]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - kernel/trace/ring_buffer.c
Merge tag 'locking-urgent-2020-12-27' of git://git.kernel.org/pub/scm/linux/kernel...
[mirror_ubuntu-hirsute-kernel.git] / kernel / trace / ring_buffer.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Generic ring buffer
4 *
5 * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
6 */
7 #include <linux/trace_recursion.h>
8 #include <linux/trace_events.h>
9 #include <linux/ring_buffer.h>
10 #include <linux/trace_clock.h>
11 #include <linux/sched/clock.h>
12 #include <linux/trace_seq.h>
13 #include <linux/spinlock.h>
14 #include <linux/irq_work.h>
15 #include <linux/security.h>
16 #include <linux/uaccess.h>
17 #include <linux/hardirq.h>
18 #include <linux/kthread.h> /* for self test */
19 #include <linux/module.h>
20 #include <linux/percpu.h>
21 #include <linux/mutex.h>
22 #include <linux/delay.h>
23 #include <linux/slab.h>
24 #include <linux/init.h>
25 #include <linux/hash.h>
26 #include <linux/list.h>
27 #include <linux/cpu.h>
28 #include <linux/oom.h>
29
30 #include <asm/local.h>
31
32 static void update_pages_handler(struct work_struct *work);
33
34 /*
35 * The ring buffer header is special. We must manually up keep it.
36 */
37 int ring_buffer_print_entry_header(struct trace_seq *s)
38 {
39 trace_seq_puts(s, "# compressed entry header\n");
40 trace_seq_puts(s, "\ttype_len : 5 bits\n");
41 trace_seq_puts(s, "\ttime_delta : 27 bits\n");
42 trace_seq_puts(s, "\tarray : 32 bits\n");
43 trace_seq_putc(s, '\n');
44 trace_seq_printf(s, "\tpadding : type == %d\n",
45 RINGBUF_TYPE_PADDING);
46 trace_seq_printf(s, "\ttime_extend : type == %d\n",
47 RINGBUF_TYPE_TIME_EXTEND);
48 trace_seq_printf(s, "\ttime_stamp : type == %d\n",
49 RINGBUF_TYPE_TIME_STAMP);
50 trace_seq_printf(s, "\tdata max type_len == %d\n",
51 RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
52
53 return !trace_seq_has_overflowed(s);
54 }
55
56 /*
57 * The ring buffer is made up of a list of pages. A separate list of pages is
58 * allocated for each CPU. A writer may only write to a buffer that is
59 * associated with the CPU it is currently executing on. A reader may read
60 * from any per cpu buffer.
61 *
62 * The reader is special. For each per cpu buffer, the reader has its own
63 * reader page. When a reader has read the entire reader page, this reader
64 * page is swapped with another page in the ring buffer.
65 *
66 * Now, as long as the writer is off the reader page, the reader can do what
67 * ever it wants with that page. The writer will never write to that page
68 * again (as long as it is out of the ring buffer).
69 *
70 * Here's some silly ASCII art.
71 *
72 * +------+
73 * |reader| RING BUFFER
74 * |page |
75 * +------+ +---+ +---+ +---+
76 * | |-->| |-->| |
77 * +---+ +---+ +---+
78 * ^ |
79 * | |
80 * +---------------+
81 *
82 *
83 * +------+
84 * |reader| RING BUFFER
85 * |page |------------------v
86 * +------+ +---+ +---+ +---+
87 * | |-->| |-->| |
88 * +---+ +---+ +---+
89 * ^ |
90 * | |
91 * +---------------+
92 *
93 *
94 * +------+
95 * |reader| RING BUFFER
96 * |page |------------------v
97 * +------+ +---+ +---+ +---+
98 * ^ | |-->| |-->| |
99 * | +---+ +---+ +---+
100 * | |
101 * | |
102 * +------------------------------+
103 *
104 *
105 * +------+
106 * |buffer| RING BUFFER
107 * |page |------------------v
108 * +------+ +---+ +---+ +---+
109 * ^ | | | |-->| |
110 * | New +---+ +---+ +---+
111 * | Reader------^ |
112 * | page |
113 * +------------------------------+
114 *
115 *
116 * After we make this swap, the reader can hand this page off to the splice
117 * code and be done with it. It can even allocate a new page if it needs to
118 * and swap that into the ring buffer.
119 *
120 * We will be using cmpxchg soon to make all this lockless.
121 *
122 */
123
124 /* Used for individual buffers (after the counter) */
125 #define RB_BUFFER_OFF (1 << 20)
126
127 #define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
128
129 #define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
130 #define RB_ALIGNMENT 4U
131 #define RB_MAX_SMALL_DATA (RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
132 #define RB_EVNT_MIN_SIZE 8U /* two 32bit words */
133
134 #ifndef CONFIG_HAVE_64BIT_ALIGNED_ACCESS
135 # define RB_FORCE_8BYTE_ALIGNMENT 0
136 # define RB_ARCH_ALIGNMENT RB_ALIGNMENT
137 #else
138 # define RB_FORCE_8BYTE_ALIGNMENT 1
139 # define RB_ARCH_ALIGNMENT 8U
140 #endif
141
142 #define RB_ALIGN_DATA __aligned(RB_ARCH_ALIGNMENT)
143
144 /* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */
145 #define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX
146
147 enum {
148 RB_LEN_TIME_EXTEND = 8,
149 RB_LEN_TIME_STAMP = 8,
150 };
151
152 #define skip_time_extend(event) \
153 ((struct ring_buffer_event *)((char *)event + RB_LEN_TIME_EXTEND))
154
155 #define extended_time(event) \
156 (event->type_len >= RINGBUF_TYPE_TIME_EXTEND)
157
158 static inline int rb_null_event(struct ring_buffer_event *event)
159 {
160 return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta;
161 }
162
163 static void rb_event_set_padding(struct ring_buffer_event *event)
164 {
165 /* padding has a NULL time_delta */
166 event->type_len = RINGBUF_TYPE_PADDING;
167 event->time_delta = 0;
168 }
169
170 static unsigned
171 rb_event_data_length(struct ring_buffer_event *event)
172 {
173 unsigned length;
174
175 if (event->type_len)
176 length = event->type_len * RB_ALIGNMENT;
177 else
178 length = event->array[0];
179 return length + RB_EVNT_HDR_SIZE;
180 }
181
182 /*
183 * Return the length of the given event. Will return
184 * the length of the time extend if the event is a
185 * time extend.
186 */
187 static inline unsigned
188 rb_event_length(struct ring_buffer_event *event)
189 {
190 switch (event->type_len) {
191 case RINGBUF_TYPE_PADDING:
192 if (rb_null_event(event))
193 /* undefined */
194 return -1;
195 return event->array[0] + RB_EVNT_HDR_SIZE;
196
197 case RINGBUF_TYPE_TIME_EXTEND:
198 return RB_LEN_TIME_EXTEND;
199
200 case RINGBUF_TYPE_TIME_STAMP:
201 return RB_LEN_TIME_STAMP;
202
203 case RINGBUF_TYPE_DATA:
204 return rb_event_data_length(event);
205 default:
206 WARN_ON_ONCE(1);
207 }
208 /* not hit */
209 return 0;
210 }
211
212 /*
213 * Return total length of time extend and data,
214 * or just the event length for all other events.
215 */
216 static inline unsigned
217 rb_event_ts_length(struct ring_buffer_event *event)
218 {
219 unsigned len = 0;
220
221 if (extended_time(event)) {
222 /* time extends include the data event after it */
223 len = RB_LEN_TIME_EXTEND;
224 event = skip_time_extend(event);
225 }
226 return len + rb_event_length(event);
227 }
228
229 /**
230 * ring_buffer_event_length - return the length of the event
231 * @event: the event to get the length of
232 *
233 * Returns the size of the data load of a data event.
234 * If the event is something other than a data event, it
235 * returns the size of the event itself. With the exception
236 * of a TIME EXTEND, where it still returns the size of the
237 * data load of the data event after it.
238 */
239 unsigned ring_buffer_event_length(struct ring_buffer_event *event)
240 {
241 unsigned length;
242
243 if (extended_time(event))
244 event = skip_time_extend(event);
245
246 length = rb_event_length(event);
247 if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
248 return length;
249 length -= RB_EVNT_HDR_SIZE;
250 if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0]))
251 length -= sizeof(event->array[0]);
252 return length;
253 }
254 EXPORT_SYMBOL_GPL(ring_buffer_event_length);
255
256 /* inline for ring buffer fast paths */
257 static __always_inline void *
258 rb_event_data(struct ring_buffer_event *event)
259 {
260 if (extended_time(event))
261 event = skip_time_extend(event);
262 WARN_ON_ONCE(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
263 /* If length is in len field, then array[0] has the data */
264 if (event->type_len)
265 return (void *)&event->array[0];
266 /* Otherwise length is in array[0] and array[1] has the data */
267 return (void *)&event->array[1];
268 }
269
270 /**
271 * ring_buffer_event_data - return the data of the event
272 * @event: the event to get the data from
273 */
274 void *ring_buffer_event_data(struct ring_buffer_event *event)
275 {
276 return rb_event_data(event);
277 }
278 EXPORT_SYMBOL_GPL(ring_buffer_event_data);
279
280 #define for_each_buffer_cpu(buffer, cpu) \
281 for_each_cpu(cpu, buffer->cpumask)
282
283 #define for_each_online_buffer_cpu(buffer, cpu) \
284 for_each_cpu_and(cpu, buffer->cpumask, cpu_online_mask)
285
286 #define TS_SHIFT 27
287 #define TS_MASK ((1ULL << TS_SHIFT) - 1)
288 #define TS_DELTA_TEST (~TS_MASK)
289
290 /**
291 * ring_buffer_event_time_stamp - return the event's extended timestamp
292 * @event: the event to get the timestamp of
293 *
294 * Returns the extended timestamp associated with a data event.
295 * An extended time_stamp is a 64-bit timestamp represented
296 * internally in a special way that makes the best use of space
297 * contained within a ring buffer event. This function decodes
298 * it and maps it to a straight u64 value.
299 */
300 u64 ring_buffer_event_time_stamp(struct ring_buffer_event *event)
301 {
302 u64 ts;
303
304 ts = event->array[0];
305 ts <<= TS_SHIFT;
306 ts += event->time_delta;
307
308 return ts;
309 }
310
311 /* Flag when events were overwritten */
312 #define RB_MISSED_EVENTS (1 << 31)
313 /* Missed count stored at end */
314 #define RB_MISSED_STORED (1 << 30)
315
316 struct buffer_data_page {
317 u64 time_stamp; /* page time stamp */
318 local_t commit; /* write committed index */
319 unsigned char data[] RB_ALIGN_DATA; /* data of buffer page */
320 };
321
322 /*
323 * Note, the buffer_page list must be first. The buffer pages
324 * are allocated in cache lines, which means that each buffer
325 * page will be at the beginning of a cache line, and thus
326 * the least significant bits will be zero. We use this to
327 * add flags in the list struct pointers, to make the ring buffer
328 * lockless.
329 */
330 struct buffer_page {
331 struct list_head list; /* list of buffer pages */
332 local_t write; /* index for next write */
333 unsigned read; /* index for next read */
334 local_t entries; /* entries on this page */
335 unsigned long real_end; /* real end of data */
336 struct buffer_data_page *page; /* Actual data page */
337 };
338
339 /*
340 * The buffer page counters, write and entries, must be reset
341 * atomically when crossing page boundaries. To synchronize this
342 * update, two counters are inserted into the number. One is
343 * the actual counter for the write position or count on the page.
344 *
345 * The other is a counter of updaters. Before an update happens
346 * the update partition of the counter is incremented. This will
347 * allow the updater to update the counter atomically.
348 *
349 * The counter is 20 bits, and the state data is 12.
350 */
351 #define RB_WRITE_MASK 0xfffff
352 #define RB_WRITE_INTCNT (1 << 20)
353
354 static void rb_init_page(struct buffer_data_page *bpage)
355 {
356 local_set(&bpage->commit, 0);
357 }
358
359 /*
360 * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing
361 * this issue out.
362 */
363 static void free_buffer_page(struct buffer_page *bpage)
364 {
365 free_page((unsigned long)bpage->page);
366 kfree(bpage);
367 }
368
369 /*
370 * We need to fit the time_stamp delta into 27 bits.
371 */
372 static inline int test_time_stamp(u64 delta)
373 {
374 if (delta & TS_DELTA_TEST)
375 return 1;
376 return 0;
377 }
378
379 #define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE)
380
381 /* Max payload is BUF_PAGE_SIZE - header (8bytes) */
382 #define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2))
383
384 int ring_buffer_print_page_header(struct trace_seq *s)
385 {
386 struct buffer_data_page field;
387
388 trace_seq_printf(s, "\tfield: u64 timestamp;\t"
389 "offset:0;\tsize:%u;\tsigned:%u;\n",
390 (unsigned int)sizeof(field.time_stamp),
391 (unsigned int)is_signed_type(u64));
392
393 trace_seq_printf(s, "\tfield: local_t commit;\t"
394 "offset:%u;\tsize:%u;\tsigned:%u;\n",
395 (unsigned int)offsetof(typeof(field), commit),
396 (unsigned int)sizeof(field.commit),
397 (unsigned int)is_signed_type(long));
398
399 trace_seq_printf(s, "\tfield: int overwrite;\t"
400 "offset:%u;\tsize:%u;\tsigned:%u;\n",
401 (unsigned int)offsetof(typeof(field), commit),
402 1,
403 (unsigned int)is_signed_type(long));
404
405 trace_seq_printf(s, "\tfield: char data;\t"
406 "offset:%u;\tsize:%u;\tsigned:%u;\n",
407 (unsigned int)offsetof(typeof(field), data),
408 (unsigned int)BUF_PAGE_SIZE,
409 (unsigned int)is_signed_type(char));
410
411 return !trace_seq_has_overflowed(s);
412 }
413
414 struct rb_irq_work {
415 struct irq_work work;
416 wait_queue_head_t waiters;
417 wait_queue_head_t full_waiters;
418 bool waiters_pending;
419 bool full_waiters_pending;
420 bool wakeup_full;
421 };
422
423 /*
424 * Structure to hold event state and handle nested events.
425 */
426 struct rb_event_info {
427 u64 ts;
428 u64 delta;
429 u64 before;
430 u64 after;
431 unsigned long length;
432 struct buffer_page *tail_page;
433 int add_timestamp;
434 };
435
436 /*
437 * Used for the add_timestamp
438 * NONE
439 * EXTEND - wants a time extend
440 * ABSOLUTE - the buffer requests all events to have absolute time stamps
441 * FORCE - force a full time stamp.
442 */
443 enum {
444 RB_ADD_STAMP_NONE = 0,
445 RB_ADD_STAMP_EXTEND = BIT(1),
446 RB_ADD_STAMP_ABSOLUTE = BIT(2),
447 RB_ADD_STAMP_FORCE = BIT(3)
448 };
449 /*
450 * Used for which event context the event is in.
451 * TRANSITION = 0
452 * NMI = 1
453 * IRQ = 2
454 * SOFTIRQ = 3
455 * NORMAL = 4
456 *
457 * See trace_recursive_lock() comment below for more details.
458 */
459 enum {
460 RB_CTX_TRANSITION,
461 RB_CTX_NMI,
462 RB_CTX_IRQ,
463 RB_CTX_SOFTIRQ,
464 RB_CTX_NORMAL,
465 RB_CTX_MAX
466 };
467
468 #if BITS_PER_LONG == 32
469 #define RB_TIME_32
470 #endif
471
472 /* To test on 64 bit machines */
473 //#define RB_TIME_32
474
475 #ifdef RB_TIME_32
476
477 struct rb_time_struct {
478 local_t cnt;
479 local_t top;
480 local_t bottom;
481 };
482 #else
483 #include <asm/local64.h>
484 struct rb_time_struct {
485 local64_t time;
486 };
487 #endif
488 typedef struct rb_time_struct rb_time_t;
489
490 /*
491 * head_page == tail_page && head == tail then buffer is empty.
492 */
493 struct ring_buffer_per_cpu {
494 int cpu;
495 atomic_t record_disabled;
496 atomic_t resize_disabled;
497 struct trace_buffer *buffer;
498 raw_spinlock_t reader_lock; /* serialize readers */
499 arch_spinlock_t lock;
500 struct lock_class_key lock_key;
501 struct buffer_data_page *free_page;
502 unsigned long nr_pages;
503 unsigned int current_context;
504 struct list_head *pages;
505 struct buffer_page *head_page; /* read from head */
506 struct buffer_page *tail_page; /* write to tail */
507 struct buffer_page *commit_page; /* committed pages */
508 struct buffer_page *reader_page;
509 unsigned long lost_events;
510 unsigned long last_overrun;
511 unsigned long nest;
512 local_t entries_bytes;
513 local_t entries;
514 local_t overrun;
515 local_t commit_overrun;
516 local_t dropped_events;
517 local_t committing;
518 local_t commits;
519 local_t pages_touched;
520 local_t pages_read;
521 long last_pages_touch;
522 size_t shortest_full;
523 unsigned long read;
524 unsigned long read_bytes;
525 rb_time_t write_stamp;
526 rb_time_t before_stamp;
527 u64 read_stamp;
528 /* ring buffer pages to update, > 0 to add, < 0 to remove */
529 long nr_pages_to_update;
530 struct list_head new_pages; /* new pages to add */
531 struct work_struct update_pages_work;
532 struct completion update_done;
533
534 struct rb_irq_work irq_work;
535 };
536
537 struct trace_buffer {
538 unsigned flags;
539 int cpus;
540 atomic_t record_disabled;
541 cpumask_var_t cpumask;
542
543 struct lock_class_key *reader_lock_key;
544
545 struct mutex mutex;
546
547 struct ring_buffer_per_cpu **buffers;
548
549 struct hlist_node node;
550 u64 (*clock)(void);
551
552 struct rb_irq_work irq_work;
553 bool time_stamp_abs;
554 };
555
556 struct ring_buffer_iter {
557 struct ring_buffer_per_cpu *cpu_buffer;
558 unsigned long head;
559 unsigned long next_event;
560 struct buffer_page *head_page;
561 struct buffer_page *cache_reader_page;
562 unsigned long cache_read;
563 u64 read_stamp;
564 u64 page_stamp;
565 struct ring_buffer_event *event;
566 int missed_events;
567 };
568
569 #ifdef RB_TIME_32
570
571 /*
572 * On 32 bit machines, local64_t is very expensive. As the ring
573 * buffer doesn't need all the features of a true 64 bit atomic,
574 * on 32 bit, it uses these functions (64 still uses local64_t).
575 *
576 * For the ring buffer, 64 bit required operations for the time is
577 * the following:
578 *
579 * - Only need 59 bits (uses 60 to make it even).
580 * - Reads may fail if it interrupted a modification of the time stamp.
581 * It will succeed if it did not interrupt another write even if
582 * the read itself is interrupted by a write.
583 * It returns whether it was successful or not.
584 *
585 * - Writes always succeed and will overwrite other writes and writes
586 * that were done by events interrupting the current write.
587 *
588 * - A write followed by a read of the same time stamp will always succeed,
589 * but may not contain the same value.
590 *
591 * - A cmpxchg will fail if it interrupted another write or cmpxchg.
592 * Other than that, it acts like a normal cmpxchg.
593 *
594 * The 60 bit time stamp is broken up by 30 bits in a top and bottom half
595 * (bottom being the least significant 30 bits of the 60 bit time stamp).
596 *
597 * The two most significant bits of each half holds a 2 bit counter (0-3).
598 * Each update will increment this counter by one.
599 * When reading the top and bottom, if the two counter bits match then the
600 * top and bottom together make a valid 60 bit number.
601 */
602 #define RB_TIME_SHIFT 30
603 #define RB_TIME_VAL_MASK ((1 << RB_TIME_SHIFT) - 1)
604
605 static inline int rb_time_cnt(unsigned long val)
606 {
607 return (val >> RB_TIME_SHIFT) & 3;
608 }
609
610 static inline u64 rb_time_val(unsigned long top, unsigned long bottom)
611 {
612 u64 val;
613
614 val = top & RB_TIME_VAL_MASK;
615 val <<= RB_TIME_SHIFT;
616 val |= bottom & RB_TIME_VAL_MASK;
617
618 return val;
619 }
620
621 static inline bool __rb_time_read(rb_time_t *t, u64 *ret, unsigned long *cnt)
622 {
623 unsigned long top, bottom;
624 unsigned long c;
625
626 /*
627 * If the read is interrupted by a write, then the cnt will
628 * be different. Loop until both top and bottom have been read
629 * without interruption.
630 */
631 do {
632 c = local_read(&t->cnt);
633 top = local_read(&t->top);
634 bottom = local_read(&t->bottom);
635 } while (c != local_read(&t->cnt));
636
637 *cnt = rb_time_cnt(top);
638
639 /* If top and bottom counts don't match, this interrupted a write */
640 if (*cnt != rb_time_cnt(bottom))
641 return false;
642
643 *ret = rb_time_val(top, bottom);
644 return true;
645 }
646
647 static bool rb_time_read(rb_time_t *t, u64 *ret)
648 {
649 unsigned long cnt;
650
651 return __rb_time_read(t, ret, &cnt);
652 }
653
654 static inline unsigned long rb_time_val_cnt(unsigned long val, unsigned long cnt)
655 {
656 return (val & RB_TIME_VAL_MASK) | ((cnt & 3) << RB_TIME_SHIFT);
657 }
658
659 static inline void rb_time_split(u64 val, unsigned long *top, unsigned long *bottom)
660 {
661 *top = (unsigned long)((val >> RB_TIME_SHIFT) & RB_TIME_VAL_MASK);
662 *bottom = (unsigned long)(val & RB_TIME_VAL_MASK);
663 }
664
665 static inline void rb_time_val_set(local_t *t, unsigned long val, unsigned long cnt)
666 {
667 val = rb_time_val_cnt(val, cnt);
668 local_set(t, val);
669 }
670
671 static void rb_time_set(rb_time_t *t, u64 val)
672 {
673 unsigned long cnt, top, bottom;
674
675 rb_time_split(val, &top, &bottom);
676
677 /* Writes always succeed with a valid number even if it gets interrupted. */
678 do {
679 cnt = local_inc_return(&t->cnt);
680 rb_time_val_set(&t->top, top, cnt);
681 rb_time_val_set(&t->bottom, bottom, cnt);
682 } while (cnt != local_read(&t->cnt));
683 }
684
685 static inline bool
686 rb_time_read_cmpxchg(local_t *l, unsigned long expect, unsigned long set)
687 {
688 unsigned long ret;
689
690 ret = local_cmpxchg(l, expect, set);
691 return ret == expect;
692 }
693
694 static int rb_time_cmpxchg(rb_time_t *t, u64 expect, u64 set)
695 {
696 unsigned long cnt, top, bottom;
697 unsigned long cnt2, top2, bottom2;
698 u64 val;
699
700 /* The cmpxchg always fails if it interrupted an update */
701 if (!__rb_time_read(t, &val, &cnt2))
702 return false;
703
704 if (val != expect)
705 return false;
706
707 cnt = local_read(&t->cnt);
708 if ((cnt & 3) != cnt2)
709 return false;
710
711 cnt2 = cnt + 1;
712
713 rb_time_split(val, &top, &bottom);
714 top = rb_time_val_cnt(top, cnt);
715 bottom = rb_time_val_cnt(bottom, cnt);
716
717 rb_time_split(set, &top2, &bottom2);
718 top2 = rb_time_val_cnt(top2, cnt2);
719 bottom2 = rb_time_val_cnt(bottom2, cnt2);
720
721 if (!rb_time_read_cmpxchg(&t->cnt, cnt, cnt2))
722 return false;
723 if (!rb_time_read_cmpxchg(&t->top, top, top2))
724 return false;
725 if (!rb_time_read_cmpxchg(&t->bottom, bottom, bottom2))
726 return false;
727 return true;
728 }
729
730 #else /* 64 bits */
731
732 /* local64_t always succeeds */
733
734 static inline bool rb_time_read(rb_time_t *t, u64 *ret)
735 {
736 *ret = local64_read(&t->time);
737 return true;
738 }
739 static void rb_time_set(rb_time_t *t, u64 val)
740 {
741 local64_set(&t->time, val);
742 }
743
744 static bool rb_time_cmpxchg(rb_time_t *t, u64 expect, u64 set)
745 {
746 u64 val;
747 val = local64_cmpxchg(&t->time, expect, set);
748 return val == expect;
749 }
750 #endif
751
752 /**
753 * ring_buffer_nr_pages - get the number of buffer pages in the ring buffer
754 * @buffer: The ring_buffer to get the number of pages from
755 * @cpu: The cpu of the ring_buffer to get the number of pages from
756 *
757 * Returns the number of pages used by a per_cpu buffer of the ring buffer.
758 */
759 size_t ring_buffer_nr_pages(struct trace_buffer *buffer, int cpu)
760 {
761 return buffer->buffers[cpu]->nr_pages;
762 }
763
764 /**
765 * ring_buffer_nr_pages_dirty - get the number of used pages in the ring buffer
766 * @buffer: The ring_buffer to get the number of pages from
767 * @cpu: The cpu of the ring_buffer to get the number of pages from
768 *
769 * Returns the number of pages that have content in the ring buffer.
770 */
771 size_t ring_buffer_nr_dirty_pages(struct trace_buffer *buffer, int cpu)
772 {
773 size_t read;
774 size_t cnt;
775
776 read = local_read(&buffer->buffers[cpu]->pages_read);
777 cnt = local_read(&buffer->buffers[cpu]->pages_touched);
778 /* The reader can read an empty page, but not more than that */
779 if (cnt < read) {
780 WARN_ON_ONCE(read > cnt + 1);
781 return 0;
782 }
783
784 return cnt - read;
785 }
786
787 /*
788 * rb_wake_up_waiters - wake up tasks waiting for ring buffer input
789 *
790 * Schedules a delayed work to wake up any task that is blocked on the
791 * ring buffer waiters queue.
792 */
793 static void rb_wake_up_waiters(struct irq_work *work)
794 {
795 struct rb_irq_work *rbwork = container_of(work, struct rb_irq_work, work);
796
797 wake_up_all(&rbwork->waiters);
798 if (rbwork->wakeup_full) {
799 rbwork->wakeup_full = false;
800 wake_up_all(&rbwork->full_waiters);
801 }
802 }
803
804 /**
805 * ring_buffer_wait - wait for input to the ring buffer
806 * @buffer: buffer to wait on
807 * @cpu: the cpu buffer to wait on
808 * @full: wait until the percentage of pages are available, if @cpu != RING_BUFFER_ALL_CPUS
809 *
810 * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
811 * as data is added to any of the @buffer's cpu buffers. Otherwise
812 * it will wait for data to be added to a specific cpu buffer.
813 */
814 int ring_buffer_wait(struct trace_buffer *buffer, int cpu, int full)
815 {
816 struct ring_buffer_per_cpu *cpu_buffer;
817 DEFINE_WAIT(wait);
818 struct rb_irq_work *work;
819 int ret = 0;
820
821 /*
822 * Depending on what the caller is waiting for, either any
823 * data in any cpu buffer, or a specific buffer, put the
824 * caller on the appropriate wait queue.
825 */
826 if (cpu == RING_BUFFER_ALL_CPUS) {
827 work = &buffer->irq_work;
828 /* Full only makes sense on per cpu reads */
829 full = 0;
830 } else {
831 if (!cpumask_test_cpu(cpu, buffer->cpumask))
832 return -ENODEV;
833 cpu_buffer = buffer->buffers[cpu];
834 work = &cpu_buffer->irq_work;
835 }
836
837
838 while (true) {
839 if (full)
840 prepare_to_wait(&work->full_waiters, &wait, TASK_INTERRUPTIBLE);
841 else
842 prepare_to_wait(&work->waiters, &wait, TASK_INTERRUPTIBLE);
843
844 /*
845 * The events can happen in critical sections where
846 * checking a work queue can cause deadlocks.
847 * After adding a task to the queue, this flag is set
848 * only to notify events to try to wake up the queue
849 * using irq_work.
850 *
851 * We don't clear it even if the buffer is no longer
852 * empty. The flag only causes the next event to run
853 * irq_work to do the work queue wake up. The worse
854 * that can happen if we race with !trace_empty() is that
855 * an event will cause an irq_work to try to wake up
856 * an empty queue.
857 *
858 * There's no reason to protect this flag either, as
859 * the work queue and irq_work logic will do the necessary
860 * synchronization for the wake ups. The only thing
861 * that is necessary is that the wake up happens after
862 * a task has been queued. It's OK for spurious wake ups.
863 */
864 if (full)
865 work->full_waiters_pending = true;
866 else
867 work->waiters_pending = true;
868
869 if (signal_pending(current)) {
870 ret = -EINTR;
871 break;
872 }
873
874 if (cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer))
875 break;
876
877 if (cpu != RING_BUFFER_ALL_CPUS &&
878 !ring_buffer_empty_cpu(buffer, cpu)) {
879 unsigned long flags;
880 bool pagebusy;
881 size_t nr_pages;
882 size_t dirty;
883
884 if (!full)
885 break;
886
887 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
888 pagebusy = cpu_buffer->reader_page == cpu_buffer->commit_page;
889 nr_pages = cpu_buffer->nr_pages;
890 dirty = ring_buffer_nr_dirty_pages(buffer, cpu);
891 if (!cpu_buffer->shortest_full ||
892 cpu_buffer->shortest_full < full)
893 cpu_buffer->shortest_full = full;
894 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
895 if (!pagebusy &&
896 (!nr_pages || (dirty * 100) > full * nr_pages))
897 break;
898 }
899
900 schedule();
901 }
902
903 if (full)
904 finish_wait(&work->full_waiters, &wait);
905 else
906 finish_wait(&work->waiters, &wait);
907
908 return ret;
909 }
910
911 /**
912 * ring_buffer_poll_wait - poll on buffer input
913 * @buffer: buffer to wait on
914 * @cpu: the cpu buffer to wait on
915 * @filp: the file descriptor
916 * @poll_table: The poll descriptor
917 *
918 * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
919 * as data is added to any of the @buffer's cpu buffers. Otherwise
920 * it will wait for data to be added to a specific cpu buffer.
921 *
922 * Returns EPOLLIN | EPOLLRDNORM if data exists in the buffers,
923 * zero otherwise.
924 */
925 __poll_t ring_buffer_poll_wait(struct trace_buffer *buffer, int cpu,
926 struct file *filp, poll_table *poll_table)
927 {
928 struct ring_buffer_per_cpu *cpu_buffer;
929 struct rb_irq_work *work;
930
931 if (cpu == RING_BUFFER_ALL_CPUS)
932 work = &buffer->irq_work;
933 else {
934 if (!cpumask_test_cpu(cpu, buffer->cpumask))
935 return -EINVAL;
936
937 cpu_buffer = buffer->buffers[cpu];
938 work = &cpu_buffer->irq_work;
939 }
940
941 poll_wait(filp, &work->waiters, poll_table);
942 work->waiters_pending = true;
943 /*
944 * There's a tight race between setting the waiters_pending and
945 * checking if the ring buffer is empty. Once the waiters_pending bit
946 * is set, the next event will wake the task up, but we can get stuck
947 * if there's only a single event in.
948 *
949 * FIXME: Ideally, we need a memory barrier on the writer side as well,
950 * but adding a memory barrier to all events will cause too much of a
951 * performance hit in the fast path. We only need a memory barrier when
952 * the buffer goes from empty to having content. But as this race is
953 * extremely small, and it's not a problem if another event comes in, we
954 * will fix it later.
955 */
956 smp_mb();
957
958 if ((cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer)) ||
959 (cpu != RING_BUFFER_ALL_CPUS && !ring_buffer_empty_cpu(buffer, cpu)))
960 return EPOLLIN | EPOLLRDNORM;
961 return 0;
962 }
963
964 /* buffer may be either ring_buffer or ring_buffer_per_cpu */
965 #define RB_WARN_ON(b, cond) \
966 ({ \
967 int _____ret = unlikely(cond); \
968 if (_____ret) { \
969 if (__same_type(*(b), struct ring_buffer_per_cpu)) { \
970 struct ring_buffer_per_cpu *__b = \
971 (void *)b; \
972 atomic_inc(&__b->buffer->record_disabled); \
973 } else \
974 atomic_inc(&b->record_disabled); \
975 WARN_ON(1); \
976 } \
977 _____ret; \
978 })
979
980 /* Up this if you want to test the TIME_EXTENTS and normalization */
981 #define DEBUG_SHIFT 0
982
983 static inline u64 rb_time_stamp(struct trace_buffer *buffer)
984 {
985 u64 ts;
986
987 /* Skip retpolines :-( */
988 if (IS_ENABLED(CONFIG_RETPOLINE) && likely(buffer->clock == trace_clock_local))
989 ts = trace_clock_local();
990 else
991 ts = buffer->clock();
992
993 /* shift to debug/test normalization and TIME_EXTENTS */
994 return ts << DEBUG_SHIFT;
995 }
996
997 u64 ring_buffer_time_stamp(struct trace_buffer *buffer, int cpu)
998 {
999 u64 time;
1000
1001 preempt_disable_notrace();
1002 time = rb_time_stamp(buffer);
1003 preempt_enable_notrace();
1004
1005 return time;
1006 }
1007 EXPORT_SYMBOL_GPL(ring_buffer_time_stamp);
1008
1009 void ring_buffer_normalize_time_stamp(struct trace_buffer *buffer,
1010 int cpu, u64 *ts)
1011 {
1012 /* Just stupid testing the normalize function and deltas */
1013 *ts >>= DEBUG_SHIFT;
1014 }
1015 EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp);
1016
1017 /*
1018 * Making the ring buffer lockless makes things tricky.
1019 * Although writes only happen on the CPU that they are on,
1020 * and they only need to worry about interrupts. Reads can
1021 * happen on any CPU.
1022 *
1023 * The reader page is always off the ring buffer, but when the
1024 * reader finishes with a page, it needs to swap its page with
1025 * a new one from the buffer. The reader needs to take from
1026 * the head (writes go to the tail). But if a writer is in overwrite
1027 * mode and wraps, it must push the head page forward.
1028 *
1029 * Here lies the problem.
1030 *
1031 * The reader must be careful to replace only the head page, and
1032 * not another one. As described at the top of the file in the
1033 * ASCII art, the reader sets its old page to point to the next
1034 * page after head. It then sets the page after head to point to
1035 * the old reader page. But if the writer moves the head page
1036 * during this operation, the reader could end up with the tail.
1037 *
1038 * We use cmpxchg to help prevent this race. We also do something
1039 * special with the page before head. We set the LSB to 1.
1040 *
1041 * When the writer must push the page forward, it will clear the
1042 * bit that points to the head page, move the head, and then set
1043 * the bit that points to the new head page.
1044 *
1045 * We also don't want an interrupt coming in and moving the head
1046 * page on another writer. Thus we use the second LSB to catch
1047 * that too. Thus:
1048 *
1049 * head->list->prev->next bit 1 bit 0
1050 * ------- -------
1051 * Normal page 0 0
1052 * Points to head page 0 1
1053 * New head page 1 0
1054 *
1055 * Note we can not trust the prev pointer of the head page, because:
1056 *
1057 * +----+ +-----+ +-----+
1058 * | |------>| T |---X--->| N |
1059 * | |<------| | | |
1060 * +----+ +-----+ +-----+
1061 * ^ ^ |
1062 * | +-----+ | |
1063 * +----------| R |----------+ |
1064 * | |<-----------+
1065 * +-----+
1066 *
1067 * Key: ---X--> HEAD flag set in pointer
1068 * T Tail page
1069 * R Reader page
1070 * N Next page
1071 *
1072 * (see __rb_reserve_next() to see where this happens)
1073 *
1074 * What the above shows is that the reader just swapped out
1075 * the reader page with a page in the buffer, but before it
1076 * could make the new header point back to the new page added
1077 * it was preempted by a writer. The writer moved forward onto
1078 * the new page added by the reader and is about to move forward
1079 * again.
1080 *
1081 * You can see, it is legitimate for the previous pointer of
1082 * the head (or any page) not to point back to itself. But only
1083 * temporarily.
1084 */
1085
1086 #define RB_PAGE_NORMAL 0UL
1087 #define RB_PAGE_HEAD 1UL
1088 #define RB_PAGE_UPDATE 2UL
1089
1090
1091 #define RB_FLAG_MASK 3UL
1092
1093 /* PAGE_MOVED is not part of the mask */
1094 #define RB_PAGE_MOVED 4UL
1095
1096 /*
1097 * rb_list_head - remove any bit
1098 */
1099 static struct list_head *rb_list_head(struct list_head *list)
1100 {
1101 unsigned long val = (unsigned long)list;
1102
1103 return (struct list_head *)(val & ~RB_FLAG_MASK);
1104 }
1105
1106 /*
1107 * rb_is_head_page - test if the given page is the head page
1108 *
1109 * Because the reader may move the head_page pointer, we can
1110 * not trust what the head page is (it may be pointing to
1111 * the reader page). But if the next page is a header page,
1112 * its flags will be non zero.
1113 */
1114 static inline int
1115 rb_is_head_page(struct ring_buffer_per_cpu *cpu_buffer,
1116 struct buffer_page *page, struct list_head *list)
1117 {
1118 unsigned long val;
1119
1120 val = (unsigned long)list->next;
1121
1122 if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list)
1123 return RB_PAGE_MOVED;
1124
1125 return val & RB_FLAG_MASK;
1126 }
1127
1128 /*
1129 * rb_is_reader_page
1130 *
1131 * The unique thing about the reader page, is that, if the
1132 * writer is ever on it, the previous pointer never points
1133 * back to the reader page.
1134 */
1135 static bool rb_is_reader_page(struct buffer_page *page)
1136 {
1137 struct list_head *list = page->list.prev;
1138
1139 return rb_list_head(list->next) != &page->list;
1140 }
1141
1142 /*
1143 * rb_set_list_to_head - set a list_head to be pointing to head.
1144 */
1145 static void rb_set_list_to_head(struct ring_buffer_per_cpu *cpu_buffer,
1146 struct list_head *list)
1147 {
1148 unsigned long *ptr;
1149
1150 ptr = (unsigned long *)&list->next;
1151 *ptr |= RB_PAGE_HEAD;
1152 *ptr &= ~RB_PAGE_UPDATE;
1153 }
1154
1155 /*
1156 * rb_head_page_activate - sets up head page
1157 */
1158 static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer)
1159 {
1160 struct buffer_page *head;
1161
1162 head = cpu_buffer->head_page;
1163 if (!head)
1164 return;
1165
1166 /*
1167 * Set the previous list pointer to have the HEAD flag.
1168 */
1169 rb_set_list_to_head(cpu_buffer, head->list.prev);
1170 }
1171
1172 static void rb_list_head_clear(struct list_head *list)
1173 {
1174 unsigned long *ptr = (unsigned long *)&list->next;
1175
1176 *ptr &= ~RB_FLAG_MASK;
1177 }
1178
1179 /*
1180 * rb_head_page_deactivate - clears head page ptr (for free list)
1181 */
1182 static void
1183 rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer)
1184 {
1185 struct list_head *hd;
1186
1187 /* Go through the whole list and clear any pointers found. */
1188 rb_list_head_clear(cpu_buffer->pages);
1189
1190 list_for_each(hd, cpu_buffer->pages)
1191 rb_list_head_clear(hd);
1192 }
1193
1194 static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer,
1195 struct buffer_page *head,
1196 struct buffer_page *prev,
1197 int old_flag, int new_flag)
1198 {
1199 struct list_head *list;
1200 unsigned long val = (unsigned long)&head->list;
1201 unsigned long ret;
1202
1203 list = &prev->list;
1204
1205 val &= ~RB_FLAG_MASK;
1206
1207 ret = cmpxchg((unsigned long *)&list->next,
1208 val | old_flag, val | new_flag);
1209
1210 /* check if the reader took the page */
1211 if ((ret & ~RB_FLAG_MASK) != val)
1212 return RB_PAGE_MOVED;
1213
1214 return ret & RB_FLAG_MASK;
1215 }
1216
1217 static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer,
1218 struct buffer_page *head,
1219 struct buffer_page *prev,
1220 int old_flag)
1221 {
1222 return rb_head_page_set(cpu_buffer, head, prev,
1223 old_flag, RB_PAGE_UPDATE);
1224 }
1225
1226 static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer,
1227 struct buffer_page *head,
1228 struct buffer_page *prev,
1229 int old_flag)
1230 {
1231 return rb_head_page_set(cpu_buffer, head, prev,
1232 old_flag, RB_PAGE_HEAD);
1233 }
1234
1235 static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer,
1236 struct buffer_page *head,
1237 struct buffer_page *prev,
1238 int old_flag)
1239 {
1240 return rb_head_page_set(cpu_buffer, head, prev,
1241 old_flag, RB_PAGE_NORMAL);
1242 }
1243
1244 static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer,
1245 struct buffer_page **bpage)
1246 {
1247 struct list_head *p = rb_list_head((*bpage)->list.next);
1248
1249 *bpage = list_entry(p, struct buffer_page, list);
1250 }
1251
1252 static struct buffer_page *
1253 rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer)
1254 {
1255 struct buffer_page *head;
1256 struct buffer_page *page;
1257 struct list_head *list;
1258 int i;
1259
1260 if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page))
1261 return NULL;
1262
1263 /* sanity check */
1264 list = cpu_buffer->pages;
1265 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list))
1266 return NULL;
1267
1268 page = head = cpu_buffer->head_page;
1269 /*
1270 * It is possible that the writer moves the header behind
1271 * where we started, and we miss in one loop.
1272 * A second loop should grab the header, but we'll do
1273 * three loops just because I'm paranoid.
1274 */
1275 for (i = 0; i < 3; i++) {
1276 do {
1277 if (rb_is_head_page(cpu_buffer, page, page->list.prev)) {
1278 cpu_buffer->head_page = page;
1279 return page;
1280 }
1281 rb_inc_page(cpu_buffer, &page);
1282 } while (page != head);
1283 }
1284
1285 RB_WARN_ON(cpu_buffer, 1);
1286
1287 return NULL;
1288 }
1289
1290 static int rb_head_page_replace(struct buffer_page *old,
1291 struct buffer_page *new)
1292 {
1293 unsigned long *ptr = (unsigned long *)&old->list.prev->next;
1294 unsigned long val;
1295 unsigned long ret;
1296
1297 val = *ptr & ~RB_FLAG_MASK;
1298 val |= RB_PAGE_HEAD;
1299
1300 ret = cmpxchg(ptr, val, (unsigned long)&new->list);
1301
1302 return ret == val;
1303 }
1304
1305 /*
1306 * rb_tail_page_update - move the tail page forward
1307 */
1308 static void rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer,
1309 struct buffer_page *tail_page,
1310 struct buffer_page *next_page)
1311 {
1312 unsigned long old_entries;
1313 unsigned long old_write;
1314
1315 /*
1316 * The tail page now needs to be moved forward.
1317 *
1318 * We need to reset the tail page, but without messing
1319 * with possible erasing of data brought in by interrupts
1320 * that have moved the tail page and are currently on it.
1321 *
1322 * We add a counter to the write field to denote this.
1323 */
1324 old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write);
1325 old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries);
1326
1327 local_inc(&cpu_buffer->pages_touched);
1328 /*
1329 * Just make sure we have seen our old_write and synchronize
1330 * with any interrupts that come in.
1331 */
1332 barrier();
1333
1334 /*
1335 * If the tail page is still the same as what we think
1336 * it is, then it is up to us to update the tail
1337 * pointer.
1338 */
1339 if (tail_page == READ_ONCE(cpu_buffer->tail_page)) {
1340 /* Zero the write counter */
1341 unsigned long val = old_write & ~RB_WRITE_MASK;
1342 unsigned long eval = old_entries & ~RB_WRITE_MASK;
1343
1344 /*
1345 * This will only succeed if an interrupt did
1346 * not come in and change it. In which case, we
1347 * do not want to modify it.
1348 *
1349 * We add (void) to let the compiler know that we do not care
1350 * about the return value of these functions. We use the
1351 * cmpxchg to only update if an interrupt did not already
1352 * do it for us. If the cmpxchg fails, we don't care.
1353 */
1354 (void)local_cmpxchg(&next_page->write, old_write, val);
1355 (void)local_cmpxchg(&next_page->entries, old_entries, eval);
1356
1357 /*
1358 * No need to worry about races with clearing out the commit.
1359 * it only can increment when a commit takes place. But that
1360 * only happens in the outer most nested commit.
1361 */
1362 local_set(&next_page->page->commit, 0);
1363
1364 /* Again, either we update tail_page or an interrupt does */
1365 (void)cmpxchg(&cpu_buffer->tail_page, tail_page, next_page);
1366 }
1367 }
1368
1369 static int rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer,
1370 struct buffer_page *bpage)
1371 {
1372 unsigned long val = (unsigned long)bpage;
1373
1374 if (RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK))
1375 return 1;
1376
1377 return 0;
1378 }
1379
1380 /**
1381 * rb_check_list - make sure a pointer to a list has the last bits zero
1382 */
1383 static int rb_check_list(struct ring_buffer_per_cpu *cpu_buffer,
1384 struct list_head *list)
1385 {
1386 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev) != list->prev))
1387 return 1;
1388 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->next) != list->next))
1389 return 1;
1390 return 0;
1391 }
1392
1393 /**
1394 * rb_check_pages - integrity check of buffer pages
1395 * @cpu_buffer: CPU buffer with pages to test
1396 *
1397 * As a safety measure we check to make sure the data pages have not
1398 * been corrupted.
1399 */
1400 static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
1401 {
1402 struct list_head *head = cpu_buffer->pages;
1403 struct buffer_page *bpage, *tmp;
1404
1405 /* Reset the head page if it exists */
1406 if (cpu_buffer->head_page)
1407 rb_set_head_page(cpu_buffer);
1408
1409 rb_head_page_deactivate(cpu_buffer);
1410
1411 if (RB_WARN_ON(cpu_buffer, head->next->prev != head))
1412 return -1;
1413 if (RB_WARN_ON(cpu_buffer, head->prev->next != head))
1414 return -1;
1415
1416 if (rb_check_list(cpu_buffer, head))
1417 return -1;
1418
1419 list_for_each_entry_safe(bpage, tmp, head, list) {
1420 if (RB_WARN_ON(cpu_buffer,
1421 bpage->list.next->prev != &bpage->list))
1422 return -1;
1423 if (RB_WARN_ON(cpu_buffer,
1424 bpage->list.prev->next != &bpage->list))
1425 return -1;
1426 if (rb_check_list(cpu_buffer, &bpage->list))
1427 return -1;
1428 }
1429
1430 rb_head_page_activate(cpu_buffer);
1431
1432 return 0;
1433 }
1434
1435 static int __rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
1436 long nr_pages, struct list_head *pages)
1437 {
1438 struct buffer_page *bpage, *tmp;
1439 bool user_thread = current->mm != NULL;
1440 gfp_t mflags;
1441 long i;
1442
1443 /*
1444 * Check if the available memory is there first.
1445 * Note, si_mem_available() only gives us a rough estimate of available
1446 * memory. It may not be accurate. But we don't care, we just want
1447 * to prevent doing any allocation when it is obvious that it is
1448 * not going to succeed.
1449 */
1450 i = si_mem_available();
1451 if (i < nr_pages)
1452 return -ENOMEM;
1453
1454 /*
1455 * __GFP_RETRY_MAYFAIL flag makes sure that the allocation fails
1456 * gracefully without invoking oom-killer and the system is not
1457 * destabilized.
1458 */
1459 mflags = GFP_KERNEL | __GFP_RETRY_MAYFAIL;
1460
1461 /*
1462 * If a user thread allocates too much, and si_mem_available()
1463 * reports there's enough memory, even though there is not.
1464 * Make sure the OOM killer kills this thread. This can happen
1465 * even with RETRY_MAYFAIL because another task may be doing
1466 * an allocation after this task has taken all memory.
1467 * This is the task the OOM killer needs to take out during this
1468 * loop, even if it was triggered by an allocation somewhere else.
1469 */
1470 if (user_thread)
1471 set_current_oom_origin();
1472 for (i = 0; i < nr_pages; i++) {
1473 struct page *page;
1474
1475 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1476 mflags, cpu_to_node(cpu_buffer->cpu));
1477 if (!bpage)
1478 goto free_pages;
1479
1480 rb_check_bpage(cpu_buffer, bpage);
1481
1482 list_add(&bpage->list, pages);
1483
1484 page = alloc_pages_node(cpu_to_node(cpu_buffer->cpu), mflags, 0);
1485 if (!page)
1486 goto free_pages;
1487 bpage->page = page_address(page);
1488 rb_init_page(bpage->page);
1489
1490 if (user_thread && fatal_signal_pending(current))
1491 goto free_pages;
1492 }
1493 if (user_thread)
1494 clear_current_oom_origin();
1495
1496 return 0;
1497
1498 free_pages:
1499 list_for_each_entry_safe(bpage, tmp, pages, list) {
1500 list_del_init(&bpage->list);
1501 free_buffer_page(bpage);
1502 }
1503 if (user_thread)
1504 clear_current_oom_origin();
1505
1506 return -ENOMEM;
1507 }
1508
1509 static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
1510 unsigned long nr_pages)
1511 {
1512 LIST_HEAD(pages);
1513
1514 WARN_ON(!nr_pages);
1515
1516 if (__rb_allocate_pages(cpu_buffer, nr_pages, &pages))
1517 return -ENOMEM;
1518
1519 /*
1520 * The ring buffer page list is a circular list that does not
1521 * start and end with a list head. All page list items point to
1522 * other pages.
1523 */
1524 cpu_buffer->pages = pages.next;
1525 list_del(&pages);
1526
1527 cpu_buffer->nr_pages = nr_pages;
1528
1529 rb_check_pages(cpu_buffer);
1530
1531 return 0;
1532 }
1533
1534 static struct ring_buffer_per_cpu *
1535 rb_allocate_cpu_buffer(struct trace_buffer *buffer, long nr_pages, int cpu)
1536 {
1537 struct ring_buffer_per_cpu *cpu_buffer;
1538 struct buffer_page *bpage;
1539 struct page *page;
1540 int ret;
1541
1542 cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
1543 GFP_KERNEL, cpu_to_node(cpu));
1544 if (!cpu_buffer)
1545 return NULL;
1546
1547 cpu_buffer->cpu = cpu;
1548 cpu_buffer->buffer = buffer;
1549 raw_spin_lock_init(&cpu_buffer->reader_lock);
1550 lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key);
1551 cpu_buffer->lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
1552 INIT_WORK(&cpu_buffer->update_pages_work, update_pages_handler);
1553 init_completion(&cpu_buffer->update_done);
1554 init_irq_work(&cpu_buffer->irq_work.work, rb_wake_up_waiters);
1555 init_waitqueue_head(&cpu_buffer->irq_work.waiters);
1556 init_waitqueue_head(&cpu_buffer->irq_work.full_waiters);
1557
1558 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1559 GFP_KERNEL, cpu_to_node(cpu));
1560 if (!bpage)
1561 goto fail_free_buffer;
1562
1563 rb_check_bpage(cpu_buffer, bpage);
1564
1565 cpu_buffer->reader_page = bpage;
1566 page = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL, 0);
1567 if (!page)
1568 goto fail_free_reader;
1569 bpage->page = page_address(page);
1570 rb_init_page(bpage->page);
1571
1572 INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
1573 INIT_LIST_HEAD(&cpu_buffer->new_pages);
1574
1575 ret = rb_allocate_pages(cpu_buffer, nr_pages);
1576 if (ret < 0)
1577 goto fail_free_reader;
1578
1579 cpu_buffer->head_page
1580 = list_entry(cpu_buffer->pages, struct buffer_page, list);
1581 cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
1582
1583 rb_head_page_activate(cpu_buffer);
1584
1585 return cpu_buffer;
1586
1587 fail_free_reader:
1588 free_buffer_page(cpu_buffer->reader_page);
1589
1590 fail_free_buffer:
1591 kfree(cpu_buffer);
1592 return NULL;
1593 }
1594
1595 static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
1596 {
1597 struct list_head *head = cpu_buffer->pages;
1598 struct buffer_page *bpage, *tmp;
1599
1600 free_buffer_page(cpu_buffer->reader_page);
1601
1602 rb_head_page_deactivate(cpu_buffer);
1603
1604 if (head) {
1605 list_for_each_entry_safe(bpage, tmp, head, list) {
1606 list_del_init(&bpage->list);
1607 free_buffer_page(bpage);
1608 }
1609 bpage = list_entry(head, struct buffer_page, list);
1610 free_buffer_page(bpage);
1611 }
1612
1613 kfree(cpu_buffer);
1614 }
1615
1616 /**
1617 * __ring_buffer_alloc - allocate a new ring_buffer
1618 * @size: the size in bytes per cpu that is needed.
1619 * @flags: attributes to set for the ring buffer.
1620 * @key: ring buffer reader_lock_key.
1621 *
1622 * Currently the only flag that is available is the RB_FL_OVERWRITE
1623 * flag. This flag means that the buffer will overwrite old data
1624 * when the buffer wraps. If this flag is not set, the buffer will
1625 * drop data when the tail hits the head.
1626 */
1627 struct trace_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags,
1628 struct lock_class_key *key)
1629 {
1630 struct trace_buffer *buffer;
1631 long nr_pages;
1632 int bsize;
1633 int cpu;
1634 int ret;
1635
1636 /* keep it in its own cache line */
1637 buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
1638 GFP_KERNEL);
1639 if (!buffer)
1640 return NULL;
1641
1642 if (!zalloc_cpumask_var(&buffer->cpumask, GFP_KERNEL))
1643 goto fail_free_buffer;
1644
1645 nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1646 buffer->flags = flags;
1647 buffer->clock = trace_clock_local;
1648 buffer->reader_lock_key = key;
1649
1650 init_irq_work(&buffer->irq_work.work, rb_wake_up_waiters);
1651 init_waitqueue_head(&buffer->irq_work.waiters);
1652
1653 /* need at least two pages */
1654 if (nr_pages < 2)
1655 nr_pages = 2;
1656
1657 buffer->cpus = nr_cpu_ids;
1658
1659 bsize = sizeof(void *) * nr_cpu_ids;
1660 buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
1661 GFP_KERNEL);
1662 if (!buffer->buffers)
1663 goto fail_free_cpumask;
1664
1665 cpu = raw_smp_processor_id();
1666 cpumask_set_cpu(cpu, buffer->cpumask);
1667 buffer->buffers[cpu] = rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
1668 if (!buffer->buffers[cpu])
1669 goto fail_free_buffers;
1670
1671 ret = cpuhp_state_add_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node);
1672 if (ret < 0)
1673 goto fail_free_buffers;
1674
1675 mutex_init(&buffer->mutex);
1676
1677 return buffer;
1678
1679 fail_free_buffers:
1680 for_each_buffer_cpu(buffer, cpu) {
1681 if (buffer->buffers[cpu])
1682 rb_free_cpu_buffer(buffer->buffers[cpu]);
1683 }
1684 kfree(buffer->buffers);
1685
1686 fail_free_cpumask:
1687 free_cpumask_var(buffer->cpumask);
1688
1689 fail_free_buffer:
1690 kfree(buffer);
1691 return NULL;
1692 }
1693 EXPORT_SYMBOL_GPL(__ring_buffer_alloc);
1694
1695 /**
1696 * ring_buffer_free - free a ring buffer.
1697 * @buffer: the buffer to free.
1698 */
1699 void
1700 ring_buffer_free(struct trace_buffer *buffer)
1701 {
1702 int cpu;
1703
1704 cpuhp_state_remove_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node);
1705
1706 for_each_buffer_cpu(buffer, cpu)
1707 rb_free_cpu_buffer(buffer->buffers[cpu]);
1708
1709 kfree(buffer->buffers);
1710 free_cpumask_var(buffer->cpumask);
1711
1712 kfree(buffer);
1713 }
1714 EXPORT_SYMBOL_GPL(ring_buffer_free);
1715
1716 void ring_buffer_set_clock(struct trace_buffer *buffer,
1717 u64 (*clock)(void))
1718 {
1719 buffer->clock = clock;
1720 }
1721
1722 void ring_buffer_set_time_stamp_abs(struct trace_buffer *buffer, bool abs)
1723 {
1724 buffer->time_stamp_abs = abs;
1725 }
1726
1727 bool ring_buffer_time_stamp_abs(struct trace_buffer *buffer)
1728 {
1729 return buffer->time_stamp_abs;
1730 }
1731
1732 static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer);
1733
1734 static inline unsigned long rb_page_entries(struct buffer_page *bpage)
1735 {
1736 return local_read(&bpage->entries) & RB_WRITE_MASK;
1737 }
1738
1739 static inline unsigned long rb_page_write(struct buffer_page *bpage)
1740 {
1741 return local_read(&bpage->write) & RB_WRITE_MASK;
1742 }
1743
1744 static int
1745 rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned long nr_pages)
1746 {
1747 struct list_head *tail_page, *to_remove, *next_page;
1748 struct buffer_page *to_remove_page, *tmp_iter_page;
1749 struct buffer_page *last_page, *first_page;
1750 unsigned long nr_removed;
1751 unsigned long head_bit;
1752 int page_entries;
1753
1754 head_bit = 0;
1755
1756 raw_spin_lock_irq(&cpu_buffer->reader_lock);
1757 atomic_inc(&cpu_buffer->record_disabled);
1758 /*
1759 * We don't race with the readers since we have acquired the reader
1760 * lock. We also don't race with writers after disabling recording.
1761 * This makes it easy to figure out the first and the last page to be
1762 * removed from the list. We unlink all the pages in between including
1763 * the first and last pages. This is done in a busy loop so that we
1764 * lose the least number of traces.
1765 * The pages are freed after we restart recording and unlock readers.
1766 */
1767 tail_page = &cpu_buffer->tail_page->list;
1768
1769 /*
1770 * tail page might be on reader page, we remove the next page
1771 * from the ring buffer
1772 */
1773 if (cpu_buffer->tail_page == cpu_buffer->reader_page)
1774 tail_page = rb_list_head(tail_page->next);
1775 to_remove = tail_page;
1776
1777 /* start of pages to remove */
1778 first_page = list_entry(rb_list_head(to_remove->next),
1779 struct buffer_page, list);
1780
1781 for (nr_removed = 0; nr_removed < nr_pages; nr_removed++) {
1782 to_remove = rb_list_head(to_remove)->next;
1783 head_bit |= (unsigned long)to_remove & RB_PAGE_HEAD;
1784 }
1785
1786 next_page = rb_list_head(to_remove)->next;
1787
1788 /*
1789 * Now we remove all pages between tail_page and next_page.
1790 * Make sure that we have head_bit value preserved for the
1791 * next page
1792 */
1793 tail_page->next = (struct list_head *)((unsigned long)next_page |
1794 head_bit);
1795 next_page = rb_list_head(next_page);
1796 next_page->prev = tail_page;
1797
1798 /* make sure pages points to a valid page in the ring buffer */
1799 cpu_buffer->pages = next_page;
1800
1801 /* update head page */
1802 if (head_bit)
1803 cpu_buffer->head_page = list_entry(next_page,
1804 struct buffer_page, list);
1805
1806 /*
1807 * change read pointer to make sure any read iterators reset
1808 * themselves
1809 */
1810 cpu_buffer->read = 0;
1811
1812 /* pages are removed, resume tracing and then free the pages */
1813 atomic_dec(&cpu_buffer->record_disabled);
1814 raw_spin_unlock_irq(&cpu_buffer->reader_lock);
1815
1816 RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages));
1817
1818 /* last buffer page to remove */
1819 last_page = list_entry(rb_list_head(to_remove), struct buffer_page,
1820 list);
1821 tmp_iter_page = first_page;
1822
1823 do {
1824 cond_resched();
1825
1826 to_remove_page = tmp_iter_page;
1827 rb_inc_page(cpu_buffer, &tmp_iter_page);
1828
1829 /* update the counters */
1830 page_entries = rb_page_entries(to_remove_page);
1831 if (page_entries) {
1832 /*
1833 * If something was added to this page, it was full
1834 * since it is not the tail page. So we deduct the
1835 * bytes consumed in ring buffer from here.
1836 * Increment overrun to account for the lost events.
1837 */
1838 local_add(page_entries, &cpu_buffer->overrun);
1839 local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
1840 }
1841
1842 /*
1843 * We have already removed references to this list item, just
1844 * free up the buffer_page and its page
1845 */
1846 free_buffer_page(to_remove_page);
1847 nr_removed--;
1848
1849 } while (to_remove_page != last_page);
1850
1851 RB_WARN_ON(cpu_buffer, nr_removed);
1852
1853 return nr_removed == 0;
1854 }
1855
1856 static int
1857 rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer)
1858 {
1859 struct list_head *pages = &cpu_buffer->new_pages;
1860 int retries, success;
1861
1862 raw_spin_lock_irq(&cpu_buffer->reader_lock);
1863 /*
1864 * We are holding the reader lock, so the reader page won't be swapped
1865 * in the ring buffer. Now we are racing with the writer trying to
1866 * move head page and the tail page.
1867 * We are going to adapt the reader page update process where:
1868 * 1. We first splice the start and end of list of new pages between
1869 * the head page and its previous page.
1870 * 2. We cmpxchg the prev_page->next to point from head page to the
1871 * start of new pages list.
1872 * 3. Finally, we update the head->prev to the end of new list.
1873 *
1874 * We will try this process 10 times, to make sure that we don't keep
1875 * spinning.
1876 */
1877 retries = 10;
1878 success = 0;
1879 while (retries--) {
1880 struct list_head *head_page, *prev_page, *r;
1881 struct list_head *last_page, *first_page;
1882 struct list_head *head_page_with_bit;
1883
1884 head_page = &rb_set_head_page(cpu_buffer)->list;
1885 if (!head_page)
1886 break;
1887 prev_page = head_page->prev;
1888
1889 first_page = pages->next;
1890 last_page = pages->prev;
1891
1892 head_page_with_bit = (struct list_head *)
1893 ((unsigned long)head_page | RB_PAGE_HEAD);
1894
1895 last_page->next = head_page_with_bit;
1896 first_page->prev = prev_page;
1897
1898 r = cmpxchg(&prev_page->next, head_page_with_bit, first_page);
1899
1900 if (r == head_page_with_bit) {
1901 /*
1902 * yay, we replaced the page pointer to our new list,
1903 * now, we just have to update to head page's prev
1904 * pointer to point to end of list
1905 */
1906 head_page->prev = last_page;
1907 success = 1;
1908 break;
1909 }
1910 }
1911
1912 if (success)
1913 INIT_LIST_HEAD(pages);
1914 /*
1915 * If we weren't successful in adding in new pages, warn and stop
1916 * tracing
1917 */
1918 RB_WARN_ON(cpu_buffer, !success);
1919 raw_spin_unlock_irq(&cpu_buffer->reader_lock);
1920
1921 /* free pages if they weren't inserted */
1922 if (!success) {
1923 struct buffer_page *bpage, *tmp;
1924 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1925 list) {
1926 list_del_init(&bpage->list);
1927 free_buffer_page(bpage);
1928 }
1929 }
1930 return success;
1931 }
1932
1933 static void rb_update_pages(struct ring_buffer_per_cpu *cpu_buffer)
1934 {
1935 int success;
1936
1937 if (cpu_buffer->nr_pages_to_update > 0)
1938 success = rb_insert_pages(cpu_buffer);
1939 else
1940 success = rb_remove_pages(cpu_buffer,
1941 -cpu_buffer->nr_pages_to_update);
1942
1943 if (success)
1944 cpu_buffer->nr_pages += cpu_buffer->nr_pages_to_update;
1945 }
1946
1947 static void update_pages_handler(struct work_struct *work)
1948 {
1949 struct ring_buffer_per_cpu *cpu_buffer = container_of(work,
1950 struct ring_buffer_per_cpu, update_pages_work);
1951 rb_update_pages(cpu_buffer);
1952 complete(&cpu_buffer->update_done);
1953 }
1954
1955 /**
1956 * ring_buffer_resize - resize the ring buffer
1957 * @buffer: the buffer to resize.
1958 * @size: the new size.
1959 * @cpu_id: the cpu buffer to resize
1960 *
1961 * Minimum size is 2 * BUF_PAGE_SIZE.
1962 *
1963 * Returns 0 on success and < 0 on failure.
1964 */
1965 int ring_buffer_resize(struct trace_buffer *buffer, unsigned long size,
1966 int cpu_id)
1967 {
1968 struct ring_buffer_per_cpu *cpu_buffer;
1969 unsigned long nr_pages;
1970 int cpu, err;
1971
1972 /*
1973 * Always succeed at resizing a non-existent buffer:
1974 */
1975 if (!buffer)
1976 return 0;
1977
1978 /* Make sure the requested buffer exists */
1979 if (cpu_id != RING_BUFFER_ALL_CPUS &&
1980 !cpumask_test_cpu(cpu_id, buffer->cpumask))
1981 return 0;
1982
1983 nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1984
1985 /* we need a minimum of two pages */
1986 if (nr_pages < 2)
1987 nr_pages = 2;
1988
1989 /* prevent another thread from changing buffer sizes */
1990 mutex_lock(&buffer->mutex);
1991
1992
1993 if (cpu_id == RING_BUFFER_ALL_CPUS) {
1994 /*
1995 * Don't succeed if resizing is disabled, as a reader might be
1996 * manipulating the ring buffer and is expecting a sane state while
1997 * this is true.
1998 */
1999 for_each_buffer_cpu(buffer, cpu) {
2000 cpu_buffer = buffer->buffers[cpu];
2001 if (atomic_read(&cpu_buffer->resize_disabled)) {
2002 err = -EBUSY;
2003 goto out_err_unlock;
2004 }
2005 }
2006
2007 /* calculate the pages to update */
2008 for_each_buffer_cpu(buffer, cpu) {
2009 cpu_buffer = buffer->buffers[cpu];
2010
2011 cpu_buffer->nr_pages_to_update = nr_pages -
2012 cpu_buffer->nr_pages;
2013 /*
2014 * nothing more to do for removing pages or no update
2015 */
2016 if (cpu_buffer->nr_pages_to_update <= 0)
2017 continue;
2018 /*
2019 * to add pages, make sure all new pages can be
2020 * allocated without receiving ENOMEM
2021 */
2022 INIT_LIST_HEAD(&cpu_buffer->new_pages);
2023 if (__rb_allocate_pages(cpu_buffer, cpu_buffer->nr_pages_to_update,
2024 &cpu_buffer->new_pages)) {
2025 /* not enough memory for new pages */
2026 err = -ENOMEM;
2027 goto out_err;
2028 }
2029 }
2030
2031 get_online_cpus();
2032 /*
2033 * Fire off all the required work handlers
2034 * We can't schedule on offline CPUs, but it's not necessary
2035 * since we can change their buffer sizes without any race.
2036 */
2037 for_each_buffer_cpu(buffer, cpu) {
2038 cpu_buffer = buffer->buffers[cpu];
2039 if (!cpu_buffer->nr_pages_to_update)
2040 continue;
2041
2042 /* Can't run something on an offline CPU. */
2043 if (!cpu_online(cpu)) {
2044 rb_update_pages(cpu_buffer);
2045 cpu_buffer->nr_pages_to_update = 0;
2046 } else {
2047 schedule_work_on(cpu,
2048 &cpu_buffer->update_pages_work);
2049 }
2050 }
2051
2052 /* wait for all the updates to complete */
2053 for_each_buffer_cpu(buffer, cpu) {
2054 cpu_buffer = buffer->buffers[cpu];
2055 if (!cpu_buffer->nr_pages_to_update)
2056 continue;
2057
2058 if (cpu_online(cpu))
2059 wait_for_completion(&cpu_buffer->update_done);
2060 cpu_buffer->nr_pages_to_update = 0;
2061 }
2062
2063 put_online_cpus();
2064 } else {
2065 /* Make sure this CPU has been initialized */
2066 if (!cpumask_test_cpu(cpu_id, buffer->cpumask))
2067 goto out;
2068
2069 cpu_buffer = buffer->buffers[cpu_id];
2070
2071 if (nr_pages == cpu_buffer->nr_pages)
2072 goto out;
2073
2074 /*
2075 * Don't succeed if resizing is disabled, as a reader might be
2076 * manipulating the ring buffer and is expecting a sane state while
2077 * this is true.
2078 */
2079 if (atomic_read(&cpu_buffer->resize_disabled)) {
2080 err = -EBUSY;
2081 goto out_err_unlock;
2082 }
2083
2084 cpu_buffer->nr_pages_to_update = nr_pages -
2085 cpu_buffer->nr_pages;
2086
2087 INIT_LIST_HEAD(&cpu_buffer->new_pages);
2088 if (cpu_buffer->nr_pages_to_update > 0 &&
2089 __rb_allocate_pages(cpu_buffer, cpu_buffer->nr_pages_to_update,
2090 &cpu_buffer->new_pages)) {
2091 err = -ENOMEM;
2092 goto out_err;
2093 }
2094
2095 get_online_cpus();
2096
2097 /* Can't run something on an offline CPU. */
2098 if (!cpu_online(cpu_id))
2099 rb_update_pages(cpu_buffer);
2100 else {
2101 schedule_work_on(cpu_id,
2102 &cpu_buffer->update_pages_work);
2103 wait_for_completion(&cpu_buffer->update_done);
2104 }
2105
2106 cpu_buffer->nr_pages_to_update = 0;
2107 put_online_cpus();
2108 }
2109
2110 out:
2111 /*
2112 * The ring buffer resize can happen with the ring buffer
2113 * enabled, so that the update disturbs the tracing as little
2114 * as possible. But if the buffer is disabled, we do not need
2115 * to worry about that, and we can take the time to verify
2116 * that the buffer is not corrupt.
2117 */
2118 if (atomic_read(&buffer->record_disabled)) {
2119 atomic_inc(&buffer->record_disabled);
2120 /*
2121 * Even though the buffer was disabled, we must make sure
2122 * that it is truly disabled before calling rb_check_pages.
2123 * There could have been a race between checking
2124 * record_disable and incrementing it.
2125 */
2126 synchronize_rcu();
2127 for_each_buffer_cpu(buffer, cpu) {
2128 cpu_buffer = buffer->buffers[cpu];
2129 rb_check_pages(cpu_buffer);
2130 }
2131 atomic_dec(&buffer->record_disabled);
2132 }
2133
2134 mutex_unlock(&buffer->mutex);
2135 return 0;
2136
2137 out_err:
2138 for_each_buffer_cpu(buffer, cpu) {
2139 struct buffer_page *bpage, *tmp;
2140
2141 cpu_buffer = buffer->buffers[cpu];
2142 cpu_buffer->nr_pages_to_update = 0;
2143
2144 if (list_empty(&cpu_buffer->new_pages))
2145 continue;
2146
2147 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
2148 list) {
2149 list_del_init(&bpage->list);
2150 free_buffer_page(bpage);
2151 }
2152 }
2153 out_err_unlock:
2154 mutex_unlock(&buffer->mutex);
2155 return err;
2156 }
2157 EXPORT_SYMBOL_GPL(ring_buffer_resize);
2158
2159 void ring_buffer_change_overwrite(struct trace_buffer *buffer, int val)
2160 {
2161 mutex_lock(&buffer->mutex);
2162 if (val)
2163 buffer->flags |= RB_FL_OVERWRITE;
2164 else
2165 buffer->flags &= ~RB_FL_OVERWRITE;
2166 mutex_unlock(&buffer->mutex);
2167 }
2168 EXPORT_SYMBOL_GPL(ring_buffer_change_overwrite);
2169
2170 static __always_inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
2171 {
2172 return bpage->page->data + index;
2173 }
2174
2175 static __always_inline struct ring_buffer_event *
2176 rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
2177 {
2178 return __rb_page_index(cpu_buffer->reader_page,
2179 cpu_buffer->reader_page->read);
2180 }
2181
2182 static __always_inline unsigned rb_page_commit(struct buffer_page *bpage)
2183 {
2184 return local_read(&bpage->page->commit);
2185 }
2186
2187 static struct ring_buffer_event *
2188 rb_iter_head_event(struct ring_buffer_iter *iter)
2189 {
2190 struct ring_buffer_event *event;
2191 struct buffer_page *iter_head_page = iter->head_page;
2192 unsigned long commit;
2193 unsigned length;
2194
2195 if (iter->head != iter->next_event)
2196 return iter->event;
2197
2198 /*
2199 * When the writer goes across pages, it issues a cmpxchg which
2200 * is a mb(), which will synchronize with the rmb here.
2201 * (see rb_tail_page_update() and __rb_reserve_next())
2202 */
2203 commit = rb_page_commit(iter_head_page);
2204 smp_rmb();
2205 event = __rb_page_index(iter_head_page, iter->head);
2206 length = rb_event_length(event);
2207
2208 /*
2209 * READ_ONCE() doesn't work on functions and we don't want the
2210 * compiler doing any crazy optimizations with length.
2211 */
2212 barrier();
2213
2214 if ((iter->head + length) > commit || length > BUF_MAX_DATA_SIZE)
2215 /* Writer corrupted the read? */
2216 goto reset;
2217
2218 memcpy(iter->event, event, length);
2219 /*
2220 * If the page stamp is still the same after this rmb() then the
2221 * event was safely copied without the writer entering the page.
2222 */
2223 smp_rmb();
2224
2225 /* Make sure the page didn't change since we read this */
2226 if (iter->page_stamp != iter_head_page->page->time_stamp ||
2227 commit > rb_page_commit(iter_head_page))
2228 goto reset;
2229
2230 iter->next_event = iter->head + length;
2231 return iter->event;
2232 reset:
2233 /* Reset to the beginning */
2234 iter->page_stamp = iter->read_stamp = iter->head_page->page->time_stamp;
2235 iter->head = 0;
2236 iter->next_event = 0;
2237 iter->missed_events = 1;
2238 return NULL;
2239 }
2240
2241 /* Size is determined by what has been committed */
2242 static __always_inline unsigned rb_page_size(struct buffer_page *bpage)
2243 {
2244 return rb_page_commit(bpage);
2245 }
2246
2247 static __always_inline unsigned
2248 rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
2249 {
2250 return rb_page_commit(cpu_buffer->commit_page);
2251 }
2252
2253 static __always_inline unsigned
2254 rb_event_index(struct ring_buffer_event *event)
2255 {
2256 unsigned long addr = (unsigned long)event;
2257
2258 return (addr & ~PAGE_MASK) - BUF_PAGE_HDR_SIZE;
2259 }
2260
2261 static void rb_inc_iter(struct ring_buffer_iter *iter)
2262 {
2263 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
2264
2265 /*
2266 * The iterator could be on the reader page (it starts there).
2267 * But the head could have moved, since the reader was
2268 * found. Check for this case and assign the iterator
2269 * to the head page instead of next.
2270 */
2271 if (iter->head_page == cpu_buffer->reader_page)
2272 iter->head_page = rb_set_head_page(cpu_buffer);
2273 else
2274 rb_inc_page(cpu_buffer, &iter->head_page);
2275
2276 iter->page_stamp = iter->read_stamp = iter->head_page->page->time_stamp;
2277 iter->head = 0;
2278 iter->next_event = 0;
2279 }
2280
2281 /*
2282 * rb_handle_head_page - writer hit the head page
2283 *
2284 * Returns: +1 to retry page
2285 * 0 to continue
2286 * -1 on error
2287 */
2288 static int
2289 rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer,
2290 struct buffer_page *tail_page,
2291 struct buffer_page *next_page)
2292 {
2293 struct buffer_page *new_head;
2294 int entries;
2295 int type;
2296 int ret;
2297
2298 entries = rb_page_entries(next_page);
2299
2300 /*
2301 * The hard part is here. We need to move the head
2302 * forward, and protect against both readers on
2303 * other CPUs and writers coming in via interrupts.
2304 */
2305 type = rb_head_page_set_update(cpu_buffer, next_page, tail_page,
2306 RB_PAGE_HEAD);
2307
2308 /*
2309 * type can be one of four:
2310 * NORMAL - an interrupt already moved it for us
2311 * HEAD - we are the first to get here.
2312 * UPDATE - we are the interrupt interrupting
2313 * a current move.
2314 * MOVED - a reader on another CPU moved the next
2315 * pointer to its reader page. Give up
2316 * and try again.
2317 */
2318
2319 switch (type) {
2320 case RB_PAGE_HEAD:
2321 /*
2322 * We changed the head to UPDATE, thus
2323 * it is our responsibility to update
2324 * the counters.
2325 */
2326 local_add(entries, &cpu_buffer->overrun);
2327 local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
2328
2329 /*
2330 * The entries will be zeroed out when we move the
2331 * tail page.
2332 */
2333
2334 /* still more to do */
2335 break;
2336
2337 case RB_PAGE_UPDATE:
2338 /*
2339 * This is an interrupt that interrupt the
2340 * previous update. Still more to do.
2341 */
2342 break;
2343 case RB_PAGE_NORMAL:
2344 /*
2345 * An interrupt came in before the update
2346 * and processed this for us.
2347 * Nothing left to do.
2348 */
2349 return 1;
2350 case RB_PAGE_MOVED:
2351 /*
2352 * The reader is on another CPU and just did
2353 * a swap with our next_page.
2354 * Try again.
2355 */
2356 return 1;
2357 default:
2358 RB_WARN_ON(cpu_buffer, 1); /* WTF??? */
2359 return -1;
2360 }
2361
2362 /*
2363 * Now that we are here, the old head pointer is
2364 * set to UPDATE. This will keep the reader from
2365 * swapping the head page with the reader page.
2366 * The reader (on another CPU) will spin till
2367 * we are finished.
2368 *
2369 * We just need to protect against interrupts
2370 * doing the job. We will set the next pointer
2371 * to HEAD. After that, we set the old pointer
2372 * to NORMAL, but only if it was HEAD before.
2373 * otherwise we are an interrupt, and only
2374 * want the outer most commit to reset it.
2375 */
2376 new_head = next_page;
2377 rb_inc_page(cpu_buffer, &new_head);
2378
2379 ret = rb_head_page_set_head(cpu_buffer, new_head, next_page,
2380 RB_PAGE_NORMAL);
2381
2382 /*
2383 * Valid returns are:
2384 * HEAD - an interrupt came in and already set it.
2385 * NORMAL - One of two things:
2386 * 1) We really set it.
2387 * 2) A bunch of interrupts came in and moved
2388 * the page forward again.
2389 */
2390 switch (ret) {
2391 case RB_PAGE_HEAD:
2392 case RB_PAGE_NORMAL:
2393 /* OK */
2394 break;
2395 default:
2396 RB_WARN_ON(cpu_buffer, 1);
2397 return -1;
2398 }
2399
2400 /*
2401 * It is possible that an interrupt came in,
2402 * set the head up, then more interrupts came in
2403 * and moved it again. When we get back here,
2404 * the page would have been set to NORMAL but we
2405 * just set it back to HEAD.
2406 *
2407 * How do you detect this? Well, if that happened
2408 * the tail page would have moved.
2409 */
2410 if (ret == RB_PAGE_NORMAL) {
2411 struct buffer_page *buffer_tail_page;
2412
2413 buffer_tail_page = READ_ONCE(cpu_buffer->tail_page);
2414 /*
2415 * If the tail had moved passed next, then we need
2416 * to reset the pointer.
2417 */
2418 if (buffer_tail_page != tail_page &&
2419 buffer_tail_page != next_page)
2420 rb_head_page_set_normal(cpu_buffer, new_head,
2421 next_page,
2422 RB_PAGE_HEAD);
2423 }
2424
2425 /*
2426 * If this was the outer most commit (the one that
2427 * changed the original pointer from HEAD to UPDATE),
2428 * then it is up to us to reset it to NORMAL.
2429 */
2430 if (type == RB_PAGE_HEAD) {
2431 ret = rb_head_page_set_normal(cpu_buffer, next_page,
2432 tail_page,
2433 RB_PAGE_UPDATE);
2434 if (RB_WARN_ON(cpu_buffer,
2435 ret != RB_PAGE_UPDATE))
2436 return -1;
2437 }
2438
2439 return 0;
2440 }
2441
2442 static inline void
2443 rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer,
2444 unsigned long tail, struct rb_event_info *info)
2445 {
2446 struct buffer_page *tail_page = info->tail_page;
2447 struct ring_buffer_event *event;
2448 unsigned long length = info->length;
2449
2450 /*
2451 * Only the event that crossed the page boundary
2452 * must fill the old tail_page with padding.
2453 */
2454 if (tail >= BUF_PAGE_SIZE) {
2455 /*
2456 * If the page was filled, then we still need
2457 * to update the real_end. Reset it to zero
2458 * and the reader will ignore it.
2459 */
2460 if (tail == BUF_PAGE_SIZE)
2461 tail_page->real_end = 0;
2462
2463 local_sub(length, &tail_page->write);
2464 return;
2465 }
2466
2467 event = __rb_page_index(tail_page, tail);
2468
2469 /* account for padding bytes */
2470 local_add(BUF_PAGE_SIZE - tail, &cpu_buffer->entries_bytes);
2471
2472 /*
2473 * Save the original length to the meta data.
2474 * This will be used by the reader to add lost event
2475 * counter.
2476 */
2477 tail_page->real_end = tail;
2478
2479 /*
2480 * If this event is bigger than the minimum size, then
2481 * we need to be careful that we don't subtract the
2482 * write counter enough to allow another writer to slip
2483 * in on this page.
2484 * We put in a discarded commit instead, to make sure
2485 * that this space is not used again.
2486 *
2487 * If we are less than the minimum size, we don't need to
2488 * worry about it.
2489 */
2490 if (tail > (BUF_PAGE_SIZE - RB_EVNT_MIN_SIZE)) {
2491 /* No room for any events */
2492
2493 /* Mark the rest of the page with padding */
2494 rb_event_set_padding(event);
2495
2496 /* Set the write back to the previous setting */
2497 local_sub(length, &tail_page->write);
2498 return;
2499 }
2500
2501 /* Put in a discarded event */
2502 event->array[0] = (BUF_PAGE_SIZE - tail) - RB_EVNT_HDR_SIZE;
2503 event->type_len = RINGBUF_TYPE_PADDING;
2504 /* time delta must be non zero */
2505 event->time_delta = 1;
2506
2507 /* Set write to end of buffer */
2508 length = (tail + length) - BUF_PAGE_SIZE;
2509 local_sub(length, &tail_page->write);
2510 }
2511
2512 static inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer);
2513
2514 /*
2515 * This is the slow path, force gcc not to inline it.
2516 */
2517 static noinline struct ring_buffer_event *
2518 rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer,
2519 unsigned long tail, struct rb_event_info *info)
2520 {
2521 struct buffer_page *tail_page = info->tail_page;
2522 struct buffer_page *commit_page = cpu_buffer->commit_page;
2523 struct trace_buffer *buffer = cpu_buffer->buffer;
2524 struct buffer_page *next_page;
2525 int ret;
2526
2527 next_page = tail_page;
2528
2529 rb_inc_page(cpu_buffer, &next_page);
2530
2531 /*
2532 * If for some reason, we had an interrupt storm that made
2533 * it all the way around the buffer, bail, and warn
2534 * about it.
2535 */
2536 if (unlikely(next_page == commit_page)) {
2537 local_inc(&cpu_buffer->commit_overrun);
2538 goto out_reset;
2539 }
2540
2541 /*
2542 * This is where the fun begins!
2543 *
2544 * We are fighting against races between a reader that
2545 * could be on another CPU trying to swap its reader
2546 * page with the buffer head.
2547 *
2548 * We are also fighting against interrupts coming in and
2549 * moving the head or tail on us as well.
2550 *
2551 * If the next page is the head page then we have filled
2552 * the buffer, unless the commit page is still on the
2553 * reader page.
2554 */
2555 if (rb_is_head_page(cpu_buffer, next_page, &tail_page->list)) {
2556
2557 /*
2558 * If the commit is not on the reader page, then
2559 * move the header page.
2560 */
2561 if (!rb_is_reader_page(cpu_buffer->commit_page)) {
2562 /*
2563 * If we are not in overwrite mode,
2564 * this is easy, just stop here.
2565 */
2566 if (!(buffer->flags & RB_FL_OVERWRITE)) {
2567 local_inc(&cpu_buffer->dropped_events);
2568 goto out_reset;
2569 }
2570
2571 ret = rb_handle_head_page(cpu_buffer,
2572 tail_page,
2573 next_page);
2574 if (ret < 0)
2575 goto out_reset;
2576 if (ret)
2577 goto out_again;
2578 } else {
2579 /*
2580 * We need to be careful here too. The
2581 * commit page could still be on the reader
2582 * page. We could have a small buffer, and
2583 * have filled up the buffer with events
2584 * from interrupts and such, and wrapped.
2585 *
2586 * Note, if the tail page is also the on the
2587 * reader_page, we let it move out.
2588 */
2589 if (unlikely((cpu_buffer->commit_page !=
2590 cpu_buffer->tail_page) &&
2591 (cpu_buffer->commit_page ==
2592 cpu_buffer->reader_page))) {
2593 local_inc(&cpu_buffer->commit_overrun);
2594 goto out_reset;
2595 }
2596 }
2597 }
2598
2599 rb_tail_page_update(cpu_buffer, tail_page, next_page);
2600
2601 out_again:
2602
2603 rb_reset_tail(cpu_buffer, tail, info);
2604
2605 /* Commit what we have for now. */
2606 rb_end_commit(cpu_buffer);
2607 /* rb_end_commit() decs committing */
2608 local_inc(&cpu_buffer->committing);
2609
2610 /* fail and let the caller try again */
2611 return ERR_PTR(-EAGAIN);
2612
2613 out_reset:
2614 /* reset write */
2615 rb_reset_tail(cpu_buffer, tail, info);
2616
2617 return NULL;
2618 }
2619
2620 /* Slow path */
2621 static struct ring_buffer_event *
2622 rb_add_time_stamp(struct ring_buffer_event *event, u64 delta, bool abs)
2623 {
2624 if (abs)
2625 event->type_len = RINGBUF_TYPE_TIME_STAMP;
2626 else
2627 event->type_len = RINGBUF_TYPE_TIME_EXTEND;
2628
2629 /* Not the first event on the page, or not delta? */
2630 if (abs || rb_event_index(event)) {
2631 event->time_delta = delta & TS_MASK;
2632 event->array[0] = delta >> TS_SHIFT;
2633 } else {
2634 /* nope, just zero it */
2635 event->time_delta = 0;
2636 event->array[0] = 0;
2637 }
2638
2639 return skip_time_extend(event);
2640 }
2641
2642 #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
2643 static inline bool sched_clock_stable(void)
2644 {
2645 return true;
2646 }
2647 #endif
2648
2649 static void
2650 rb_check_timestamp(struct ring_buffer_per_cpu *cpu_buffer,
2651 struct rb_event_info *info)
2652 {
2653 u64 write_stamp;
2654
2655 WARN_ONCE(1, "Delta way too big! %llu ts=%llu before=%llu after=%llu write stamp=%llu\n%s",
2656 (unsigned long long)info->delta,
2657 (unsigned long long)info->ts,
2658 (unsigned long long)info->before,
2659 (unsigned long long)info->after,
2660 (unsigned long long)(rb_time_read(&cpu_buffer->write_stamp, &write_stamp) ? write_stamp : 0),
2661 sched_clock_stable() ? "" :
2662 "If you just came from a suspend/resume,\n"
2663 "please switch to the trace global clock:\n"
2664 " echo global > /sys/kernel/debug/tracing/trace_clock\n"
2665 "or add trace_clock=global to the kernel command line\n");
2666 }
2667
2668 static void rb_add_timestamp(struct ring_buffer_per_cpu *cpu_buffer,
2669 struct ring_buffer_event **event,
2670 struct rb_event_info *info,
2671 u64 *delta,
2672 unsigned int *length)
2673 {
2674 bool abs = info->add_timestamp &
2675 (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE);
2676
2677 if (unlikely(info->delta > (1ULL << 59))) {
2678 /* did the clock go backwards */
2679 if (info->before == info->after && info->before > info->ts) {
2680 /* not interrupted */
2681 static int once;
2682
2683 /*
2684 * This is possible with a recalibrating of the TSC.
2685 * Do not produce a call stack, but just report it.
2686 */
2687 if (!once) {
2688 once++;
2689 pr_warn("Ring buffer clock went backwards: %llu -> %llu\n",
2690 info->before, info->ts);
2691 }
2692 } else
2693 rb_check_timestamp(cpu_buffer, info);
2694 if (!abs)
2695 info->delta = 0;
2696 }
2697 *event = rb_add_time_stamp(*event, info->delta, abs);
2698 *length -= RB_LEN_TIME_EXTEND;
2699 *delta = 0;
2700 }
2701
2702 /**
2703 * rb_update_event - update event type and data
2704 * @cpu_buffer: The per cpu buffer of the @event
2705 * @event: the event to update
2706 * @info: The info to update the @event with (contains length and delta)
2707 *
2708 * Update the type and data fields of the @event. The length
2709 * is the actual size that is written to the ring buffer,
2710 * and with this, we can determine what to place into the
2711 * data field.
2712 */
2713 static void
2714 rb_update_event(struct ring_buffer_per_cpu *cpu_buffer,
2715 struct ring_buffer_event *event,
2716 struct rb_event_info *info)
2717 {
2718 unsigned length = info->length;
2719 u64 delta = info->delta;
2720
2721 /*
2722 * If we need to add a timestamp, then we
2723 * add it to the start of the reserved space.
2724 */
2725 if (unlikely(info->add_timestamp))
2726 rb_add_timestamp(cpu_buffer, &event, info, &delta, &length);
2727
2728 event->time_delta = delta;
2729 length -= RB_EVNT_HDR_SIZE;
2730 if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) {
2731 event->type_len = 0;
2732 event->array[0] = length;
2733 } else
2734 event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT);
2735 }
2736
2737 static unsigned rb_calculate_event_length(unsigned length)
2738 {
2739 struct ring_buffer_event event; /* Used only for sizeof array */
2740
2741 /* zero length can cause confusions */
2742 if (!length)
2743 length++;
2744
2745 if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT)
2746 length += sizeof(event.array[0]);
2747
2748 length += RB_EVNT_HDR_SIZE;
2749 length = ALIGN(length, RB_ARCH_ALIGNMENT);
2750
2751 /*
2752 * In case the time delta is larger than the 27 bits for it
2753 * in the header, we need to add a timestamp. If another
2754 * event comes in when trying to discard this one to increase
2755 * the length, then the timestamp will be added in the allocated
2756 * space of this event. If length is bigger than the size needed
2757 * for the TIME_EXTEND, then padding has to be used. The events
2758 * length must be either RB_LEN_TIME_EXTEND, or greater than or equal
2759 * to RB_LEN_TIME_EXTEND + 8, as 8 is the minimum size for padding.
2760 * As length is a multiple of 4, we only need to worry if it
2761 * is 12 (RB_LEN_TIME_EXTEND + 4).
2762 */
2763 if (length == RB_LEN_TIME_EXTEND + RB_ALIGNMENT)
2764 length += RB_ALIGNMENT;
2765
2766 return length;
2767 }
2768
2769 static u64 rb_time_delta(struct ring_buffer_event *event)
2770 {
2771 switch (event->type_len) {
2772 case RINGBUF_TYPE_PADDING:
2773 return 0;
2774
2775 case RINGBUF_TYPE_TIME_EXTEND:
2776 return ring_buffer_event_time_stamp(event);
2777
2778 case RINGBUF_TYPE_TIME_STAMP:
2779 return 0;
2780
2781 case RINGBUF_TYPE_DATA:
2782 return event->time_delta;
2783 default:
2784 return 0;
2785 }
2786 }
2787
2788 static inline int
2789 rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer,
2790 struct ring_buffer_event *event)
2791 {
2792 unsigned long new_index, old_index;
2793 struct buffer_page *bpage;
2794 unsigned long index;
2795 unsigned long addr;
2796 u64 write_stamp;
2797 u64 delta;
2798
2799 new_index = rb_event_index(event);
2800 old_index = new_index + rb_event_ts_length(event);
2801 addr = (unsigned long)event;
2802 addr &= PAGE_MASK;
2803
2804 bpage = READ_ONCE(cpu_buffer->tail_page);
2805
2806 delta = rb_time_delta(event);
2807
2808 if (!rb_time_read(&cpu_buffer->write_stamp, &write_stamp))
2809 return 0;
2810
2811 /* Make sure the write stamp is read before testing the location */
2812 barrier();
2813
2814 if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) {
2815 unsigned long write_mask =
2816 local_read(&bpage->write) & ~RB_WRITE_MASK;
2817 unsigned long event_length = rb_event_length(event);
2818
2819 /* Something came in, can't discard */
2820 if (!rb_time_cmpxchg(&cpu_buffer->write_stamp,
2821 write_stamp, write_stamp - delta))
2822 return 0;
2823
2824 /*
2825 * If an event were to come in now, it would see that the
2826 * write_stamp and the before_stamp are different, and assume
2827 * that this event just added itself before updating
2828 * the write stamp. The interrupting event will fix the
2829 * write stamp for us, and use the before stamp as its delta.
2830 */
2831
2832 /*
2833 * This is on the tail page. It is possible that
2834 * a write could come in and move the tail page
2835 * and write to the next page. That is fine
2836 * because we just shorten what is on this page.
2837 */
2838 old_index += write_mask;
2839 new_index += write_mask;
2840 index = local_cmpxchg(&bpage->write, old_index, new_index);
2841 if (index == old_index) {
2842 /* update counters */
2843 local_sub(event_length, &cpu_buffer->entries_bytes);
2844 return 1;
2845 }
2846 }
2847
2848 /* could not discard */
2849 return 0;
2850 }
2851
2852 static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer)
2853 {
2854 local_inc(&cpu_buffer->committing);
2855 local_inc(&cpu_buffer->commits);
2856 }
2857
2858 static __always_inline void
2859 rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
2860 {
2861 unsigned long max_count;
2862
2863 /*
2864 * We only race with interrupts and NMIs on this CPU.
2865 * If we own the commit event, then we can commit
2866 * all others that interrupted us, since the interruptions
2867 * are in stack format (they finish before they come
2868 * back to us). This allows us to do a simple loop to
2869 * assign the commit to the tail.
2870 */
2871 again:
2872 max_count = cpu_buffer->nr_pages * 100;
2873
2874 while (cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page)) {
2875 if (RB_WARN_ON(cpu_buffer, !(--max_count)))
2876 return;
2877 if (RB_WARN_ON(cpu_buffer,
2878 rb_is_reader_page(cpu_buffer->tail_page)))
2879 return;
2880 local_set(&cpu_buffer->commit_page->page->commit,
2881 rb_page_write(cpu_buffer->commit_page));
2882 rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
2883 /* add barrier to keep gcc from optimizing too much */
2884 barrier();
2885 }
2886 while (rb_commit_index(cpu_buffer) !=
2887 rb_page_write(cpu_buffer->commit_page)) {
2888
2889 local_set(&cpu_buffer->commit_page->page->commit,
2890 rb_page_write(cpu_buffer->commit_page));
2891 RB_WARN_ON(cpu_buffer,
2892 local_read(&cpu_buffer->commit_page->page->commit) &
2893 ~RB_WRITE_MASK);
2894 barrier();
2895 }
2896
2897 /* again, keep gcc from optimizing */
2898 barrier();
2899
2900 /*
2901 * If an interrupt came in just after the first while loop
2902 * and pushed the tail page forward, we will be left with
2903 * a dangling commit that will never go forward.
2904 */
2905 if (unlikely(cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page)))
2906 goto again;
2907 }
2908
2909 static __always_inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer)
2910 {
2911 unsigned long commits;
2912
2913 if (RB_WARN_ON(cpu_buffer,
2914 !local_read(&cpu_buffer->committing)))
2915 return;
2916
2917 again:
2918 commits = local_read(&cpu_buffer->commits);
2919 /* synchronize with interrupts */
2920 barrier();
2921 if (local_read(&cpu_buffer->committing) == 1)
2922 rb_set_commit_to_write(cpu_buffer);
2923
2924 local_dec(&cpu_buffer->committing);
2925
2926 /* synchronize with interrupts */
2927 barrier();
2928
2929 /*
2930 * Need to account for interrupts coming in between the
2931 * updating of the commit page and the clearing of the
2932 * committing counter.
2933 */
2934 if (unlikely(local_read(&cpu_buffer->commits) != commits) &&
2935 !local_read(&cpu_buffer->committing)) {
2936 local_inc(&cpu_buffer->committing);
2937 goto again;
2938 }
2939 }
2940
2941 static inline void rb_event_discard(struct ring_buffer_event *event)
2942 {
2943 if (extended_time(event))
2944 event = skip_time_extend(event);
2945
2946 /* array[0] holds the actual length for the discarded event */
2947 event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE;
2948 event->type_len = RINGBUF_TYPE_PADDING;
2949 /* time delta must be non zero */
2950 if (!event->time_delta)
2951 event->time_delta = 1;
2952 }
2953
2954 static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer,
2955 struct ring_buffer_event *event)
2956 {
2957 local_inc(&cpu_buffer->entries);
2958 rb_end_commit(cpu_buffer);
2959 }
2960
2961 static __always_inline void
2962 rb_wakeups(struct trace_buffer *buffer, struct ring_buffer_per_cpu *cpu_buffer)
2963 {
2964 size_t nr_pages;
2965 size_t dirty;
2966 size_t full;
2967
2968 if (buffer->irq_work.waiters_pending) {
2969 buffer->irq_work.waiters_pending = false;
2970 /* irq_work_queue() supplies it's own memory barriers */
2971 irq_work_queue(&buffer->irq_work.work);
2972 }
2973
2974 if (cpu_buffer->irq_work.waiters_pending) {
2975 cpu_buffer->irq_work.waiters_pending = false;
2976 /* irq_work_queue() supplies it's own memory barriers */
2977 irq_work_queue(&cpu_buffer->irq_work.work);
2978 }
2979
2980 if (cpu_buffer->last_pages_touch == local_read(&cpu_buffer->pages_touched))
2981 return;
2982
2983 if (cpu_buffer->reader_page == cpu_buffer->commit_page)
2984 return;
2985
2986 if (!cpu_buffer->irq_work.full_waiters_pending)
2987 return;
2988
2989 cpu_buffer->last_pages_touch = local_read(&cpu_buffer->pages_touched);
2990
2991 full = cpu_buffer->shortest_full;
2992 nr_pages = cpu_buffer->nr_pages;
2993 dirty = ring_buffer_nr_dirty_pages(buffer, cpu_buffer->cpu);
2994 if (full && nr_pages && (dirty * 100) <= full * nr_pages)
2995 return;
2996
2997 cpu_buffer->irq_work.wakeup_full = true;
2998 cpu_buffer->irq_work.full_waiters_pending = false;
2999 /* irq_work_queue() supplies it's own memory barriers */
3000 irq_work_queue(&cpu_buffer->irq_work.work);
3001 }
3002
3003 #ifdef CONFIG_RING_BUFFER_RECORD_RECURSION
3004 # define do_ring_buffer_record_recursion() \
3005 do_ftrace_record_recursion(_THIS_IP_, _RET_IP_)
3006 #else
3007 # define do_ring_buffer_record_recursion() do { } while (0)
3008 #endif
3009
3010 /*
3011 * The lock and unlock are done within a preempt disable section.
3012 * The current_context per_cpu variable can only be modified
3013 * by the current task between lock and unlock. But it can
3014 * be modified more than once via an interrupt. To pass this
3015 * information from the lock to the unlock without having to
3016 * access the 'in_interrupt()' functions again (which do show
3017 * a bit of overhead in something as critical as function tracing,
3018 * we use a bitmask trick.
3019 *
3020 * bit 1 = NMI context
3021 * bit 2 = IRQ context
3022 * bit 3 = SoftIRQ context
3023 * bit 4 = normal context.
3024 *
3025 * This works because this is the order of contexts that can
3026 * preempt other contexts. A SoftIRQ never preempts an IRQ
3027 * context.
3028 *
3029 * When the context is determined, the corresponding bit is
3030 * checked and set (if it was set, then a recursion of that context
3031 * happened).
3032 *
3033 * On unlock, we need to clear this bit. To do so, just subtract
3034 * 1 from the current_context and AND it to itself.
3035 *
3036 * (binary)
3037 * 101 - 1 = 100
3038 * 101 & 100 = 100 (clearing bit zero)
3039 *
3040 * 1010 - 1 = 1001
3041 * 1010 & 1001 = 1000 (clearing bit 1)
3042 *
3043 * The least significant bit can be cleared this way, and it
3044 * just so happens that it is the same bit corresponding to
3045 * the current context.
3046 *
3047 * Now the TRANSITION bit breaks the above slightly. The TRANSITION bit
3048 * is set when a recursion is detected at the current context, and if
3049 * the TRANSITION bit is already set, it will fail the recursion.
3050 * This is needed because there's a lag between the changing of
3051 * interrupt context and updating the preempt count. In this case,
3052 * a false positive will be found. To handle this, one extra recursion
3053 * is allowed, and this is done by the TRANSITION bit. If the TRANSITION
3054 * bit is already set, then it is considered a recursion and the function
3055 * ends. Otherwise, the TRANSITION bit is set, and that bit is returned.
3056 *
3057 * On the trace_recursive_unlock(), the TRANSITION bit will be the first
3058 * to be cleared. Even if it wasn't the context that set it. That is,
3059 * if an interrupt comes in while NORMAL bit is set and the ring buffer
3060 * is called before preempt_count() is updated, since the check will
3061 * be on the NORMAL bit, the TRANSITION bit will then be set. If an
3062 * NMI then comes in, it will set the NMI bit, but when the NMI code
3063 * does the trace_recursive_unlock() it will clear the TRANSTION bit
3064 * and leave the NMI bit set. But this is fine, because the interrupt
3065 * code that set the TRANSITION bit will then clear the NMI bit when it
3066 * calls trace_recursive_unlock(). If another NMI comes in, it will
3067 * set the TRANSITION bit and continue.
3068 *
3069 * Note: The TRANSITION bit only handles a single transition between context.
3070 */
3071
3072 static __always_inline int
3073 trace_recursive_lock(struct ring_buffer_per_cpu *cpu_buffer)
3074 {
3075 unsigned int val = cpu_buffer->current_context;
3076 unsigned long pc = preempt_count();
3077 int bit;
3078
3079 if (!(pc & (NMI_MASK | HARDIRQ_MASK | SOFTIRQ_OFFSET)))
3080 bit = RB_CTX_NORMAL;
3081 else
3082 bit = pc & NMI_MASK ? RB_CTX_NMI :
3083 pc & HARDIRQ_MASK ? RB_CTX_IRQ : RB_CTX_SOFTIRQ;
3084
3085 if (unlikely(val & (1 << (bit + cpu_buffer->nest)))) {
3086 /*
3087 * It is possible that this was called by transitioning
3088 * between interrupt context, and preempt_count() has not
3089 * been updated yet. In this case, use the TRANSITION bit.
3090 */
3091 bit = RB_CTX_TRANSITION;
3092 if (val & (1 << (bit + cpu_buffer->nest))) {
3093 do_ring_buffer_record_recursion();
3094 return 1;
3095 }
3096 }
3097
3098 val |= (1 << (bit + cpu_buffer->nest));
3099 cpu_buffer->current_context = val;
3100
3101 return 0;
3102 }
3103
3104 static __always_inline void
3105 trace_recursive_unlock(struct ring_buffer_per_cpu *cpu_buffer)
3106 {
3107 cpu_buffer->current_context &=
3108 cpu_buffer->current_context - (1 << cpu_buffer->nest);
3109 }
3110
3111 /* The recursive locking above uses 5 bits */
3112 #define NESTED_BITS 5
3113
3114 /**
3115 * ring_buffer_nest_start - Allow to trace while nested
3116 * @buffer: The ring buffer to modify
3117 *
3118 * The ring buffer has a safety mechanism to prevent recursion.
3119 * But there may be a case where a trace needs to be done while
3120 * tracing something else. In this case, calling this function
3121 * will allow this function to nest within a currently active
3122 * ring_buffer_lock_reserve().
3123 *
3124 * Call this function before calling another ring_buffer_lock_reserve() and
3125 * call ring_buffer_nest_end() after the nested ring_buffer_unlock_commit().
3126 */
3127 void ring_buffer_nest_start(struct trace_buffer *buffer)
3128 {
3129 struct ring_buffer_per_cpu *cpu_buffer;
3130 int cpu;
3131
3132 /* Enabled by ring_buffer_nest_end() */
3133 preempt_disable_notrace();
3134 cpu = raw_smp_processor_id();
3135 cpu_buffer = buffer->buffers[cpu];
3136 /* This is the shift value for the above recursive locking */
3137 cpu_buffer->nest += NESTED_BITS;
3138 }
3139
3140 /**
3141 * ring_buffer_nest_end - Allow to trace while nested
3142 * @buffer: The ring buffer to modify
3143 *
3144 * Must be called after ring_buffer_nest_start() and after the
3145 * ring_buffer_unlock_commit().
3146 */
3147 void ring_buffer_nest_end(struct trace_buffer *buffer)
3148 {
3149 struct ring_buffer_per_cpu *cpu_buffer;
3150 int cpu;
3151
3152 /* disabled by ring_buffer_nest_start() */
3153 cpu = raw_smp_processor_id();
3154 cpu_buffer = buffer->buffers[cpu];
3155 /* This is the shift value for the above recursive locking */
3156 cpu_buffer->nest -= NESTED_BITS;
3157 preempt_enable_notrace();
3158 }
3159
3160 /**
3161 * ring_buffer_unlock_commit - commit a reserved
3162 * @buffer: The buffer to commit to
3163 * @event: The event pointer to commit.
3164 *
3165 * This commits the data to the ring buffer, and releases any locks held.
3166 *
3167 * Must be paired with ring_buffer_lock_reserve.
3168 */
3169 int ring_buffer_unlock_commit(struct trace_buffer *buffer,
3170 struct ring_buffer_event *event)
3171 {
3172 struct ring_buffer_per_cpu *cpu_buffer;
3173 int cpu = raw_smp_processor_id();
3174
3175 cpu_buffer = buffer->buffers[cpu];
3176
3177 rb_commit(cpu_buffer, event);
3178
3179 rb_wakeups(buffer, cpu_buffer);
3180
3181 trace_recursive_unlock(cpu_buffer);
3182
3183 preempt_enable_notrace();
3184
3185 return 0;
3186 }
3187 EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit);
3188
3189 /* Special value to validate all deltas on a page. */
3190 #define CHECK_FULL_PAGE 1L
3191
3192 #ifdef CONFIG_RING_BUFFER_VALIDATE_TIME_DELTAS
3193 static void dump_buffer_page(struct buffer_data_page *bpage,
3194 struct rb_event_info *info,
3195 unsigned long tail)
3196 {
3197 struct ring_buffer_event *event;
3198 u64 ts, delta;
3199 int e;
3200
3201 ts = bpage->time_stamp;
3202 pr_warn(" [%lld] PAGE TIME STAMP\n", ts);
3203
3204 for (e = 0; e < tail; e += rb_event_length(event)) {
3205
3206 event = (struct ring_buffer_event *)(bpage->data + e);
3207
3208 switch (event->type_len) {
3209
3210 case RINGBUF_TYPE_TIME_EXTEND:
3211 delta = ring_buffer_event_time_stamp(event);
3212 ts += delta;
3213 pr_warn(" [%lld] delta:%lld TIME EXTEND\n", ts, delta);
3214 break;
3215
3216 case RINGBUF_TYPE_TIME_STAMP:
3217 delta = ring_buffer_event_time_stamp(event);
3218 ts = delta;
3219 pr_warn(" [%lld] absolute:%lld TIME STAMP\n", ts, delta);
3220 break;
3221
3222 case RINGBUF_TYPE_PADDING:
3223 ts += event->time_delta;
3224 pr_warn(" [%lld] delta:%d PADDING\n", ts, event->time_delta);
3225 break;
3226
3227 case RINGBUF_TYPE_DATA:
3228 ts += event->time_delta;
3229 pr_warn(" [%lld] delta:%d\n", ts, event->time_delta);
3230 break;
3231
3232 default:
3233 break;
3234 }
3235 }
3236 }
3237
3238 static DEFINE_PER_CPU(atomic_t, checking);
3239 static atomic_t ts_dump;
3240
3241 /*
3242 * Check if the current event time stamp matches the deltas on
3243 * the buffer page.
3244 */
3245 static void check_buffer(struct ring_buffer_per_cpu *cpu_buffer,
3246 struct rb_event_info *info,
3247 unsigned long tail)
3248 {
3249 struct ring_buffer_event *event;
3250 struct buffer_data_page *bpage;
3251 u64 ts, delta;
3252 bool full = false;
3253 int e;
3254
3255 bpage = info->tail_page->page;
3256
3257 if (tail == CHECK_FULL_PAGE) {
3258 full = true;
3259 tail = local_read(&bpage->commit);
3260 } else if (info->add_timestamp &
3261 (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE)) {
3262 /* Ignore events with absolute time stamps */
3263 return;
3264 }
3265
3266 /*
3267 * Do not check the first event (skip possible extends too).
3268 * Also do not check if previous events have not been committed.
3269 */
3270 if (tail <= 8 || tail > local_read(&bpage->commit))
3271 return;
3272
3273 /*
3274 * If this interrupted another event,
3275 */
3276 if (atomic_inc_return(this_cpu_ptr(&checking)) != 1)
3277 goto out;
3278
3279 ts = bpage->time_stamp;
3280
3281 for (e = 0; e < tail; e += rb_event_length(event)) {
3282
3283 event = (struct ring_buffer_event *)(bpage->data + e);
3284
3285 switch (event->type_len) {
3286
3287 case RINGBUF_TYPE_TIME_EXTEND:
3288 delta = ring_buffer_event_time_stamp(event);
3289 ts += delta;
3290 break;
3291
3292 case RINGBUF_TYPE_TIME_STAMP:
3293 delta = ring_buffer_event_time_stamp(event);
3294 ts = delta;
3295 break;
3296
3297 case RINGBUF_TYPE_PADDING:
3298 if (event->time_delta == 1)
3299 break;
3300 /* fall through */
3301 case RINGBUF_TYPE_DATA:
3302 ts += event->time_delta;
3303 break;
3304
3305 default:
3306 RB_WARN_ON(cpu_buffer, 1);
3307 }
3308 }
3309 if ((full && ts > info->ts) ||
3310 (!full && ts + info->delta != info->ts)) {
3311 /* If another report is happening, ignore this one */
3312 if (atomic_inc_return(&ts_dump) != 1) {
3313 atomic_dec(&ts_dump);
3314 goto out;
3315 }
3316 atomic_inc(&cpu_buffer->record_disabled);
3317 pr_warn("[CPU: %d]TIME DOES NOT MATCH expected:%lld actual:%lld delta:%lld after:%lld\n",
3318 cpu_buffer->cpu,
3319 ts + info->delta, info->ts, info->delta, info->after);
3320 dump_buffer_page(bpage, info, tail);
3321 atomic_dec(&ts_dump);
3322 /* Do not re-enable checking */
3323 return;
3324 }
3325 out:
3326 atomic_dec(this_cpu_ptr(&checking));
3327 }
3328 #else
3329 static inline void check_buffer(struct ring_buffer_per_cpu *cpu_buffer,
3330 struct rb_event_info *info,
3331 unsigned long tail)
3332 {
3333 }
3334 #endif /* CONFIG_RING_BUFFER_VALIDATE_TIME_DELTAS */
3335
3336 static struct ring_buffer_event *
3337 __rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
3338 struct rb_event_info *info)
3339 {
3340 struct ring_buffer_event *event;
3341 struct buffer_page *tail_page;
3342 unsigned long tail, write, w;
3343 bool a_ok;
3344 bool b_ok;
3345
3346 /* Don't let the compiler play games with cpu_buffer->tail_page */
3347 tail_page = info->tail_page = READ_ONCE(cpu_buffer->tail_page);
3348
3349 /*A*/ w = local_read(&tail_page->write) & RB_WRITE_MASK;
3350 barrier();
3351 b_ok = rb_time_read(&cpu_buffer->before_stamp, &info->before);
3352 a_ok = rb_time_read(&cpu_buffer->write_stamp, &info->after);
3353 barrier();
3354 info->ts = rb_time_stamp(cpu_buffer->buffer);
3355
3356 if ((info->add_timestamp & RB_ADD_STAMP_ABSOLUTE)) {
3357 info->delta = info->ts;
3358 } else {
3359 /*
3360 * If interrupting an event time update, we may need an
3361 * absolute timestamp.
3362 * Don't bother if this is the start of a new page (w == 0).
3363 */
3364 if (unlikely(!a_ok || !b_ok || (info->before != info->after && w))) {
3365 info->add_timestamp |= RB_ADD_STAMP_FORCE | RB_ADD_STAMP_EXTEND;
3366 info->length += RB_LEN_TIME_EXTEND;
3367 } else {
3368 info->delta = info->ts - info->after;
3369 if (unlikely(test_time_stamp(info->delta))) {
3370 info->add_timestamp |= RB_ADD_STAMP_EXTEND;
3371 info->length += RB_LEN_TIME_EXTEND;
3372 }
3373 }
3374 }
3375
3376 /*B*/ rb_time_set(&cpu_buffer->before_stamp, info->ts);
3377
3378 /*C*/ write = local_add_return(info->length, &tail_page->write);
3379
3380 /* set write to only the index of the write */
3381 write &= RB_WRITE_MASK;
3382
3383 tail = write - info->length;
3384
3385 /* See if we shot pass the end of this buffer page */
3386 if (unlikely(write > BUF_PAGE_SIZE)) {
3387 /* before and after may now different, fix it up*/
3388 b_ok = rb_time_read(&cpu_buffer->before_stamp, &info->before);
3389 a_ok = rb_time_read(&cpu_buffer->write_stamp, &info->after);
3390 if (a_ok && b_ok && info->before != info->after)
3391 (void)rb_time_cmpxchg(&cpu_buffer->before_stamp,
3392 info->before, info->after);
3393 if (a_ok && b_ok)
3394 check_buffer(cpu_buffer, info, CHECK_FULL_PAGE);
3395 return rb_move_tail(cpu_buffer, tail, info);
3396 }
3397
3398 if (likely(tail == w)) {
3399 u64 save_before;
3400 bool s_ok;
3401
3402 /* Nothing interrupted us between A and C */
3403 /*D*/ rb_time_set(&cpu_buffer->write_stamp, info->ts);
3404 barrier();
3405 /*E*/ s_ok = rb_time_read(&cpu_buffer->before_stamp, &save_before);
3406 RB_WARN_ON(cpu_buffer, !s_ok);
3407 if (likely(!(info->add_timestamp &
3408 (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE))))
3409 /* This did not interrupt any time update */
3410 info->delta = info->ts - info->after;
3411 else
3412 /* Just use full timestamp for interrupting event */
3413 info->delta = info->ts;
3414 barrier();
3415 check_buffer(cpu_buffer, info, tail);
3416 if (unlikely(info->ts != save_before)) {
3417 /* SLOW PATH - Interrupted between C and E */
3418
3419 a_ok = rb_time_read(&cpu_buffer->write_stamp, &info->after);
3420 RB_WARN_ON(cpu_buffer, !a_ok);
3421
3422 /* Write stamp must only go forward */
3423 if (save_before > info->after) {
3424 /*
3425 * We do not care about the result, only that
3426 * it gets updated atomically.
3427 */
3428 (void)rb_time_cmpxchg(&cpu_buffer->write_stamp,
3429 info->after, save_before);
3430 }
3431 }
3432 } else {
3433 u64 ts;
3434 /* SLOW PATH - Interrupted between A and C */
3435 a_ok = rb_time_read(&cpu_buffer->write_stamp, &info->after);
3436 /* Was interrupted before here, write_stamp must be valid */
3437 RB_WARN_ON(cpu_buffer, !a_ok);
3438 ts = rb_time_stamp(cpu_buffer->buffer);
3439 barrier();
3440 /*E*/ if (write == (local_read(&tail_page->write) & RB_WRITE_MASK) &&
3441 info->after < ts &&
3442 rb_time_cmpxchg(&cpu_buffer->write_stamp,
3443 info->after, ts)) {
3444 /* Nothing came after this event between C and E */
3445 info->delta = ts - info->after;
3446 info->ts = ts;
3447 } else {
3448 /*
3449 * Interrupted between C and E:
3450 * Lost the previous events time stamp. Just set the
3451 * delta to zero, and this will be the same time as
3452 * the event this event interrupted. And the events that
3453 * came after this will still be correct (as they would
3454 * have built their delta on the previous event.
3455 */
3456 info->delta = 0;
3457 }
3458 info->add_timestamp &= ~RB_ADD_STAMP_FORCE;
3459 }
3460
3461 /*
3462 * If this is the first commit on the page, then it has the same
3463 * timestamp as the page itself.
3464 */
3465 if (unlikely(!tail && !(info->add_timestamp &
3466 (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE))))
3467 info->delta = 0;
3468
3469 /* We reserved something on the buffer */
3470
3471 event = __rb_page_index(tail_page, tail);
3472 rb_update_event(cpu_buffer, event, info);
3473
3474 local_inc(&tail_page->entries);
3475
3476 /*
3477 * If this is the first commit on the page, then update
3478 * its timestamp.
3479 */
3480 if (unlikely(!tail))
3481 tail_page->page->time_stamp = info->ts;
3482
3483 /* account for these added bytes */
3484 local_add(info->length, &cpu_buffer->entries_bytes);
3485
3486 return event;
3487 }
3488
3489 static __always_inline struct ring_buffer_event *
3490 rb_reserve_next_event(struct trace_buffer *buffer,
3491 struct ring_buffer_per_cpu *cpu_buffer,
3492 unsigned long length)
3493 {
3494 struct ring_buffer_event *event;
3495 struct rb_event_info info;
3496 int nr_loops = 0;
3497 int add_ts_default;
3498
3499 rb_start_commit(cpu_buffer);
3500 /* The commit page can not change after this */
3501
3502 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
3503 /*
3504 * Due to the ability to swap a cpu buffer from a buffer
3505 * it is possible it was swapped before we committed.
3506 * (committing stops a swap). We check for it here and
3507 * if it happened, we have to fail the write.
3508 */
3509 barrier();
3510 if (unlikely(READ_ONCE(cpu_buffer->buffer) != buffer)) {
3511 local_dec(&cpu_buffer->committing);
3512 local_dec(&cpu_buffer->commits);
3513 return NULL;
3514 }
3515 #endif
3516
3517 info.length = rb_calculate_event_length(length);
3518
3519 if (ring_buffer_time_stamp_abs(cpu_buffer->buffer)) {
3520 add_ts_default = RB_ADD_STAMP_ABSOLUTE;
3521 info.length += RB_LEN_TIME_EXTEND;
3522 } else {
3523 add_ts_default = RB_ADD_STAMP_NONE;
3524 }
3525
3526 again:
3527 info.add_timestamp = add_ts_default;
3528 info.delta = 0;
3529
3530 /*
3531 * We allow for interrupts to reenter here and do a trace.
3532 * If one does, it will cause this original code to loop
3533 * back here. Even with heavy interrupts happening, this
3534 * should only happen a few times in a row. If this happens
3535 * 1000 times in a row, there must be either an interrupt
3536 * storm or we have something buggy.
3537 * Bail!
3538 */
3539 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
3540 goto out_fail;
3541
3542 event = __rb_reserve_next(cpu_buffer, &info);
3543
3544 if (unlikely(PTR_ERR(event) == -EAGAIN)) {
3545 if (info.add_timestamp & (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_EXTEND))
3546 info.length -= RB_LEN_TIME_EXTEND;
3547 goto again;
3548 }
3549
3550 if (likely(event))
3551 return event;
3552 out_fail:
3553 rb_end_commit(cpu_buffer);
3554 return NULL;
3555 }
3556
3557 /**
3558 * ring_buffer_lock_reserve - reserve a part of the buffer
3559 * @buffer: the ring buffer to reserve from
3560 * @length: the length of the data to reserve (excluding event header)
3561 *
3562 * Returns a reserved event on the ring buffer to copy directly to.
3563 * The user of this interface will need to get the body to write into
3564 * and can use the ring_buffer_event_data() interface.
3565 *
3566 * The length is the length of the data needed, not the event length
3567 * which also includes the event header.
3568 *
3569 * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
3570 * If NULL is returned, then nothing has been allocated or locked.
3571 */
3572 struct ring_buffer_event *
3573 ring_buffer_lock_reserve(struct trace_buffer *buffer, unsigned long length)
3574 {
3575 struct ring_buffer_per_cpu *cpu_buffer;
3576 struct ring_buffer_event *event;
3577 int cpu;
3578
3579 /* If we are tracing schedule, we don't want to recurse */
3580 preempt_disable_notrace();
3581
3582 if (unlikely(atomic_read(&buffer->record_disabled)))
3583 goto out;
3584
3585 cpu = raw_smp_processor_id();
3586
3587 if (unlikely(!cpumask_test_cpu(cpu, buffer->cpumask)))
3588 goto out;
3589
3590 cpu_buffer = buffer->buffers[cpu];
3591
3592 if (unlikely(atomic_read(&cpu_buffer->record_disabled)))
3593 goto out;
3594
3595 if (unlikely(length > BUF_MAX_DATA_SIZE))
3596 goto out;
3597
3598 if (unlikely(trace_recursive_lock(cpu_buffer)))
3599 goto out;
3600
3601 event = rb_reserve_next_event(buffer, cpu_buffer, length);
3602 if (!event)
3603 goto out_unlock;
3604
3605 return event;
3606
3607 out_unlock:
3608 trace_recursive_unlock(cpu_buffer);
3609 out:
3610 preempt_enable_notrace();
3611 return NULL;
3612 }
3613 EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve);
3614
3615 /*
3616 * Decrement the entries to the page that an event is on.
3617 * The event does not even need to exist, only the pointer
3618 * to the page it is on. This may only be called before the commit
3619 * takes place.
3620 */
3621 static inline void
3622 rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer,
3623 struct ring_buffer_event *event)
3624 {
3625 unsigned long addr = (unsigned long)event;
3626 struct buffer_page *bpage = cpu_buffer->commit_page;
3627 struct buffer_page *start;
3628
3629 addr &= PAGE_MASK;
3630
3631 /* Do the likely case first */
3632 if (likely(bpage->page == (void *)addr)) {
3633 local_dec(&bpage->entries);
3634 return;
3635 }
3636
3637 /*
3638 * Because the commit page may be on the reader page we
3639 * start with the next page and check the end loop there.
3640 */
3641 rb_inc_page(cpu_buffer, &bpage);
3642 start = bpage;
3643 do {
3644 if (bpage->page == (void *)addr) {
3645 local_dec(&bpage->entries);
3646 return;
3647 }
3648 rb_inc_page(cpu_buffer, &bpage);
3649 } while (bpage != start);
3650
3651 /* commit not part of this buffer?? */
3652 RB_WARN_ON(cpu_buffer, 1);
3653 }
3654
3655 /**
3656 * ring_buffer_discard_commit - discard an event that has not been committed
3657 * @buffer: the ring buffer
3658 * @event: non committed event to discard
3659 *
3660 * Sometimes an event that is in the ring buffer needs to be ignored.
3661 * This function lets the user discard an event in the ring buffer
3662 * and then that event will not be read later.
3663 *
3664 * This function only works if it is called before the item has been
3665 * committed. It will try to free the event from the ring buffer
3666 * if another event has not been added behind it.
3667 *
3668 * If another event has been added behind it, it will set the event
3669 * up as discarded, and perform the commit.
3670 *
3671 * If this function is called, do not call ring_buffer_unlock_commit on
3672 * the event.
3673 */
3674 void ring_buffer_discard_commit(struct trace_buffer *buffer,
3675 struct ring_buffer_event *event)
3676 {
3677 struct ring_buffer_per_cpu *cpu_buffer;
3678 int cpu;
3679
3680 /* The event is discarded regardless */
3681 rb_event_discard(event);
3682
3683 cpu = smp_processor_id();
3684 cpu_buffer = buffer->buffers[cpu];
3685
3686 /*
3687 * This must only be called if the event has not been
3688 * committed yet. Thus we can assume that preemption
3689 * is still disabled.
3690 */
3691 RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing));
3692
3693 rb_decrement_entry(cpu_buffer, event);
3694 if (rb_try_to_discard(cpu_buffer, event))
3695 goto out;
3696
3697 out:
3698 rb_end_commit(cpu_buffer);
3699
3700 trace_recursive_unlock(cpu_buffer);
3701
3702 preempt_enable_notrace();
3703
3704 }
3705 EXPORT_SYMBOL_GPL(ring_buffer_discard_commit);
3706
3707 /**
3708 * ring_buffer_write - write data to the buffer without reserving
3709 * @buffer: The ring buffer to write to.
3710 * @length: The length of the data being written (excluding the event header)
3711 * @data: The data to write to the buffer.
3712 *
3713 * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
3714 * one function. If you already have the data to write to the buffer, it
3715 * may be easier to simply call this function.
3716 *
3717 * Note, like ring_buffer_lock_reserve, the length is the length of the data
3718 * and not the length of the event which would hold the header.
3719 */
3720 int ring_buffer_write(struct trace_buffer *buffer,
3721 unsigned long length,
3722 void *data)
3723 {
3724 struct ring_buffer_per_cpu *cpu_buffer;
3725 struct ring_buffer_event *event;
3726 void *body;
3727 int ret = -EBUSY;
3728 int cpu;
3729
3730 preempt_disable_notrace();
3731
3732 if (atomic_read(&buffer->record_disabled))
3733 goto out;
3734
3735 cpu = raw_smp_processor_id();
3736
3737 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3738 goto out;
3739
3740 cpu_buffer = buffer->buffers[cpu];
3741
3742 if (atomic_read(&cpu_buffer->record_disabled))
3743 goto out;
3744
3745 if (length > BUF_MAX_DATA_SIZE)
3746 goto out;
3747
3748 if (unlikely(trace_recursive_lock(cpu_buffer)))
3749 goto out;
3750
3751 event = rb_reserve_next_event(buffer, cpu_buffer, length);
3752 if (!event)
3753 goto out_unlock;
3754
3755 body = rb_event_data(event);
3756
3757 memcpy(body, data, length);
3758
3759 rb_commit(cpu_buffer, event);
3760
3761 rb_wakeups(buffer, cpu_buffer);
3762
3763 ret = 0;
3764
3765 out_unlock:
3766 trace_recursive_unlock(cpu_buffer);
3767
3768 out:
3769 preempt_enable_notrace();
3770
3771 return ret;
3772 }
3773 EXPORT_SYMBOL_GPL(ring_buffer_write);
3774
3775 static bool rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
3776 {
3777 struct buffer_page *reader = cpu_buffer->reader_page;
3778 struct buffer_page *head = rb_set_head_page(cpu_buffer);
3779 struct buffer_page *commit = cpu_buffer->commit_page;
3780
3781 /* In case of error, head will be NULL */
3782 if (unlikely(!head))
3783 return true;
3784
3785 return reader->read == rb_page_commit(reader) &&
3786 (commit == reader ||
3787 (commit == head &&
3788 head->read == rb_page_commit(commit)));
3789 }
3790
3791 /**
3792 * ring_buffer_record_disable - stop all writes into the buffer
3793 * @buffer: The ring buffer to stop writes to.
3794 *
3795 * This prevents all writes to the buffer. Any attempt to write
3796 * to the buffer after this will fail and return NULL.
3797 *
3798 * The caller should call synchronize_rcu() after this.
3799 */
3800 void ring_buffer_record_disable(struct trace_buffer *buffer)
3801 {
3802 atomic_inc(&buffer->record_disabled);
3803 }
3804 EXPORT_SYMBOL_GPL(ring_buffer_record_disable);
3805
3806 /**
3807 * ring_buffer_record_enable - enable writes to the buffer
3808 * @buffer: The ring buffer to enable writes
3809 *
3810 * Note, multiple disables will need the same number of enables
3811 * to truly enable the writing (much like preempt_disable).
3812 */
3813 void ring_buffer_record_enable(struct trace_buffer *buffer)
3814 {
3815 atomic_dec(&buffer->record_disabled);
3816 }
3817 EXPORT_SYMBOL_GPL(ring_buffer_record_enable);
3818
3819 /**
3820 * ring_buffer_record_off - stop all writes into the buffer
3821 * @buffer: The ring buffer to stop writes to.
3822 *
3823 * This prevents all writes to the buffer. Any attempt to write
3824 * to the buffer after this will fail and return NULL.
3825 *
3826 * This is different than ring_buffer_record_disable() as
3827 * it works like an on/off switch, where as the disable() version
3828 * must be paired with a enable().
3829 */
3830 void ring_buffer_record_off(struct trace_buffer *buffer)
3831 {
3832 unsigned int rd;
3833 unsigned int new_rd;
3834
3835 do {
3836 rd = atomic_read(&buffer->record_disabled);
3837 new_rd = rd | RB_BUFFER_OFF;
3838 } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
3839 }
3840 EXPORT_SYMBOL_GPL(ring_buffer_record_off);
3841
3842 /**
3843 * ring_buffer_record_on - restart writes into the buffer
3844 * @buffer: The ring buffer to start writes to.
3845 *
3846 * This enables all writes to the buffer that was disabled by
3847 * ring_buffer_record_off().
3848 *
3849 * This is different than ring_buffer_record_enable() as
3850 * it works like an on/off switch, where as the enable() version
3851 * must be paired with a disable().
3852 */
3853 void ring_buffer_record_on(struct trace_buffer *buffer)
3854 {
3855 unsigned int rd;
3856 unsigned int new_rd;
3857
3858 do {
3859 rd = atomic_read(&buffer->record_disabled);
3860 new_rd = rd & ~RB_BUFFER_OFF;
3861 } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
3862 }
3863 EXPORT_SYMBOL_GPL(ring_buffer_record_on);
3864
3865 /**
3866 * ring_buffer_record_is_on - return true if the ring buffer can write
3867 * @buffer: The ring buffer to see if write is enabled
3868 *
3869 * Returns true if the ring buffer is in a state that it accepts writes.
3870 */
3871 bool ring_buffer_record_is_on(struct trace_buffer *buffer)
3872 {
3873 return !atomic_read(&buffer->record_disabled);
3874 }
3875
3876 /**
3877 * ring_buffer_record_is_set_on - return true if the ring buffer is set writable
3878 * @buffer: The ring buffer to see if write is set enabled
3879 *
3880 * Returns true if the ring buffer is set writable by ring_buffer_record_on().
3881 * Note that this does NOT mean it is in a writable state.
3882 *
3883 * It may return true when the ring buffer has been disabled by
3884 * ring_buffer_record_disable(), as that is a temporary disabling of
3885 * the ring buffer.
3886 */
3887 bool ring_buffer_record_is_set_on(struct trace_buffer *buffer)
3888 {
3889 return !(atomic_read(&buffer->record_disabled) & RB_BUFFER_OFF);
3890 }
3891
3892 /**
3893 * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
3894 * @buffer: The ring buffer to stop writes to.
3895 * @cpu: The CPU buffer to stop
3896 *
3897 * This prevents all writes to the buffer. Any attempt to write
3898 * to the buffer after this will fail and return NULL.
3899 *
3900 * The caller should call synchronize_rcu() after this.
3901 */
3902 void ring_buffer_record_disable_cpu(struct trace_buffer *buffer, int cpu)
3903 {
3904 struct ring_buffer_per_cpu *cpu_buffer;
3905
3906 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3907 return;
3908
3909 cpu_buffer = buffer->buffers[cpu];
3910 atomic_inc(&cpu_buffer->record_disabled);
3911 }
3912 EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu);
3913
3914 /**
3915 * ring_buffer_record_enable_cpu - enable writes to the buffer
3916 * @buffer: The ring buffer to enable writes
3917 * @cpu: The CPU to enable.
3918 *
3919 * Note, multiple disables will need the same number of enables
3920 * to truly enable the writing (much like preempt_disable).
3921 */
3922 void ring_buffer_record_enable_cpu(struct trace_buffer *buffer, int cpu)
3923 {
3924 struct ring_buffer_per_cpu *cpu_buffer;
3925
3926 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3927 return;
3928
3929 cpu_buffer = buffer->buffers[cpu];
3930 atomic_dec(&cpu_buffer->record_disabled);
3931 }
3932 EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu);
3933
3934 /*
3935 * The total entries in the ring buffer is the running counter
3936 * of entries entered into the ring buffer, minus the sum of
3937 * the entries read from the ring buffer and the number of
3938 * entries that were overwritten.
3939 */
3940 static inline unsigned long
3941 rb_num_of_entries(struct ring_buffer_per_cpu *cpu_buffer)
3942 {
3943 return local_read(&cpu_buffer->entries) -
3944 (local_read(&cpu_buffer->overrun) + cpu_buffer->read);
3945 }
3946
3947 /**
3948 * ring_buffer_oldest_event_ts - get the oldest event timestamp from the buffer
3949 * @buffer: The ring buffer
3950 * @cpu: The per CPU buffer to read from.
3951 */
3952 u64 ring_buffer_oldest_event_ts(struct trace_buffer *buffer, int cpu)
3953 {
3954 unsigned long flags;
3955 struct ring_buffer_per_cpu *cpu_buffer;
3956 struct buffer_page *bpage;
3957 u64 ret = 0;
3958
3959 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3960 return 0;
3961
3962 cpu_buffer = buffer->buffers[cpu];
3963 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3964 /*
3965 * if the tail is on reader_page, oldest time stamp is on the reader
3966 * page
3967 */
3968 if (cpu_buffer->tail_page == cpu_buffer->reader_page)
3969 bpage = cpu_buffer->reader_page;
3970 else
3971 bpage = rb_set_head_page(cpu_buffer);
3972 if (bpage)
3973 ret = bpage->page->time_stamp;
3974 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3975
3976 return ret;
3977 }
3978 EXPORT_SYMBOL_GPL(ring_buffer_oldest_event_ts);
3979
3980 /**
3981 * ring_buffer_bytes_cpu - get the number of bytes consumed in a cpu buffer
3982 * @buffer: The ring buffer
3983 * @cpu: The per CPU buffer to read from.
3984 */
3985 unsigned long ring_buffer_bytes_cpu(struct trace_buffer *buffer, int cpu)
3986 {
3987 struct ring_buffer_per_cpu *cpu_buffer;
3988 unsigned long ret;
3989
3990 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3991 return 0;
3992
3993 cpu_buffer = buffer->buffers[cpu];
3994 ret = local_read(&cpu_buffer->entries_bytes) - cpu_buffer->read_bytes;
3995
3996 return ret;
3997 }
3998 EXPORT_SYMBOL_GPL(ring_buffer_bytes_cpu);
3999
4000 /**
4001 * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
4002 * @buffer: The ring buffer
4003 * @cpu: The per CPU buffer to get the entries from.
4004 */
4005 unsigned long ring_buffer_entries_cpu(struct trace_buffer *buffer, int cpu)
4006 {
4007 struct ring_buffer_per_cpu *cpu_buffer;
4008
4009 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4010 return 0;
4011
4012 cpu_buffer = buffer->buffers[cpu];
4013
4014 return rb_num_of_entries(cpu_buffer);
4015 }
4016 EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu);
4017
4018 /**
4019 * ring_buffer_overrun_cpu - get the number of overruns caused by the ring
4020 * buffer wrapping around (only if RB_FL_OVERWRITE is on).
4021 * @buffer: The ring buffer
4022 * @cpu: The per CPU buffer to get the number of overruns from
4023 */
4024 unsigned long ring_buffer_overrun_cpu(struct trace_buffer *buffer, int cpu)
4025 {
4026 struct ring_buffer_per_cpu *cpu_buffer;
4027 unsigned long ret;
4028
4029 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4030 return 0;
4031
4032 cpu_buffer = buffer->buffers[cpu];
4033 ret = local_read(&cpu_buffer->overrun);
4034
4035 return ret;
4036 }
4037 EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu);
4038
4039 /**
4040 * ring_buffer_commit_overrun_cpu - get the number of overruns caused by
4041 * commits failing due to the buffer wrapping around while there are uncommitted
4042 * events, such as during an interrupt storm.
4043 * @buffer: The ring buffer
4044 * @cpu: The per CPU buffer to get the number of overruns from
4045 */
4046 unsigned long
4047 ring_buffer_commit_overrun_cpu(struct trace_buffer *buffer, int cpu)
4048 {
4049 struct ring_buffer_per_cpu *cpu_buffer;
4050 unsigned long ret;
4051
4052 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4053 return 0;
4054
4055 cpu_buffer = buffer->buffers[cpu];
4056 ret = local_read(&cpu_buffer->commit_overrun);
4057
4058 return ret;
4059 }
4060 EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu);
4061
4062 /**
4063 * ring_buffer_dropped_events_cpu - get the number of dropped events caused by
4064 * the ring buffer filling up (only if RB_FL_OVERWRITE is off).
4065 * @buffer: The ring buffer
4066 * @cpu: The per CPU buffer to get the number of overruns from
4067 */
4068 unsigned long
4069 ring_buffer_dropped_events_cpu(struct trace_buffer *buffer, int cpu)
4070 {
4071 struct ring_buffer_per_cpu *cpu_buffer;
4072 unsigned long ret;
4073
4074 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4075 return 0;
4076
4077 cpu_buffer = buffer->buffers[cpu];
4078 ret = local_read(&cpu_buffer->dropped_events);
4079
4080 return ret;
4081 }
4082 EXPORT_SYMBOL_GPL(ring_buffer_dropped_events_cpu);
4083
4084 /**
4085 * ring_buffer_read_events_cpu - get the number of events successfully read
4086 * @buffer: The ring buffer
4087 * @cpu: The per CPU buffer to get the number of events read
4088 */
4089 unsigned long
4090 ring_buffer_read_events_cpu(struct trace_buffer *buffer, int cpu)
4091 {
4092 struct ring_buffer_per_cpu *cpu_buffer;
4093
4094 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4095 return 0;
4096
4097 cpu_buffer = buffer->buffers[cpu];
4098 return cpu_buffer->read;
4099 }
4100 EXPORT_SYMBOL_GPL(ring_buffer_read_events_cpu);
4101
4102 /**
4103 * ring_buffer_entries - get the number of entries in a buffer
4104 * @buffer: The ring buffer
4105 *
4106 * Returns the total number of entries in the ring buffer
4107 * (all CPU entries)
4108 */
4109 unsigned long ring_buffer_entries(struct trace_buffer *buffer)
4110 {
4111 struct ring_buffer_per_cpu *cpu_buffer;
4112 unsigned long entries = 0;
4113 int cpu;
4114
4115 /* if you care about this being correct, lock the buffer */
4116 for_each_buffer_cpu(buffer, cpu) {
4117 cpu_buffer = buffer->buffers[cpu];
4118 entries += rb_num_of_entries(cpu_buffer);
4119 }
4120
4121 return entries;
4122 }
4123 EXPORT_SYMBOL_GPL(ring_buffer_entries);
4124
4125 /**
4126 * ring_buffer_overruns - get the number of overruns in buffer
4127 * @buffer: The ring buffer
4128 *
4129 * Returns the total number of overruns in the ring buffer
4130 * (all CPU entries)
4131 */
4132 unsigned long ring_buffer_overruns(struct trace_buffer *buffer)
4133 {
4134 struct ring_buffer_per_cpu *cpu_buffer;
4135 unsigned long overruns = 0;
4136 int cpu;
4137
4138 /* if you care about this being correct, lock the buffer */
4139 for_each_buffer_cpu(buffer, cpu) {
4140 cpu_buffer = buffer->buffers[cpu];
4141 overruns += local_read(&cpu_buffer->overrun);
4142 }
4143
4144 return overruns;
4145 }
4146 EXPORT_SYMBOL_GPL(ring_buffer_overruns);
4147
4148 static void rb_iter_reset(struct ring_buffer_iter *iter)
4149 {
4150 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4151
4152 /* Iterator usage is expected to have record disabled */
4153 iter->head_page = cpu_buffer->reader_page;
4154 iter->head = cpu_buffer->reader_page->read;
4155 iter->next_event = iter->head;
4156
4157 iter->cache_reader_page = iter->head_page;
4158 iter->cache_read = cpu_buffer->read;
4159
4160 if (iter->head) {
4161 iter->read_stamp = cpu_buffer->read_stamp;
4162 iter->page_stamp = cpu_buffer->reader_page->page->time_stamp;
4163 } else {
4164 iter->read_stamp = iter->head_page->page->time_stamp;
4165 iter->page_stamp = iter->read_stamp;
4166 }
4167 }
4168
4169 /**
4170 * ring_buffer_iter_reset - reset an iterator
4171 * @iter: The iterator to reset
4172 *
4173 * Resets the iterator, so that it will start from the beginning
4174 * again.
4175 */
4176 void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
4177 {
4178 struct ring_buffer_per_cpu *cpu_buffer;
4179 unsigned long flags;
4180
4181 if (!iter)
4182 return;
4183
4184 cpu_buffer = iter->cpu_buffer;
4185
4186 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4187 rb_iter_reset(iter);
4188 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4189 }
4190 EXPORT_SYMBOL_GPL(ring_buffer_iter_reset);
4191
4192 /**
4193 * ring_buffer_iter_empty - check if an iterator has no more to read
4194 * @iter: The iterator to check
4195 */
4196 int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
4197 {
4198 struct ring_buffer_per_cpu *cpu_buffer;
4199 struct buffer_page *reader;
4200 struct buffer_page *head_page;
4201 struct buffer_page *commit_page;
4202 struct buffer_page *curr_commit_page;
4203 unsigned commit;
4204 u64 curr_commit_ts;
4205 u64 commit_ts;
4206
4207 cpu_buffer = iter->cpu_buffer;
4208 reader = cpu_buffer->reader_page;
4209 head_page = cpu_buffer->head_page;
4210 commit_page = cpu_buffer->commit_page;
4211 commit_ts = commit_page->page->time_stamp;
4212
4213 /*
4214 * When the writer goes across pages, it issues a cmpxchg which
4215 * is a mb(), which will synchronize with the rmb here.
4216 * (see rb_tail_page_update())
4217 */
4218 smp_rmb();
4219 commit = rb_page_commit(commit_page);
4220 /* We want to make sure that the commit page doesn't change */
4221 smp_rmb();
4222
4223 /* Make sure commit page didn't change */
4224 curr_commit_page = READ_ONCE(cpu_buffer->commit_page);
4225 curr_commit_ts = READ_ONCE(curr_commit_page->page->time_stamp);
4226
4227 /* If the commit page changed, then there's more data */
4228 if (curr_commit_page != commit_page ||
4229 curr_commit_ts != commit_ts)
4230 return 0;
4231
4232 /* Still racy, as it may return a false positive, but that's OK */
4233 return ((iter->head_page == commit_page && iter->head >= commit) ||
4234 (iter->head_page == reader && commit_page == head_page &&
4235 head_page->read == commit &&
4236 iter->head == rb_page_commit(cpu_buffer->reader_page)));
4237 }
4238 EXPORT_SYMBOL_GPL(ring_buffer_iter_empty);
4239
4240 static void
4241 rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
4242 struct ring_buffer_event *event)
4243 {
4244 u64 delta;
4245
4246 switch (event->type_len) {
4247 case RINGBUF_TYPE_PADDING:
4248 return;
4249
4250 case RINGBUF_TYPE_TIME_EXTEND:
4251 delta = ring_buffer_event_time_stamp(event);
4252 cpu_buffer->read_stamp += delta;
4253 return;
4254
4255 case RINGBUF_TYPE_TIME_STAMP:
4256 delta = ring_buffer_event_time_stamp(event);
4257 cpu_buffer->read_stamp = delta;
4258 return;
4259
4260 case RINGBUF_TYPE_DATA:
4261 cpu_buffer->read_stamp += event->time_delta;
4262 return;
4263
4264 default:
4265 RB_WARN_ON(cpu_buffer, 1);
4266 }
4267 return;
4268 }
4269
4270 static void
4271 rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
4272 struct ring_buffer_event *event)
4273 {
4274 u64 delta;
4275
4276 switch (event->type_len) {
4277 case RINGBUF_TYPE_PADDING:
4278 return;
4279
4280 case RINGBUF_TYPE_TIME_EXTEND:
4281 delta = ring_buffer_event_time_stamp(event);
4282 iter->read_stamp += delta;
4283 return;
4284
4285 case RINGBUF_TYPE_TIME_STAMP:
4286 delta = ring_buffer_event_time_stamp(event);
4287 iter->read_stamp = delta;
4288 return;
4289
4290 case RINGBUF_TYPE_DATA:
4291 iter->read_stamp += event->time_delta;
4292 return;
4293
4294 default:
4295 RB_WARN_ON(iter->cpu_buffer, 1);
4296 }
4297 return;
4298 }
4299
4300 static struct buffer_page *
4301 rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
4302 {
4303 struct buffer_page *reader = NULL;
4304 unsigned long overwrite;
4305 unsigned long flags;
4306 int nr_loops = 0;
4307 int ret;
4308
4309 local_irq_save(flags);
4310 arch_spin_lock(&cpu_buffer->lock);
4311
4312 again:
4313 /*
4314 * This should normally only loop twice. But because the
4315 * start of the reader inserts an empty page, it causes
4316 * a case where we will loop three times. There should be no
4317 * reason to loop four times (that I know of).
4318 */
4319 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
4320 reader = NULL;
4321 goto out;
4322 }
4323
4324 reader = cpu_buffer->reader_page;
4325
4326 /* If there's more to read, return this page */
4327 if (cpu_buffer->reader_page->read < rb_page_size(reader))
4328 goto out;
4329
4330 /* Never should we have an index greater than the size */
4331 if (RB_WARN_ON(cpu_buffer,
4332 cpu_buffer->reader_page->read > rb_page_size(reader)))
4333 goto out;
4334
4335 /* check if we caught up to the tail */
4336 reader = NULL;
4337 if (cpu_buffer->commit_page == cpu_buffer->reader_page)
4338 goto out;
4339
4340 /* Don't bother swapping if the ring buffer is empty */
4341 if (rb_num_of_entries(cpu_buffer) == 0)
4342 goto out;
4343
4344 /*
4345 * Reset the reader page to size zero.
4346 */
4347 local_set(&cpu_buffer->reader_page->write, 0);
4348 local_set(&cpu_buffer->reader_page->entries, 0);
4349 local_set(&cpu_buffer->reader_page->page->commit, 0);
4350 cpu_buffer->reader_page->real_end = 0;
4351
4352 spin:
4353 /*
4354 * Splice the empty reader page into the list around the head.
4355 */
4356 reader = rb_set_head_page(cpu_buffer);
4357 if (!reader)
4358 goto out;
4359 cpu_buffer->reader_page->list.next = rb_list_head(reader->list.next);
4360 cpu_buffer->reader_page->list.prev = reader->list.prev;
4361
4362 /*
4363 * cpu_buffer->pages just needs to point to the buffer, it
4364 * has no specific buffer page to point to. Lets move it out
4365 * of our way so we don't accidentally swap it.
4366 */
4367 cpu_buffer->pages = reader->list.prev;
4368
4369 /* The reader page will be pointing to the new head */
4370 rb_set_list_to_head(cpu_buffer, &cpu_buffer->reader_page->list);
4371
4372 /*
4373 * We want to make sure we read the overruns after we set up our
4374 * pointers to the next object. The writer side does a
4375 * cmpxchg to cross pages which acts as the mb on the writer
4376 * side. Note, the reader will constantly fail the swap
4377 * while the writer is updating the pointers, so this
4378 * guarantees that the overwrite recorded here is the one we
4379 * want to compare with the last_overrun.
4380 */
4381 smp_mb();
4382 overwrite = local_read(&(cpu_buffer->overrun));
4383
4384 /*
4385 * Here's the tricky part.
4386 *
4387 * We need to move the pointer past the header page.
4388 * But we can only do that if a writer is not currently
4389 * moving it. The page before the header page has the
4390 * flag bit '1' set if it is pointing to the page we want.
4391 * but if the writer is in the process of moving it
4392 * than it will be '2' or already moved '0'.
4393 */
4394
4395 ret = rb_head_page_replace(reader, cpu_buffer->reader_page);
4396
4397 /*
4398 * If we did not convert it, then we must try again.
4399 */
4400 if (!ret)
4401 goto spin;
4402
4403 /*
4404 * Yay! We succeeded in replacing the page.
4405 *
4406 * Now make the new head point back to the reader page.
4407 */
4408 rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list;
4409 rb_inc_page(cpu_buffer, &cpu_buffer->head_page);
4410
4411 local_inc(&cpu_buffer->pages_read);
4412
4413 /* Finally update the reader page to the new head */
4414 cpu_buffer->reader_page = reader;
4415 cpu_buffer->reader_page->read = 0;
4416
4417 if (overwrite != cpu_buffer->last_overrun) {
4418 cpu_buffer->lost_events = overwrite - cpu_buffer->last_overrun;
4419 cpu_buffer->last_overrun = overwrite;
4420 }
4421
4422 goto again;
4423
4424 out:
4425 /* Update the read_stamp on the first event */
4426 if (reader && reader->read == 0)
4427 cpu_buffer->read_stamp = reader->page->time_stamp;
4428
4429 arch_spin_unlock(&cpu_buffer->lock);
4430 local_irq_restore(flags);
4431
4432 return reader;
4433 }
4434
4435 static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
4436 {
4437 struct ring_buffer_event *event;
4438 struct buffer_page *reader;
4439 unsigned length;
4440
4441 reader = rb_get_reader_page(cpu_buffer);
4442
4443 /* This function should not be called when buffer is empty */
4444 if (RB_WARN_ON(cpu_buffer, !reader))
4445 return;
4446
4447 event = rb_reader_event(cpu_buffer);
4448
4449 if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
4450 cpu_buffer->read++;
4451
4452 rb_update_read_stamp(cpu_buffer, event);
4453
4454 length = rb_event_length(event);
4455 cpu_buffer->reader_page->read += length;
4456 }
4457
4458 static void rb_advance_iter(struct ring_buffer_iter *iter)
4459 {
4460 struct ring_buffer_per_cpu *cpu_buffer;
4461
4462 cpu_buffer = iter->cpu_buffer;
4463
4464 /* If head == next_event then we need to jump to the next event */
4465 if (iter->head == iter->next_event) {
4466 /* If the event gets overwritten again, there's nothing to do */
4467 if (rb_iter_head_event(iter) == NULL)
4468 return;
4469 }
4470
4471 iter->head = iter->next_event;
4472
4473 /*
4474 * Check if we are at the end of the buffer.
4475 */
4476 if (iter->next_event >= rb_page_size(iter->head_page)) {
4477 /* discarded commits can make the page empty */
4478 if (iter->head_page == cpu_buffer->commit_page)
4479 return;
4480 rb_inc_iter(iter);
4481 return;
4482 }
4483
4484 rb_update_iter_read_stamp(iter, iter->event);
4485 }
4486
4487 static int rb_lost_events(struct ring_buffer_per_cpu *cpu_buffer)
4488 {
4489 return cpu_buffer->lost_events;
4490 }
4491
4492 static struct ring_buffer_event *
4493 rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts,
4494 unsigned long *lost_events)
4495 {
4496 struct ring_buffer_event *event;
4497 struct buffer_page *reader;
4498 int nr_loops = 0;
4499
4500 if (ts)
4501 *ts = 0;
4502 again:
4503 /*
4504 * We repeat when a time extend is encountered.
4505 * Since the time extend is always attached to a data event,
4506 * we should never loop more than once.
4507 * (We never hit the following condition more than twice).
4508 */
4509 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2))
4510 return NULL;
4511
4512 reader = rb_get_reader_page(cpu_buffer);
4513 if (!reader)
4514 return NULL;
4515
4516 event = rb_reader_event(cpu_buffer);
4517
4518 switch (event->type_len) {
4519 case RINGBUF_TYPE_PADDING:
4520 if (rb_null_event(event))
4521 RB_WARN_ON(cpu_buffer, 1);
4522 /*
4523 * Because the writer could be discarding every
4524 * event it creates (which would probably be bad)
4525 * if we were to go back to "again" then we may never
4526 * catch up, and will trigger the warn on, or lock
4527 * the box. Return the padding, and we will release
4528 * the current locks, and try again.
4529 */
4530 return event;
4531
4532 case RINGBUF_TYPE_TIME_EXTEND:
4533 /* Internal data, OK to advance */
4534 rb_advance_reader(cpu_buffer);
4535 goto again;
4536
4537 case RINGBUF_TYPE_TIME_STAMP:
4538 if (ts) {
4539 *ts = ring_buffer_event_time_stamp(event);
4540 ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
4541 cpu_buffer->cpu, ts);
4542 }
4543 /* Internal data, OK to advance */
4544 rb_advance_reader(cpu_buffer);
4545 goto again;
4546
4547 case RINGBUF_TYPE_DATA:
4548 if (ts && !(*ts)) {
4549 *ts = cpu_buffer->read_stamp + event->time_delta;
4550 ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
4551 cpu_buffer->cpu, ts);
4552 }
4553 if (lost_events)
4554 *lost_events = rb_lost_events(cpu_buffer);
4555 return event;
4556
4557 default:
4558 RB_WARN_ON(cpu_buffer, 1);
4559 }
4560
4561 return NULL;
4562 }
4563 EXPORT_SYMBOL_GPL(ring_buffer_peek);
4564
4565 static struct ring_buffer_event *
4566 rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
4567 {
4568 struct trace_buffer *buffer;
4569 struct ring_buffer_per_cpu *cpu_buffer;
4570 struct ring_buffer_event *event;
4571 int nr_loops = 0;
4572
4573 if (ts)
4574 *ts = 0;
4575
4576 cpu_buffer = iter->cpu_buffer;
4577 buffer = cpu_buffer->buffer;
4578
4579 /*
4580 * Check if someone performed a consuming read to
4581 * the buffer. A consuming read invalidates the iterator
4582 * and we need to reset the iterator in this case.
4583 */
4584 if (unlikely(iter->cache_read != cpu_buffer->read ||
4585 iter->cache_reader_page != cpu_buffer->reader_page))
4586 rb_iter_reset(iter);
4587
4588 again:
4589 if (ring_buffer_iter_empty(iter))
4590 return NULL;
4591
4592 /*
4593 * As the writer can mess with what the iterator is trying
4594 * to read, just give up if we fail to get an event after
4595 * three tries. The iterator is not as reliable when reading
4596 * the ring buffer with an active write as the consumer is.
4597 * Do not warn if the three failures is reached.
4598 */
4599 if (++nr_loops > 3)
4600 return NULL;
4601
4602 if (rb_per_cpu_empty(cpu_buffer))
4603 return NULL;
4604
4605 if (iter->head >= rb_page_size(iter->head_page)) {
4606 rb_inc_iter(iter);
4607 goto again;
4608 }
4609
4610 event = rb_iter_head_event(iter);
4611 if (!event)
4612 goto again;
4613
4614 switch (event->type_len) {
4615 case RINGBUF_TYPE_PADDING:
4616 if (rb_null_event(event)) {
4617 rb_inc_iter(iter);
4618 goto again;
4619 }
4620 rb_advance_iter(iter);
4621 return event;
4622
4623 case RINGBUF_TYPE_TIME_EXTEND:
4624 /* Internal data, OK to advance */
4625 rb_advance_iter(iter);
4626 goto again;
4627
4628 case RINGBUF_TYPE_TIME_STAMP:
4629 if (ts) {
4630 *ts = ring_buffer_event_time_stamp(event);
4631 ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
4632 cpu_buffer->cpu, ts);
4633 }
4634 /* Internal data, OK to advance */
4635 rb_advance_iter(iter);
4636 goto again;
4637
4638 case RINGBUF_TYPE_DATA:
4639 if (ts && !(*ts)) {
4640 *ts = iter->read_stamp + event->time_delta;
4641 ring_buffer_normalize_time_stamp(buffer,
4642 cpu_buffer->cpu, ts);
4643 }
4644 return event;
4645
4646 default:
4647 RB_WARN_ON(cpu_buffer, 1);
4648 }
4649
4650 return NULL;
4651 }
4652 EXPORT_SYMBOL_GPL(ring_buffer_iter_peek);
4653
4654 static inline bool rb_reader_lock(struct ring_buffer_per_cpu *cpu_buffer)
4655 {
4656 if (likely(!in_nmi())) {
4657 raw_spin_lock(&cpu_buffer->reader_lock);
4658 return true;
4659 }
4660
4661 /*
4662 * If an NMI die dumps out the content of the ring buffer
4663 * trylock must be used to prevent a deadlock if the NMI
4664 * preempted a task that holds the ring buffer locks. If
4665 * we get the lock then all is fine, if not, then continue
4666 * to do the read, but this can corrupt the ring buffer,
4667 * so it must be permanently disabled from future writes.
4668 * Reading from NMI is a oneshot deal.
4669 */
4670 if (raw_spin_trylock(&cpu_buffer->reader_lock))
4671 return true;
4672
4673 /* Continue without locking, but disable the ring buffer */
4674 atomic_inc(&cpu_buffer->record_disabled);
4675 return false;
4676 }
4677
4678 static inline void
4679 rb_reader_unlock(struct ring_buffer_per_cpu *cpu_buffer, bool locked)
4680 {
4681 if (likely(locked))
4682 raw_spin_unlock(&cpu_buffer->reader_lock);
4683 return;
4684 }
4685
4686 /**
4687 * ring_buffer_peek - peek at the next event to be read
4688 * @buffer: The ring buffer to read
4689 * @cpu: The cpu to peak at
4690 * @ts: The timestamp counter of this event.
4691 * @lost_events: a variable to store if events were lost (may be NULL)
4692 *
4693 * This will return the event that will be read next, but does
4694 * not consume the data.
4695 */
4696 struct ring_buffer_event *
4697 ring_buffer_peek(struct trace_buffer *buffer, int cpu, u64 *ts,
4698 unsigned long *lost_events)
4699 {
4700 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4701 struct ring_buffer_event *event;
4702 unsigned long flags;
4703 bool dolock;
4704
4705 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4706 return NULL;
4707
4708 again:
4709 local_irq_save(flags);
4710 dolock = rb_reader_lock(cpu_buffer);
4711 event = rb_buffer_peek(cpu_buffer, ts, lost_events);
4712 if (event && event->type_len == RINGBUF_TYPE_PADDING)
4713 rb_advance_reader(cpu_buffer);
4714 rb_reader_unlock(cpu_buffer, dolock);
4715 local_irq_restore(flags);
4716
4717 if (event && event->type_len == RINGBUF_TYPE_PADDING)
4718 goto again;
4719
4720 return event;
4721 }
4722
4723 /** ring_buffer_iter_dropped - report if there are dropped events
4724 * @iter: The ring buffer iterator
4725 *
4726 * Returns true if there was dropped events since the last peek.
4727 */
4728 bool ring_buffer_iter_dropped(struct ring_buffer_iter *iter)
4729 {
4730 bool ret = iter->missed_events != 0;
4731
4732 iter->missed_events = 0;
4733 return ret;
4734 }
4735 EXPORT_SYMBOL_GPL(ring_buffer_iter_dropped);
4736
4737 /**
4738 * ring_buffer_iter_peek - peek at the next event to be read
4739 * @iter: The ring buffer iterator
4740 * @ts: The timestamp counter of this event.
4741 *
4742 * This will return the event that will be read next, but does
4743 * not increment the iterator.
4744 */
4745 struct ring_buffer_event *
4746 ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
4747 {
4748 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4749 struct ring_buffer_event *event;
4750 unsigned long flags;
4751
4752 again:
4753 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4754 event = rb_iter_peek(iter, ts);
4755 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4756
4757 if (event && event->type_len == RINGBUF_TYPE_PADDING)
4758 goto again;
4759
4760 return event;
4761 }
4762
4763 /**
4764 * ring_buffer_consume - return an event and consume it
4765 * @buffer: The ring buffer to get the next event from
4766 * @cpu: the cpu to read the buffer from
4767 * @ts: a variable to store the timestamp (may be NULL)
4768 * @lost_events: a variable to store if events were lost (may be NULL)
4769 *
4770 * Returns the next event in the ring buffer, and that event is consumed.
4771 * Meaning, that sequential reads will keep returning a different event,
4772 * and eventually empty the ring buffer if the producer is slower.
4773 */
4774 struct ring_buffer_event *
4775 ring_buffer_consume(struct trace_buffer *buffer, int cpu, u64 *ts,
4776 unsigned long *lost_events)
4777 {
4778 struct ring_buffer_per_cpu *cpu_buffer;
4779 struct ring_buffer_event *event = NULL;
4780 unsigned long flags;
4781 bool dolock;
4782
4783 again:
4784 /* might be called in atomic */
4785 preempt_disable();
4786
4787 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4788 goto out;
4789
4790 cpu_buffer = buffer->buffers[cpu];
4791 local_irq_save(flags);
4792 dolock = rb_reader_lock(cpu_buffer);
4793
4794 event = rb_buffer_peek(cpu_buffer, ts, lost_events);
4795 if (event) {
4796 cpu_buffer->lost_events = 0;
4797 rb_advance_reader(cpu_buffer);
4798 }
4799
4800 rb_reader_unlock(cpu_buffer, dolock);
4801 local_irq_restore(flags);
4802
4803 out:
4804 preempt_enable();
4805
4806 if (event && event->type_len == RINGBUF_TYPE_PADDING)
4807 goto again;
4808
4809 return event;
4810 }
4811 EXPORT_SYMBOL_GPL(ring_buffer_consume);
4812
4813 /**
4814 * ring_buffer_read_prepare - Prepare for a non consuming read of the buffer
4815 * @buffer: The ring buffer to read from
4816 * @cpu: The cpu buffer to iterate over
4817 * @flags: gfp flags to use for memory allocation
4818 *
4819 * This performs the initial preparations necessary to iterate
4820 * through the buffer. Memory is allocated, buffer recording
4821 * is disabled, and the iterator pointer is returned to the caller.
4822 *
4823 * Disabling buffer recording prevents the reading from being
4824 * corrupted. This is not a consuming read, so a producer is not
4825 * expected.
4826 *
4827 * After a sequence of ring_buffer_read_prepare calls, the user is
4828 * expected to make at least one call to ring_buffer_read_prepare_sync.
4829 * Afterwards, ring_buffer_read_start is invoked to get things going
4830 * for real.
4831 *
4832 * This overall must be paired with ring_buffer_read_finish.
4833 */
4834 struct ring_buffer_iter *
4835 ring_buffer_read_prepare(struct trace_buffer *buffer, int cpu, gfp_t flags)
4836 {
4837 struct ring_buffer_per_cpu *cpu_buffer;
4838 struct ring_buffer_iter *iter;
4839
4840 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4841 return NULL;
4842
4843 iter = kzalloc(sizeof(*iter), flags);
4844 if (!iter)
4845 return NULL;
4846
4847 iter->event = kmalloc(BUF_MAX_DATA_SIZE, flags);
4848 if (!iter->event) {
4849 kfree(iter);
4850 return NULL;
4851 }
4852
4853 cpu_buffer = buffer->buffers[cpu];
4854
4855 iter->cpu_buffer = cpu_buffer;
4856
4857 atomic_inc(&cpu_buffer->resize_disabled);
4858
4859 return iter;
4860 }
4861 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare);
4862
4863 /**
4864 * ring_buffer_read_prepare_sync - Synchronize a set of prepare calls
4865 *
4866 * All previously invoked ring_buffer_read_prepare calls to prepare
4867 * iterators will be synchronized. Afterwards, read_buffer_read_start
4868 * calls on those iterators are allowed.
4869 */
4870 void
4871 ring_buffer_read_prepare_sync(void)
4872 {
4873 synchronize_rcu();
4874 }
4875 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare_sync);
4876
4877 /**
4878 * ring_buffer_read_start - start a non consuming read of the buffer
4879 * @iter: The iterator returned by ring_buffer_read_prepare
4880 *
4881 * This finalizes the startup of an iteration through the buffer.
4882 * The iterator comes from a call to ring_buffer_read_prepare and
4883 * an intervening ring_buffer_read_prepare_sync must have been
4884 * performed.
4885 *
4886 * Must be paired with ring_buffer_read_finish.
4887 */
4888 void
4889 ring_buffer_read_start(struct ring_buffer_iter *iter)
4890 {
4891 struct ring_buffer_per_cpu *cpu_buffer;
4892 unsigned long flags;
4893
4894 if (!iter)
4895 return;
4896
4897 cpu_buffer = iter->cpu_buffer;
4898
4899 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4900 arch_spin_lock(&cpu_buffer->lock);
4901 rb_iter_reset(iter);
4902 arch_spin_unlock(&cpu_buffer->lock);
4903 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4904 }
4905 EXPORT_SYMBOL_GPL(ring_buffer_read_start);
4906
4907 /**
4908 * ring_buffer_read_finish - finish reading the iterator of the buffer
4909 * @iter: The iterator retrieved by ring_buffer_start
4910 *
4911 * This re-enables the recording to the buffer, and frees the
4912 * iterator.
4913 */
4914 void
4915 ring_buffer_read_finish(struct ring_buffer_iter *iter)
4916 {
4917 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4918 unsigned long flags;
4919
4920 /*
4921 * Ring buffer is disabled from recording, here's a good place
4922 * to check the integrity of the ring buffer.
4923 * Must prevent readers from trying to read, as the check
4924 * clears the HEAD page and readers require it.
4925 */
4926 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4927 rb_check_pages(cpu_buffer);
4928 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4929
4930 atomic_dec(&cpu_buffer->resize_disabled);
4931 kfree(iter->event);
4932 kfree(iter);
4933 }
4934 EXPORT_SYMBOL_GPL(ring_buffer_read_finish);
4935
4936 /**
4937 * ring_buffer_iter_advance - advance the iterator to the next location
4938 * @iter: The ring buffer iterator
4939 *
4940 * Move the location of the iterator such that the next read will
4941 * be the next location of the iterator.
4942 */
4943 void ring_buffer_iter_advance(struct ring_buffer_iter *iter)
4944 {
4945 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4946 unsigned long flags;
4947
4948 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4949
4950 rb_advance_iter(iter);
4951
4952 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4953 }
4954 EXPORT_SYMBOL_GPL(ring_buffer_iter_advance);
4955
4956 /**
4957 * ring_buffer_size - return the size of the ring buffer (in bytes)
4958 * @buffer: The ring buffer.
4959 * @cpu: The CPU to get ring buffer size from.
4960 */
4961 unsigned long ring_buffer_size(struct trace_buffer *buffer, int cpu)
4962 {
4963 /*
4964 * Earlier, this method returned
4965 * BUF_PAGE_SIZE * buffer->nr_pages
4966 * Since the nr_pages field is now removed, we have converted this to
4967 * return the per cpu buffer value.
4968 */
4969 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4970 return 0;
4971
4972 return BUF_PAGE_SIZE * buffer->buffers[cpu]->nr_pages;
4973 }
4974 EXPORT_SYMBOL_GPL(ring_buffer_size);
4975
4976 static void
4977 rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
4978 {
4979 rb_head_page_deactivate(cpu_buffer);
4980
4981 cpu_buffer->head_page
4982 = list_entry(cpu_buffer->pages, struct buffer_page, list);
4983 local_set(&cpu_buffer->head_page->write, 0);
4984 local_set(&cpu_buffer->head_page->entries, 0);
4985 local_set(&cpu_buffer->head_page->page->commit, 0);
4986
4987 cpu_buffer->head_page->read = 0;
4988
4989 cpu_buffer->tail_page = cpu_buffer->head_page;
4990 cpu_buffer->commit_page = cpu_buffer->head_page;
4991
4992 INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
4993 INIT_LIST_HEAD(&cpu_buffer->new_pages);
4994 local_set(&cpu_buffer->reader_page->write, 0);
4995 local_set(&cpu_buffer->reader_page->entries, 0);
4996 local_set(&cpu_buffer->reader_page->page->commit, 0);
4997 cpu_buffer->reader_page->read = 0;
4998
4999 local_set(&cpu_buffer->entries_bytes, 0);
5000 local_set(&cpu_buffer->overrun, 0);
5001 local_set(&cpu_buffer->commit_overrun, 0);
5002 local_set(&cpu_buffer->dropped_events, 0);
5003 local_set(&cpu_buffer->entries, 0);
5004 local_set(&cpu_buffer->committing, 0);
5005 local_set(&cpu_buffer->commits, 0);
5006 local_set(&cpu_buffer->pages_touched, 0);
5007 local_set(&cpu_buffer->pages_read, 0);
5008 cpu_buffer->last_pages_touch = 0;
5009 cpu_buffer->shortest_full = 0;
5010 cpu_buffer->read = 0;
5011 cpu_buffer->read_bytes = 0;
5012
5013 rb_time_set(&cpu_buffer->write_stamp, 0);
5014 rb_time_set(&cpu_buffer->before_stamp, 0);
5015
5016 cpu_buffer->lost_events = 0;
5017 cpu_buffer->last_overrun = 0;
5018
5019 rb_head_page_activate(cpu_buffer);
5020 }
5021
5022 /* Must have disabled the cpu buffer then done a synchronize_rcu */
5023 static void reset_disabled_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
5024 {
5025 unsigned long flags;
5026
5027 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
5028
5029 if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing)))
5030 goto out;
5031
5032 arch_spin_lock(&cpu_buffer->lock);
5033
5034 rb_reset_cpu(cpu_buffer);
5035
5036 arch_spin_unlock(&cpu_buffer->lock);
5037
5038 out:
5039 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
5040 }
5041
5042 /**
5043 * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
5044 * @buffer: The ring buffer to reset a per cpu buffer of
5045 * @cpu: The CPU buffer to be reset
5046 */
5047 void ring_buffer_reset_cpu(struct trace_buffer *buffer, int cpu)
5048 {
5049 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
5050
5051 if (!cpumask_test_cpu(cpu, buffer->cpumask))
5052 return;
5053
5054 /* prevent another thread from changing buffer sizes */
5055 mutex_lock(&buffer->mutex);
5056
5057 atomic_inc(&cpu_buffer->resize_disabled);
5058 atomic_inc(&cpu_buffer->record_disabled);
5059
5060 /* Make sure all commits have finished */
5061 synchronize_rcu();
5062
5063 reset_disabled_cpu_buffer(cpu_buffer);
5064
5065 atomic_dec(&cpu_buffer->record_disabled);
5066 atomic_dec(&cpu_buffer->resize_disabled);
5067
5068 mutex_unlock(&buffer->mutex);
5069 }
5070 EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu);
5071
5072 /**
5073 * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
5074 * @buffer: The ring buffer to reset a per cpu buffer of
5075 * @cpu: The CPU buffer to be reset
5076 */
5077 void ring_buffer_reset_online_cpus(struct trace_buffer *buffer)
5078 {
5079 struct ring_buffer_per_cpu *cpu_buffer;
5080 int cpu;
5081
5082 /* prevent another thread from changing buffer sizes */
5083 mutex_lock(&buffer->mutex);
5084
5085 for_each_online_buffer_cpu(buffer, cpu) {
5086 cpu_buffer = buffer->buffers[cpu];
5087
5088 atomic_inc(&cpu_buffer->resize_disabled);
5089 atomic_inc(&cpu_buffer->record_disabled);
5090 }
5091
5092 /* Make sure all commits have finished */
5093 synchronize_rcu();
5094
5095 for_each_online_buffer_cpu(buffer, cpu) {
5096 cpu_buffer = buffer->buffers[cpu];
5097
5098 reset_disabled_cpu_buffer(cpu_buffer);
5099
5100 atomic_dec(&cpu_buffer->record_disabled);
5101 atomic_dec(&cpu_buffer->resize_disabled);
5102 }
5103
5104 mutex_unlock(&buffer->mutex);
5105 }
5106
5107 /**
5108 * ring_buffer_reset - reset a ring buffer
5109 * @buffer: The ring buffer to reset all cpu buffers
5110 */
5111 void ring_buffer_reset(struct trace_buffer *buffer)
5112 {
5113 struct ring_buffer_per_cpu *cpu_buffer;
5114 int cpu;
5115
5116 for_each_buffer_cpu(buffer, cpu) {
5117 cpu_buffer = buffer->buffers[cpu];
5118
5119 atomic_inc(&cpu_buffer->resize_disabled);
5120 atomic_inc(&cpu_buffer->record_disabled);
5121 }
5122
5123 /* Make sure all commits have finished */
5124 synchronize_rcu();
5125
5126 for_each_buffer_cpu(buffer, cpu) {
5127 cpu_buffer = buffer->buffers[cpu];
5128
5129 reset_disabled_cpu_buffer(cpu_buffer);
5130
5131 atomic_dec(&cpu_buffer->record_disabled);
5132 atomic_dec(&cpu_buffer->resize_disabled);
5133 }
5134 }
5135 EXPORT_SYMBOL_GPL(ring_buffer_reset);
5136
5137 /**
5138 * rind_buffer_empty - is the ring buffer empty?
5139 * @buffer: The ring buffer to test
5140 */
5141 bool ring_buffer_empty(struct trace_buffer *buffer)
5142 {
5143 struct ring_buffer_per_cpu *cpu_buffer;
5144 unsigned long flags;
5145 bool dolock;
5146 int cpu;
5147 int ret;
5148
5149 /* yes this is racy, but if you don't like the race, lock the buffer */
5150 for_each_buffer_cpu(buffer, cpu) {
5151 cpu_buffer = buffer->buffers[cpu];
5152 local_irq_save(flags);
5153 dolock = rb_reader_lock(cpu_buffer);
5154 ret = rb_per_cpu_empty(cpu_buffer);
5155 rb_reader_unlock(cpu_buffer, dolock);
5156 local_irq_restore(flags);
5157
5158 if (!ret)
5159 return false;
5160 }
5161
5162 return true;
5163 }
5164 EXPORT_SYMBOL_GPL(ring_buffer_empty);
5165
5166 /**
5167 * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
5168 * @buffer: The ring buffer
5169 * @cpu: The CPU buffer to test
5170 */
5171 bool ring_buffer_empty_cpu(struct trace_buffer *buffer, int cpu)
5172 {
5173 struct ring_buffer_per_cpu *cpu_buffer;
5174 unsigned long flags;
5175 bool dolock;
5176 int ret;
5177
5178 if (!cpumask_test_cpu(cpu, buffer->cpumask))
5179 return true;
5180
5181 cpu_buffer = buffer->buffers[cpu];
5182 local_irq_save(flags);
5183 dolock = rb_reader_lock(cpu_buffer);
5184 ret = rb_per_cpu_empty(cpu_buffer);
5185 rb_reader_unlock(cpu_buffer, dolock);
5186 local_irq_restore(flags);
5187
5188 return ret;
5189 }
5190 EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu);
5191
5192 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
5193 /**
5194 * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
5195 * @buffer_a: One buffer to swap with
5196 * @buffer_b: The other buffer to swap with
5197 * @cpu: the CPU of the buffers to swap
5198 *
5199 * This function is useful for tracers that want to take a "snapshot"
5200 * of a CPU buffer and has another back up buffer lying around.
5201 * it is expected that the tracer handles the cpu buffer not being
5202 * used at the moment.
5203 */
5204 int ring_buffer_swap_cpu(struct trace_buffer *buffer_a,
5205 struct trace_buffer *buffer_b, int cpu)
5206 {
5207 struct ring_buffer_per_cpu *cpu_buffer_a;
5208 struct ring_buffer_per_cpu *cpu_buffer_b;
5209 int ret = -EINVAL;
5210
5211 if (!cpumask_test_cpu(cpu, buffer_a->cpumask) ||
5212 !cpumask_test_cpu(cpu, buffer_b->cpumask))
5213 goto out;
5214
5215 cpu_buffer_a = buffer_a->buffers[cpu];
5216 cpu_buffer_b = buffer_b->buffers[cpu];
5217
5218 /* At least make sure the two buffers are somewhat the same */
5219 if (cpu_buffer_a->nr_pages != cpu_buffer_b->nr_pages)
5220 goto out;
5221
5222 ret = -EAGAIN;
5223
5224 if (atomic_read(&buffer_a->record_disabled))
5225 goto out;
5226
5227 if (atomic_read(&buffer_b->record_disabled))
5228 goto out;
5229
5230 if (atomic_read(&cpu_buffer_a->record_disabled))
5231 goto out;
5232
5233 if (atomic_read(&cpu_buffer_b->record_disabled))
5234 goto out;
5235
5236 /*
5237 * We can't do a synchronize_rcu here because this
5238 * function can be called in atomic context.
5239 * Normally this will be called from the same CPU as cpu.
5240 * If not it's up to the caller to protect this.
5241 */
5242 atomic_inc(&cpu_buffer_a->record_disabled);
5243 atomic_inc(&cpu_buffer_b->record_disabled);
5244
5245 ret = -EBUSY;
5246 if (local_read(&cpu_buffer_a->committing))
5247 goto out_dec;
5248 if (local_read(&cpu_buffer_b->committing))
5249 goto out_dec;
5250
5251 buffer_a->buffers[cpu] = cpu_buffer_b;
5252 buffer_b->buffers[cpu] = cpu_buffer_a;
5253
5254 cpu_buffer_b->buffer = buffer_a;
5255 cpu_buffer_a->buffer = buffer_b;
5256
5257 ret = 0;
5258
5259 out_dec:
5260 atomic_dec(&cpu_buffer_a->record_disabled);
5261 atomic_dec(&cpu_buffer_b->record_disabled);
5262 out:
5263 return ret;
5264 }
5265 EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu);
5266 #endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */
5267
5268 /**
5269 * ring_buffer_alloc_read_page - allocate a page to read from buffer
5270 * @buffer: the buffer to allocate for.
5271 * @cpu: the cpu buffer to allocate.
5272 *
5273 * This function is used in conjunction with ring_buffer_read_page.
5274 * When reading a full page from the ring buffer, these functions
5275 * can be used to speed up the process. The calling function should
5276 * allocate a few pages first with this function. Then when it
5277 * needs to get pages from the ring buffer, it passes the result
5278 * of this function into ring_buffer_read_page, which will swap
5279 * the page that was allocated, with the read page of the buffer.
5280 *
5281 * Returns:
5282 * The page allocated, or ERR_PTR
5283 */
5284 void *ring_buffer_alloc_read_page(struct trace_buffer *buffer, int cpu)
5285 {
5286 struct ring_buffer_per_cpu *cpu_buffer;
5287 struct buffer_data_page *bpage = NULL;
5288 unsigned long flags;
5289 struct page *page;
5290
5291 if (!cpumask_test_cpu(cpu, buffer->cpumask))
5292 return ERR_PTR(-ENODEV);
5293
5294 cpu_buffer = buffer->buffers[cpu];
5295 local_irq_save(flags);
5296 arch_spin_lock(&cpu_buffer->lock);
5297
5298 if (cpu_buffer->free_page) {
5299 bpage = cpu_buffer->free_page;
5300 cpu_buffer->free_page = NULL;
5301 }
5302
5303 arch_spin_unlock(&cpu_buffer->lock);
5304 local_irq_restore(flags);
5305
5306 if (bpage)
5307 goto out;
5308
5309 page = alloc_pages_node(cpu_to_node(cpu),
5310 GFP_KERNEL | __GFP_NORETRY, 0);
5311 if (!page)
5312 return ERR_PTR(-ENOMEM);
5313
5314 bpage = page_address(page);
5315
5316 out:
5317 rb_init_page(bpage);
5318
5319 return bpage;
5320 }
5321 EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page);
5322
5323 /**
5324 * ring_buffer_free_read_page - free an allocated read page
5325 * @buffer: the buffer the page was allocate for
5326 * @cpu: the cpu buffer the page came from
5327 * @data: the page to free
5328 *
5329 * Free a page allocated from ring_buffer_alloc_read_page.
5330 */
5331 void ring_buffer_free_read_page(struct trace_buffer *buffer, int cpu, void *data)
5332 {
5333 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
5334 struct buffer_data_page *bpage = data;
5335 struct page *page = virt_to_page(bpage);
5336 unsigned long flags;
5337
5338 /* If the page is still in use someplace else, we can't reuse it */
5339 if (page_ref_count(page) > 1)
5340 goto out;
5341
5342 local_irq_save(flags);
5343 arch_spin_lock(&cpu_buffer->lock);
5344
5345 if (!cpu_buffer->free_page) {
5346 cpu_buffer->free_page = bpage;
5347 bpage = NULL;
5348 }
5349
5350 arch_spin_unlock(&cpu_buffer->lock);
5351 local_irq_restore(flags);
5352
5353 out:
5354 free_page((unsigned long)bpage);
5355 }
5356 EXPORT_SYMBOL_GPL(ring_buffer_free_read_page);
5357
5358 /**
5359 * ring_buffer_read_page - extract a page from the ring buffer
5360 * @buffer: buffer to extract from
5361 * @data_page: the page to use allocated from ring_buffer_alloc_read_page
5362 * @len: amount to extract
5363 * @cpu: the cpu of the buffer to extract
5364 * @full: should the extraction only happen when the page is full.
5365 *
5366 * This function will pull out a page from the ring buffer and consume it.
5367 * @data_page must be the address of the variable that was returned
5368 * from ring_buffer_alloc_read_page. This is because the page might be used
5369 * to swap with a page in the ring buffer.
5370 *
5371 * for example:
5372 * rpage = ring_buffer_alloc_read_page(buffer, cpu);
5373 * if (IS_ERR(rpage))
5374 * return PTR_ERR(rpage);
5375 * ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0);
5376 * if (ret >= 0)
5377 * process_page(rpage, ret);
5378 *
5379 * When @full is set, the function will not return true unless
5380 * the writer is off the reader page.
5381 *
5382 * Note: it is up to the calling functions to handle sleeps and wakeups.
5383 * The ring buffer can be used anywhere in the kernel and can not
5384 * blindly call wake_up. The layer that uses the ring buffer must be
5385 * responsible for that.
5386 *
5387 * Returns:
5388 * >=0 if data has been transferred, returns the offset of consumed data.
5389 * <0 if no data has been transferred.
5390 */
5391 int ring_buffer_read_page(struct trace_buffer *buffer,
5392 void **data_page, size_t len, int cpu, int full)
5393 {
5394 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
5395 struct ring_buffer_event *event;
5396 struct buffer_data_page *bpage;
5397 struct buffer_page *reader;
5398 unsigned long missed_events;
5399 unsigned long flags;
5400 unsigned int commit;
5401 unsigned int read;
5402 u64 save_timestamp;
5403 int ret = -1;
5404
5405 if (!cpumask_test_cpu(cpu, buffer->cpumask))
5406 goto out;
5407
5408 /*
5409 * If len is not big enough to hold the page header, then
5410 * we can not copy anything.
5411 */
5412 if (len <= BUF_PAGE_HDR_SIZE)
5413 goto out;
5414
5415 len -= BUF_PAGE_HDR_SIZE;
5416
5417 if (!data_page)
5418 goto out;
5419
5420 bpage = *data_page;
5421 if (!bpage)
5422 goto out;
5423
5424 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
5425
5426 reader = rb_get_reader_page(cpu_buffer);
5427 if (!reader)
5428 goto out_unlock;
5429
5430 event = rb_reader_event(cpu_buffer);
5431
5432 read = reader->read;
5433 commit = rb_page_commit(reader);
5434
5435 /* Check if any events were dropped */
5436 missed_events = cpu_buffer->lost_events;
5437
5438 /*
5439 * If this page has been partially read or
5440 * if len is not big enough to read the rest of the page or
5441 * a writer is still on the page, then
5442 * we must copy the data from the page to the buffer.
5443 * Otherwise, we can simply swap the page with the one passed in.
5444 */
5445 if (read || (len < (commit - read)) ||
5446 cpu_buffer->reader_page == cpu_buffer->commit_page) {
5447 struct buffer_data_page *rpage = cpu_buffer->reader_page->page;
5448 unsigned int rpos = read;
5449 unsigned int pos = 0;
5450 unsigned int size;
5451
5452 if (full)
5453 goto out_unlock;
5454
5455 if (len > (commit - read))
5456 len = (commit - read);
5457
5458 /* Always keep the time extend and data together */
5459 size = rb_event_ts_length(event);
5460
5461 if (len < size)
5462 goto out_unlock;
5463
5464 /* save the current timestamp, since the user will need it */
5465 save_timestamp = cpu_buffer->read_stamp;
5466
5467 /* Need to copy one event at a time */
5468 do {
5469 /* We need the size of one event, because
5470 * rb_advance_reader only advances by one event,
5471 * whereas rb_event_ts_length may include the size of
5472 * one or two events.
5473 * We have already ensured there's enough space if this
5474 * is a time extend. */
5475 size = rb_event_length(event);
5476 memcpy(bpage->data + pos, rpage->data + rpos, size);
5477
5478 len -= size;
5479
5480 rb_advance_reader(cpu_buffer);
5481 rpos = reader->read;
5482 pos += size;
5483
5484 if (rpos >= commit)
5485 break;
5486
5487 event = rb_reader_event(cpu_buffer);
5488 /* Always keep the time extend and data together */
5489 size = rb_event_ts_length(event);
5490 } while (len >= size);
5491
5492 /* update bpage */
5493 local_set(&bpage->commit, pos);
5494 bpage->time_stamp = save_timestamp;
5495
5496 /* we copied everything to the beginning */
5497 read = 0;
5498 } else {
5499 /* update the entry counter */
5500 cpu_buffer->read += rb_page_entries(reader);
5501 cpu_buffer->read_bytes += BUF_PAGE_SIZE;
5502
5503 /* swap the pages */
5504 rb_init_page(bpage);
5505 bpage = reader->page;
5506 reader->page = *data_page;
5507 local_set(&reader->write, 0);
5508 local_set(&reader->entries, 0);
5509 reader->read = 0;
5510 *data_page = bpage;
5511
5512 /*
5513 * Use the real_end for the data size,
5514 * This gives us a chance to store the lost events
5515 * on the page.
5516 */
5517 if (reader->real_end)
5518 local_set(&bpage->commit, reader->real_end);
5519 }
5520 ret = read;
5521
5522 cpu_buffer->lost_events = 0;
5523
5524 commit = local_read(&bpage->commit);
5525 /*
5526 * Set a flag in the commit field if we lost events
5527 */
5528 if (missed_events) {
5529 /* If there is room at the end of the page to save the
5530 * missed events, then record it there.
5531 */
5532 if (BUF_PAGE_SIZE - commit >= sizeof(missed_events)) {
5533 memcpy(&bpage->data[commit], &missed_events,
5534 sizeof(missed_events));
5535 local_add(RB_MISSED_STORED, &bpage->commit);
5536 commit += sizeof(missed_events);
5537 }
5538 local_add(RB_MISSED_EVENTS, &bpage->commit);
5539 }
5540
5541 /*
5542 * This page may be off to user land. Zero it out here.
5543 */
5544 if (commit < BUF_PAGE_SIZE)
5545 memset(&bpage->data[commit], 0, BUF_PAGE_SIZE - commit);
5546
5547 out_unlock:
5548 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
5549
5550 out:
5551 return ret;
5552 }
5553 EXPORT_SYMBOL_GPL(ring_buffer_read_page);
5554
5555 /*
5556 * We only allocate new buffers, never free them if the CPU goes down.
5557 * If we were to free the buffer, then the user would lose any trace that was in
5558 * the buffer.
5559 */
5560 int trace_rb_cpu_prepare(unsigned int cpu, struct hlist_node *node)
5561 {
5562 struct trace_buffer *buffer;
5563 long nr_pages_same;
5564 int cpu_i;
5565 unsigned long nr_pages;
5566
5567 buffer = container_of(node, struct trace_buffer, node);
5568 if (cpumask_test_cpu(cpu, buffer->cpumask))
5569 return 0;
5570
5571 nr_pages = 0;
5572 nr_pages_same = 1;
5573 /* check if all cpu sizes are same */
5574 for_each_buffer_cpu(buffer, cpu_i) {
5575 /* fill in the size from first enabled cpu */
5576 if (nr_pages == 0)
5577 nr_pages = buffer->buffers[cpu_i]->nr_pages;
5578 if (nr_pages != buffer->buffers[cpu_i]->nr_pages) {
5579 nr_pages_same = 0;
5580 break;
5581 }
5582 }
5583 /* allocate minimum pages, user can later expand it */
5584 if (!nr_pages_same)
5585 nr_pages = 2;
5586 buffer->buffers[cpu] =
5587 rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
5588 if (!buffer->buffers[cpu]) {
5589 WARN(1, "failed to allocate ring buffer on CPU %u\n",
5590 cpu);
5591 return -ENOMEM;
5592 }
5593 smp_wmb();
5594 cpumask_set_cpu(cpu, buffer->cpumask);
5595 return 0;
5596 }
5597
5598 #ifdef CONFIG_RING_BUFFER_STARTUP_TEST
5599 /*
5600 * This is a basic integrity check of the ring buffer.
5601 * Late in the boot cycle this test will run when configured in.
5602 * It will kick off a thread per CPU that will go into a loop
5603 * writing to the per cpu ring buffer various sizes of data.
5604 * Some of the data will be large items, some small.
5605 *
5606 * Another thread is created that goes into a spin, sending out
5607 * IPIs to the other CPUs to also write into the ring buffer.
5608 * this is to test the nesting ability of the buffer.
5609 *
5610 * Basic stats are recorded and reported. If something in the
5611 * ring buffer should happen that's not expected, a big warning
5612 * is displayed and all ring buffers are disabled.
5613 */
5614 static struct task_struct *rb_threads[NR_CPUS] __initdata;
5615
5616 struct rb_test_data {
5617 struct trace_buffer *buffer;
5618 unsigned long events;
5619 unsigned long bytes_written;
5620 unsigned long bytes_alloc;
5621 unsigned long bytes_dropped;
5622 unsigned long events_nested;
5623 unsigned long bytes_written_nested;
5624 unsigned long bytes_alloc_nested;
5625 unsigned long bytes_dropped_nested;
5626 int min_size_nested;
5627 int max_size_nested;
5628 int max_size;
5629 int min_size;
5630 int cpu;
5631 int cnt;
5632 };
5633
5634 static struct rb_test_data rb_data[NR_CPUS] __initdata;
5635
5636 /* 1 meg per cpu */
5637 #define RB_TEST_BUFFER_SIZE 1048576
5638
5639 static char rb_string[] __initdata =
5640 "abcdefghijklmnopqrstuvwxyz1234567890!@#$%^&*()?+\\"
5641 "?+|:';\",.<>/?abcdefghijklmnopqrstuvwxyz1234567890"
5642 "!@#$%^&*()?+\\?+|:';\",.<>/?abcdefghijklmnopqrstuv";
5643
5644 static bool rb_test_started __initdata;
5645
5646 struct rb_item {
5647 int size;
5648 char str[];
5649 };
5650
5651 static __init int rb_write_something(struct rb_test_data *data, bool nested)
5652 {
5653 struct ring_buffer_event *event;
5654 struct rb_item *item;
5655 bool started;
5656 int event_len;
5657 int size;
5658 int len;
5659 int cnt;
5660
5661 /* Have nested writes different that what is written */
5662 cnt = data->cnt + (nested ? 27 : 0);
5663
5664 /* Multiply cnt by ~e, to make some unique increment */
5665 size = (cnt * 68 / 25) % (sizeof(rb_string) - 1);
5666
5667 len = size + sizeof(struct rb_item);
5668
5669 started = rb_test_started;
5670 /* read rb_test_started before checking buffer enabled */
5671 smp_rmb();
5672
5673 event = ring_buffer_lock_reserve(data->buffer, len);
5674 if (!event) {
5675 /* Ignore dropped events before test starts. */
5676 if (started) {
5677 if (nested)
5678 data->bytes_dropped += len;
5679 else
5680 data->bytes_dropped_nested += len;
5681 }
5682 return len;
5683 }
5684
5685 event_len = ring_buffer_event_length(event);
5686
5687 if (RB_WARN_ON(data->buffer, event_len < len))
5688 goto out;
5689
5690 item = ring_buffer_event_data(event);
5691 item->size = size;
5692 memcpy(item->str, rb_string, size);
5693
5694 if (nested) {
5695 data->bytes_alloc_nested += event_len;
5696 data->bytes_written_nested += len;
5697 data->events_nested++;
5698 if (!data->min_size_nested || len < data->min_size_nested)
5699 data->min_size_nested = len;
5700 if (len > data->max_size_nested)
5701 data->max_size_nested = len;
5702 } else {
5703 data->bytes_alloc += event_len;
5704 data->bytes_written += len;
5705 data->events++;
5706 if (!data->min_size || len < data->min_size)
5707 data->max_size = len;
5708 if (len > data->max_size)
5709 data->max_size = len;
5710 }
5711
5712 out:
5713 ring_buffer_unlock_commit(data->buffer, event);
5714
5715 return 0;
5716 }
5717
5718 static __init int rb_test(void *arg)
5719 {
5720 struct rb_test_data *data = arg;
5721
5722 while (!kthread_should_stop()) {
5723 rb_write_something(data, false);
5724 data->cnt++;
5725
5726 set_current_state(TASK_INTERRUPTIBLE);
5727 /* Now sleep between a min of 100-300us and a max of 1ms */
5728 usleep_range(((data->cnt % 3) + 1) * 100, 1000);
5729 }
5730
5731 return 0;
5732 }
5733
5734 static __init void rb_ipi(void *ignore)
5735 {
5736 struct rb_test_data *data;
5737 int cpu = smp_processor_id();
5738
5739 data = &rb_data[cpu];
5740 rb_write_something(data, true);
5741 }
5742
5743 static __init int rb_hammer_test(void *arg)
5744 {
5745 while (!kthread_should_stop()) {
5746
5747 /* Send an IPI to all cpus to write data! */
5748 smp_call_function(rb_ipi, NULL, 1);
5749 /* No sleep, but for non preempt, let others run */
5750 schedule();
5751 }
5752
5753 return 0;
5754 }
5755
5756 static __init int test_ringbuffer(void)
5757 {
5758 struct task_struct *rb_hammer;
5759 struct trace_buffer *buffer;
5760 int cpu;
5761 int ret = 0;
5762
5763 if (security_locked_down(LOCKDOWN_TRACEFS)) {
5764 pr_warn("Lockdown is enabled, skipping ring buffer tests\n");
5765 return 0;
5766 }
5767
5768 pr_info("Running ring buffer tests...\n");
5769
5770 buffer = ring_buffer_alloc(RB_TEST_BUFFER_SIZE, RB_FL_OVERWRITE);
5771 if (WARN_ON(!buffer))
5772 return 0;
5773
5774 /* Disable buffer so that threads can't write to it yet */
5775 ring_buffer_record_off(buffer);
5776
5777 for_each_online_cpu(cpu) {
5778 rb_data[cpu].buffer = buffer;
5779 rb_data[cpu].cpu = cpu;
5780 rb_data[cpu].cnt = cpu;
5781 rb_threads[cpu] = kthread_create(rb_test, &rb_data[cpu],
5782 "rbtester/%d", cpu);
5783 if (WARN_ON(IS_ERR(rb_threads[cpu]))) {
5784 pr_cont("FAILED\n");
5785 ret = PTR_ERR(rb_threads[cpu]);
5786 goto out_free;
5787 }
5788
5789 kthread_bind(rb_threads[cpu], cpu);
5790 wake_up_process(rb_threads[cpu]);
5791 }
5792
5793 /* Now create the rb hammer! */
5794 rb_hammer = kthread_run(rb_hammer_test, NULL, "rbhammer");
5795 if (WARN_ON(IS_ERR(rb_hammer))) {
5796 pr_cont("FAILED\n");
5797 ret = PTR_ERR(rb_hammer);
5798 goto out_free;
5799 }
5800
5801 ring_buffer_record_on(buffer);
5802 /*
5803 * Show buffer is enabled before setting rb_test_started.
5804 * Yes there's a small race window where events could be
5805 * dropped and the thread wont catch it. But when a ring
5806 * buffer gets enabled, there will always be some kind of
5807 * delay before other CPUs see it. Thus, we don't care about
5808 * those dropped events. We care about events dropped after
5809 * the threads see that the buffer is active.
5810 */
5811 smp_wmb();
5812 rb_test_started = true;
5813
5814 set_current_state(TASK_INTERRUPTIBLE);
5815 /* Just run for 10 seconds */;
5816 schedule_timeout(10 * HZ);
5817
5818 kthread_stop(rb_hammer);
5819
5820 out_free:
5821 for_each_online_cpu(cpu) {
5822 if (!rb_threads[cpu])
5823 break;
5824 kthread_stop(rb_threads[cpu]);
5825 }
5826 if (ret) {
5827 ring_buffer_free(buffer);
5828 return ret;
5829 }
5830
5831 /* Report! */
5832 pr_info("finished\n");
5833 for_each_online_cpu(cpu) {
5834 struct ring_buffer_event *event;
5835 struct rb_test_data *data = &rb_data[cpu];
5836 struct rb_item *item;
5837 unsigned long total_events;
5838 unsigned long total_dropped;
5839 unsigned long total_written;
5840 unsigned long total_alloc;
5841 unsigned long total_read = 0;
5842 unsigned long total_size = 0;
5843 unsigned long total_len = 0;
5844 unsigned long total_lost = 0;
5845 unsigned long lost;
5846 int big_event_size;
5847 int small_event_size;
5848
5849 ret = -1;
5850
5851 total_events = data->events + data->events_nested;
5852 total_written = data->bytes_written + data->bytes_written_nested;
5853 total_alloc = data->bytes_alloc + data->bytes_alloc_nested;
5854 total_dropped = data->bytes_dropped + data->bytes_dropped_nested;
5855
5856 big_event_size = data->max_size + data->max_size_nested;
5857 small_event_size = data->min_size + data->min_size_nested;
5858
5859 pr_info("CPU %d:\n", cpu);
5860 pr_info(" events: %ld\n", total_events);
5861 pr_info(" dropped bytes: %ld\n", total_dropped);
5862 pr_info(" alloced bytes: %ld\n", total_alloc);
5863 pr_info(" written bytes: %ld\n", total_written);
5864 pr_info(" biggest event: %d\n", big_event_size);
5865 pr_info(" smallest event: %d\n", small_event_size);
5866
5867 if (RB_WARN_ON(buffer, total_dropped))
5868 break;
5869
5870 ret = 0;
5871
5872 while ((event = ring_buffer_consume(buffer, cpu, NULL, &lost))) {
5873 total_lost += lost;
5874 item = ring_buffer_event_data(event);
5875 total_len += ring_buffer_event_length(event);
5876 total_size += item->size + sizeof(struct rb_item);
5877 if (memcmp(&item->str[0], rb_string, item->size) != 0) {
5878 pr_info("FAILED!\n");
5879 pr_info("buffer had: %.*s\n", item->size, item->str);
5880 pr_info("expected: %.*s\n", item->size, rb_string);
5881 RB_WARN_ON(buffer, 1);
5882 ret = -1;
5883 break;
5884 }
5885 total_read++;
5886 }
5887 if (ret)
5888 break;
5889
5890 ret = -1;
5891
5892 pr_info(" read events: %ld\n", total_read);
5893 pr_info(" lost events: %ld\n", total_lost);
5894 pr_info(" total events: %ld\n", total_lost + total_read);
5895 pr_info(" recorded len bytes: %ld\n", total_len);
5896 pr_info(" recorded size bytes: %ld\n", total_size);
5897 if (total_lost)
5898 pr_info(" With dropped events, record len and size may not match\n"
5899 " alloced and written from above\n");
5900 if (!total_lost) {
5901 if (RB_WARN_ON(buffer, total_len != total_alloc ||
5902 total_size != total_written))
5903 break;
5904 }
5905 if (RB_WARN_ON(buffer, total_lost + total_read != total_events))
5906 break;
5907
5908 ret = 0;
5909 }
5910 if (!ret)
5911 pr_info("Ring buffer PASSED!\n");
5912
5913 ring_buffer_free(buffer);
5914 return 0;
5915 }
5916
5917 late_initcall(test_ringbuffer);
5918 #endif /* CONFIG_RING_BUFFER_STARTUP_TEST */