]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - kernel/trace/ring_buffer.c
Merge tag 'perf-urgent-2020-06-28' of git://git.kernel.org/pub/scm/linux/kernel/git...
[mirror_ubuntu-hirsute-kernel.git] / kernel / trace / ring_buffer.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Generic ring buffer
4 *
5 * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
6 */
7 #include <linux/trace_events.h>
8 #include <linux/ring_buffer.h>
9 #include <linux/trace_clock.h>
10 #include <linux/sched/clock.h>
11 #include <linux/trace_seq.h>
12 #include <linux/spinlock.h>
13 #include <linux/irq_work.h>
14 #include <linux/security.h>
15 #include <linux/uaccess.h>
16 #include <linux/hardirq.h>
17 #include <linux/kthread.h> /* for self test */
18 #include <linux/module.h>
19 #include <linux/percpu.h>
20 #include <linux/mutex.h>
21 #include <linux/delay.h>
22 #include <linux/slab.h>
23 #include <linux/init.h>
24 #include <linux/hash.h>
25 #include <linux/list.h>
26 #include <linux/cpu.h>
27 #include <linux/oom.h>
28
29 #include <asm/local.h>
30
31 static void update_pages_handler(struct work_struct *work);
32
33 /*
34 * The ring buffer header is special. We must manually up keep it.
35 */
36 int ring_buffer_print_entry_header(struct trace_seq *s)
37 {
38 trace_seq_puts(s, "# compressed entry header\n");
39 trace_seq_puts(s, "\ttype_len : 5 bits\n");
40 trace_seq_puts(s, "\ttime_delta : 27 bits\n");
41 trace_seq_puts(s, "\tarray : 32 bits\n");
42 trace_seq_putc(s, '\n');
43 trace_seq_printf(s, "\tpadding : type == %d\n",
44 RINGBUF_TYPE_PADDING);
45 trace_seq_printf(s, "\ttime_extend : type == %d\n",
46 RINGBUF_TYPE_TIME_EXTEND);
47 trace_seq_printf(s, "\ttime_stamp : type == %d\n",
48 RINGBUF_TYPE_TIME_STAMP);
49 trace_seq_printf(s, "\tdata max type_len == %d\n",
50 RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
51
52 return !trace_seq_has_overflowed(s);
53 }
54
55 /*
56 * The ring buffer is made up of a list of pages. A separate list of pages is
57 * allocated for each CPU. A writer may only write to a buffer that is
58 * associated with the CPU it is currently executing on. A reader may read
59 * from any per cpu buffer.
60 *
61 * The reader is special. For each per cpu buffer, the reader has its own
62 * reader page. When a reader has read the entire reader page, this reader
63 * page is swapped with another page in the ring buffer.
64 *
65 * Now, as long as the writer is off the reader page, the reader can do what
66 * ever it wants with that page. The writer will never write to that page
67 * again (as long as it is out of the ring buffer).
68 *
69 * Here's some silly ASCII art.
70 *
71 * +------+
72 * |reader| RING BUFFER
73 * |page |
74 * +------+ +---+ +---+ +---+
75 * | |-->| |-->| |
76 * +---+ +---+ +---+
77 * ^ |
78 * | |
79 * +---------------+
80 *
81 *
82 * +------+
83 * |reader| RING BUFFER
84 * |page |------------------v
85 * +------+ +---+ +---+ +---+
86 * | |-->| |-->| |
87 * +---+ +---+ +---+
88 * ^ |
89 * | |
90 * +---------------+
91 *
92 *
93 * +------+
94 * |reader| RING BUFFER
95 * |page |------------------v
96 * +------+ +---+ +---+ +---+
97 * ^ | |-->| |-->| |
98 * | +---+ +---+ +---+
99 * | |
100 * | |
101 * +------------------------------+
102 *
103 *
104 * +------+
105 * |buffer| RING BUFFER
106 * |page |------------------v
107 * +------+ +---+ +---+ +---+
108 * ^ | | | |-->| |
109 * | New +---+ +---+ +---+
110 * | Reader------^ |
111 * | page |
112 * +------------------------------+
113 *
114 *
115 * After we make this swap, the reader can hand this page off to the splice
116 * code and be done with it. It can even allocate a new page if it needs to
117 * and swap that into the ring buffer.
118 *
119 * We will be using cmpxchg soon to make all this lockless.
120 *
121 */
122
123 /* Used for individual buffers (after the counter) */
124 #define RB_BUFFER_OFF (1 << 20)
125
126 #define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
127
128 #define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
129 #define RB_ALIGNMENT 4U
130 #define RB_MAX_SMALL_DATA (RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
131 #define RB_EVNT_MIN_SIZE 8U /* two 32bit words */
132 #define RB_ALIGN_DATA __aligned(RB_ALIGNMENT)
133
134 /* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */
135 #define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX
136
137 enum {
138 RB_LEN_TIME_EXTEND = 8,
139 RB_LEN_TIME_STAMP = 8,
140 };
141
142 #define skip_time_extend(event) \
143 ((struct ring_buffer_event *)((char *)event + RB_LEN_TIME_EXTEND))
144
145 #define extended_time(event) \
146 (event->type_len >= RINGBUF_TYPE_TIME_EXTEND)
147
148 static inline int rb_null_event(struct ring_buffer_event *event)
149 {
150 return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta;
151 }
152
153 static void rb_event_set_padding(struct ring_buffer_event *event)
154 {
155 /* padding has a NULL time_delta */
156 event->type_len = RINGBUF_TYPE_PADDING;
157 event->time_delta = 0;
158 }
159
160 static unsigned
161 rb_event_data_length(struct ring_buffer_event *event)
162 {
163 unsigned length;
164
165 if (event->type_len)
166 length = event->type_len * RB_ALIGNMENT;
167 else
168 length = event->array[0];
169 return length + RB_EVNT_HDR_SIZE;
170 }
171
172 /*
173 * Return the length of the given event. Will return
174 * the length of the time extend if the event is a
175 * time extend.
176 */
177 static inline unsigned
178 rb_event_length(struct ring_buffer_event *event)
179 {
180 switch (event->type_len) {
181 case RINGBUF_TYPE_PADDING:
182 if (rb_null_event(event))
183 /* undefined */
184 return -1;
185 return event->array[0] + RB_EVNT_HDR_SIZE;
186
187 case RINGBUF_TYPE_TIME_EXTEND:
188 return RB_LEN_TIME_EXTEND;
189
190 case RINGBUF_TYPE_TIME_STAMP:
191 return RB_LEN_TIME_STAMP;
192
193 case RINGBUF_TYPE_DATA:
194 return rb_event_data_length(event);
195 default:
196 WARN_ON_ONCE(1);
197 }
198 /* not hit */
199 return 0;
200 }
201
202 /*
203 * Return total length of time extend and data,
204 * or just the event length for all other events.
205 */
206 static inline unsigned
207 rb_event_ts_length(struct ring_buffer_event *event)
208 {
209 unsigned len = 0;
210
211 if (extended_time(event)) {
212 /* time extends include the data event after it */
213 len = RB_LEN_TIME_EXTEND;
214 event = skip_time_extend(event);
215 }
216 return len + rb_event_length(event);
217 }
218
219 /**
220 * ring_buffer_event_length - return the length of the event
221 * @event: the event to get the length of
222 *
223 * Returns the size of the data load of a data event.
224 * If the event is something other than a data event, it
225 * returns the size of the event itself. With the exception
226 * of a TIME EXTEND, where it still returns the size of the
227 * data load of the data event after it.
228 */
229 unsigned ring_buffer_event_length(struct ring_buffer_event *event)
230 {
231 unsigned length;
232
233 if (extended_time(event))
234 event = skip_time_extend(event);
235
236 length = rb_event_length(event);
237 if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
238 return length;
239 length -= RB_EVNT_HDR_SIZE;
240 if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0]))
241 length -= sizeof(event->array[0]);
242 return length;
243 }
244 EXPORT_SYMBOL_GPL(ring_buffer_event_length);
245
246 /* inline for ring buffer fast paths */
247 static __always_inline void *
248 rb_event_data(struct ring_buffer_event *event)
249 {
250 if (extended_time(event))
251 event = skip_time_extend(event);
252 WARN_ON_ONCE(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
253 /* If length is in len field, then array[0] has the data */
254 if (event->type_len)
255 return (void *)&event->array[0];
256 /* Otherwise length is in array[0] and array[1] has the data */
257 return (void *)&event->array[1];
258 }
259
260 /**
261 * ring_buffer_event_data - return the data of the event
262 * @event: the event to get the data from
263 */
264 void *ring_buffer_event_data(struct ring_buffer_event *event)
265 {
266 return rb_event_data(event);
267 }
268 EXPORT_SYMBOL_GPL(ring_buffer_event_data);
269
270 #define for_each_buffer_cpu(buffer, cpu) \
271 for_each_cpu(cpu, buffer->cpumask)
272
273 #define TS_SHIFT 27
274 #define TS_MASK ((1ULL << TS_SHIFT) - 1)
275 #define TS_DELTA_TEST (~TS_MASK)
276
277 /**
278 * ring_buffer_event_time_stamp - return the event's extended timestamp
279 * @event: the event to get the timestamp of
280 *
281 * Returns the extended timestamp associated with a data event.
282 * An extended time_stamp is a 64-bit timestamp represented
283 * internally in a special way that makes the best use of space
284 * contained within a ring buffer event. This function decodes
285 * it and maps it to a straight u64 value.
286 */
287 u64 ring_buffer_event_time_stamp(struct ring_buffer_event *event)
288 {
289 u64 ts;
290
291 ts = event->array[0];
292 ts <<= TS_SHIFT;
293 ts += event->time_delta;
294
295 return ts;
296 }
297
298 /* Flag when events were overwritten */
299 #define RB_MISSED_EVENTS (1 << 31)
300 /* Missed count stored at end */
301 #define RB_MISSED_STORED (1 << 30)
302
303 struct buffer_data_page {
304 u64 time_stamp; /* page time stamp */
305 local_t commit; /* write committed index */
306 unsigned char data[] RB_ALIGN_DATA; /* data of buffer page */
307 };
308
309 /*
310 * Note, the buffer_page list must be first. The buffer pages
311 * are allocated in cache lines, which means that each buffer
312 * page will be at the beginning of a cache line, and thus
313 * the least significant bits will be zero. We use this to
314 * add flags in the list struct pointers, to make the ring buffer
315 * lockless.
316 */
317 struct buffer_page {
318 struct list_head list; /* list of buffer pages */
319 local_t write; /* index for next write */
320 unsigned read; /* index for next read */
321 local_t entries; /* entries on this page */
322 unsigned long real_end; /* real end of data */
323 struct buffer_data_page *page; /* Actual data page */
324 };
325
326 /*
327 * The buffer page counters, write and entries, must be reset
328 * atomically when crossing page boundaries. To synchronize this
329 * update, two counters are inserted into the number. One is
330 * the actual counter for the write position or count on the page.
331 *
332 * The other is a counter of updaters. Before an update happens
333 * the update partition of the counter is incremented. This will
334 * allow the updater to update the counter atomically.
335 *
336 * The counter is 20 bits, and the state data is 12.
337 */
338 #define RB_WRITE_MASK 0xfffff
339 #define RB_WRITE_INTCNT (1 << 20)
340
341 static void rb_init_page(struct buffer_data_page *bpage)
342 {
343 local_set(&bpage->commit, 0);
344 }
345
346 /*
347 * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing
348 * this issue out.
349 */
350 static void free_buffer_page(struct buffer_page *bpage)
351 {
352 free_page((unsigned long)bpage->page);
353 kfree(bpage);
354 }
355
356 /*
357 * We need to fit the time_stamp delta into 27 bits.
358 */
359 static inline int test_time_stamp(u64 delta)
360 {
361 if (delta & TS_DELTA_TEST)
362 return 1;
363 return 0;
364 }
365
366 #define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE)
367
368 /* Max payload is BUF_PAGE_SIZE - header (8bytes) */
369 #define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2))
370
371 int ring_buffer_print_page_header(struct trace_seq *s)
372 {
373 struct buffer_data_page field;
374
375 trace_seq_printf(s, "\tfield: u64 timestamp;\t"
376 "offset:0;\tsize:%u;\tsigned:%u;\n",
377 (unsigned int)sizeof(field.time_stamp),
378 (unsigned int)is_signed_type(u64));
379
380 trace_seq_printf(s, "\tfield: local_t commit;\t"
381 "offset:%u;\tsize:%u;\tsigned:%u;\n",
382 (unsigned int)offsetof(typeof(field), commit),
383 (unsigned int)sizeof(field.commit),
384 (unsigned int)is_signed_type(long));
385
386 trace_seq_printf(s, "\tfield: int overwrite;\t"
387 "offset:%u;\tsize:%u;\tsigned:%u;\n",
388 (unsigned int)offsetof(typeof(field), commit),
389 1,
390 (unsigned int)is_signed_type(long));
391
392 trace_seq_printf(s, "\tfield: char data;\t"
393 "offset:%u;\tsize:%u;\tsigned:%u;\n",
394 (unsigned int)offsetof(typeof(field), data),
395 (unsigned int)BUF_PAGE_SIZE,
396 (unsigned int)is_signed_type(char));
397
398 return !trace_seq_has_overflowed(s);
399 }
400
401 struct rb_irq_work {
402 struct irq_work work;
403 wait_queue_head_t waiters;
404 wait_queue_head_t full_waiters;
405 bool waiters_pending;
406 bool full_waiters_pending;
407 bool wakeup_full;
408 };
409
410 /*
411 * Structure to hold event state and handle nested events.
412 */
413 struct rb_event_info {
414 u64 ts;
415 u64 delta;
416 unsigned long length;
417 struct buffer_page *tail_page;
418 int add_timestamp;
419 };
420
421 /*
422 * Used for which event context the event is in.
423 * NMI = 0
424 * IRQ = 1
425 * SOFTIRQ = 2
426 * NORMAL = 3
427 *
428 * See trace_recursive_lock() comment below for more details.
429 */
430 enum {
431 RB_CTX_NMI,
432 RB_CTX_IRQ,
433 RB_CTX_SOFTIRQ,
434 RB_CTX_NORMAL,
435 RB_CTX_MAX
436 };
437
438 /*
439 * head_page == tail_page && head == tail then buffer is empty.
440 */
441 struct ring_buffer_per_cpu {
442 int cpu;
443 atomic_t record_disabled;
444 atomic_t resize_disabled;
445 struct trace_buffer *buffer;
446 raw_spinlock_t reader_lock; /* serialize readers */
447 arch_spinlock_t lock;
448 struct lock_class_key lock_key;
449 struct buffer_data_page *free_page;
450 unsigned long nr_pages;
451 unsigned int current_context;
452 struct list_head *pages;
453 struct buffer_page *head_page; /* read from head */
454 struct buffer_page *tail_page; /* write to tail */
455 struct buffer_page *commit_page; /* committed pages */
456 struct buffer_page *reader_page;
457 unsigned long lost_events;
458 unsigned long last_overrun;
459 unsigned long nest;
460 local_t entries_bytes;
461 local_t entries;
462 local_t overrun;
463 local_t commit_overrun;
464 local_t dropped_events;
465 local_t committing;
466 local_t commits;
467 local_t pages_touched;
468 local_t pages_read;
469 long last_pages_touch;
470 size_t shortest_full;
471 unsigned long read;
472 unsigned long read_bytes;
473 u64 write_stamp;
474 u64 read_stamp;
475 /* ring buffer pages to update, > 0 to add, < 0 to remove */
476 long nr_pages_to_update;
477 struct list_head new_pages; /* new pages to add */
478 struct work_struct update_pages_work;
479 struct completion update_done;
480
481 struct rb_irq_work irq_work;
482 };
483
484 struct trace_buffer {
485 unsigned flags;
486 int cpus;
487 atomic_t record_disabled;
488 cpumask_var_t cpumask;
489
490 struct lock_class_key *reader_lock_key;
491
492 struct mutex mutex;
493
494 struct ring_buffer_per_cpu **buffers;
495
496 struct hlist_node node;
497 u64 (*clock)(void);
498
499 struct rb_irq_work irq_work;
500 bool time_stamp_abs;
501 };
502
503 struct ring_buffer_iter {
504 struct ring_buffer_per_cpu *cpu_buffer;
505 unsigned long head;
506 unsigned long next_event;
507 struct buffer_page *head_page;
508 struct buffer_page *cache_reader_page;
509 unsigned long cache_read;
510 u64 read_stamp;
511 u64 page_stamp;
512 struct ring_buffer_event *event;
513 int missed_events;
514 };
515
516 /**
517 * ring_buffer_nr_pages - get the number of buffer pages in the ring buffer
518 * @buffer: The ring_buffer to get the number of pages from
519 * @cpu: The cpu of the ring_buffer to get the number of pages from
520 *
521 * Returns the number of pages used by a per_cpu buffer of the ring buffer.
522 */
523 size_t ring_buffer_nr_pages(struct trace_buffer *buffer, int cpu)
524 {
525 return buffer->buffers[cpu]->nr_pages;
526 }
527
528 /**
529 * ring_buffer_nr_pages_dirty - get the number of used pages in the ring buffer
530 * @buffer: The ring_buffer to get the number of pages from
531 * @cpu: The cpu of the ring_buffer to get the number of pages from
532 *
533 * Returns the number of pages that have content in the ring buffer.
534 */
535 size_t ring_buffer_nr_dirty_pages(struct trace_buffer *buffer, int cpu)
536 {
537 size_t read;
538 size_t cnt;
539
540 read = local_read(&buffer->buffers[cpu]->pages_read);
541 cnt = local_read(&buffer->buffers[cpu]->pages_touched);
542 /* The reader can read an empty page, but not more than that */
543 if (cnt < read) {
544 WARN_ON_ONCE(read > cnt + 1);
545 return 0;
546 }
547
548 return cnt - read;
549 }
550
551 /*
552 * rb_wake_up_waiters - wake up tasks waiting for ring buffer input
553 *
554 * Schedules a delayed work to wake up any task that is blocked on the
555 * ring buffer waiters queue.
556 */
557 static void rb_wake_up_waiters(struct irq_work *work)
558 {
559 struct rb_irq_work *rbwork = container_of(work, struct rb_irq_work, work);
560
561 wake_up_all(&rbwork->waiters);
562 if (rbwork->wakeup_full) {
563 rbwork->wakeup_full = false;
564 wake_up_all(&rbwork->full_waiters);
565 }
566 }
567
568 /**
569 * ring_buffer_wait - wait for input to the ring buffer
570 * @buffer: buffer to wait on
571 * @cpu: the cpu buffer to wait on
572 * @full: wait until a full page is available, if @cpu != RING_BUFFER_ALL_CPUS
573 *
574 * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
575 * as data is added to any of the @buffer's cpu buffers. Otherwise
576 * it will wait for data to be added to a specific cpu buffer.
577 */
578 int ring_buffer_wait(struct trace_buffer *buffer, int cpu, int full)
579 {
580 struct ring_buffer_per_cpu *uninitialized_var(cpu_buffer);
581 DEFINE_WAIT(wait);
582 struct rb_irq_work *work;
583 int ret = 0;
584
585 /*
586 * Depending on what the caller is waiting for, either any
587 * data in any cpu buffer, or a specific buffer, put the
588 * caller on the appropriate wait queue.
589 */
590 if (cpu == RING_BUFFER_ALL_CPUS) {
591 work = &buffer->irq_work;
592 /* Full only makes sense on per cpu reads */
593 full = 0;
594 } else {
595 if (!cpumask_test_cpu(cpu, buffer->cpumask))
596 return -ENODEV;
597 cpu_buffer = buffer->buffers[cpu];
598 work = &cpu_buffer->irq_work;
599 }
600
601
602 while (true) {
603 if (full)
604 prepare_to_wait(&work->full_waiters, &wait, TASK_INTERRUPTIBLE);
605 else
606 prepare_to_wait(&work->waiters, &wait, TASK_INTERRUPTIBLE);
607
608 /*
609 * The events can happen in critical sections where
610 * checking a work queue can cause deadlocks.
611 * After adding a task to the queue, this flag is set
612 * only to notify events to try to wake up the queue
613 * using irq_work.
614 *
615 * We don't clear it even if the buffer is no longer
616 * empty. The flag only causes the next event to run
617 * irq_work to do the work queue wake up. The worse
618 * that can happen if we race with !trace_empty() is that
619 * an event will cause an irq_work to try to wake up
620 * an empty queue.
621 *
622 * There's no reason to protect this flag either, as
623 * the work queue and irq_work logic will do the necessary
624 * synchronization for the wake ups. The only thing
625 * that is necessary is that the wake up happens after
626 * a task has been queued. It's OK for spurious wake ups.
627 */
628 if (full)
629 work->full_waiters_pending = true;
630 else
631 work->waiters_pending = true;
632
633 if (signal_pending(current)) {
634 ret = -EINTR;
635 break;
636 }
637
638 if (cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer))
639 break;
640
641 if (cpu != RING_BUFFER_ALL_CPUS &&
642 !ring_buffer_empty_cpu(buffer, cpu)) {
643 unsigned long flags;
644 bool pagebusy;
645 size_t nr_pages;
646 size_t dirty;
647
648 if (!full)
649 break;
650
651 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
652 pagebusy = cpu_buffer->reader_page == cpu_buffer->commit_page;
653 nr_pages = cpu_buffer->nr_pages;
654 dirty = ring_buffer_nr_dirty_pages(buffer, cpu);
655 if (!cpu_buffer->shortest_full ||
656 cpu_buffer->shortest_full < full)
657 cpu_buffer->shortest_full = full;
658 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
659 if (!pagebusy &&
660 (!nr_pages || (dirty * 100) > full * nr_pages))
661 break;
662 }
663
664 schedule();
665 }
666
667 if (full)
668 finish_wait(&work->full_waiters, &wait);
669 else
670 finish_wait(&work->waiters, &wait);
671
672 return ret;
673 }
674
675 /**
676 * ring_buffer_poll_wait - poll on buffer input
677 * @buffer: buffer to wait on
678 * @cpu: the cpu buffer to wait on
679 * @filp: the file descriptor
680 * @poll_table: The poll descriptor
681 *
682 * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
683 * as data is added to any of the @buffer's cpu buffers. Otherwise
684 * it will wait for data to be added to a specific cpu buffer.
685 *
686 * Returns EPOLLIN | EPOLLRDNORM if data exists in the buffers,
687 * zero otherwise.
688 */
689 __poll_t ring_buffer_poll_wait(struct trace_buffer *buffer, int cpu,
690 struct file *filp, poll_table *poll_table)
691 {
692 struct ring_buffer_per_cpu *cpu_buffer;
693 struct rb_irq_work *work;
694
695 if (cpu == RING_BUFFER_ALL_CPUS)
696 work = &buffer->irq_work;
697 else {
698 if (!cpumask_test_cpu(cpu, buffer->cpumask))
699 return -EINVAL;
700
701 cpu_buffer = buffer->buffers[cpu];
702 work = &cpu_buffer->irq_work;
703 }
704
705 poll_wait(filp, &work->waiters, poll_table);
706 work->waiters_pending = true;
707 /*
708 * There's a tight race between setting the waiters_pending and
709 * checking if the ring buffer is empty. Once the waiters_pending bit
710 * is set, the next event will wake the task up, but we can get stuck
711 * if there's only a single event in.
712 *
713 * FIXME: Ideally, we need a memory barrier on the writer side as well,
714 * but adding a memory barrier to all events will cause too much of a
715 * performance hit in the fast path. We only need a memory barrier when
716 * the buffer goes from empty to having content. But as this race is
717 * extremely small, and it's not a problem if another event comes in, we
718 * will fix it later.
719 */
720 smp_mb();
721
722 if ((cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer)) ||
723 (cpu != RING_BUFFER_ALL_CPUS && !ring_buffer_empty_cpu(buffer, cpu)))
724 return EPOLLIN | EPOLLRDNORM;
725 return 0;
726 }
727
728 /* buffer may be either ring_buffer or ring_buffer_per_cpu */
729 #define RB_WARN_ON(b, cond) \
730 ({ \
731 int _____ret = unlikely(cond); \
732 if (_____ret) { \
733 if (__same_type(*(b), struct ring_buffer_per_cpu)) { \
734 struct ring_buffer_per_cpu *__b = \
735 (void *)b; \
736 atomic_inc(&__b->buffer->record_disabled); \
737 } else \
738 atomic_inc(&b->record_disabled); \
739 WARN_ON(1); \
740 } \
741 _____ret; \
742 })
743
744 /* Up this if you want to test the TIME_EXTENTS and normalization */
745 #define DEBUG_SHIFT 0
746
747 static inline u64 rb_time_stamp(struct trace_buffer *buffer)
748 {
749 /* shift to debug/test normalization and TIME_EXTENTS */
750 return buffer->clock() << DEBUG_SHIFT;
751 }
752
753 u64 ring_buffer_time_stamp(struct trace_buffer *buffer, int cpu)
754 {
755 u64 time;
756
757 preempt_disable_notrace();
758 time = rb_time_stamp(buffer);
759 preempt_enable_notrace();
760
761 return time;
762 }
763 EXPORT_SYMBOL_GPL(ring_buffer_time_stamp);
764
765 void ring_buffer_normalize_time_stamp(struct trace_buffer *buffer,
766 int cpu, u64 *ts)
767 {
768 /* Just stupid testing the normalize function and deltas */
769 *ts >>= DEBUG_SHIFT;
770 }
771 EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp);
772
773 /*
774 * Making the ring buffer lockless makes things tricky.
775 * Although writes only happen on the CPU that they are on,
776 * and they only need to worry about interrupts. Reads can
777 * happen on any CPU.
778 *
779 * The reader page is always off the ring buffer, but when the
780 * reader finishes with a page, it needs to swap its page with
781 * a new one from the buffer. The reader needs to take from
782 * the head (writes go to the tail). But if a writer is in overwrite
783 * mode and wraps, it must push the head page forward.
784 *
785 * Here lies the problem.
786 *
787 * The reader must be careful to replace only the head page, and
788 * not another one. As described at the top of the file in the
789 * ASCII art, the reader sets its old page to point to the next
790 * page after head. It then sets the page after head to point to
791 * the old reader page. But if the writer moves the head page
792 * during this operation, the reader could end up with the tail.
793 *
794 * We use cmpxchg to help prevent this race. We also do something
795 * special with the page before head. We set the LSB to 1.
796 *
797 * When the writer must push the page forward, it will clear the
798 * bit that points to the head page, move the head, and then set
799 * the bit that points to the new head page.
800 *
801 * We also don't want an interrupt coming in and moving the head
802 * page on another writer. Thus we use the second LSB to catch
803 * that too. Thus:
804 *
805 * head->list->prev->next bit 1 bit 0
806 * ------- -------
807 * Normal page 0 0
808 * Points to head page 0 1
809 * New head page 1 0
810 *
811 * Note we can not trust the prev pointer of the head page, because:
812 *
813 * +----+ +-----+ +-----+
814 * | |------>| T |---X--->| N |
815 * | |<------| | | |
816 * +----+ +-----+ +-----+
817 * ^ ^ |
818 * | +-----+ | |
819 * +----------| R |----------+ |
820 * | |<-----------+
821 * +-----+
822 *
823 * Key: ---X--> HEAD flag set in pointer
824 * T Tail page
825 * R Reader page
826 * N Next page
827 *
828 * (see __rb_reserve_next() to see where this happens)
829 *
830 * What the above shows is that the reader just swapped out
831 * the reader page with a page in the buffer, but before it
832 * could make the new header point back to the new page added
833 * it was preempted by a writer. The writer moved forward onto
834 * the new page added by the reader and is about to move forward
835 * again.
836 *
837 * You can see, it is legitimate for the previous pointer of
838 * the head (or any page) not to point back to itself. But only
839 * temporarily.
840 */
841
842 #define RB_PAGE_NORMAL 0UL
843 #define RB_PAGE_HEAD 1UL
844 #define RB_PAGE_UPDATE 2UL
845
846
847 #define RB_FLAG_MASK 3UL
848
849 /* PAGE_MOVED is not part of the mask */
850 #define RB_PAGE_MOVED 4UL
851
852 /*
853 * rb_list_head - remove any bit
854 */
855 static struct list_head *rb_list_head(struct list_head *list)
856 {
857 unsigned long val = (unsigned long)list;
858
859 return (struct list_head *)(val & ~RB_FLAG_MASK);
860 }
861
862 /*
863 * rb_is_head_page - test if the given page is the head page
864 *
865 * Because the reader may move the head_page pointer, we can
866 * not trust what the head page is (it may be pointing to
867 * the reader page). But if the next page is a header page,
868 * its flags will be non zero.
869 */
870 static inline int
871 rb_is_head_page(struct ring_buffer_per_cpu *cpu_buffer,
872 struct buffer_page *page, struct list_head *list)
873 {
874 unsigned long val;
875
876 val = (unsigned long)list->next;
877
878 if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list)
879 return RB_PAGE_MOVED;
880
881 return val & RB_FLAG_MASK;
882 }
883
884 /*
885 * rb_is_reader_page
886 *
887 * The unique thing about the reader page, is that, if the
888 * writer is ever on it, the previous pointer never points
889 * back to the reader page.
890 */
891 static bool rb_is_reader_page(struct buffer_page *page)
892 {
893 struct list_head *list = page->list.prev;
894
895 return rb_list_head(list->next) != &page->list;
896 }
897
898 /*
899 * rb_set_list_to_head - set a list_head to be pointing to head.
900 */
901 static void rb_set_list_to_head(struct ring_buffer_per_cpu *cpu_buffer,
902 struct list_head *list)
903 {
904 unsigned long *ptr;
905
906 ptr = (unsigned long *)&list->next;
907 *ptr |= RB_PAGE_HEAD;
908 *ptr &= ~RB_PAGE_UPDATE;
909 }
910
911 /*
912 * rb_head_page_activate - sets up head page
913 */
914 static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer)
915 {
916 struct buffer_page *head;
917
918 head = cpu_buffer->head_page;
919 if (!head)
920 return;
921
922 /*
923 * Set the previous list pointer to have the HEAD flag.
924 */
925 rb_set_list_to_head(cpu_buffer, head->list.prev);
926 }
927
928 static void rb_list_head_clear(struct list_head *list)
929 {
930 unsigned long *ptr = (unsigned long *)&list->next;
931
932 *ptr &= ~RB_FLAG_MASK;
933 }
934
935 /*
936 * rb_head_page_deactivate - clears head page ptr (for free list)
937 */
938 static void
939 rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer)
940 {
941 struct list_head *hd;
942
943 /* Go through the whole list and clear any pointers found. */
944 rb_list_head_clear(cpu_buffer->pages);
945
946 list_for_each(hd, cpu_buffer->pages)
947 rb_list_head_clear(hd);
948 }
949
950 static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer,
951 struct buffer_page *head,
952 struct buffer_page *prev,
953 int old_flag, int new_flag)
954 {
955 struct list_head *list;
956 unsigned long val = (unsigned long)&head->list;
957 unsigned long ret;
958
959 list = &prev->list;
960
961 val &= ~RB_FLAG_MASK;
962
963 ret = cmpxchg((unsigned long *)&list->next,
964 val | old_flag, val | new_flag);
965
966 /* check if the reader took the page */
967 if ((ret & ~RB_FLAG_MASK) != val)
968 return RB_PAGE_MOVED;
969
970 return ret & RB_FLAG_MASK;
971 }
972
973 static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer,
974 struct buffer_page *head,
975 struct buffer_page *prev,
976 int old_flag)
977 {
978 return rb_head_page_set(cpu_buffer, head, prev,
979 old_flag, RB_PAGE_UPDATE);
980 }
981
982 static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer,
983 struct buffer_page *head,
984 struct buffer_page *prev,
985 int old_flag)
986 {
987 return rb_head_page_set(cpu_buffer, head, prev,
988 old_flag, RB_PAGE_HEAD);
989 }
990
991 static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer,
992 struct buffer_page *head,
993 struct buffer_page *prev,
994 int old_flag)
995 {
996 return rb_head_page_set(cpu_buffer, head, prev,
997 old_flag, RB_PAGE_NORMAL);
998 }
999
1000 static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer,
1001 struct buffer_page **bpage)
1002 {
1003 struct list_head *p = rb_list_head((*bpage)->list.next);
1004
1005 *bpage = list_entry(p, struct buffer_page, list);
1006 }
1007
1008 static struct buffer_page *
1009 rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer)
1010 {
1011 struct buffer_page *head;
1012 struct buffer_page *page;
1013 struct list_head *list;
1014 int i;
1015
1016 if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page))
1017 return NULL;
1018
1019 /* sanity check */
1020 list = cpu_buffer->pages;
1021 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list))
1022 return NULL;
1023
1024 page = head = cpu_buffer->head_page;
1025 /*
1026 * It is possible that the writer moves the header behind
1027 * where we started, and we miss in one loop.
1028 * A second loop should grab the header, but we'll do
1029 * three loops just because I'm paranoid.
1030 */
1031 for (i = 0; i < 3; i++) {
1032 do {
1033 if (rb_is_head_page(cpu_buffer, page, page->list.prev)) {
1034 cpu_buffer->head_page = page;
1035 return page;
1036 }
1037 rb_inc_page(cpu_buffer, &page);
1038 } while (page != head);
1039 }
1040
1041 RB_WARN_ON(cpu_buffer, 1);
1042
1043 return NULL;
1044 }
1045
1046 static int rb_head_page_replace(struct buffer_page *old,
1047 struct buffer_page *new)
1048 {
1049 unsigned long *ptr = (unsigned long *)&old->list.prev->next;
1050 unsigned long val;
1051 unsigned long ret;
1052
1053 val = *ptr & ~RB_FLAG_MASK;
1054 val |= RB_PAGE_HEAD;
1055
1056 ret = cmpxchg(ptr, val, (unsigned long)&new->list);
1057
1058 return ret == val;
1059 }
1060
1061 /*
1062 * rb_tail_page_update - move the tail page forward
1063 */
1064 static void rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer,
1065 struct buffer_page *tail_page,
1066 struct buffer_page *next_page)
1067 {
1068 unsigned long old_entries;
1069 unsigned long old_write;
1070
1071 /*
1072 * The tail page now needs to be moved forward.
1073 *
1074 * We need to reset the tail page, but without messing
1075 * with possible erasing of data brought in by interrupts
1076 * that have moved the tail page and are currently on it.
1077 *
1078 * We add a counter to the write field to denote this.
1079 */
1080 old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write);
1081 old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries);
1082
1083 local_inc(&cpu_buffer->pages_touched);
1084 /*
1085 * Just make sure we have seen our old_write and synchronize
1086 * with any interrupts that come in.
1087 */
1088 barrier();
1089
1090 /*
1091 * If the tail page is still the same as what we think
1092 * it is, then it is up to us to update the tail
1093 * pointer.
1094 */
1095 if (tail_page == READ_ONCE(cpu_buffer->tail_page)) {
1096 /* Zero the write counter */
1097 unsigned long val = old_write & ~RB_WRITE_MASK;
1098 unsigned long eval = old_entries & ~RB_WRITE_MASK;
1099
1100 /*
1101 * This will only succeed if an interrupt did
1102 * not come in and change it. In which case, we
1103 * do not want to modify it.
1104 *
1105 * We add (void) to let the compiler know that we do not care
1106 * about the return value of these functions. We use the
1107 * cmpxchg to only update if an interrupt did not already
1108 * do it for us. If the cmpxchg fails, we don't care.
1109 */
1110 (void)local_cmpxchg(&next_page->write, old_write, val);
1111 (void)local_cmpxchg(&next_page->entries, old_entries, eval);
1112
1113 /*
1114 * No need to worry about races with clearing out the commit.
1115 * it only can increment when a commit takes place. But that
1116 * only happens in the outer most nested commit.
1117 */
1118 local_set(&next_page->page->commit, 0);
1119
1120 /* Again, either we update tail_page or an interrupt does */
1121 (void)cmpxchg(&cpu_buffer->tail_page, tail_page, next_page);
1122 }
1123 }
1124
1125 static int rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer,
1126 struct buffer_page *bpage)
1127 {
1128 unsigned long val = (unsigned long)bpage;
1129
1130 if (RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK))
1131 return 1;
1132
1133 return 0;
1134 }
1135
1136 /**
1137 * rb_check_list - make sure a pointer to a list has the last bits zero
1138 */
1139 static int rb_check_list(struct ring_buffer_per_cpu *cpu_buffer,
1140 struct list_head *list)
1141 {
1142 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev) != list->prev))
1143 return 1;
1144 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->next) != list->next))
1145 return 1;
1146 return 0;
1147 }
1148
1149 /**
1150 * rb_check_pages - integrity check of buffer pages
1151 * @cpu_buffer: CPU buffer with pages to test
1152 *
1153 * As a safety measure we check to make sure the data pages have not
1154 * been corrupted.
1155 */
1156 static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
1157 {
1158 struct list_head *head = cpu_buffer->pages;
1159 struct buffer_page *bpage, *tmp;
1160
1161 /* Reset the head page if it exists */
1162 if (cpu_buffer->head_page)
1163 rb_set_head_page(cpu_buffer);
1164
1165 rb_head_page_deactivate(cpu_buffer);
1166
1167 if (RB_WARN_ON(cpu_buffer, head->next->prev != head))
1168 return -1;
1169 if (RB_WARN_ON(cpu_buffer, head->prev->next != head))
1170 return -1;
1171
1172 if (rb_check_list(cpu_buffer, head))
1173 return -1;
1174
1175 list_for_each_entry_safe(bpage, tmp, head, list) {
1176 if (RB_WARN_ON(cpu_buffer,
1177 bpage->list.next->prev != &bpage->list))
1178 return -1;
1179 if (RB_WARN_ON(cpu_buffer,
1180 bpage->list.prev->next != &bpage->list))
1181 return -1;
1182 if (rb_check_list(cpu_buffer, &bpage->list))
1183 return -1;
1184 }
1185
1186 rb_head_page_activate(cpu_buffer);
1187
1188 return 0;
1189 }
1190
1191 static int __rb_allocate_pages(long nr_pages, struct list_head *pages, int cpu)
1192 {
1193 struct buffer_page *bpage, *tmp;
1194 bool user_thread = current->mm != NULL;
1195 gfp_t mflags;
1196 long i;
1197
1198 /*
1199 * Check if the available memory is there first.
1200 * Note, si_mem_available() only gives us a rough estimate of available
1201 * memory. It may not be accurate. But we don't care, we just want
1202 * to prevent doing any allocation when it is obvious that it is
1203 * not going to succeed.
1204 */
1205 i = si_mem_available();
1206 if (i < nr_pages)
1207 return -ENOMEM;
1208
1209 /*
1210 * __GFP_RETRY_MAYFAIL flag makes sure that the allocation fails
1211 * gracefully without invoking oom-killer and the system is not
1212 * destabilized.
1213 */
1214 mflags = GFP_KERNEL | __GFP_RETRY_MAYFAIL;
1215
1216 /*
1217 * If a user thread allocates too much, and si_mem_available()
1218 * reports there's enough memory, even though there is not.
1219 * Make sure the OOM killer kills this thread. This can happen
1220 * even with RETRY_MAYFAIL because another task may be doing
1221 * an allocation after this task has taken all memory.
1222 * This is the task the OOM killer needs to take out during this
1223 * loop, even if it was triggered by an allocation somewhere else.
1224 */
1225 if (user_thread)
1226 set_current_oom_origin();
1227 for (i = 0; i < nr_pages; i++) {
1228 struct page *page;
1229
1230 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1231 mflags, cpu_to_node(cpu));
1232 if (!bpage)
1233 goto free_pages;
1234
1235 list_add(&bpage->list, pages);
1236
1237 page = alloc_pages_node(cpu_to_node(cpu), mflags, 0);
1238 if (!page)
1239 goto free_pages;
1240 bpage->page = page_address(page);
1241 rb_init_page(bpage->page);
1242
1243 if (user_thread && fatal_signal_pending(current))
1244 goto free_pages;
1245 }
1246 if (user_thread)
1247 clear_current_oom_origin();
1248
1249 return 0;
1250
1251 free_pages:
1252 list_for_each_entry_safe(bpage, tmp, pages, list) {
1253 list_del_init(&bpage->list);
1254 free_buffer_page(bpage);
1255 }
1256 if (user_thread)
1257 clear_current_oom_origin();
1258
1259 return -ENOMEM;
1260 }
1261
1262 static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
1263 unsigned long nr_pages)
1264 {
1265 LIST_HEAD(pages);
1266
1267 WARN_ON(!nr_pages);
1268
1269 if (__rb_allocate_pages(nr_pages, &pages, cpu_buffer->cpu))
1270 return -ENOMEM;
1271
1272 /*
1273 * The ring buffer page list is a circular list that does not
1274 * start and end with a list head. All page list items point to
1275 * other pages.
1276 */
1277 cpu_buffer->pages = pages.next;
1278 list_del(&pages);
1279
1280 cpu_buffer->nr_pages = nr_pages;
1281
1282 rb_check_pages(cpu_buffer);
1283
1284 return 0;
1285 }
1286
1287 static struct ring_buffer_per_cpu *
1288 rb_allocate_cpu_buffer(struct trace_buffer *buffer, long nr_pages, int cpu)
1289 {
1290 struct ring_buffer_per_cpu *cpu_buffer;
1291 struct buffer_page *bpage;
1292 struct page *page;
1293 int ret;
1294
1295 cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
1296 GFP_KERNEL, cpu_to_node(cpu));
1297 if (!cpu_buffer)
1298 return NULL;
1299
1300 cpu_buffer->cpu = cpu;
1301 cpu_buffer->buffer = buffer;
1302 raw_spin_lock_init(&cpu_buffer->reader_lock);
1303 lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key);
1304 cpu_buffer->lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
1305 INIT_WORK(&cpu_buffer->update_pages_work, update_pages_handler);
1306 init_completion(&cpu_buffer->update_done);
1307 init_irq_work(&cpu_buffer->irq_work.work, rb_wake_up_waiters);
1308 init_waitqueue_head(&cpu_buffer->irq_work.waiters);
1309 init_waitqueue_head(&cpu_buffer->irq_work.full_waiters);
1310
1311 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1312 GFP_KERNEL, cpu_to_node(cpu));
1313 if (!bpage)
1314 goto fail_free_buffer;
1315
1316 rb_check_bpage(cpu_buffer, bpage);
1317
1318 cpu_buffer->reader_page = bpage;
1319 page = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL, 0);
1320 if (!page)
1321 goto fail_free_reader;
1322 bpage->page = page_address(page);
1323 rb_init_page(bpage->page);
1324
1325 INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
1326 INIT_LIST_HEAD(&cpu_buffer->new_pages);
1327
1328 ret = rb_allocate_pages(cpu_buffer, nr_pages);
1329 if (ret < 0)
1330 goto fail_free_reader;
1331
1332 cpu_buffer->head_page
1333 = list_entry(cpu_buffer->pages, struct buffer_page, list);
1334 cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
1335
1336 rb_head_page_activate(cpu_buffer);
1337
1338 return cpu_buffer;
1339
1340 fail_free_reader:
1341 free_buffer_page(cpu_buffer->reader_page);
1342
1343 fail_free_buffer:
1344 kfree(cpu_buffer);
1345 return NULL;
1346 }
1347
1348 static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
1349 {
1350 struct list_head *head = cpu_buffer->pages;
1351 struct buffer_page *bpage, *tmp;
1352
1353 free_buffer_page(cpu_buffer->reader_page);
1354
1355 rb_head_page_deactivate(cpu_buffer);
1356
1357 if (head) {
1358 list_for_each_entry_safe(bpage, tmp, head, list) {
1359 list_del_init(&bpage->list);
1360 free_buffer_page(bpage);
1361 }
1362 bpage = list_entry(head, struct buffer_page, list);
1363 free_buffer_page(bpage);
1364 }
1365
1366 kfree(cpu_buffer);
1367 }
1368
1369 /**
1370 * __ring_buffer_alloc - allocate a new ring_buffer
1371 * @size: the size in bytes per cpu that is needed.
1372 * @flags: attributes to set for the ring buffer.
1373 * @key: ring buffer reader_lock_key.
1374 *
1375 * Currently the only flag that is available is the RB_FL_OVERWRITE
1376 * flag. This flag means that the buffer will overwrite old data
1377 * when the buffer wraps. If this flag is not set, the buffer will
1378 * drop data when the tail hits the head.
1379 */
1380 struct trace_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags,
1381 struct lock_class_key *key)
1382 {
1383 struct trace_buffer *buffer;
1384 long nr_pages;
1385 int bsize;
1386 int cpu;
1387 int ret;
1388
1389 /* keep it in its own cache line */
1390 buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
1391 GFP_KERNEL);
1392 if (!buffer)
1393 return NULL;
1394
1395 if (!zalloc_cpumask_var(&buffer->cpumask, GFP_KERNEL))
1396 goto fail_free_buffer;
1397
1398 nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1399 buffer->flags = flags;
1400 buffer->clock = trace_clock_local;
1401 buffer->reader_lock_key = key;
1402
1403 init_irq_work(&buffer->irq_work.work, rb_wake_up_waiters);
1404 init_waitqueue_head(&buffer->irq_work.waiters);
1405
1406 /* need at least two pages */
1407 if (nr_pages < 2)
1408 nr_pages = 2;
1409
1410 buffer->cpus = nr_cpu_ids;
1411
1412 bsize = sizeof(void *) * nr_cpu_ids;
1413 buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
1414 GFP_KERNEL);
1415 if (!buffer->buffers)
1416 goto fail_free_cpumask;
1417
1418 cpu = raw_smp_processor_id();
1419 cpumask_set_cpu(cpu, buffer->cpumask);
1420 buffer->buffers[cpu] = rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
1421 if (!buffer->buffers[cpu])
1422 goto fail_free_buffers;
1423
1424 ret = cpuhp_state_add_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node);
1425 if (ret < 0)
1426 goto fail_free_buffers;
1427
1428 mutex_init(&buffer->mutex);
1429
1430 return buffer;
1431
1432 fail_free_buffers:
1433 for_each_buffer_cpu(buffer, cpu) {
1434 if (buffer->buffers[cpu])
1435 rb_free_cpu_buffer(buffer->buffers[cpu]);
1436 }
1437 kfree(buffer->buffers);
1438
1439 fail_free_cpumask:
1440 free_cpumask_var(buffer->cpumask);
1441
1442 fail_free_buffer:
1443 kfree(buffer);
1444 return NULL;
1445 }
1446 EXPORT_SYMBOL_GPL(__ring_buffer_alloc);
1447
1448 /**
1449 * ring_buffer_free - free a ring buffer.
1450 * @buffer: the buffer to free.
1451 */
1452 void
1453 ring_buffer_free(struct trace_buffer *buffer)
1454 {
1455 int cpu;
1456
1457 cpuhp_state_remove_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node);
1458
1459 for_each_buffer_cpu(buffer, cpu)
1460 rb_free_cpu_buffer(buffer->buffers[cpu]);
1461
1462 kfree(buffer->buffers);
1463 free_cpumask_var(buffer->cpumask);
1464
1465 kfree(buffer);
1466 }
1467 EXPORT_SYMBOL_GPL(ring_buffer_free);
1468
1469 void ring_buffer_set_clock(struct trace_buffer *buffer,
1470 u64 (*clock)(void))
1471 {
1472 buffer->clock = clock;
1473 }
1474
1475 void ring_buffer_set_time_stamp_abs(struct trace_buffer *buffer, bool abs)
1476 {
1477 buffer->time_stamp_abs = abs;
1478 }
1479
1480 bool ring_buffer_time_stamp_abs(struct trace_buffer *buffer)
1481 {
1482 return buffer->time_stamp_abs;
1483 }
1484
1485 static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer);
1486
1487 static inline unsigned long rb_page_entries(struct buffer_page *bpage)
1488 {
1489 return local_read(&bpage->entries) & RB_WRITE_MASK;
1490 }
1491
1492 static inline unsigned long rb_page_write(struct buffer_page *bpage)
1493 {
1494 return local_read(&bpage->write) & RB_WRITE_MASK;
1495 }
1496
1497 static int
1498 rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned long nr_pages)
1499 {
1500 struct list_head *tail_page, *to_remove, *next_page;
1501 struct buffer_page *to_remove_page, *tmp_iter_page;
1502 struct buffer_page *last_page, *first_page;
1503 unsigned long nr_removed;
1504 unsigned long head_bit;
1505 int page_entries;
1506
1507 head_bit = 0;
1508
1509 raw_spin_lock_irq(&cpu_buffer->reader_lock);
1510 atomic_inc(&cpu_buffer->record_disabled);
1511 /*
1512 * We don't race with the readers since we have acquired the reader
1513 * lock. We also don't race with writers after disabling recording.
1514 * This makes it easy to figure out the first and the last page to be
1515 * removed from the list. We unlink all the pages in between including
1516 * the first and last pages. This is done in a busy loop so that we
1517 * lose the least number of traces.
1518 * The pages are freed after we restart recording and unlock readers.
1519 */
1520 tail_page = &cpu_buffer->tail_page->list;
1521
1522 /*
1523 * tail page might be on reader page, we remove the next page
1524 * from the ring buffer
1525 */
1526 if (cpu_buffer->tail_page == cpu_buffer->reader_page)
1527 tail_page = rb_list_head(tail_page->next);
1528 to_remove = tail_page;
1529
1530 /* start of pages to remove */
1531 first_page = list_entry(rb_list_head(to_remove->next),
1532 struct buffer_page, list);
1533
1534 for (nr_removed = 0; nr_removed < nr_pages; nr_removed++) {
1535 to_remove = rb_list_head(to_remove)->next;
1536 head_bit |= (unsigned long)to_remove & RB_PAGE_HEAD;
1537 }
1538
1539 next_page = rb_list_head(to_remove)->next;
1540
1541 /*
1542 * Now we remove all pages between tail_page and next_page.
1543 * Make sure that we have head_bit value preserved for the
1544 * next page
1545 */
1546 tail_page->next = (struct list_head *)((unsigned long)next_page |
1547 head_bit);
1548 next_page = rb_list_head(next_page);
1549 next_page->prev = tail_page;
1550
1551 /* make sure pages points to a valid page in the ring buffer */
1552 cpu_buffer->pages = next_page;
1553
1554 /* update head page */
1555 if (head_bit)
1556 cpu_buffer->head_page = list_entry(next_page,
1557 struct buffer_page, list);
1558
1559 /*
1560 * change read pointer to make sure any read iterators reset
1561 * themselves
1562 */
1563 cpu_buffer->read = 0;
1564
1565 /* pages are removed, resume tracing and then free the pages */
1566 atomic_dec(&cpu_buffer->record_disabled);
1567 raw_spin_unlock_irq(&cpu_buffer->reader_lock);
1568
1569 RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages));
1570
1571 /* last buffer page to remove */
1572 last_page = list_entry(rb_list_head(to_remove), struct buffer_page,
1573 list);
1574 tmp_iter_page = first_page;
1575
1576 do {
1577 cond_resched();
1578
1579 to_remove_page = tmp_iter_page;
1580 rb_inc_page(cpu_buffer, &tmp_iter_page);
1581
1582 /* update the counters */
1583 page_entries = rb_page_entries(to_remove_page);
1584 if (page_entries) {
1585 /*
1586 * If something was added to this page, it was full
1587 * since it is not the tail page. So we deduct the
1588 * bytes consumed in ring buffer from here.
1589 * Increment overrun to account for the lost events.
1590 */
1591 local_add(page_entries, &cpu_buffer->overrun);
1592 local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
1593 }
1594
1595 /*
1596 * We have already removed references to this list item, just
1597 * free up the buffer_page and its page
1598 */
1599 free_buffer_page(to_remove_page);
1600 nr_removed--;
1601
1602 } while (to_remove_page != last_page);
1603
1604 RB_WARN_ON(cpu_buffer, nr_removed);
1605
1606 return nr_removed == 0;
1607 }
1608
1609 static int
1610 rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer)
1611 {
1612 struct list_head *pages = &cpu_buffer->new_pages;
1613 int retries, success;
1614
1615 raw_spin_lock_irq(&cpu_buffer->reader_lock);
1616 /*
1617 * We are holding the reader lock, so the reader page won't be swapped
1618 * in the ring buffer. Now we are racing with the writer trying to
1619 * move head page and the tail page.
1620 * We are going to adapt the reader page update process where:
1621 * 1. We first splice the start and end of list of new pages between
1622 * the head page and its previous page.
1623 * 2. We cmpxchg the prev_page->next to point from head page to the
1624 * start of new pages list.
1625 * 3. Finally, we update the head->prev to the end of new list.
1626 *
1627 * We will try this process 10 times, to make sure that we don't keep
1628 * spinning.
1629 */
1630 retries = 10;
1631 success = 0;
1632 while (retries--) {
1633 struct list_head *head_page, *prev_page, *r;
1634 struct list_head *last_page, *first_page;
1635 struct list_head *head_page_with_bit;
1636
1637 head_page = &rb_set_head_page(cpu_buffer)->list;
1638 if (!head_page)
1639 break;
1640 prev_page = head_page->prev;
1641
1642 first_page = pages->next;
1643 last_page = pages->prev;
1644
1645 head_page_with_bit = (struct list_head *)
1646 ((unsigned long)head_page | RB_PAGE_HEAD);
1647
1648 last_page->next = head_page_with_bit;
1649 first_page->prev = prev_page;
1650
1651 r = cmpxchg(&prev_page->next, head_page_with_bit, first_page);
1652
1653 if (r == head_page_with_bit) {
1654 /*
1655 * yay, we replaced the page pointer to our new list,
1656 * now, we just have to update to head page's prev
1657 * pointer to point to end of list
1658 */
1659 head_page->prev = last_page;
1660 success = 1;
1661 break;
1662 }
1663 }
1664
1665 if (success)
1666 INIT_LIST_HEAD(pages);
1667 /*
1668 * If we weren't successful in adding in new pages, warn and stop
1669 * tracing
1670 */
1671 RB_WARN_ON(cpu_buffer, !success);
1672 raw_spin_unlock_irq(&cpu_buffer->reader_lock);
1673
1674 /* free pages if they weren't inserted */
1675 if (!success) {
1676 struct buffer_page *bpage, *tmp;
1677 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1678 list) {
1679 list_del_init(&bpage->list);
1680 free_buffer_page(bpage);
1681 }
1682 }
1683 return success;
1684 }
1685
1686 static void rb_update_pages(struct ring_buffer_per_cpu *cpu_buffer)
1687 {
1688 int success;
1689
1690 if (cpu_buffer->nr_pages_to_update > 0)
1691 success = rb_insert_pages(cpu_buffer);
1692 else
1693 success = rb_remove_pages(cpu_buffer,
1694 -cpu_buffer->nr_pages_to_update);
1695
1696 if (success)
1697 cpu_buffer->nr_pages += cpu_buffer->nr_pages_to_update;
1698 }
1699
1700 static void update_pages_handler(struct work_struct *work)
1701 {
1702 struct ring_buffer_per_cpu *cpu_buffer = container_of(work,
1703 struct ring_buffer_per_cpu, update_pages_work);
1704 rb_update_pages(cpu_buffer);
1705 complete(&cpu_buffer->update_done);
1706 }
1707
1708 /**
1709 * ring_buffer_resize - resize the ring buffer
1710 * @buffer: the buffer to resize.
1711 * @size: the new size.
1712 * @cpu_id: the cpu buffer to resize
1713 *
1714 * Minimum size is 2 * BUF_PAGE_SIZE.
1715 *
1716 * Returns 0 on success and < 0 on failure.
1717 */
1718 int ring_buffer_resize(struct trace_buffer *buffer, unsigned long size,
1719 int cpu_id)
1720 {
1721 struct ring_buffer_per_cpu *cpu_buffer;
1722 unsigned long nr_pages;
1723 int cpu, err = 0;
1724
1725 /*
1726 * Always succeed at resizing a non-existent buffer:
1727 */
1728 if (!buffer)
1729 return size;
1730
1731 /* Make sure the requested buffer exists */
1732 if (cpu_id != RING_BUFFER_ALL_CPUS &&
1733 !cpumask_test_cpu(cpu_id, buffer->cpumask))
1734 return size;
1735
1736 nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1737
1738 /* we need a minimum of two pages */
1739 if (nr_pages < 2)
1740 nr_pages = 2;
1741
1742 size = nr_pages * BUF_PAGE_SIZE;
1743
1744 /* prevent another thread from changing buffer sizes */
1745 mutex_lock(&buffer->mutex);
1746
1747
1748 if (cpu_id == RING_BUFFER_ALL_CPUS) {
1749 /*
1750 * Don't succeed if resizing is disabled, as a reader might be
1751 * manipulating the ring buffer and is expecting a sane state while
1752 * this is true.
1753 */
1754 for_each_buffer_cpu(buffer, cpu) {
1755 cpu_buffer = buffer->buffers[cpu];
1756 if (atomic_read(&cpu_buffer->resize_disabled)) {
1757 err = -EBUSY;
1758 goto out_err_unlock;
1759 }
1760 }
1761
1762 /* calculate the pages to update */
1763 for_each_buffer_cpu(buffer, cpu) {
1764 cpu_buffer = buffer->buffers[cpu];
1765
1766 cpu_buffer->nr_pages_to_update = nr_pages -
1767 cpu_buffer->nr_pages;
1768 /*
1769 * nothing more to do for removing pages or no update
1770 */
1771 if (cpu_buffer->nr_pages_to_update <= 0)
1772 continue;
1773 /*
1774 * to add pages, make sure all new pages can be
1775 * allocated without receiving ENOMEM
1776 */
1777 INIT_LIST_HEAD(&cpu_buffer->new_pages);
1778 if (__rb_allocate_pages(cpu_buffer->nr_pages_to_update,
1779 &cpu_buffer->new_pages, cpu)) {
1780 /* not enough memory for new pages */
1781 err = -ENOMEM;
1782 goto out_err;
1783 }
1784 }
1785
1786 get_online_cpus();
1787 /*
1788 * Fire off all the required work handlers
1789 * We can't schedule on offline CPUs, but it's not necessary
1790 * since we can change their buffer sizes without any race.
1791 */
1792 for_each_buffer_cpu(buffer, cpu) {
1793 cpu_buffer = buffer->buffers[cpu];
1794 if (!cpu_buffer->nr_pages_to_update)
1795 continue;
1796
1797 /* Can't run something on an offline CPU. */
1798 if (!cpu_online(cpu)) {
1799 rb_update_pages(cpu_buffer);
1800 cpu_buffer->nr_pages_to_update = 0;
1801 } else {
1802 schedule_work_on(cpu,
1803 &cpu_buffer->update_pages_work);
1804 }
1805 }
1806
1807 /* wait for all the updates to complete */
1808 for_each_buffer_cpu(buffer, cpu) {
1809 cpu_buffer = buffer->buffers[cpu];
1810 if (!cpu_buffer->nr_pages_to_update)
1811 continue;
1812
1813 if (cpu_online(cpu))
1814 wait_for_completion(&cpu_buffer->update_done);
1815 cpu_buffer->nr_pages_to_update = 0;
1816 }
1817
1818 put_online_cpus();
1819 } else {
1820 /* Make sure this CPU has been initialized */
1821 if (!cpumask_test_cpu(cpu_id, buffer->cpumask))
1822 goto out;
1823
1824 cpu_buffer = buffer->buffers[cpu_id];
1825
1826 if (nr_pages == cpu_buffer->nr_pages)
1827 goto out;
1828
1829 /*
1830 * Don't succeed if resizing is disabled, as a reader might be
1831 * manipulating the ring buffer and is expecting a sane state while
1832 * this is true.
1833 */
1834 if (atomic_read(&cpu_buffer->resize_disabled)) {
1835 err = -EBUSY;
1836 goto out_err_unlock;
1837 }
1838
1839 cpu_buffer->nr_pages_to_update = nr_pages -
1840 cpu_buffer->nr_pages;
1841
1842 INIT_LIST_HEAD(&cpu_buffer->new_pages);
1843 if (cpu_buffer->nr_pages_to_update > 0 &&
1844 __rb_allocate_pages(cpu_buffer->nr_pages_to_update,
1845 &cpu_buffer->new_pages, cpu_id)) {
1846 err = -ENOMEM;
1847 goto out_err;
1848 }
1849
1850 get_online_cpus();
1851
1852 /* Can't run something on an offline CPU. */
1853 if (!cpu_online(cpu_id))
1854 rb_update_pages(cpu_buffer);
1855 else {
1856 schedule_work_on(cpu_id,
1857 &cpu_buffer->update_pages_work);
1858 wait_for_completion(&cpu_buffer->update_done);
1859 }
1860
1861 cpu_buffer->nr_pages_to_update = 0;
1862 put_online_cpus();
1863 }
1864
1865 out:
1866 /*
1867 * The ring buffer resize can happen with the ring buffer
1868 * enabled, so that the update disturbs the tracing as little
1869 * as possible. But if the buffer is disabled, we do not need
1870 * to worry about that, and we can take the time to verify
1871 * that the buffer is not corrupt.
1872 */
1873 if (atomic_read(&buffer->record_disabled)) {
1874 atomic_inc(&buffer->record_disabled);
1875 /*
1876 * Even though the buffer was disabled, we must make sure
1877 * that it is truly disabled before calling rb_check_pages.
1878 * There could have been a race between checking
1879 * record_disable and incrementing it.
1880 */
1881 synchronize_rcu();
1882 for_each_buffer_cpu(buffer, cpu) {
1883 cpu_buffer = buffer->buffers[cpu];
1884 rb_check_pages(cpu_buffer);
1885 }
1886 atomic_dec(&buffer->record_disabled);
1887 }
1888
1889 mutex_unlock(&buffer->mutex);
1890 return size;
1891
1892 out_err:
1893 for_each_buffer_cpu(buffer, cpu) {
1894 struct buffer_page *bpage, *tmp;
1895
1896 cpu_buffer = buffer->buffers[cpu];
1897 cpu_buffer->nr_pages_to_update = 0;
1898
1899 if (list_empty(&cpu_buffer->new_pages))
1900 continue;
1901
1902 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1903 list) {
1904 list_del_init(&bpage->list);
1905 free_buffer_page(bpage);
1906 }
1907 }
1908 out_err_unlock:
1909 mutex_unlock(&buffer->mutex);
1910 return err;
1911 }
1912 EXPORT_SYMBOL_GPL(ring_buffer_resize);
1913
1914 void ring_buffer_change_overwrite(struct trace_buffer *buffer, int val)
1915 {
1916 mutex_lock(&buffer->mutex);
1917 if (val)
1918 buffer->flags |= RB_FL_OVERWRITE;
1919 else
1920 buffer->flags &= ~RB_FL_OVERWRITE;
1921 mutex_unlock(&buffer->mutex);
1922 }
1923 EXPORT_SYMBOL_GPL(ring_buffer_change_overwrite);
1924
1925 static __always_inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
1926 {
1927 return bpage->page->data + index;
1928 }
1929
1930 static __always_inline struct ring_buffer_event *
1931 rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
1932 {
1933 return __rb_page_index(cpu_buffer->reader_page,
1934 cpu_buffer->reader_page->read);
1935 }
1936
1937 static __always_inline unsigned rb_page_commit(struct buffer_page *bpage)
1938 {
1939 return local_read(&bpage->page->commit);
1940 }
1941
1942 static struct ring_buffer_event *
1943 rb_iter_head_event(struct ring_buffer_iter *iter)
1944 {
1945 struct ring_buffer_event *event;
1946 struct buffer_page *iter_head_page = iter->head_page;
1947 unsigned long commit;
1948 unsigned length;
1949
1950 if (iter->head != iter->next_event)
1951 return iter->event;
1952
1953 /*
1954 * When the writer goes across pages, it issues a cmpxchg which
1955 * is a mb(), which will synchronize with the rmb here.
1956 * (see rb_tail_page_update() and __rb_reserve_next())
1957 */
1958 commit = rb_page_commit(iter_head_page);
1959 smp_rmb();
1960 event = __rb_page_index(iter_head_page, iter->head);
1961 length = rb_event_length(event);
1962
1963 /*
1964 * READ_ONCE() doesn't work on functions and we don't want the
1965 * compiler doing any crazy optimizations with length.
1966 */
1967 barrier();
1968
1969 if ((iter->head + length) > commit || length > BUF_MAX_DATA_SIZE)
1970 /* Writer corrupted the read? */
1971 goto reset;
1972
1973 memcpy(iter->event, event, length);
1974 /*
1975 * If the page stamp is still the same after this rmb() then the
1976 * event was safely copied without the writer entering the page.
1977 */
1978 smp_rmb();
1979
1980 /* Make sure the page didn't change since we read this */
1981 if (iter->page_stamp != iter_head_page->page->time_stamp ||
1982 commit > rb_page_commit(iter_head_page))
1983 goto reset;
1984
1985 iter->next_event = iter->head + length;
1986 return iter->event;
1987 reset:
1988 /* Reset to the beginning */
1989 iter->page_stamp = iter->read_stamp = iter->head_page->page->time_stamp;
1990 iter->head = 0;
1991 iter->next_event = 0;
1992 iter->missed_events = 1;
1993 return NULL;
1994 }
1995
1996 /* Size is determined by what has been committed */
1997 static __always_inline unsigned rb_page_size(struct buffer_page *bpage)
1998 {
1999 return rb_page_commit(bpage);
2000 }
2001
2002 static __always_inline unsigned
2003 rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
2004 {
2005 return rb_page_commit(cpu_buffer->commit_page);
2006 }
2007
2008 static __always_inline unsigned
2009 rb_event_index(struct ring_buffer_event *event)
2010 {
2011 unsigned long addr = (unsigned long)event;
2012
2013 return (addr & ~PAGE_MASK) - BUF_PAGE_HDR_SIZE;
2014 }
2015
2016 static void rb_inc_iter(struct ring_buffer_iter *iter)
2017 {
2018 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
2019
2020 /*
2021 * The iterator could be on the reader page (it starts there).
2022 * But the head could have moved, since the reader was
2023 * found. Check for this case and assign the iterator
2024 * to the head page instead of next.
2025 */
2026 if (iter->head_page == cpu_buffer->reader_page)
2027 iter->head_page = rb_set_head_page(cpu_buffer);
2028 else
2029 rb_inc_page(cpu_buffer, &iter->head_page);
2030
2031 iter->page_stamp = iter->read_stamp = iter->head_page->page->time_stamp;
2032 iter->head = 0;
2033 iter->next_event = 0;
2034 }
2035
2036 /*
2037 * rb_handle_head_page - writer hit the head page
2038 *
2039 * Returns: +1 to retry page
2040 * 0 to continue
2041 * -1 on error
2042 */
2043 static int
2044 rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer,
2045 struct buffer_page *tail_page,
2046 struct buffer_page *next_page)
2047 {
2048 struct buffer_page *new_head;
2049 int entries;
2050 int type;
2051 int ret;
2052
2053 entries = rb_page_entries(next_page);
2054
2055 /*
2056 * The hard part is here. We need to move the head
2057 * forward, and protect against both readers on
2058 * other CPUs and writers coming in via interrupts.
2059 */
2060 type = rb_head_page_set_update(cpu_buffer, next_page, tail_page,
2061 RB_PAGE_HEAD);
2062
2063 /*
2064 * type can be one of four:
2065 * NORMAL - an interrupt already moved it for us
2066 * HEAD - we are the first to get here.
2067 * UPDATE - we are the interrupt interrupting
2068 * a current move.
2069 * MOVED - a reader on another CPU moved the next
2070 * pointer to its reader page. Give up
2071 * and try again.
2072 */
2073
2074 switch (type) {
2075 case RB_PAGE_HEAD:
2076 /*
2077 * We changed the head to UPDATE, thus
2078 * it is our responsibility to update
2079 * the counters.
2080 */
2081 local_add(entries, &cpu_buffer->overrun);
2082 local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
2083
2084 /*
2085 * The entries will be zeroed out when we move the
2086 * tail page.
2087 */
2088
2089 /* still more to do */
2090 break;
2091
2092 case RB_PAGE_UPDATE:
2093 /*
2094 * This is an interrupt that interrupt the
2095 * previous update. Still more to do.
2096 */
2097 break;
2098 case RB_PAGE_NORMAL:
2099 /*
2100 * An interrupt came in before the update
2101 * and processed this for us.
2102 * Nothing left to do.
2103 */
2104 return 1;
2105 case RB_PAGE_MOVED:
2106 /*
2107 * The reader is on another CPU and just did
2108 * a swap with our next_page.
2109 * Try again.
2110 */
2111 return 1;
2112 default:
2113 RB_WARN_ON(cpu_buffer, 1); /* WTF??? */
2114 return -1;
2115 }
2116
2117 /*
2118 * Now that we are here, the old head pointer is
2119 * set to UPDATE. This will keep the reader from
2120 * swapping the head page with the reader page.
2121 * The reader (on another CPU) will spin till
2122 * we are finished.
2123 *
2124 * We just need to protect against interrupts
2125 * doing the job. We will set the next pointer
2126 * to HEAD. After that, we set the old pointer
2127 * to NORMAL, but only if it was HEAD before.
2128 * otherwise we are an interrupt, and only
2129 * want the outer most commit to reset it.
2130 */
2131 new_head = next_page;
2132 rb_inc_page(cpu_buffer, &new_head);
2133
2134 ret = rb_head_page_set_head(cpu_buffer, new_head, next_page,
2135 RB_PAGE_NORMAL);
2136
2137 /*
2138 * Valid returns are:
2139 * HEAD - an interrupt came in and already set it.
2140 * NORMAL - One of two things:
2141 * 1) We really set it.
2142 * 2) A bunch of interrupts came in and moved
2143 * the page forward again.
2144 */
2145 switch (ret) {
2146 case RB_PAGE_HEAD:
2147 case RB_PAGE_NORMAL:
2148 /* OK */
2149 break;
2150 default:
2151 RB_WARN_ON(cpu_buffer, 1);
2152 return -1;
2153 }
2154
2155 /*
2156 * It is possible that an interrupt came in,
2157 * set the head up, then more interrupts came in
2158 * and moved it again. When we get back here,
2159 * the page would have been set to NORMAL but we
2160 * just set it back to HEAD.
2161 *
2162 * How do you detect this? Well, if that happened
2163 * the tail page would have moved.
2164 */
2165 if (ret == RB_PAGE_NORMAL) {
2166 struct buffer_page *buffer_tail_page;
2167
2168 buffer_tail_page = READ_ONCE(cpu_buffer->tail_page);
2169 /*
2170 * If the tail had moved passed next, then we need
2171 * to reset the pointer.
2172 */
2173 if (buffer_tail_page != tail_page &&
2174 buffer_tail_page != next_page)
2175 rb_head_page_set_normal(cpu_buffer, new_head,
2176 next_page,
2177 RB_PAGE_HEAD);
2178 }
2179
2180 /*
2181 * If this was the outer most commit (the one that
2182 * changed the original pointer from HEAD to UPDATE),
2183 * then it is up to us to reset it to NORMAL.
2184 */
2185 if (type == RB_PAGE_HEAD) {
2186 ret = rb_head_page_set_normal(cpu_buffer, next_page,
2187 tail_page,
2188 RB_PAGE_UPDATE);
2189 if (RB_WARN_ON(cpu_buffer,
2190 ret != RB_PAGE_UPDATE))
2191 return -1;
2192 }
2193
2194 return 0;
2195 }
2196
2197 static inline void
2198 rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer,
2199 unsigned long tail, struct rb_event_info *info)
2200 {
2201 struct buffer_page *tail_page = info->tail_page;
2202 struct ring_buffer_event *event;
2203 unsigned long length = info->length;
2204
2205 /*
2206 * Only the event that crossed the page boundary
2207 * must fill the old tail_page with padding.
2208 */
2209 if (tail >= BUF_PAGE_SIZE) {
2210 /*
2211 * If the page was filled, then we still need
2212 * to update the real_end. Reset it to zero
2213 * and the reader will ignore it.
2214 */
2215 if (tail == BUF_PAGE_SIZE)
2216 tail_page->real_end = 0;
2217
2218 local_sub(length, &tail_page->write);
2219 return;
2220 }
2221
2222 event = __rb_page_index(tail_page, tail);
2223
2224 /* account for padding bytes */
2225 local_add(BUF_PAGE_SIZE - tail, &cpu_buffer->entries_bytes);
2226
2227 /*
2228 * Save the original length to the meta data.
2229 * This will be used by the reader to add lost event
2230 * counter.
2231 */
2232 tail_page->real_end = tail;
2233
2234 /*
2235 * If this event is bigger than the minimum size, then
2236 * we need to be careful that we don't subtract the
2237 * write counter enough to allow another writer to slip
2238 * in on this page.
2239 * We put in a discarded commit instead, to make sure
2240 * that this space is not used again.
2241 *
2242 * If we are less than the minimum size, we don't need to
2243 * worry about it.
2244 */
2245 if (tail > (BUF_PAGE_SIZE - RB_EVNT_MIN_SIZE)) {
2246 /* No room for any events */
2247
2248 /* Mark the rest of the page with padding */
2249 rb_event_set_padding(event);
2250
2251 /* Set the write back to the previous setting */
2252 local_sub(length, &tail_page->write);
2253 return;
2254 }
2255
2256 /* Put in a discarded event */
2257 event->array[0] = (BUF_PAGE_SIZE - tail) - RB_EVNT_HDR_SIZE;
2258 event->type_len = RINGBUF_TYPE_PADDING;
2259 /* time delta must be non zero */
2260 event->time_delta = 1;
2261
2262 /* Set write to end of buffer */
2263 length = (tail + length) - BUF_PAGE_SIZE;
2264 local_sub(length, &tail_page->write);
2265 }
2266
2267 static inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer);
2268
2269 /*
2270 * This is the slow path, force gcc not to inline it.
2271 */
2272 static noinline struct ring_buffer_event *
2273 rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer,
2274 unsigned long tail, struct rb_event_info *info)
2275 {
2276 struct buffer_page *tail_page = info->tail_page;
2277 struct buffer_page *commit_page = cpu_buffer->commit_page;
2278 struct trace_buffer *buffer = cpu_buffer->buffer;
2279 struct buffer_page *next_page;
2280 int ret;
2281
2282 next_page = tail_page;
2283
2284 rb_inc_page(cpu_buffer, &next_page);
2285
2286 /*
2287 * If for some reason, we had an interrupt storm that made
2288 * it all the way around the buffer, bail, and warn
2289 * about it.
2290 */
2291 if (unlikely(next_page == commit_page)) {
2292 local_inc(&cpu_buffer->commit_overrun);
2293 goto out_reset;
2294 }
2295
2296 /*
2297 * This is where the fun begins!
2298 *
2299 * We are fighting against races between a reader that
2300 * could be on another CPU trying to swap its reader
2301 * page with the buffer head.
2302 *
2303 * We are also fighting against interrupts coming in and
2304 * moving the head or tail on us as well.
2305 *
2306 * If the next page is the head page then we have filled
2307 * the buffer, unless the commit page is still on the
2308 * reader page.
2309 */
2310 if (rb_is_head_page(cpu_buffer, next_page, &tail_page->list)) {
2311
2312 /*
2313 * If the commit is not on the reader page, then
2314 * move the header page.
2315 */
2316 if (!rb_is_reader_page(cpu_buffer->commit_page)) {
2317 /*
2318 * If we are not in overwrite mode,
2319 * this is easy, just stop here.
2320 */
2321 if (!(buffer->flags & RB_FL_OVERWRITE)) {
2322 local_inc(&cpu_buffer->dropped_events);
2323 goto out_reset;
2324 }
2325
2326 ret = rb_handle_head_page(cpu_buffer,
2327 tail_page,
2328 next_page);
2329 if (ret < 0)
2330 goto out_reset;
2331 if (ret)
2332 goto out_again;
2333 } else {
2334 /*
2335 * We need to be careful here too. The
2336 * commit page could still be on the reader
2337 * page. We could have a small buffer, and
2338 * have filled up the buffer with events
2339 * from interrupts and such, and wrapped.
2340 *
2341 * Note, if the tail page is also the on the
2342 * reader_page, we let it move out.
2343 */
2344 if (unlikely((cpu_buffer->commit_page !=
2345 cpu_buffer->tail_page) &&
2346 (cpu_buffer->commit_page ==
2347 cpu_buffer->reader_page))) {
2348 local_inc(&cpu_buffer->commit_overrun);
2349 goto out_reset;
2350 }
2351 }
2352 }
2353
2354 rb_tail_page_update(cpu_buffer, tail_page, next_page);
2355
2356 out_again:
2357
2358 rb_reset_tail(cpu_buffer, tail, info);
2359
2360 /* Commit what we have for now. */
2361 rb_end_commit(cpu_buffer);
2362 /* rb_end_commit() decs committing */
2363 local_inc(&cpu_buffer->committing);
2364
2365 /* fail and let the caller try again */
2366 return ERR_PTR(-EAGAIN);
2367
2368 out_reset:
2369 /* reset write */
2370 rb_reset_tail(cpu_buffer, tail, info);
2371
2372 return NULL;
2373 }
2374
2375 /* Slow path, do not inline */
2376 static noinline struct ring_buffer_event *
2377 rb_add_time_stamp(struct ring_buffer_event *event, u64 delta, bool abs)
2378 {
2379 if (abs)
2380 event->type_len = RINGBUF_TYPE_TIME_STAMP;
2381 else
2382 event->type_len = RINGBUF_TYPE_TIME_EXTEND;
2383
2384 /* Not the first event on the page, or not delta? */
2385 if (abs || rb_event_index(event)) {
2386 event->time_delta = delta & TS_MASK;
2387 event->array[0] = delta >> TS_SHIFT;
2388 } else {
2389 /* nope, just zero it */
2390 event->time_delta = 0;
2391 event->array[0] = 0;
2392 }
2393
2394 return skip_time_extend(event);
2395 }
2396
2397 static inline bool rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
2398 struct ring_buffer_event *event);
2399
2400 /**
2401 * rb_update_event - update event type and data
2402 * @cpu_buffer: The per cpu buffer of the @event
2403 * @event: the event to update
2404 * @info: The info to update the @event with (contains length and delta)
2405 *
2406 * Update the type and data fields of the @event. The length
2407 * is the actual size that is written to the ring buffer,
2408 * and with this, we can determine what to place into the
2409 * data field.
2410 */
2411 static void
2412 rb_update_event(struct ring_buffer_per_cpu *cpu_buffer,
2413 struct ring_buffer_event *event,
2414 struct rb_event_info *info)
2415 {
2416 unsigned length = info->length;
2417 u64 delta = info->delta;
2418
2419 /* Only a commit updates the timestamp */
2420 if (unlikely(!rb_event_is_commit(cpu_buffer, event)))
2421 delta = 0;
2422
2423 /*
2424 * If we need to add a timestamp, then we
2425 * add it to the start of the reserved space.
2426 */
2427 if (unlikely(info->add_timestamp)) {
2428 bool abs = ring_buffer_time_stamp_abs(cpu_buffer->buffer);
2429
2430 event = rb_add_time_stamp(event, abs ? info->delta : delta, abs);
2431 length -= RB_LEN_TIME_EXTEND;
2432 delta = 0;
2433 }
2434
2435 event->time_delta = delta;
2436 length -= RB_EVNT_HDR_SIZE;
2437 if (length > RB_MAX_SMALL_DATA) {
2438 event->type_len = 0;
2439 event->array[0] = length;
2440 } else
2441 event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT);
2442 }
2443
2444 static unsigned rb_calculate_event_length(unsigned length)
2445 {
2446 struct ring_buffer_event event; /* Used only for sizeof array */
2447
2448 /* zero length can cause confusions */
2449 if (!length)
2450 length++;
2451
2452 if (length > RB_MAX_SMALL_DATA)
2453 length += sizeof(event.array[0]);
2454
2455 length += RB_EVNT_HDR_SIZE;
2456 length = ALIGN(length, RB_ALIGNMENT);
2457
2458 /*
2459 * In case the time delta is larger than the 27 bits for it
2460 * in the header, we need to add a timestamp. If another
2461 * event comes in when trying to discard this one to increase
2462 * the length, then the timestamp will be added in the allocated
2463 * space of this event. If length is bigger than the size needed
2464 * for the TIME_EXTEND, then padding has to be used. The events
2465 * length must be either RB_LEN_TIME_EXTEND, or greater than or equal
2466 * to RB_LEN_TIME_EXTEND + 8, as 8 is the minimum size for padding.
2467 * As length is a multiple of 4, we only need to worry if it
2468 * is 12 (RB_LEN_TIME_EXTEND + 4).
2469 */
2470 if (length == RB_LEN_TIME_EXTEND + RB_ALIGNMENT)
2471 length += RB_ALIGNMENT;
2472
2473 return length;
2474 }
2475
2476 #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
2477 static inline bool sched_clock_stable(void)
2478 {
2479 return true;
2480 }
2481 #endif
2482
2483 static inline int
2484 rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer,
2485 struct ring_buffer_event *event)
2486 {
2487 unsigned long new_index, old_index;
2488 struct buffer_page *bpage;
2489 unsigned long index;
2490 unsigned long addr;
2491
2492 new_index = rb_event_index(event);
2493 old_index = new_index + rb_event_ts_length(event);
2494 addr = (unsigned long)event;
2495 addr &= PAGE_MASK;
2496
2497 bpage = READ_ONCE(cpu_buffer->tail_page);
2498
2499 if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) {
2500 unsigned long write_mask =
2501 local_read(&bpage->write) & ~RB_WRITE_MASK;
2502 unsigned long event_length = rb_event_length(event);
2503 /*
2504 * This is on the tail page. It is possible that
2505 * a write could come in and move the tail page
2506 * and write to the next page. That is fine
2507 * because we just shorten what is on this page.
2508 */
2509 old_index += write_mask;
2510 new_index += write_mask;
2511 index = local_cmpxchg(&bpage->write, old_index, new_index);
2512 if (index == old_index) {
2513 /* update counters */
2514 local_sub(event_length, &cpu_buffer->entries_bytes);
2515 return 1;
2516 }
2517 }
2518
2519 /* could not discard */
2520 return 0;
2521 }
2522
2523 static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer)
2524 {
2525 local_inc(&cpu_buffer->committing);
2526 local_inc(&cpu_buffer->commits);
2527 }
2528
2529 static __always_inline void
2530 rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
2531 {
2532 unsigned long max_count;
2533
2534 /*
2535 * We only race with interrupts and NMIs on this CPU.
2536 * If we own the commit event, then we can commit
2537 * all others that interrupted us, since the interruptions
2538 * are in stack format (they finish before they come
2539 * back to us). This allows us to do a simple loop to
2540 * assign the commit to the tail.
2541 */
2542 again:
2543 max_count = cpu_buffer->nr_pages * 100;
2544
2545 while (cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page)) {
2546 if (RB_WARN_ON(cpu_buffer, !(--max_count)))
2547 return;
2548 if (RB_WARN_ON(cpu_buffer,
2549 rb_is_reader_page(cpu_buffer->tail_page)))
2550 return;
2551 local_set(&cpu_buffer->commit_page->page->commit,
2552 rb_page_write(cpu_buffer->commit_page));
2553 rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
2554 /* Only update the write stamp if the page has an event */
2555 if (rb_page_write(cpu_buffer->commit_page))
2556 cpu_buffer->write_stamp =
2557 cpu_buffer->commit_page->page->time_stamp;
2558 /* add barrier to keep gcc from optimizing too much */
2559 barrier();
2560 }
2561 while (rb_commit_index(cpu_buffer) !=
2562 rb_page_write(cpu_buffer->commit_page)) {
2563
2564 local_set(&cpu_buffer->commit_page->page->commit,
2565 rb_page_write(cpu_buffer->commit_page));
2566 RB_WARN_ON(cpu_buffer,
2567 local_read(&cpu_buffer->commit_page->page->commit) &
2568 ~RB_WRITE_MASK);
2569 barrier();
2570 }
2571
2572 /* again, keep gcc from optimizing */
2573 barrier();
2574
2575 /*
2576 * If an interrupt came in just after the first while loop
2577 * and pushed the tail page forward, we will be left with
2578 * a dangling commit that will never go forward.
2579 */
2580 if (unlikely(cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page)))
2581 goto again;
2582 }
2583
2584 static __always_inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer)
2585 {
2586 unsigned long commits;
2587
2588 if (RB_WARN_ON(cpu_buffer,
2589 !local_read(&cpu_buffer->committing)))
2590 return;
2591
2592 again:
2593 commits = local_read(&cpu_buffer->commits);
2594 /* synchronize with interrupts */
2595 barrier();
2596 if (local_read(&cpu_buffer->committing) == 1)
2597 rb_set_commit_to_write(cpu_buffer);
2598
2599 local_dec(&cpu_buffer->committing);
2600
2601 /* synchronize with interrupts */
2602 barrier();
2603
2604 /*
2605 * Need to account for interrupts coming in between the
2606 * updating of the commit page and the clearing of the
2607 * committing counter.
2608 */
2609 if (unlikely(local_read(&cpu_buffer->commits) != commits) &&
2610 !local_read(&cpu_buffer->committing)) {
2611 local_inc(&cpu_buffer->committing);
2612 goto again;
2613 }
2614 }
2615
2616 static inline void rb_event_discard(struct ring_buffer_event *event)
2617 {
2618 if (extended_time(event))
2619 event = skip_time_extend(event);
2620
2621 /* array[0] holds the actual length for the discarded event */
2622 event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE;
2623 event->type_len = RINGBUF_TYPE_PADDING;
2624 /* time delta must be non zero */
2625 if (!event->time_delta)
2626 event->time_delta = 1;
2627 }
2628
2629 static __always_inline bool
2630 rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
2631 struct ring_buffer_event *event)
2632 {
2633 unsigned long addr = (unsigned long)event;
2634 unsigned long index;
2635
2636 index = rb_event_index(event);
2637 addr &= PAGE_MASK;
2638
2639 return cpu_buffer->commit_page->page == (void *)addr &&
2640 rb_commit_index(cpu_buffer) == index;
2641 }
2642
2643 static __always_inline void
2644 rb_update_write_stamp(struct ring_buffer_per_cpu *cpu_buffer,
2645 struct ring_buffer_event *event)
2646 {
2647 u64 delta;
2648
2649 /*
2650 * The event first in the commit queue updates the
2651 * time stamp.
2652 */
2653 if (rb_event_is_commit(cpu_buffer, event)) {
2654 /*
2655 * A commit event that is first on a page
2656 * updates the write timestamp with the page stamp
2657 */
2658 if (!rb_event_index(event))
2659 cpu_buffer->write_stamp =
2660 cpu_buffer->commit_page->page->time_stamp;
2661 else if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) {
2662 delta = ring_buffer_event_time_stamp(event);
2663 cpu_buffer->write_stamp += delta;
2664 } else if (event->type_len == RINGBUF_TYPE_TIME_STAMP) {
2665 delta = ring_buffer_event_time_stamp(event);
2666 cpu_buffer->write_stamp = delta;
2667 } else
2668 cpu_buffer->write_stamp += event->time_delta;
2669 }
2670 }
2671
2672 static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer,
2673 struct ring_buffer_event *event)
2674 {
2675 local_inc(&cpu_buffer->entries);
2676 rb_update_write_stamp(cpu_buffer, event);
2677 rb_end_commit(cpu_buffer);
2678 }
2679
2680 static __always_inline void
2681 rb_wakeups(struct trace_buffer *buffer, struct ring_buffer_per_cpu *cpu_buffer)
2682 {
2683 size_t nr_pages;
2684 size_t dirty;
2685 size_t full;
2686
2687 if (buffer->irq_work.waiters_pending) {
2688 buffer->irq_work.waiters_pending = false;
2689 /* irq_work_queue() supplies it's own memory barriers */
2690 irq_work_queue(&buffer->irq_work.work);
2691 }
2692
2693 if (cpu_buffer->irq_work.waiters_pending) {
2694 cpu_buffer->irq_work.waiters_pending = false;
2695 /* irq_work_queue() supplies it's own memory barriers */
2696 irq_work_queue(&cpu_buffer->irq_work.work);
2697 }
2698
2699 if (cpu_buffer->last_pages_touch == local_read(&cpu_buffer->pages_touched))
2700 return;
2701
2702 if (cpu_buffer->reader_page == cpu_buffer->commit_page)
2703 return;
2704
2705 if (!cpu_buffer->irq_work.full_waiters_pending)
2706 return;
2707
2708 cpu_buffer->last_pages_touch = local_read(&cpu_buffer->pages_touched);
2709
2710 full = cpu_buffer->shortest_full;
2711 nr_pages = cpu_buffer->nr_pages;
2712 dirty = ring_buffer_nr_dirty_pages(buffer, cpu_buffer->cpu);
2713 if (full && nr_pages && (dirty * 100) <= full * nr_pages)
2714 return;
2715
2716 cpu_buffer->irq_work.wakeup_full = true;
2717 cpu_buffer->irq_work.full_waiters_pending = false;
2718 /* irq_work_queue() supplies it's own memory barriers */
2719 irq_work_queue(&cpu_buffer->irq_work.work);
2720 }
2721
2722 /*
2723 * The lock and unlock are done within a preempt disable section.
2724 * The current_context per_cpu variable can only be modified
2725 * by the current task between lock and unlock. But it can
2726 * be modified more than once via an interrupt. To pass this
2727 * information from the lock to the unlock without having to
2728 * access the 'in_interrupt()' functions again (which do show
2729 * a bit of overhead in something as critical as function tracing,
2730 * we use a bitmask trick.
2731 *
2732 * bit 0 = NMI context
2733 * bit 1 = IRQ context
2734 * bit 2 = SoftIRQ context
2735 * bit 3 = normal context.
2736 *
2737 * This works because this is the order of contexts that can
2738 * preempt other contexts. A SoftIRQ never preempts an IRQ
2739 * context.
2740 *
2741 * When the context is determined, the corresponding bit is
2742 * checked and set (if it was set, then a recursion of that context
2743 * happened).
2744 *
2745 * On unlock, we need to clear this bit. To do so, just subtract
2746 * 1 from the current_context and AND it to itself.
2747 *
2748 * (binary)
2749 * 101 - 1 = 100
2750 * 101 & 100 = 100 (clearing bit zero)
2751 *
2752 * 1010 - 1 = 1001
2753 * 1010 & 1001 = 1000 (clearing bit 1)
2754 *
2755 * The least significant bit can be cleared this way, and it
2756 * just so happens that it is the same bit corresponding to
2757 * the current context.
2758 */
2759
2760 static __always_inline int
2761 trace_recursive_lock(struct ring_buffer_per_cpu *cpu_buffer)
2762 {
2763 unsigned int val = cpu_buffer->current_context;
2764 unsigned long pc = preempt_count();
2765 int bit;
2766
2767 if (!(pc & (NMI_MASK | HARDIRQ_MASK | SOFTIRQ_OFFSET)))
2768 bit = RB_CTX_NORMAL;
2769 else
2770 bit = pc & NMI_MASK ? RB_CTX_NMI :
2771 pc & HARDIRQ_MASK ? RB_CTX_IRQ : RB_CTX_SOFTIRQ;
2772
2773 if (unlikely(val & (1 << (bit + cpu_buffer->nest))))
2774 return 1;
2775
2776 val |= (1 << (bit + cpu_buffer->nest));
2777 cpu_buffer->current_context = val;
2778
2779 return 0;
2780 }
2781
2782 static __always_inline void
2783 trace_recursive_unlock(struct ring_buffer_per_cpu *cpu_buffer)
2784 {
2785 cpu_buffer->current_context &=
2786 cpu_buffer->current_context - (1 << cpu_buffer->nest);
2787 }
2788
2789 /* The recursive locking above uses 4 bits */
2790 #define NESTED_BITS 4
2791
2792 /**
2793 * ring_buffer_nest_start - Allow to trace while nested
2794 * @buffer: The ring buffer to modify
2795 *
2796 * The ring buffer has a safety mechanism to prevent recursion.
2797 * But there may be a case where a trace needs to be done while
2798 * tracing something else. In this case, calling this function
2799 * will allow this function to nest within a currently active
2800 * ring_buffer_lock_reserve().
2801 *
2802 * Call this function before calling another ring_buffer_lock_reserve() and
2803 * call ring_buffer_nest_end() after the nested ring_buffer_unlock_commit().
2804 */
2805 void ring_buffer_nest_start(struct trace_buffer *buffer)
2806 {
2807 struct ring_buffer_per_cpu *cpu_buffer;
2808 int cpu;
2809
2810 /* Enabled by ring_buffer_nest_end() */
2811 preempt_disable_notrace();
2812 cpu = raw_smp_processor_id();
2813 cpu_buffer = buffer->buffers[cpu];
2814 /* This is the shift value for the above recursive locking */
2815 cpu_buffer->nest += NESTED_BITS;
2816 }
2817
2818 /**
2819 * ring_buffer_nest_end - Allow to trace while nested
2820 * @buffer: The ring buffer to modify
2821 *
2822 * Must be called after ring_buffer_nest_start() and after the
2823 * ring_buffer_unlock_commit().
2824 */
2825 void ring_buffer_nest_end(struct trace_buffer *buffer)
2826 {
2827 struct ring_buffer_per_cpu *cpu_buffer;
2828 int cpu;
2829
2830 /* disabled by ring_buffer_nest_start() */
2831 cpu = raw_smp_processor_id();
2832 cpu_buffer = buffer->buffers[cpu];
2833 /* This is the shift value for the above recursive locking */
2834 cpu_buffer->nest -= NESTED_BITS;
2835 preempt_enable_notrace();
2836 }
2837
2838 /**
2839 * ring_buffer_unlock_commit - commit a reserved
2840 * @buffer: The buffer to commit to
2841 * @event: The event pointer to commit.
2842 *
2843 * This commits the data to the ring buffer, and releases any locks held.
2844 *
2845 * Must be paired with ring_buffer_lock_reserve.
2846 */
2847 int ring_buffer_unlock_commit(struct trace_buffer *buffer,
2848 struct ring_buffer_event *event)
2849 {
2850 struct ring_buffer_per_cpu *cpu_buffer;
2851 int cpu = raw_smp_processor_id();
2852
2853 cpu_buffer = buffer->buffers[cpu];
2854
2855 rb_commit(cpu_buffer, event);
2856
2857 rb_wakeups(buffer, cpu_buffer);
2858
2859 trace_recursive_unlock(cpu_buffer);
2860
2861 preempt_enable_notrace();
2862
2863 return 0;
2864 }
2865 EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit);
2866
2867 static noinline void
2868 rb_handle_timestamp(struct ring_buffer_per_cpu *cpu_buffer,
2869 struct rb_event_info *info)
2870 {
2871 WARN_ONCE(info->delta > (1ULL << 59),
2872 KERN_WARNING "Delta way too big! %llu ts=%llu write stamp = %llu\n%s",
2873 (unsigned long long)info->delta,
2874 (unsigned long long)info->ts,
2875 (unsigned long long)cpu_buffer->write_stamp,
2876 sched_clock_stable() ? "" :
2877 "If you just came from a suspend/resume,\n"
2878 "please switch to the trace global clock:\n"
2879 " echo global > /sys/kernel/debug/tracing/trace_clock\n"
2880 "or add trace_clock=global to the kernel command line\n");
2881 info->add_timestamp = 1;
2882 }
2883
2884 static struct ring_buffer_event *
2885 __rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
2886 struct rb_event_info *info)
2887 {
2888 struct ring_buffer_event *event;
2889 struct buffer_page *tail_page;
2890 unsigned long tail, write;
2891
2892 /*
2893 * If the time delta since the last event is too big to
2894 * hold in the time field of the event, then we append a
2895 * TIME EXTEND event ahead of the data event.
2896 */
2897 if (unlikely(info->add_timestamp))
2898 info->length += RB_LEN_TIME_EXTEND;
2899
2900 /* Don't let the compiler play games with cpu_buffer->tail_page */
2901 tail_page = info->tail_page = READ_ONCE(cpu_buffer->tail_page);
2902 write = local_add_return(info->length, &tail_page->write);
2903
2904 /* set write to only the index of the write */
2905 write &= RB_WRITE_MASK;
2906 tail = write - info->length;
2907
2908 /*
2909 * If this is the first commit on the page, then it has the same
2910 * timestamp as the page itself.
2911 */
2912 if (!tail && !ring_buffer_time_stamp_abs(cpu_buffer->buffer))
2913 info->delta = 0;
2914
2915 /* See if we shot pass the end of this buffer page */
2916 if (unlikely(write > BUF_PAGE_SIZE))
2917 return rb_move_tail(cpu_buffer, tail, info);
2918
2919 /* We reserved something on the buffer */
2920
2921 event = __rb_page_index(tail_page, tail);
2922 rb_update_event(cpu_buffer, event, info);
2923
2924 local_inc(&tail_page->entries);
2925
2926 /*
2927 * If this is the first commit on the page, then update
2928 * its timestamp.
2929 */
2930 if (!tail)
2931 tail_page->page->time_stamp = info->ts;
2932
2933 /* account for these added bytes */
2934 local_add(info->length, &cpu_buffer->entries_bytes);
2935
2936 return event;
2937 }
2938
2939 static __always_inline struct ring_buffer_event *
2940 rb_reserve_next_event(struct trace_buffer *buffer,
2941 struct ring_buffer_per_cpu *cpu_buffer,
2942 unsigned long length)
2943 {
2944 struct ring_buffer_event *event;
2945 struct rb_event_info info;
2946 int nr_loops = 0;
2947 u64 diff;
2948
2949 rb_start_commit(cpu_buffer);
2950
2951 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
2952 /*
2953 * Due to the ability to swap a cpu buffer from a buffer
2954 * it is possible it was swapped before we committed.
2955 * (committing stops a swap). We check for it here and
2956 * if it happened, we have to fail the write.
2957 */
2958 barrier();
2959 if (unlikely(READ_ONCE(cpu_buffer->buffer) != buffer)) {
2960 local_dec(&cpu_buffer->committing);
2961 local_dec(&cpu_buffer->commits);
2962 return NULL;
2963 }
2964 #endif
2965
2966 info.length = rb_calculate_event_length(length);
2967 again:
2968 info.add_timestamp = 0;
2969 info.delta = 0;
2970
2971 /*
2972 * We allow for interrupts to reenter here and do a trace.
2973 * If one does, it will cause this original code to loop
2974 * back here. Even with heavy interrupts happening, this
2975 * should only happen a few times in a row. If this happens
2976 * 1000 times in a row, there must be either an interrupt
2977 * storm or we have something buggy.
2978 * Bail!
2979 */
2980 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
2981 goto out_fail;
2982
2983 info.ts = rb_time_stamp(cpu_buffer->buffer);
2984 diff = info.ts - cpu_buffer->write_stamp;
2985
2986 /* make sure this diff is calculated here */
2987 barrier();
2988
2989 if (ring_buffer_time_stamp_abs(buffer)) {
2990 info.delta = info.ts;
2991 rb_handle_timestamp(cpu_buffer, &info);
2992 } else /* Did the write stamp get updated already? */
2993 if (likely(info.ts >= cpu_buffer->write_stamp)) {
2994 info.delta = diff;
2995 if (unlikely(test_time_stamp(info.delta)))
2996 rb_handle_timestamp(cpu_buffer, &info);
2997 }
2998
2999 event = __rb_reserve_next(cpu_buffer, &info);
3000
3001 if (unlikely(PTR_ERR(event) == -EAGAIN)) {
3002 if (info.add_timestamp)
3003 info.length -= RB_LEN_TIME_EXTEND;
3004 goto again;
3005 }
3006
3007 if (!event)
3008 goto out_fail;
3009
3010 return event;
3011
3012 out_fail:
3013 rb_end_commit(cpu_buffer);
3014 return NULL;
3015 }
3016
3017 /**
3018 * ring_buffer_lock_reserve - reserve a part of the buffer
3019 * @buffer: the ring buffer to reserve from
3020 * @length: the length of the data to reserve (excluding event header)
3021 *
3022 * Returns a reserved event on the ring buffer to copy directly to.
3023 * The user of this interface will need to get the body to write into
3024 * and can use the ring_buffer_event_data() interface.
3025 *
3026 * The length is the length of the data needed, not the event length
3027 * which also includes the event header.
3028 *
3029 * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
3030 * If NULL is returned, then nothing has been allocated or locked.
3031 */
3032 struct ring_buffer_event *
3033 ring_buffer_lock_reserve(struct trace_buffer *buffer, unsigned long length)
3034 {
3035 struct ring_buffer_per_cpu *cpu_buffer;
3036 struct ring_buffer_event *event;
3037 int cpu;
3038
3039 /* If we are tracing schedule, we don't want to recurse */
3040 preempt_disable_notrace();
3041
3042 if (unlikely(atomic_read(&buffer->record_disabled)))
3043 goto out;
3044
3045 cpu = raw_smp_processor_id();
3046
3047 if (unlikely(!cpumask_test_cpu(cpu, buffer->cpumask)))
3048 goto out;
3049
3050 cpu_buffer = buffer->buffers[cpu];
3051
3052 if (unlikely(atomic_read(&cpu_buffer->record_disabled)))
3053 goto out;
3054
3055 if (unlikely(length > BUF_MAX_DATA_SIZE))
3056 goto out;
3057
3058 if (unlikely(trace_recursive_lock(cpu_buffer)))
3059 goto out;
3060
3061 event = rb_reserve_next_event(buffer, cpu_buffer, length);
3062 if (!event)
3063 goto out_unlock;
3064
3065 return event;
3066
3067 out_unlock:
3068 trace_recursive_unlock(cpu_buffer);
3069 out:
3070 preempt_enable_notrace();
3071 return NULL;
3072 }
3073 EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve);
3074
3075 /*
3076 * Decrement the entries to the page that an event is on.
3077 * The event does not even need to exist, only the pointer
3078 * to the page it is on. This may only be called before the commit
3079 * takes place.
3080 */
3081 static inline void
3082 rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer,
3083 struct ring_buffer_event *event)
3084 {
3085 unsigned long addr = (unsigned long)event;
3086 struct buffer_page *bpage = cpu_buffer->commit_page;
3087 struct buffer_page *start;
3088
3089 addr &= PAGE_MASK;
3090
3091 /* Do the likely case first */
3092 if (likely(bpage->page == (void *)addr)) {
3093 local_dec(&bpage->entries);
3094 return;
3095 }
3096
3097 /*
3098 * Because the commit page may be on the reader page we
3099 * start with the next page and check the end loop there.
3100 */
3101 rb_inc_page(cpu_buffer, &bpage);
3102 start = bpage;
3103 do {
3104 if (bpage->page == (void *)addr) {
3105 local_dec(&bpage->entries);
3106 return;
3107 }
3108 rb_inc_page(cpu_buffer, &bpage);
3109 } while (bpage != start);
3110
3111 /* commit not part of this buffer?? */
3112 RB_WARN_ON(cpu_buffer, 1);
3113 }
3114
3115 /**
3116 * ring_buffer_commit_discard - discard an event that has not been committed
3117 * @buffer: the ring buffer
3118 * @event: non committed event to discard
3119 *
3120 * Sometimes an event that is in the ring buffer needs to be ignored.
3121 * This function lets the user discard an event in the ring buffer
3122 * and then that event will not be read later.
3123 *
3124 * This function only works if it is called before the item has been
3125 * committed. It will try to free the event from the ring buffer
3126 * if another event has not been added behind it.
3127 *
3128 * If another event has been added behind it, it will set the event
3129 * up as discarded, and perform the commit.
3130 *
3131 * If this function is called, do not call ring_buffer_unlock_commit on
3132 * the event.
3133 */
3134 void ring_buffer_discard_commit(struct trace_buffer *buffer,
3135 struct ring_buffer_event *event)
3136 {
3137 struct ring_buffer_per_cpu *cpu_buffer;
3138 int cpu;
3139
3140 /* The event is discarded regardless */
3141 rb_event_discard(event);
3142
3143 cpu = smp_processor_id();
3144 cpu_buffer = buffer->buffers[cpu];
3145
3146 /*
3147 * This must only be called if the event has not been
3148 * committed yet. Thus we can assume that preemption
3149 * is still disabled.
3150 */
3151 RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing));
3152
3153 rb_decrement_entry(cpu_buffer, event);
3154 if (rb_try_to_discard(cpu_buffer, event))
3155 goto out;
3156
3157 /*
3158 * The commit is still visible by the reader, so we
3159 * must still update the timestamp.
3160 */
3161 rb_update_write_stamp(cpu_buffer, event);
3162 out:
3163 rb_end_commit(cpu_buffer);
3164
3165 trace_recursive_unlock(cpu_buffer);
3166
3167 preempt_enable_notrace();
3168
3169 }
3170 EXPORT_SYMBOL_GPL(ring_buffer_discard_commit);
3171
3172 /**
3173 * ring_buffer_write - write data to the buffer without reserving
3174 * @buffer: The ring buffer to write to.
3175 * @length: The length of the data being written (excluding the event header)
3176 * @data: The data to write to the buffer.
3177 *
3178 * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
3179 * one function. If you already have the data to write to the buffer, it
3180 * may be easier to simply call this function.
3181 *
3182 * Note, like ring_buffer_lock_reserve, the length is the length of the data
3183 * and not the length of the event which would hold the header.
3184 */
3185 int ring_buffer_write(struct trace_buffer *buffer,
3186 unsigned long length,
3187 void *data)
3188 {
3189 struct ring_buffer_per_cpu *cpu_buffer;
3190 struct ring_buffer_event *event;
3191 void *body;
3192 int ret = -EBUSY;
3193 int cpu;
3194
3195 preempt_disable_notrace();
3196
3197 if (atomic_read(&buffer->record_disabled))
3198 goto out;
3199
3200 cpu = raw_smp_processor_id();
3201
3202 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3203 goto out;
3204
3205 cpu_buffer = buffer->buffers[cpu];
3206
3207 if (atomic_read(&cpu_buffer->record_disabled))
3208 goto out;
3209
3210 if (length > BUF_MAX_DATA_SIZE)
3211 goto out;
3212
3213 if (unlikely(trace_recursive_lock(cpu_buffer)))
3214 goto out;
3215
3216 event = rb_reserve_next_event(buffer, cpu_buffer, length);
3217 if (!event)
3218 goto out_unlock;
3219
3220 body = rb_event_data(event);
3221
3222 memcpy(body, data, length);
3223
3224 rb_commit(cpu_buffer, event);
3225
3226 rb_wakeups(buffer, cpu_buffer);
3227
3228 ret = 0;
3229
3230 out_unlock:
3231 trace_recursive_unlock(cpu_buffer);
3232
3233 out:
3234 preempt_enable_notrace();
3235
3236 return ret;
3237 }
3238 EXPORT_SYMBOL_GPL(ring_buffer_write);
3239
3240 static bool rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
3241 {
3242 struct buffer_page *reader = cpu_buffer->reader_page;
3243 struct buffer_page *head = rb_set_head_page(cpu_buffer);
3244 struct buffer_page *commit = cpu_buffer->commit_page;
3245
3246 /* In case of error, head will be NULL */
3247 if (unlikely(!head))
3248 return true;
3249
3250 return reader->read == rb_page_commit(reader) &&
3251 (commit == reader ||
3252 (commit == head &&
3253 head->read == rb_page_commit(commit)));
3254 }
3255
3256 /**
3257 * ring_buffer_record_disable - stop all writes into the buffer
3258 * @buffer: The ring buffer to stop writes to.
3259 *
3260 * This prevents all writes to the buffer. Any attempt to write
3261 * to the buffer after this will fail and return NULL.
3262 *
3263 * The caller should call synchronize_rcu() after this.
3264 */
3265 void ring_buffer_record_disable(struct trace_buffer *buffer)
3266 {
3267 atomic_inc(&buffer->record_disabled);
3268 }
3269 EXPORT_SYMBOL_GPL(ring_buffer_record_disable);
3270
3271 /**
3272 * ring_buffer_record_enable - enable writes to the buffer
3273 * @buffer: The ring buffer to enable writes
3274 *
3275 * Note, multiple disables will need the same number of enables
3276 * to truly enable the writing (much like preempt_disable).
3277 */
3278 void ring_buffer_record_enable(struct trace_buffer *buffer)
3279 {
3280 atomic_dec(&buffer->record_disabled);
3281 }
3282 EXPORT_SYMBOL_GPL(ring_buffer_record_enable);
3283
3284 /**
3285 * ring_buffer_record_off - stop all writes into the buffer
3286 * @buffer: The ring buffer to stop writes to.
3287 *
3288 * This prevents all writes to the buffer. Any attempt to write
3289 * to the buffer after this will fail and return NULL.
3290 *
3291 * This is different than ring_buffer_record_disable() as
3292 * it works like an on/off switch, where as the disable() version
3293 * must be paired with a enable().
3294 */
3295 void ring_buffer_record_off(struct trace_buffer *buffer)
3296 {
3297 unsigned int rd;
3298 unsigned int new_rd;
3299
3300 do {
3301 rd = atomic_read(&buffer->record_disabled);
3302 new_rd = rd | RB_BUFFER_OFF;
3303 } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
3304 }
3305 EXPORT_SYMBOL_GPL(ring_buffer_record_off);
3306
3307 /**
3308 * ring_buffer_record_on - restart writes into the buffer
3309 * @buffer: The ring buffer to start writes to.
3310 *
3311 * This enables all writes to the buffer that was disabled by
3312 * ring_buffer_record_off().
3313 *
3314 * This is different than ring_buffer_record_enable() as
3315 * it works like an on/off switch, where as the enable() version
3316 * must be paired with a disable().
3317 */
3318 void ring_buffer_record_on(struct trace_buffer *buffer)
3319 {
3320 unsigned int rd;
3321 unsigned int new_rd;
3322
3323 do {
3324 rd = atomic_read(&buffer->record_disabled);
3325 new_rd = rd & ~RB_BUFFER_OFF;
3326 } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
3327 }
3328 EXPORT_SYMBOL_GPL(ring_buffer_record_on);
3329
3330 /**
3331 * ring_buffer_record_is_on - return true if the ring buffer can write
3332 * @buffer: The ring buffer to see if write is enabled
3333 *
3334 * Returns true if the ring buffer is in a state that it accepts writes.
3335 */
3336 bool ring_buffer_record_is_on(struct trace_buffer *buffer)
3337 {
3338 return !atomic_read(&buffer->record_disabled);
3339 }
3340
3341 /**
3342 * ring_buffer_record_is_set_on - return true if the ring buffer is set writable
3343 * @buffer: The ring buffer to see if write is set enabled
3344 *
3345 * Returns true if the ring buffer is set writable by ring_buffer_record_on().
3346 * Note that this does NOT mean it is in a writable state.
3347 *
3348 * It may return true when the ring buffer has been disabled by
3349 * ring_buffer_record_disable(), as that is a temporary disabling of
3350 * the ring buffer.
3351 */
3352 bool ring_buffer_record_is_set_on(struct trace_buffer *buffer)
3353 {
3354 return !(atomic_read(&buffer->record_disabled) & RB_BUFFER_OFF);
3355 }
3356
3357 /**
3358 * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
3359 * @buffer: The ring buffer to stop writes to.
3360 * @cpu: The CPU buffer to stop
3361 *
3362 * This prevents all writes to the buffer. Any attempt to write
3363 * to the buffer after this will fail and return NULL.
3364 *
3365 * The caller should call synchronize_rcu() after this.
3366 */
3367 void ring_buffer_record_disable_cpu(struct trace_buffer *buffer, int cpu)
3368 {
3369 struct ring_buffer_per_cpu *cpu_buffer;
3370
3371 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3372 return;
3373
3374 cpu_buffer = buffer->buffers[cpu];
3375 atomic_inc(&cpu_buffer->record_disabled);
3376 }
3377 EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu);
3378
3379 /**
3380 * ring_buffer_record_enable_cpu - enable writes to the buffer
3381 * @buffer: The ring buffer to enable writes
3382 * @cpu: The CPU to enable.
3383 *
3384 * Note, multiple disables will need the same number of enables
3385 * to truly enable the writing (much like preempt_disable).
3386 */
3387 void ring_buffer_record_enable_cpu(struct trace_buffer *buffer, int cpu)
3388 {
3389 struct ring_buffer_per_cpu *cpu_buffer;
3390
3391 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3392 return;
3393
3394 cpu_buffer = buffer->buffers[cpu];
3395 atomic_dec(&cpu_buffer->record_disabled);
3396 }
3397 EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu);
3398
3399 /*
3400 * The total entries in the ring buffer is the running counter
3401 * of entries entered into the ring buffer, minus the sum of
3402 * the entries read from the ring buffer and the number of
3403 * entries that were overwritten.
3404 */
3405 static inline unsigned long
3406 rb_num_of_entries(struct ring_buffer_per_cpu *cpu_buffer)
3407 {
3408 return local_read(&cpu_buffer->entries) -
3409 (local_read(&cpu_buffer->overrun) + cpu_buffer->read);
3410 }
3411
3412 /**
3413 * ring_buffer_oldest_event_ts - get the oldest event timestamp from the buffer
3414 * @buffer: The ring buffer
3415 * @cpu: The per CPU buffer to read from.
3416 */
3417 u64 ring_buffer_oldest_event_ts(struct trace_buffer *buffer, int cpu)
3418 {
3419 unsigned long flags;
3420 struct ring_buffer_per_cpu *cpu_buffer;
3421 struct buffer_page *bpage;
3422 u64 ret = 0;
3423
3424 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3425 return 0;
3426
3427 cpu_buffer = buffer->buffers[cpu];
3428 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3429 /*
3430 * if the tail is on reader_page, oldest time stamp is on the reader
3431 * page
3432 */
3433 if (cpu_buffer->tail_page == cpu_buffer->reader_page)
3434 bpage = cpu_buffer->reader_page;
3435 else
3436 bpage = rb_set_head_page(cpu_buffer);
3437 if (bpage)
3438 ret = bpage->page->time_stamp;
3439 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3440
3441 return ret;
3442 }
3443 EXPORT_SYMBOL_GPL(ring_buffer_oldest_event_ts);
3444
3445 /**
3446 * ring_buffer_bytes_cpu - get the number of bytes consumed in a cpu buffer
3447 * @buffer: The ring buffer
3448 * @cpu: The per CPU buffer to read from.
3449 */
3450 unsigned long ring_buffer_bytes_cpu(struct trace_buffer *buffer, int cpu)
3451 {
3452 struct ring_buffer_per_cpu *cpu_buffer;
3453 unsigned long ret;
3454
3455 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3456 return 0;
3457
3458 cpu_buffer = buffer->buffers[cpu];
3459 ret = local_read(&cpu_buffer->entries_bytes) - cpu_buffer->read_bytes;
3460
3461 return ret;
3462 }
3463 EXPORT_SYMBOL_GPL(ring_buffer_bytes_cpu);
3464
3465 /**
3466 * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
3467 * @buffer: The ring buffer
3468 * @cpu: The per CPU buffer to get the entries from.
3469 */
3470 unsigned long ring_buffer_entries_cpu(struct trace_buffer *buffer, int cpu)
3471 {
3472 struct ring_buffer_per_cpu *cpu_buffer;
3473
3474 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3475 return 0;
3476
3477 cpu_buffer = buffer->buffers[cpu];
3478
3479 return rb_num_of_entries(cpu_buffer);
3480 }
3481 EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu);
3482
3483 /**
3484 * ring_buffer_overrun_cpu - get the number of overruns caused by the ring
3485 * buffer wrapping around (only if RB_FL_OVERWRITE is on).
3486 * @buffer: The ring buffer
3487 * @cpu: The per CPU buffer to get the number of overruns from
3488 */
3489 unsigned long ring_buffer_overrun_cpu(struct trace_buffer *buffer, int cpu)
3490 {
3491 struct ring_buffer_per_cpu *cpu_buffer;
3492 unsigned long ret;
3493
3494 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3495 return 0;
3496
3497 cpu_buffer = buffer->buffers[cpu];
3498 ret = local_read(&cpu_buffer->overrun);
3499
3500 return ret;
3501 }
3502 EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu);
3503
3504 /**
3505 * ring_buffer_commit_overrun_cpu - get the number of overruns caused by
3506 * commits failing due to the buffer wrapping around while there are uncommitted
3507 * events, such as during an interrupt storm.
3508 * @buffer: The ring buffer
3509 * @cpu: The per CPU buffer to get the number of overruns from
3510 */
3511 unsigned long
3512 ring_buffer_commit_overrun_cpu(struct trace_buffer *buffer, int cpu)
3513 {
3514 struct ring_buffer_per_cpu *cpu_buffer;
3515 unsigned long ret;
3516
3517 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3518 return 0;
3519
3520 cpu_buffer = buffer->buffers[cpu];
3521 ret = local_read(&cpu_buffer->commit_overrun);
3522
3523 return ret;
3524 }
3525 EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu);
3526
3527 /**
3528 * ring_buffer_dropped_events_cpu - get the number of dropped events caused by
3529 * the ring buffer filling up (only if RB_FL_OVERWRITE is off).
3530 * @buffer: The ring buffer
3531 * @cpu: The per CPU buffer to get the number of overruns from
3532 */
3533 unsigned long
3534 ring_buffer_dropped_events_cpu(struct trace_buffer *buffer, int cpu)
3535 {
3536 struct ring_buffer_per_cpu *cpu_buffer;
3537 unsigned long ret;
3538
3539 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3540 return 0;
3541
3542 cpu_buffer = buffer->buffers[cpu];
3543 ret = local_read(&cpu_buffer->dropped_events);
3544
3545 return ret;
3546 }
3547 EXPORT_SYMBOL_GPL(ring_buffer_dropped_events_cpu);
3548
3549 /**
3550 * ring_buffer_read_events_cpu - get the number of events successfully read
3551 * @buffer: The ring buffer
3552 * @cpu: The per CPU buffer to get the number of events read
3553 */
3554 unsigned long
3555 ring_buffer_read_events_cpu(struct trace_buffer *buffer, int cpu)
3556 {
3557 struct ring_buffer_per_cpu *cpu_buffer;
3558
3559 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3560 return 0;
3561
3562 cpu_buffer = buffer->buffers[cpu];
3563 return cpu_buffer->read;
3564 }
3565 EXPORT_SYMBOL_GPL(ring_buffer_read_events_cpu);
3566
3567 /**
3568 * ring_buffer_entries - get the number of entries in a buffer
3569 * @buffer: The ring buffer
3570 *
3571 * Returns the total number of entries in the ring buffer
3572 * (all CPU entries)
3573 */
3574 unsigned long ring_buffer_entries(struct trace_buffer *buffer)
3575 {
3576 struct ring_buffer_per_cpu *cpu_buffer;
3577 unsigned long entries = 0;
3578 int cpu;
3579
3580 /* if you care about this being correct, lock the buffer */
3581 for_each_buffer_cpu(buffer, cpu) {
3582 cpu_buffer = buffer->buffers[cpu];
3583 entries += rb_num_of_entries(cpu_buffer);
3584 }
3585
3586 return entries;
3587 }
3588 EXPORT_SYMBOL_GPL(ring_buffer_entries);
3589
3590 /**
3591 * ring_buffer_overruns - get the number of overruns in buffer
3592 * @buffer: The ring buffer
3593 *
3594 * Returns the total number of overruns in the ring buffer
3595 * (all CPU entries)
3596 */
3597 unsigned long ring_buffer_overruns(struct trace_buffer *buffer)
3598 {
3599 struct ring_buffer_per_cpu *cpu_buffer;
3600 unsigned long overruns = 0;
3601 int cpu;
3602
3603 /* if you care about this being correct, lock the buffer */
3604 for_each_buffer_cpu(buffer, cpu) {
3605 cpu_buffer = buffer->buffers[cpu];
3606 overruns += local_read(&cpu_buffer->overrun);
3607 }
3608
3609 return overruns;
3610 }
3611 EXPORT_SYMBOL_GPL(ring_buffer_overruns);
3612
3613 static void rb_iter_reset(struct ring_buffer_iter *iter)
3614 {
3615 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3616
3617 /* Iterator usage is expected to have record disabled */
3618 iter->head_page = cpu_buffer->reader_page;
3619 iter->head = cpu_buffer->reader_page->read;
3620 iter->next_event = iter->head;
3621
3622 iter->cache_reader_page = iter->head_page;
3623 iter->cache_read = cpu_buffer->read;
3624
3625 if (iter->head) {
3626 iter->read_stamp = cpu_buffer->read_stamp;
3627 iter->page_stamp = cpu_buffer->reader_page->page->time_stamp;
3628 } else {
3629 iter->read_stamp = iter->head_page->page->time_stamp;
3630 iter->page_stamp = iter->read_stamp;
3631 }
3632 }
3633
3634 /**
3635 * ring_buffer_iter_reset - reset an iterator
3636 * @iter: The iterator to reset
3637 *
3638 * Resets the iterator, so that it will start from the beginning
3639 * again.
3640 */
3641 void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
3642 {
3643 struct ring_buffer_per_cpu *cpu_buffer;
3644 unsigned long flags;
3645
3646 if (!iter)
3647 return;
3648
3649 cpu_buffer = iter->cpu_buffer;
3650
3651 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3652 rb_iter_reset(iter);
3653 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3654 }
3655 EXPORT_SYMBOL_GPL(ring_buffer_iter_reset);
3656
3657 /**
3658 * ring_buffer_iter_empty - check if an iterator has no more to read
3659 * @iter: The iterator to check
3660 */
3661 int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
3662 {
3663 struct ring_buffer_per_cpu *cpu_buffer;
3664 struct buffer_page *reader;
3665 struct buffer_page *head_page;
3666 struct buffer_page *commit_page;
3667 struct buffer_page *curr_commit_page;
3668 unsigned commit;
3669 u64 curr_commit_ts;
3670 u64 commit_ts;
3671
3672 cpu_buffer = iter->cpu_buffer;
3673 reader = cpu_buffer->reader_page;
3674 head_page = cpu_buffer->head_page;
3675 commit_page = cpu_buffer->commit_page;
3676 commit_ts = commit_page->page->time_stamp;
3677
3678 /*
3679 * When the writer goes across pages, it issues a cmpxchg which
3680 * is a mb(), which will synchronize with the rmb here.
3681 * (see rb_tail_page_update())
3682 */
3683 smp_rmb();
3684 commit = rb_page_commit(commit_page);
3685 /* We want to make sure that the commit page doesn't change */
3686 smp_rmb();
3687
3688 /* Make sure commit page didn't change */
3689 curr_commit_page = READ_ONCE(cpu_buffer->commit_page);
3690 curr_commit_ts = READ_ONCE(curr_commit_page->page->time_stamp);
3691
3692 /* If the commit page changed, then there's more data */
3693 if (curr_commit_page != commit_page ||
3694 curr_commit_ts != commit_ts)
3695 return 0;
3696
3697 /* Still racy, as it may return a false positive, but that's OK */
3698 return ((iter->head_page == commit_page && iter->head >= commit) ||
3699 (iter->head_page == reader && commit_page == head_page &&
3700 head_page->read == commit &&
3701 iter->head == rb_page_commit(cpu_buffer->reader_page)));
3702 }
3703 EXPORT_SYMBOL_GPL(ring_buffer_iter_empty);
3704
3705 static void
3706 rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
3707 struct ring_buffer_event *event)
3708 {
3709 u64 delta;
3710
3711 switch (event->type_len) {
3712 case RINGBUF_TYPE_PADDING:
3713 return;
3714
3715 case RINGBUF_TYPE_TIME_EXTEND:
3716 delta = ring_buffer_event_time_stamp(event);
3717 cpu_buffer->read_stamp += delta;
3718 return;
3719
3720 case RINGBUF_TYPE_TIME_STAMP:
3721 delta = ring_buffer_event_time_stamp(event);
3722 cpu_buffer->read_stamp = delta;
3723 return;
3724
3725 case RINGBUF_TYPE_DATA:
3726 cpu_buffer->read_stamp += event->time_delta;
3727 return;
3728
3729 default:
3730 RB_WARN_ON(cpu_buffer, 1);
3731 }
3732 return;
3733 }
3734
3735 static void
3736 rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
3737 struct ring_buffer_event *event)
3738 {
3739 u64 delta;
3740
3741 switch (event->type_len) {
3742 case RINGBUF_TYPE_PADDING:
3743 return;
3744
3745 case RINGBUF_TYPE_TIME_EXTEND:
3746 delta = ring_buffer_event_time_stamp(event);
3747 iter->read_stamp += delta;
3748 return;
3749
3750 case RINGBUF_TYPE_TIME_STAMP:
3751 delta = ring_buffer_event_time_stamp(event);
3752 iter->read_stamp = delta;
3753 return;
3754
3755 case RINGBUF_TYPE_DATA:
3756 iter->read_stamp += event->time_delta;
3757 return;
3758
3759 default:
3760 RB_WARN_ON(iter->cpu_buffer, 1);
3761 }
3762 return;
3763 }
3764
3765 static struct buffer_page *
3766 rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
3767 {
3768 struct buffer_page *reader = NULL;
3769 unsigned long overwrite;
3770 unsigned long flags;
3771 int nr_loops = 0;
3772 int ret;
3773
3774 local_irq_save(flags);
3775 arch_spin_lock(&cpu_buffer->lock);
3776
3777 again:
3778 /*
3779 * This should normally only loop twice. But because the
3780 * start of the reader inserts an empty page, it causes
3781 * a case where we will loop three times. There should be no
3782 * reason to loop four times (that I know of).
3783 */
3784 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
3785 reader = NULL;
3786 goto out;
3787 }
3788
3789 reader = cpu_buffer->reader_page;
3790
3791 /* If there's more to read, return this page */
3792 if (cpu_buffer->reader_page->read < rb_page_size(reader))
3793 goto out;
3794
3795 /* Never should we have an index greater than the size */
3796 if (RB_WARN_ON(cpu_buffer,
3797 cpu_buffer->reader_page->read > rb_page_size(reader)))
3798 goto out;
3799
3800 /* check if we caught up to the tail */
3801 reader = NULL;
3802 if (cpu_buffer->commit_page == cpu_buffer->reader_page)
3803 goto out;
3804
3805 /* Don't bother swapping if the ring buffer is empty */
3806 if (rb_num_of_entries(cpu_buffer) == 0)
3807 goto out;
3808
3809 /*
3810 * Reset the reader page to size zero.
3811 */
3812 local_set(&cpu_buffer->reader_page->write, 0);
3813 local_set(&cpu_buffer->reader_page->entries, 0);
3814 local_set(&cpu_buffer->reader_page->page->commit, 0);
3815 cpu_buffer->reader_page->real_end = 0;
3816
3817 spin:
3818 /*
3819 * Splice the empty reader page into the list around the head.
3820 */
3821 reader = rb_set_head_page(cpu_buffer);
3822 if (!reader)
3823 goto out;
3824 cpu_buffer->reader_page->list.next = rb_list_head(reader->list.next);
3825 cpu_buffer->reader_page->list.prev = reader->list.prev;
3826
3827 /*
3828 * cpu_buffer->pages just needs to point to the buffer, it
3829 * has no specific buffer page to point to. Lets move it out
3830 * of our way so we don't accidentally swap it.
3831 */
3832 cpu_buffer->pages = reader->list.prev;
3833
3834 /* The reader page will be pointing to the new head */
3835 rb_set_list_to_head(cpu_buffer, &cpu_buffer->reader_page->list);
3836
3837 /*
3838 * We want to make sure we read the overruns after we set up our
3839 * pointers to the next object. The writer side does a
3840 * cmpxchg to cross pages which acts as the mb on the writer
3841 * side. Note, the reader will constantly fail the swap
3842 * while the writer is updating the pointers, so this
3843 * guarantees that the overwrite recorded here is the one we
3844 * want to compare with the last_overrun.
3845 */
3846 smp_mb();
3847 overwrite = local_read(&(cpu_buffer->overrun));
3848
3849 /*
3850 * Here's the tricky part.
3851 *
3852 * We need to move the pointer past the header page.
3853 * But we can only do that if a writer is not currently
3854 * moving it. The page before the header page has the
3855 * flag bit '1' set if it is pointing to the page we want.
3856 * but if the writer is in the process of moving it
3857 * than it will be '2' or already moved '0'.
3858 */
3859
3860 ret = rb_head_page_replace(reader, cpu_buffer->reader_page);
3861
3862 /*
3863 * If we did not convert it, then we must try again.
3864 */
3865 if (!ret)
3866 goto spin;
3867
3868 /*
3869 * Yay! We succeeded in replacing the page.
3870 *
3871 * Now make the new head point back to the reader page.
3872 */
3873 rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list;
3874 rb_inc_page(cpu_buffer, &cpu_buffer->head_page);
3875
3876 local_inc(&cpu_buffer->pages_read);
3877
3878 /* Finally update the reader page to the new head */
3879 cpu_buffer->reader_page = reader;
3880 cpu_buffer->reader_page->read = 0;
3881
3882 if (overwrite != cpu_buffer->last_overrun) {
3883 cpu_buffer->lost_events = overwrite - cpu_buffer->last_overrun;
3884 cpu_buffer->last_overrun = overwrite;
3885 }
3886
3887 goto again;
3888
3889 out:
3890 /* Update the read_stamp on the first event */
3891 if (reader && reader->read == 0)
3892 cpu_buffer->read_stamp = reader->page->time_stamp;
3893
3894 arch_spin_unlock(&cpu_buffer->lock);
3895 local_irq_restore(flags);
3896
3897 return reader;
3898 }
3899
3900 static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
3901 {
3902 struct ring_buffer_event *event;
3903 struct buffer_page *reader;
3904 unsigned length;
3905
3906 reader = rb_get_reader_page(cpu_buffer);
3907
3908 /* This function should not be called when buffer is empty */
3909 if (RB_WARN_ON(cpu_buffer, !reader))
3910 return;
3911
3912 event = rb_reader_event(cpu_buffer);
3913
3914 if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
3915 cpu_buffer->read++;
3916
3917 rb_update_read_stamp(cpu_buffer, event);
3918
3919 length = rb_event_length(event);
3920 cpu_buffer->reader_page->read += length;
3921 }
3922
3923 static void rb_advance_iter(struct ring_buffer_iter *iter)
3924 {
3925 struct ring_buffer_per_cpu *cpu_buffer;
3926
3927 cpu_buffer = iter->cpu_buffer;
3928
3929 /* If head == next_event then we need to jump to the next event */
3930 if (iter->head == iter->next_event) {
3931 /* If the event gets overwritten again, there's nothing to do */
3932 if (rb_iter_head_event(iter) == NULL)
3933 return;
3934 }
3935
3936 iter->head = iter->next_event;
3937
3938 /*
3939 * Check if we are at the end of the buffer.
3940 */
3941 if (iter->next_event >= rb_page_size(iter->head_page)) {
3942 /* discarded commits can make the page empty */
3943 if (iter->head_page == cpu_buffer->commit_page)
3944 return;
3945 rb_inc_iter(iter);
3946 return;
3947 }
3948
3949 rb_update_iter_read_stamp(iter, iter->event);
3950 }
3951
3952 static int rb_lost_events(struct ring_buffer_per_cpu *cpu_buffer)
3953 {
3954 return cpu_buffer->lost_events;
3955 }
3956
3957 static struct ring_buffer_event *
3958 rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts,
3959 unsigned long *lost_events)
3960 {
3961 struct ring_buffer_event *event;
3962 struct buffer_page *reader;
3963 int nr_loops = 0;
3964
3965 if (ts)
3966 *ts = 0;
3967 again:
3968 /*
3969 * We repeat when a time extend is encountered.
3970 * Since the time extend is always attached to a data event,
3971 * we should never loop more than once.
3972 * (We never hit the following condition more than twice).
3973 */
3974 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2))
3975 return NULL;
3976
3977 reader = rb_get_reader_page(cpu_buffer);
3978 if (!reader)
3979 return NULL;
3980
3981 event = rb_reader_event(cpu_buffer);
3982
3983 switch (event->type_len) {
3984 case RINGBUF_TYPE_PADDING:
3985 if (rb_null_event(event))
3986 RB_WARN_ON(cpu_buffer, 1);
3987 /*
3988 * Because the writer could be discarding every
3989 * event it creates (which would probably be bad)
3990 * if we were to go back to "again" then we may never
3991 * catch up, and will trigger the warn on, or lock
3992 * the box. Return the padding, and we will release
3993 * the current locks, and try again.
3994 */
3995 return event;
3996
3997 case RINGBUF_TYPE_TIME_EXTEND:
3998 /* Internal data, OK to advance */
3999 rb_advance_reader(cpu_buffer);
4000 goto again;
4001
4002 case RINGBUF_TYPE_TIME_STAMP:
4003 if (ts) {
4004 *ts = ring_buffer_event_time_stamp(event);
4005 ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
4006 cpu_buffer->cpu, ts);
4007 }
4008 /* Internal data, OK to advance */
4009 rb_advance_reader(cpu_buffer);
4010 goto again;
4011
4012 case RINGBUF_TYPE_DATA:
4013 if (ts && !(*ts)) {
4014 *ts = cpu_buffer->read_stamp + event->time_delta;
4015 ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
4016 cpu_buffer->cpu, ts);
4017 }
4018 if (lost_events)
4019 *lost_events = rb_lost_events(cpu_buffer);
4020 return event;
4021
4022 default:
4023 RB_WARN_ON(cpu_buffer, 1);
4024 }
4025
4026 return NULL;
4027 }
4028 EXPORT_SYMBOL_GPL(ring_buffer_peek);
4029
4030 static struct ring_buffer_event *
4031 rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
4032 {
4033 struct trace_buffer *buffer;
4034 struct ring_buffer_per_cpu *cpu_buffer;
4035 struct ring_buffer_event *event;
4036 int nr_loops = 0;
4037
4038 if (ts)
4039 *ts = 0;
4040
4041 cpu_buffer = iter->cpu_buffer;
4042 buffer = cpu_buffer->buffer;
4043
4044 /*
4045 * Check if someone performed a consuming read to
4046 * the buffer. A consuming read invalidates the iterator
4047 * and we need to reset the iterator in this case.
4048 */
4049 if (unlikely(iter->cache_read != cpu_buffer->read ||
4050 iter->cache_reader_page != cpu_buffer->reader_page))
4051 rb_iter_reset(iter);
4052
4053 again:
4054 if (ring_buffer_iter_empty(iter))
4055 return NULL;
4056
4057 /*
4058 * As the writer can mess with what the iterator is trying
4059 * to read, just give up if we fail to get an event after
4060 * three tries. The iterator is not as reliable when reading
4061 * the ring buffer with an active write as the consumer is.
4062 * Do not warn if the three failures is reached.
4063 */
4064 if (++nr_loops > 3)
4065 return NULL;
4066
4067 if (rb_per_cpu_empty(cpu_buffer))
4068 return NULL;
4069
4070 if (iter->head >= rb_page_size(iter->head_page)) {
4071 rb_inc_iter(iter);
4072 goto again;
4073 }
4074
4075 event = rb_iter_head_event(iter);
4076 if (!event)
4077 goto again;
4078
4079 switch (event->type_len) {
4080 case RINGBUF_TYPE_PADDING:
4081 if (rb_null_event(event)) {
4082 rb_inc_iter(iter);
4083 goto again;
4084 }
4085 rb_advance_iter(iter);
4086 return event;
4087
4088 case RINGBUF_TYPE_TIME_EXTEND:
4089 /* Internal data, OK to advance */
4090 rb_advance_iter(iter);
4091 goto again;
4092
4093 case RINGBUF_TYPE_TIME_STAMP:
4094 if (ts) {
4095 *ts = ring_buffer_event_time_stamp(event);
4096 ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
4097 cpu_buffer->cpu, ts);
4098 }
4099 /* Internal data, OK to advance */
4100 rb_advance_iter(iter);
4101 goto again;
4102
4103 case RINGBUF_TYPE_DATA:
4104 if (ts && !(*ts)) {
4105 *ts = iter->read_stamp + event->time_delta;
4106 ring_buffer_normalize_time_stamp(buffer,
4107 cpu_buffer->cpu, ts);
4108 }
4109 return event;
4110
4111 default:
4112 RB_WARN_ON(cpu_buffer, 1);
4113 }
4114
4115 return NULL;
4116 }
4117 EXPORT_SYMBOL_GPL(ring_buffer_iter_peek);
4118
4119 static inline bool rb_reader_lock(struct ring_buffer_per_cpu *cpu_buffer)
4120 {
4121 if (likely(!in_nmi())) {
4122 raw_spin_lock(&cpu_buffer->reader_lock);
4123 return true;
4124 }
4125
4126 /*
4127 * If an NMI die dumps out the content of the ring buffer
4128 * trylock must be used to prevent a deadlock if the NMI
4129 * preempted a task that holds the ring buffer locks. If
4130 * we get the lock then all is fine, if not, then continue
4131 * to do the read, but this can corrupt the ring buffer,
4132 * so it must be permanently disabled from future writes.
4133 * Reading from NMI is a oneshot deal.
4134 */
4135 if (raw_spin_trylock(&cpu_buffer->reader_lock))
4136 return true;
4137
4138 /* Continue without locking, but disable the ring buffer */
4139 atomic_inc(&cpu_buffer->record_disabled);
4140 return false;
4141 }
4142
4143 static inline void
4144 rb_reader_unlock(struct ring_buffer_per_cpu *cpu_buffer, bool locked)
4145 {
4146 if (likely(locked))
4147 raw_spin_unlock(&cpu_buffer->reader_lock);
4148 return;
4149 }
4150
4151 /**
4152 * ring_buffer_peek - peek at the next event to be read
4153 * @buffer: The ring buffer to read
4154 * @cpu: The cpu to peak at
4155 * @ts: The timestamp counter of this event.
4156 * @lost_events: a variable to store if events were lost (may be NULL)
4157 *
4158 * This will return the event that will be read next, but does
4159 * not consume the data.
4160 */
4161 struct ring_buffer_event *
4162 ring_buffer_peek(struct trace_buffer *buffer, int cpu, u64 *ts,
4163 unsigned long *lost_events)
4164 {
4165 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4166 struct ring_buffer_event *event;
4167 unsigned long flags;
4168 bool dolock;
4169
4170 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4171 return NULL;
4172
4173 again:
4174 local_irq_save(flags);
4175 dolock = rb_reader_lock(cpu_buffer);
4176 event = rb_buffer_peek(cpu_buffer, ts, lost_events);
4177 if (event && event->type_len == RINGBUF_TYPE_PADDING)
4178 rb_advance_reader(cpu_buffer);
4179 rb_reader_unlock(cpu_buffer, dolock);
4180 local_irq_restore(flags);
4181
4182 if (event && event->type_len == RINGBUF_TYPE_PADDING)
4183 goto again;
4184
4185 return event;
4186 }
4187
4188 /** ring_buffer_iter_dropped - report if there are dropped events
4189 * @iter: The ring buffer iterator
4190 *
4191 * Returns true if there was dropped events since the last peek.
4192 */
4193 bool ring_buffer_iter_dropped(struct ring_buffer_iter *iter)
4194 {
4195 bool ret = iter->missed_events != 0;
4196
4197 iter->missed_events = 0;
4198 return ret;
4199 }
4200 EXPORT_SYMBOL_GPL(ring_buffer_iter_dropped);
4201
4202 /**
4203 * ring_buffer_iter_peek - peek at the next event to be read
4204 * @iter: The ring buffer iterator
4205 * @ts: The timestamp counter of this event.
4206 *
4207 * This will return the event that will be read next, but does
4208 * not increment the iterator.
4209 */
4210 struct ring_buffer_event *
4211 ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
4212 {
4213 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4214 struct ring_buffer_event *event;
4215 unsigned long flags;
4216
4217 again:
4218 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4219 event = rb_iter_peek(iter, ts);
4220 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4221
4222 if (event && event->type_len == RINGBUF_TYPE_PADDING)
4223 goto again;
4224
4225 return event;
4226 }
4227
4228 /**
4229 * ring_buffer_consume - return an event and consume it
4230 * @buffer: The ring buffer to get the next event from
4231 * @cpu: the cpu to read the buffer from
4232 * @ts: a variable to store the timestamp (may be NULL)
4233 * @lost_events: a variable to store if events were lost (may be NULL)
4234 *
4235 * Returns the next event in the ring buffer, and that event is consumed.
4236 * Meaning, that sequential reads will keep returning a different event,
4237 * and eventually empty the ring buffer if the producer is slower.
4238 */
4239 struct ring_buffer_event *
4240 ring_buffer_consume(struct trace_buffer *buffer, int cpu, u64 *ts,
4241 unsigned long *lost_events)
4242 {
4243 struct ring_buffer_per_cpu *cpu_buffer;
4244 struct ring_buffer_event *event = NULL;
4245 unsigned long flags;
4246 bool dolock;
4247
4248 again:
4249 /* might be called in atomic */
4250 preempt_disable();
4251
4252 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4253 goto out;
4254
4255 cpu_buffer = buffer->buffers[cpu];
4256 local_irq_save(flags);
4257 dolock = rb_reader_lock(cpu_buffer);
4258
4259 event = rb_buffer_peek(cpu_buffer, ts, lost_events);
4260 if (event) {
4261 cpu_buffer->lost_events = 0;
4262 rb_advance_reader(cpu_buffer);
4263 }
4264
4265 rb_reader_unlock(cpu_buffer, dolock);
4266 local_irq_restore(flags);
4267
4268 out:
4269 preempt_enable();
4270
4271 if (event && event->type_len == RINGBUF_TYPE_PADDING)
4272 goto again;
4273
4274 return event;
4275 }
4276 EXPORT_SYMBOL_GPL(ring_buffer_consume);
4277
4278 /**
4279 * ring_buffer_read_prepare - Prepare for a non consuming read of the buffer
4280 * @buffer: The ring buffer to read from
4281 * @cpu: The cpu buffer to iterate over
4282 * @flags: gfp flags to use for memory allocation
4283 *
4284 * This performs the initial preparations necessary to iterate
4285 * through the buffer. Memory is allocated, buffer recording
4286 * is disabled, and the iterator pointer is returned to the caller.
4287 *
4288 * Disabling buffer recording prevents the reading from being
4289 * corrupted. This is not a consuming read, so a producer is not
4290 * expected.
4291 *
4292 * After a sequence of ring_buffer_read_prepare calls, the user is
4293 * expected to make at least one call to ring_buffer_read_prepare_sync.
4294 * Afterwards, ring_buffer_read_start is invoked to get things going
4295 * for real.
4296 *
4297 * This overall must be paired with ring_buffer_read_finish.
4298 */
4299 struct ring_buffer_iter *
4300 ring_buffer_read_prepare(struct trace_buffer *buffer, int cpu, gfp_t flags)
4301 {
4302 struct ring_buffer_per_cpu *cpu_buffer;
4303 struct ring_buffer_iter *iter;
4304
4305 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4306 return NULL;
4307
4308 iter = kzalloc(sizeof(*iter), flags);
4309 if (!iter)
4310 return NULL;
4311
4312 iter->event = kmalloc(BUF_MAX_DATA_SIZE, flags);
4313 if (!iter->event) {
4314 kfree(iter);
4315 return NULL;
4316 }
4317
4318 cpu_buffer = buffer->buffers[cpu];
4319
4320 iter->cpu_buffer = cpu_buffer;
4321
4322 atomic_inc(&cpu_buffer->resize_disabled);
4323
4324 return iter;
4325 }
4326 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare);
4327
4328 /**
4329 * ring_buffer_read_prepare_sync - Synchronize a set of prepare calls
4330 *
4331 * All previously invoked ring_buffer_read_prepare calls to prepare
4332 * iterators will be synchronized. Afterwards, read_buffer_read_start
4333 * calls on those iterators are allowed.
4334 */
4335 void
4336 ring_buffer_read_prepare_sync(void)
4337 {
4338 synchronize_rcu();
4339 }
4340 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare_sync);
4341
4342 /**
4343 * ring_buffer_read_start - start a non consuming read of the buffer
4344 * @iter: The iterator returned by ring_buffer_read_prepare
4345 *
4346 * This finalizes the startup of an iteration through the buffer.
4347 * The iterator comes from a call to ring_buffer_read_prepare and
4348 * an intervening ring_buffer_read_prepare_sync must have been
4349 * performed.
4350 *
4351 * Must be paired with ring_buffer_read_finish.
4352 */
4353 void
4354 ring_buffer_read_start(struct ring_buffer_iter *iter)
4355 {
4356 struct ring_buffer_per_cpu *cpu_buffer;
4357 unsigned long flags;
4358
4359 if (!iter)
4360 return;
4361
4362 cpu_buffer = iter->cpu_buffer;
4363
4364 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4365 arch_spin_lock(&cpu_buffer->lock);
4366 rb_iter_reset(iter);
4367 arch_spin_unlock(&cpu_buffer->lock);
4368 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4369 }
4370 EXPORT_SYMBOL_GPL(ring_buffer_read_start);
4371
4372 /**
4373 * ring_buffer_read_finish - finish reading the iterator of the buffer
4374 * @iter: The iterator retrieved by ring_buffer_start
4375 *
4376 * This re-enables the recording to the buffer, and frees the
4377 * iterator.
4378 */
4379 void
4380 ring_buffer_read_finish(struct ring_buffer_iter *iter)
4381 {
4382 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4383 unsigned long flags;
4384
4385 /*
4386 * Ring buffer is disabled from recording, here's a good place
4387 * to check the integrity of the ring buffer.
4388 * Must prevent readers from trying to read, as the check
4389 * clears the HEAD page and readers require it.
4390 */
4391 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4392 rb_check_pages(cpu_buffer);
4393 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4394
4395 atomic_dec(&cpu_buffer->resize_disabled);
4396 kfree(iter->event);
4397 kfree(iter);
4398 }
4399 EXPORT_SYMBOL_GPL(ring_buffer_read_finish);
4400
4401 /**
4402 * ring_buffer_iter_advance - advance the iterator to the next location
4403 * @iter: The ring buffer iterator
4404 *
4405 * Move the location of the iterator such that the next read will
4406 * be the next location of the iterator.
4407 */
4408 void ring_buffer_iter_advance(struct ring_buffer_iter *iter)
4409 {
4410 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4411 unsigned long flags;
4412
4413 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4414
4415 rb_advance_iter(iter);
4416
4417 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4418 }
4419 EXPORT_SYMBOL_GPL(ring_buffer_iter_advance);
4420
4421 /**
4422 * ring_buffer_size - return the size of the ring buffer (in bytes)
4423 * @buffer: The ring buffer.
4424 * @cpu: The CPU to get ring buffer size from.
4425 */
4426 unsigned long ring_buffer_size(struct trace_buffer *buffer, int cpu)
4427 {
4428 /*
4429 * Earlier, this method returned
4430 * BUF_PAGE_SIZE * buffer->nr_pages
4431 * Since the nr_pages field is now removed, we have converted this to
4432 * return the per cpu buffer value.
4433 */
4434 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4435 return 0;
4436
4437 return BUF_PAGE_SIZE * buffer->buffers[cpu]->nr_pages;
4438 }
4439 EXPORT_SYMBOL_GPL(ring_buffer_size);
4440
4441 static void
4442 rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
4443 {
4444 rb_head_page_deactivate(cpu_buffer);
4445
4446 cpu_buffer->head_page
4447 = list_entry(cpu_buffer->pages, struct buffer_page, list);
4448 local_set(&cpu_buffer->head_page->write, 0);
4449 local_set(&cpu_buffer->head_page->entries, 0);
4450 local_set(&cpu_buffer->head_page->page->commit, 0);
4451
4452 cpu_buffer->head_page->read = 0;
4453
4454 cpu_buffer->tail_page = cpu_buffer->head_page;
4455 cpu_buffer->commit_page = cpu_buffer->head_page;
4456
4457 INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
4458 INIT_LIST_HEAD(&cpu_buffer->new_pages);
4459 local_set(&cpu_buffer->reader_page->write, 0);
4460 local_set(&cpu_buffer->reader_page->entries, 0);
4461 local_set(&cpu_buffer->reader_page->page->commit, 0);
4462 cpu_buffer->reader_page->read = 0;
4463
4464 local_set(&cpu_buffer->entries_bytes, 0);
4465 local_set(&cpu_buffer->overrun, 0);
4466 local_set(&cpu_buffer->commit_overrun, 0);
4467 local_set(&cpu_buffer->dropped_events, 0);
4468 local_set(&cpu_buffer->entries, 0);
4469 local_set(&cpu_buffer->committing, 0);
4470 local_set(&cpu_buffer->commits, 0);
4471 local_set(&cpu_buffer->pages_touched, 0);
4472 local_set(&cpu_buffer->pages_read, 0);
4473 cpu_buffer->last_pages_touch = 0;
4474 cpu_buffer->shortest_full = 0;
4475 cpu_buffer->read = 0;
4476 cpu_buffer->read_bytes = 0;
4477
4478 cpu_buffer->write_stamp = 0;
4479 cpu_buffer->read_stamp = 0;
4480
4481 cpu_buffer->lost_events = 0;
4482 cpu_buffer->last_overrun = 0;
4483
4484 rb_head_page_activate(cpu_buffer);
4485 }
4486
4487 /**
4488 * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
4489 * @buffer: The ring buffer to reset a per cpu buffer of
4490 * @cpu: The CPU buffer to be reset
4491 */
4492 void ring_buffer_reset_cpu(struct trace_buffer *buffer, int cpu)
4493 {
4494 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4495 unsigned long flags;
4496
4497 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4498 return;
4499
4500 atomic_inc(&cpu_buffer->resize_disabled);
4501 atomic_inc(&cpu_buffer->record_disabled);
4502
4503 /* Make sure all commits have finished */
4504 synchronize_rcu();
4505
4506 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4507
4508 if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing)))
4509 goto out;
4510
4511 arch_spin_lock(&cpu_buffer->lock);
4512
4513 rb_reset_cpu(cpu_buffer);
4514
4515 arch_spin_unlock(&cpu_buffer->lock);
4516
4517 out:
4518 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4519
4520 atomic_dec(&cpu_buffer->record_disabled);
4521 atomic_dec(&cpu_buffer->resize_disabled);
4522 }
4523 EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu);
4524
4525 /**
4526 * ring_buffer_reset - reset a ring buffer
4527 * @buffer: The ring buffer to reset all cpu buffers
4528 */
4529 void ring_buffer_reset(struct trace_buffer *buffer)
4530 {
4531 int cpu;
4532
4533 for_each_buffer_cpu(buffer, cpu)
4534 ring_buffer_reset_cpu(buffer, cpu);
4535 }
4536 EXPORT_SYMBOL_GPL(ring_buffer_reset);
4537
4538 /**
4539 * rind_buffer_empty - is the ring buffer empty?
4540 * @buffer: The ring buffer to test
4541 */
4542 bool ring_buffer_empty(struct trace_buffer *buffer)
4543 {
4544 struct ring_buffer_per_cpu *cpu_buffer;
4545 unsigned long flags;
4546 bool dolock;
4547 int cpu;
4548 int ret;
4549
4550 /* yes this is racy, but if you don't like the race, lock the buffer */
4551 for_each_buffer_cpu(buffer, cpu) {
4552 cpu_buffer = buffer->buffers[cpu];
4553 local_irq_save(flags);
4554 dolock = rb_reader_lock(cpu_buffer);
4555 ret = rb_per_cpu_empty(cpu_buffer);
4556 rb_reader_unlock(cpu_buffer, dolock);
4557 local_irq_restore(flags);
4558
4559 if (!ret)
4560 return false;
4561 }
4562
4563 return true;
4564 }
4565 EXPORT_SYMBOL_GPL(ring_buffer_empty);
4566
4567 /**
4568 * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
4569 * @buffer: The ring buffer
4570 * @cpu: The CPU buffer to test
4571 */
4572 bool ring_buffer_empty_cpu(struct trace_buffer *buffer, int cpu)
4573 {
4574 struct ring_buffer_per_cpu *cpu_buffer;
4575 unsigned long flags;
4576 bool dolock;
4577 int ret;
4578
4579 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4580 return true;
4581
4582 cpu_buffer = buffer->buffers[cpu];
4583 local_irq_save(flags);
4584 dolock = rb_reader_lock(cpu_buffer);
4585 ret = rb_per_cpu_empty(cpu_buffer);
4586 rb_reader_unlock(cpu_buffer, dolock);
4587 local_irq_restore(flags);
4588
4589 return ret;
4590 }
4591 EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu);
4592
4593 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
4594 /**
4595 * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
4596 * @buffer_a: One buffer to swap with
4597 * @buffer_b: The other buffer to swap with
4598 * @cpu: the CPU of the buffers to swap
4599 *
4600 * This function is useful for tracers that want to take a "snapshot"
4601 * of a CPU buffer and has another back up buffer lying around.
4602 * it is expected that the tracer handles the cpu buffer not being
4603 * used at the moment.
4604 */
4605 int ring_buffer_swap_cpu(struct trace_buffer *buffer_a,
4606 struct trace_buffer *buffer_b, int cpu)
4607 {
4608 struct ring_buffer_per_cpu *cpu_buffer_a;
4609 struct ring_buffer_per_cpu *cpu_buffer_b;
4610 int ret = -EINVAL;
4611
4612 if (!cpumask_test_cpu(cpu, buffer_a->cpumask) ||
4613 !cpumask_test_cpu(cpu, buffer_b->cpumask))
4614 goto out;
4615
4616 cpu_buffer_a = buffer_a->buffers[cpu];
4617 cpu_buffer_b = buffer_b->buffers[cpu];
4618
4619 /* At least make sure the two buffers are somewhat the same */
4620 if (cpu_buffer_a->nr_pages != cpu_buffer_b->nr_pages)
4621 goto out;
4622
4623 ret = -EAGAIN;
4624
4625 if (atomic_read(&buffer_a->record_disabled))
4626 goto out;
4627
4628 if (atomic_read(&buffer_b->record_disabled))
4629 goto out;
4630
4631 if (atomic_read(&cpu_buffer_a->record_disabled))
4632 goto out;
4633
4634 if (atomic_read(&cpu_buffer_b->record_disabled))
4635 goto out;
4636
4637 /*
4638 * We can't do a synchronize_rcu here because this
4639 * function can be called in atomic context.
4640 * Normally this will be called from the same CPU as cpu.
4641 * If not it's up to the caller to protect this.
4642 */
4643 atomic_inc(&cpu_buffer_a->record_disabled);
4644 atomic_inc(&cpu_buffer_b->record_disabled);
4645
4646 ret = -EBUSY;
4647 if (local_read(&cpu_buffer_a->committing))
4648 goto out_dec;
4649 if (local_read(&cpu_buffer_b->committing))
4650 goto out_dec;
4651
4652 buffer_a->buffers[cpu] = cpu_buffer_b;
4653 buffer_b->buffers[cpu] = cpu_buffer_a;
4654
4655 cpu_buffer_b->buffer = buffer_a;
4656 cpu_buffer_a->buffer = buffer_b;
4657
4658 ret = 0;
4659
4660 out_dec:
4661 atomic_dec(&cpu_buffer_a->record_disabled);
4662 atomic_dec(&cpu_buffer_b->record_disabled);
4663 out:
4664 return ret;
4665 }
4666 EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu);
4667 #endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */
4668
4669 /**
4670 * ring_buffer_alloc_read_page - allocate a page to read from buffer
4671 * @buffer: the buffer to allocate for.
4672 * @cpu: the cpu buffer to allocate.
4673 *
4674 * This function is used in conjunction with ring_buffer_read_page.
4675 * When reading a full page from the ring buffer, these functions
4676 * can be used to speed up the process. The calling function should
4677 * allocate a few pages first with this function. Then when it
4678 * needs to get pages from the ring buffer, it passes the result
4679 * of this function into ring_buffer_read_page, which will swap
4680 * the page that was allocated, with the read page of the buffer.
4681 *
4682 * Returns:
4683 * The page allocated, or ERR_PTR
4684 */
4685 void *ring_buffer_alloc_read_page(struct trace_buffer *buffer, int cpu)
4686 {
4687 struct ring_buffer_per_cpu *cpu_buffer;
4688 struct buffer_data_page *bpage = NULL;
4689 unsigned long flags;
4690 struct page *page;
4691
4692 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4693 return ERR_PTR(-ENODEV);
4694
4695 cpu_buffer = buffer->buffers[cpu];
4696 local_irq_save(flags);
4697 arch_spin_lock(&cpu_buffer->lock);
4698
4699 if (cpu_buffer->free_page) {
4700 bpage = cpu_buffer->free_page;
4701 cpu_buffer->free_page = NULL;
4702 }
4703
4704 arch_spin_unlock(&cpu_buffer->lock);
4705 local_irq_restore(flags);
4706
4707 if (bpage)
4708 goto out;
4709
4710 page = alloc_pages_node(cpu_to_node(cpu),
4711 GFP_KERNEL | __GFP_NORETRY, 0);
4712 if (!page)
4713 return ERR_PTR(-ENOMEM);
4714
4715 bpage = page_address(page);
4716
4717 out:
4718 rb_init_page(bpage);
4719
4720 return bpage;
4721 }
4722 EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page);
4723
4724 /**
4725 * ring_buffer_free_read_page - free an allocated read page
4726 * @buffer: the buffer the page was allocate for
4727 * @cpu: the cpu buffer the page came from
4728 * @data: the page to free
4729 *
4730 * Free a page allocated from ring_buffer_alloc_read_page.
4731 */
4732 void ring_buffer_free_read_page(struct trace_buffer *buffer, int cpu, void *data)
4733 {
4734 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4735 struct buffer_data_page *bpage = data;
4736 struct page *page = virt_to_page(bpage);
4737 unsigned long flags;
4738
4739 /* If the page is still in use someplace else, we can't reuse it */
4740 if (page_ref_count(page) > 1)
4741 goto out;
4742
4743 local_irq_save(flags);
4744 arch_spin_lock(&cpu_buffer->lock);
4745
4746 if (!cpu_buffer->free_page) {
4747 cpu_buffer->free_page = bpage;
4748 bpage = NULL;
4749 }
4750
4751 arch_spin_unlock(&cpu_buffer->lock);
4752 local_irq_restore(flags);
4753
4754 out:
4755 free_page((unsigned long)bpage);
4756 }
4757 EXPORT_SYMBOL_GPL(ring_buffer_free_read_page);
4758
4759 /**
4760 * ring_buffer_read_page - extract a page from the ring buffer
4761 * @buffer: buffer to extract from
4762 * @data_page: the page to use allocated from ring_buffer_alloc_read_page
4763 * @len: amount to extract
4764 * @cpu: the cpu of the buffer to extract
4765 * @full: should the extraction only happen when the page is full.
4766 *
4767 * This function will pull out a page from the ring buffer and consume it.
4768 * @data_page must be the address of the variable that was returned
4769 * from ring_buffer_alloc_read_page. This is because the page might be used
4770 * to swap with a page in the ring buffer.
4771 *
4772 * for example:
4773 * rpage = ring_buffer_alloc_read_page(buffer, cpu);
4774 * if (IS_ERR(rpage))
4775 * return PTR_ERR(rpage);
4776 * ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0);
4777 * if (ret >= 0)
4778 * process_page(rpage, ret);
4779 *
4780 * When @full is set, the function will not return true unless
4781 * the writer is off the reader page.
4782 *
4783 * Note: it is up to the calling functions to handle sleeps and wakeups.
4784 * The ring buffer can be used anywhere in the kernel and can not
4785 * blindly call wake_up. The layer that uses the ring buffer must be
4786 * responsible for that.
4787 *
4788 * Returns:
4789 * >=0 if data has been transferred, returns the offset of consumed data.
4790 * <0 if no data has been transferred.
4791 */
4792 int ring_buffer_read_page(struct trace_buffer *buffer,
4793 void **data_page, size_t len, int cpu, int full)
4794 {
4795 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4796 struct ring_buffer_event *event;
4797 struct buffer_data_page *bpage;
4798 struct buffer_page *reader;
4799 unsigned long missed_events;
4800 unsigned long flags;
4801 unsigned int commit;
4802 unsigned int read;
4803 u64 save_timestamp;
4804 int ret = -1;
4805
4806 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4807 goto out;
4808
4809 /*
4810 * If len is not big enough to hold the page header, then
4811 * we can not copy anything.
4812 */
4813 if (len <= BUF_PAGE_HDR_SIZE)
4814 goto out;
4815
4816 len -= BUF_PAGE_HDR_SIZE;
4817
4818 if (!data_page)
4819 goto out;
4820
4821 bpage = *data_page;
4822 if (!bpage)
4823 goto out;
4824
4825 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4826
4827 reader = rb_get_reader_page(cpu_buffer);
4828 if (!reader)
4829 goto out_unlock;
4830
4831 event = rb_reader_event(cpu_buffer);
4832
4833 read = reader->read;
4834 commit = rb_page_commit(reader);
4835
4836 /* Check if any events were dropped */
4837 missed_events = cpu_buffer->lost_events;
4838
4839 /*
4840 * If this page has been partially read or
4841 * if len is not big enough to read the rest of the page or
4842 * a writer is still on the page, then
4843 * we must copy the data from the page to the buffer.
4844 * Otherwise, we can simply swap the page with the one passed in.
4845 */
4846 if (read || (len < (commit - read)) ||
4847 cpu_buffer->reader_page == cpu_buffer->commit_page) {
4848 struct buffer_data_page *rpage = cpu_buffer->reader_page->page;
4849 unsigned int rpos = read;
4850 unsigned int pos = 0;
4851 unsigned int size;
4852
4853 if (full)
4854 goto out_unlock;
4855
4856 if (len > (commit - read))
4857 len = (commit - read);
4858
4859 /* Always keep the time extend and data together */
4860 size = rb_event_ts_length(event);
4861
4862 if (len < size)
4863 goto out_unlock;
4864
4865 /* save the current timestamp, since the user will need it */
4866 save_timestamp = cpu_buffer->read_stamp;
4867
4868 /* Need to copy one event at a time */
4869 do {
4870 /* We need the size of one event, because
4871 * rb_advance_reader only advances by one event,
4872 * whereas rb_event_ts_length may include the size of
4873 * one or two events.
4874 * We have already ensured there's enough space if this
4875 * is a time extend. */
4876 size = rb_event_length(event);
4877 memcpy(bpage->data + pos, rpage->data + rpos, size);
4878
4879 len -= size;
4880
4881 rb_advance_reader(cpu_buffer);
4882 rpos = reader->read;
4883 pos += size;
4884
4885 if (rpos >= commit)
4886 break;
4887
4888 event = rb_reader_event(cpu_buffer);
4889 /* Always keep the time extend and data together */
4890 size = rb_event_ts_length(event);
4891 } while (len >= size);
4892
4893 /* update bpage */
4894 local_set(&bpage->commit, pos);
4895 bpage->time_stamp = save_timestamp;
4896
4897 /* we copied everything to the beginning */
4898 read = 0;
4899 } else {
4900 /* update the entry counter */
4901 cpu_buffer->read += rb_page_entries(reader);
4902 cpu_buffer->read_bytes += BUF_PAGE_SIZE;
4903
4904 /* swap the pages */
4905 rb_init_page(bpage);
4906 bpage = reader->page;
4907 reader->page = *data_page;
4908 local_set(&reader->write, 0);
4909 local_set(&reader->entries, 0);
4910 reader->read = 0;
4911 *data_page = bpage;
4912
4913 /*
4914 * Use the real_end for the data size,
4915 * This gives us a chance to store the lost events
4916 * on the page.
4917 */
4918 if (reader->real_end)
4919 local_set(&bpage->commit, reader->real_end);
4920 }
4921 ret = read;
4922
4923 cpu_buffer->lost_events = 0;
4924
4925 commit = local_read(&bpage->commit);
4926 /*
4927 * Set a flag in the commit field if we lost events
4928 */
4929 if (missed_events) {
4930 /* If there is room at the end of the page to save the
4931 * missed events, then record it there.
4932 */
4933 if (BUF_PAGE_SIZE - commit >= sizeof(missed_events)) {
4934 memcpy(&bpage->data[commit], &missed_events,
4935 sizeof(missed_events));
4936 local_add(RB_MISSED_STORED, &bpage->commit);
4937 commit += sizeof(missed_events);
4938 }
4939 local_add(RB_MISSED_EVENTS, &bpage->commit);
4940 }
4941
4942 /*
4943 * This page may be off to user land. Zero it out here.
4944 */
4945 if (commit < BUF_PAGE_SIZE)
4946 memset(&bpage->data[commit], 0, BUF_PAGE_SIZE - commit);
4947
4948 out_unlock:
4949 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4950
4951 out:
4952 return ret;
4953 }
4954 EXPORT_SYMBOL_GPL(ring_buffer_read_page);
4955
4956 /*
4957 * We only allocate new buffers, never free them if the CPU goes down.
4958 * If we were to free the buffer, then the user would lose any trace that was in
4959 * the buffer.
4960 */
4961 int trace_rb_cpu_prepare(unsigned int cpu, struct hlist_node *node)
4962 {
4963 struct trace_buffer *buffer;
4964 long nr_pages_same;
4965 int cpu_i;
4966 unsigned long nr_pages;
4967
4968 buffer = container_of(node, struct trace_buffer, node);
4969 if (cpumask_test_cpu(cpu, buffer->cpumask))
4970 return 0;
4971
4972 nr_pages = 0;
4973 nr_pages_same = 1;
4974 /* check if all cpu sizes are same */
4975 for_each_buffer_cpu(buffer, cpu_i) {
4976 /* fill in the size from first enabled cpu */
4977 if (nr_pages == 0)
4978 nr_pages = buffer->buffers[cpu_i]->nr_pages;
4979 if (nr_pages != buffer->buffers[cpu_i]->nr_pages) {
4980 nr_pages_same = 0;
4981 break;
4982 }
4983 }
4984 /* allocate minimum pages, user can later expand it */
4985 if (!nr_pages_same)
4986 nr_pages = 2;
4987 buffer->buffers[cpu] =
4988 rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
4989 if (!buffer->buffers[cpu]) {
4990 WARN(1, "failed to allocate ring buffer on CPU %u\n",
4991 cpu);
4992 return -ENOMEM;
4993 }
4994 smp_wmb();
4995 cpumask_set_cpu(cpu, buffer->cpumask);
4996 return 0;
4997 }
4998
4999 #ifdef CONFIG_RING_BUFFER_STARTUP_TEST
5000 /*
5001 * This is a basic integrity check of the ring buffer.
5002 * Late in the boot cycle this test will run when configured in.
5003 * It will kick off a thread per CPU that will go into a loop
5004 * writing to the per cpu ring buffer various sizes of data.
5005 * Some of the data will be large items, some small.
5006 *
5007 * Another thread is created that goes into a spin, sending out
5008 * IPIs to the other CPUs to also write into the ring buffer.
5009 * this is to test the nesting ability of the buffer.
5010 *
5011 * Basic stats are recorded and reported. If something in the
5012 * ring buffer should happen that's not expected, a big warning
5013 * is displayed and all ring buffers are disabled.
5014 */
5015 static struct task_struct *rb_threads[NR_CPUS] __initdata;
5016
5017 struct rb_test_data {
5018 struct trace_buffer *buffer;
5019 unsigned long events;
5020 unsigned long bytes_written;
5021 unsigned long bytes_alloc;
5022 unsigned long bytes_dropped;
5023 unsigned long events_nested;
5024 unsigned long bytes_written_nested;
5025 unsigned long bytes_alloc_nested;
5026 unsigned long bytes_dropped_nested;
5027 int min_size_nested;
5028 int max_size_nested;
5029 int max_size;
5030 int min_size;
5031 int cpu;
5032 int cnt;
5033 };
5034
5035 static struct rb_test_data rb_data[NR_CPUS] __initdata;
5036
5037 /* 1 meg per cpu */
5038 #define RB_TEST_BUFFER_SIZE 1048576
5039
5040 static char rb_string[] __initdata =
5041 "abcdefghijklmnopqrstuvwxyz1234567890!@#$%^&*()?+\\"
5042 "?+|:';\",.<>/?abcdefghijklmnopqrstuvwxyz1234567890"
5043 "!@#$%^&*()?+\\?+|:';\",.<>/?abcdefghijklmnopqrstuv";
5044
5045 static bool rb_test_started __initdata;
5046
5047 struct rb_item {
5048 int size;
5049 char str[];
5050 };
5051
5052 static __init int rb_write_something(struct rb_test_data *data, bool nested)
5053 {
5054 struct ring_buffer_event *event;
5055 struct rb_item *item;
5056 bool started;
5057 int event_len;
5058 int size;
5059 int len;
5060 int cnt;
5061
5062 /* Have nested writes different that what is written */
5063 cnt = data->cnt + (nested ? 27 : 0);
5064
5065 /* Multiply cnt by ~e, to make some unique increment */
5066 size = (cnt * 68 / 25) % (sizeof(rb_string) - 1);
5067
5068 len = size + sizeof(struct rb_item);
5069
5070 started = rb_test_started;
5071 /* read rb_test_started before checking buffer enabled */
5072 smp_rmb();
5073
5074 event = ring_buffer_lock_reserve(data->buffer, len);
5075 if (!event) {
5076 /* Ignore dropped events before test starts. */
5077 if (started) {
5078 if (nested)
5079 data->bytes_dropped += len;
5080 else
5081 data->bytes_dropped_nested += len;
5082 }
5083 return len;
5084 }
5085
5086 event_len = ring_buffer_event_length(event);
5087
5088 if (RB_WARN_ON(data->buffer, event_len < len))
5089 goto out;
5090
5091 item = ring_buffer_event_data(event);
5092 item->size = size;
5093 memcpy(item->str, rb_string, size);
5094
5095 if (nested) {
5096 data->bytes_alloc_nested += event_len;
5097 data->bytes_written_nested += len;
5098 data->events_nested++;
5099 if (!data->min_size_nested || len < data->min_size_nested)
5100 data->min_size_nested = len;
5101 if (len > data->max_size_nested)
5102 data->max_size_nested = len;
5103 } else {
5104 data->bytes_alloc += event_len;
5105 data->bytes_written += len;
5106 data->events++;
5107 if (!data->min_size || len < data->min_size)
5108 data->max_size = len;
5109 if (len > data->max_size)
5110 data->max_size = len;
5111 }
5112
5113 out:
5114 ring_buffer_unlock_commit(data->buffer, event);
5115
5116 return 0;
5117 }
5118
5119 static __init int rb_test(void *arg)
5120 {
5121 struct rb_test_data *data = arg;
5122
5123 while (!kthread_should_stop()) {
5124 rb_write_something(data, false);
5125 data->cnt++;
5126
5127 set_current_state(TASK_INTERRUPTIBLE);
5128 /* Now sleep between a min of 100-300us and a max of 1ms */
5129 usleep_range(((data->cnt % 3) + 1) * 100, 1000);
5130 }
5131
5132 return 0;
5133 }
5134
5135 static __init void rb_ipi(void *ignore)
5136 {
5137 struct rb_test_data *data;
5138 int cpu = smp_processor_id();
5139
5140 data = &rb_data[cpu];
5141 rb_write_something(data, true);
5142 }
5143
5144 static __init int rb_hammer_test(void *arg)
5145 {
5146 while (!kthread_should_stop()) {
5147
5148 /* Send an IPI to all cpus to write data! */
5149 smp_call_function(rb_ipi, NULL, 1);
5150 /* No sleep, but for non preempt, let others run */
5151 schedule();
5152 }
5153
5154 return 0;
5155 }
5156
5157 static __init int test_ringbuffer(void)
5158 {
5159 struct task_struct *rb_hammer;
5160 struct trace_buffer *buffer;
5161 int cpu;
5162 int ret = 0;
5163
5164 if (security_locked_down(LOCKDOWN_TRACEFS)) {
5165 pr_warn("Lockdown is enabled, skipping ring buffer tests\n");
5166 return 0;
5167 }
5168
5169 pr_info("Running ring buffer tests...\n");
5170
5171 buffer = ring_buffer_alloc(RB_TEST_BUFFER_SIZE, RB_FL_OVERWRITE);
5172 if (WARN_ON(!buffer))
5173 return 0;
5174
5175 /* Disable buffer so that threads can't write to it yet */
5176 ring_buffer_record_off(buffer);
5177
5178 for_each_online_cpu(cpu) {
5179 rb_data[cpu].buffer = buffer;
5180 rb_data[cpu].cpu = cpu;
5181 rb_data[cpu].cnt = cpu;
5182 rb_threads[cpu] = kthread_create(rb_test, &rb_data[cpu],
5183 "rbtester/%d", cpu);
5184 if (WARN_ON(IS_ERR(rb_threads[cpu]))) {
5185 pr_cont("FAILED\n");
5186 ret = PTR_ERR(rb_threads[cpu]);
5187 goto out_free;
5188 }
5189
5190 kthread_bind(rb_threads[cpu], cpu);
5191 wake_up_process(rb_threads[cpu]);
5192 }
5193
5194 /* Now create the rb hammer! */
5195 rb_hammer = kthread_run(rb_hammer_test, NULL, "rbhammer");
5196 if (WARN_ON(IS_ERR(rb_hammer))) {
5197 pr_cont("FAILED\n");
5198 ret = PTR_ERR(rb_hammer);
5199 goto out_free;
5200 }
5201
5202 ring_buffer_record_on(buffer);
5203 /*
5204 * Show buffer is enabled before setting rb_test_started.
5205 * Yes there's a small race window where events could be
5206 * dropped and the thread wont catch it. But when a ring
5207 * buffer gets enabled, there will always be some kind of
5208 * delay before other CPUs see it. Thus, we don't care about
5209 * those dropped events. We care about events dropped after
5210 * the threads see that the buffer is active.
5211 */
5212 smp_wmb();
5213 rb_test_started = true;
5214
5215 set_current_state(TASK_INTERRUPTIBLE);
5216 /* Just run for 10 seconds */;
5217 schedule_timeout(10 * HZ);
5218
5219 kthread_stop(rb_hammer);
5220
5221 out_free:
5222 for_each_online_cpu(cpu) {
5223 if (!rb_threads[cpu])
5224 break;
5225 kthread_stop(rb_threads[cpu]);
5226 }
5227 if (ret) {
5228 ring_buffer_free(buffer);
5229 return ret;
5230 }
5231
5232 /* Report! */
5233 pr_info("finished\n");
5234 for_each_online_cpu(cpu) {
5235 struct ring_buffer_event *event;
5236 struct rb_test_data *data = &rb_data[cpu];
5237 struct rb_item *item;
5238 unsigned long total_events;
5239 unsigned long total_dropped;
5240 unsigned long total_written;
5241 unsigned long total_alloc;
5242 unsigned long total_read = 0;
5243 unsigned long total_size = 0;
5244 unsigned long total_len = 0;
5245 unsigned long total_lost = 0;
5246 unsigned long lost;
5247 int big_event_size;
5248 int small_event_size;
5249
5250 ret = -1;
5251
5252 total_events = data->events + data->events_nested;
5253 total_written = data->bytes_written + data->bytes_written_nested;
5254 total_alloc = data->bytes_alloc + data->bytes_alloc_nested;
5255 total_dropped = data->bytes_dropped + data->bytes_dropped_nested;
5256
5257 big_event_size = data->max_size + data->max_size_nested;
5258 small_event_size = data->min_size + data->min_size_nested;
5259
5260 pr_info("CPU %d:\n", cpu);
5261 pr_info(" events: %ld\n", total_events);
5262 pr_info(" dropped bytes: %ld\n", total_dropped);
5263 pr_info(" alloced bytes: %ld\n", total_alloc);
5264 pr_info(" written bytes: %ld\n", total_written);
5265 pr_info(" biggest event: %d\n", big_event_size);
5266 pr_info(" smallest event: %d\n", small_event_size);
5267
5268 if (RB_WARN_ON(buffer, total_dropped))
5269 break;
5270
5271 ret = 0;
5272
5273 while ((event = ring_buffer_consume(buffer, cpu, NULL, &lost))) {
5274 total_lost += lost;
5275 item = ring_buffer_event_data(event);
5276 total_len += ring_buffer_event_length(event);
5277 total_size += item->size + sizeof(struct rb_item);
5278 if (memcmp(&item->str[0], rb_string, item->size) != 0) {
5279 pr_info("FAILED!\n");
5280 pr_info("buffer had: %.*s\n", item->size, item->str);
5281 pr_info("expected: %.*s\n", item->size, rb_string);
5282 RB_WARN_ON(buffer, 1);
5283 ret = -1;
5284 break;
5285 }
5286 total_read++;
5287 }
5288 if (ret)
5289 break;
5290
5291 ret = -1;
5292
5293 pr_info(" read events: %ld\n", total_read);
5294 pr_info(" lost events: %ld\n", total_lost);
5295 pr_info(" total events: %ld\n", total_lost + total_read);
5296 pr_info(" recorded len bytes: %ld\n", total_len);
5297 pr_info(" recorded size bytes: %ld\n", total_size);
5298 if (total_lost)
5299 pr_info(" With dropped events, record len and size may not match\n"
5300 " alloced and written from above\n");
5301 if (!total_lost) {
5302 if (RB_WARN_ON(buffer, total_len != total_alloc ||
5303 total_size != total_written))
5304 break;
5305 }
5306 if (RB_WARN_ON(buffer, total_lost + total_read != total_events))
5307 break;
5308
5309 ret = 0;
5310 }
5311 if (!ret)
5312 pr_info("Ring buffer PASSED!\n");
5313
5314 ring_buffer_free(buffer);
5315 return 0;
5316 }
5317
5318 late_initcall(test_ringbuffer);
5319 #endif /* CONFIG_RING_BUFFER_STARTUP_TEST */