]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - kernel/trace/trace_events_filter.c
Merge branch 'core-rcu-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git...
[mirror_ubuntu-jammy-kernel.git] / kernel / trace / trace_events_filter.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * trace_events_filter - generic event filtering
4 *
5 * Copyright (C) 2009 Tom Zanussi <tzanussi@gmail.com>
6 */
7
8 #include <linux/module.h>
9 #include <linux/ctype.h>
10 #include <linux/mutex.h>
11 #include <linux/perf_event.h>
12 #include <linux/slab.h>
13
14 #include "trace.h"
15 #include "trace_output.h"
16
17 #define DEFAULT_SYS_FILTER_MESSAGE \
18 "### global filter ###\n" \
19 "# Use this to set filters for multiple events.\n" \
20 "# Only events with the given fields will be affected.\n" \
21 "# If no events are modified, an error message will be displayed here"
22
23 /* Due to token parsing '<=' must be before '<' and '>=' must be before '>' */
24 #define OPS \
25 C( OP_GLOB, "~" ), \
26 C( OP_NE, "!=" ), \
27 C( OP_EQ, "==" ), \
28 C( OP_LE, "<=" ), \
29 C( OP_LT, "<" ), \
30 C( OP_GE, ">=" ), \
31 C( OP_GT, ">" ), \
32 C( OP_BAND, "&" ), \
33 C( OP_MAX, NULL )
34
35 #undef C
36 #define C(a, b) a
37
38 enum filter_op_ids { OPS };
39
40 #undef C
41 #define C(a, b) b
42
43 static const char * ops[] = { OPS };
44
45 /*
46 * pred functions are OP_LE, OP_LT, OP_GE, OP_GT, and OP_BAND
47 * pred_funcs_##type below must match the order of them above.
48 */
49 #define PRED_FUNC_START OP_LE
50 #define PRED_FUNC_MAX (OP_BAND - PRED_FUNC_START)
51
52 #define ERRORS \
53 C(NONE, "No error"), \
54 C(INVALID_OP, "Invalid operator"), \
55 C(TOO_MANY_OPEN, "Too many '('"), \
56 C(TOO_MANY_CLOSE, "Too few '('"), \
57 C(MISSING_QUOTE, "Missing matching quote"), \
58 C(OPERAND_TOO_LONG, "Operand too long"), \
59 C(EXPECT_STRING, "Expecting string field"), \
60 C(EXPECT_DIGIT, "Expecting numeric field"), \
61 C(ILLEGAL_FIELD_OP, "Illegal operation for field type"), \
62 C(FIELD_NOT_FOUND, "Field not found"), \
63 C(ILLEGAL_INTVAL, "Illegal integer value"), \
64 C(BAD_SUBSYS_FILTER, "Couldn't find or set field in one of a subsystem's events"), \
65 C(TOO_MANY_PREDS, "Too many terms in predicate expression"), \
66 C(INVALID_FILTER, "Meaningless filter expression"), \
67 C(IP_FIELD_ONLY, "Only 'ip' field is supported for function trace"), \
68 C(INVALID_VALUE, "Invalid value (did you forget quotes)?"), \
69 C(NO_FILTER, "No filter found"),
70
71 #undef C
72 #define C(a, b) FILT_ERR_##a
73
74 enum { ERRORS };
75
76 #undef C
77 #define C(a, b) b
78
79 static char *err_text[] = { ERRORS };
80
81 /* Called after a '!' character but "!=" and "!~" are not "not"s */
82 static bool is_not(const char *str)
83 {
84 switch (str[1]) {
85 case '=':
86 case '~':
87 return false;
88 }
89 return true;
90 }
91
92 /**
93 * prog_entry - a singe entry in the filter program
94 * @target: Index to jump to on a branch (actually one minus the index)
95 * @when_to_branch: The value of the result of the predicate to do a branch
96 * @pred: The predicate to execute.
97 */
98 struct prog_entry {
99 int target;
100 int when_to_branch;
101 struct filter_pred *pred;
102 };
103
104 /**
105 * update_preds- assign a program entry a label target
106 * @prog: The program array
107 * @N: The index of the current entry in @prog
108 * @when_to_branch: What to assign a program entry for its branch condition
109 *
110 * The program entry at @N has a target that points to the index of a program
111 * entry that can have its target and when_to_branch fields updated.
112 * Update the current program entry denoted by index @N target field to be
113 * that of the updated entry. This will denote the entry to update if
114 * we are processing an "||" after an "&&"
115 */
116 static void update_preds(struct prog_entry *prog, int N, int invert)
117 {
118 int t, s;
119
120 t = prog[N].target;
121 s = prog[t].target;
122 prog[t].when_to_branch = invert;
123 prog[t].target = N;
124 prog[N].target = s;
125 }
126
127 struct filter_parse_error {
128 int lasterr;
129 int lasterr_pos;
130 };
131
132 static void parse_error(struct filter_parse_error *pe, int err, int pos)
133 {
134 pe->lasterr = err;
135 pe->lasterr_pos = pos;
136 }
137
138 typedef int (*parse_pred_fn)(const char *str, void *data, int pos,
139 struct filter_parse_error *pe,
140 struct filter_pred **pred);
141
142 enum {
143 INVERT = 1,
144 PROCESS_AND = 2,
145 PROCESS_OR = 4,
146 };
147
148 /*
149 * Without going into a formal proof, this explains the method that is used in
150 * parsing the logical expressions.
151 *
152 * For example, if we have: "a && !(!b || (c && g)) || d || e && !f"
153 * The first pass will convert it into the following program:
154 *
155 * n1: r=a; l1: if (!r) goto l4;
156 * n2: r=b; l2: if (!r) goto l4;
157 * n3: r=c; r=!r; l3: if (r) goto l4;
158 * n4: r=g; r=!r; l4: if (r) goto l5;
159 * n5: r=d; l5: if (r) goto T
160 * n6: r=e; l6: if (!r) goto l7;
161 * n7: r=f; r=!r; l7: if (!r) goto F
162 * T: return TRUE
163 * F: return FALSE
164 *
165 * To do this, we use a data structure to represent each of the above
166 * predicate and conditions that has:
167 *
168 * predicate, when_to_branch, invert, target
169 *
170 * The "predicate" will hold the function to determine the result "r".
171 * The "when_to_branch" denotes what "r" should be if a branch is to be taken
172 * "&&" would contain "!r" or (0) and "||" would contain "r" or (1).
173 * The "invert" holds whether the value should be reversed before testing.
174 * The "target" contains the label "l#" to jump to.
175 *
176 * A stack is created to hold values when parentheses are used.
177 *
178 * To simplify the logic, the labels will start at 0 and not 1.
179 *
180 * The possible invert values are 1 and 0. The number of "!"s that are in scope
181 * before the predicate determines the invert value, if the number is odd then
182 * the invert value is 1 and 0 otherwise. This means the invert value only
183 * needs to be toggled when a new "!" is introduced compared to what is stored
184 * on the stack, where parentheses were used.
185 *
186 * The top of the stack and "invert" are initialized to zero.
187 *
188 * ** FIRST PASS **
189 *
190 * #1 A loop through all the tokens is done:
191 *
192 * #2 If the token is an "(", the stack is push, and the current stack value
193 * gets the current invert value, and the loop continues to the next token.
194 * The top of the stack saves the "invert" value to keep track of what
195 * the current inversion is. As "!(a && !b || c)" would require all
196 * predicates being affected separately by the "!" before the parentheses.
197 * And that would end up being equivalent to "(!a || b) && !c"
198 *
199 * #3 If the token is an "!", the current "invert" value gets inverted, and
200 * the loop continues. Note, if the next token is a predicate, then
201 * this "invert" value is only valid for the current program entry,
202 * and does not affect other predicates later on.
203 *
204 * The only other acceptable token is the predicate string.
205 *
206 * #4 A new entry into the program is added saving: the predicate and the
207 * current value of "invert". The target is currently assigned to the
208 * previous program index (this will not be its final value).
209 *
210 * #5 We now enter another loop and look at the next token. The only valid
211 * tokens are ")", "&&", "||" or end of the input string "\0".
212 *
213 * #6 The invert variable is reset to the current value saved on the top of
214 * the stack.
215 *
216 * #7 The top of the stack holds not only the current invert value, but also
217 * if a "&&" or "||" needs to be processed. Note, the "&&" takes higher
218 * precedence than "||". That is "a && b || c && d" is equivalent to
219 * "(a && b) || (c && d)". Thus the first thing to do is to see if "&&" needs
220 * to be processed. This is the case if an "&&" was the last token. If it was
221 * then we call update_preds(). This takes the program, the current index in
222 * the program, and the current value of "invert". More will be described
223 * below about this function.
224 *
225 * #8 If the next token is "&&" then we set a flag in the top of the stack
226 * that denotes that "&&" needs to be processed, break out of this loop
227 * and continue with the outer loop.
228 *
229 * #9 Otherwise, if a "||" needs to be processed then update_preds() is called.
230 * This is called with the program, the current index in the program, but
231 * this time with an inverted value of "invert" (that is !invert). This is
232 * because the value taken will become the "when_to_branch" value of the
233 * program.
234 * Note, this is called when the next token is not an "&&". As stated before,
235 * "&&" takes higher precedence, and "||" should not be processed yet if the
236 * next logical operation is "&&".
237 *
238 * #10 If the next token is "||" then we set a flag in the top of the stack
239 * that denotes that "||" needs to be processed, break out of this loop
240 * and continue with the outer loop.
241 *
242 * #11 If this is the end of the input string "\0" then we break out of both
243 * loops.
244 *
245 * #12 Otherwise, the next token is ")", where we pop the stack and continue
246 * this inner loop.
247 *
248 * Now to discuss the update_pred() function, as that is key to the setting up
249 * of the program. Remember the "target" of the program is initialized to the
250 * previous index and not the "l" label. The target holds the index into the
251 * program that gets affected by the operand. Thus if we have something like
252 * "a || b && c", when we process "a" the target will be "-1" (undefined).
253 * When we process "b", its target is "0", which is the index of "a", as that's
254 * the predicate that is affected by "||". But because the next token after "b"
255 * is "&&" we don't call update_preds(). Instead continue to "c". As the
256 * next token after "c" is not "&&" but the end of input, we first process the
257 * "&&" by calling update_preds() for the "&&" then we process the "||" by
258 * callin updates_preds() with the values for processing "||".
259 *
260 * What does that mean? What update_preds() does is to first save the "target"
261 * of the program entry indexed by the current program entry's "target"
262 * (remember the "target" is initialized to previous program entry), and then
263 * sets that "target" to the current index which represents the label "l#".
264 * That entry's "when_to_branch" is set to the value passed in (the "invert"
265 * or "!invert"). Then it sets the current program entry's target to the saved
266 * "target" value (the old value of the program that had its "target" updated
267 * to the label).
268 *
269 * Looking back at "a || b && c", we have the following steps:
270 * "a" - prog[0] = { "a", X, -1 } // pred, when_to_branch, target
271 * "||" - flag that we need to process "||"; continue outer loop
272 * "b" - prog[1] = { "b", X, 0 }
273 * "&&" - flag that we need to process "&&"; continue outer loop
274 * (Notice we did not process "||")
275 * "c" - prog[2] = { "c", X, 1 }
276 * update_preds(prog, 2, 0); // invert = 0 as we are processing "&&"
277 * t = prog[2].target; // t = 1
278 * s = prog[t].target; // s = 0
279 * prog[t].target = 2; // Set target to "l2"
280 * prog[t].when_to_branch = 0;
281 * prog[2].target = s;
282 * update_preds(prog, 2, 1); // invert = 1 as we are now processing "||"
283 * t = prog[2].target; // t = 0
284 * s = prog[t].target; // s = -1
285 * prog[t].target = 2; // Set target to "l2"
286 * prog[t].when_to_branch = 1;
287 * prog[2].target = s;
288 *
289 * #13 Which brings us to the final step of the first pass, which is to set
290 * the last program entry's when_to_branch and target, which will be
291 * when_to_branch = 0; target = N; ( the label after the program entry after
292 * the last program entry processed above).
293 *
294 * If we denote "TRUE" to be the entry after the last program entry processed,
295 * and "FALSE" the program entry after that, we are now done with the first
296 * pass.
297 *
298 * Making the above "a || b && c" have a progam of:
299 * prog[0] = { "a", 1, 2 }
300 * prog[1] = { "b", 0, 2 }
301 * prog[2] = { "c", 0, 3 }
302 *
303 * Which translates into:
304 * n0: r = a; l0: if (r) goto l2;
305 * n1: r = b; l1: if (!r) goto l2;
306 * n2: r = c; l2: if (!r) goto l3; // Which is the same as "goto F;"
307 * T: return TRUE; l3:
308 * F: return FALSE
309 *
310 * Although, after the first pass, the program is correct, it is
311 * inefficient. The simple sample of "a || b && c" could be easily been
312 * converted into:
313 * n0: r = a; if (r) goto T
314 * n1: r = b; if (!r) goto F
315 * n2: r = c; if (!r) goto F
316 * T: return TRUE;
317 * F: return FALSE;
318 *
319 * The First Pass is over the input string. The next too passes are over
320 * the program itself.
321 *
322 * ** SECOND PASS **
323 *
324 * Which brings us to the second pass. If a jump to a label has the
325 * same condition as that label, it can instead jump to its target.
326 * The original example of "a && !(!b || (c && g)) || d || e && !f"
327 * where the first pass gives us:
328 *
329 * n1: r=a; l1: if (!r) goto l4;
330 * n2: r=b; l2: if (!r) goto l4;
331 * n3: r=c; r=!r; l3: if (r) goto l4;
332 * n4: r=g; r=!r; l4: if (r) goto l5;
333 * n5: r=d; l5: if (r) goto T
334 * n6: r=e; l6: if (!r) goto l7;
335 * n7: r=f; r=!r; l7: if (!r) goto F:
336 * T: return TRUE;
337 * F: return FALSE
338 *
339 * We can see that "l3: if (r) goto l4;" and at l4, we have "if (r) goto l5;".
340 * And "l5: if (r) goto T", we could optimize this by converting l3 and l4
341 * to go directly to T. To accomplish this, we start from the last
342 * entry in the program and work our way back. If the target of the entry
343 * has the same "when_to_branch" then we could use that entry's target.
344 * Doing this, the above would end up as:
345 *
346 * n1: r=a; l1: if (!r) goto l4;
347 * n2: r=b; l2: if (!r) goto l4;
348 * n3: r=c; r=!r; l3: if (r) goto T;
349 * n4: r=g; r=!r; l4: if (r) goto T;
350 * n5: r=d; l5: if (r) goto T;
351 * n6: r=e; l6: if (!r) goto F;
352 * n7: r=f; r=!r; l7: if (!r) goto F;
353 * T: return TRUE
354 * F: return FALSE
355 *
356 * In that same pass, if the "when_to_branch" doesn't match, we can simply
357 * go to the program entry after the label. That is, "l2: if (!r) goto l4;"
358 * where "l4: if (r) goto T;", then we can convert l2 to be:
359 * "l2: if (!r) goto n5;".
360 *
361 * This will have the second pass give us:
362 * n1: r=a; l1: if (!r) goto n5;
363 * n2: r=b; l2: if (!r) goto n5;
364 * n3: r=c; r=!r; l3: if (r) goto T;
365 * n4: r=g; r=!r; l4: if (r) goto T;
366 * n5: r=d; l5: if (r) goto T
367 * n6: r=e; l6: if (!r) goto F;
368 * n7: r=f; r=!r; l7: if (!r) goto F
369 * T: return TRUE
370 * F: return FALSE
371 *
372 * Notice, all the "l#" labels are no longer used, and they can now
373 * be discarded.
374 *
375 * ** THIRD PASS **
376 *
377 * For the third pass we deal with the inverts. As they simply just
378 * make the "when_to_branch" get inverted, a simple loop over the
379 * program to that does: "when_to_branch ^= invert;" will do the
380 * job, leaving us with:
381 * n1: r=a; if (!r) goto n5;
382 * n2: r=b; if (!r) goto n5;
383 * n3: r=c: if (!r) goto T;
384 * n4: r=g; if (!r) goto T;
385 * n5: r=d; if (r) goto T
386 * n6: r=e; if (!r) goto F;
387 * n7: r=f; if (r) goto F
388 * T: return TRUE
389 * F: return FALSE
390 *
391 * As "r = a; if (!r) goto n5;" is obviously the same as
392 * "if (!a) goto n5;" without doing anything we can interperate the
393 * program as:
394 * n1: if (!a) goto n5;
395 * n2: if (!b) goto n5;
396 * n3: if (!c) goto T;
397 * n4: if (!g) goto T;
398 * n5: if (d) goto T
399 * n6: if (!e) goto F;
400 * n7: if (f) goto F
401 * T: return TRUE
402 * F: return FALSE
403 *
404 * Since the inverts are discarded at the end, there's no reason to store
405 * them in the program array (and waste memory). A separate array to hold
406 * the inverts is used and freed at the end.
407 */
408 static struct prog_entry *
409 predicate_parse(const char *str, int nr_parens, int nr_preds,
410 parse_pred_fn parse_pred, void *data,
411 struct filter_parse_error *pe)
412 {
413 struct prog_entry *prog_stack;
414 struct prog_entry *prog;
415 const char *ptr = str;
416 char *inverts = NULL;
417 int *op_stack;
418 int *top;
419 int invert = 0;
420 int ret = -ENOMEM;
421 int len;
422 int N = 0;
423 int i;
424
425 nr_preds += 2; /* For TRUE and FALSE */
426
427 op_stack = kmalloc_array(nr_parens, sizeof(*op_stack), GFP_KERNEL);
428 if (!op_stack)
429 return ERR_PTR(-ENOMEM);
430 prog_stack = kmalloc_array(nr_preds, sizeof(*prog_stack), GFP_KERNEL);
431 if (!prog_stack) {
432 parse_error(pe, -ENOMEM, 0);
433 goto out_free;
434 }
435 inverts = kmalloc_array(nr_preds, sizeof(*inverts), GFP_KERNEL);
436 if (!inverts) {
437 parse_error(pe, -ENOMEM, 0);
438 goto out_free;
439 }
440
441 top = op_stack;
442 prog = prog_stack;
443 *top = 0;
444
445 /* First pass */
446 while (*ptr) { /* #1 */
447 const char *next = ptr++;
448
449 if (isspace(*next))
450 continue;
451
452 switch (*next) {
453 case '(': /* #2 */
454 if (top - op_stack > nr_parens)
455 return ERR_PTR(-EINVAL);
456 *(++top) = invert;
457 continue;
458 case '!': /* #3 */
459 if (!is_not(next))
460 break;
461 invert = !invert;
462 continue;
463 }
464
465 if (N >= nr_preds) {
466 parse_error(pe, FILT_ERR_TOO_MANY_PREDS, next - str);
467 goto out_free;
468 }
469
470 inverts[N] = invert; /* #4 */
471 prog[N].target = N-1;
472
473 len = parse_pred(next, data, ptr - str, pe, &prog[N].pred);
474 if (len < 0) {
475 ret = len;
476 goto out_free;
477 }
478 ptr = next + len;
479
480 N++;
481
482 ret = -1;
483 while (1) { /* #5 */
484 next = ptr++;
485 if (isspace(*next))
486 continue;
487
488 switch (*next) {
489 case ')':
490 case '\0':
491 break;
492 case '&':
493 case '|':
494 if (next[1] == next[0]) {
495 ptr++;
496 break;
497 }
498 default:
499 parse_error(pe, FILT_ERR_TOO_MANY_PREDS,
500 next - str);
501 goto out_free;
502 }
503
504 invert = *top & INVERT;
505
506 if (*top & PROCESS_AND) { /* #7 */
507 update_preds(prog, N - 1, invert);
508 *top &= ~PROCESS_AND;
509 }
510 if (*next == '&') { /* #8 */
511 *top |= PROCESS_AND;
512 break;
513 }
514 if (*top & PROCESS_OR) { /* #9 */
515 update_preds(prog, N - 1, !invert);
516 *top &= ~PROCESS_OR;
517 }
518 if (*next == '|') { /* #10 */
519 *top |= PROCESS_OR;
520 break;
521 }
522 if (!*next) /* #11 */
523 goto out;
524
525 if (top == op_stack) {
526 ret = -1;
527 /* Too few '(' */
528 parse_error(pe, FILT_ERR_TOO_MANY_CLOSE, ptr - str);
529 goto out_free;
530 }
531 top--; /* #12 */
532 }
533 }
534 out:
535 if (top != op_stack) {
536 /* Too many '(' */
537 parse_error(pe, FILT_ERR_TOO_MANY_OPEN, ptr - str);
538 goto out_free;
539 }
540
541 if (!N) {
542 /* No program? */
543 ret = -EINVAL;
544 parse_error(pe, FILT_ERR_NO_FILTER, ptr - str);
545 goto out_free;
546 }
547
548 prog[N].pred = NULL; /* #13 */
549 prog[N].target = 1; /* TRUE */
550 prog[N+1].pred = NULL;
551 prog[N+1].target = 0; /* FALSE */
552 prog[N-1].target = N;
553 prog[N-1].when_to_branch = false;
554
555 /* Second Pass */
556 for (i = N-1 ; i--; ) {
557 int target = prog[i].target;
558 if (prog[i].when_to_branch == prog[target].when_to_branch)
559 prog[i].target = prog[target].target;
560 }
561
562 /* Third Pass */
563 for (i = 0; i < N; i++) {
564 invert = inverts[i] ^ prog[i].when_to_branch;
565 prog[i].when_to_branch = invert;
566 /* Make sure the program always moves forward */
567 if (WARN_ON(prog[i].target <= i)) {
568 ret = -EINVAL;
569 goto out_free;
570 }
571 }
572
573 kfree(op_stack);
574 kfree(inverts);
575 return prog;
576 out_free:
577 kfree(op_stack);
578 kfree(inverts);
579 kfree(prog_stack);
580 return ERR_PTR(ret);
581 }
582
583 #define DEFINE_COMPARISON_PRED(type) \
584 static int filter_pred_LT_##type(struct filter_pred *pred, void *event) \
585 { \
586 type *addr = (type *)(event + pred->offset); \
587 type val = (type)pred->val; \
588 return *addr < val; \
589 } \
590 static int filter_pred_LE_##type(struct filter_pred *pred, void *event) \
591 { \
592 type *addr = (type *)(event + pred->offset); \
593 type val = (type)pred->val; \
594 return *addr <= val; \
595 } \
596 static int filter_pred_GT_##type(struct filter_pred *pred, void *event) \
597 { \
598 type *addr = (type *)(event + pred->offset); \
599 type val = (type)pred->val; \
600 return *addr > val; \
601 } \
602 static int filter_pred_GE_##type(struct filter_pred *pred, void *event) \
603 { \
604 type *addr = (type *)(event + pred->offset); \
605 type val = (type)pred->val; \
606 return *addr >= val; \
607 } \
608 static int filter_pred_BAND_##type(struct filter_pred *pred, void *event) \
609 { \
610 type *addr = (type *)(event + pred->offset); \
611 type val = (type)pred->val; \
612 return !!(*addr & val); \
613 } \
614 static const filter_pred_fn_t pred_funcs_##type[] = { \
615 filter_pred_LE_##type, \
616 filter_pred_LT_##type, \
617 filter_pred_GE_##type, \
618 filter_pred_GT_##type, \
619 filter_pred_BAND_##type, \
620 };
621
622 #define DEFINE_EQUALITY_PRED(size) \
623 static int filter_pred_##size(struct filter_pred *pred, void *event) \
624 { \
625 u##size *addr = (u##size *)(event + pred->offset); \
626 u##size val = (u##size)pred->val; \
627 int match; \
628 \
629 match = (val == *addr) ^ pred->not; \
630 \
631 return match; \
632 }
633
634 DEFINE_COMPARISON_PRED(s64);
635 DEFINE_COMPARISON_PRED(u64);
636 DEFINE_COMPARISON_PRED(s32);
637 DEFINE_COMPARISON_PRED(u32);
638 DEFINE_COMPARISON_PRED(s16);
639 DEFINE_COMPARISON_PRED(u16);
640 DEFINE_COMPARISON_PRED(s8);
641 DEFINE_COMPARISON_PRED(u8);
642
643 DEFINE_EQUALITY_PRED(64);
644 DEFINE_EQUALITY_PRED(32);
645 DEFINE_EQUALITY_PRED(16);
646 DEFINE_EQUALITY_PRED(8);
647
648 /* Filter predicate for fixed sized arrays of characters */
649 static int filter_pred_string(struct filter_pred *pred, void *event)
650 {
651 char *addr = (char *)(event + pred->offset);
652 int cmp, match;
653
654 cmp = pred->regex.match(addr, &pred->regex, pred->regex.field_len);
655
656 match = cmp ^ pred->not;
657
658 return match;
659 }
660
661 /* Filter predicate for char * pointers */
662 static int filter_pred_pchar(struct filter_pred *pred, void *event)
663 {
664 char **addr = (char **)(event + pred->offset);
665 int cmp, match;
666 int len = strlen(*addr) + 1; /* including tailing '\0' */
667
668 cmp = pred->regex.match(*addr, &pred->regex, len);
669
670 match = cmp ^ pred->not;
671
672 return match;
673 }
674
675 /*
676 * Filter predicate for dynamic sized arrays of characters.
677 * These are implemented through a list of strings at the end
678 * of the entry.
679 * Also each of these strings have a field in the entry which
680 * contains its offset from the beginning of the entry.
681 * We have then first to get this field, dereference it
682 * and add it to the address of the entry, and at last we have
683 * the address of the string.
684 */
685 static int filter_pred_strloc(struct filter_pred *pred, void *event)
686 {
687 u32 str_item = *(u32 *)(event + pred->offset);
688 int str_loc = str_item & 0xffff;
689 int str_len = str_item >> 16;
690 char *addr = (char *)(event + str_loc);
691 int cmp, match;
692
693 cmp = pred->regex.match(addr, &pred->regex, str_len);
694
695 match = cmp ^ pred->not;
696
697 return match;
698 }
699
700 /* Filter predicate for CPUs. */
701 static int filter_pred_cpu(struct filter_pred *pred, void *event)
702 {
703 int cpu, cmp;
704
705 cpu = raw_smp_processor_id();
706 cmp = pred->val;
707
708 switch (pred->op) {
709 case OP_EQ:
710 return cpu == cmp;
711 case OP_NE:
712 return cpu != cmp;
713 case OP_LT:
714 return cpu < cmp;
715 case OP_LE:
716 return cpu <= cmp;
717 case OP_GT:
718 return cpu > cmp;
719 case OP_GE:
720 return cpu >= cmp;
721 default:
722 return 0;
723 }
724 }
725
726 /* Filter predicate for COMM. */
727 static int filter_pred_comm(struct filter_pred *pred, void *event)
728 {
729 int cmp;
730
731 cmp = pred->regex.match(current->comm, &pred->regex,
732 TASK_COMM_LEN);
733 return cmp ^ pred->not;
734 }
735
736 static int filter_pred_none(struct filter_pred *pred, void *event)
737 {
738 return 0;
739 }
740
741 /*
742 * regex_match_foo - Basic regex callbacks
743 *
744 * @str: the string to be searched
745 * @r: the regex structure containing the pattern string
746 * @len: the length of the string to be searched (including '\0')
747 *
748 * Note:
749 * - @str might not be NULL-terminated if it's of type DYN_STRING
750 * or STATIC_STRING, unless @len is zero.
751 */
752
753 static int regex_match_full(char *str, struct regex *r, int len)
754 {
755 /* len of zero means str is dynamic and ends with '\0' */
756 if (!len)
757 return strcmp(str, r->pattern) == 0;
758
759 return strncmp(str, r->pattern, len) == 0;
760 }
761
762 static int regex_match_front(char *str, struct regex *r, int len)
763 {
764 if (len && len < r->len)
765 return 0;
766
767 return strncmp(str, r->pattern, r->len) == 0;
768 }
769
770 static int regex_match_middle(char *str, struct regex *r, int len)
771 {
772 if (!len)
773 return strstr(str, r->pattern) != NULL;
774
775 return strnstr(str, r->pattern, len) != NULL;
776 }
777
778 static int regex_match_end(char *str, struct regex *r, int len)
779 {
780 int strlen = len - 1;
781
782 if (strlen >= r->len &&
783 memcmp(str + strlen - r->len, r->pattern, r->len) == 0)
784 return 1;
785 return 0;
786 }
787
788 static int regex_match_glob(char *str, struct regex *r, int len __maybe_unused)
789 {
790 if (glob_match(r->pattern, str))
791 return 1;
792 return 0;
793 }
794
795 /**
796 * filter_parse_regex - parse a basic regex
797 * @buff: the raw regex
798 * @len: length of the regex
799 * @search: will point to the beginning of the string to compare
800 * @not: tell whether the match will have to be inverted
801 *
802 * This passes in a buffer containing a regex and this function will
803 * set search to point to the search part of the buffer and
804 * return the type of search it is (see enum above).
805 * This does modify buff.
806 *
807 * Returns enum type.
808 * search returns the pointer to use for comparison.
809 * not returns 1 if buff started with a '!'
810 * 0 otherwise.
811 */
812 enum regex_type filter_parse_regex(char *buff, int len, char **search, int *not)
813 {
814 int type = MATCH_FULL;
815 int i;
816
817 if (buff[0] == '!') {
818 *not = 1;
819 buff++;
820 len--;
821 } else
822 *not = 0;
823
824 *search = buff;
825
826 for (i = 0; i < len; i++) {
827 if (buff[i] == '*') {
828 if (!i) {
829 type = MATCH_END_ONLY;
830 } else if (i == len - 1) {
831 if (type == MATCH_END_ONLY)
832 type = MATCH_MIDDLE_ONLY;
833 else
834 type = MATCH_FRONT_ONLY;
835 buff[i] = 0;
836 break;
837 } else { /* pattern continues, use full glob */
838 return MATCH_GLOB;
839 }
840 } else if (strchr("[?\\", buff[i])) {
841 return MATCH_GLOB;
842 }
843 }
844 if (buff[0] == '*')
845 *search = buff + 1;
846
847 return type;
848 }
849
850 static void filter_build_regex(struct filter_pred *pred)
851 {
852 struct regex *r = &pred->regex;
853 char *search;
854 enum regex_type type = MATCH_FULL;
855
856 if (pred->op == OP_GLOB) {
857 type = filter_parse_regex(r->pattern, r->len, &search, &pred->not);
858 r->len = strlen(search);
859 memmove(r->pattern, search, r->len+1);
860 }
861
862 switch (type) {
863 case MATCH_FULL:
864 r->match = regex_match_full;
865 break;
866 case MATCH_FRONT_ONLY:
867 r->match = regex_match_front;
868 break;
869 case MATCH_MIDDLE_ONLY:
870 r->match = regex_match_middle;
871 break;
872 case MATCH_END_ONLY:
873 r->match = regex_match_end;
874 break;
875 case MATCH_GLOB:
876 r->match = regex_match_glob;
877 break;
878 }
879 }
880
881 /* return 1 if event matches, 0 otherwise (discard) */
882 int filter_match_preds(struct event_filter *filter, void *rec)
883 {
884 struct prog_entry *prog;
885 int i;
886
887 /* no filter is considered a match */
888 if (!filter)
889 return 1;
890
891 /* Protected by either SRCU(tracepoint_srcu) or preempt_disable */
892 prog = rcu_dereference_raw(filter->prog);
893 if (!prog)
894 return 1;
895
896 for (i = 0; prog[i].pred; i++) {
897 struct filter_pred *pred = prog[i].pred;
898 int match = pred->fn(pred, rec);
899 if (match == prog[i].when_to_branch)
900 i = prog[i].target;
901 }
902 return prog[i].target;
903 }
904 EXPORT_SYMBOL_GPL(filter_match_preds);
905
906 static void remove_filter_string(struct event_filter *filter)
907 {
908 if (!filter)
909 return;
910
911 kfree(filter->filter_string);
912 filter->filter_string = NULL;
913 }
914
915 static void append_filter_err(struct filter_parse_error *pe,
916 struct event_filter *filter)
917 {
918 struct trace_seq *s;
919 int pos = pe->lasterr_pos;
920 char *buf;
921 int len;
922
923 if (WARN_ON(!filter->filter_string))
924 return;
925
926 s = kmalloc(sizeof(*s), GFP_KERNEL);
927 if (!s)
928 return;
929 trace_seq_init(s);
930
931 len = strlen(filter->filter_string);
932 if (pos > len)
933 pos = len;
934
935 /* indexing is off by one */
936 if (pos)
937 pos++;
938
939 trace_seq_puts(s, filter->filter_string);
940 if (pe->lasterr > 0) {
941 trace_seq_printf(s, "\n%*s", pos, "^");
942 trace_seq_printf(s, "\nparse_error: %s\n", err_text[pe->lasterr]);
943 } else {
944 trace_seq_printf(s, "\nError: (%d)\n", pe->lasterr);
945 }
946 trace_seq_putc(s, 0);
947 buf = kmemdup_nul(s->buffer, s->seq.len, GFP_KERNEL);
948 if (buf) {
949 kfree(filter->filter_string);
950 filter->filter_string = buf;
951 }
952 kfree(s);
953 }
954
955 static inline struct event_filter *event_filter(struct trace_event_file *file)
956 {
957 return file->filter;
958 }
959
960 /* caller must hold event_mutex */
961 void print_event_filter(struct trace_event_file *file, struct trace_seq *s)
962 {
963 struct event_filter *filter = event_filter(file);
964
965 if (filter && filter->filter_string)
966 trace_seq_printf(s, "%s\n", filter->filter_string);
967 else
968 trace_seq_puts(s, "none\n");
969 }
970
971 void print_subsystem_event_filter(struct event_subsystem *system,
972 struct trace_seq *s)
973 {
974 struct event_filter *filter;
975
976 mutex_lock(&event_mutex);
977 filter = system->filter;
978 if (filter && filter->filter_string)
979 trace_seq_printf(s, "%s\n", filter->filter_string);
980 else
981 trace_seq_puts(s, DEFAULT_SYS_FILTER_MESSAGE "\n");
982 mutex_unlock(&event_mutex);
983 }
984
985 static void free_prog(struct event_filter *filter)
986 {
987 struct prog_entry *prog;
988 int i;
989
990 prog = rcu_access_pointer(filter->prog);
991 if (!prog)
992 return;
993
994 for (i = 0; prog[i].pred; i++)
995 kfree(prog[i].pred);
996 kfree(prog);
997 }
998
999 static void filter_disable(struct trace_event_file *file)
1000 {
1001 unsigned long old_flags = file->flags;
1002
1003 file->flags &= ~EVENT_FILE_FL_FILTERED;
1004
1005 if (old_flags != file->flags)
1006 trace_buffered_event_disable();
1007 }
1008
1009 static void __free_filter(struct event_filter *filter)
1010 {
1011 if (!filter)
1012 return;
1013
1014 free_prog(filter);
1015 kfree(filter->filter_string);
1016 kfree(filter);
1017 }
1018
1019 void free_event_filter(struct event_filter *filter)
1020 {
1021 __free_filter(filter);
1022 }
1023
1024 static inline void __remove_filter(struct trace_event_file *file)
1025 {
1026 filter_disable(file);
1027 remove_filter_string(file->filter);
1028 }
1029
1030 static void filter_free_subsystem_preds(struct trace_subsystem_dir *dir,
1031 struct trace_array *tr)
1032 {
1033 struct trace_event_file *file;
1034
1035 list_for_each_entry(file, &tr->events, list) {
1036 if (file->system != dir)
1037 continue;
1038 __remove_filter(file);
1039 }
1040 }
1041
1042 static inline void __free_subsystem_filter(struct trace_event_file *file)
1043 {
1044 __free_filter(file->filter);
1045 file->filter = NULL;
1046 }
1047
1048 static void filter_free_subsystem_filters(struct trace_subsystem_dir *dir,
1049 struct trace_array *tr)
1050 {
1051 struct trace_event_file *file;
1052
1053 list_for_each_entry(file, &tr->events, list) {
1054 if (file->system != dir)
1055 continue;
1056 __free_subsystem_filter(file);
1057 }
1058 }
1059
1060 int filter_assign_type(const char *type)
1061 {
1062 if (strstr(type, "__data_loc") && strstr(type, "char"))
1063 return FILTER_DYN_STRING;
1064
1065 if (strchr(type, '[') && strstr(type, "char"))
1066 return FILTER_STATIC_STRING;
1067
1068 return FILTER_OTHER;
1069 }
1070
1071 static filter_pred_fn_t select_comparison_fn(enum filter_op_ids op,
1072 int field_size, int field_is_signed)
1073 {
1074 filter_pred_fn_t fn = NULL;
1075 int pred_func_index = -1;
1076
1077 switch (op) {
1078 case OP_EQ:
1079 case OP_NE:
1080 break;
1081 default:
1082 if (WARN_ON_ONCE(op < PRED_FUNC_START))
1083 return NULL;
1084 pred_func_index = op - PRED_FUNC_START;
1085 if (WARN_ON_ONCE(pred_func_index > PRED_FUNC_MAX))
1086 return NULL;
1087 }
1088
1089 switch (field_size) {
1090 case 8:
1091 if (pred_func_index < 0)
1092 fn = filter_pred_64;
1093 else if (field_is_signed)
1094 fn = pred_funcs_s64[pred_func_index];
1095 else
1096 fn = pred_funcs_u64[pred_func_index];
1097 break;
1098 case 4:
1099 if (pred_func_index < 0)
1100 fn = filter_pred_32;
1101 else if (field_is_signed)
1102 fn = pred_funcs_s32[pred_func_index];
1103 else
1104 fn = pred_funcs_u32[pred_func_index];
1105 break;
1106 case 2:
1107 if (pred_func_index < 0)
1108 fn = filter_pred_16;
1109 else if (field_is_signed)
1110 fn = pred_funcs_s16[pred_func_index];
1111 else
1112 fn = pred_funcs_u16[pred_func_index];
1113 break;
1114 case 1:
1115 if (pred_func_index < 0)
1116 fn = filter_pred_8;
1117 else if (field_is_signed)
1118 fn = pred_funcs_s8[pred_func_index];
1119 else
1120 fn = pred_funcs_u8[pred_func_index];
1121 break;
1122 }
1123
1124 return fn;
1125 }
1126
1127 /* Called when a predicate is encountered by predicate_parse() */
1128 static int parse_pred(const char *str, void *data,
1129 int pos, struct filter_parse_error *pe,
1130 struct filter_pred **pred_ptr)
1131 {
1132 struct trace_event_call *call = data;
1133 struct ftrace_event_field *field;
1134 struct filter_pred *pred = NULL;
1135 char num_buf[24]; /* Big enough to hold an address */
1136 char *field_name;
1137 char q;
1138 u64 val;
1139 int len;
1140 int ret;
1141 int op;
1142 int s;
1143 int i = 0;
1144
1145 /* First find the field to associate to */
1146 while (isspace(str[i]))
1147 i++;
1148 s = i;
1149
1150 while (isalnum(str[i]) || str[i] == '_')
1151 i++;
1152
1153 len = i - s;
1154
1155 if (!len)
1156 return -1;
1157
1158 field_name = kmemdup_nul(str + s, len, GFP_KERNEL);
1159 if (!field_name)
1160 return -ENOMEM;
1161
1162 /* Make sure that the field exists */
1163
1164 field = trace_find_event_field(call, field_name);
1165 kfree(field_name);
1166 if (!field) {
1167 parse_error(pe, FILT_ERR_FIELD_NOT_FOUND, pos + i);
1168 return -EINVAL;
1169 }
1170
1171 while (isspace(str[i]))
1172 i++;
1173
1174 /* Make sure this op is supported */
1175 for (op = 0; ops[op]; op++) {
1176 /* This is why '<=' must come before '<' in ops[] */
1177 if (strncmp(str + i, ops[op], strlen(ops[op])) == 0)
1178 break;
1179 }
1180
1181 if (!ops[op]) {
1182 parse_error(pe, FILT_ERR_INVALID_OP, pos + i);
1183 goto err_free;
1184 }
1185
1186 i += strlen(ops[op]);
1187
1188 while (isspace(str[i]))
1189 i++;
1190
1191 s = i;
1192
1193 pred = kzalloc(sizeof(*pred), GFP_KERNEL);
1194 if (!pred)
1195 return -ENOMEM;
1196
1197 pred->field = field;
1198 pred->offset = field->offset;
1199 pred->op = op;
1200
1201 if (ftrace_event_is_function(call)) {
1202 /*
1203 * Perf does things different with function events.
1204 * It only allows an "ip" field, and expects a string.
1205 * But the string does not need to be surrounded by quotes.
1206 * If it is a string, the assigned function as a nop,
1207 * (perf doesn't use it) and grab everything.
1208 */
1209 if (strcmp(field->name, "ip") != 0) {
1210 parse_error(pe, FILT_ERR_IP_FIELD_ONLY, pos + i);
1211 goto err_free;
1212 }
1213 pred->fn = filter_pred_none;
1214
1215 /*
1216 * Quotes are not required, but if they exist then we need
1217 * to read them till we hit a matching one.
1218 */
1219 if (str[i] == '\'' || str[i] == '"')
1220 q = str[i];
1221 else
1222 q = 0;
1223
1224 for (i++; str[i]; i++) {
1225 if (q && str[i] == q)
1226 break;
1227 if (!q && (str[i] == ')' || str[i] == '&' ||
1228 str[i] == '|'))
1229 break;
1230 }
1231 /* Skip quotes */
1232 if (q)
1233 s++;
1234 len = i - s;
1235 if (len >= MAX_FILTER_STR_VAL) {
1236 parse_error(pe, FILT_ERR_OPERAND_TOO_LONG, pos + i);
1237 goto err_free;
1238 }
1239
1240 pred->regex.len = len;
1241 strncpy(pred->regex.pattern, str + s, len);
1242 pred->regex.pattern[len] = 0;
1243
1244 /* This is either a string, or an integer */
1245 } else if (str[i] == '\'' || str[i] == '"') {
1246 char q = str[i];
1247
1248 /* Make sure the op is OK for strings */
1249 switch (op) {
1250 case OP_NE:
1251 pred->not = 1;
1252 /* Fall through */
1253 case OP_GLOB:
1254 case OP_EQ:
1255 break;
1256 default:
1257 parse_error(pe, FILT_ERR_ILLEGAL_FIELD_OP, pos + i);
1258 goto err_free;
1259 }
1260
1261 /* Make sure the field is OK for strings */
1262 if (!is_string_field(field)) {
1263 parse_error(pe, FILT_ERR_EXPECT_DIGIT, pos + i);
1264 goto err_free;
1265 }
1266
1267 for (i++; str[i]; i++) {
1268 if (str[i] == q)
1269 break;
1270 }
1271 if (!str[i]) {
1272 parse_error(pe, FILT_ERR_MISSING_QUOTE, pos + i);
1273 goto err_free;
1274 }
1275
1276 /* Skip quotes */
1277 s++;
1278 len = i - s;
1279 if (len >= MAX_FILTER_STR_VAL) {
1280 parse_error(pe, FILT_ERR_OPERAND_TOO_LONG, pos + i);
1281 goto err_free;
1282 }
1283
1284 pred->regex.len = len;
1285 strncpy(pred->regex.pattern, str + s, len);
1286 pred->regex.pattern[len] = 0;
1287
1288 filter_build_regex(pred);
1289
1290 if (field->filter_type == FILTER_COMM) {
1291 pred->fn = filter_pred_comm;
1292
1293 } else if (field->filter_type == FILTER_STATIC_STRING) {
1294 pred->fn = filter_pred_string;
1295 pred->regex.field_len = field->size;
1296
1297 } else if (field->filter_type == FILTER_DYN_STRING)
1298 pred->fn = filter_pred_strloc;
1299 else
1300 pred->fn = filter_pred_pchar;
1301 /* go past the last quote */
1302 i++;
1303
1304 } else if (isdigit(str[i])) {
1305
1306 /* Make sure the field is not a string */
1307 if (is_string_field(field)) {
1308 parse_error(pe, FILT_ERR_EXPECT_STRING, pos + i);
1309 goto err_free;
1310 }
1311
1312 if (op == OP_GLOB) {
1313 parse_error(pe, FILT_ERR_ILLEGAL_FIELD_OP, pos + i);
1314 goto err_free;
1315 }
1316
1317 /* We allow 0xDEADBEEF */
1318 while (isalnum(str[i]))
1319 i++;
1320
1321 len = i - s;
1322 /* 0xfeedfacedeadbeef is 18 chars max */
1323 if (len >= sizeof(num_buf)) {
1324 parse_error(pe, FILT_ERR_OPERAND_TOO_LONG, pos + i);
1325 goto err_free;
1326 }
1327
1328 strncpy(num_buf, str + s, len);
1329 num_buf[len] = 0;
1330
1331 /* Make sure it is a value */
1332 if (field->is_signed)
1333 ret = kstrtoll(num_buf, 0, &val);
1334 else
1335 ret = kstrtoull(num_buf, 0, &val);
1336 if (ret) {
1337 parse_error(pe, FILT_ERR_ILLEGAL_INTVAL, pos + s);
1338 goto err_free;
1339 }
1340
1341 pred->val = val;
1342
1343 if (field->filter_type == FILTER_CPU)
1344 pred->fn = filter_pred_cpu;
1345 else {
1346 pred->fn = select_comparison_fn(pred->op, field->size,
1347 field->is_signed);
1348 if (pred->op == OP_NE)
1349 pred->not = 1;
1350 }
1351
1352 } else {
1353 parse_error(pe, FILT_ERR_INVALID_VALUE, pos + i);
1354 goto err_free;
1355 }
1356
1357 *pred_ptr = pred;
1358 return i;
1359
1360 err_free:
1361 kfree(pred);
1362 return -EINVAL;
1363 }
1364
1365 enum {
1366 TOO_MANY_CLOSE = -1,
1367 TOO_MANY_OPEN = -2,
1368 MISSING_QUOTE = -3,
1369 };
1370
1371 /*
1372 * Read the filter string once to calculate the number of predicates
1373 * as well as how deep the parentheses go.
1374 *
1375 * Returns:
1376 * 0 - everything is fine (err is undefined)
1377 * -1 - too many ')'
1378 * -2 - too many '('
1379 * -3 - No matching quote
1380 */
1381 static int calc_stack(const char *str, int *parens, int *preds, int *err)
1382 {
1383 bool is_pred = false;
1384 int nr_preds = 0;
1385 int open = 1; /* Count the expression as "(E)" */
1386 int last_quote = 0;
1387 int max_open = 1;
1388 int quote = 0;
1389 int i;
1390
1391 *err = 0;
1392
1393 for (i = 0; str[i]; i++) {
1394 if (isspace(str[i]))
1395 continue;
1396 if (quote) {
1397 if (str[i] == quote)
1398 quote = 0;
1399 continue;
1400 }
1401
1402 switch (str[i]) {
1403 case '\'':
1404 case '"':
1405 quote = str[i];
1406 last_quote = i;
1407 break;
1408 case '|':
1409 case '&':
1410 if (str[i+1] != str[i])
1411 break;
1412 is_pred = false;
1413 continue;
1414 case '(':
1415 is_pred = false;
1416 open++;
1417 if (open > max_open)
1418 max_open = open;
1419 continue;
1420 case ')':
1421 is_pred = false;
1422 if (open == 1) {
1423 *err = i;
1424 return TOO_MANY_CLOSE;
1425 }
1426 open--;
1427 continue;
1428 }
1429 if (!is_pred) {
1430 nr_preds++;
1431 is_pred = true;
1432 }
1433 }
1434
1435 if (quote) {
1436 *err = last_quote;
1437 return MISSING_QUOTE;
1438 }
1439
1440 if (open != 1) {
1441 int level = open;
1442
1443 /* find the bad open */
1444 for (i--; i; i--) {
1445 if (quote) {
1446 if (str[i] == quote)
1447 quote = 0;
1448 continue;
1449 }
1450 switch (str[i]) {
1451 case '(':
1452 if (level == open) {
1453 *err = i;
1454 return TOO_MANY_OPEN;
1455 }
1456 level--;
1457 break;
1458 case ')':
1459 level++;
1460 break;
1461 case '\'':
1462 case '"':
1463 quote = str[i];
1464 break;
1465 }
1466 }
1467 /* First character is the '(' with missing ')' */
1468 *err = 0;
1469 return TOO_MANY_OPEN;
1470 }
1471
1472 /* Set the size of the required stacks */
1473 *parens = max_open;
1474 *preds = nr_preds;
1475 return 0;
1476 }
1477
1478 static int process_preds(struct trace_event_call *call,
1479 const char *filter_string,
1480 struct event_filter *filter,
1481 struct filter_parse_error *pe)
1482 {
1483 struct prog_entry *prog;
1484 int nr_parens;
1485 int nr_preds;
1486 int index;
1487 int ret;
1488
1489 ret = calc_stack(filter_string, &nr_parens, &nr_preds, &index);
1490 if (ret < 0) {
1491 switch (ret) {
1492 case MISSING_QUOTE:
1493 parse_error(pe, FILT_ERR_MISSING_QUOTE, index);
1494 break;
1495 case TOO_MANY_OPEN:
1496 parse_error(pe, FILT_ERR_TOO_MANY_OPEN, index);
1497 break;
1498 default:
1499 parse_error(pe, FILT_ERR_TOO_MANY_CLOSE, index);
1500 }
1501 return ret;
1502 }
1503
1504 if (!nr_preds)
1505 return -EINVAL;
1506
1507 prog = predicate_parse(filter_string, nr_parens, nr_preds,
1508 parse_pred, call, pe);
1509 if (IS_ERR(prog))
1510 return PTR_ERR(prog);
1511
1512 rcu_assign_pointer(filter->prog, prog);
1513 return 0;
1514 }
1515
1516 static inline void event_set_filtered_flag(struct trace_event_file *file)
1517 {
1518 unsigned long old_flags = file->flags;
1519
1520 file->flags |= EVENT_FILE_FL_FILTERED;
1521
1522 if (old_flags != file->flags)
1523 trace_buffered_event_enable();
1524 }
1525
1526 static inline void event_set_filter(struct trace_event_file *file,
1527 struct event_filter *filter)
1528 {
1529 rcu_assign_pointer(file->filter, filter);
1530 }
1531
1532 static inline void event_clear_filter(struct trace_event_file *file)
1533 {
1534 RCU_INIT_POINTER(file->filter, NULL);
1535 }
1536
1537 static inline void
1538 event_set_no_set_filter_flag(struct trace_event_file *file)
1539 {
1540 file->flags |= EVENT_FILE_FL_NO_SET_FILTER;
1541 }
1542
1543 static inline void
1544 event_clear_no_set_filter_flag(struct trace_event_file *file)
1545 {
1546 file->flags &= ~EVENT_FILE_FL_NO_SET_FILTER;
1547 }
1548
1549 static inline bool
1550 event_no_set_filter_flag(struct trace_event_file *file)
1551 {
1552 if (file->flags & EVENT_FILE_FL_NO_SET_FILTER)
1553 return true;
1554
1555 return false;
1556 }
1557
1558 struct filter_list {
1559 struct list_head list;
1560 struct event_filter *filter;
1561 };
1562
1563 static int process_system_preds(struct trace_subsystem_dir *dir,
1564 struct trace_array *tr,
1565 struct filter_parse_error *pe,
1566 char *filter_string)
1567 {
1568 struct trace_event_file *file;
1569 struct filter_list *filter_item;
1570 struct event_filter *filter = NULL;
1571 struct filter_list *tmp;
1572 LIST_HEAD(filter_list);
1573 bool fail = true;
1574 int err;
1575
1576 list_for_each_entry(file, &tr->events, list) {
1577
1578 if (file->system != dir)
1579 continue;
1580
1581 filter = kzalloc(sizeof(*filter), GFP_KERNEL);
1582 if (!filter)
1583 goto fail_mem;
1584
1585 filter->filter_string = kstrdup(filter_string, GFP_KERNEL);
1586 if (!filter->filter_string)
1587 goto fail_mem;
1588
1589 err = process_preds(file->event_call, filter_string, filter, pe);
1590 if (err) {
1591 filter_disable(file);
1592 parse_error(pe, FILT_ERR_BAD_SUBSYS_FILTER, 0);
1593 append_filter_err(pe, filter);
1594 } else
1595 event_set_filtered_flag(file);
1596
1597
1598 filter_item = kzalloc(sizeof(*filter_item), GFP_KERNEL);
1599 if (!filter_item)
1600 goto fail_mem;
1601
1602 list_add_tail(&filter_item->list, &filter_list);
1603 /*
1604 * Regardless of if this returned an error, we still
1605 * replace the filter for the call.
1606 */
1607 filter_item->filter = event_filter(file);
1608 event_set_filter(file, filter);
1609 filter = NULL;
1610
1611 fail = false;
1612 }
1613
1614 if (fail)
1615 goto fail;
1616
1617 /*
1618 * The calls can still be using the old filters.
1619 * Do a synchronize_rcu() and to ensure all calls are
1620 * done with them before we free them.
1621 */
1622 tracepoint_synchronize_unregister();
1623 list_for_each_entry_safe(filter_item, tmp, &filter_list, list) {
1624 __free_filter(filter_item->filter);
1625 list_del(&filter_item->list);
1626 kfree(filter_item);
1627 }
1628 return 0;
1629 fail:
1630 /* No call succeeded */
1631 list_for_each_entry_safe(filter_item, tmp, &filter_list, list) {
1632 list_del(&filter_item->list);
1633 kfree(filter_item);
1634 }
1635 parse_error(pe, FILT_ERR_BAD_SUBSYS_FILTER, 0);
1636 return -EINVAL;
1637 fail_mem:
1638 kfree(filter);
1639 /* If any call succeeded, we still need to sync */
1640 if (!fail)
1641 tracepoint_synchronize_unregister();
1642 list_for_each_entry_safe(filter_item, tmp, &filter_list, list) {
1643 __free_filter(filter_item->filter);
1644 list_del(&filter_item->list);
1645 kfree(filter_item);
1646 }
1647 return -ENOMEM;
1648 }
1649
1650 static int create_filter_start(char *filter_string, bool set_str,
1651 struct filter_parse_error **pse,
1652 struct event_filter **filterp)
1653 {
1654 struct event_filter *filter;
1655 struct filter_parse_error *pe = NULL;
1656 int err = 0;
1657
1658 if (WARN_ON_ONCE(*pse || *filterp))
1659 return -EINVAL;
1660
1661 filter = kzalloc(sizeof(*filter), GFP_KERNEL);
1662 if (filter && set_str) {
1663 filter->filter_string = kstrdup(filter_string, GFP_KERNEL);
1664 if (!filter->filter_string)
1665 err = -ENOMEM;
1666 }
1667
1668 pe = kzalloc(sizeof(*pe), GFP_KERNEL);
1669
1670 if (!filter || !pe || err) {
1671 kfree(pe);
1672 __free_filter(filter);
1673 return -ENOMEM;
1674 }
1675
1676 /* we're committed to creating a new filter */
1677 *filterp = filter;
1678 *pse = pe;
1679
1680 return 0;
1681 }
1682
1683 static void create_filter_finish(struct filter_parse_error *pe)
1684 {
1685 kfree(pe);
1686 }
1687
1688 /**
1689 * create_filter - create a filter for a trace_event_call
1690 * @call: trace_event_call to create a filter for
1691 * @filter_str: filter string
1692 * @set_str: remember @filter_str and enable detailed error in filter
1693 * @filterp: out param for created filter (always updated on return)
1694 * Must be a pointer that references a NULL pointer.
1695 *
1696 * Creates a filter for @call with @filter_str. If @set_str is %true,
1697 * @filter_str is copied and recorded in the new filter.
1698 *
1699 * On success, returns 0 and *@filterp points to the new filter. On
1700 * failure, returns -errno and *@filterp may point to %NULL or to a new
1701 * filter. In the latter case, the returned filter contains error
1702 * information if @set_str is %true and the caller is responsible for
1703 * freeing it.
1704 */
1705 static int create_filter(struct trace_event_call *call,
1706 char *filter_string, bool set_str,
1707 struct event_filter **filterp)
1708 {
1709 struct filter_parse_error *pe = NULL;
1710 int err;
1711
1712 /* filterp must point to NULL */
1713 if (WARN_ON(*filterp))
1714 *filterp = NULL;
1715
1716 err = create_filter_start(filter_string, set_str, &pe, filterp);
1717 if (err)
1718 return err;
1719
1720 err = process_preds(call, filter_string, *filterp, pe);
1721 if (err && set_str)
1722 append_filter_err(pe, *filterp);
1723 create_filter_finish(pe);
1724
1725 return err;
1726 }
1727
1728 int create_event_filter(struct trace_event_call *call,
1729 char *filter_str, bool set_str,
1730 struct event_filter **filterp)
1731 {
1732 return create_filter(call, filter_str, set_str, filterp);
1733 }
1734
1735 /**
1736 * create_system_filter - create a filter for an event_subsystem
1737 * @system: event_subsystem to create a filter for
1738 * @filter_str: filter string
1739 * @filterp: out param for created filter (always updated on return)
1740 *
1741 * Identical to create_filter() except that it creates a subsystem filter
1742 * and always remembers @filter_str.
1743 */
1744 static int create_system_filter(struct trace_subsystem_dir *dir,
1745 struct trace_array *tr,
1746 char *filter_str, struct event_filter **filterp)
1747 {
1748 struct filter_parse_error *pe = NULL;
1749 int err;
1750
1751 err = create_filter_start(filter_str, true, &pe, filterp);
1752 if (!err) {
1753 err = process_system_preds(dir, tr, pe, filter_str);
1754 if (!err) {
1755 /* System filters just show a default message */
1756 kfree((*filterp)->filter_string);
1757 (*filterp)->filter_string = NULL;
1758 } else {
1759 append_filter_err(pe, *filterp);
1760 }
1761 }
1762 create_filter_finish(pe);
1763
1764 return err;
1765 }
1766
1767 /* caller must hold event_mutex */
1768 int apply_event_filter(struct trace_event_file *file, char *filter_string)
1769 {
1770 struct trace_event_call *call = file->event_call;
1771 struct event_filter *filter = NULL;
1772 int err;
1773
1774 if (!strcmp(strstrip(filter_string), "0")) {
1775 filter_disable(file);
1776 filter = event_filter(file);
1777
1778 if (!filter)
1779 return 0;
1780
1781 event_clear_filter(file);
1782
1783 /* Make sure the filter is not being used */
1784 tracepoint_synchronize_unregister();
1785 __free_filter(filter);
1786
1787 return 0;
1788 }
1789
1790 err = create_filter(call, filter_string, true, &filter);
1791
1792 /*
1793 * Always swap the call filter with the new filter
1794 * even if there was an error. If there was an error
1795 * in the filter, we disable the filter and show the error
1796 * string
1797 */
1798 if (filter) {
1799 struct event_filter *tmp;
1800
1801 tmp = event_filter(file);
1802 if (!err)
1803 event_set_filtered_flag(file);
1804 else
1805 filter_disable(file);
1806
1807 event_set_filter(file, filter);
1808
1809 if (tmp) {
1810 /* Make sure the call is done with the filter */
1811 tracepoint_synchronize_unregister();
1812 __free_filter(tmp);
1813 }
1814 }
1815
1816 return err;
1817 }
1818
1819 int apply_subsystem_event_filter(struct trace_subsystem_dir *dir,
1820 char *filter_string)
1821 {
1822 struct event_subsystem *system = dir->subsystem;
1823 struct trace_array *tr = dir->tr;
1824 struct event_filter *filter = NULL;
1825 int err = 0;
1826
1827 mutex_lock(&event_mutex);
1828
1829 /* Make sure the system still has events */
1830 if (!dir->nr_events) {
1831 err = -ENODEV;
1832 goto out_unlock;
1833 }
1834
1835 if (!strcmp(strstrip(filter_string), "0")) {
1836 filter_free_subsystem_preds(dir, tr);
1837 remove_filter_string(system->filter);
1838 filter = system->filter;
1839 system->filter = NULL;
1840 /* Ensure all filters are no longer used */
1841 tracepoint_synchronize_unregister();
1842 filter_free_subsystem_filters(dir, tr);
1843 __free_filter(filter);
1844 goto out_unlock;
1845 }
1846
1847 err = create_system_filter(dir, tr, filter_string, &filter);
1848 if (filter) {
1849 /*
1850 * No event actually uses the system filter
1851 * we can free it without synchronize_rcu().
1852 */
1853 __free_filter(system->filter);
1854 system->filter = filter;
1855 }
1856 out_unlock:
1857 mutex_unlock(&event_mutex);
1858
1859 return err;
1860 }
1861
1862 #ifdef CONFIG_PERF_EVENTS
1863
1864 void ftrace_profile_free_filter(struct perf_event *event)
1865 {
1866 struct event_filter *filter = event->filter;
1867
1868 event->filter = NULL;
1869 __free_filter(filter);
1870 }
1871
1872 struct function_filter_data {
1873 struct ftrace_ops *ops;
1874 int first_filter;
1875 int first_notrace;
1876 };
1877
1878 #ifdef CONFIG_FUNCTION_TRACER
1879 static char **
1880 ftrace_function_filter_re(char *buf, int len, int *count)
1881 {
1882 char *str, **re;
1883
1884 str = kstrndup(buf, len, GFP_KERNEL);
1885 if (!str)
1886 return NULL;
1887
1888 /*
1889 * The argv_split function takes white space
1890 * as a separator, so convert ',' into spaces.
1891 */
1892 strreplace(str, ',', ' ');
1893
1894 re = argv_split(GFP_KERNEL, str, count);
1895 kfree(str);
1896 return re;
1897 }
1898
1899 static int ftrace_function_set_regexp(struct ftrace_ops *ops, int filter,
1900 int reset, char *re, int len)
1901 {
1902 int ret;
1903
1904 if (filter)
1905 ret = ftrace_set_filter(ops, re, len, reset);
1906 else
1907 ret = ftrace_set_notrace(ops, re, len, reset);
1908
1909 return ret;
1910 }
1911
1912 static int __ftrace_function_set_filter(int filter, char *buf, int len,
1913 struct function_filter_data *data)
1914 {
1915 int i, re_cnt, ret = -EINVAL;
1916 int *reset;
1917 char **re;
1918
1919 reset = filter ? &data->first_filter : &data->first_notrace;
1920
1921 /*
1922 * The 'ip' field could have multiple filters set, separated
1923 * either by space or comma. We first cut the filter and apply
1924 * all pieces separatelly.
1925 */
1926 re = ftrace_function_filter_re(buf, len, &re_cnt);
1927 if (!re)
1928 return -EINVAL;
1929
1930 for (i = 0; i < re_cnt; i++) {
1931 ret = ftrace_function_set_regexp(data->ops, filter, *reset,
1932 re[i], strlen(re[i]));
1933 if (ret)
1934 break;
1935
1936 if (*reset)
1937 *reset = 0;
1938 }
1939
1940 argv_free(re);
1941 return ret;
1942 }
1943
1944 static int ftrace_function_check_pred(struct filter_pred *pred)
1945 {
1946 struct ftrace_event_field *field = pred->field;
1947
1948 /*
1949 * Check the predicate for function trace, verify:
1950 * - only '==' and '!=' is used
1951 * - the 'ip' field is used
1952 */
1953 if ((pred->op != OP_EQ) && (pred->op != OP_NE))
1954 return -EINVAL;
1955
1956 if (strcmp(field->name, "ip"))
1957 return -EINVAL;
1958
1959 return 0;
1960 }
1961
1962 static int ftrace_function_set_filter_pred(struct filter_pred *pred,
1963 struct function_filter_data *data)
1964 {
1965 int ret;
1966
1967 /* Checking the node is valid for function trace. */
1968 ret = ftrace_function_check_pred(pred);
1969 if (ret)
1970 return ret;
1971
1972 return __ftrace_function_set_filter(pred->op == OP_EQ,
1973 pred->regex.pattern,
1974 pred->regex.len,
1975 data);
1976 }
1977
1978 static bool is_or(struct prog_entry *prog, int i)
1979 {
1980 int target;
1981
1982 /*
1983 * Only "||" is allowed for function events, thus,
1984 * all true branches should jump to true, and any
1985 * false branch should jump to false.
1986 */
1987 target = prog[i].target + 1;
1988 /* True and false have NULL preds (all prog entries should jump to one */
1989 if (prog[target].pred)
1990 return false;
1991
1992 /* prog[target].target is 1 for TRUE, 0 for FALSE */
1993 return prog[i].when_to_branch == prog[target].target;
1994 }
1995
1996 static int ftrace_function_set_filter(struct perf_event *event,
1997 struct event_filter *filter)
1998 {
1999 struct prog_entry *prog = rcu_dereference_protected(filter->prog,
2000 lockdep_is_held(&event_mutex));
2001 struct function_filter_data data = {
2002 .first_filter = 1,
2003 .first_notrace = 1,
2004 .ops = &event->ftrace_ops,
2005 };
2006 int i;
2007
2008 for (i = 0; prog[i].pred; i++) {
2009 struct filter_pred *pred = prog[i].pred;
2010
2011 if (!is_or(prog, i))
2012 return -EINVAL;
2013
2014 if (ftrace_function_set_filter_pred(pred, &data) < 0)
2015 return -EINVAL;
2016 }
2017 return 0;
2018 }
2019 #else
2020 static int ftrace_function_set_filter(struct perf_event *event,
2021 struct event_filter *filter)
2022 {
2023 return -ENODEV;
2024 }
2025 #endif /* CONFIG_FUNCTION_TRACER */
2026
2027 int ftrace_profile_set_filter(struct perf_event *event, int event_id,
2028 char *filter_str)
2029 {
2030 int err;
2031 struct event_filter *filter = NULL;
2032 struct trace_event_call *call;
2033
2034 mutex_lock(&event_mutex);
2035
2036 call = event->tp_event;
2037
2038 err = -EINVAL;
2039 if (!call)
2040 goto out_unlock;
2041
2042 err = -EEXIST;
2043 if (event->filter)
2044 goto out_unlock;
2045
2046 err = create_filter(call, filter_str, false, &filter);
2047 if (err)
2048 goto free_filter;
2049
2050 if (ftrace_event_is_function(call))
2051 err = ftrace_function_set_filter(event, filter);
2052 else
2053 event->filter = filter;
2054
2055 free_filter:
2056 if (err || ftrace_event_is_function(call))
2057 __free_filter(filter);
2058
2059 out_unlock:
2060 mutex_unlock(&event_mutex);
2061
2062 return err;
2063 }
2064
2065 #endif /* CONFIG_PERF_EVENTS */
2066
2067 #ifdef CONFIG_FTRACE_STARTUP_TEST
2068
2069 #include <linux/types.h>
2070 #include <linux/tracepoint.h>
2071
2072 #define CREATE_TRACE_POINTS
2073 #include "trace_events_filter_test.h"
2074
2075 #define DATA_REC(m, va, vb, vc, vd, ve, vf, vg, vh, nvisit) \
2076 { \
2077 .filter = FILTER, \
2078 .rec = { .a = va, .b = vb, .c = vc, .d = vd, \
2079 .e = ve, .f = vf, .g = vg, .h = vh }, \
2080 .match = m, \
2081 .not_visited = nvisit, \
2082 }
2083 #define YES 1
2084 #define NO 0
2085
2086 static struct test_filter_data_t {
2087 char *filter;
2088 struct trace_event_raw_ftrace_test_filter rec;
2089 int match;
2090 char *not_visited;
2091 } test_filter_data[] = {
2092 #define FILTER "a == 1 && b == 1 && c == 1 && d == 1 && " \
2093 "e == 1 && f == 1 && g == 1 && h == 1"
2094 DATA_REC(YES, 1, 1, 1, 1, 1, 1, 1, 1, ""),
2095 DATA_REC(NO, 0, 1, 1, 1, 1, 1, 1, 1, "bcdefgh"),
2096 DATA_REC(NO, 1, 1, 1, 1, 1, 1, 1, 0, ""),
2097 #undef FILTER
2098 #define FILTER "a == 1 || b == 1 || c == 1 || d == 1 || " \
2099 "e == 1 || f == 1 || g == 1 || h == 1"
2100 DATA_REC(NO, 0, 0, 0, 0, 0, 0, 0, 0, ""),
2101 DATA_REC(YES, 0, 0, 0, 0, 0, 0, 0, 1, ""),
2102 DATA_REC(YES, 1, 0, 0, 0, 0, 0, 0, 0, "bcdefgh"),
2103 #undef FILTER
2104 #define FILTER "(a == 1 || b == 1) && (c == 1 || d == 1) && " \
2105 "(e == 1 || f == 1) && (g == 1 || h == 1)"
2106 DATA_REC(NO, 0, 0, 1, 1, 1, 1, 1, 1, "dfh"),
2107 DATA_REC(YES, 0, 1, 0, 1, 0, 1, 0, 1, ""),
2108 DATA_REC(YES, 1, 0, 1, 0, 0, 1, 0, 1, "bd"),
2109 DATA_REC(NO, 1, 0, 1, 0, 0, 1, 0, 0, "bd"),
2110 #undef FILTER
2111 #define FILTER "(a == 1 && b == 1) || (c == 1 && d == 1) || " \
2112 "(e == 1 && f == 1) || (g == 1 && h == 1)"
2113 DATA_REC(YES, 1, 0, 1, 1, 1, 1, 1, 1, "efgh"),
2114 DATA_REC(YES, 0, 0, 0, 0, 0, 0, 1, 1, ""),
2115 DATA_REC(NO, 0, 0, 0, 0, 0, 0, 0, 1, ""),
2116 #undef FILTER
2117 #define FILTER "(a == 1 && b == 1) && (c == 1 && d == 1) && " \
2118 "(e == 1 && f == 1) || (g == 1 && h == 1)"
2119 DATA_REC(YES, 1, 1, 1, 1, 1, 1, 0, 0, "gh"),
2120 DATA_REC(NO, 0, 0, 0, 0, 0, 0, 0, 1, ""),
2121 DATA_REC(YES, 1, 1, 1, 1, 1, 0, 1, 1, ""),
2122 #undef FILTER
2123 #define FILTER "((a == 1 || b == 1) || (c == 1 || d == 1) || " \
2124 "(e == 1 || f == 1)) && (g == 1 || h == 1)"
2125 DATA_REC(YES, 1, 1, 1, 1, 1, 1, 0, 1, "bcdef"),
2126 DATA_REC(NO, 0, 0, 0, 0, 0, 0, 0, 0, ""),
2127 DATA_REC(YES, 1, 1, 1, 1, 1, 0, 1, 1, "h"),
2128 #undef FILTER
2129 #define FILTER "((((((((a == 1) && (b == 1)) || (c == 1)) && (d == 1)) || " \
2130 "(e == 1)) && (f == 1)) || (g == 1)) && (h == 1))"
2131 DATA_REC(YES, 1, 1, 1, 1, 1, 1, 1, 1, "ceg"),
2132 DATA_REC(NO, 0, 1, 0, 1, 0, 1, 0, 1, ""),
2133 DATA_REC(NO, 1, 0, 1, 0, 1, 0, 1, 0, ""),
2134 #undef FILTER
2135 #define FILTER "((((((((a == 1) || (b == 1)) && (c == 1)) || (d == 1)) && " \
2136 "(e == 1)) || (f == 1)) && (g == 1)) || (h == 1))"
2137 DATA_REC(YES, 1, 1, 1, 1, 1, 1, 1, 1, "bdfh"),
2138 DATA_REC(YES, 0, 1, 0, 1, 0, 1, 0, 1, ""),
2139 DATA_REC(YES, 1, 0, 1, 0, 1, 0, 1, 0, "bdfh"),
2140 };
2141
2142 #undef DATA_REC
2143 #undef FILTER
2144 #undef YES
2145 #undef NO
2146
2147 #define DATA_CNT ARRAY_SIZE(test_filter_data)
2148
2149 static int test_pred_visited;
2150
2151 static int test_pred_visited_fn(struct filter_pred *pred, void *event)
2152 {
2153 struct ftrace_event_field *field = pred->field;
2154
2155 test_pred_visited = 1;
2156 printk(KERN_INFO "\npred visited %s\n", field->name);
2157 return 1;
2158 }
2159
2160 static void update_pred_fn(struct event_filter *filter, char *fields)
2161 {
2162 struct prog_entry *prog = rcu_dereference_protected(filter->prog,
2163 lockdep_is_held(&event_mutex));
2164 int i;
2165
2166 for (i = 0; prog[i].pred; i++) {
2167 struct filter_pred *pred = prog[i].pred;
2168 struct ftrace_event_field *field = pred->field;
2169
2170 WARN_ON_ONCE(!pred->fn);
2171
2172 if (!field) {
2173 WARN_ONCE(1, "all leafs should have field defined %d", i);
2174 continue;
2175 }
2176
2177 if (!strchr(fields, *field->name))
2178 continue;
2179
2180 pred->fn = test_pred_visited_fn;
2181 }
2182 }
2183
2184 static __init int ftrace_test_event_filter(void)
2185 {
2186 int i;
2187
2188 printk(KERN_INFO "Testing ftrace filter: ");
2189
2190 for (i = 0; i < DATA_CNT; i++) {
2191 struct event_filter *filter = NULL;
2192 struct test_filter_data_t *d = &test_filter_data[i];
2193 int err;
2194
2195 err = create_filter(&event_ftrace_test_filter, d->filter,
2196 false, &filter);
2197 if (err) {
2198 printk(KERN_INFO
2199 "Failed to get filter for '%s', err %d\n",
2200 d->filter, err);
2201 __free_filter(filter);
2202 break;
2203 }
2204
2205 /* Needed to dereference filter->prog */
2206 mutex_lock(&event_mutex);
2207 /*
2208 * The preemption disabling is not really needed for self
2209 * tests, but the rcu dereference will complain without it.
2210 */
2211 preempt_disable();
2212 if (*d->not_visited)
2213 update_pred_fn(filter, d->not_visited);
2214
2215 test_pred_visited = 0;
2216 err = filter_match_preds(filter, &d->rec);
2217 preempt_enable();
2218
2219 mutex_unlock(&event_mutex);
2220
2221 __free_filter(filter);
2222
2223 if (test_pred_visited) {
2224 printk(KERN_INFO
2225 "Failed, unwanted pred visited for filter %s\n",
2226 d->filter);
2227 break;
2228 }
2229
2230 if (err != d->match) {
2231 printk(KERN_INFO
2232 "Failed to match filter '%s', expected %d\n",
2233 d->filter, d->match);
2234 break;
2235 }
2236 }
2237
2238 if (i == DATA_CNT)
2239 printk(KERN_CONT "OK\n");
2240
2241 return 0;
2242 }
2243
2244 late_initcall(ftrace_test_event_filter);
2245
2246 #endif /* CONFIG_FTRACE_STARTUP_TEST */