 kfree(cpu_buffer);
1256 return NULL;
1257 }
1258
1259 static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
1260 {
1261 struct list_head *head = cpu_buffer->pages;
1262 struct buffer_page *bpage, *tmp;
1263
1264 free_buffer_page(cpu_buffer->reader_page);
1265
1266 rb_head_page_deactivate(cpu_buffer);
1267
1268 if (head) {
1269 list_for_each_entry_safe(bpage, tmp, head, list) {
1270 list_del_init(&bpage->list);
1271 free_buffer_page(bpage);
1272 }
1273 bpage = list_entry(head, struct buffer_page, list);
1274 free_buffer_page(bpage);
1275 }
1276
1277 kfree(cpu_buffer);
1278 }
1279
1280 /**
1281 * __ring_buffer_alloc - allocate a new ring_buffer
1282 * @size: the size in bytes per cpu that is needed.
1283 * @flags: attributes to set for the ring buffer.
1284 *
1285 * Currently the only flag that is available is the RB_FL_OVERWRITE
1286 * flag. This flag means that the buffer will overwrite old data
1287 * when the buffer wraps. If this flag is not set, the buffer will
1288 * drop data when the tail hits the head.
1289 */
1290 struct ring_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags,
1291 struct lock_class_key *key)
1292 {
1293 struct ring_buffer *buffer;
1294 long nr_pages;
1295 int bsize;
1296 int cpu;
1297 int ret;
1298
1299 /* keep it in its own cache line */
1300 buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
1301 GFP_KERNEL);
1302 if (!buffer)
1303 return NULL;
1304
1305 if (!zalloc_cpumask_var(&buffer->cpumask, GFP_KERNEL))
1306 goto fail_free_buffer;
1307
1308 nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1309 buffer->flags = flags;
1310 buffer->clock = trace_clock_local;
1311 buffer->reader_lock_key = key;
1312
1313 init_irq_work(&buffer->irq_work.work, rb_wake_up_waiters);
1314 init_waitqueue_head(&buffer->irq_work.waiters);
1315
1316 /* need at least two pages */
1317 if (nr_pages < 2)
1318 nr_pages = 2;
1319
1320 buffer->cpus = nr_cpu_ids;
1321
1322 bsize = sizeof(void *) * nr_cpu_ids;
1323 buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
1324 GFP_KERNEL);
1325 if (!buffer->buffers)
1326 goto fail_free_cpumask;
1327
1328 cpu = raw_smp_processor_id();
1329 cpumask_set_cpu(cpu, buffer->cpumask);
1330 buffer->buffers[cpu] = rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
1331 if (!buffer->buffers[cpu])
1332 goto fail_free_buffers;
1333
1334 ret = cpuhp_state_add_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node);
1335 if (ret < 0)
1336 goto fail_free_buffers;
1337
1338 mutex_init(&buffer->mutex);
1339
1340 return buffer;
1341
1342 fail_free_buffers:
1343 for_each_buffer_cpu(buffer, cpu) {
1344 if (buffer->buffers[cpu])
1345 rb_free_cpu_buffer(buffer->buffers[cpu]);
1346 }
1347 kfree(buffer->buffers);
1348
1349 fail_free_cpumask:
1350 free_cpumask_var(buffer->cpumask);
1351
1352 fail_free_buffer:
1353 kfree(buffer);
1354 return NULL;
1355 }
1356 EXPORT_SYMBOL_GPL(__ring_buffer_alloc);
1357
1358 /**
1359 * ring_buffer_free - free a ring buffer.
1360 * @buffer: the buffer to free.
1361 */
1362 void
1363 ring_buffer_free(struct ring_buffer *buffer)
1364 {
1365 int cpu;
1366
1367 cpuhp_state_remove_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node);
1368
1369 for_each_buffer_cpu(buffer, cpu)
1370 rb_free_cpu_buffer(buffer->buffers[cpu]);
1371
1372 kfree(buffer->buffers);
1373 free_cpumask_var(buffer->cpumask);
1374
1375 kfree(buffer);
1376 }
1377 EXPORT_SYMBOL_GPL(ring_buffer_free);
1378
1379 void ring_buffer_set_clock(struct ring_buffer *buffer,
1380 u64 (*clock)(void))
1381 {
1382 buffer->clock = clock;
1383 }
1384
1385 static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer);
1386
1387 static inline unsigned long rb_page_entries(struct buffer_page *bpage)
1388 {
1389 return local_read(&bpage->entries) & RB_WRITE_MASK;
1390 }
1391
1392 static inline unsigned long rb_page_write(struct buffer_page *bpage)
1393 {
1394 return local_read(&bpage->write) & RB_WRITE_MASK;
1395 }
1396
1397 static int
1398 rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned long nr_pages)
1399 {
1400 struct list_head *tail_page, *to_remove, *next_page;
1401 struct buffer_page *to_remove_page, *tmp_iter_page;
1402 struct buffer_page *last_page, *first_page;
1403 unsigned long nr_removed;
1404 unsigned long head_bit;
1405 int page_entries;
1406
1407 head_bit = 0;
1408
1409 raw_spin_lock_irq(&cpu_buffer->reader_lock);
1410 atomic_inc(&cpu_buffer->record_disabled);
1411 /*
1412 * We don't race with the readers since we have acquired the reader
1413 * lock. We also don't race with writers after disabling recording.
1414 * This makes it easy to figure out the first and the last page to be
1415 * removed from the list. We unlink all the pages in between including
1416 * the first and last pages. This is done in a busy loop so that we
1417 * lose the least number of traces.
1418 * The pages are freed after we restart recording and unlock readers.
1419 */
1420 tail_page = &cpu_buffer->tail_page->list;
1421
1422 /*
1423 * tail page might be on reader page, we remove the next page
1424 * from the ring buffer
1425 */
1426 if (cpu_buffer->tail_page == cpu_buffer->reader_page)
1427 tail_page = rb_list_head(tail_page->next);
1428 to_remove = tail_page;
1429
1430 /* start of pages to remove */
1431 first_page = list_entry(rb_list_head(to_remove->next),
1432 struct buffer_page, list);
1433
1434 for (nr_removed = 0; nr_removed < nr_pages; nr_removed++) {
1435 to_remove = rb_list_head(to_remove)->next;
1436 head_bit |= (unsigned long)to_remove & RB_PAGE_HEAD;
1437 }
1438
1439 next_page = rb_list_head(to_remove)->next;
1440
1441 /*
1442 * Now we remove all pages between tail_page and next_page.
1443 * Make sure that we have head_bit value preserved for the
1444 * next page
1445 */
1446 tail_page->next = (struct list_head *)((unsigned long)next_page |
1447 head_bit);
1448 next_page = rb_list_head(next_page);
1449 next_page->prev = tail_page;
1450
1451 /* make sure pages points to a valid page in the ring buffer */
1452 cpu_buffer->pages = next_page;
1453
1454 /* update head page */
1455 if (head_bit)
1456 cpu_buffer->head_page = list_entry(next_page,
1457 struct buffer_page, list);
1458
1459 /*
1460 * change read pointer to make sure any read iterators reset
1461 * themselves
1462 */
1463 cpu_buffer->read = 0;
1464
1465 /* pages are removed, resume tracing and then free the pages */
1466 atomic_dec(&cpu_buffer->record_disabled);
1467 raw_spin_unlock_irq(&cpu_buffer->reader_lock);
1468
1469 RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages));
1470
1471 /* last buffer page to remove */
1472 last_page = list_entry(rb_list_head(to_remove), struct buffer_page,
1473 list);
1474 tmp_iter_page = first_page;
1475
1476 do {
1477 to_remove_page = tmp_iter_page;
1478 rb_inc_page(cpu_buffer, &tmp_iter_page);
1479
1480 /* update the counters */
1481 page_entries = rb_page_entries(to_remove_page);
1482 if (page_entries) {
1483 /*
1484 * If something was added to this page, it was full
1485 * since it is not the tail page. So we deduct the
1486 * bytes consumed in ring buffer from here.
1487 * Increment overrun to account for the lost events.
1488 */
1489 local_add(page_entries, &cpu_buffer->overrun);
1490 local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
1491 }
1492
1493 /*
1494 * We have already removed references to this list item, just
1495 * free up the buffer_page and its page
1496 */
1497 free_buffer_page(to_remove_page);
1498 nr_removed--;
1499
1500 } while (to_remove_page != last_page);
1501
1502 RB_WARN_ON(cpu_buffer, nr_removed);
1503
1504 return nr_removed == 0;
1505 }
1506
1507 static int
1508 rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer)
1509 {
1510 struct list_head *pages = &cpu_buffer->new_pages;
1511 int retries, success;
1512
1513 raw_spin_lock_irq(&cpu_buffer->reader_lock);
1514 /*
1515 * We are holding the reader lock, so the reader page won't be swapped
1516 * in the ring buffer. Now we are racing with the writer trying to
1517 * move head page and the tail page.
1518 * We are going to adapt the reader page update process where:
1519 * 1. We first splice the start and end of list of new pages between
1520 * the head page and its previous page.
1521 * 2. We cmpxchg the prev_page->next to point from head page to the
1522 * start of new pages list.
1523 * 3. Finally, we update the head->prev to the end of new list.
1524 *
1525 * We will try this process 10 times, to make sure that we don't keep
1526 * spinning.
1527 */
1528 retries = 10;
1529 success = 0;
1530 while (retries--) {
1531 struct list_head *head_page, *prev_page, *r;
1532 struct list_head *last_page, *first_page;
1533 struct list_head *head_page_with_bit;
1534
1535 head_page = &rb_set_head_page(cpu_buffer)->list;
1536 if (!head_page)
1537 break;
1538 prev_page = head_page->prev;
1539
1540 first_page = pages->next;
1541 last_page = pages->prev;
1542
1543 head_page_with_bit = (struct list_head *)
1544 ((unsigned long)head_page | RB_PAGE_HEAD);
1545
1546 last_page->next = head_page_with_bit;
1547 first_page->prev = prev_page;
1548
1549 r = cmpxchg(&prev_page->next, head_page_with_bit, first_page);
1550
1551 if (r == head_page_with_bit) {
1552 /*
1553 * yay, we replaced the page pointer to our new list,
1554 * now, we just have to update to head page's prev
1555 * pointer to point to end of list
1556 */
1557 head_page->prev = last_page;
1558 success = 1;
1559 break;
1560 }
1561 }
1562
1563 if (success)
1564 INIT_LIST_HEAD(pages);
1565 /*
1566 * If we weren't successful in adding in new pages, warn and stop
1567 * tracing
1568 */
1569 RB_WARN_ON(cpu_buffer, !success);
1570 raw_spin_unlock_irq(&cpu_buffer->reader_lock);
1571
1572 /* free pages if they weren't inserted */
1573 if (!success) {
1574 struct buffer_page *bpage, *tmp;
1575 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1576 list) {
1577 list_del_init(&bpage->list);
1578 free_buffer_page(bpage);
1579 }
1580 }
1581 return success;
1582 }
1583
1584 static void rb_update_pages(struct ring_buffer_per_cpu *cpu_buffer)
1585 {
1586 int success;
1587
1588 if (cpu_buffer->nr_pages_to_update > 0)
1589 success = rb_insert_pages(cpu_buffer);
1590 else
1591 success = rb_remove_pages(cpu_buffer,
1592 -cpu_buffer->nr_pages_to_update);
1593
1594 if (success)
1595 cpu_buffer->nr_pages += cpu_buffer->nr_pages_to_update;
1596 }
1597
1598 static void update_pages_handler(struct work_struct *work)
1599 {
1600 struct ring_buffer_per_cpu *cpu_buffer = container_of(work,
1601 struct ring_buffer_per_cpu, update_pages_work);
1602 rb_update_pages(cpu_buffer);
1603 complete(&cpu_buffer->update_done);
1604 }
1605
1606 /**
1607 * ring_buffer_resize - resize the ring buffer
1608 * @buffer: the buffer to resize.
1609 * @size: the new size.
1610 * @cpu_id: the cpu buffer to resize
1611 *
1612 * Minimum size is 2 * BUF_PAGE_SIZE.
1613 *
1614 * Returns 0 on success and < 0 on failure.
1615 */
1616 int ring_buffer_resize(struct ring_buffer *buffer, unsigned long size,
1617 int cpu_id)
1618 {
1619 struct ring_buffer_per_cpu *cpu_buffer;
1620 unsigned long nr_pages;
1621 int cpu, err = 0;
1622
1623 /*
1624 * Always succeed at resizing a non-existent buffer:
1625 */
1626 if (!buffer)
1627 return size;
1628
1629 /* Make sure the requested buffer exists */
1630 if (cpu_id != RING_BUFFER_ALL_CPUS &&
1631 !cpumask_test_cpu(cpu_id, buffer->cpumask))
1632 return size;
1633
1634 nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1635
1636 /* we need a minimum of two pages */
1637 if (nr_pages < 2)
1638 nr_pages = 2;
1639
1640 size = nr_pages * BUF_PAGE_SIZE;
1641
1642 /*
1643 * Don't succeed if resizing is disabled, as a reader might be
1644 * manipulating the ring buffer and is expecting a sane state while
1645 * this is true.
1646 */
1647 if (atomic_read(&buffer->resize_disabled))
1648 return -EBUSY;
1649
1650 /* prevent another thread from changing buffer sizes */
1651 mutex_lock(&buffer->mutex);
1652
1653 if (cpu_id == RING_BUFFER_ALL_CPUS) {
1654 /* calculate the pages to update */
1655 for_each_buffer_cpu(buffer, cpu) {
1656 cpu_buffer = buffer->buffers[cpu];
1657
1658 cpu_buffer->nr_pages_to_update = nr_pages -
1659 cpu_buffer->nr_pages;
1660 /*
1661 * nothing more to do for removing pages or no update
1662 */
1663 if (cpu_buffer->nr_pages_to_update <= 0)
1664 continue;
1665 /*
1666 * to add pages, make sure all new pages can be
1667 * allocated without receiving ENOMEM
1668 */
1669 INIT_LIST_HEAD(&cpu_buffer->new_pages);
1670 if (__rb_allocate_pages(cpu_buffer->nr_pages_to_update,
1671 &cpu_buffer->new_pages, cpu)) {
1672 /* not enough memory for new pages */
1673 err = -ENOMEM;
1674 goto out_err;
1675 }
1676 }
1677
1678 get_online_cpus();
1679 /*
1680 * Fire off all the required work handlers
1681 * We can't schedule on offline CPUs, but it's not necessary
1682 * since we can change their buffer sizes without any race.
1683 */
1684 for_each_buffer_cpu(buffer, cpu) {
1685 cpu_buffer = buffer->buffers[cpu];
1686 if (!cpu_buffer->nr_pages_to_update)
1687 continue;
1688
1689 /* Can't run something on an offline CPU. */
1690 if (!cpu_online(cpu)) {
1691 rb_update_pages(cpu_buffer);
1692 cpu_buffer->nr_pages_to_update = 0;
1693 } else {
1694 schedule_work_on(cpu,
1695 &cpu_buffer->update_pages_work);
1696 }
1697 }
1698
1699 /* wait for all the updates to complete */
1700 for_each_buffer_cpu(buffer, cpu) {
1701 cpu_buffer = buffer->buffers[cpu];
1702 if (!cpu_buffer->nr_pages_to_update)
1703 continue;
1704
1705 if (cpu_online(cpu))
1706 wait_for_completion(&cpu_buffer->update_done);
1707 cpu_buffer->nr_pages_to_update = 0;
1708 }
1709
1710 put_online_cpus();
1711 } else {
1712 /* Make sure this CPU has been intitialized */
1713 if (!cpumask_test_cpu(cpu_id, buffer->cpumask))
1714 goto out;
1715
1716 cpu_buffer = buffer->buffers[cpu_id];
1717
1718 if (nr_pages == cpu_buffer->nr_pages)
1719 goto out;
1720
1721 cpu_buffer->nr_pages_to_update = nr_pages -
1722 cpu_buffer->nr_pages;
1723
1724 INIT_LIST_HEAD(&cpu_buffer->new_pages);
1725 if (cpu_buffer->nr_pages_to_update > 0 &&
1726 __rb_allocate_pages(cpu_buffer->nr_pages_to_update,
1727 &cpu_buffer->new_pages, cpu_id)) {
1728 err = -ENOMEM;
1729 goto out_err;
1730 }
1731
1732 get_online_cpus();
1733
1734 /* Can't run something on an offline CPU. */
1735 if (!cpu_online(cpu_id))
1736 rb_update_pages(cpu_buffer);
1737 else {
1738 schedule_work_on(cpu_id,
1739 &cpu_buffer->update_pages_work);
1740 wait_for_completion(&cpu_buffer->update_done);
1741 }
1742
1743 cpu_buffer->nr_pages_to_update = 0;
1744 put_online_cpus();
1745 }
1746
1747 out:
1748 /*
1749 * The ring buffer resize can happen with the ring buffer
1750 * enabled, so that the update disturbs the tracing as little
1751 * as possible. But if the buffer is disabled, we do not need
1752 * to worry about that, and we can take the time to verify
1753 * that the buffer is not corrupt.
1754 */
1755 if (atomic_read(&buffer->record_disabled)) {
1756 atomic_inc(&buffer->record_disabled);
1757 /*
1758 * Even though the buffer was disabled, we must make sure
1759 * that it is truly disabled before calling rb_check_pages.
1760 * There could have been a race between checking
1761 * record_disable and incrementing it.
1762 */
1763 synchronize_sched();
1764 for_each_buffer_cpu(buffer, cpu) {
1765 cpu_buffer = buffer->buffers[cpu];
1766 rb_check_pages(cpu_buffer);
1767 }
1768 atomic_dec(&buffer->record_disabled);
1769 }
1770
1771 mutex_unlock(&buffer->mutex);
1772 return size;
1773
1774 out_err:
1775 for_each_buffer_cpu(buffer, cpu) {
1776 struct buffer_page *bpage, *tmp;
1777
1778 cpu_buffer = buffer->buffers[cpu];
1779 cpu_buffer->nr_pages_to_update = 0;
1780
1781 if (list_empty(&cpu_buffer->new_pages))
1782 continue;
1783
1784 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1785 list) {
1786 list_del_init(&bpage->list);
1787 free_buffer_page(bpage);
1788 }
1789 }
1790 mutex_unlock(&buffer->mutex);
1791 return err;
1792 }
1793 EXPORT_SYMBOL_GPL(ring_buffer_resize);
1794
1795 void ring_buffer_change_overwrite(struct ring_buffer *buffer, int val)
1796 {
1797 mutex_lock(&buffer->mutex);
1798 if (val)
1799 buffer->flags |= RB_FL_OVERWRITE;
1800 else
1801 buffer->flags &= ~RB_FL_OVERWRITE;
1802 mutex_unlock(&buffer->mutex);
1803 }
1804 EXPORT_SYMBOL_GPL(ring_buffer_change_overwrite);
1805
1806 static __always_inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
1807 {
1808 return bpage->page->data + index;
1809 }
1810
1811 static __always_inline struct ring_buffer_event *
1812 rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
1813 {
1814 return __rb_page_index(cpu_buffer->reader_page,
1815 cpu_buffer->reader_page->read);
1816 }
1817
1818 static __always_inline struct ring_buffer_event *
1819 rb_iter_head_event(struct ring_buffer_iter *iter)
1820 {
1821 return __rb_page_index(iter->head_page, iter->head);
1822 }
1823
1824 static __always_inline unsigned rb_page_commit(struct buffer_page *bpage)
1825 {
1826 return local_read(&bpage->page->commit);
1827 }
1828
1829 /* Size is determined by what has been committed */
1830 static __always_inline unsigned rb_page_size(struct buffer_page *bpage)
1831 {
1832 return rb_page_commit(bpage);
1833 }
1834
1835 static __always_inline unsigned
1836 rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
1837 {
1838 return rb_page_commit(cpu_buffer->commit_page);
1839 }
1840
1841 static __always_inline unsigned
1842 rb_event_index(struct ring_buffer_event *event)
1843 {
1844 unsigned long addr = (unsigned long)event;
1845
1846 return (addr & ~PAGE_MASK) - BUF_PAGE_HDR_SIZE;
1847 }
1848
1849 static void rb_inc_iter(struct ring_buffer_iter *iter)
1850 {
1851 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
1852
1853 /*
1854 * The iterator could be on the reader page (it starts there).
1855 * But the head could have moved, since the reader was
1856 * found. Check for this case and assign the iterator
1857 * to the head page instead of next.
1858 */
1859 if (iter->head_page == cpu_buffer->reader_page)
1860 iter->head_page = rb_set_head_page(cpu_buffer);
1861 else
1862 rb_inc_page(cpu_buffer, &iter->head_page);
1863
1864 iter->read_stamp = iter->head_page->page->time_stamp;
1865 iter->head = 0;
1866 }
1867
1868 /*
1869 * rb_handle_head_page - writer hit the head page
1870 *
1871 * Returns: +1 to retry page
1872 * 0 to continue
1873 * -1 on error
1874 */
1875 static int
1876 rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer,
1877 struct buffer_page *tail_page,
1878 struct buffer_page *next_page)
1879 {
1880 struct buffer_page *new_head;
1881 int entries;
1882 int type;
1883 int ret;
1884
1885 entries = rb_page_entries(next_page);
1886
1887 /*
1888 * The hard part is here. We need to move the head
1889 * forward, and protect against both readers on
1890 * other CPUs and writers coming in via interrupts.
1891 */
1892 type = rb_head_page_set_update(cpu_buffer, next_page, tail_page,
1893 RB_PAGE_HEAD);
1894
1895 /*
1896 * type can be one of four:
1897 * NORMAL - an interrupt already moved it for us
1898 * HEAD - we are the first to get here.
1899 * UPDATE - we are the interrupt interrupting
1900 * a current move.
1901 * MOVED - a reader on another CPU moved the next
1902 * pointer to its reader page. Give up
1903 * and try again.
1904 */
1905
1906 switch (type) {
1907 case RB_PAGE_HEAD:
1908 /*
1909 * We changed the head to UPDATE, thus
1910 * it is our responsibility to update
1911 * the counters.
1912 */
1913 local_add(entries, &cpu_buffer->overrun);
1914 local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
1915
1916 /*
1917 * The entries will be zeroed out when we move the
1918 * tail page.
1919 */
1920
1921 /* still more to do */
1922 break;
1923
1924 case RB_PAGE_UPDATE:
1925 /*
1926 * This is an interrupt that interrupt the
1927 * previous update. Still more to do.
1928 */
1929 break;
1930 case RB_PAGE_NORMAL:
1931 /*
1932 * An interrupt came in before the update
1933 * and processed this for us.
1934 * Nothing left to do.
1935 */
1936 return 1;
1937 case RB_PAGE_MOVED:
1938 /*
1939 * The reader is on another CPU and just did
1940 * a swap with our next_page.
1941 * Try again.
1942 */
1943 return 1;
1944 default:
1945 RB_WARN_ON(cpu_buffer, 1); /* WTF??? */
1946 return -1;
1947 }
1948
1949 /*
1950 * Now that we are here, the old head pointer is
1951 * set to UPDATE. This will keep the reader from
1952 * swapping the head page with the reader page.
1953 * The reader (on another CPU) will spin till
1954 * we are finished.
1955 *
1956 * We just need to protect against interrupts
1957 * doing the job. We will set the next pointer
1958 * to HEAD. After that, we set the old pointer
1959 * to NORMAL, but only if it was HEAD before.
1960 * otherwise we are an interrupt, and only
1961 * want the outer most commit to reset it.
1962 */
1963 new_head = next_page;
1964 rb_inc_page(cpu_buffer, &new_head);
1965
1966 ret = rb_head_page_set_head(cpu_buffer, new_head, next_page,
1967 RB_PAGE_NORMAL);
1968
1969 /*
1970 * Valid returns are:
1971 * HEAD - an interrupt came in and already set it.
1972 * NORMAL - One of two things:
1973 * 1) We really set it.
1974 * 2) A bunch of interrupts came in and moved
1975 * the page forward again.
1976 */
1977 switch (ret) {
1978 case RB_PAGE_HEAD:
1979 case RB_PAGE_NORMAL:
1980 /* OK */
1981 break;
1982 default:
1983 RB_WARN_ON(cpu_buffer, 1);
1984 return -1;
1985 }
1986
1987 /*
1988 * It is possible that an interrupt came in,
1989 * set the head up, then more interrupts came in
1990 * and moved it again. When we get back here,
1991 * the page would have been set to NORMAL but we
1992 * just set it back to HEAD.
1993 *
1994 * How do you detect this? Well, if that happened
1995 * the tail page would have moved.
1996 */
1997 if (ret == RB_PAGE_NORMAL) {
1998 struct buffer_page *buffer_tail_page;
1999
2000 buffer_tail_page = READ_ONCE(cpu_buffer->tail_page);
2001 /*
2002 * If the tail had moved passed next, then we need
2003 * to reset the pointer.
2004 */
2005 if (buffer_tail_page != tail_page &&
2006 buffer_tail_page != next_page)
2007 rb_head_page_set_normal(cpu_buffer, new_head,
2008 next_page,
2009 RB_PAGE_HEAD);
2010 }
2011
2012 /*
2013 * If this was the outer most commit (the one that
2014 * changed the original pointer from HEAD to UPDATE),
2015 * then it is up to us to reset it to NORMAL.
2016 */
2017 if (type == RB_PAGE_HEAD) {
2018 ret = rb_head_page_set_normal(cpu_buffer, next_page,
2019 tail_page,
2020 RB_PAGE_UPDATE);
2021 if (RB_WARN_ON(cpu_buffer,
2022 ret != RB_PAGE_UPDATE))
2023 return -1;
2024 }
2025
2026 return 0;
2027 }
2028
2029 static inline void
2030 rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer,
2031 unsigned long tail, struct rb_event_info *info)
2032 {
2033 struct buffer_page *tail_page = info->tail_page;
2034 struct ring_buffer_event *event;
2035 unsigned long length = info->length;
2036
2037 /*
2038 * Only the event that crossed the page boundary
2039 * must fill the old tail_page with padding.
2040 */
2041 if (tail >= BUF_PAGE_SIZE) {
2042 /*
2043 * If the page was filled, then we still need
2044 * to update the real_end. Reset it to zero
2045 * and the reader will ignore it.
2046 */
2047 if (tail == BUF_PAGE_SIZE)
2048 tail_page->real_end = 0;
2049
2050 local_sub(length, &tail_page->write);
2051 return;
2052 }
2053
2054 event = __rb_page_index(tail_page, tail);
2055
2056 /* account for padding bytes */
2057 local_add(BUF_PAGE_SIZE - tail, &cpu_buffer->entries_bytes);
2058
2059 /*
2060 * Save the original length to the meta data.
2061 * This will be used by the reader to add lost event
2062 * counter.
2063 */
2064 tail_page->real_end = tail;
2065
2066 /*
2067 * If this event is bigger than the minimum size, then
2068 * we need to be careful that we don't subtract the
2069 * write counter enough to allow another writer to slip
2070 * in on this page.
2071 * We put in a discarded commit instead, to make sure
2072 * that this space is not used again.
2073 *
2074 * If we are less than the minimum size, we don't need to
2075 * worry about it.
2076 */
2077 if (tail > (BUF_PAGE_SIZE - RB_EVNT_MIN_SIZE)) {
2078 /* No room for any events */
2079
2080 /* Mark the rest of the page with padding */
2081 rb_event_set_padding(event);
2082
2083 /* Set the write back to the previous setting */
2084 local_sub(length, &tail_page->write);
2085 return;
2086 }
2087
2088 /* Put in a discarded event */
2089 event->array[0] = (BUF_PAGE_SIZE - tail) - RB_EVNT_HDR_SIZE;
2090 event->type_len = RINGBUF_TYPE_PADDING;
2091 /* time delta must be non zero */
2092 event->time_delta = 1;
2093
2094 /* Set write to end of buffer */
2095 length = (tail + length) - BUF_PAGE_SIZE;
2096 local_sub(length, &tail_page->write);
2097 }
2098
2099 static inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer);
2100
2101 /*
2102 * This is the slow path, force gcc not to inline it.
2103 */
2104 static noinline struct ring_buffer_event *
2105 rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer,
2106 unsigned long tail, struct rb_event_info *info)
2107 {
2108 struct buffer_page *tail_page = info->tail_page;
2109 struct buffer_page *commit_page = cpu_buffer->commit_page;
2110 struct ring_buffer *buffer = cpu_buffer->buffer;
2111 struct buffer_page *next_page;
2112 int ret;
2113
2114 next_page = tail_page;
2115
2116 rb_inc_page(cpu_buffer, &next_page);
2117
2118 /*
2119 * If for some reason, we had an interrupt storm that made
2120 * it all the way around the buffer, bail, and warn
2121 * about it.
2122 */
2123 if (unlikely(next_page == commit_page)) {
2124 local_inc(&cpu_buffer->commit_overrun);
2125 goto out_reset;
2126 }
2127
2128 /*
2129 * This is where the fun begins!
2130 *
2131 * We are fighting against races between a reader that
2132 * could be on another CPU trying to swap its reader
2133 * page with the buffer head.
2134 *
2135 * We are also fighting against interrupts coming in and
2136 * moving the head or tail on us as well.
2137 *
2138 * If the next page is the head page then we have filled
2139 * the buffer, unless the commit page is still on the
2140 * reader page.
2141 */
2142 if (rb_is_head_page(cpu_buffer, next_page, &tail_page->list)) {
2143
2144 /*
2145 * If the commit is not on the reader page, then
2146 * move the header page.
2147 */
2148 if (!rb_is_reader_page(cpu_buffer->commit_page)) {
2149 /*
2150 * If we are not in overwrite mode,
2151 * this is easy, just stop here.
2152 */
2153 if (!(buffer->flags & RB_FL_OVERWRITE)) {
2154 local_inc(&cpu_buffer->dropped_events);
2155 goto out_reset;
2156 }
2157
2158 ret = rb_handle_head_page(cpu_buffer,
2159 tail_page,
2160 next_page);
2161 if (ret < 0)
2162 goto out_reset;
2163 if (ret)
2164 goto out_again;
2165 } else {
2166 /*
2167 * We need to be careful here too. The
2168 * commit page could still be on the reader
2169 * page. We could have a small buffer, and
2170 * have filled up the buffer with events
2171 * from interrupts and such, and wrapped.
2172 *
2173 * Note, if the tail page is also the on the
2174 * reader_page, we let it move out.
2175 */
2176 if (unlikely((cpu_buffer->commit_page !=
2177 cpu_buffer->tail_page) &&
2178 (cpu_buffer->commit_page ==
2179 cpu_buffer->reader_page))) {
2180 local_inc(&cpu_buffer->commit_overrun);
2181 goto out_reset;
2182 }
2183 }
2184 }
2185
2186 rb_tail_page_update(cpu_buffer, tail_page, next_page);
2187
2188 out_again:
2189
2190 rb_reset_tail(cpu_buffer, tail, info);
2191
2192 /* Commit what we have for now. */
2193 rb_end_commit(cpu_buffer);
2194 /* rb_end_commit() decs committing */
2195 local_inc(&cpu_buffer->committing);
2196
2197 /* fail and let the caller try again */
2198 return ERR_PTR(-EAGAIN);
2199
2200 out_reset:
2201 /* reset write */
2202 rb_reset_tail(cpu_buffer, tail, info);
2203
2204 return NULL;
2205 }
2206
2207 /* Slow path, do not inline */
2208 static noinline struct ring_buffer_event *
2209 rb_add_time_stamp(struct ring_buffer_event *event, u64 delta)
2210 {
2211 event->type_len = RINGBUF_TYPE_TIME_EXTEND;
2212
2213 /* Not the first event on the page? */
2214 if (rb_event_index(event)) {
2215 event->time_delta = delta & TS_MASK;
2216 event->array[0] = delta >> TS_SHIFT;
2217 } else {
2218 /* nope, just zero it */
2219 event->time_delta = 0;
2220 event->array[0] = 0;
2221 }
2222
2223 return skip_time_extend(event);
2224 }
2225
2226 static inline bool rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
2227 struct ring_buffer_event *event);
2228
2229 /**
2230 * rb_update_event - update event type and data
2231 * @event: the event to update
2232 * @type: the type of event
2233 * @length: the size of the event field in the ring buffer
2234 *
2235 * Update the type and data fields of the event. The length
2236 * is the actual size that is written to the ring buffer,
2237 * and with this, we can determine what to place into the
2238 * data field.
2239 */
2240 static void
2241 rb_update_event(struct ring_buffer_per_cpu *cpu_buffer,
2242 struct ring_buffer_event *event,
2243 struct rb_event_info *info)
2244 {
2245 unsigned length = info->length;
2246 u64 delta = info->delta;
2247
2248 /* Only a commit updates the timestamp */
2249 if (unlikely(!rb_event_is_commit(cpu_buffer, event)))
2250 delta = 0;
2251
2252 /*
2253 * If we need to add a timestamp, then we
2254 * add it to the start of the resevered space.
2255 */
2256 if (unlikely(info->add_timestamp)) {
2257 event = rb_add_time_stamp(event, delta);
2258 length -= RB_LEN_TIME_EXTEND;
2259 delta = 0;
2260 }
2261
2262 event->time_delta = delta;
2263 length -= RB_EVNT_HDR_SIZE;
2264 if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) {
2265 event->type_len = 0;
2266 event->array[0] = length;
2267 } else
2268 event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT);
2269 }
2270
2271 static unsigned rb_calculate_event_length(unsigned length)
2272 {
2273 struct ring_buffer_event event; /* Used only for sizeof array */
2274
2275 /* zero length can cause confusions */
2276 if (!length)
2277 length++;
2278
2279 if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT)
2280 length += sizeof(event.array[0]);
2281
2282 length += RB_EVNT_HDR_SIZE;
2283 length = ALIGN(length, RB_ARCH_ALIGNMENT);
2284
2285 /*
2286 * In case the time delta is larger than the 27 bits for it
2287 * in the header, we need to add a timestamp. If another
2288 * event comes in when trying to discard this one to increase
2289 * the length, then the timestamp will be added in the allocated
2290 * space of this event. If length is bigger than the size needed
2291 * for the TIME_EXTEND, then padding has to be used. The events
2292 * length must be either RB_LEN_TIME_EXTEND, or greater than or equal
2293 * to RB_LEN_TIME_EXTEND + 8, as 8 is the minimum size for padding.
2294 * As length is a multiple of 4, we only need to worry if it
2295 * is 12 (RB_LEN_TIME_EXTEND + 4).
2296 */
2297 if (length == RB_LEN_TIME_EXTEND + RB_ALIGNMENT)
2298 length += RB_ALIGNMENT;
2299
2300 return length;
2301 }
2302
2303 #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
2304 static inline bool sched_clock_stable(void)
2305 {
2306 return true;
2307 }
2308 #endif
2309
2310 static inline int
2311 rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer,
2312 struct ring_buffer_event *event)
2313 {
2314 unsigned long new_index, old_index;
2315 struct buffer_page *bpage;
2316 unsigned long index;
2317 unsigned long addr;
2318
2319 new_index = rb_event_index(event);
2320 old_index = new_index + rb_event_ts_length(event);
2321 addr = (unsigned long)event;
2322 addr &= PAGE_MASK;
2323
2324 bpage = READ_ONCE(cpu_buffer->tail_page);
2325
2326 if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) {
2327 unsigned long write_mask =
2328 local_read(&bpage->write) & ~RB_WRITE_MASK;
2329 unsigned long event_length = rb_event_length(event);
2330 /*
2331 * This is on the tail page. It is possible that
2332 * a write could come in and move the tail page
2333 * and write to the next page. That is fine
2334 * because we just shorten what is on this page.
2335 */
2336 old_index += write_mask;
2337 new_index += write_mask;
2338 index = local_cmpxchg(&bpage->write, old_index, new_index);
2339 if (index == old_index) {
2340 /* update counters */
2341 local_sub(event_length, &cpu_buffer->entries_bytes);
2342 return 1;
2343 }
2344 }
2345
2346 /* could not discard */
2347 return 0;
2348 }
2349
2350 static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer)
2351 {
2352 local_inc(&cpu_buffer->committing);
2353 local_inc(&cpu_buffer->commits);
2354 }
2355
2356 static __always_inline void
2357 rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
2358 {
2359 unsigned long max_count;
2360
2361 /*
2362 * We only race with interrupts and NMIs on this CPU.
2363 * If we own the commit event, then we can commit
2364 * all others that interrupted us, since the interruptions
2365 * are in stack format (they finish before they come
2366 * back to us). This allows us to do a simple loop to
2367 * assign the commit to the tail.
2368 */
2369 again:
2370 max_count = cpu_buffer->nr_pages * 100;
2371
2372 while (cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page)) {
2373 if (RB_WARN_ON(cpu_buffer, !(--max_count)))
2374 return;
2375 if (RB_WARN_ON(cpu_buffer,
2376 rb_is_reader_page(cpu_buffer->tail_page)))
2377 return;
2378 local_set(&cpu_buffer->commit_page->page->commit,
2379 rb_page_write(cpu_buffer->commit_page));
2380 rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
2381 /* Only update the write stamp if the page has an event */
2382 if (rb_page_write(cpu_buffer->commit_page))
2383 cpu_buffer->write_stamp =
2384 cpu_buffer->commit_page->page->time_stamp;
2385 /* add barrier to keep gcc from optimizing too much */
2386 barrier();
2387 }
2388 while (rb_commit_index(cpu_buffer) !=
2389 rb_page_write(cpu_buffer->commit_page)) {
2390
2391 local_set(&cpu_buffer->commit_page->page->commit,
2392 rb_page_write(cpu_buffer->commit_page));
2393 RB_WARN_ON(cpu_buffer,
2394 local_read(&cpu_buffer->commit_page->page->commit) &
2395 ~RB_WRITE_MASK);
2396 barrier();
2397 }
2398
2399 /* again, keep gcc from optimizing */
2400 barrier();
2401
2402 /*
2403 * If an interrupt came in just after the first while loop
2404 * and pushed the tail page forward, we will be left with
2405 * a dangling commit that will never go forward.
2406 */
2407 if (unlikely(cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page)))
2408 goto again;
2409 }
2410
2411 static __always_inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer)
2412 {
2413 unsigned long commits;
2414
2415 if (RB_WARN_ON(cpu_buffer,
2416 !local_read(&cpu_buffer->committing)))
2417 return;
2418
2419 again:
2420 commits = local_read(&cpu_buffer->commits);
2421 /* synchronize with interrupts */
2422 barrier();
2423 if (local_read(&cpu_buffer->committing) == 1)
2424 rb_set_commit_to_write(cpu_buffer);
2425
2426 local_dec(&cpu_buffer->committing);
2427
2428 /* synchronize with interrupts */
2429 barrier();
2430
2431 /*
2432 * Need to account for interrupts coming in between the
2433 * updating of the commit page and the clearing of the
2434 * committing counter.
2435 */
2436 if (unlikely(local_read(&cpu_buffer->commits) != commits) &&
2437 !local_read(&cpu_buffer->committing)) {
2438 local_inc(&cpu_buffer->committing);
2439 goto again;
2440 }
2441 }
2442
2443 static inline void rb_event_discard(struct ring_buffer_event *event)
2444 {
2445 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
2446 event = skip_time_extend(event);
2447
2448 /* array[0] holds the actual length for the discarded event */
2449 event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE;
2450 event->type_len = RINGBUF_TYPE_PADDING;
2451 /* time delta must be non zero */
2452 if (!event->time_delta)
2453 event->time_delta = 1;
2454 }
2455
2456 static __always_inline bool
2457 rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
2458 struct ring_buffer_event *event)
2459 {
2460 unsigned long addr = (unsigned long)event;
2461 unsigned long index;
2462
2463 index = rb_event_index(event);
2464 addr &= PAGE_MASK;
2465
2466 return cpu_buffer->commit_page->page == (void *)addr &&
2467 rb_commit_index(cpu_buffer) == index;
2468 }
2469
2470 static __always_inline void
2471 rb_update_write_stamp(struct ring_buffer_per_cpu *cpu_buffer,
2472 struct ring_buffer_event *event)
2473 {
2474 u64 delta;
2475
2476 /*
2477 * The event first in the commit queue updates the
2478 * time stamp.
2479 */
2480 if (rb_event_is_commit(cpu_buffer, event)) {
2481 /*
2482 * A commit event that is first on a page
2483 * updates the write timestamp with the page stamp
2484 */
2485 if (!rb_event_index(event))
2486 cpu_buffer->write_stamp =
2487 cpu_buffer->commit_page->page->time_stamp;
2488 else if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) {
2489 delta = event->array[0];
2490 delta <<= TS_SHIFT;
2491 delta += event->time_delta;
2492 cpu_buffer->write_stamp += delta;
2493 } else
2494 cpu_buffer->write_stamp += event->time_delta;
2495 }
2496 }
2497
2498 static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer,
2499 struct ring_buffer_event *event)
2500 {
2501 local_inc(&cpu_buffer->entries);
2502 rb_update_write_stamp(cpu_buffer, event);
2503 rb_end_commit(cpu_buffer);
2504 }
2505
2506 static __always_inline void
2507 rb_wakeups(struct ring_buffer *buffer, struct ring_buffer_per_cpu *cpu_buffer)
2508 {
2509 bool pagebusy;
2510
2511 if (buffer->irq_work.waiters_pending) {
2512 buffer->irq_work.waiters_pending = false;
2513 /* irq_work_queue() supplies it's own memory barriers */
2514 irq_work_queue(&buffer->irq_work.work);
2515 }
2516
2517 if (cpu_buffer->irq_work.waiters_pending) {
2518 cpu_buffer->irq_work.waiters_pending = false;
2519 /* irq_work_queue() supplies it's own memory barriers */
2520 irq_work_queue(&cpu_buffer->irq_work.work);
2521 }
2522
2523 pagebusy = cpu_buffer->reader_page == cpu_buffer->commit_page;
2524
2525 if (!pagebusy && cpu_buffer->irq_work.full_waiters_pending) {
2526 cpu_buffer->irq_work.wakeup_full = true;
2527 cpu_buffer->irq_work.full_waiters_pending = false;
2528 /* irq_work_queue() supplies it's own memory barriers */
2529 irq_work_queue(&cpu_buffer->irq_work.work);
2530 }
2531 }
2532
2533 /*
2534 * The lock and unlock are done within a preempt disable section.
2535 * The current_context per_cpu variable can only be modified
2536 * by the current task between lock and unlock. But it can
2537 * be modified more than once via an interrupt. To pass this
2538 * information from the lock to the unlock without having to
2539 * access the 'in_interrupt()' functions again (which do show
2540 * a bit of overhead in something as critical as function tracing,
2541 * we use a bitmask trick.
2542 *
2543 * bit 0 = NMI context
2544 * bit 1 = IRQ context
2545 * bit 2 = SoftIRQ context
2546 * bit 3 = normal context.
2547 *
2548 * This works because this is the order of contexts that can
2549 * preempt other contexts. A SoftIRQ never preempts an IRQ
2550 * context.
2551 *
2552 * When the context is determined, the corresponding bit is
2553 * checked and set (if it was set, then a recursion of that context
2554 * happened).
2555 *
2556 * On unlock, we need to clear this bit. To do so, just subtract
2557 * 1 from the current_context and AND it to itself.
2558 *
2559 * (binary)
2560 * 101 - 1 = 100
2561 * 101 & 100 = 100 (clearing bit zero)
2562 *
2563 * 1010 - 1 = 1001
2564 * 1010 & 1001 = 1000 (clearing bit 1)
2565 *
2566 * The least significant bit can be cleared this way, and it
2567 * just so happens that it is the same bit corresponding to
2568 * the current context.
2569 */
2570
2571 static __always_inline int
2572 trace_recursive_lock(struct ring_buffer_per_cpu *cpu_buffer)
2573 {
2574 unsigned int val = cpu_buffer->current_context;
2575 unsigned long pc = preempt_count();
2576 int bit;
2577
2578 if (!(pc & (NMI_MASK | HARDIRQ_MASK | SOFTIRQ_OFFSET)))
2579 bit = RB_CTX_NORMAL;
2580 else
2581 bit = pc & NMI_MASK ? RB_CTX_NMI :
2582 pc & HARDIRQ_MASK ? RB_CTX_IRQ :
2583 pc & SOFTIRQ_OFFSET ? 2 : RB_CTX_SOFTIRQ;
2584
2585 if (unlikely(val & (1 << bit)))
2586 return 1;
2587
2588 val |= (1 << bit);
2589 cpu_buffer->current_context = val;
2590
2591 return 0;
2592 }
2593
2594 static __always_inline void
2595 trace_recursive_unlock(struct ring_buffer_per_cpu *cpu_buffer)
2596 {
2597 cpu_buffer->current_context &= cpu_buffer->current_context - 1;
2598 }
2599
2600 /**
2601 * ring_buffer_unlock_commit - commit a reserved
2602 * @buffer: The buffer to commit to
2603 * @event: The event pointer to commit.
2604 *
2605 * This commits the data to the ring buffer, and releases any locks held.
2606 *
2607 * Must be paired with ring_buffer_lock_reserve.
2608 */
2609 int ring_buffer_unlock_commit(struct ring_buffer *buffer,
2610 struct ring_buffer_event *event)
2611 {
2612 struct ring_buffer_per_cpu *cpu_buffer;
2613 int cpu = raw_smp_processor_id();
2614
2615 cpu_buffer = buffer->buffers[cpu];
2616
2617 rb_commit(cpu_buffer, event);
2618
2619 rb_wakeups(buffer, cpu_buffer);
2620
2621 trace_recursive_unlock(cpu_buffer);
2622
2623 preempt_enable_notrace();
2624
2625 return 0;
2626 }
2627 EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit);
2628
2629 static noinline void
2630 rb_handle_timestamp(struct ring_buffer_per_cpu *cpu_buffer,
2631 struct rb_event_info *info)
2632 {
2633 WARN_ONCE(info->delta > (1ULL << 59),
2634 KERN_WARNING "Delta way too big! %llu ts=%llu write stamp = %llu\n%s",
2635 (unsigned long long)info->delta,
2636 (unsigned long long)info->ts,
2637 (unsigned long long)cpu_buffer->write_stamp,
2638 sched_clock_stable() ? "" :
2639 "If you just came from a suspend/resume,\n"
2640 "please switch to the trace global clock:\n"
2641 " echo global > /sys/kernel/debug/tracing/trace_clock\n");
2642 info->add_timestamp = 1;
2643 }
2644
2645 static struct ring_buffer_event *
2646 __rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
2647 struct rb_event_info *info)
2648 {
2649 struct ring_buffer_event *event;
2650 struct buffer_page *tail_page;
2651 unsigned long tail, write;
2652
2653 /*
2654 * If the time delta since the last event is too big to
2655 * hold in the time field of the event, then we append a
2656 * TIME EXTEND event ahead of the data event.
2657 */
2658 if (unlikely(info->add_timestamp))
2659 info->length += RB_LEN_TIME_EXTEND;
2660
2661 /* Don't let the compiler play games with cpu_buffer->tail_page */
2662 tail_page = info->tail_page = READ_ONCE(cpu_buffer->tail_page);
2663 write = local_add_return(info->length, &tail_page->write);
2664
2665 /* set write to only the index of the write */
2666 write &= RB_WRITE_MASK;
2667 tail = write - info->length;
2668
2669 /*
2670 * If this is the first commit on the page, then it has the same
2671 * timestamp as the page itself.
2672 */
2673 if (!tail)
2674 info->delta = 0;
2675
2676 /* See if we shot pass the end of this buffer page */
2677 if (unlikely(write > BUF_PAGE_SIZE))
2678 return rb_move_tail(cpu_buffer, tail, info);
2679
2680 /* We reserved something on the buffer */
2681
2682 event = __rb_page_index(tail_page, tail);
2683 rb_update_event(cpu_buffer, event, info);
2684
2685 local_inc(&tail_page->entries);
2686
2687 /*
2688 * If this is the first commit on the page, then update
2689 * its timestamp.
2690 */
2691 if (!tail)
2692 tail_page->page->time_stamp = info->ts;
2693
2694 /* account for these added bytes */
2695 local_add(info->length, &cpu_buffer->entries_bytes);
2696
2697 return event;
2698 }
2699
2700 static __always_inline struct ring_buffer_event *
2701 rb_reserve_next_event(struct ring_buffer *buffer,
2702 struct ring_buffer_per_cpu *cpu_buffer,
2703 unsigned long length)
2704 {
2705 struct ring_buffer_event *event;
2706 struct rb_event_info info;
2707 int nr_loops = 0;
2708 u64 diff;
2709
2710 rb_start_commit(cpu_buffer);
2711
2712 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
2713 /*
2714 * Due to the ability to swap a cpu buffer from a buffer
2715 * it is possible it was swapped before we committed.
2716 * (committing stops a swap). We check for it here and
2717 * if it happened, we have to fail the write.
2718 */
2719 barrier();
2720 if (unlikely(READ_ONCE(cpu_buffer->buffer) != buffer)) {
2721 local_dec(&cpu_buffer->committing);
2722 local_dec(&cpu_buffer->commits);
2723 return NULL;
2724 }
2725 #endif
2726
2727 info.length = rb_calculate_event_length(length);
2728 again:
2729 info.add_timestamp = 0;
2730 info.delta = 0;
2731
2732 /*
2733 * We allow for interrupts to reenter here and do a trace.
2734 * If one does, it will cause this original code to loop
2735 * back here. Even with heavy interrupts happening, this
2736 * should only happen a few times in a row. If this happens
2737 * 1000 times in a row, there must be either an interrupt
2738 * storm or we have something buggy.
2739 * Bail!
2740 */
2741 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
2742 goto out_fail;
2743
2744 info.ts = rb_time_stamp(cpu_buffer->buffer);
2745 diff = info.ts - cpu_buffer->write_stamp;
2746
2747 /* make sure this diff is calculated here */
2748 barrier();
2749
2750 /* Did the write stamp get updated already? */
2751 if (likely(info.ts >= cpu_buffer->write_stamp)) {
2752 info.delta = diff;
2753 if (unlikely(test_time_stamp(info.delta)))
2754 rb_handle_timestamp(cpu_buffer, &info);
2755 }
2756
2757 event = __rb_reserve_next(cpu_buffer, &info);
2758
2759 if (unlikely(PTR_ERR(event) == -EAGAIN)) {
2760 if (info.add_timestamp)
2761 info.length -= RB_LEN_TIME_EXTEND;
2762 goto again;
2763 }
2764
2765 if (!event)
2766 goto out_fail;
2767
2768 return event;
2769
2770 out_fail:
2771 rb_end_commit(cpu_buffer);
2772 return NULL;
2773 }
2774
2775 /**
2776 * ring_buffer_lock_reserve - reserve a part of the buffer
2777 * @buffer: the ring buffer to reserve from
2778 * @length: the length of the data to reserve (excluding event header)
2779 *
2780 * Returns a reseverd event on the ring buffer to copy directly to.
2781 * The user of this interface will need to get the body to write into
2782 * and can use the ring_buffer_event_data() interface.
2783 *
2784 * The length is the length of the data needed, not the event length
2785 * which also includes the event header.
2786 *
2787 * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
2788 * If NULL is returned, then nothing has been allocated or locked.
2789 */
2790 struct ring_buffer_event *
2791 ring_buffer_lock_reserve(struct ring_buffer *buffer, unsigned long length)
2792 {
2793 struct ring_buffer_per_cpu *cpu_buffer;
2794 struct ring_buffer_event *event;
2795 int cpu;
2796
2797 /* If we are tracing schedule, we don't want to recurse */
2798 preempt_disable_notrace();
2799
2800 if (unlikely(atomic_read(&buffer->record_disabled)))
2801 goto out;
2802
2803 cpu = raw_smp_processor_id();
2804
2805 if (unlikely(!cpumask_test_cpu(cpu, buffer->cpumask)))
2806 goto out;
2807
2808 cpu_buffer = buffer->buffers[cpu];
2809
2810 if (unlikely(atomic_read(&cpu_buffer->record_disabled)))
2811 goto out;
2812
2813 if (unlikely(length > BUF_MAX_DATA_SIZE))
2814 goto out;
2815
2816 if (unlikely(trace_recursive_lock(cpu_buffer)))
2817 goto out;
2818
2819 event = rb_reserve_next_event(buffer, cpu_buffer, length);
2820 if (!event)
2821 goto out_unlock;
2822
2823 return event;
2824
2825 out_unlock:
2826 trace_recursive_unlock(cpu_buffer);
2827 out:
2828 preempt_enable_notrace();
2829 return NULL;
2830 }
2831 EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve);
2832
2833 /*
2834 * Decrement the entries to the page that an event is on.
2835 * The event does not even need to exist, only the pointer
2836 * to the page it is on. This may only be called before the commit
2837 * takes place.
2838 */
2839 static inline void
2840 rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer,
2841 struct ring_buffer_event *event)
2842 {
2843 unsigned long addr = (unsigned long)event;
2844 struct buffer_page *bpage = cpu_buffer->commit_page;
2845 struct buffer_page *start;
2846
2847 addr &= PAGE_MASK;
2848
2849 /* Do the likely case first */
2850 if (likely(bpage->page == (void *)addr)) {
2851 local_dec(&bpage->entries);
2852 return;
2853 }
2854
2855 /*
2856 * Because the commit page may be on the reader page we
2857 * start with the next page and check the end loop there.
2858 */
2859 rb_inc_page(cpu_buffer, &bpage);
2860 start = bpage;
2861 do {
2862 if (bpage->page == (void *)addr) {
2863 local_dec(&bpage->entries);
2864 return;
2865 }
2866 rb_inc_page(cpu_buffer, &bpage);
2867 } while (bpage != start);
2868
2869 /* commit not part of this buffer?? */
2870 RB_WARN_ON(cpu_buffer, 1);
2871 }
2872
2873 /**
2874 * ring_buffer_commit_discard - discard an event that has not been committed
2875 * @buffer: the ring buffer
2876 * @event: non committed event to discard
2877 *
2878 * Sometimes an event that is in the ring buffer needs to be ignored.
2879 * This function lets the user discard an event in the ring buffer
2880 * and then that event will not be read later.
2881 *
2882 * This function only works if it is called before the the item has been
2883 * committed. It will try to free the event from the ring buffer
2884 * if another event has not been added behind it.
2885 *
2886 * If another event has been added behind it, it will set the event
2887 * up as discarded, and perform the commit.
2888 *
2889 * If this function is called, do not call ring_buffer_unlock_commit on
2890 * the event.
2891 */
2892 void ring_buffer_discard_commit(struct ring_buffer *buffer,
2893 struct ring_buffer_event *event)
2894 {
2895 struct ring_buffer_per_cpu *cpu_buffer;
2896 int cpu;
2897
2898 /* The event is discarded regardless */
2899 rb_event_discard(event);
2900
2901 cpu = smp_processor_id();
2902 cpu_buffer = buffer->buffers[cpu];
2903
2904 /*
2905 * This must only be called if the event has not been
2906 * committed yet. Thus we can assume that preemption
2907 * is still disabled.
2908 */
2909 RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing));
2910
2911 rb_decrement_entry(cpu_buffer, event);
2912 if (rb_try_to_discard(cpu_buffer, event))
2913 goto out;
2914
2915 /*
2916 * The commit is still visible by the reader, so we
2917 * must still update the timestamp.
2918 */
2919 rb_update_write_stamp(cpu_buffer, event);
2920 out:
2921 rb_end_commit(cpu_buffer);
2922
2923 trace_recursive_unlock(cpu_buffer);
2924
2925 preempt_enable_notrace();
2926
2927 }
2928 EXPORT_SYMBOL_GPL(ring_buffer_discard_commit);
2929
2930 /**
2931 * ring_buffer_write - write data to the buffer without reserving
2932 * @buffer: The ring buffer to write to.
2933 * @length: The length of the data being written (excluding the event header)
2934 * @data: The data to write to the buffer.
2935 *
2936 * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
2937 * one function. If you already have the data to write to the buffer, it
2938 * may be easier to simply call this function.
2939 *
2940 * Note, like ring_buffer_lock_reserve, the length is the length of the data
2941 * and not the length of the event which would hold the header.
2942 */
2943 int ring_buffer_write(struct ring_buffer *buffer,
2944 unsigned long length,
2945 void *data)
2946 {
2947 struct ring_buffer_per_cpu *cpu_buffer;
2948 struct ring_buffer_event *event;
2949 void *body;
2950 int ret = -EBUSY;
2951 int cpu;
2952
2953 preempt_disable_notrace();
2954
2955 if (atomic_read(&buffer->record_disabled))
2956 goto out;
2957
2958 cpu = raw_smp_processor_id();
2959
2960 if (!cpumask_test_cpu(cpu, buffer->cpumask))
2961 goto out;
2962
2963 cpu_buffer = buffer->buffers[cpu];
2964
2965 if (atomic_read(&cpu_buffer->record_disabled))
2966 goto out;
2967
2968 if (length > BUF_MAX_DATA_SIZE)
2969 goto out;
2970
2971 if (unlikely(trace_recursive_lock(cpu_buffer)))
2972 goto out;
2973
2974 event = rb_reserve_next_event(buffer, cpu_buffer, length);
2975 if (!event)
2976 goto out_unlock;
2977
2978 body = rb_event_data(event);
2979
2980 memcpy(body, data, length);
2981
2982 rb_commit(cpu_buffer, event);
2983
2984 rb_wakeups(buffer, cpu_buffer);
2985
2986 ret = 0;
2987
2988 out_unlock:
2989 trace_recursive_unlock(cpu_buffer);
2990
2991 out:
2992 preempt_enable_notrace();
2993
2994 return ret;
2995 }
2996 EXPORT_SYMBOL_GPL(ring_buffer_write);
2997
2998 static bool rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
2999 {
3000 struct buffer_page *reader = cpu_buffer->reader_page;
3001 struct buffer_page *head = rb_set_head_page(cpu_buffer);
3002 struct buffer_page *commit = cpu_buffer->commit_page;
3003
3004 /* In case of error, head will be NULL */
3005 if (unlikely(!head))
3006 return true;
3007
3008 return reader->read == rb_page_commit(reader) &&
3009 (commit == reader ||
3010 (commit == head &&
3011 head->read == rb_page_commit(commit)));
3012 }
3013
3014 /**
3015 * ring_buffer_record_disable - stop all writes into the buffer
3016 * @buffer: The ring buffer to stop writes to.
3017 *
3018 * This prevents all writes to the buffer. Any attempt to write
3019 * to the buffer after this will fail and return NULL.
3020 *
3021 * The caller should call synchronize_sched() after this.
3022 */
3023 void ring_buffer_record_disable(struct ring_buffer *buffer)
3024 {
3025 atomic_inc(&buffer->record_disabled);
3026 }
3027 EXPORT_SYMBOL_GPL(ring_buffer_record_disable);
3028
3029 /**
3030 * ring_buffer_record_enable - enable writes to the buffer
3031 * @buffer: The ring buffer to enable writes
3032 *
3033 * Note, multiple disables will need the same number of enables
3034 * to truly enable the writing (much like preempt_disable).
3035 */
3036 void ring_buffer_record_enable(struct ring_buffer *buffer)
3037 {
3038 atomic_dec(&buffer->record_disabled);
3039 }
3040 EXPORT_SYMBOL_GPL(ring_buffer_record_enable);
3041
3042 /**
3043 * ring_buffer_record_off - stop all writes into the buffer
3044 * @buffer: The ring buffer to stop writes to.
3045 *
3046 * This prevents all writes to the buffer. Any attempt to write
3047 * to the buffer after this will fail and return NULL.
3048 *
3049 * This is different than ring_buffer_record_disable() as
3050 * it works like an on/off switch, where as the disable() version
3051 * must be paired with a enable().
3052 */
3053 void ring_buffer_record_off(struct ring_buffer *buffer)
3054 {
3055 unsigned int rd;
3056 unsigned int new_rd;
3057
3058 do {
3059 rd = atomic_read(&buffer->record_disabled);
3060 new_rd = rd | RB_BUFFER_OFF;
3061 } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
3062 }
3063 EXPORT_SYMBOL_GPL(ring_buffer_record_off);
3064
3065 /**
3066 * ring_buffer_record_on - restart writes into the buffer
3067 * @buffer: The ring buffer to start writes to.
3068 *
3069 * This enables all writes to the buffer that was disabled by
3070 * ring_buffer_record_off().
3071 *
3072 * This is different than ring_buffer_record_enable() as
3073 * it works like an on/off switch, where as the enable() version
3074 * must be paired with a disable().
3075 */
3076 void ring_buffer_record_on(struct ring_buffer *buffer)
3077 {
3078 unsigned int rd;
3079 unsigned int new_rd;
3080
3081 do {
3082 rd = atomic_read(&buffer->record_disabled);
3083 new_rd = rd & ~RB_BUFFER_OFF;
3084 } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
3085 }
3086 EXPORT_SYMBOL_GPL(ring_buffer_record_on);
3087
3088 /**
3089 * ring_buffer_record_is_on - return true if the ring buffer can write
3090 * @buffer: The ring buffer to see if write is enabled
3091 *
3092 * Returns true if the ring buffer is in a state that it accepts writes.
3093 */
3094 int ring_buffer_record_is_on(struct ring_buffer *buffer)
3095 {
3096 return !atomic_read(&buffer->record_disabled);
3097 }
3098
3099 /**
3100 * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
3101 * @buffer: The ring buffer to stop writes to.
3102 * @cpu: The CPU buffer to stop
3103 *
3104 * This prevents all writes to the buffer. Any attempt to write
3105 * to the buffer after this will fail and return NULL.
3106 *
3107 * The caller should call synchronize_sched() after this.
3108 */
3109 void ring_buffer_record_disable_cpu(struct ring_buffer *buffer, int cpu)
3110 {
3111 struct ring_buffer_per_cpu *cpu_buffer;
3112
3113 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3114 return;
3115
3116 cpu_buffer = buffer->buffers[cpu];
3117 atomic_inc(&cpu_buffer->record_disabled);
3118 }
3119 EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu);
3120
3121 /**
3122 * ring_buffer_record_enable_cpu - enable writes to the buffer
3123 * @buffer: The ring buffer to enable writes
3124 * @cpu: The CPU to enable.
3125 *
3126 * Note, multiple disables will need the same number of enables
3127 * to truly enable the writing (much like preempt_disable).
3128 */
3129 void ring_buffer_record_enable_cpu(struct ring_buffer *buffer, int cpu)
3130 {
3131 struct ring_buffer_per_cpu *cpu_buffer;
3132
3133 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3134 return;
3135
3136 cpu_buffer = buffer->buffers[cpu];
3137 atomic_dec(&cpu_buffer->record_disabled);
3138 }
3139 EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu);
3140
3141 /*
3142 * The total entries in the ring buffer is the running counter
3143 * of entries entered into the ring buffer, minus the sum of
3144 * the entries read from the ring buffer and the number of
3145 * entries that were overwritten.
3146 */
3147 static inline unsigned long
3148 rb_num_of_entries(struct ring_buffer_per_cpu *cpu_buffer)
3149 {
3150 return local_read(&cpu_buffer->entries) -
3151 (local_read(&cpu_buffer->overrun) + cpu_buffer->read);
3152 }
3153
3154 /**
3155 * ring_buffer_oldest_event_ts - get the oldest event timestamp from the buffer
3156 * @buffer: The ring buffer
3157 * @cpu: The per CPU buffer to read from.
3158 */
3159 u64 ring_buffer_oldest_event_ts(struct ring_buffer *buffer, int cpu)
3160 {
3161 unsigned long flags;
3162 struct ring_buffer_per_cpu *cpu_buffer;
3163 struct buffer_page *bpage;
3164 u64 ret = 0;
3165
3166 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3167 return 0;
3168
3169 cpu_buffer = buffer->buffers[cpu];
3170 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3171 /*
3172 * if the tail is on reader_page, oldest time stamp is on the reader
3173 * page
3174 */
3175 if (cpu_buffer->tail_page == cpu_buffer->reader_page)
3176 bpage = cpu_buffer->reader_page;
3177 else
3178 bpage = rb_set_head_page(cpu_buffer);
3179 if (bpage)
3180 ret = bpage->page->time_stamp;
3181 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3182
3183 return ret;
3184 }
3185 EXPORT_SYMBOL_GPL(ring_buffer_oldest_event_ts);
3186
3187 /**
3188 * ring_buffer_bytes_cpu - get the number of bytes consumed in a cpu buffer
3189 * @buffer: The ring buffer
3190 * @cpu: The per CPU buffer to read from.
3191 */
3192 unsigned long ring_buffer_bytes_cpu(struct ring_buffer *buffer, int cpu)
3193 {
3194 struct ring_buffer_per_cpu *cpu_buffer;
3195 unsigned long ret;
3196
3197 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3198 return 0;
3199
3200 cpu_buffer = buffer->buffers[cpu];
3201 ret = local_read(&cpu_buffer->entries_bytes) - cpu_buffer->read_bytes;
3202
3203 return ret;
3204 }
3205 EXPORT_SYMBOL_GPL(ring_buffer_bytes_cpu);
3206
3207 /**
3208 * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
3209 * @buffer: The ring buffer
3210 * @cpu: The per CPU buffer to get the entries from.
3211 */
3212 unsigned long ring_buffer_entries_cpu(struct ring_buffer *buffer, int cpu)
3213 {
3214 struct ring_buffer_per_cpu *cpu_buffer;
3215
3216 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3217 return 0;
3218
3219 cpu_buffer = buffer->buffers[cpu];
3220
3221 return rb_num_of_entries(cpu_buffer);
3222 }
3223 EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu);
3224
3225 /**
3226 * ring_buffer_overrun_cpu - get the number of overruns caused by the ring
3227 * buffer wrapping around (only if RB_FL_OVERWRITE is on).
3228 * @buffer: The ring buffer
3229 * @cpu: The per CPU buffer to get the number of overruns from
3230 */
3231 unsigned long ring_buffer_overrun_cpu(struct ring_buffer *buffer, int cpu)
3232 {
3233 struct ring_buffer_per_cpu *cpu_buffer;
3234 unsigned long ret;
3235
3236 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3237 return 0;
3238
3239 cpu_buffer = buffer->buffers[cpu];
3240 ret = local_read(&cpu_buffer->overrun);
3241
3242 return ret;
3243 }
3244 EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu);
3245
3246 /**
3247 * ring_buffer_commit_overrun_cpu - get the number of overruns caused by
3248 * commits failing due to the buffer wrapping around while there are uncommitted
3249 * events, such as during an interrupt storm.
3250 * @buffer: The ring buffer
3251 * @cpu: The per CPU buffer to get the number of overruns from
3252 */
3253 unsigned long
3254 ring_buffer_commit_overrun_cpu(struct ring_buffer *buffer, int cpu)
3255 {
3256 struct ring_buffer_per_cpu *cpu_buffer;
3257 unsigned long ret;
3258
3259 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3260 return 0;
3261
3262 cpu_buffer = buffer->buffers[cpu];
3263 ret = local_read(&cpu_buffer->commit_overrun);
3264
3265 return ret;
3266 }
3267 EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu);
3268
3269 /**
3270 * ring_buffer_dropped_events_cpu - get the number of dropped events caused by
3271 * the ring buffer filling up (only if RB_FL_OVERWRITE is off).
3272 * @buffer: The ring buffer
3273 * @cpu: The per CPU buffer to get the number of overruns from
3274 */
3275 unsigned long
3276 ring_buffer_dropped_events_cpu(struct ring_buffer *buffer, int cpu)
3277 {
3278 struct ring_buffer_per_cpu *cpu_buffer;
3279 unsigned long ret;
3280
3281 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3282 return 0;
3283
3284 cpu_buffer = buffer->buffers[cpu];
3285 ret = local_read(&cpu_buffer->dropped_events);
3286
3287 return ret;
3288 }
3289 EXPORT_SYMBOL_GPL(ring_buffer_dropped_events_cpu);
3290
3291 /**
3292 * ring_buffer_read_events_cpu - get the number of events successfully read
3293 * @buffer: The ring buffer
3294 * @cpu: The per CPU buffer to get the number of events read
3295 */
3296 unsigned long
3297 ring_buffer_read_events_cpu(struct ring_buffer *buffer, int cpu)
3298 {
3299 struct ring_buffer_per_cpu *cpu_buffer;
3300
3301 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3302 return 0;
3303
3304 cpu_buffer = buffer->buffers[cpu];
3305 return cpu_buffer->read;
3306 }
3307 EXPORT_SYMBOL_GPL(ring_buffer_read_events_cpu);
3308
3309 /**
3310 * ring_buffer_entries - get the number of entries in a buffer
3311 * @buffer: The ring buffer
3312 *
3313 * Returns the total number of entries in the ring buffer
3314 * (all CPU entries)
3315 */
3316 unsigned long ring_buffer_entries(struct ring_buffer *buffer)
3317 {
3318 struct ring_buffer_per_cpu *cpu_buffer;
3319 unsigned long entries = 0;
3320 int cpu;
3321
3322 /* if you care about this being correct, lock the buffer */
3323 for_each_buffer_cpu(buffer, cpu) {
3324 cpu_buffer = buffer->buffers[cpu];
3325 entries += rb_num_of_entries(cpu_buffer);
3326 }
3327
3328 return entries;
3329 }
3330 EXPORT_SYMBOL_GPL(ring_buffer_entries);
3331
3332 /**
3333 * ring_buffer_overruns - get the number of overruns in buffer
3334 * @buffer: The ring buffer
3335 *
3336 * Returns the total number of overruns in the ring buffer
3337 * (all CPU entries)
3338 */
3339 unsigned long ring_buffer_overruns(struct ring_buffer *buffer)
3340 {
3341 struct ring_buffer_per_cpu *cpu_buffer;
3342 unsigned long overruns = 0;
3343 int cpu;
3344
3345 /* if you care about this being correct, lock the buffer */
3346 for_each_buffer_cpu(buffer, cpu) {
3347 cpu_buffer = buffer->buffers[cpu];
3348 overruns += local_read(&cpu_buffer->overrun);
3349 }
3350
3351 return overruns;
3352 }
3353 EXPORT_SYMBOL_GPL(ring_buffer_overruns);
3354
3355 static void rb_iter_reset(struct ring_buffer_iter *iter)
3356 {
3357 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3358
3359 /* Iterator usage is expected to have record disabled */
3360 iter->head_page = cpu_buffer->reader_page;
3361 iter->head = cpu_buffer->reader_page->read;
3362
3363 iter->cache_reader_page = iter->head_page;
3364 iter->cache_read = cpu_buffer->read;
3365
3366 if (iter->head)
3367 iter->read_stamp = cpu_buffer->read_stamp;
3368 else
3369 iter->read_stamp = iter->head_page->page->time_stamp;
3370 }
3371
3372 /**
3373 * ring_buffer_iter_reset - reset an iterator
3374 * @iter: The iterator to reset
3375 *
3376 * Resets the iterator, so that it will start from the beginning
3377 * again.
3378 */
3379 void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
3380 {
3381 struct ring_buffer_per_cpu *cpu_buffer;
3382 unsigned long flags;
3383
3384 if (!iter)
3385 return;
3386
3387 cpu_buffer = iter->cpu_buffer;
3388
3389 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3390 rb_iter_reset(iter);
3391 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3392 }
3393 EXPORT_SYMBOL_GPL(ring_buffer_iter_reset);
3394
3395 /**
3396 * ring_buffer_iter_empty - check if an iterator has no more to read
3397 * @iter: The iterator to check
3398 */
3399 int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
3400 {
3401 struct ring_buffer_per_cpu *cpu_buffer;
3402 struct buffer_page *reader;
3403 struct buffer_page *head_page;
3404 struct buffer_page *commit_page;
3405 unsigned commit;
3406
3407 cpu_buffer = iter->cpu_buffer;
3408
3409 /* Remember, trace recording is off when iterator is in use */
3410 reader = cpu_buffer->reader_page;
3411 head_page = cpu_buffer->head_page;
3412 commit_page = cpu_buffer->commit_page;
3413 commit = rb_page_commit(commit_page);
3414
3415 return ((iter->head_page == commit_page && iter->head == commit) ||
3416 (iter->head_page == reader && commit_page == head_page &&
3417 head_page->read == commit &&
3418 iter->head == rb_page_commit(cpu_buffer->reader_page)));
3419 }
3420 EXPORT_SYMBOL_GPL(ring_buffer_iter_empty);
3421
3422 static void
3423 rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
3424 struct ring_buffer_event *event)
3425 {
3426 u64 delta;
3427
3428 switch (event->type_len) {
3429 case RINGBUF_TYPE_PADDING:
3430 return;
3431
3432 case RINGBUF_TYPE_TIME_EXTEND:
3433 delta = event->array[0];
3434 delta <<= TS_SHIFT;
3435 delta += event->time_delta;
3436 cpu_buffer->read_stamp += delta;
3437 return;
3438
3439 case RINGBUF_TYPE_TIME_STAMP:
3440 /* FIXME: not implemented */
3441 return;
3442
3443 case RINGBUF_TYPE_DATA:
3444 cpu_buffer->read_stamp += event->time_delta;
3445 return;
3446
3447 default:
3448 BUG();
3449 }
3450 return;
3451 }
3452
3453 static void
3454 rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
3455 struct ring_buffer_event *event)
3456 {
3457 u64 delta;
3458
3459 switch (event->type_len) {
3460 case RINGBUF_TYPE_PADDING:
3461 return;
3462
3463 case RINGBUF_TYPE_TIME_EXTEND:
3464 delta = event->array[0];
3465 delta <<= TS_SHIFT;
3466 delta += event->time_delta;
3467 iter->read_stamp += delta;
3468 return;
3469
3470 case RINGBUF_TYPE_TIME_STAMP:
3471 /* FIXME: not implemented */
3472 return;
3473
3474 case RINGBUF_TYPE_DATA:
3475 iter->read_stamp += event->time_delta;
3476 return;
3477
3478 default:
3479 BUG();
3480 }
3481 return;
3482 }
3483
3484 static struct buffer_page *
3485 rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
3486 {
3487 struct buffer_page *reader = NULL;
3488 unsigned long overwrite;
3489 unsigned long flags;
3490 int nr_loops = 0;
3491 int ret;
3492
3493 local_irq_save(flags);
3494 arch_spin_lock(&cpu_buffer->lock);
3495
3496 again:
3497 /*
3498 * This should normally only loop twice. But because the
3499 * start of the reader inserts an empty page, it causes
3500 * a case where we will loop three times. There should be no
3501 * reason to loop four times (that I know of).
3502 */
3503 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
3504 reader = NULL;
3505 goto out;
3506 }
3507
3508 reader = cpu_buffer->reader_page;
3509
3510 /* If there's more to read, return this page */
3511 if (cpu_buffer->reader_page->read < rb_page_size(reader))
3512 goto out;
3513
3514 /* Never should we have an index greater than the size */
3515 if (RB_WARN_ON(cpu_buffer,
3516 cpu_buffer->reader_page->read > rb_page_size(reader)))
3517 goto out;
3518
3519 /* check if we caught up to the tail */
3520 reader = NULL;
3521 if (cpu_buffer->commit_page == cpu_buffer->reader_page)
3522 goto out;
3523
3524 /* Don't bother swapping if the ring buffer is empty */
3525 if (rb_num_of_entries(cpu_buffer) == 0)
3526 goto out;
3527
3528 /*
3529 * Reset the reader page to size zero.
3530 */
3531 local_set(&cpu_buffer->reader_page->write, 0);
3532 local_set(&cpu_buffer->reader_page->entries, 0);
3533 local_set(&cpu_buffer->reader_page->page->commit, 0);
3534 cpu_buffer->reader_page->real_end = 0;
3535
3536 spin:
3537 /*
3538 * Splice the empty reader page into the list around the head.
3539 */
3540 reader = rb_set_head_page(cpu_buffer);
3541 if (!reader)
3542 goto out;
3543 cpu_buffer->reader_page->list.next = rb_list_head(reader->list.next);
3544 cpu_buffer->reader_page->list.prev = reader->list.prev;
3545
3546 /*
3547 * cpu_buffer->pages just needs to point to the buffer, it
3548 * has no specific buffer page to point to. Lets move it out
3549 * of our way so we don't accidentally swap it.
3550 */
3551 cpu_buffer->pages = reader->list.prev;
3552
3553 /* The reader page will be pointing to the new head */
3554 rb_set_list_to_head(cpu_buffer, &cpu_buffer->reader_page->list);
3555
3556 /*
3557 * We want to make sure we read the overruns after we set up our
3558 * pointers to the next object. The writer side does a
3559 * cmpxchg to cross pages which acts as the mb on the writer
3560 * side. Note, the reader will constantly fail the swap
3561 * while the writer is updating the pointers, so this
3562 * guarantees that the overwrite recorded here is the one we
3563 * want to compare with the last_overrun.
3564 */
3565 smp_mb();
3566 overwrite = local_read(&(cpu_buffer->overrun));
3567
3568 /*
3569 * Here's the tricky part.
3570 *
3571 * We need to move the pointer past the header page.
3572 * But we can only do that if a writer is not currently
3573 * moving it. The page before the header page has the
3574 * flag bit '1' set if it is pointing to the page we want.
3575 * but if the writer is in the process of moving it
3576 * than it will be '2' or already moved '0'.
3577 */
3578
3579 ret = rb_head_page_replace(reader, cpu_buffer->reader_page);
3580
3581 /*
3582 * If we did not convert it, then we must try again.
3583 */
3584 if (!ret)
3585 goto spin;
3586
3587 /*
3588 * Yeah! We succeeded in replacing the page.
3589 *
3590 * Now make the new head point back to the reader page.
3591 */
3592 rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list;
3593 rb_inc_page(cpu_buffer, &cpu_buffer->head_page);
3594
3595 /* Finally update the reader page to the new head */
3596 cpu_buffer->reader_page = reader;
3597 cpu_buffer->reader_page->read = 0;
3598
3599 if (overwrite != cpu_buffer->last_overrun) {
3600 cpu_buffer->lost_events = overwrite - cpu_buffer->last_overrun;
3601 cpu_buffer->last_overrun = overwrite;
3602 }
3603
3604 goto again;
3605
3606 out:
3607 /* Update the read_stamp on the first event */
3608 if (reader && reader->read == 0)
3609 cpu_buffer->read_stamp = reader->page->time_stamp;
3610
3611 arch_spin_unlock(&cpu_buffer->lock);
3612 local_irq_restore(flags);
3613
3614 return reader;
3615 }
3616
3617 static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
3618 {
3619 struct ring_buffer_event *event;
3620 struct buffer_page *reader;
3621 unsigned length;
3622
3623 reader = rb_get_reader_page(cpu_buffer);
3624
3625 /* This function should not be called when buffer is empty */
3626 if (RB_WARN_ON(cpu_buffer, !reader))
3627 return;
3628
3629 event = rb_reader_event(cpu_buffer);
3630
3631 if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
3632 cpu_buffer->read++;
3633
3634 rb_update_read_stamp(cpu_buffer, event);
3635
3636 length = rb_event_length(event);
3637 cpu_buffer->reader_page->read += length;
3638 }
3639
3640 static void rb_advance_iter(struct ring_buffer_iter *iter)
3641 {
3642 struct ring_buffer_per_cpu *cpu_buffer;
3643 struct ring_buffer_event *event;
3644 unsigned length;
3645
3646 cpu_buffer = iter->cpu_buffer;
3647
3648 /*
3649 * Check if we are at the end of the buffer.
3650 */
3651 if (iter->head >= rb_page_size(iter->head_page)) {
3652 /* discarded commits can make the page empty */
3653 if (iter->head_page == cpu_buffer->commit_page)
3654 return;
3655 rb_inc_iter(iter);
3656 return;
3657 }
3658
3659 event = rb_iter_head_event(iter);
3660
3661 length = rb_event_length(event);
3662
3663 /*
3664 * This should not be called to advance the header if we are
3665 * at the tail of the buffer.
3666 */
3667 if (RB_WARN_ON(cpu_buffer,
3668 (iter->head_page == cpu_buffer->commit_page) &&
3669 (iter->head + length > rb_commit_index(cpu_buffer))))
3670 return;
3671
3672 rb_update_iter_read_stamp(iter, event);
3673
3674 iter->head += length;
3675
3676 /* check for end of page padding */
3677 if ((iter->head >= rb_page_size(iter->head_page)) &&
3678 (iter->head_page != cpu_buffer->commit_page))
3679 rb_inc_iter(iter);
3680 }
3681
3682 static int rb_lost_events(struct ring_buffer_per_cpu *cpu_buffer)
3683 {
3684 return cpu_buffer->lost_events;
3685 }
3686
3687 static struct ring_buffer_event *
3688 rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts,
3689 unsigned long *lost_events)
3690 {
3691 struct ring_buffer_event *event;
3692 struct buffer_page *reader;
3693 int nr_loops = 0;
3694
3695 again:
3696 /*
3697 * We repeat when a time extend is encountered.
3698 * Since the time extend is always attached to a data event,
3699 * we should never loop more than once.
3700 * (We never hit the following condition more than twice).
3701 */
3702 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2))
3703 return NULL;
3704
3705 reader = rb_get_reader_page(cpu_buffer);
3706 if (!reader)
3707 return NULL;
3708
3709 event = rb_reader_event(cpu_buffer);
3710
3711 switch (event->type_len) {
3712 case RINGBUF_TYPE_PADDING:
3713 if (rb_null_event(event))
3714 RB_WARN_ON(cpu_buffer, 1);
3715 /*
3716 * Because the writer could be discarding every
3717 * event it creates (which would probably be bad)
3718 * if we were to go back to "again" then we may never
3719 * catch up, and will trigger the warn on, or lock
3720 * the box. Return the padding, and we will release
3721 * the current locks, and try again.
3722 */
3723 return event;
3724
3725 case RINGBUF_TYPE_TIME_EXTEND:
3726 /* Internal data, OK to advance */
3727 rb_advance_reader(cpu_buffer);
3728 goto again;
3729
3730 case RINGBUF_TYPE_TIME_STAMP:
3731 /* FIXME: not implemented */
3732 rb_advance_reader(cpu_buffer);
3733 goto again;
3734
3735 case RINGBUF_TYPE_DATA:
3736 if (ts) {
3737 *ts = cpu_buffer->read_stamp + event->time_delta;
3738 ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
3739 cpu_buffer->cpu, ts);
3740 }
3741 if (lost_events)
3742 *lost_events = rb_lost_events(cpu_buffer);
3743 return event;
3744
3745 default:
3746 BUG();
3747 }
3748
3749 return NULL;
3750 }
3751 EXPORT_SYMBOL_GPL(ring_buffer_peek);
3752
3753 static struct ring_buffer_event *
3754 rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
3755 {
3756 struct ring_buffer *buffer;
3757 struct ring_buffer_per_cpu *cpu_buffer;
3758 struct ring_buffer_event *event;
3759 int nr_loops = 0;
3760
3761 cpu_buffer = iter->cpu_buffer;
3762 buffer = cpu_buffer->buffer;
3763
3764 /*
3765 * Check if someone performed a consuming read to
3766 * the buffer. A consuming read invalidates the iterator
3767 * and we need to reset the iterator in this case.
3768 */
3769 if (unlikely(iter->cache_read != cpu_buffer->read ||
3770 iter->cache_reader_page != cpu_buffer->reader_page))
3771 rb_iter_reset(iter);
3772
3773 again:
3774 if (ring_buffer_iter_empty(iter))
3775 return NULL;
3776
3777 /*
3778 * We repeat when a time extend is encountered or we hit
3779 * the end of the page. Since the time extend is always attached
3780 * to a data event, we should never loop more than three times.
3781 * Once for going to next page, once on time extend, and
3782 * finally once to get the event.
3783 * (We never hit the following condition more than thrice).
3784 */
3785 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3))
3786 return NULL;
3787
3788 if (rb_per_cpu_empty(cpu_buffer))
3789 return NULL;
3790
3791 if (iter->head >= rb_page_size(iter->head_page)) {
3792 rb_inc_iter(iter);
3793 goto again;
3794 }
3795
3796 event = rb_iter_head_event(iter);
3797
3798 switch (event->type_len) {
3799 case RINGBUF_TYPE_PADDING:
3800 if (rb_null_event(event)) {
3801 rb_inc_iter(iter);
3802 goto again;
3803 }
3804 rb_advance_iter(iter);
3805 return event;
3806
3807 case RINGBUF_TYPE_TIME_EXTEND:
3808 /* Internal data, OK to advance */
3809 rb_advance_iter(iter);
3810 goto again;
3811
3812 case RINGBUF_TYPE_TIME_STAMP:
3813 /* FIXME: not implemented */
3814 rb_advance_iter(iter);
3815 goto again;
3816
3817 case RINGBUF_TYPE_DATA:
3818 if (ts) {
3819 *ts = iter->read_stamp + event->time_delta;
3820 ring_buffer_normalize_time_stamp(buffer,
3821 cpu_buffer->cpu, ts);
3822 }
3823 return event;
3824
3825 default:
3826 BUG();
3827 }
3828
3829 return NULL;
3830 }
3831 EXPORT_SYMBOL_GPL(ring_buffer_iter_peek);
3832
3833 static inline bool rb_reader_lock(struct ring_buffer_per_cpu *cpu_buffer)
3834 {
3835 if (likely(!in_nmi())) {
3836 raw_spin_lock(&cpu_buffer->reader_lock);
3837 return true;
3838 }
3839
3840 /*
3841 * If an NMI die dumps out the content of the ring buffer
3842 * trylock must be used to prevent a deadlock if the NMI
3843 * preempted a task that holds the ring buffer locks. If
3844 * we get the lock then all is fine, if not, then continue
3845 * to do the read, but this can corrupt the ring buffer,
3846 * so it must be permanently disabled from future writes.
3847 * Reading from NMI is a oneshot deal.
3848 */
3849 if (raw_spin_trylock(&cpu_buffer->reader_lock))
3850 return true;
3851
3852 /* Continue without locking, but disable the ring buffer */
3853 atomic_inc(&cpu_buffer->record_disabled);
3854 return false;
3855 }
3856
3857 static inline void
3858 rb_reader_unlock(struct ring_buffer_per_cpu *cpu_buffer, bool locked)
3859 {
3860 if (likely(locked))
3861 raw_spin_unlock(&cpu_buffer->reader_lock);
3862 return;
3863 }
3864
3865 /**
3866 * ring_buffer_peek - peek at the next event to be read
3867 * @buffer: The ring buffer to read
3868 * @cpu: The cpu to peak at
3869 * @ts: The timestamp counter of this event.
3870 * @lost_events: a variable to store if events were lost (may be NULL)
3871 *
3872 * This will return the event that will be read next, but does
3873 * not consume the data.
3874 */
3875 struct ring_buffer_event *
3876 ring_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts,
3877 unsigned long *lost_events)
3878 {
3879 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
3880 struct ring_buffer_event *event;
3881 unsigned long flags;
3882 bool dolock;
3883
3884 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3885 return NULL;
3886
3887 again:
3888 local_irq_save(flags);
3889 dolock = rb_reader_lock(cpu_buffer);
3890 event = rb_buffer_peek(cpu_buffer, ts, lost_events);
3891 if (event && event->type_len == RINGBUF_TYPE_PADDING)
3892 rb_advance_reader(cpu_buffer);
3893 rb_reader_unlock(cpu_buffer, dolock);
3894 local_irq_restore(flags);
3895
3896 if (event && event->type_len == RINGBUF_TYPE_PADDING)
3897 goto again;
3898
3899 return event;
3900 }
3901
3902 /**
3903 * ring_buffer_iter_peek - peek at the next event to be read
3904 * @iter: The ring buffer iterator
3905 * @ts: The timestamp counter of this event.
3906 *
3907 * This will return the event that will be read next, but does
3908 * not increment the iterator.
3909 */
3910 struct ring_buffer_event *
3911 ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
3912 {
3913 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3914 struct ring_buffer_event *event;
3915 unsigned long flags;
3916
3917 again:
3918 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3919 event = rb_iter_peek(iter, ts);
3920 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3921
3922 if (event && event->type_len == RINGBUF_TYPE_PADDING)
3923 goto again;
3924
3925 return event;
3926 }
3927
3928 /**
3929 * ring_buffer_consume - return an event and consume it
3930 * @buffer: The ring buffer to get the next event from
3931 * @cpu: the cpu to read the buffer from
3932 * @ts: a variable to store the timestamp (may be NULL)
3933 * @lost_events: a variable to store if events were lost (may be NULL)
3934 *
3935 * Returns the next event in the ring buffer, and that event is consumed.
3936 * Meaning, that sequential reads will keep returning a different event,
3937 * and eventually empty the ring buffer if the producer is slower.
3938 */
3939 struct ring_buffer_event *
3940 ring_buffer_consume(struct ring_buffer *buffer, int cpu, u64 *ts,
3941 unsigned long *lost_events)
3942 {
3943 struct ring_buffer_per_cpu *cpu_buffer;
3944 struct ring_buffer_event *event = NULL;
3945 unsigned long flags;
3946 bool dolock;
3947
3948 again:
3949 /* might be called in atomic */
3950 preempt_disable();
3951
3952 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3953 goto out;
3954
3955 cpu_buffer = buffer->buffers[cpu];
3956 local_irq_save(flags);
3957 dolock = rb_reader_lock(cpu_buffer);
3958
3959 event = rb_buffer_peek(cpu_buffer, ts, lost_events);
3960 if (event) {
3961 cpu_buffer->lost_events = 0;
3962 rb_advance_reader(cpu_buffer);
3963 }
3964
3965 rb_reader_unlock(cpu_buffer, dolock);
3966 local_irq_restore(flags);
3967
3968 out:
3969 preempt_enable();
3970
3971 if (event && event->type_len == RINGBUF_TYPE_PADDING)
3972 goto again;
3973
3974 return event;
3975 }
3976 EXPORT_SYMBOL_GPL(ring_buffer_consume);
3977
3978 /**
3979 * ring_buffer_read_prepare - Prepare for a non consuming read of the buffer
3980 * @buffer: The ring buffer to read from
3981 * @cpu: The cpu buffer to iterate over
3982 *
3983 * This performs the initial preparations necessary to iterate
3984 * through the buffer. Memory is allocated, buffer recording
3985 * is disabled, and the iterator pointer is returned to the caller.
3986 *
3987 * Disabling buffer recordng prevents the reading from being
3988 * corrupted. This is not a consuming read, so a producer is not
3989 * expected.
3990 *
3991 * After a sequence of ring_buffer_read_prepare calls, the user is
3992 * expected to make at least one call to ring_buffer_read_prepare_sync.
3993 * Afterwards, ring_buffer_read_start is invoked to get things going
3994 * for real.
3995 *
3996 * This overall must be paired with ring_buffer_read_finish.
3997 */
3998 struct ring_buffer_iter *
3999 ring_buffer_read_prepare(struct ring_buffer *buffer, int cpu)
4000 {
4001 struct ring_buffer_per_cpu *cpu_buffer;
4002 struct ring_buffer_iter *iter;
4003
4004 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4005 return NULL;
4006
4007 iter = kmalloc(sizeof(*iter), GFP_KERNEL);
4008 if (!iter)
4009 return NULL;
4010
4011 cpu_buffer = buffer->buffers[cpu];
4012
4013 iter->cpu_buffer = cpu_buffer;
4014
4015 atomic_inc(&buffer->resize_disabled);
4016 atomic_inc(&cpu_buffer->record_disabled);
4017
4018 return iter;
4019 }
4020 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare);
4021
4022 /**
4023 * ring_buffer_read_prepare_sync - Synchronize a set of prepare calls
4024 *
4025 * All previously invoked ring_buffer_read_prepare calls to prepare
4026 * iterators will be synchronized. Afterwards, read_buffer_read_start
4027 * calls on those iterators are allowed.
4028 */
4029 void
4030 ring_buffer_read_prepare_sync(void)
4031 {
4032 synchronize_sched();
4033 }
4034 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare_sync);
4035
4036 /**
4037 * ring_buffer_read_start - start a non consuming read of the buffer
4038 * @iter: The iterator returned by ring_buffer_read_prepare
4039 *
4040 * This finalizes the startup of an iteration through the buffer.
4041 * The iterator comes from a call to ring_buffer_read_prepare and
4042 * an intervening ring_buffer_read_prepare_sync must have been
4043 * performed.
4044 *
4045 * Must be paired with ring_buffer_read_finish.
4046 */
4047 void
4048 ring_buffer_read_start(struct ring_buffer_iter *iter)
4049 {
4050 struct ring_buffer_per_cpu *cpu_buffer;
4051 unsigned long flags;
4052
4053 if (!iter)
4054 return;
4055
4056 cpu_buffer = iter->cpu_buffer;
4057
4058 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4059 arch_spin_lock(&cpu_buffer->lock);
4060 rb_iter_reset(iter);
4061 arch_spin_unlock(&cpu_buffer->lock);
4062 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4063 }
4064 EXPORT_SYMBOL_GPL(ring_buffer_read_start);
4065
4066 /**
4067 * ring_buffer_read_finish - finish reading the iterator of the buffer
4068 * @iter: The iterator retrieved by ring_buffer_start
4069 *
4070 * This re-enables the recording to the buffer, and frees the
4071 * iterator.
4072 */
4073 void
4074 ring_buffer_read_finish(struct ring_buffer_iter *iter)
4075 {
4076 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4077 unsigned long flags;
4078
4079 /*
4080 * Ring buffer is disabled from recording, here's a good place
4081 * to check the integrity of the ring buffer.
4082 * Must prevent readers from trying to read, as the check
4083 * clears the HEAD page and readers require it.
4084 */
4085 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4086 rb_check_pages(cpu_buffer);
4087 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4088
4089 atomic_dec(&cpu_buffer->record_disabled);
4090 atomic_dec(&cpu_buffer->buffer->resize_disabled);
4091 kfree(iter);
4092 }
4093 EXPORT_SYMBOL_GPL(ring_buffer_read_finish);
4094
4095 /**
4096 * ring_buffer_read - read the next item in the ring buffer by the iterator
4097 * @iter: The ring buffer iterator
4098 * @ts: The time stamp of the event read.
4099 *
4100 * This reads the next event in the ring buffer and increments the iterator.
4101 */
4102 struct ring_buffer_event *
4103 ring_buffer_read(struct ring_buffer_iter *iter, u64 *ts)
4104 {
4105 struct ring_buffer_event *event;
4106 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4107 unsigned long flags;
4108
4109 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4110 again:
4111 event = rb_iter_peek(iter, ts);
4112 if (!event)
4113 goto out;
4114
4115 if (event->type_len == RINGBUF_TYPE_PADDING)
4116 goto again;
4117
4118 rb_advance_iter(iter);
4119 out:
4120 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4121
4122 return event;
4123 }
4124 EXPORT_SYMBOL_GPL(ring_buffer_read);
4125
4126 /**
4127 * ring_buffer_size - return the size of the ring buffer (in bytes)
4128 * @buffer: The ring buffer.
4129 */
4130 unsigned long ring_buffer_size(struct ring_buffer *buffer, int cpu)
4131 {
4132 /*
4133 * Earlier, this method returned
4134 * BUF_PAGE_SIZE * buffer->nr_pages
4135 * Since the nr_pages field is now removed, we have converted this to
4136 * return the per cpu buffer value.
4137 */
4138 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4139 return 0;
4140
4141 return BUF_PAGE_SIZE * buffer->buffers[cpu]->nr_pages;
4142 }
4143 EXPORT_SYMBOL_GPL(ring_buffer_size);
4144
4145 static void
4146 rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
4147 {
4148 rb_head_page_deactivate(cpu_buffer);
4149
4150 cpu_buffer->head_page
4151 = list_entry(cpu_buffer->pages, struct buffer_page, list);
4152 local_set(&cpu_buffer->head_page->write, 0);
4153 local_set(&cpu_buffer->head_page->entries, 0);
4154 local_set(&cpu_buffer->head_page->page->commit, 0);
4155
4156 cpu_buffer->head_page->read = 0;
4157
4158 cpu_buffer->tail_page = cpu_buffer->head_page;
4159 cpu_buffer->commit_page = cpu_buffer->head_page;
4160
4161 INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
4162 INIT_LIST_HEAD(&cpu_buffer->new_pages);
4163 local_set(&cpu_buffer->reader_page->write, 0);
4164 local_set(&cpu_buffer->reader_page->entries, 0);
4165 local_set(&cpu_buffer->reader_page->page->commit, 0);
4166 cpu_buffer->reader_page->read = 0;
4167
4168 local_set(&cpu_buffer->entries_bytes, 0);
4169 local_set(&cpu_buffer->overrun, 0);
4170 local_set(&cpu_buffer->commit_overrun, 0);
4171 local_set(&cpu_buffer->dropped_events, 0);
4172 local_set(&cpu_buffer->entries, 0);
4173 local_set(&cpu_buffer->committing, 0);
4174 local_set(&cpu_buffer->commits, 0);
4175 cpu_buffer->read = 0;
4176 cpu_buffer->read_bytes = 0;
4177
4178 cpu_buffer->write_stamp = 0;
4179 cpu_buffer->read_stamp = 0;
4180
4181 cpu_buffer->lost_events = 0;
4182 cpu_buffer->last_overrun = 0;
4183
4184 rb_head_page_activate(cpu_buffer);
4185 }
4186
4187 /**
4188 * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
4189 * @buffer: The ring buffer to reset a per cpu buffer of
4190 * @cpu: The CPU buffer to be reset
4191 */
4192 void ring_buffer_reset_cpu(struct ring_buffer *buffer, int cpu)
4193 {
4194 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4195 unsigned long flags;
4196
4197 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4198 return;
4199
4200 atomic_inc(&buffer->resize_disabled);
4201 atomic_inc(&cpu_buffer->record_disabled);
4202
4203 /* Make sure all commits have finished */
4204 synchronize_sched();
4205
4206 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4207
4208 if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing)))
4209 goto out;
4210
4211 arch_spin_lock(&cpu_buffer->lock);
4212
4213 rb_reset_cpu(cpu_buffer);
4214
4215 arch_spin_unlock(&cpu_buffer->lock);
4216
4217 out:
4218 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4219
4220 atomic_dec(&cpu_buffer->record_disabled);
4221 atomic_dec(&buffer->resize_disabled);
4222 }
4223 EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu);
4224
4225 /**
4226 * ring_buffer_reset - reset a ring buffer
4227 * @buffer: The ring buffer to reset all cpu buffers
4228 */
4229 void ring_buffer_reset(struct ring_buffer *buffer)
4230 {
4231 int cpu;
4232
4233 for_each_buffer_cpu(buffer, cpu)
4234 ring_buffer_reset_cpu(buffer, cpu);
4235 }
4236 EXPORT_SYMBOL_GPL(ring_buffer_reset);
4237
4238 /**
4239 * rind_buffer_empty - is the ring buffer empty?
4240 * @buffer: The ring buffer to test
4241 */
4242 bool ring_buffer_empty(struct ring_buffer *buffer)
4243 {
4244 struct ring_buffer_per_cpu *cpu_buffer;
4245 unsigned long flags;
4246 bool dolock;
4247 int cpu;
4248 int ret;
4249
4250 /* yes this is racy, but if you don't like the race, lock the buffer */
4251 for_each_buffer_cpu(buffer, cpu) {
4252 cpu_buffer = buffer->buffers[cpu];
4253 local_irq_save(flags);
4254 dolock = rb_reader_lock(cpu_buffer);
4255 ret = rb_per_cpu_empty(cpu_buffer);
4256 rb_reader_unlock(cpu_buffer, dolock);
4257 local_irq_restore(flags);
4258
4259 if (!ret)
4260 return false;
4261 }
4262
4263 return true;
4264 }
4265 EXPORT_SYMBOL_GPL(ring_buffer_empty);
4266
4267 /**
4268 * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
4269 * @buffer: The ring buffer
4270 * @cpu: The CPU buffer to test
4271 */
4272 bool ring_buffer_empty_cpu(struct ring_buffer *buffer, int cpu)
4273 {
4274 struct ring_buffer_per_cpu *cpu_buffer;
4275 unsigned long flags;
4276 bool dolock;
4277 int ret;
4278
4279 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4280 return true;
4281
4282 cpu_buffer = buffer->buffers[cpu];
4283 local_irq_save(flags);
4284 dolock = rb_reader_lock(cpu_buffer);
4285 ret = rb_per_cpu_empty(cpu_buffer);
4286 rb_reader_unlock(cpu_buffer, dolock);
4287 local_irq_restore(flags);
4288
4289 return ret;
4290 }
4291 EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu);
4292
4293 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
4294 /**
4295 * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
4296 * @buffer_a: One buffer to swap with
4297 * @buffer_b: The other buffer to swap with
4298 *
4299 * This function is useful for tracers that want to take a "snapshot"
4300 * of a CPU buffer and has another back up buffer lying around.
4301 * it is expected that the tracer handles the cpu buffer not being
4302 * used at the moment.
4303 */
4304 int ring_buffer_swap_cpu(struct ring_buffer *buffer_a,
4305 struct ring_buffer *buffer_b, int cpu)
4306 {
4307 struct ring_buffer_per_cpu *cpu_buffer_a;
4308 struct ring_buffer_per_cpu *cpu_buffer_b;
4309 int ret = -EINVAL;
4310
4311 if (!cpumask_test_cpu(cpu, buffer_a->cpumask) ||
4312 !cpumask_test_cpu(cpu, buffer_b->cpumask))
4313 goto out;
4314
4315 cpu_buffer_a = buffer_a->buffers[cpu];
4316 cpu_buffer_b = buffer_b->buffers[cpu];
4317
4318 /* At least make sure the two buffers are somewhat the same */
4319 if (cpu_buffer_a->nr_pages != cpu_buffer_b->nr_pages)
4320 goto out;
4321
4322 ret = -EAGAIN;
4323
4324 if (atomic_read(&buffer_a->record_disabled))
4325 goto out;
4326
4327 if (atomic_read(&buffer_b->record_disabled))
4328 goto out;
4329
4330 if (atomic_read(&cpu_buffer_a->record_disabled))
4331 goto out;
4332
4333 if (atomic_read(&cpu_buffer_b->record_disabled))
4334 goto out;
4335
4336 /*
4337 * We can't do a synchronize_sched here because this
4338 * function can be called in atomic context.
4339 * Normally this will be called from the same CPU as cpu.
4340 * If not it's up to the caller to protect this.
4341 */
4342 atomic_inc(&cpu_buffer_a->record_disabled);
4343 atomic_inc(&cpu_buffer_b->record_disabled);
4344
4345 ret = -EBUSY;
4346 if (local_read(&cpu_buffer_a->committing))
4347 goto out_dec;
4348 if (local_read(&cpu_buffer_b->committing))
4349 goto out_dec;
4350
4351 buffer_a->buffers[cpu] = cpu_buffer_b;
4352 buffer_b->buffers[cpu] = cpu_buffer_a;
4353
4354 cpu_buffer_b->buffer = buffer_a;
4355 cpu_buffer_a->buffer = buffer_b;
4356
4357 ret = 0;
4358
4359 out_dec:
4360 atomic_dec(&cpu_buffer_a->record_disabled);
4361 atomic_dec(&cpu_buffer_b->record_disabled);
4362 out:
4363 return ret;
4364 }
4365 EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu);
4366 #endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */
4367
4368 /**
4369 * ring_buffer_alloc_read_page - allocate a page to read from buffer
4370 * @buffer: the buffer to allocate for.
4371 * @cpu: the cpu buffer to allocate.
4372 *
4373 * This function is used in conjunction with ring_buffer_read_page.
4374 * When reading a full page from the ring buffer, these functions
4375 * can be used to speed up the process. The calling function should
4376 * allocate a few pages first with this function. Then when it
4377 * needs to get pages from the ring buffer, it passes the result
4378 * of this function into ring_buffer_read_page, which will swap
4379 * the page that was allocated, with the read page of the buffer.
4380 *
4381 * Returns:
4382 * The page allocated, or ERR_PTR
4383 */
4384 void *ring_buffer_alloc_read_page(struct ring_buffer *buffer, int cpu)
4385 {
4386 struct ring_buffer_per_cpu *cpu_buffer;
4387 struct buffer_data_page *bpage = NULL;
4388 unsigned long flags;
4389 struct page *page;
4390
4391 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4392 return ERR_PTR(-ENODEV);
4393
4394 cpu_buffer = buffer->buffers[cpu];
4395 local_irq_save(flags);
4396 arch_spin_lock(&cpu_buffer->lock);
4397
4398 if (cpu_buffer->free_page) {
4399 bpage = cpu_buffer->free_page;
4400 cpu_buffer->free_page = NULL;
4401 }
4402
4403 arch_spin_unlock(&cpu_buffer->lock);
4404 local_irq_restore(flags);
4405
4406 if (bpage)
4407 goto out;
4408
4409 page = alloc_pages_node(cpu_to_node(cpu),
4410 GFP_KERNEL | __GFP_NORETRY, 0);
4411 if (!page)
4412 return ERR_PTR(-ENOMEM);
4413
4414 bpage = page_address(page);
4415
4416 out:
4417 rb_init_page(bpage);
4418
4419 return bpage;
4420 }
4421 EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page);
4422
4423 /**
4424 * ring_buffer_free_read_page - free an allocated read page
4425 * @buffer: the buffer the page was allocate for
4426 * @cpu: the cpu buffer the page came from
4427 * @data: the page to free
4428 *
4429 * Free a page allocated from ring_buffer_alloc_read_page.
4430 */
4431 void ring_buffer_free_read_page(struct ring_buffer *buffer, int cpu, void *data)
4432 {
4433 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4434 struct buffer_data_page *bpage = data;
4435 struct page *page = virt_to_page(bpage);
4436 unsigned long flags;
4437
4438 /* If the page is still in use someplace else, we can't reuse it */
4439 if (page_ref_count(page) > 1)
4440 goto out;
4441
4442 local_irq_save(flags);
4443 arch_spin_lock(&cpu_buffer->lock);
4444
4445 if (!cpu_buffer->free_page) {
4446 cpu_buffer->free_page = bpage;
4447 bpage = NULL;
4448 }
4449
4450 arch_spin_unlock(&cpu_buffer->lock);
4451 local_irq_restore(flags);
4452
4453 out:
4454 free_page((unsigned long)bpage);
4455 }
4456 EXPORT_SYMBOL_GPL(ring_buffer_free_read_page);
4457
4458 /**
4459 * ring_buffer_read_page - extract a page from the ring buffer
4460 * @buffer: buffer to extract from
4461 * @data_page: the page to use allocated from ring_buffer_alloc_read_page
4462 * @len: amount to extract
4463 * @cpu: the cpu of the buffer to extract
4464 * @full: should the extraction only happen when the page is full.
4465 *
4466 * This function will pull out a page from the ring buffer and consume it.
4467 * @data_page must be the address of the variable that was returned
4468 * from ring_buffer_alloc_read_page. This is because the page might be used
4469 * to swap with a page in the ring buffer.
4470 *
4471 * for example:
4472 * rpage = ring_buffer_alloc_read_page(buffer, cpu);
4473 * if (IS_ERR(rpage))
4474 * return PTR_ERR(rpage);
4475 * ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0);
4476 * if (ret >= 0)
4477 * process_page(rpage, ret);
4478 *
4479 * When @full is set, the function will not return true unless
4480 * the writer is off the reader page.
4481 *
4482 * Note: it is up to the calling functions to handle sleeps and wakeups.
4483 * The ring buffer can be used anywhere in the kernel and can not
4484 * blindly call wake_up. The layer that uses the ring buffer must be
4485 * responsible for that.
4486 *
4487 * Returns:
4488 * >=0 if data has been transferred, returns the offset of consumed data.
4489 * <0 if no data has been transferred.
4490 */
4491 int ring_buffer_read_page(struct ring_buffer *buffer,
4492 void **data_page, size_t len, int cpu, int full)
4493 {
4494 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4495 struct ring_buffer_event *event;
4496 struct buffer_data_page *bpage;
4497 struct buffer_page *reader;
4498 unsigned long missed_events;
4499 unsigned long flags;
4500 unsigned int commit;
4501 unsigned int read;
4502 u64 save_timestamp;
4503 int ret = -1;
4504
4505 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4506 goto out;
4507
4508 /*
4509 * If len is not big enough to hold the page header, then
4510 * we can not copy anything.
4511 */
4512 if (len <= BUF_PAGE_HDR_SIZE)
4513 goto out;
4514
4515 len -= BUF_PAGE_HDR_SIZE;
4516
4517 if (!data_page)
4518 goto out;
4519
4520 bpage = *data_page;
4521 if (!bpage)
4522 goto out;
4523
4524 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4525
4526 reader = rb_get_reader_page(cpu_buffer);
4527 if (!reader)
4528 goto out_unlock;
4529
4530 event = rb_reader_event(cpu_buffer);
4531
4532 read = reader->read;
4533 commit = rb_page_commit(reader);
4534
4535 /* Check if any events were dropped */
4536 missed_events = cpu_buffer->lost_events;
4537
4538 /*
4539 * If this page has been partially read or
4540 * if len is not big enough to read the rest of the page or
4541 * a writer is still on the page, then
4542 * we must copy the data from the page to the buffer.
4543 * Otherwise, we can simply swap the page with the one passed in.
4544 */
4545 if (read || (len < (commit - read)) ||
4546 cpu_buffer->reader_page == cpu_buffer->commit_page) {
4547 struct buffer_data_page *rpage = cpu_buffer->reader_page->page;
4548 unsigned int rpos = read;
4549 unsigned int pos = 0;
4550 unsigned int size;
4551
4552 if (full)
4553 goto out_unlock;
4554
4555 if (len > (commit - read))
4556 len = (commit - read);
4557
4558 /* Always keep the time extend and data together */
4559 size = rb_event_ts_length(event);
4560
4561 if (len < size)
4562 goto out_unlock;
4563
4564 /* save the current timestamp, since the user will need it */
4565 save_timestamp = cpu_buffer->read_stamp;
4566
4567 /* Need to copy one event at a time */
4568 do {
4569 /* We need the size of one event, because
4570 * rb_advance_reader only advances by one event,
4571 * whereas rb_event_ts_length may include the size of
4572 * one or two events.
4573 * We have already ensured there's enough space if this
4574 * is a time extend. */
4575 size = rb_event_length(event);
4576 memcpy(bpage->data + pos, rpage->data + rpos, size);
4577
4578 len -= size;
4579
4580 rb_advance_reader(cpu_buffer);
4581 rpos = reader->read;
4582 pos += size;
4583
4584 if (rpos >= commit)
4585 break;
4586
4587 event = rb_reader_event(cpu_buffer);
4588 /* Always keep the time extend and data together */
4589 size = rb_event_ts_length(event);
4590 } while (len >= size);
4591
4592 /* update bpage */
4593 local_set(&bpage->commit, pos);
4594 bpage->time_stamp = save_timestamp;
4595
4596 /* we copied everything to the beginning */
4597 read = 0;
4598 } else {
4599 /* update the entry counter */
4600 cpu_buffer->read += rb_page_entries(reader);
4601 cpu_buffer->read_bytes += BUF_PAGE_SIZE;
4602
4603 /* swap the pages */
4604 rb_init_page(bpage);
4605 bpage = reader->page;
4606 reader->page = *data_page;
4607 local_set(&reader->write, 0);
4608 local_set(&reader->entries, 0);
4609 reader->read = 0;
4610 *data_page = bpage;
4611
4612 /*
4613 * Use the real_end for the data size,
4614 * This gives us a chance to store the lost events
4615 * on the page.
4616 */
4617 if (reader->real_end)
4618 local_set(&bpage->commit, reader->real_end);
4619 }
4620 ret = read;
4621
4622 cpu_buffer->lost_events = 0;
4623
4624 commit = local_read(&bpage->commit);
4625 /*
4626 * Set a flag in the commit field if we lost events
4627 */
4628 if (missed_events) {
4629 /* If there is room at the end of the page to save the
4630 * missed events, then record it there.
4631 */
4632 if (BUF_PAGE_SIZE - commit >= sizeof(missed_events)) {
4633 memcpy(&bpage->data[commit], &missed_events,
4634 sizeof(missed_events));
4635 local_add(RB_MISSED_STORED, &bpage->commit);
4636 commit += sizeof(missed_events);
4637 }
4638 local_add(RB_MISSED_EVENTS, &bpage->commit);
4639 }
4640
4641 /*
4642 * This page may be off to user land. Zero it out here.
4643 */
4644 if (commit < BUF_PAGE_SIZE)
4645 memset(&bpage->data[commit], 0, BUF_PAGE_SIZE - commit);
4646
4647 out_unlock:
4648 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4649
4650 out:
4651 return ret;
4652 }
4653 EXPORT_SYMBOL_GPL(ring_buffer_read_page);
4654
4655 /*
4656 * We only allocate new buffers, never free them if the CPU goes down.
4657 * If we were to free the buffer, then the user would lose any trace that was in
4658 * the buffer.
4659 */
4660 int trace_rb_cpu_prepare(unsigned int cpu, struct hlist_node *node)
4661 {
4662 struct ring_buffer *buffer;
4663 long nr_pages_same;
4664 int cpu_i;
4665 unsigned long nr_pages;
4666
4667 buffer = container_of(node, struct ring_buffer, node);
4668 if (cpumask_test_cpu(cpu, buffer->cpumask))
4669 return 0;
4670
4671 nr_pages = 0;
4672 nr_pages_same = 1;
4673 /* check if all cpu sizes are same */
4674 for_each_buffer_cpu(buffer, cpu_i) {
4675 /* fill in the size from first enabled cpu */
4676 if (nr_pages == 0)
4677 nr_pages = buffer->buffers[cpu_i]->nr_pages;
4678 if (nr_pages != buffer->buffers[cpu_i]->nr_pages) {
4679 nr_pages_same = 0;
4680 break;
4681 }
4682 }
4683 /* allocate minimum pages, user can later expand it */
4684 if (!nr_pages_same)
4685 nr_pages = 2;
4686 buffer->buffers[cpu] =
4687 rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
4688 if (!buffer->buffers[cpu]) {
4689 WARN(1, "failed to allocate ring buffer on CPU %u\n",
4690 cpu);
4691 return -ENOMEM;
4692 }
4693 smp_wmb();
4694 cpumask_set_cpu(cpu, buffer->cpumask);
4695 return 0;
4696 }
4697
4698 #ifdef CONFIG_RING_BUFFER_STARTUP_TEST
4699 /*
4700 * This is a basic integrity check of the ring buffer.
4701 * Late in the boot cycle this test will run when configured in.
4702 * It will kick off a thread per CPU that will go into a loop
4703 * writing to the per cpu ring buffer various sizes of data.
4704 * Some of the data will be large items, some small.
4705 *
4706 * Another thread is created that goes into a spin, sending out
4707 * IPIs to the other CPUs to also write into the ring buffer.
4708 * this is to test the nesting ability of the buffer.
4709 *
4710 * Basic stats are recorded and reported. If something in the
4711 * ring buffer should happen that's not expected, a big warning
4712 * is displayed and all ring buffers are disabled.
4713 */
4714 static struct task_struct *rb_threads[NR_CPUS] __initdata;
4715
4716 struct rb_test_data {
4717 struct ring_buffer *buffer;
4718 unsigned long events;
4719 unsigned long bytes_written;
4720 unsigned long bytes_alloc;
4721 unsigned long bytes_dropped;
4722 unsigned long events_nested;
4723 unsigned long bytes_written_nested;
4724 unsigned long bytes_alloc_nested;
4725 unsigned long bytes_dropped_nested;
4726 int min_size_nested;
4727 int max_size_nested;
4728 int max_size;
4729 int min_size;
4730 int cpu;
4731 int cnt;
4732 };
4733
4734 static struct rb_test_data rb_data[NR_CPUS] __initdata;
4735
4736 /* 1 meg per cpu */
4737 #define RB_TEST_BUFFER_SIZE 1048576
4738
4739 static char rb_string[] __initdata =
4740 "abcdefghijklmnopqrstuvwxyz1234567890!@#$%^&*()?+\\"
4741 "?+|:';\",.<>/?abcdefghijklmnopqrstuvwxyz1234567890"
4742 "!@#$%^&*()?+\\?+|:';\",.<>/?abcdefghijklmnopqrstuv";
4743
4744 static bool rb_test_started __initdata;
4745
4746 struct rb_item {
4747 int size;
4748 char str[];
4749 };
4750
4751 static __init int rb_write_something(struct rb_test_data *data, bool nested)
4752 {
4753 struct ring_buffer_event *event;
4754 struct rb_item *item;
4755 bool started;
4756 int event_len;
4757 int size;
4758 int len;
4759 int cnt;
4760
4761 /* Have nested writes different that what is written */
4762 cnt = data->cnt + (nested ? 27 : 0);
4763
4764 /* Multiply cnt by ~e, to make some unique increment */
4765 size = (data->cnt * 68 / 25) % (sizeof(rb_string) - 1);
4766
4767 len = size + sizeof(struct rb_item);
4768
4769 started = rb_test_started;
4770 /* read rb_test_started before checking buffer enabled */
4771 smp_rmb();
4772
4773 event = ring_buffer_lock_reserve(data->buffer, len);
4774 if (!event) {
4775 /* Ignore dropped events before test starts. */
4776 if (started) {
4777 if (nested)
4778 data->bytes_dropped += len;
4779 else
4780 data->bytes_dropped_nested += len;
4781 }
4782 return len;
4783 }
4784
4785 event_len = ring_buffer_event_length(event);
4786
4787 if (RB_WARN_ON(data->buffer, event_len < len))
4788 goto out;
4789
4790 item = ring_buffer_event_data(event);
4791 item->size = size;
4792 memcpy(item->str, rb_string, size);
4793
4794 if (nested) {
4795 data->bytes_alloc_nested += event_len;
4796 data->bytes_written_nested += len;
4797 data->events_nested++;
4798 if (!data->min_size_nested || len < data->min_size_nested)
4799 data->min_size_nested = len;
4800 if (len > data->max_size_nested)
4801 data->max_size_nested = len;
4802 } else {
4803 data->bytes_alloc += event_len;
4804 data->bytes_written += len;
4805 data->events++;
4806 if (!data->min_size || len < data->min_size)
4807 data->max_size = len;
4808 if (len > data->max_size)
4809 data->max_size = len;
4810 }
4811
4812 out:
4813 ring_buffer_unlock_commit(data->buffer, event);
4814
4815 return 0;
4816 }
4817
4818 static __init int rb_test(void *arg)
4819 {
4820 struct rb_test_data *data = arg;
4821
4822 while (!kthread_should_stop()) {
4823 rb_write_something(data, false);
4824 data->cnt++;
4825
4826 set_current_state(TASK_INTERRUPTIBLE);
4827 /* Now sleep between a min of 100-300us and a max of 1ms */
4828 usleep_range(((data->cnt % 3) + 1) * 100, 1000);
4829 }
4830
4831 return 0;
4832 }
4833
4834 static __init void rb_ipi(void *ignore)
4835 {
4836 struct rb_test_data *data;
4837 int cpu = smp_processor_id();
4838
4839 data = &rb_data[cpu];
4840 rb_write_something(data, true);
4841 }
4842
4843 static __init int rb_hammer_test(void *arg)
4844 {
4845 while (!kthread_should_stop()) {
4846
4847 /* Send an IPI to all cpus to write data! */
4848 smp_call_function(rb_ipi, NULL, 1);
4849 /* No sleep, but for non preempt, let others run */
4850 schedule();
4851 }
4852
4853 return 0;
4854 }
4855
4856 static __init int test_ringbuffer(void)
4857 {
4858 struct task_struct *rb_hammer;
4859 struct ring_buffer *buffer;
4860 int cpu;
4861 int ret = 0;
4862
4863 pr_info("Running ring buffer tests...\n");
4864
4865 buffer = ring_buffer_alloc(RB_TEST_BUFFER_SIZE, RB_FL_OVERWRITE);
4866 if (WARN_ON(!buffer))
4867 return 0;
4868
4869 /* Disable buffer so that threads can't write to it yet */
4870 ring_buffer_record_off(buffer);
4871
4872 for_each_online_cpu(cpu) {
4873 rb_data[cpu].buffer = buffer;
4874 rb_data[cpu].cpu = cpu;
4875 rb_data[cpu].cnt = cpu;
4876 rb_threads[cpu] = kthread_create(rb_test, &rb_data[cpu],
4877 "rbtester/%d", cpu);
4878 if (WARN_ON(IS_ERR(rb_threads[cpu]))) {
4879 pr_cont("FAILED\n");
4880 ret = PTR_ERR(rb_threads[cpu]);
4881 goto out_free;
4882 }
4883
4884 kthread_bind(rb_threads[cpu], cpu);
4885 wake_up_process(rb_threads[cpu]);
4886 }
4887
4888 /* Now create the rb hammer! */
4889 rb_hammer = kthread_run(rb_hammer_test, NULL, "rbhammer");
4890 if (WARN_ON(IS_ERR(rb_hammer))) {
4891 pr_cont("FAILED\n");
4892 ret = PTR_ERR(rb_hammer);
4893 goto out_free;
4894 }
4895
4896 ring_buffer_record_on(buffer);
4897 /*
4898 * Show buffer is enabled before setting rb_test_started.
4899 * Yes there's a small race window where events could be
4900 * dropped and the thread wont catch it. But when a ring
4901 * buffer gets enabled, there will always be some kind of
4902 * delay before other CPUs see it. Thus, we don't care about
4903 * those dropped events. We care about events dropped after
4904 * the threads see that the buffer is active.
4905 */
4906 smp_wmb();
4907 rb_test_started = true;
4908
4909 set_current_state(TASK_INTERRUPTIBLE);
4910 /* Just run for 10 seconds */;
4911 schedule_timeout(10 * HZ);
4912
4913 kthread_stop(rb_hammer);
4914
4915 out_free:
4916 for_each_online_cpu(cpu) {
4917 if (!rb_threads[cpu])
4918 break;
4919 kthread_stop(rb_threads[cpu]);
4920 }
4921 if (ret) {
4922 ring_buffer_free(buffer);
4923 return ret;
4924 }
4925
4926 /* Report! */
4927 pr_info("finished\n");
4928 for_each_online_cpu(cpu) {
4929 struct ring_buffer_event *event;
4930 struct rb_test_data *data = &rb_data[cpu];
4931 struct rb_item *item;
4932 unsigned long total_events;
4933 unsigned long total_dropped;
4934 unsigned long total_written;
4935 unsigned long total_alloc;
4936 unsigned long total_read = 0;
4937 unsigned long total_size = 0;
4938 unsigned long total_len = 0;
4939 unsigned long total_lost = 0;
4940 unsigned long lost;
4941 int big_event_size;
4942 int small_event_size;
4943
4944 ret = -1;
4945
4946 total_events = data->events + data->events_nested;
4947 total_written = data->bytes_written + data->bytes_written_nested;
4948 total_alloc = data->bytes_alloc + data->bytes_alloc_nested;
4949 total_dropped = data->bytes_dropped + data->bytes_dropped_nested;
4950
4951 big_event_size = data->max_size + data->max_size_nested;
4952 small_event_size = data->min_size + data->min_size_nested;
4953
4954 pr_info("CPU %d:\n", cpu);
4955 pr_info(" events: %ld\n", total_events);
4956 pr_info(" dropped bytes: %ld\n", total_dropped);
4957 pr_info(" alloced bytes: %ld\n", total_alloc);
4958 pr_info(" written bytes: %ld\n", total_written);
4959 pr_info(" biggest event: %d\n", big_event_size);
4960 pr_info(" smallest event: %d\n", small_event_size);
4961
4962 if (RB_WARN_ON(buffer, total_dropped))
4963 break;
4964
4965 ret = 0;
4966
4967 while ((event = ring_buffer_consume(buffer, cpu, NULL, &lost))) {
4968 total_lost += lost;
4969 item = ring_buffer_event_data(event);
4970 total_len += ring_buffer_event_length(event);
4971 total_size += item->size + sizeof(struct rb_item);
4972 if (memcmp(&item->str[0], rb_string, item->size) != 0) {
4973 pr_info("FAILED!\n");
4974 pr_info("buffer had: %.*s\n", item->size, item->str);
4975 pr_info("expected: %.*s\n", item->size, rb_string);
4976 RB_WARN_ON(buffer, 1);
4977 ret = -1;
4978 break;
4979 }
4980 total_read++;
4981 }
4982 if (ret)
4983 break;
4984
4985 ret = -1;
4986
4987 pr_info(" read events: %ld\n", total_read);
4988 pr_info(" lost events: %ld\n", total_lost);
4989 pr_info(" total events: %ld\n", total_lost + total_read);
4990 pr_info(" recorded len bytes: %ld\n", total_len);
4991 pr_info(" recorded size bytes: %ld\n", total_size);
4992 if (total_lost)
4993 pr_info(" With dropped events, record len and size may not match\n"
4994 " alloced and written from above\n");
4995 if (!total_lost) {
4996 if (RB_WARN_ON(buffer, total_len != total_alloc ||
4997 total_size != total_written))
4998 break;
4999 }
5000 if (RB_WARN_ON(buffer, total_lost + total_read != total_events))
5001 break;
5002
5003 ret = 0;
5004 }
5005 if (!ret)
5006 pr_info("Ring buffer PASSED!\n");
5007
5008 ring_buffer_free(buffer);
5009 return 0;
5010 }
5011
5012 late_initcall(test_ringbuffer);
5013 #endif /* CONFIG_RING_BUFFER_STARTUP_TEST */