]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - kernel/trace/trace_events_filter.c
Merge tag 'configfs-5.11' of git://git.infradead.org/users/hch/configfs
[mirror_ubuntu-hirsute-kernel.git] / kernel / trace / trace_events_filter.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * trace_events_filter - generic event filtering
4 *
5 * Copyright (C) 2009 Tom Zanussi <tzanussi@gmail.com>
6 */
7
8 #include <linux/module.h>
9 #include <linux/ctype.h>
10 #include <linux/mutex.h>
11 #include <linux/perf_event.h>
12 #include <linux/slab.h>
13
14 #include "trace.h"
15 #include "trace_output.h"
16
17 #define DEFAULT_SYS_FILTER_MESSAGE \
18 "### global filter ###\n" \
19 "# Use this to set filters for multiple events.\n" \
20 "# Only events with the given fields will be affected.\n" \
21 "# If no events are modified, an error message will be displayed here"
22
23 /* Due to token parsing '<=' must be before '<' and '>=' must be before '>' */
24 #define OPS \
25 C( OP_GLOB, "~" ), \
26 C( OP_NE, "!=" ), \
27 C( OP_EQ, "==" ), \
28 C( OP_LE, "<=" ), \
29 C( OP_LT, "<" ), \
30 C( OP_GE, ">=" ), \
31 C( OP_GT, ">" ), \
32 C( OP_BAND, "&" ), \
33 C( OP_MAX, NULL )
34
35 #undef C
36 #define C(a, b) a
37
38 enum filter_op_ids { OPS };
39
40 #undef C
41 #define C(a, b) b
42
43 static const char * ops[] = { OPS };
44
45 /*
46 * pred functions are OP_LE, OP_LT, OP_GE, OP_GT, and OP_BAND
47 * pred_funcs_##type below must match the order of them above.
48 */
49 #define PRED_FUNC_START OP_LE
50 #define PRED_FUNC_MAX (OP_BAND - PRED_FUNC_START)
51
52 #define ERRORS \
53 C(NONE, "No error"), \
54 C(INVALID_OP, "Invalid operator"), \
55 C(TOO_MANY_OPEN, "Too many '('"), \
56 C(TOO_MANY_CLOSE, "Too few '('"), \
57 C(MISSING_QUOTE, "Missing matching quote"), \
58 C(OPERAND_TOO_LONG, "Operand too long"), \
59 C(EXPECT_STRING, "Expecting string field"), \
60 C(EXPECT_DIGIT, "Expecting numeric field"), \
61 C(ILLEGAL_FIELD_OP, "Illegal operation for field type"), \
62 C(FIELD_NOT_FOUND, "Field not found"), \
63 C(ILLEGAL_INTVAL, "Illegal integer value"), \
64 C(BAD_SUBSYS_FILTER, "Couldn't find or set field in one of a subsystem's events"), \
65 C(TOO_MANY_PREDS, "Too many terms in predicate expression"), \
66 C(INVALID_FILTER, "Meaningless filter expression"), \
67 C(IP_FIELD_ONLY, "Only 'ip' field is supported for function trace"), \
68 C(INVALID_VALUE, "Invalid value (did you forget quotes)?"), \
69 C(ERRNO, "Error"), \
70 C(NO_FILTER, "No filter found")
71
72 #undef C
73 #define C(a, b) FILT_ERR_##a
74
75 enum { ERRORS };
76
77 #undef C
78 #define C(a, b) b
79
80 static const char *err_text[] = { ERRORS };
81
82 /* Called after a '!' character but "!=" and "!~" are not "not"s */
83 static bool is_not(const char *str)
84 {
85 switch (str[1]) {
86 case '=':
87 case '~':
88 return false;
89 }
90 return true;
91 }
92
93 /**
94 * prog_entry - a singe entry in the filter program
95 * @target: Index to jump to on a branch (actually one minus the index)
96 * @when_to_branch: The value of the result of the predicate to do a branch
97 * @pred: The predicate to execute.
98 */
99 struct prog_entry {
100 int target;
101 int when_to_branch;
102 struct filter_pred *pred;
103 };
104
105 /**
106 * update_preds- assign a program entry a label target
107 * @prog: The program array
108 * @N: The index of the current entry in @prog
109 * @when_to_branch: What to assign a program entry for its branch condition
110 *
111 * The program entry at @N has a target that points to the index of a program
112 * entry that can have its target and when_to_branch fields updated.
113 * Update the current program entry denoted by index @N target field to be
114 * that of the updated entry. This will denote the entry to update if
115 * we are processing an "||" after an "&&"
116 */
117 static void update_preds(struct prog_entry *prog, int N, int invert)
118 {
119 int t, s;
120
121 t = prog[N].target;
122 s = prog[t].target;
123 prog[t].when_to_branch = invert;
124 prog[t].target = N;
125 prog[N].target = s;
126 }
127
128 struct filter_parse_error {
129 int lasterr;
130 int lasterr_pos;
131 };
132
133 static void parse_error(struct filter_parse_error *pe, int err, int pos)
134 {
135 pe->lasterr = err;
136 pe->lasterr_pos = pos;
137 }
138
139 typedef int (*parse_pred_fn)(const char *str, void *data, int pos,
140 struct filter_parse_error *pe,
141 struct filter_pred **pred);
142
143 enum {
144 INVERT = 1,
145 PROCESS_AND = 2,
146 PROCESS_OR = 4,
147 };
148
149 /*
150 * Without going into a formal proof, this explains the method that is used in
151 * parsing the logical expressions.
152 *
153 * For example, if we have: "a && !(!b || (c && g)) || d || e && !f"
154 * The first pass will convert it into the following program:
155 *
156 * n1: r=a; l1: if (!r) goto l4;
157 * n2: r=b; l2: if (!r) goto l4;
158 * n3: r=c; r=!r; l3: if (r) goto l4;
159 * n4: r=g; r=!r; l4: if (r) goto l5;
160 * n5: r=d; l5: if (r) goto T
161 * n6: r=e; l6: if (!r) goto l7;
162 * n7: r=f; r=!r; l7: if (!r) goto F
163 * T: return TRUE
164 * F: return FALSE
165 *
166 * To do this, we use a data structure to represent each of the above
167 * predicate and conditions that has:
168 *
169 * predicate, when_to_branch, invert, target
170 *
171 * The "predicate" will hold the function to determine the result "r".
172 * The "when_to_branch" denotes what "r" should be if a branch is to be taken
173 * "&&" would contain "!r" or (0) and "||" would contain "r" or (1).
174 * The "invert" holds whether the value should be reversed before testing.
175 * The "target" contains the label "l#" to jump to.
176 *
177 * A stack is created to hold values when parentheses are used.
178 *
179 * To simplify the logic, the labels will start at 0 and not 1.
180 *
181 * The possible invert values are 1 and 0. The number of "!"s that are in scope
182 * before the predicate determines the invert value, if the number is odd then
183 * the invert value is 1 and 0 otherwise. This means the invert value only
184 * needs to be toggled when a new "!" is introduced compared to what is stored
185 * on the stack, where parentheses were used.
186 *
187 * The top of the stack and "invert" are initialized to zero.
188 *
189 * ** FIRST PASS **
190 *
191 * #1 A loop through all the tokens is done:
192 *
193 * #2 If the token is an "(", the stack is push, and the current stack value
194 * gets the current invert value, and the loop continues to the next token.
195 * The top of the stack saves the "invert" value to keep track of what
196 * the current inversion is. As "!(a && !b || c)" would require all
197 * predicates being affected separately by the "!" before the parentheses.
198 * And that would end up being equivalent to "(!a || b) && !c"
199 *
200 * #3 If the token is an "!", the current "invert" value gets inverted, and
201 * the loop continues. Note, if the next token is a predicate, then
202 * this "invert" value is only valid for the current program entry,
203 * and does not affect other predicates later on.
204 *
205 * The only other acceptable token is the predicate string.
206 *
207 * #4 A new entry into the program is added saving: the predicate and the
208 * current value of "invert". The target is currently assigned to the
209 * previous program index (this will not be its final value).
210 *
211 * #5 We now enter another loop and look at the next token. The only valid
212 * tokens are ")", "&&", "||" or end of the input string "\0".
213 *
214 * #6 The invert variable is reset to the current value saved on the top of
215 * the stack.
216 *
217 * #7 The top of the stack holds not only the current invert value, but also
218 * if a "&&" or "||" needs to be processed. Note, the "&&" takes higher
219 * precedence than "||". That is "a && b || c && d" is equivalent to
220 * "(a && b) || (c && d)". Thus the first thing to do is to see if "&&" needs
221 * to be processed. This is the case if an "&&" was the last token. If it was
222 * then we call update_preds(). This takes the program, the current index in
223 * the program, and the current value of "invert". More will be described
224 * below about this function.
225 *
226 * #8 If the next token is "&&" then we set a flag in the top of the stack
227 * that denotes that "&&" needs to be processed, break out of this loop
228 * and continue with the outer loop.
229 *
230 * #9 Otherwise, if a "||" needs to be processed then update_preds() is called.
231 * This is called with the program, the current index in the program, but
232 * this time with an inverted value of "invert" (that is !invert). This is
233 * because the value taken will become the "when_to_branch" value of the
234 * program.
235 * Note, this is called when the next token is not an "&&". As stated before,
236 * "&&" takes higher precedence, and "||" should not be processed yet if the
237 * next logical operation is "&&".
238 *
239 * #10 If the next token is "||" then we set a flag in the top of the stack
240 * that denotes that "||" needs to be processed, break out of this loop
241 * and continue with the outer loop.
242 *
243 * #11 If this is the end of the input string "\0" then we break out of both
244 * loops.
245 *
246 * #12 Otherwise, the next token is ")", where we pop the stack and continue
247 * this inner loop.
248 *
249 * Now to discuss the update_pred() function, as that is key to the setting up
250 * of the program. Remember the "target" of the program is initialized to the
251 * previous index and not the "l" label. The target holds the index into the
252 * program that gets affected by the operand. Thus if we have something like
253 * "a || b && c", when we process "a" the target will be "-1" (undefined).
254 * When we process "b", its target is "0", which is the index of "a", as that's
255 * the predicate that is affected by "||". But because the next token after "b"
256 * is "&&" we don't call update_preds(). Instead continue to "c". As the
257 * next token after "c" is not "&&" but the end of input, we first process the
258 * "&&" by calling update_preds() for the "&&" then we process the "||" by
259 * callin updates_preds() with the values for processing "||".
260 *
261 * What does that mean? What update_preds() does is to first save the "target"
262 * of the program entry indexed by the current program entry's "target"
263 * (remember the "target" is initialized to previous program entry), and then
264 * sets that "target" to the current index which represents the label "l#".
265 * That entry's "when_to_branch" is set to the value passed in (the "invert"
266 * or "!invert"). Then it sets the current program entry's target to the saved
267 * "target" value (the old value of the program that had its "target" updated
268 * to the label).
269 *
270 * Looking back at "a || b && c", we have the following steps:
271 * "a" - prog[0] = { "a", X, -1 } // pred, when_to_branch, target
272 * "||" - flag that we need to process "||"; continue outer loop
273 * "b" - prog[1] = { "b", X, 0 }
274 * "&&" - flag that we need to process "&&"; continue outer loop
275 * (Notice we did not process "||")
276 * "c" - prog[2] = { "c", X, 1 }
277 * update_preds(prog, 2, 0); // invert = 0 as we are processing "&&"
278 * t = prog[2].target; // t = 1
279 * s = prog[t].target; // s = 0
280 * prog[t].target = 2; // Set target to "l2"
281 * prog[t].when_to_branch = 0;
282 * prog[2].target = s;
283 * update_preds(prog, 2, 1); // invert = 1 as we are now processing "||"
284 * t = prog[2].target; // t = 0
285 * s = prog[t].target; // s = -1
286 * prog[t].target = 2; // Set target to "l2"
287 * prog[t].when_to_branch = 1;
288 * prog[2].target = s;
289 *
290 * #13 Which brings us to the final step of the first pass, which is to set
291 * the last program entry's when_to_branch and target, which will be
292 * when_to_branch = 0; target = N; ( the label after the program entry after
293 * the last program entry processed above).
294 *
295 * If we denote "TRUE" to be the entry after the last program entry processed,
296 * and "FALSE" the program entry after that, we are now done with the first
297 * pass.
298 *
299 * Making the above "a || b && c" have a progam of:
300 * prog[0] = { "a", 1, 2 }
301 * prog[1] = { "b", 0, 2 }
302 * prog[2] = { "c", 0, 3 }
303 *
304 * Which translates into:
305 * n0: r = a; l0: if (r) goto l2;
306 * n1: r = b; l1: if (!r) goto l2;
307 * n2: r = c; l2: if (!r) goto l3; // Which is the same as "goto F;"
308 * T: return TRUE; l3:
309 * F: return FALSE
310 *
311 * Although, after the first pass, the program is correct, it is
312 * inefficient. The simple sample of "a || b && c" could be easily been
313 * converted into:
314 * n0: r = a; if (r) goto T
315 * n1: r = b; if (!r) goto F
316 * n2: r = c; if (!r) goto F
317 * T: return TRUE;
318 * F: return FALSE;
319 *
320 * The First Pass is over the input string. The next too passes are over
321 * the program itself.
322 *
323 * ** SECOND PASS **
324 *
325 * Which brings us to the second pass. If a jump to a label has the
326 * same condition as that label, it can instead jump to its target.
327 * The original example of "a && !(!b || (c && g)) || d || e && !f"
328 * where the first pass gives us:
329 *
330 * n1: r=a; l1: if (!r) goto l4;
331 * n2: r=b; l2: if (!r) goto l4;
332 * n3: r=c; r=!r; l3: if (r) goto l4;
333 * n4: r=g; r=!r; l4: if (r) goto l5;
334 * n5: r=d; l5: if (r) goto T
335 * n6: r=e; l6: if (!r) goto l7;
336 * n7: r=f; r=!r; l7: if (!r) goto F:
337 * T: return TRUE;
338 * F: return FALSE
339 *
340 * We can see that "l3: if (r) goto l4;" and at l4, we have "if (r) goto l5;".
341 * And "l5: if (r) goto T", we could optimize this by converting l3 and l4
342 * to go directly to T. To accomplish this, we start from the last
343 * entry in the program and work our way back. If the target of the entry
344 * has the same "when_to_branch" then we could use that entry's target.
345 * Doing this, the above would end up as:
346 *
347 * n1: r=a; l1: if (!r) goto l4;
348 * n2: r=b; l2: if (!r) goto l4;
349 * n3: r=c; r=!r; l3: if (r) goto T;
350 * n4: r=g; r=!r; l4: if (r) goto T;
351 * n5: r=d; l5: if (r) goto T;
352 * n6: r=e; l6: if (!r) goto F;
353 * n7: r=f; r=!r; l7: if (!r) goto F;
354 * T: return TRUE
355 * F: return FALSE
356 *
357 * In that same pass, if the "when_to_branch" doesn't match, we can simply
358 * go to the program entry after the label. That is, "l2: if (!r) goto l4;"
359 * where "l4: if (r) goto T;", then we can convert l2 to be:
360 * "l2: if (!r) goto n5;".
361 *
362 * This will have the second pass give us:
363 * n1: r=a; l1: if (!r) goto n5;
364 * n2: r=b; l2: if (!r) goto n5;
365 * n3: r=c; r=!r; l3: if (r) goto T;
366 * n4: r=g; r=!r; l4: if (r) goto T;
367 * n5: r=d; l5: if (r) goto T
368 * n6: r=e; l6: if (!r) goto F;
369 * n7: r=f; r=!r; l7: if (!r) goto F
370 * T: return TRUE
371 * F: return FALSE
372 *
373 * Notice, all the "l#" labels are no longer used, and they can now
374 * be discarded.
375 *
376 * ** THIRD PASS **
377 *
378 * For the third pass we deal with the inverts. As they simply just
379 * make the "when_to_branch" get inverted, a simple loop over the
380 * program to that does: "when_to_branch ^= invert;" will do the
381 * job, leaving us with:
382 * n1: r=a; if (!r) goto n5;
383 * n2: r=b; if (!r) goto n5;
384 * n3: r=c: if (!r) goto T;
385 * n4: r=g; if (!r) goto T;
386 * n5: r=d; if (r) goto T
387 * n6: r=e; if (!r) goto F;
388 * n7: r=f; if (r) goto F
389 * T: return TRUE
390 * F: return FALSE
391 *
392 * As "r = a; if (!r) goto n5;" is obviously the same as
393 * "if (!a) goto n5;" without doing anything we can interperate the
394 * program as:
395 * n1: if (!a) goto n5;
396 * n2: if (!b) goto n5;
397 * n3: if (!c) goto T;
398 * n4: if (!g) goto T;
399 * n5: if (d) goto T
400 * n6: if (!e) goto F;
401 * n7: if (f) goto F
402 * T: return TRUE
403 * F: return FALSE
404 *
405 * Since the inverts are discarded at the end, there's no reason to store
406 * them in the program array (and waste memory). A separate array to hold
407 * the inverts is used and freed at the end.
408 */
409 static struct prog_entry *
410 predicate_parse(const char *str, int nr_parens, int nr_preds,
411 parse_pred_fn parse_pred, void *data,
412 struct filter_parse_error *pe)
413 {
414 struct prog_entry *prog_stack;
415 struct prog_entry *prog;
416 const char *ptr = str;
417 char *inverts = NULL;
418 int *op_stack;
419 int *top;
420 int invert = 0;
421 int ret = -ENOMEM;
422 int len;
423 int N = 0;
424 int i;
425
426 nr_preds += 2; /* For TRUE and FALSE */
427
428 op_stack = kmalloc_array(nr_parens, sizeof(*op_stack), GFP_KERNEL);
429 if (!op_stack)
430 return ERR_PTR(-ENOMEM);
431 prog_stack = kcalloc(nr_preds, sizeof(*prog_stack), GFP_KERNEL);
432 if (!prog_stack) {
433 parse_error(pe, -ENOMEM, 0);
434 goto out_free;
435 }
436 inverts = kmalloc_array(nr_preds, sizeof(*inverts), GFP_KERNEL);
437 if (!inverts) {
438 parse_error(pe, -ENOMEM, 0);
439 goto out_free;
440 }
441
442 top = op_stack;
443 prog = prog_stack;
444 *top = 0;
445
446 /* First pass */
447 while (*ptr) { /* #1 */
448 const char *next = ptr++;
449
450 if (isspace(*next))
451 continue;
452
453 switch (*next) {
454 case '(': /* #2 */
455 if (top - op_stack > nr_parens) {
456 ret = -EINVAL;
457 goto out_free;
458 }
459 *(++top) = invert;
460 continue;
461 case '!': /* #3 */
462 if (!is_not(next))
463 break;
464 invert = !invert;
465 continue;
466 }
467
468 if (N >= nr_preds) {
469 parse_error(pe, FILT_ERR_TOO_MANY_PREDS, next - str);
470 goto out_free;
471 }
472
473 inverts[N] = invert; /* #4 */
474 prog[N].target = N-1;
475
476 len = parse_pred(next, data, ptr - str, pe, &prog[N].pred);
477 if (len < 0) {
478 ret = len;
479 goto out_free;
480 }
481 ptr = next + len;
482
483 N++;
484
485 ret = -1;
486 while (1) { /* #5 */
487 next = ptr++;
488 if (isspace(*next))
489 continue;
490
491 switch (*next) {
492 case ')':
493 case '\0':
494 break;
495 case '&':
496 case '|':
497 /* accepting only "&&" or "||" */
498 if (next[1] == next[0]) {
499 ptr++;
500 break;
501 }
502 fallthrough;
503 default:
504 parse_error(pe, FILT_ERR_TOO_MANY_PREDS,
505 next - str);
506 goto out_free;
507 }
508
509 invert = *top & INVERT;
510
511 if (*top & PROCESS_AND) { /* #7 */
512 update_preds(prog, N - 1, invert);
513 *top &= ~PROCESS_AND;
514 }
515 if (*next == '&') { /* #8 */
516 *top |= PROCESS_AND;
517 break;
518 }
519 if (*top & PROCESS_OR) { /* #9 */
520 update_preds(prog, N - 1, !invert);
521 *top &= ~PROCESS_OR;
522 }
523 if (*next == '|') { /* #10 */
524 *top |= PROCESS_OR;
525 break;
526 }
527 if (!*next) /* #11 */
528 goto out;
529
530 if (top == op_stack) {
531 ret = -1;
532 /* Too few '(' */
533 parse_error(pe, FILT_ERR_TOO_MANY_CLOSE, ptr - str);
534 goto out_free;
535 }
536 top--; /* #12 */
537 }
538 }
539 out:
540 if (top != op_stack) {
541 /* Too many '(' */
542 parse_error(pe, FILT_ERR_TOO_MANY_OPEN, ptr - str);
543 goto out_free;
544 }
545
546 if (!N) {
547 /* No program? */
548 ret = -EINVAL;
549 parse_error(pe, FILT_ERR_NO_FILTER, ptr - str);
550 goto out_free;
551 }
552
553 prog[N].pred = NULL; /* #13 */
554 prog[N].target = 1; /* TRUE */
555 prog[N+1].pred = NULL;
556 prog[N+1].target = 0; /* FALSE */
557 prog[N-1].target = N;
558 prog[N-1].when_to_branch = false;
559
560 /* Second Pass */
561 for (i = N-1 ; i--; ) {
562 int target = prog[i].target;
563 if (prog[i].when_to_branch == prog[target].when_to_branch)
564 prog[i].target = prog[target].target;
565 }
566
567 /* Third Pass */
568 for (i = 0; i < N; i++) {
569 invert = inverts[i] ^ prog[i].when_to_branch;
570 prog[i].when_to_branch = invert;
571 /* Make sure the program always moves forward */
572 if (WARN_ON(prog[i].target <= i)) {
573 ret = -EINVAL;
574 goto out_free;
575 }
576 }
577
578 kfree(op_stack);
579 kfree(inverts);
580 return prog;
581 out_free:
582 kfree(op_stack);
583 kfree(inverts);
584 if (prog_stack) {
585 for (i = 0; prog_stack[i].pred; i++)
586 kfree(prog_stack[i].pred);
587 kfree(prog_stack);
588 }
589 return ERR_PTR(ret);
590 }
591
592 #define DEFINE_COMPARISON_PRED(type) \
593 static int filter_pred_LT_##type(struct filter_pred *pred, void *event) \
594 { \
595 type *addr = (type *)(event + pred->offset); \
596 type val = (type)pred->val; \
597 return *addr < val; \
598 } \
599 static int filter_pred_LE_##type(struct filter_pred *pred, void *event) \
600 { \
601 type *addr = (type *)(event + pred->offset); \
602 type val = (type)pred->val; \
603 return *addr <= val; \
604 } \
605 static int filter_pred_GT_##type(struct filter_pred *pred, void *event) \
606 { \
607 type *addr = (type *)(event + pred->offset); \
608 type val = (type)pred->val; \
609 return *addr > val; \
610 } \
611 static int filter_pred_GE_##type(struct filter_pred *pred, void *event) \
612 { \
613 type *addr = (type *)(event + pred->offset); \
614 type val = (type)pred->val; \
615 return *addr >= val; \
616 } \
617 static int filter_pred_BAND_##type(struct filter_pred *pred, void *event) \
618 { \
619 type *addr = (type *)(event + pred->offset); \
620 type val = (type)pred->val; \
621 return !!(*addr & val); \
622 } \
623 static const filter_pred_fn_t pred_funcs_##type[] = { \
624 filter_pred_LE_##type, \
625 filter_pred_LT_##type, \
626 filter_pred_GE_##type, \
627 filter_pred_GT_##type, \
628 filter_pred_BAND_##type, \
629 };
630
631 #define DEFINE_EQUALITY_PRED(size) \
632 static int filter_pred_##size(struct filter_pred *pred, void *event) \
633 { \
634 u##size *addr = (u##size *)(event + pred->offset); \
635 u##size val = (u##size)pred->val; \
636 int match; \
637 \
638 match = (val == *addr) ^ pred->not; \
639 \
640 return match; \
641 }
642
643 DEFINE_COMPARISON_PRED(s64);
644 DEFINE_COMPARISON_PRED(u64);
645 DEFINE_COMPARISON_PRED(s32);
646 DEFINE_COMPARISON_PRED(u32);
647 DEFINE_COMPARISON_PRED(s16);
648 DEFINE_COMPARISON_PRED(u16);
649 DEFINE_COMPARISON_PRED(s8);
650 DEFINE_COMPARISON_PRED(u8);
651
652 DEFINE_EQUALITY_PRED(64);
653 DEFINE_EQUALITY_PRED(32);
654 DEFINE_EQUALITY_PRED(16);
655 DEFINE_EQUALITY_PRED(8);
656
657 /* Filter predicate for fixed sized arrays of characters */
658 static int filter_pred_string(struct filter_pred *pred, void *event)
659 {
660 char *addr = (char *)(event + pred->offset);
661 int cmp, match;
662
663 cmp = pred->regex.match(addr, &pred->regex, pred->regex.field_len);
664
665 match = cmp ^ pred->not;
666
667 return match;
668 }
669
670 /* Filter predicate for char * pointers */
671 static int filter_pred_pchar(struct filter_pred *pred, void *event)
672 {
673 char **addr = (char **)(event + pred->offset);
674 int cmp, match;
675 int len = strlen(*addr) + 1; /* including tailing '\0' */
676
677 cmp = pred->regex.match(*addr, &pred->regex, len);
678
679 match = cmp ^ pred->not;
680
681 return match;
682 }
683
684 /*
685 * Filter predicate for dynamic sized arrays of characters.
686 * These are implemented through a list of strings at the end
687 * of the entry.
688 * Also each of these strings have a field in the entry which
689 * contains its offset from the beginning of the entry.
690 * We have then first to get this field, dereference it
691 * and add it to the address of the entry, and at last we have
692 * the address of the string.
693 */
694 static int filter_pred_strloc(struct filter_pred *pred, void *event)
695 {
696 u32 str_item = *(u32 *)(event + pred->offset);
697 int str_loc = str_item & 0xffff;
698 int str_len = str_item >> 16;
699 char *addr = (char *)(event + str_loc);
700 int cmp, match;
701
702 cmp = pred->regex.match(addr, &pred->regex, str_len);
703
704 match = cmp ^ pred->not;
705
706 return match;
707 }
708
709 /* Filter predicate for CPUs. */
710 static int filter_pred_cpu(struct filter_pred *pred, void *event)
711 {
712 int cpu, cmp;
713
714 cpu = raw_smp_processor_id();
715 cmp = pred->val;
716
717 switch (pred->op) {
718 case OP_EQ:
719 return cpu == cmp;
720 case OP_NE:
721 return cpu != cmp;
722 case OP_LT:
723 return cpu < cmp;
724 case OP_LE:
725 return cpu <= cmp;
726 case OP_GT:
727 return cpu > cmp;
728 case OP_GE:
729 return cpu >= cmp;
730 default:
731 return 0;
732 }
733 }
734
735 /* Filter predicate for COMM. */
736 static int filter_pred_comm(struct filter_pred *pred, void *event)
737 {
738 int cmp;
739
740 cmp = pred->regex.match(current->comm, &pred->regex,
741 TASK_COMM_LEN);
742 return cmp ^ pred->not;
743 }
744
745 static int filter_pred_none(struct filter_pred *pred, void *event)
746 {
747 return 0;
748 }
749
750 /*
751 * regex_match_foo - Basic regex callbacks
752 *
753 * @str: the string to be searched
754 * @r: the regex structure containing the pattern string
755 * @len: the length of the string to be searched (including '\0')
756 *
757 * Note:
758 * - @str might not be NULL-terminated if it's of type DYN_STRING
759 * or STATIC_STRING, unless @len is zero.
760 */
761
762 static int regex_match_full(char *str, struct regex *r, int len)
763 {
764 /* len of zero means str is dynamic and ends with '\0' */
765 if (!len)
766 return strcmp(str, r->pattern) == 0;
767
768 return strncmp(str, r->pattern, len) == 0;
769 }
770
771 static int regex_match_front(char *str, struct regex *r, int len)
772 {
773 if (len && len < r->len)
774 return 0;
775
776 return strncmp(str, r->pattern, r->len) == 0;
777 }
778
779 static int regex_match_middle(char *str, struct regex *r, int len)
780 {
781 if (!len)
782 return strstr(str, r->pattern) != NULL;
783
784 return strnstr(str, r->pattern, len) != NULL;
785 }
786
787 static int regex_match_end(char *str, struct regex *r, int len)
788 {
789 int strlen = len - 1;
790
791 if (strlen >= r->len &&
792 memcmp(str + strlen - r->len, r->pattern, r->len) == 0)
793 return 1;
794 return 0;
795 }
796
797 static int regex_match_glob(char *str, struct regex *r, int len __maybe_unused)
798 {
799 if (glob_match(r->pattern, str))
800 return 1;
801 return 0;
802 }
803
804 /**
805 * filter_parse_regex - parse a basic regex
806 * @buff: the raw regex
807 * @len: length of the regex
808 * @search: will point to the beginning of the string to compare
809 * @not: tell whether the match will have to be inverted
810 *
811 * This passes in a buffer containing a regex and this function will
812 * set search to point to the search part of the buffer and
813 * return the type of search it is (see enum above).
814 * This does modify buff.
815 *
816 * Returns enum type.
817 * search returns the pointer to use for comparison.
818 * not returns 1 if buff started with a '!'
819 * 0 otherwise.
820 */
821 enum regex_type filter_parse_regex(char *buff, int len, char **search, int *not)
822 {
823 int type = MATCH_FULL;
824 int i;
825
826 if (buff[0] == '!') {
827 *not = 1;
828 buff++;
829 len--;
830 } else
831 *not = 0;
832
833 *search = buff;
834
835 if (isdigit(buff[0]))
836 return MATCH_INDEX;
837
838 for (i = 0; i < len; i++) {
839 if (buff[i] == '*') {
840 if (!i) {
841 type = MATCH_END_ONLY;
842 } else if (i == len - 1) {
843 if (type == MATCH_END_ONLY)
844 type = MATCH_MIDDLE_ONLY;
845 else
846 type = MATCH_FRONT_ONLY;
847 buff[i] = 0;
848 break;
849 } else { /* pattern continues, use full glob */
850 return MATCH_GLOB;
851 }
852 } else if (strchr("[?\\", buff[i])) {
853 return MATCH_GLOB;
854 }
855 }
856 if (buff[0] == '*')
857 *search = buff + 1;
858
859 return type;
860 }
861
862 static void filter_build_regex(struct filter_pred *pred)
863 {
864 struct regex *r = &pred->regex;
865 char *search;
866 enum regex_type type = MATCH_FULL;
867
868 if (pred->op == OP_GLOB) {
869 type = filter_parse_regex(r->pattern, r->len, &search, &pred->not);
870 r->len = strlen(search);
871 memmove(r->pattern, search, r->len+1);
872 }
873
874 switch (type) {
875 /* MATCH_INDEX should not happen, but if it does, match full */
876 case MATCH_INDEX:
877 case MATCH_FULL:
878 r->match = regex_match_full;
879 break;
880 case MATCH_FRONT_ONLY:
881 r->match = regex_match_front;
882 break;
883 case MATCH_MIDDLE_ONLY:
884 r->match = regex_match_middle;
885 break;
886 case MATCH_END_ONLY:
887 r->match = regex_match_end;
888 break;
889 case MATCH_GLOB:
890 r->match = regex_match_glob;
891 break;
892 }
893 }
894
895 /* return 1 if event matches, 0 otherwise (discard) */
896 int filter_match_preds(struct event_filter *filter, void *rec)
897 {
898 struct prog_entry *prog;
899 int i;
900
901 /* no filter is considered a match */
902 if (!filter)
903 return 1;
904
905 /* Protected by either SRCU(tracepoint_srcu) or preempt_disable */
906 prog = rcu_dereference_raw(filter->prog);
907 if (!prog)
908 return 1;
909
910 for (i = 0; prog[i].pred; i++) {
911 struct filter_pred *pred = prog[i].pred;
912 int match = pred->fn(pred, rec);
913 if (match == prog[i].when_to_branch)
914 i = prog[i].target;
915 }
916 return prog[i].target;
917 }
918 EXPORT_SYMBOL_GPL(filter_match_preds);
919
920 static void remove_filter_string(struct event_filter *filter)
921 {
922 if (!filter)
923 return;
924
925 kfree(filter->filter_string);
926 filter->filter_string = NULL;
927 }
928
929 static void append_filter_err(struct trace_array *tr,
930 struct filter_parse_error *pe,
931 struct event_filter *filter)
932 {
933 struct trace_seq *s;
934 int pos = pe->lasterr_pos;
935 char *buf;
936 int len;
937
938 if (WARN_ON(!filter->filter_string))
939 return;
940
941 s = kmalloc(sizeof(*s), GFP_KERNEL);
942 if (!s)
943 return;
944 trace_seq_init(s);
945
946 len = strlen(filter->filter_string);
947 if (pos > len)
948 pos = len;
949
950 /* indexing is off by one */
951 if (pos)
952 pos++;
953
954 trace_seq_puts(s, filter->filter_string);
955 if (pe->lasterr > 0) {
956 trace_seq_printf(s, "\n%*s", pos, "^");
957 trace_seq_printf(s, "\nparse_error: %s\n", err_text[pe->lasterr]);
958 tracing_log_err(tr, "event filter parse error",
959 filter->filter_string, err_text,
960 pe->lasterr, pe->lasterr_pos);
961 } else {
962 trace_seq_printf(s, "\nError: (%d)\n", pe->lasterr);
963 tracing_log_err(tr, "event filter parse error",
964 filter->filter_string, err_text,
965 FILT_ERR_ERRNO, 0);
966 }
967 trace_seq_putc(s, 0);
968 buf = kmemdup_nul(s->buffer, s->seq.len, GFP_KERNEL);
969 if (buf) {
970 kfree(filter->filter_string);
971 filter->filter_string = buf;
972 }
973 kfree(s);
974 }
975
976 static inline struct event_filter *event_filter(struct trace_event_file *file)
977 {
978 return file->filter;
979 }
980
981 /* caller must hold event_mutex */
982 void print_event_filter(struct trace_event_file *file, struct trace_seq *s)
983 {
984 struct event_filter *filter = event_filter(file);
985
986 if (filter && filter->filter_string)
987 trace_seq_printf(s, "%s\n", filter->filter_string);
988 else
989 trace_seq_puts(s, "none\n");
990 }
991
992 void print_subsystem_event_filter(struct event_subsystem *system,
993 struct trace_seq *s)
994 {
995 struct event_filter *filter;
996
997 mutex_lock(&event_mutex);
998 filter = system->filter;
999 if (filter && filter->filter_string)
1000 trace_seq_printf(s, "%s\n", filter->filter_string);
1001 else
1002 trace_seq_puts(s, DEFAULT_SYS_FILTER_MESSAGE "\n");
1003 mutex_unlock(&event_mutex);
1004 }
1005
1006 static void free_prog(struct event_filter *filter)
1007 {
1008 struct prog_entry *prog;
1009 int i;
1010
1011 prog = rcu_access_pointer(filter->prog);
1012 if (!prog)
1013 return;
1014
1015 for (i = 0; prog[i].pred; i++)
1016 kfree(prog[i].pred);
1017 kfree(prog);
1018 }
1019
1020 static void filter_disable(struct trace_event_file *file)
1021 {
1022 unsigned long old_flags = file->flags;
1023
1024 file->flags &= ~EVENT_FILE_FL_FILTERED;
1025
1026 if (old_flags != file->flags)
1027 trace_buffered_event_disable();
1028 }
1029
1030 static void __free_filter(struct event_filter *filter)
1031 {
1032 if (!filter)
1033 return;
1034
1035 free_prog(filter);
1036 kfree(filter->filter_string);
1037 kfree(filter);
1038 }
1039
1040 void free_event_filter(struct event_filter *filter)
1041 {
1042 __free_filter(filter);
1043 }
1044
1045 static inline void __remove_filter(struct trace_event_file *file)
1046 {
1047 filter_disable(file);
1048 remove_filter_string(file->filter);
1049 }
1050
1051 static void filter_free_subsystem_preds(struct trace_subsystem_dir *dir,
1052 struct trace_array *tr)
1053 {
1054 struct trace_event_file *file;
1055
1056 list_for_each_entry(file, &tr->events, list) {
1057 if (file->system != dir)
1058 continue;
1059 __remove_filter(file);
1060 }
1061 }
1062
1063 static inline void __free_subsystem_filter(struct trace_event_file *file)
1064 {
1065 __free_filter(file->filter);
1066 file->filter = NULL;
1067 }
1068
1069 static void filter_free_subsystem_filters(struct trace_subsystem_dir *dir,
1070 struct trace_array *tr)
1071 {
1072 struct trace_event_file *file;
1073
1074 list_for_each_entry(file, &tr->events, list) {
1075 if (file->system != dir)
1076 continue;
1077 __free_subsystem_filter(file);
1078 }
1079 }
1080
1081 int filter_assign_type(const char *type)
1082 {
1083 if (strstr(type, "__data_loc") && strstr(type, "char"))
1084 return FILTER_DYN_STRING;
1085
1086 if (strchr(type, '[') && strstr(type, "char"))
1087 return FILTER_STATIC_STRING;
1088
1089 if (strcmp(type, "char *") == 0 || strcmp(type, "const char *") == 0)
1090 return FILTER_PTR_STRING;
1091
1092 return FILTER_OTHER;
1093 }
1094
1095 static filter_pred_fn_t select_comparison_fn(enum filter_op_ids op,
1096 int field_size, int field_is_signed)
1097 {
1098 filter_pred_fn_t fn = NULL;
1099 int pred_func_index = -1;
1100
1101 switch (op) {
1102 case OP_EQ:
1103 case OP_NE:
1104 break;
1105 default:
1106 if (WARN_ON_ONCE(op < PRED_FUNC_START))
1107 return NULL;
1108 pred_func_index = op - PRED_FUNC_START;
1109 if (WARN_ON_ONCE(pred_func_index > PRED_FUNC_MAX))
1110 return NULL;
1111 }
1112
1113 switch (field_size) {
1114 case 8:
1115 if (pred_func_index < 0)
1116 fn = filter_pred_64;
1117 else if (field_is_signed)
1118 fn = pred_funcs_s64[pred_func_index];
1119 else
1120 fn = pred_funcs_u64[pred_func_index];
1121 break;
1122 case 4:
1123 if (pred_func_index < 0)
1124 fn = filter_pred_32;
1125 else if (field_is_signed)
1126 fn = pred_funcs_s32[pred_func_index];
1127 else
1128 fn = pred_funcs_u32[pred_func_index];
1129 break;
1130 case 2:
1131 if (pred_func_index < 0)
1132 fn = filter_pred_16;
1133 else if (field_is_signed)
1134 fn = pred_funcs_s16[pred_func_index];
1135 else
1136 fn = pred_funcs_u16[pred_func_index];
1137 break;
1138 case 1:
1139 if (pred_func_index < 0)
1140 fn = filter_pred_8;
1141 else if (field_is_signed)
1142 fn = pred_funcs_s8[pred_func_index];
1143 else
1144 fn = pred_funcs_u8[pred_func_index];
1145 break;
1146 }
1147
1148 return fn;
1149 }
1150
1151 /* Called when a predicate is encountered by predicate_parse() */
1152 static int parse_pred(const char *str, void *data,
1153 int pos, struct filter_parse_error *pe,
1154 struct filter_pred **pred_ptr)
1155 {
1156 struct trace_event_call *call = data;
1157 struct ftrace_event_field *field;
1158 struct filter_pred *pred = NULL;
1159 char num_buf[24]; /* Big enough to hold an address */
1160 char *field_name;
1161 char q;
1162 u64 val;
1163 int len;
1164 int ret;
1165 int op;
1166 int s;
1167 int i = 0;
1168
1169 /* First find the field to associate to */
1170 while (isspace(str[i]))
1171 i++;
1172 s = i;
1173
1174 while (isalnum(str[i]) || str[i] == '_')
1175 i++;
1176
1177 len = i - s;
1178
1179 if (!len)
1180 return -1;
1181
1182 field_name = kmemdup_nul(str + s, len, GFP_KERNEL);
1183 if (!field_name)
1184 return -ENOMEM;
1185
1186 /* Make sure that the field exists */
1187
1188 field = trace_find_event_field(call, field_name);
1189 kfree(field_name);
1190 if (!field) {
1191 parse_error(pe, FILT_ERR_FIELD_NOT_FOUND, pos + i);
1192 return -EINVAL;
1193 }
1194
1195 while (isspace(str[i]))
1196 i++;
1197
1198 /* Make sure this op is supported */
1199 for (op = 0; ops[op]; op++) {
1200 /* This is why '<=' must come before '<' in ops[] */
1201 if (strncmp(str + i, ops[op], strlen(ops[op])) == 0)
1202 break;
1203 }
1204
1205 if (!ops[op]) {
1206 parse_error(pe, FILT_ERR_INVALID_OP, pos + i);
1207 goto err_free;
1208 }
1209
1210 i += strlen(ops[op]);
1211
1212 while (isspace(str[i]))
1213 i++;
1214
1215 s = i;
1216
1217 pred = kzalloc(sizeof(*pred), GFP_KERNEL);
1218 if (!pred)
1219 return -ENOMEM;
1220
1221 pred->field = field;
1222 pred->offset = field->offset;
1223 pred->op = op;
1224
1225 if (ftrace_event_is_function(call)) {
1226 /*
1227 * Perf does things different with function events.
1228 * It only allows an "ip" field, and expects a string.
1229 * But the string does not need to be surrounded by quotes.
1230 * If it is a string, the assigned function as a nop,
1231 * (perf doesn't use it) and grab everything.
1232 */
1233 if (strcmp(field->name, "ip") != 0) {
1234 parse_error(pe, FILT_ERR_IP_FIELD_ONLY, pos + i);
1235 goto err_free;
1236 }
1237 pred->fn = filter_pred_none;
1238
1239 /*
1240 * Quotes are not required, but if they exist then we need
1241 * to read them till we hit a matching one.
1242 */
1243 if (str[i] == '\'' || str[i] == '"')
1244 q = str[i];
1245 else
1246 q = 0;
1247
1248 for (i++; str[i]; i++) {
1249 if (q && str[i] == q)
1250 break;
1251 if (!q && (str[i] == ')' || str[i] == '&' ||
1252 str[i] == '|'))
1253 break;
1254 }
1255 /* Skip quotes */
1256 if (q)
1257 s++;
1258 len = i - s;
1259 if (len >= MAX_FILTER_STR_VAL) {
1260 parse_error(pe, FILT_ERR_OPERAND_TOO_LONG, pos + i);
1261 goto err_free;
1262 }
1263
1264 pred->regex.len = len;
1265 strncpy(pred->regex.pattern, str + s, len);
1266 pred->regex.pattern[len] = 0;
1267
1268 /* This is either a string, or an integer */
1269 } else if (str[i] == '\'' || str[i] == '"') {
1270 char q = str[i];
1271
1272 /* Make sure the op is OK for strings */
1273 switch (op) {
1274 case OP_NE:
1275 pred->not = 1;
1276 fallthrough;
1277 case OP_GLOB:
1278 case OP_EQ:
1279 break;
1280 default:
1281 parse_error(pe, FILT_ERR_ILLEGAL_FIELD_OP, pos + i);
1282 goto err_free;
1283 }
1284
1285 /* Make sure the field is OK for strings */
1286 if (!is_string_field(field)) {
1287 parse_error(pe, FILT_ERR_EXPECT_DIGIT, pos + i);
1288 goto err_free;
1289 }
1290
1291 for (i++; str[i]; i++) {
1292 if (str[i] == q)
1293 break;
1294 }
1295 if (!str[i]) {
1296 parse_error(pe, FILT_ERR_MISSING_QUOTE, pos + i);
1297 goto err_free;
1298 }
1299
1300 /* Skip quotes */
1301 s++;
1302 len = i - s;
1303 if (len >= MAX_FILTER_STR_VAL) {
1304 parse_error(pe, FILT_ERR_OPERAND_TOO_LONG, pos + i);
1305 goto err_free;
1306 }
1307
1308 pred->regex.len = len;
1309 strncpy(pred->regex.pattern, str + s, len);
1310 pred->regex.pattern[len] = 0;
1311
1312 filter_build_regex(pred);
1313
1314 if (field->filter_type == FILTER_COMM) {
1315 pred->fn = filter_pred_comm;
1316
1317 } else if (field->filter_type == FILTER_STATIC_STRING) {
1318 pred->fn = filter_pred_string;
1319 pred->regex.field_len = field->size;
1320
1321 } else if (field->filter_type == FILTER_DYN_STRING)
1322 pred->fn = filter_pred_strloc;
1323 else
1324 pred->fn = filter_pred_pchar;
1325 /* go past the last quote */
1326 i++;
1327
1328 } else if (isdigit(str[i]) || str[i] == '-') {
1329
1330 /* Make sure the field is not a string */
1331 if (is_string_field(field)) {
1332 parse_error(pe, FILT_ERR_EXPECT_STRING, pos + i);
1333 goto err_free;
1334 }
1335
1336 if (op == OP_GLOB) {
1337 parse_error(pe, FILT_ERR_ILLEGAL_FIELD_OP, pos + i);
1338 goto err_free;
1339 }
1340
1341 if (str[i] == '-')
1342 i++;
1343
1344 /* We allow 0xDEADBEEF */
1345 while (isalnum(str[i]))
1346 i++;
1347
1348 len = i - s;
1349 /* 0xfeedfacedeadbeef is 18 chars max */
1350 if (len >= sizeof(num_buf)) {
1351 parse_error(pe, FILT_ERR_OPERAND_TOO_LONG, pos + i);
1352 goto err_free;
1353 }
1354
1355 strncpy(num_buf, str + s, len);
1356 num_buf[len] = 0;
1357
1358 /* Make sure it is a value */
1359 if (field->is_signed)
1360 ret = kstrtoll(num_buf, 0, &val);
1361 else
1362 ret = kstrtoull(num_buf, 0, &val);
1363 if (ret) {
1364 parse_error(pe, FILT_ERR_ILLEGAL_INTVAL, pos + s);
1365 goto err_free;
1366 }
1367
1368 pred->val = val;
1369
1370 if (field->filter_type == FILTER_CPU)
1371 pred->fn = filter_pred_cpu;
1372 else {
1373 pred->fn = select_comparison_fn(pred->op, field->size,
1374 field->is_signed);
1375 if (pred->op == OP_NE)
1376 pred->not = 1;
1377 }
1378
1379 } else {
1380 parse_error(pe, FILT_ERR_INVALID_VALUE, pos + i);
1381 goto err_free;
1382 }
1383
1384 *pred_ptr = pred;
1385 return i;
1386
1387 err_free:
1388 kfree(pred);
1389 return -EINVAL;
1390 }
1391
1392 enum {
1393 TOO_MANY_CLOSE = -1,
1394 TOO_MANY_OPEN = -2,
1395 MISSING_QUOTE = -3,
1396 };
1397
1398 /*
1399 * Read the filter string once to calculate the number of predicates
1400 * as well as how deep the parentheses go.
1401 *
1402 * Returns:
1403 * 0 - everything is fine (err is undefined)
1404 * -1 - too many ')'
1405 * -2 - too many '('
1406 * -3 - No matching quote
1407 */
1408 static int calc_stack(const char *str, int *parens, int *preds, int *err)
1409 {
1410 bool is_pred = false;
1411 int nr_preds = 0;
1412 int open = 1; /* Count the expression as "(E)" */
1413 int last_quote = 0;
1414 int max_open = 1;
1415 int quote = 0;
1416 int i;
1417
1418 *err = 0;
1419
1420 for (i = 0; str[i]; i++) {
1421 if (isspace(str[i]))
1422 continue;
1423 if (quote) {
1424 if (str[i] == quote)
1425 quote = 0;
1426 continue;
1427 }
1428
1429 switch (str[i]) {
1430 case '\'':
1431 case '"':
1432 quote = str[i];
1433 last_quote = i;
1434 break;
1435 case '|':
1436 case '&':
1437 if (str[i+1] != str[i])
1438 break;
1439 is_pred = false;
1440 continue;
1441 case '(':
1442 is_pred = false;
1443 open++;
1444 if (open > max_open)
1445 max_open = open;
1446 continue;
1447 case ')':
1448 is_pred = false;
1449 if (open == 1) {
1450 *err = i;
1451 return TOO_MANY_CLOSE;
1452 }
1453 open--;
1454 continue;
1455 }
1456 if (!is_pred) {
1457 nr_preds++;
1458 is_pred = true;
1459 }
1460 }
1461
1462 if (quote) {
1463 *err = last_quote;
1464 return MISSING_QUOTE;
1465 }
1466
1467 if (open != 1) {
1468 int level = open;
1469
1470 /* find the bad open */
1471 for (i--; i; i--) {
1472 if (quote) {
1473 if (str[i] == quote)
1474 quote = 0;
1475 continue;
1476 }
1477 switch (str[i]) {
1478 case '(':
1479 if (level == open) {
1480 *err = i;
1481 return TOO_MANY_OPEN;
1482 }
1483 level--;
1484 break;
1485 case ')':
1486 level++;
1487 break;
1488 case '\'':
1489 case '"':
1490 quote = str[i];
1491 break;
1492 }
1493 }
1494 /* First character is the '(' with missing ')' */
1495 *err = 0;
1496 return TOO_MANY_OPEN;
1497 }
1498
1499 /* Set the size of the required stacks */
1500 *parens = max_open;
1501 *preds = nr_preds;
1502 return 0;
1503 }
1504
1505 static int process_preds(struct trace_event_call *call,
1506 const char *filter_string,
1507 struct event_filter *filter,
1508 struct filter_parse_error *pe)
1509 {
1510 struct prog_entry *prog;
1511 int nr_parens;
1512 int nr_preds;
1513 int index;
1514 int ret;
1515
1516 ret = calc_stack(filter_string, &nr_parens, &nr_preds, &index);
1517 if (ret < 0) {
1518 switch (ret) {
1519 case MISSING_QUOTE:
1520 parse_error(pe, FILT_ERR_MISSING_QUOTE, index);
1521 break;
1522 case TOO_MANY_OPEN:
1523 parse_error(pe, FILT_ERR_TOO_MANY_OPEN, index);
1524 break;
1525 default:
1526 parse_error(pe, FILT_ERR_TOO_MANY_CLOSE, index);
1527 }
1528 return ret;
1529 }
1530
1531 if (!nr_preds)
1532 return -EINVAL;
1533
1534 prog = predicate_parse(filter_string, nr_parens, nr_preds,
1535 parse_pred, call, pe);
1536 if (IS_ERR(prog))
1537 return PTR_ERR(prog);
1538
1539 rcu_assign_pointer(filter->prog, prog);
1540 return 0;
1541 }
1542
1543 static inline void event_set_filtered_flag(struct trace_event_file *file)
1544 {
1545 unsigned long old_flags = file->flags;
1546
1547 file->flags |= EVENT_FILE_FL_FILTERED;
1548
1549 if (old_flags != file->flags)
1550 trace_buffered_event_enable();
1551 }
1552
1553 static inline void event_set_filter(struct trace_event_file *file,
1554 struct event_filter *filter)
1555 {
1556 rcu_assign_pointer(file->filter, filter);
1557 }
1558
1559 static inline void event_clear_filter(struct trace_event_file *file)
1560 {
1561 RCU_INIT_POINTER(file->filter, NULL);
1562 }
1563
1564 struct filter_list {
1565 struct list_head list;
1566 struct event_filter *filter;
1567 };
1568
1569 static int process_system_preds(struct trace_subsystem_dir *dir,
1570 struct trace_array *tr,
1571 struct filter_parse_error *pe,
1572 char *filter_string)
1573 {
1574 struct trace_event_file *file;
1575 struct filter_list *filter_item;
1576 struct event_filter *filter = NULL;
1577 struct filter_list *tmp;
1578 LIST_HEAD(filter_list);
1579 bool fail = true;
1580 int err;
1581
1582 list_for_each_entry(file, &tr->events, list) {
1583
1584 if (file->system != dir)
1585 continue;
1586
1587 filter = kzalloc(sizeof(*filter), GFP_KERNEL);
1588 if (!filter)
1589 goto fail_mem;
1590
1591 filter->filter_string = kstrdup(filter_string, GFP_KERNEL);
1592 if (!filter->filter_string)
1593 goto fail_mem;
1594
1595 err = process_preds(file->event_call, filter_string, filter, pe);
1596 if (err) {
1597 filter_disable(file);
1598 parse_error(pe, FILT_ERR_BAD_SUBSYS_FILTER, 0);
1599 append_filter_err(tr, pe, filter);
1600 } else
1601 event_set_filtered_flag(file);
1602
1603
1604 filter_item = kzalloc(sizeof(*filter_item), GFP_KERNEL);
1605 if (!filter_item)
1606 goto fail_mem;
1607
1608 list_add_tail(&filter_item->list, &filter_list);
1609 /*
1610 * Regardless of if this returned an error, we still
1611 * replace the filter for the call.
1612 */
1613 filter_item->filter = event_filter(file);
1614 event_set_filter(file, filter);
1615 filter = NULL;
1616
1617 fail = false;
1618 }
1619
1620 if (fail)
1621 goto fail;
1622
1623 /*
1624 * The calls can still be using the old filters.
1625 * Do a synchronize_rcu() and to ensure all calls are
1626 * done with them before we free them.
1627 */
1628 tracepoint_synchronize_unregister();
1629 list_for_each_entry_safe(filter_item, tmp, &filter_list, list) {
1630 __free_filter(filter_item->filter);
1631 list_del(&filter_item->list);
1632 kfree(filter_item);
1633 }
1634 return 0;
1635 fail:
1636 /* No call succeeded */
1637 list_for_each_entry_safe(filter_item, tmp, &filter_list, list) {
1638 list_del(&filter_item->list);
1639 kfree(filter_item);
1640 }
1641 parse_error(pe, FILT_ERR_BAD_SUBSYS_FILTER, 0);
1642 return -EINVAL;
1643 fail_mem:
1644 __free_filter(filter);
1645 /* If any call succeeded, we still need to sync */
1646 if (!fail)
1647 tracepoint_synchronize_unregister();
1648 list_for_each_entry_safe(filter_item, tmp, &filter_list, list) {
1649 __free_filter(filter_item->filter);
1650 list_del(&filter_item->list);
1651 kfree(filter_item);
1652 }
1653 return -ENOMEM;
1654 }
1655
1656 static int create_filter_start(char *filter_string, bool set_str,
1657 struct filter_parse_error **pse,
1658 struct event_filter **filterp)
1659 {
1660 struct event_filter *filter;
1661 struct filter_parse_error *pe = NULL;
1662 int err = 0;
1663
1664 if (WARN_ON_ONCE(*pse || *filterp))
1665 return -EINVAL;
1666
1667 filter = kzalloc(sizeof(*filter), GFP_KERNEL);
1668 if (filter && set_str) {
1669 filter->filter_string = kstrdup(filter_string, GFP_KERNEL);
1670 if (!filter->filter_string)
1671 err = -ENOMEM;
1672 }
1673
1674 pe = kzalloc(sizeof(*pe), GFP_KERNEL);
1675
1676 if (!filter || !pe || err) {
1677 kfree(pe);
1678 __free_filter(filter);
1679 return -ENOMEM;
1680 }
1681
1682 /* we're committed to creating a new filter */
1683 *filterp = filter;
1684 *pse = pe;
1685
1686 return 0;
1687 }
1688
1689 static void create_filter_finish(struct filter_parse_error *pe)
1690 {
1691 kfree(pe);
1692 }
1693
1694 /**
1695 * create_filter - create a filter for a trace_event_call
1696 * @call: trace_event_call to create a filter for
1697 * @filter_str: filter string
1698 * @set_str: remember @filter_str and enable detailed error in filter
1699 * @filterp: out param for created filter (always updated on return)
1700 * Must be a pointer that references a NULL pointer.
1701 *
1702 * Creates a filter for @call with @filter_str. If @set_str is %true,
1703 * @filter_str is copied and recorded in the new filter.
1704 *
1705 * On success, returns 0 and *@filterp points to the new filter. On
1706 * failure, returns -errno and *@filterp may point to %NULL or to a new
1707 * filter. In the latter case, the returned filter contains error
1708 * information if @set_str is %true and the caller is responsible for
1709 * freeing it.
1710 */
1711 static int create_filter(struct trace_array *tr,
1712 struct trace_event_call *call,
1713 char *filter_string, bool set_str,
1714 struct event_filter **filterp)
1715 {
1716 struct filter_parse_error *pe = NULL;
1717 int err;
1718
1719 /* filterp must point to NULL */
1720 if (WARN_ON(*filterp))
1721 *filterp = NULL;
1722
1723 err = create_filter_start(filter_string, set_str, &pe, filterp);
1724 if (err)
1725 return err;
1726
1727 err = process_preds(call, filter_string, *filterp, pe);
1728 if (err && set_str)
1729 append_filter_err(tr, pe, *filterp);
1730 create_filter_finish(pe);
1731
1732 return err;
1733 }
1734
1735 int create_event_filter(struct trace_array *tr,
1736 struct trace_event_call *call,
1737 char *filter_str, bool set_str,
1738 struct event_filter **filterp)
1739 {
1740 return create_filter(tr, call, filter_str, set_str, filterp);
1741 }
1742
1743 /**
1744 * create_system_filter - create a filter for an event_subsystem
1745 * @system: event_subsystem to create a filter for
1746 * @filter_str: filter string
1747 * @filterp: out param for created filter (always updated on return)
1748 *
1749 * Identical to create_filter() except that it creates a subsystem filter
1750 * and always remembers @filter_str.
1751 */
1752 static int create_system_filter(struct trace_subsystem_dir *dir,
1753 struct trace_array *tr,
1754 char *filter_str, struct event_filter **filterp)
1755 {
1756 struct filter_parse_error *pe = NULL;
1757 int err;
1758
1759 err = create_filter_start(filter_str, true, &pe, filterp);
1760 if (!err) {
1761 err = process_system_preds(dir, tr, pe, filter_str);
1762 if (!err) {
1763 /* System filters just show a default message */
1764 kfree((*filterp)->filter_string);
1765 (*filterp)->filter_string = NULL;
1766 } else {
1767 append_filter_err(tr, pe, *filterp);
1768 }
1769 }
1770 create_filter_finish(pe);
1771
1772 return err;
1773 }
1774
1775 /* caller must hold event_mutex */
1776 int apply_event_filter(struct trace_event_file *file, char *filter_string)
1777 {
1778 struct trace_event_call *call = file->event_call;
1779 struct event_filter *filter = NULL;
1780 int err;
1781
1782 if (!strcmp(strstrip(filter_string), "0")) {
1783 filter_disable(file);
1784 filter = event_filter(file);
1785
1786 if (!filter)
1787 return 0;
1788
1789 event_clear_filter(file);
1790
1791 /* Make sure the filter is not being used */
1792 tracepoint_synchronize_unregister();
1793 __free_filter(filter);
1794
1795 return 0;
1796 }
1797
1798 err = create_filter(file->tr, call, filter_string, true, &filter);
1799
1800 /*
1801 * Always swap the call filter with the new filter
1802 * even if there was an error. If there was an error
1803 * in the filter, we disable the filter and show the error
1804 * string
1805 */
1806 if (filter) {
1807 struct event_filter *tmp;
1808
1809 tmp = event_filter(file);
1810 if (!err)
1811 event_set_filtered_flag(file);
1812 else
1813 filter_disable(file);
1814
1815 event_set_filter(file, filter);
1816
1817 if (tmp) {
1818 /* Make sure the call is done with the filter */
1819 tracepoint_synchronize_unregister();
1820 __free_filter(tmp);
1821 }
1822 }
1823
1824 return err;
1825 }
1826
1827 int apply_subsystem_event_filter(struct trace_subsystem_dir *dir,
1828 char *filter_string)
1829 {
1830 struct event_subsystem *system = dir->subsystem;
1831 struct trace_array *tr = dir->tr;
1832 struct event_filter *filter = NULL;
1833 int err = 0;
1834
1835 mutex_lock(&event_mutex);
1836
1837 /* Make sure the system still has events */
1838 if (!dir->nr_events) {
1839 err = -ENODEV;
1840 goto out_unlock;
1841 }
1842
1843 if (!strcmp(strstrip(filter_string), "0")) {
1844 filter_free_subsystem_preds(dir, tr);
1845 remove_filter_string(system->filter);
1846 filter = system->filter;
1847 system->filter = NULL;
1848 /* Ensure all filters are no longer used */
1849 tracepoint_synchronize_unregister();
1850 filter_free_subsystem_filters(dir, tr);
1851 __free_filter(filter);
1852 goto out_unlock;
1853 }
1854
1855 err = create_system_filter(dir, tr, filter_string, &filter);
1856 if (filter) {
1857 /*
1858 * No event actually uses the system filter
1859 * we can free it without synchronize_rcu().
1860 */
1861 __free_filter(system->filter);
1862 system->filter = filter;
1863 }
1864 out_unlock:
1865 mutex_unlock(&event_mutex);
1866
1867 return err;
1868 }
1869
1870 #ifdef CONFIG_PERF_EVENTS
1871
1872 void ftrace_profile_free_filter(struct perf_event *event)
1873 {
1874 struct event_filter *filter = event->filter;
1875
1876 event->filter = NULL;
1877 __free_filter(filter);
1878 }
1879
1880 struct function_filter_data {
1881 struct ftrace_ops *ops;
1882 int first_filter;
1883 int first_notrace;
1884 };
1885
1886 #ifdef CONFIG_FUNCTION_TRACER
1887 static char **
1888 ftrace_function_filter_re(char *buf, int len, int *count)
1889 {
1890 char *str, **re;
1891
1892 str = kstrndup(buf, len, GFP_KERNEL);
1893 if (!str)
1894 return NULL;
1895
1896 /*
1897 * The argv_split function takes white space
1898 * as a separator, so convert ',' into spaces.
1899 */
1900 strreplace(str, ',', ' ');
1901
1902 re = argv_split(GFP_KERNEL, str, count);
1903 kfree(str);
1904 return re;
1905 }
1906
1907 static int ftrace_function_set_regexp(struct ftrace_ops *ops, int filter,
1908 int reset, char *re, int len)
1909 {
1910 int ret;
1911
1912 if (filter)
1913 ret = ftrace_set_filter(ops, re, len, reset);
1914 else
1915 ret = ftrace_set_notrace(ops, re, len, reset);
1916
1917 return ret;
1918 }
1919
1920 static int __ftrace_function_set_filter(int filter, char *buf, int len,
1921 struct function_filter_data *data)
1922 {
1923 int i, re_cnt, ret = -EINVAL;
1924 int *reset;
1925 char **re;
1926
1927 reset = filter ? &data->first_filter : &data->first_notrace;
1928
1929 /*
1930 * The 'ip' field could have multiple filters set, separated
1931 * either by space or comma. We first cut the filter and apply
1932 * all pieces separately.
1933 */
1934 re = ftrace_function_filter_re(buf, len, &re_cnt);
1935 if (!re)
1936 return -EINVAL;
1937
1938 for (i = 0; i < re_cnt; i++) {
1939 ret = ftrace_function_set_regexp(data->ops, filter, *reset,
1940 re[i], strlen(re[i]));
1941 if (ret)
1942 break;
1943
1944 if (*reset)
1945 *reset = 0;
1946 }
1947
1948 argv_free(re);
1949 return ret;
1950 }
1951
1952 static int ftrace_function_check_pred(struct filter_pred *pred)
1953 {
1954 struct ftrace_event_field *field = pred->field;
1955
1956 /*
1957 * Check the predicate for function trace, verify:
1958 * - only '==' and '!=' is used
1959 * - the 'ip' field is used
1960 */
1961 if ((pred->op != OP_EQ) && (pred->op != OP_NE))
1962 return -EINVAL;
1963
1964 if (strcmp(field->name, "ip"))
1965 return -EINVAL;
1966
1967 return 0;
1968 }
1969
1970 static int ftrace_function_set_filter_pred(struct filter_pred *pred,
1971 struct function_filter_data *data)
1972 {
1973 int ret;
1974
1975 /* Checking the node is valid for function trace. */
1976 ret = ftrace_function_check_pred(pred);
1977 if (ret)
1978 return ret;
1979
1980 return __ftrace_function_set_filter(pred->op == OP_EQ,
1981 pred->regex.pattern,
1982 pred->regex.len,
1983 data);
1984 }
1985
1986 static bool is_or(struct prog_entry *prog, int i)
1987 {
1988 int target;
1989
1990 /*
1991 * Only "||" is allowed for function events, thus,
1992 * all true branches should jump to true, and any
1993 * false branch should jump to false.
1994 */
1995 target = prog[i].target + 1;
1996 /* True and false have NULL preds (all prog entries should jump to one */
1997 if (prog[target].pred)
1998 return false;
1999
2000 /* prog[target].target is 1 for TRUE, 0 for FALSE */
2001 return prog[i].when_to_branch == prog[target].target;
2002 }
2003
2004 static int ftrace_function_set_filter(struct perf_event *event,
2005 struct event_filter *filter)
2006 {
2007 struct prog_entry *prog = rcu_dereference_protected(filter->prog,
2008 lockdep_is_held(&event_mutex));
2009 struct function_filter_data data = {
2010 .first_filter = 1,
2011 .first_notrace = 1,
2012 .ops = &event->ftrace_ops,
2013 };
2014 int i;
2015
2016 for (i = 0; prog[i].pred; i++) {
2017 struct filter_pred *pred = prog[i].pred;
2018
2019 if (!is_or(prog, i))
2020 return -EINVAL;
2021
2022 if (ftrace_function_set_filter_pred(pred, &data) < 0)
2023 return -EINVAL;
2024 }
2025 return 0;
2026 }
2027 #else
2028 static int ftrace_function_set_filter(struct perf_event *event,
2029 struct event_filter *filter)
2030 {
2031 return -ENODEV;
2032 }
2033 #endif /* CONFIG_FUNCTION_TRACER */
2034
2035 int ftrace_profile_set_filter(struct perf_event *event, int event_id,
2036 char *filter_str)
2037 {
2038 int err;
2039 struct event_filter *filter = NULL;
2040 struct trace_event_call *call;
2041
2042 mutex_lock(&event_mutex);
2043
2044 call = event->tp_event;
2045
2046 err = -EINVAL;
2047 if (!call)
2048 goto out_unlock;
2049
2050 err = -EEXIST;
2051 if (event->filter)
2052 goto out_unlock;
2053
2054 err = create_filter(NULL, call, filter_str, false, &filter);
2055 if (err)
2056 goto free_filter;
2057
2058 if (ftrace_event_is_function(call))
2059 err = ftrace_function_set_filter(event, filter);
2060 else
2061 event->filter = filter;
2062
2063 free_filter:
2064 if (err || ftrace_event_is_function(call))
2065 __free_filter(filter);
2066
2067 out_unlock:
2068 mutex_unlock(&event_mutex);
2069
2070 return err;
2071 }
2072
2073 #endif /* CONFIG_PERF_EVENTS */
2074
2075 #ifdef CONFIG_FTRACE_STARTUP_TEST
2076
2077 #include <linux/types.h>
2078 #include <linux/tracepoint.h>
2079
2080 #define CREATE_TRACE_POINTS
2081 #include "trace_events_filter_test.h"
2082
2083 #define DATA_REC(m, va, vb, vc, vd, ve, vf, vg, vh, nvisit) \
2084 { \
2085 .filter = FILTER, \
2086 .rec = { .a = va, .b = vb, .c = vc, .d = vd, \
2087 .e = ve, .f = vf, .g = vg, .h = vh }, \
2088 .match = m, \
2089 .not_visited = nvisit, \
2090 }
2091 #define YES 1
2092 #define NO 0
2093
2094 static struct test_filter_data_t {
2095 char *filter;
2096 struct trace_event_raw_ftrace_test_filter rec;
2097 int match;
2098 char *not_visited;
2099 } test_filter_data[] = {
2100 #define FILTER "a == 1 && b == 1 && c == 1 && d == 1 && " \
2101 "e == 1 && f == 1 && g == 1 && h == 1"
2102 DATA_REC(YES, 1, 1, 1, 1, 1, 1, 1, 1, ""),
2103 DATA_REC(NO, 0, 1, 1, 1, 1, 1, 1, 1, "bcdefgh"),
2104 DATA_REC(NO, 1, 1, 1, 1, 1, 1, 1, 0, ""),
2105 #undef FILTER
2106 #define FILTER "a == 1 || b == 1 || c == 1 || d == 1 || " \
2107 "e == 1 || f == 1 || g == 1 || h == 1"
2108 DATA_REC(NO, 0, 0, 0, 0, 0, 0, 0, 0, ""),
2109 DATA_REC(YES, 0, 0, 0, 0, 0, 0, 0, 1, ""),
2110 DATA_REC(YES, 1, 0, 0, 0, 0, 0, 0, 0, "bcdefgh"),
2111 #undef FILTER
2112 #define FILTER "(a == 1 || b == 1) && (c == 1 || d == 1) && " \
2113 "(e == 1 || f == 1) && (g == 1 || h == 1)"
2114 DATA_REC(NO, 0, 0, 1, 1, 1, 1, 1, 1, "dfh"),
2115 DATA_REC(YES, 0, 1, 0, 1, 0, 1, 0, 1, ""),
2116 DATA_REC(YES, 1, 0, 1, 0, 0, 1, 0, 1, "bd"),
2117 DATA_REC(NO, 1, 0, 1, 0, 0, 1, 0, 0, "bd"),
2118 #undef FILTER
2119 #define FILTER "(a == 1 && b == 1) || (c == 1 && d == 1) || " \
2120 "(e == 1 && f == 1) || (g == 1 && h == 1)"
2121 DATA_REC(YES, 1, 0, 1, 1, 1, 1, 1, 1, "efgh"),
2122 DATA_REC(YES, 0, 0, 0, 0, 0, 0, 1, 1, ""),
2123 DATA_REC(NO, 0, 0, 0, 0, 0, 0, 0, 1, ""),
2124 #undef FILTER
2125 #define FILTER "(a == 1 && b == 1) && (c == 1 && d == 1) && " \
2126 "(e == 1 && f == 1) || (g == 1 && h == 1)"
2127 DATA_REC(YES, 1, 1, 1, 1, 1, 1, 0, 0, "gh"),
2128 DATA_REC(NO, 0, 0, 0, 0, 0, 0, 0, 1, ""),
2129 DATA_REC(YES, 1, 1, 1, 1, 1, 0, 1, 1, ""),
2130 #undef FILTER
2131 #define FILTER "((a == 1 || b == 1) || (c == 1 || d == 1) || " \
2132 "(e == 1 || f == 1)) && (g == 1 || h == 1)"
2133 DATA_REC(YES, 1, 1, 1, 1, 1, 1, 0, 1, "bcdef"),
2134 DATA_REC(NO, 0, 0, 0, 0, 0, 0, 0, 0, ""),
2135 DATA_REC(YES, 1, 1, 1, 1, 1, 0, 1, 1, "h"),
2136 #undef FILTER
2137 #define FILTER "((((((((a == 1) && (b == 1)) || (c == 1)) && (d == 1)) || " \
2138 "(e == 1)) && (f == 1)) || (g == 1)) && (h == 1))"
2139 DATA_REC(YES, 1, 1, 1, 1, 1, 1, 1, 1, "ceg"),
2140 DATA_REC(NO, 0, 1, 0, 1, 0, 1, 0, 1, ""),
2141 DATA_REC(NO, 1, 0, 1, 0, 1, 0, 1, 0, ""),
2142 #undef FILTER
2143 #define FILTER "((((((((a == 1) || (b == 1)) && (c == 1)) || (d == 1)) && " \
2144 "(e == 1)) || (f == 1)) && (g == 1)) || (h == 1))"
2145 DATA_REC(YES, 1, 1, 1, 1, 1, 1, 1, 1, "bdfh"),
2146 DATA_REC(YES, 0, 1, 0, 1, 0, 1, 0, 1, ""),
2147 DATA_REC(YES, 1, 0, 1, 0, 1, 0, 1, 0, "bdfh"),
2148 };
2149
2150 #undef DATA_REC
2151 #undef FILTER
2152 #undef YES
2153 #undef NO
2154
2155 #define DATA_CNT ARRAY_SIZE(test_filter_data)
2156
2157 static int test_pred_visited;
2158
2159 static int test_pred_visited_fn(struct filter_pred *pred, void *event)
2160 {
2161 struct ftrace_event_field *field = pred->field;
2162
2163 test_pred_visited = 1;
2164 printk(KERN_INFO "\npred visited %s\n", field->name);
2165 return 1;
2166 }
2167
2168 static void update_pred_fn(struct event_filter *filter, char *fields)
2169 {
2170 struct prog_entry *prog = rcu_dereference_protected(filter->prog,
2171 lockdep_is_held(&event_mutex));
2172 int i;
2173
2174 for (i = 0; prog[i].pred; i++) {
2175 struct filter_pred *pred = prog[i].pred;
2176 struct ftrace_event_field *field = pred->field;
2177
2178 WARN_ON_ONCE(!pred->fn);
2179
2180 if (!field) {
2181 WARN_ONCE(1, "all leafs should have field defined %d", i);
2182 continue;
2183 }
2184
2185 if (!strchr(fields, *field->name))
2186 continue;
2187
2188 pred->fn = test_pred_visited_fn;
2189 }
2190 }
2191
2192 static __init int ftrace_test_event_filter(void)
2193 {
2194 int i;
2195
2196 printk(KERN_INFO "Testing ftrace filter: ");
2197
2198 for (i = 0; i < DATA_CNT; i++) {
2199 struct event_filter *filter = NULL;
2200 struct test_filter_data_t *d = &test_filter_data[i];
2201 int err;
2202
2203 err = create_filter(NULL, &event_ftrace_test_filter,
2204 d->filter, false, &filter);
2205 if (err) {
2206 printk(KERN_INFO
2207 "Failed to get filter for '%s', err %d\n",
2208 d->filter, err);
2209 __free_filter(filter);
2210 break;
2211 }
2212
2213 /* Needed to dereference filter->prog */
2214 mutex_lock(&event_mutex);
2215 /*
2216 * The preemption disabling is not really needed for self
2217 * tests, but the rcu dereference will complain without it.
2218 */
2219 preempt_disable();
2220 if (*d->not_visited)
2221 update_pred_fn(filter, d->not_visited);
2222
2223 test_pred_visited = 0;
2224 err = filter_match_preds(filter, &d->rec);
2225 preempt_enable();
2226
2227 mutex_unlock(&event_mutex);
2228
2229 __free_filter(filter);
2230
2231 if (test_pred_visited) {
2232 printk(KERN_INFO
2233 "Failed, unwanted pred visited for filter %s\n",
2234 d->filter);
2235 break;
2236 }
2237
2238 if (err != d->match) {
2239 printk(KERN_INFO
2240 "Failed to match filter '%s', expected %d\n",
2241 d->filter, d->match);
2242 break;
2243 }
2244 }
2245
2246 if (i == DATA_CNT)
2247 printk(KERN_CONT "OK\n");
2248
2249 return 0;
2250 }
2251
2252 late_initcall(ftrace_test_event_filter);
2253
2254 #endif /* CONFIG_FTRACE_STARTUP_TEST */