]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - kernel/workqueue.c
Merge tag 'sh-3.15' of git://git.kernel.org/pub/scm/linux/kernel/git/arm/arm-soc
[mirror_ubuntu-artful-kernel.git] / kernel / workqueue.c
1 /*
2 * kernel/workqueue.c - generic async execution with shared worker pool
3 *
4 * Copyright (C) 2002 Ingo Molnar
5 *
6 * Derived from the taskqueue/keventd code by:
7 * David Woodhouse <dwmw2@infradead.org>
8 * Andrew Morton
9 * Kai Petzke <wpp@marie.physik.tu-berlin.de>
10 * Theodore Ts'o <tytso@mit.edu>
11 *
12 * Made to use alloc_percpu by Christoph Lameter.
13 *
14 * Copyright (C) 2010 SUSE Linux Products GmbH
15 * Copyright (C) 2010 Tejun Heo <tj@kernel.org>
16 *
17 * This is the generic async execution mechanism. Work items as are
18 * executed in process context. The worker pool is shared and
19 * automatically managed. There are two worker pools for each CPU (one for
20 * normal work items and the other for high priority ones) and some extra
21 * pools for workqueues which are not bound to any specific CPU - the
22 * number of these backing pools is dynamic.
23 *
24 * Please read Documentation/workqueue.txt for details.
25 */
26
27 #include <linux/export.h>
28 #include <linux/kernel.h>
29 #include <linux/sched.h>
30 #include <linux/init.h>
31 #include <linux/signal.h>
32 #include <linux/completion.h>
33 #include <linux/workqueue.h>
34 #include <linux/slab.h>
35 #include <linux/cpu.h>
36 #include <linux/notifier.h>
37 #include <linux/kthread.h>
38 #include <linux/hardirq.h>
39 #include <linux/mempolicy.h>
40 #include <linux/freezer.h>
41 #include <linux/kallsyms.h>
42 #include <linux/debug_locks.h>
43 #include <linux/lockdep.h>
44 #include <linux/idr.h>
45 #include <linux/jhash.h>
46 #include <linux/hashtable.h>
47 #include <linux/rculist.h>
48 #include <linux/nodemask.h>
49 #include <linux/moduleparam.h>
50 #include <linux/uaccess.h>
51
52 #include "workqueue_internal.h"
53
54 enum {
55 /*
56 * worker_pool flags
57 *
58 * A bound pool is either associated or disassociated with its CPU.
59 * While associated (!DISASSOCIATED), all workers are bound to the
60 * CPU and none has %WORKER_UNBOUND set and concurrency management
61 * is in effect.
62 *
63 * While DISASSOCIATED, the cpu may be offline and all workers have
64 * %WORKER_UNBOUND set and concurrency management disabled, and may
65 * be executing on any CPU. The pool behaves as an unbound one.
66 *
67 * Note that DISASSOCIATED should be flipped only while holding
68 * manager_mutex to avoid changing binding state while
69 * create_worker() is in progress.
70 */
71 POOL_MANAGE_WORKERS = 1 << 0, /* need to manage workers */
72 POOL_DISASSOCIATED = 1 << 2, /* cpu can't serve workers */
73 POOL_FREEZING = 1 << 3, /* freeze in progress */
74
75 /* worker flags */
76 WORKER_STARTED = 1 << 0, /* started */
77 WORKER_DIE = 1 << 1, /* die die die */
78 WORKER_IDLE = 1 << 2, /* is idle */
79 WORKER_PREP = 1 << 3, /* preparing to run works */
80 WORKER_CPU_INTENSIVE = 1 << 6, /* cpu intensive */
81 WORKER_UNBOUND = 1 << 7, /* worker is unbound */
82 WORKER_REBOUND = 1 << 8, /* worker was rebound */
83
84 WORKER_NOT_RUNNING = WORKER_PREP | WORKER_CPU_INTENSIVE |
85 WORKER_UNBOUND | WORKER_REBOUND,
86
87 NR_STD_WORKER_POOLS = 2, /* # standard pools per cpu */
88
89 UNBOUND_POOL_HASH_ORDER = 6, /* hashed by pool->attrs */
90 BUSY_WORKER_HASH_ORDER = 6, /* 64 pointers */
91
92 MAX_IDLE_WORKERS_RATIO = 4, /* 1/4 of busy can be idle */
93 IDLE_WORKER_TIMEOUT = 300 * HZ, /* keep idle ones for 5 mins */
94
95 MAYDAY_INITIAL_TIMEOUT = HZ / 100 >= 2 ? HZ / 100 : 2,
96 /* call for help after 10ms
97 (min two ticks) */
98 MAYDAY_INTERVAL = HZ / 10, /* and then every 100ms */
99 CREATE_COOLDOWN = HZ, /* time to breath after fail */
100
101 /*
102 * Rescue workers are used only on emergencies and shared by
103 * all cpus. Give -20.
104 */
105 RESCUER_NICE_LEVEL = -20,
106 HIGHPRI_NICE_LEVEL = -20,
107
108 WQ_NAME_LEN = 24,
109 };
110
111 /*
112 * Structure fields follow one of the following exclusion rules.
113 *
114 * I: Modifiable by initialization/destruction paths and read-only for
115 * everyone else.
116 *
117 * P: Preemption protected. Disabling preemption is enough and should
118 * only be modified and accessed from the local cpu.
119 *
120 * L: pool->lock protected. Access with pool->lock held.
121 *
122 * X: During normal operation, modification requires pool->lock and should
123 * be done only from local cpu. Either disabling preemption on local
124 * cpu or grabbing pool->lock is enough for read access. If
125 * POOL_DISASSOCIATED is set, it's identical to L.
126 *
127 * MG: pool->manager_mutex and pool->lock protected. Writes require both
128 * locks. Reads can happen under either lock.
129 *
130 * PL: wq_pool_mutex protected.
131 *
132 * PR: wq_pool_mutex protected for writes. Sched-RCU protected for reads.
133 *
134 * WQ: wq->mutex protected.
135 *
136 * WR: wq->mutex protected for writes. Sched-RCU protected for reads.
137 *
138 * MD: wq_mayday_lock protected.
139 */
140
141 /* struct worker is defined in workqueue_internal.h */
142
143 struct worker_pool {
144 spinlock_t lock; /* the pool lock */
145 int cpu; /* I: the associated cpu */
146 int node; /* I: the associated node ID */
147 int id; /* I: pool ID */
148 unsigned int flags; /* X: flags */
149
150 struct list_head worklist; /* L: list of pending works */
151 int nr_workers; /* L: total number of workers */
152
153 /* nr_idle includes the ones off idle_list for rebinding */
154 int nr_idle; /* L: currently idle ones */
155
156 struct list_head idle_list; /* X: list of idle workers */
157 struct timer_list idle_timer; /* L: worker idle timeout */
158 struct timer_list mayday_timer; /* L: SOS timer for workers */
159
160 /* a workers is either on busy_hash or idle_list, or the manager */
161 DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
162 /* L: hash of busy workers */
163
164 /* see manage_workers() for details on the two manager mutexes */
165 struct mutex manager_arb; /* manager arbitration */
166 struct mutex manager_mutex; /* manager exclusion */
167 struct idr worker_idr; /* MG: worker IDs and iteration */
168
169 struct workqueue_attrs *attrs; /* I: worker attributes */
170 struct hlist_node hash_node; /* PL: unbound_pool_hash node */
171 int refcnt; /* PL: refcnt for unbound pools */
172
173 /*
174 * The current concurrency level. As it's likely to be accessed
175 * from other CPUs during try_to_wake_up(), put it in a separate
176 * cacheline.
177 */
178 atomic_t nr_running ____cacheline_aligned_in_smp;
179
180 /*
181 * Destruction of pool is sched-RCU protected to allow dereferences
182 * from get_work_pool().
183 */
184 struct rcu_head rcu;
185 } ____cacheline_aligned_in_smp;
186
187 /*
188 * The per-pool workqueue. While queued, the lower WORK_STRUCT_FLAG_BITS
189 * of work_struct->data are used for flags and the remaining high bits
190 * point to the pwq; thus, pwqs need to be aligned at two's power of the
191 * number of flag bits.
192 */
193 struct pool_workqueue {
194 struct worker_pool *pool; /* I: the associated pool */
195 struct workqueue_struct *wq; /* I: the owning workqueue */
196 int work_color; /* L: current color */
197 int flush_color; /* L: flushing color */
198 int refcnt; /* L: reference count */
199 int nr_in_flight[WORK_NR_COLORS];
200 /* L: nr of in_flight works */
201 int nr_active; /* L: nr of active works */
202 int max_active; /* L: max active works */
203 struct list_head delayed_works; /* L: delayed works */
204 struct list_head pwqs_node; /* WR: node on wq->pwqs */
205 struct list_head mayday_node; /* MD: node on wq->maydays */
206
207 /*
208 * Release of unbound pwq is punted to system_wq. See put_pwq()
209 * and pwq_unbound_release_workfn() for details. pool_workqueue
210 * itself is also sched-RCU protected so that the first pwq can be
211 * determined without grabbing wq->mutex.
212 */
213 struct work_struct unbound_release_work;
214 struct rcu_head rcu;
215 } __aligned(1 << WORK_STRUCT_FLAG_BITS);
216
217 /*
218 * Structure used to wait for workqueue flush.
219 */
220 struct wq_flusher {
221 struct list_head list; /* WQ: list of flushers */
222 int flush_color; /* WQ: flush color waiting for */
223 struct completion done; /* flush completion */
224 };
225
226 struct wq_device;
227
228 /*
229 * The externally visible workqueue. It relays the issued work items to
230 * the appropriate worker_pool through its pool_workqueues.
231 */
232 struct workqueue_struct {
233 struct list_head pwqs; /* WR: all pwqs of this wq */
234 struct list_head list; /* PL: list of all workqueues */
235
236 struct mutex mutex; /* protects this wq */
237 int work_color; /* WQ: current work color */
238 int flush_color; /* WQ: current flush color */
239 atomic_t nr_pwqs_to_flush; /* flush in progress */
240 struct wq_flusher *first_flusher; /* WQ: first flusher */
241 struct list_head flusher_queue; /* WQ: flush waiters */
242 struct list_head flusher_overflow; /* WQ: flush overflow list */
243
244 struct list_head maydays; /* MD: pwqs requesting rescue */
245 struct worker *rescuer; /* I: rescue worker */
246
247 int nr_drainers; /* WQ: drain in progress */
248 int saved_max_active; /* WQ: saved pwq max_active */
249
250 struct workqueue_attrs *unbound_attrs; /* WQ: only for unbound wqs */
251 struct pool_workqueue *dfl_pwq; /* WQ: only for unbound wqs */
252
253 #ifdef CONFIG_SYSFS
254 struct wq_device *wq_dev; /* I: for sysfs interface */
255 #endif
256 #ifdef CONFIG_LOCKDEP
257 struct lockdep_map lockdep_map;
258 #endif
259 char name[WQ_NAME_LEN]; /* I: workqueue name */
260
261 /* hot fields used during command issue, aligned to cacheline */
262 unsigned int flags ____cacheline_aligned; /* WQ: WQ_* flags */
263 struct pool_workqueue __percpu *cpu_pwqs; /* I: per-cpu pwqs */
264 struct pool_workqueue __rcu *numa_pwq_tbl[]; /* FR: unbound pwqs indexed by node */
265 };
266
267 static struct kmem_cache *pwq_cache;
268
269 static int wq_numa_tbl_len; /* highest possible NUMA node id + 1 */
270 static cpumask_var_t *wq_numa_possible_cpumask;
271 /* possible CPUs of each node */
272
273 static bool wq_disable_numa;
274 module_param_named(disable_numa, wq_disable_numa, bool, 0444);
275
276 /* see the comment above the definition of WQ_POWER_EFFICIENT */
277 #ifdef CONFIG_WQ_POWER_EFFICIENT_DEFAULT
278 static bool wq_power_efficient = true;
279 #else
280 static bool wq_power_efficient;
281 #endif
282
283 module_param_named(power_efficient, wq_power_efficient, bool, 0444);
284
285 static bool wq_numa_enabled; /* unbound NUMA affinity enabled */
286
287 /* buf for wq_update_unbound_numa_attrs(), protected by CPU hotplug exclusion */
288 static struct workqueue_attrs *wq_update_unbound_numa_attrs_buf;
289
290 static DEFINE_MUTEX(wq_pool_mutex); /* protects pools and workqueues list */
291 static DEFINE_SPINLOCK(wq_mayday_lock); /* protects wq->maydays list */
292
293 static LIST_HEAD(workqueues); /* PL: list of all workqueues */
294 static bool workqueue_freezing; /* PL: have wqs started freezing? */
295
296 /* the per-cpu worker pools */
297 static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS],
298 cpu_worker_pools);
299
300 static DEFINE_IDR(worker_pool_idr); /* PR: idr of all pools */
301
302 /* PL: hash of all unbound pools keyed by pool->attrs */
303 static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER);
304
305 /* I: attributes used when instantiating standard unbound pools on demand */
306 static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS];
307
308 /* I: attributes used when instantiating ordered pools on demand */
309 static struct workqueue_attrs *ordered_wq_attrs[NR_STD_WORKER_POOLS];
310
311 struct workqueue_struct *system_wq __read_mostly;
312 EXPORT_SYMBOL(system_wq);
313 struct workqueue_struct *system_highpri_wq __read_mostly;
314 EXPORT_SYMBOL_GPL(system_highpri_wq);
315 struct workqueue_struct *system_long_wq __read_mostly;
316 EXPORT_SYMBOL_GPL(system_long_wq);
317 struct workqueue_struct *system_unbound_wq __read_mostly;
318 EXPORT_SYMBOL_GPL(system_unbound_wq);
319 struct workqueue_struct *system_freezable_wq __read_mostly;
320 EXPORT_SYMBOL_GPL(system_freezable_wq);
321 struct workqueue_struct *system_power_efficient_wq __read_mostly;
322 EXPORT_SYMBOL_GPL(system_power_efficient_wq);
323 struct workqueue_struct *system_freezable_power_efficient_wq __read_mostly;
324 EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq);
325
326 static int worker_thread(void *__worker);
327 static void copy_workqueue_attrs(struct workqueue_attrs *to,
328 const struct workqueue_attrs *from);
329
330 #define CREATE_TRACE_POINTS
331 #include <trace/events/workqueue.h>
332
333 #define assert_rcu_or_pool_mutex() \
334 rcu_lockdep_assert(rcu_read_lock_sched_held() || \
335 lockdep_is_held(&wq_pool_mutex), \
336 "sched RCU or wq_pool_mutex should be held")
337
338 #define assert_rcu_or_wq_mutex(wq) \
339 rcu_lockdep_assert(rcu_read_lock_sched_held() || \
340 lockdep_is_held(&wq->mutex), \
341 "sched RCU or wq->mutex should be held")
342
343 #ifdef CONFIG_LOCKDEP
344 #define assert_manager_or_pool_lock(pool) \
345 WARN_ONCE(debug_locks && \
346 !lockdep_is_held(&(pool)->manager_mutex) && \
347 !lockdep_is_held(&(pool)->lock), \
348 "pool->manager_mutex or ->lock should be held")
349 #else
350 #define assert_manager_or_pool_lock(pool) do { } while (0)
351 #endif
352
353 #define for_each_cpu_worker_pool(pool, cpu) \
354 for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0]; \
355 (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
356 (pool)++)
357
358 /**
359 * for_each_pool - iterate through all worker_pools in the system
360 * @pool: iteration cursor
361 * @pi: integer used for iteration
362 *
363 * This must be called either with wq_pool_mutex held or sched RCU read
364 * locked. If the pool needs to be used beyond the locking in effect, the
365 * caller is responsible for guaranteeing that the pool stays online.
366 *
367 * The if/else clause exists only for the lockdep assertion and can be
368 * ignored.
369 */
370 #define for_each_pool(pool, pi) \
371 idr_for_each_entry(&worker_pool_idr, pool, pi) \
372 if (({ assert_rcu_or_pool_mutex(); false; })) { } \
373 else
374
375 /**
376 * for_each_pool_worker - iterate through all workers of a worker_pool
377 * @worker: iteration cursor
378 * @wi: integer used for iteration
379 * @pool: worker_pool to iterate workers of
380 *
381 * This must be called with either @pool->manager_mutex or ->lock held.
382 *
383 * The if/else clause exists only for the lockdep assertion and can be
384 * ignored.
385 */
386 #define for_each_pool_worker(worker, wi, pool) \
387 idr_for_each_entry(&(pool)->worker_idr, (worker), (wi)) \
388 if (({ assert_manager_or_pool_lock((pool)); false; })) { } \
389 else
390
391 /**
392 * for_each_pwq - iterate through all pool_workqueues of the specified workqueue
393 * @pwq: iteration cursor
394 * @wq: the target workqueue
395 *
396 * This must be called either with wq->mutex held or sched RCU read locked.
397 * If the pwq needs to be used beyond the locking in effect, the caller is
398 * responsible for guaranteeing that the pwq stays online.
399 *
400 * The if/else clause exists only for the lockdep assertion and can be
401 * ignored.
402 */
403 #define for_each_pwq(pwq, wq) \
404 list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node) \
405 if (({ assert_rcu_or_wq_mutex(wq); false; })) { } \
406 else
407
408 #ifdef CONFIG_DEBUG_OBJECTS_WORK
409
410 static struct debug_obj_descr work_debug_descr;
411
412 static void *work_debug_hint(void *addr)
413 {
414 return ((struct work_struct *) addr)->func;
415 }
416
417 /*
418 * fixup_init is called when:
419 * - an active object is initialized
420 */
421 static int work_fixup_init(void *addr, enum debug_obj_state state)
422 {
423 struct work_struct *work = addr;
424
425 switch (state) {
426 case ODEBUG_STATE_ACTIVE:
427 cancel_work_sync(work);
428 debug_object_init(work, &work_debug_descr);
429 return 1;
430 default:
431 return 0;
432 }
433 }
434
435 /*
436 * fixup_activate is called when:
437 * - an active object is activated
438 * - an unknown object is activated (might be a statically initialized object)
439 */
440 static int work_fixup_activate(void *addr, enum debug_obj_state state)
441 {
442 struct work_struct *work = addr;
443
444 switch (state) {
445
446 case ODEBUG_STATE_NOTAVAILABLE:
447 /*
448 * This is not really a fixup. The work struct was
449 * statically initialized. We just make sure that it
450 * is tracked in the object tracker.
451 */
452 if (test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work))) {
453 debug_object_init(work, &work_debug_descr);
454 debug_object_activate(work, &work_debug_descr);
455 return 0;
456 }
457 WARN_ON_ONCE(1);
458 return 0;
459
460 case ODEBUG_STATE_ACTIVE:
461 WARN_ON(1);
462
463 default:
464 return 0;
465 }
466 }
467
468 /*
469 * fixup_free is called when:
470 * - an active object is freed
471 */
472 static int work_fixup_free(void *addr, enum debug_obj_state state)
473 {
474 struct work_struct *work = addr;
475
476 switch (state) {
477 case ODEBUG_STATE_ACTIVE:
478 cancel_work_sync(work);
479 debug_object_free(work, &work_debug_descr);
480 return 1;
481 default:
482 return 0;
483 }
484 }
485
486 static struct debug_obj_descr work_debug_descr = {
487 .name = "work_struct",
488 .debug_hint = work_debug_hint,
489 .fixup_init = work_fixup_init,
490 .fixup_activate = work_fixup_activate,
491 .fixup_free = work_fixup_free,
492 };
493
494 static inline void debug_work_activate(struct work_struct *work)
495 {
496 debug_object_activate(work, &work_debug_descr);
497 }
498
499 static inline void debug_work_deactivate(struct work_struct *work)
500 {
501 debug_object_deactivate(work, &work_debug_descr);
502 }
503
504 void __init_work(struct work_struct *work, int onstack)
505 {
506 if (onstack)
507 debug_object_init_on_stack(work, &work_debug_descr);
508 else
509 debug_object_init(work, &work_debug_descr);
510 }
511 EXPORT_SYMBOL_GPL(__init_work);
512
513 void destroy_work_on_stack(struct work_struct *work)
514 {
515 debug_object_free(work, &work_debug_descr);
516 }
517 EXPORT_SYMBOL_GPL(destroy_work_on_stack);
518
519 void destroy_delayed_work_on_stack(struct delayed_work *work)
520 {
521 destroy_timer_on_stack(&work->timer);
522 debug_object_free(&work->work, &work_debug_descr);
523 }
524 EXPORT_SYMBOL_GPL(destroy_delayed_work_on_stack);
525
526 #else
527 static inline void debug_work_activate(struct work_struct *work) { }
528 static inline void debug_work_deactivate(struct work_struct *work) { }
529 #endif
530
531 /**
532 * worker_pool_assign_id - allocate ID and assing it to @pool
533 * @pool: the pool pointer of interest
534 *
535 * Returns 0 if ID in [0, WORK_OFFQ_POOL_NONE) is allocated and assigned
536 * successfully, -errno on failure.
537 */
538 static int worker_pool_assign_id(struct worker_pool *pool)
539 {
540 int ret;
541
542 lockdep_assert_held(&wq_pool_mutex);
543
544 ret = idr_alloc(&worker_pool_idr, pool, 0, WORK_OFFQ_POOL_NONE,
545 GFP_KERNEL);
546 if (ret >= 0) {
547 pool->id = ret;
548 return 0;
549 }
550 return ret;
551 }
552
553 /**
554 * unbound_pwq_by_node - return the unbound pool_workqueue for the given node
555 * @wq: the target workqueue
556 * @node: the node ID
557 *
558 * This must be called either with pwq_lock held or sched RCU read locked.
559 * If the pwq needs to be used beyond the locking in effect, the caller is
560 * responsible for guaranteeing that the pwq stays online.
561 *
562 * Return: The unbound pool_workqueue for @node.
563 */
564 static struct pool_workqueue *unbound_pwq_by_node(struct workqueue_struct *wq,
565 int node)
566 {
567 assert_rcu_or_wq_mutex(wq);
568 return rcu_dereference_raw(wq->numa_pwq_tbl[node]);
569 }
570
571 static unsigned int work_color_to_flags(int color)
572 {
573 return color << WORK_STRUCT_COLOR_SHIFT;
574 }
575
576 static int get_work_color(struct work_struct *work)
577 {
578 return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
579 ((1 << WORK_STRUCT_COLOR_BITS) - 1);
580 }
581
582 static int work_next_color(int color)
583 {
584 return (color + 1) % WORK_NR_COLORS;
585 }
586
587 /*
588 * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
589 * contain the pointer to the queued pwq. Once execution starts, the flag
590 * is cleared and the high bits contain OFFQ flags and pool ID.
591 *
592 * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling()
593 * and clear_work_data() can be used to set the pwq, pool or clear
594 * work->data. These functions should only be called while the work is
595 * owned - ie. while the PENDING bit is set.
596 *
597 * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
598 * corresponding to a work. Pool is available once the work has been
599 * queued anywhere after initialization until it is sync canceled. pwq is
600 * available only while the work item is queued.
601 *
602 * %WORK_OFFQ_CANCELING is used to mark a work item which is being
603 * canceled. While being canceled, a work item may have its PENDING set
604 * but stay off timer and worklist for arbitrarily long and nobody should
605 * try to steal the PENDING bit.
606 */
607 static inline void set_work_data(struct work_struct *work, unsigned long data,
608 unsigned long flags)
609 {
610 WARN_ON_ONCE(!work_pending(work));
611 atomic_long_set(&work->data, data | flags | work_static(work));
612 }
613
614 static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq,
615 unsigned long extra_flags)
616 {
617 set_work_data(work, (unsigned long)pwq,
618 WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags);
619 }
620
621 static void set_work_pool_and_keep_pending(struct work_struct *work,
622 int pool_id)
623 {
624 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT,
625 WORK_STRUCT_PENDING);
626 }
627
628 static void set_work_pool_and_clear_pending(struct work_struct *work,
629 int pool_id)
630 {
631 /*
632 * The following wmb is paired with the implied mb in
633 * test_and_set_bit(PENDING) and ensures all updates to @work made
634 * here are visible to and precede any updates by the next PENDING
635 * owner.
636 */
637 smp_wmb();
638 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0);
639 }
640
641 static void clear_work_data(struct work_struct *work)
642 {
643 smp_wmb(); /* see set_work_pool_and_clear_pending() */
644 set_work_data(work, WORK_STRUCT_NO_POOL, 0);
645 }
646
647 static struct pool_workqueue *get_work_pwq(struct work_struct *work)
648 {
649 unsigned long data = atomic_long_read(&work->data);
650
651 if (data & WORK_STRUCT_PWQ)
652 return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
653 else
654 return NULL;
655 }
656
657 /**
658 * get_work_pool - return the worker_pool a given work was associated with
659 * @work: the work item of interest
660 *
661 * Pools are created and destroyed under wq_pool_mutex, and allows read
662 * access under sched-RCU read lock. As such, this function should be
663 * called under wq_pool_mutex or with preemption disabled.
664 *
665 * All fields of the returned pool are accessible as long as the above
666 * mentioned locking is in effect. If the returned pool needs to be used
667 * beyond the critical section, the caller is responsible for ensuring the
668 * returned pool is and stays online.
669 *
670 * Return: The worker_pool @work was last associated with. %NULL if none.
671 */
672 static struct worker_pool *get_work_pool(struct work_struct *work)
673 {
674 unsigned long data = atomic_long_read(&work->data);
675 int pool_id;
676
677 assert_rcu_or_pool_mutex();
678
679 if (data & WORK_STRUCT_PWQ)
680 return ((struct pool_workqueue *)
681 (data & WORK_STRUCT_WQ_DATA_MASK))->pool;
682
683 pool_id = data >> WORK_OFFQ_POOL_SHIFT;
684 if (pool_id == WORK_OFFQ_POOL_NONE)
685 return NULL;
686
687 return idr_find(&worker_pool_idr, pool_id);
688 }
689
690 /**
691 * get_work_pool_id - return the worker pool ID a given work is associated with
692 * @work: the work item of interest
693 *
694 * Return: The worker_pool ID @work was last associated with.
695 * %WORK_OFFQ_POOL_NONE if none.
696 */
697 static int get_work_pool_id(struct work_struct *work)
698 {
699 unsigned long data = atomic_long_read(&work->data);
700
701 if (data & WORK_STRUCT_PWQ)
702 return ((struct pool_workqueue *)
703 (data & WORK_STRUCT_WQ_DATA_MASK))->pool->id;
704
705 return data >> WORK_OFFQ_POOL_SHIFT;
706 }
707
708 static void mark_work_canceling(struct work_struct *work)
709 {
710 unsigned long pool_id = get_work_pool_id(work);
711
712 pool_id <<= WORK_OFFQ_POOL_SHIFT;
713 set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING);
714 }
715
716 static bool work_is_canceling(struct work_struct *work)
717 {
718 unsigned long data = atomic_long_read(&work->data);
719
720 return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING);
721 }
722
723 /*
724 * Policy functions. These define the policies on how the global worker
725 * pools are managed. Unless noted otherwise, these functions assume that
726 * they're being called with pool->lock held.
727 */
728
729 static bool __need_more_worker(struct worker_pool *pool)
730 {
731 return !atomic_read(&pool->nr_running);
732 }
733
734 /*
735 * Need to wake up a worker? Called from anything but currently
736 * running workers.
737 *
738 * Note that, because unbound workers never contribute to nr_running, this
739 * function will always return %true for unbound pools as long as the
740 * worklist isn't empty.
741 */
742 static bool need_more_worker(struct worker_pool *pool)
743 {
744 return !list_empty(&pool->worklist) && __need_more_worker(pool);
745 }
746
747 /* Can I start working? Called from busy but !running workers. */
748 static bool may_start_working(struct worker_pool *pool)
749 {
750 return pool->nr_idle;
751 }
752
753 /* Do I need to keep working? Called from currently running workers. */
754 static bool keep_working(struct worker_pool *pool)
755 {
756 return !list_empty(&pool->worklist) &&
757 atomic_read(&pool->nr_running) <= 1;
758 }
759
760 /* Do we need a new worker? Called from manager. */
761 static bool need_to_create_worker(struct worker_pool *pool)
762 {
763 return need_more_worker(pool) && !may_start_working(pool);
764 }
765
766 /* Do I need to be the manager? */
767 static bool need_to_manage_workers(struct worker_pool *pool)
768 {
769 return need_to_create_worker(pool) ||
770 (pool->flags & POOL_MANAGE_WORKERS);
771 }
772
773 /* Do we have too many workers and should some go away? */
774 static bool too_many_workers(struct worker_pool *pool)
775 {
776 bool managing = mutex_is_locked(&pool->manager_arb);
777 int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
778 int nr_busy = pool->nr_workers - nr_idle;
779
780 /*
781 * nr_idle and idle_list may disagree if idle rebinding is in
782 * progress. Never return %true if idle_list is empty.
783 */
784 if (list_empty(&pool->idle_list))
785 return false;
786
787 return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
788 }
789
790 /*
791 * Wake up functions.
792 */
793
794 /* Return the first worker. Safe with preemption disabled */
795 static struct worker *first_worker(struct worker_pool *pool)
796 {
797 if (unlikely(list_empty(&pool->idle_list)))
798 return NULL;
799
800 return list_first_entry(&pool->idle_list, struct worker, entry);
801 }
802
803 /**
804 * wake_up_worker - wake up an idle worker
805 * @pool: worker pool to wake worker from
806 *
807 * Wake up the first idle worker of @pool.
808 *
809 * CONTEXT:
810 * spin_lock_irq(pool->lock).
811 */
812 static void wake_up_worker(struct worker_pool *pool)
813 {
814 struct worker *worker = first_worker(pool);
815
816 if (likely(worker))
817 wake_up_process(worker->task);
818 }
819
820 /**
821 * wq_worker_waking_up - a worker is waking up
822 * @task: task waking up
823 * @cpu: CPU @task is waking up to
824 *
825 * This function is called during try_to_wake_up() when a worker is
826 * being awoken.
827 *
828 * CONTEXT:
829 * spin_lock_irq(rq->lock)
830 */
831 void wq_worker_waking_up(struct task_struct *task, int cpu)
832 {
833 struct worker *worker = kthread_data(task);
834
835 if (!(worker->flags & WORKER_NOT_RUNNING)) {
836 WARN_ON_ONCE(worker->pool->cpu != cpu);
837 atomic_inc(&worker->pool->nr_running);
838 }
839 }
840
841 /**
842 * wq_worker_sleeping - a worker is going to sleep
843 * @task: task going to sleep
844 * @cpu: CPU in question, must be the current CPU number
845 *
846 * This function is called during schedule() when a busy worker is
847 * going to sleep. Worker on the same cpu can be woken up by
848 * returning pointer to its task.
849 *
850 * CONTEXT:
851 * spin_lock_irq(rq->lock)
852 *
853 * Return:
854 * Worker task on @cpu to wake up, %NULL if none.
855 */
856 struct task_struct *wq_worker_sleeping(struct task_struct *task, int cpu)
857 {
858 struct worker *worker = kthread_data(task), *to_wakeup = NULL;
859 struct worker_pool *pool;
860
861 /*
862 * Rescuers, which may not have all the fields set up like normal
863 * workers, also reach here, let's not access anything before
864 * checking NOT_RUNNING.
865 */
866 if (worker->flags & WORKER_NOT_RUNNING)
867 return NULL;
868
869 pool = worker->pool;
870
871 /* this can only happen on the local cpu */
872 if (WARN_ON_ONCE(cpu != raw_smp_processor_id()))
873 return NULL;
874
875 /*
876 * The counterpart of the following dec_and_test, implied mb,
877 * worklist not empty test sequence is in insert_work().
878 * Please read comment there.
879 *
880 * NOT_RUNNING is clear. This means that we're bound to and
881 * running on the local cpu w/ rq lock held and preemption
882 * disabled, which in turn means that none else could be
883 * manipulating idle_list, so dereferencing idle_list without pool
884 * lock is safe.
885 */
886 if (atomic_dec_and_test(&pool->nr_running) &&
887 !list_empty(&pool->worklist))
888 to_wakeup = first_worker(pool);
889 return to_wakeup ? to_wakeup->task : NULL;
890 }
891
892 /**
893 * worker_set_flags - set worker flags and adjust nr_running accordingly
894 * @worker: self
895 * @flags: flags to set
896 * @wakeup: wakeup an idle worker if necessary
897 *
898 * Set @flags in @worker->flags and adjust nr_running accordingly. If
899 * nr_running becomes zero and @wakeup is %true, an idle worker is
900 * woken up.
901 *
902 * CONTEXT:
903 * spin_lock_irq(pool->lock)
904 */
905 static inline void worker_set_flags(struct worker *worker, unsigned int flags,
906 bool wakeup)
907 {
908 struct worker_pool *pool = worker->pool;
909
910 WARN_ON_ONCE(worker->task != current);
911
912 /*
913 * If transitioning into NOT_RUNNING, adjust nr_running and
914 * wake up an idle worker as necessary if requested by
915 * @wakeup.
916 */
917 if ((flags & WORKER_NOT_RUNNING) &&
918 !(worker->flags & WORKER_NOT_RUNNING)) {
919 if (wakeup) {
920 if (atomic_dec_and_test(&pool->nr_running) &&
921 !list_empty(&pool->worklist))
922 wake_up_worker(pool);
923 } else
924 atomic_dec(&pool->nr_running);
925 }
926
927 worker->flags |= flags;
928 }
929
930 /**
931 * worker_clr_flags - clear worker flags and adjust nr_running accordingly
932 * @worker: self
933 * @flags: flags to clear
934 *
935 * Clear @flags in @worker->flags and adjust nr_running accordingly.
936 *
937 * CONTEXT:
938 * spin_lock_irq(pool->lock)
939 */
940 static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
941 {
942 struct worker_pool *pool = worker->pool;
943 unsigned int oflags = worker->flags;
944
945 WARN_ON_ONCE(worker->task != current);
946
947 worker->flags &= ~flags;
948
949 /*
950 * If transitioning out of NOT_RUNNING, increment nr_running. Note
951 * that the nested NOT_RUNNING is not a noop. NOT_RUNNING is mask
952 * of multiple flags, not a single flag.
953 */
954 if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
955 if (!(worker->flags & WORKER_NOT_RUNNING))
956 atomic_inc(&pool->nr_running);
957 }
958
959 /**
960 * find_worker_executing_work - find worker which is executing a work
961 * @pool: pool of interest
962 * @work: work to find worker for
963 *
964 * Find a worker which is executing @work on @pool by searching
965 * @pool->busy_hash which is keyed by the address of @work. For a worker
966 * to match, its current execution should match the address of @work and
967 * its work function. This is to avoid unwanted dependency between
968 * unrelated work executions through a work item being recycled while still
969 * being executed.
970 *
971 * This is a bit tricky. A work item may be freed once its execution
972 * starts and nothing prevents the freed area from being recycled for
973 * another work item. If the same work item address ends up being reused
974 * before the original execution finishes, workqueue will identify the
975 * recycled work item as currently executing and make it wait until the
976 * current execution finishes, introducing an unwanted dependency.
977 *
978 * This function checks the work item address and work function to avoid
979 * false positives. Note that this isn't complete as one may construct a
980 * work function which can introduce dependency onto itself through a
981 * recycled work item. Well, if somebody wants to shoot oneself in the
982 * foot that badly, there's only so much we can do, and if such deadlock
983 * actually occurs, it should be easy to locate the culprit work function.
984 *
985 * CONTEXT:
986 * spin_lock_irq(pool->lock).
987 *
988 * Return:
989 * Pointer to worker which is executing @work if found, %NULL
990 * otherwise.
991 */
992 static struct worker *find_worker_executing_work(struct worker_pool *pool,
993 struct work_struct *work)
994 {
995 struct worker *worker;
996
997 hash_for_each_possible(pool->busy_hash, worker, hentry,
998 (unsigned long)work)
999 if (worker->current_work == work &&
1000 worker->current_func == work->func)
1001 return worker;
1002
1003 return NULL;
1004 }
1005
1006 /**
1007 * move_linked_works - move linked works to a list
1008 * @work: start of series of works to be scheduled
1009 * @head: target list to append @work to
1010 * @nextp: out paramter for nested worklist walking
1011 *
1012 * Schedule linked works starting from @work to @head. Work series to
1013 * be scheduled starts at @work and includes any consecutive work with
1014 * WORK_STRUCT_LINKED set in its predecessor.
1015 *
1016 * If @nextp is not NULL, it's updated to point to the next work of
1017 * the last scheduled work. This allows move_linked_works() to be
1018 * nested inside outer list_for_each_entry_safe().
1019 *
1020 * CONTEXT:
1021 * spin_lock_irq(pool->lock).
1022 */
1023 static void move_linked_works(struct work_struct *work, struct list_head *head,
1024 struct work_struct **nextp)
1025 {
1026 struct work_struct *n;
1027
1028 /*
1029 * Linked worklist will always end before the end of the list,
1030 * use NULL for list head.
1031 */
1032 list_for_each_entry_safe_from(work, n, NULL, entry) {
1033 list_move_tail(&work->entry, head);
1034 if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
1035 break;
1036 }
1037
1038 /*
1039 * If we're already inside safe list traversal and have moved
1040 * multiple works to the scheduled queue, the next position
1041 * needs to be updated.
1042 */
1043 if (nextp)
1044 *nextp = n;
1045 }
1046
1047 /**
1048 * get_pwq - get an extra reference on the specified pool_workqueue
1049 * @pwq: pool_workqueue to get
1050 *
1051 * Obtain an extra reference on @pwq. The caller should guarantee that
1052 * @pwq has positive refcnt and be holding the matching pool->lock.
1053 */
1054 static void get_pwq(struct pool_workqueue *pwq)
1055 {
1056 lockdep_assert_held(&pwq->pool->lock);
1057 WARN_ON_ONCE(pwq->refcnt <= 0);
1058 pwq->refcnt++;
1059 }
1060
1061 /**
1062 * put_pwq - put a pool_workqueue reference
1063 * @pwq: pool_workqueue to put
1064 *
1065 * Drop a reference of @pwq. If its refcnt reaches zero, schedule its
1066 * destruction. The caller should be holding the matching pool->lock.
1067 */
1068 static void put_pwq(struct pool_workqueue *pwq)
1069 {
1070 lockdep_assert_held(&pwq->pool->lock);
1071 if (likely(--pwq->refcnt))
1072 return;
1073 if (WARN_ON_ONCE(!(pwq->wq->flags & WQ_UNBOUND)))
1074 return;
1075 /*
1076 * @pwq can't be released under pool->lock, bounce to
1077 * pwq_unbound_release_workfn(). This never recurses on the same
1078 * pool->lock as this path is taken only for unbound workqueues and
1079 * the release work item is scheduled on a per-cpu workqueue. To
1080 * avoid lockdep warning, unbound pool->locks are given lockdep
1081 * subclass of 1 in get_unbound_pool().
1082 */
1083 schedule_work(&pwq->unbound_release_work);
1084 }
1085
1086 /**
1087 * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock
1088 * @pwq: pool_workqueue to put (can be %NULL)
1089 *
1090 * put_pwq() with locking. This function also allows %NULL @pwq.
1091 */
1092 static void put_pwq_unlocked(struct pool_workqueue *pwq)
1093 {
1094 if (pwq) {
1095 /*
1096 * As both pwqs and pools are sched-RCU protected, the
1097 * following lock operations are safe.
1098 */
1099 spin_lock_irq(&pwq->pool->lock);
1100 put_pwq(pwq);
1101 spin_unlock_irq(&pwq->pool->lock);
1102 }
1103 }
1104
1105 static void pwq_activate_delayed_work(struct work_struct *work)
1106 {
1107 struct pool_workqueue *pwq = get_work_pwq(work);
1108
1109 trace_workqueue_activate_work(work);
1110 move_linked_works(work, &pwq->pool->worklist, NULL);
1111 __clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
1112 pwq->nr_active++;
1113 }
1114
1115 static void pwq_activate_first_delayed(struct pool_workqueue *pwq)
1116 {
1117 struct work_struct *work = list_first_entry(&pwq->delayed_works,
1118 struct work_struct, entry);
1119
1120 pwq_activate_delayed_work(work);
1121 }
1122
1123 /**
1124 * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
1125 * @pwq: pwq of interest
1126 * @color: color of work which left the queue
1127 *
1128 * A work either has completed or is removed from pending queue,
1129 * decrement nr_in_flight of its pwq and handle workqueue flushing.
1130 *
1131 * CONTEXT:
1132 * spin_lock_irq(pool->lock).
1133 */
1134 static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, int color)
1135 {
1136 /* uncolored work items don't participate in flushing or nr_active */
1137 if (color == WORK_NO_COLOR)
1138 goto out_put;
1139
1140 pwq->nr_in_flight[color]--;
1141
1142 pwq->nr_active--;
1143 if (!list_empty(&pwq->delayed_works)) {
1144 /* one down, submit a delayed one */
1145 if (pwq->nr_active < pwq->max_active)
1146 pwq_activate_first_delayed(pwq);
1147 }
1148
1149 /* is flush in progress and are we at the flushing tip? */
1150 if (likely(pwq->flush_color != color))
1151 goto out_put;
1152
1153 /* are there still in-flight works? */
1154 if (pwq->nr_in_flight[color])
1155 goto out_put;
1156
1157 /* this pwq is done, clear flush_color */
1158 pwq->flush_color = -1;
1159
1160 /*
1161 * If this was the last pwq, wake up the first flusher. It
1162 * will handle the rest.
1163 */
1164 if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush))
1165 complete(&pwq->wq->first_flusher->done);
1166 out_put:
1167 put_pwq(pwq);
1168 }
1169
1170 /**
1171 * try_to_grab_pending - steal work item from worklist and disable irq
1172 * @work: work item to steal
1173 * @is_dwork: @work is a delayed_work
1174 * @flags: place to store irq state
1175 *
1176 * Try to grab PENDING bit of @work. This function can handle @work in any
1177 * stable state - idle, on timer or on worklist.
1178 *
1179 * Return:
1180 * 1 if @work was pending and we successfully stole PENDING
1181 * 0 if @work was idle and we claimed PENDING
1182 * -EAGAIN if PENDING couldn't be grabbed at the moment, safe to busy-retry
1183 * -ENOENT if someone else is canceling @work, this state may persist
1184 * for arbitrarily long
1185 *
1186 * Note:
1187 * On >= 0 return, the caller owns @work's PENDING bit. To avoid getting
1188 * interrupted while holding PENDING and @work off queue, irq must be
1189 * disabled on entry. This, combined with delayed_work->timer being
1190 * irqsafe, ensures that we return -EAGAIN for finite short period of time.
1191 *
1192 * On successful return, >= 0, irq is disabled and the caller is
1193 * responsible for releasing it using local_irq_restore(*@flags).
1194 *
1195 * This function is safe to call from any context including IRQ handler.
1196 */
1197 static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
1198 unsigned long *flags)
1199 {
1200 struct worker_pool *pool;
1201 struct pool_workqueue *pwq;
1202
1203 local_irq_save(*flags);
1204
1205 /* try to steal the timer if it exists */
1206 if (is_dwork) {
1207 struct delayed_work *dwork = to_delayed_work(work);
1208
1209 /*
1210 * dwork->timer is irqsafe. If del_timer() fails, it's
1211 * guaranteed that the timer is not queued anywhere and not
1212 * running on the local CPU.
1213 */
1214 if (likely(del_timer(&dwork->timer)))
1215 return 1;
1216 }
1217
1218 /* try to claim PENDING the normal way */
1219 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
1220 return 0;
1221
1222 /*
1223 * The queueing is in progress, or it is already queued. Try to
1224 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
1225 */
1226 pool = get_work_pool(work);
1227 if (!pool)
1228 goto fail;
1229
1230 spin_lock(&pool->lock);
1231 /*
1232 * work->data is guaranteed to point to pwq only while the work
1233 * item is queued on pwq->wq, and both updating work->data to point
1234 * to pwq on queueing and to pool on dequeueing are done under
1235 * pwq->pool->lock. This in turn guarantees that, if work->data
1236 * points to pwq which is associated with a locked pool, the work
1237 * item is currently queued on that pool.
1238 */
1239 pwq = get_work_pwq(work);
1240 if (pwq && pwq->pool == pool) {
1241 debug_work_deactivate(work);
1242
1243 /*
1244 * A delayed work item cannot be grabbed directly because
1245 * it might have linked NO_COLOR work items which, if left
1246 * on the delayed_list, will confuse pwq->nr_active
1247 * management later on and cause stall. Make sure the work
1248 * item is activated before grabbing.
1249 */
1250 if (*work_data_bits(work) & WORK_STRUCT_DELAYED)
1251 pwq_activate_delayed_work(work);
1252
1253 list_del_init(&work->entry);
1254 pwq_dec_nr_in_flight(get_work_pwq(work), get_work_color(work));
1255
1256 /* work->data points to pwq iff queued, point to pool */
1257 set_work_pool_and_keep_pending(work, pool->id);
1258
1259 spin_unlock(&pool->lock);
1260 return 1;
1261 }
1262 spin_unlock(&pool->lock);
1263 fail:
1264 local_irq_restore(*flags);
1265 if (work_is_canceling(work))
1266 return -ENOENT;
1267 cpu_relax();
1268 return -EAGAIN;
1269 }
1270
1271 /**
1272 * insert_work - insert a work into a pool
1273 * @pwq: pwq @work belongs to
1274 * @work: work to insert
1275 * @head: insertion point
1276 * @extra_flags: extra WORK_STRUCT_* flags to set
1277 *
1278 * Insert @work which belongs to @pwq after @head. @extra_flags is or'd to
1279 * work_struct flags.
1280 *
1281 * CONTEXT:
1282 * spin_lock_irq(pool->lock).
1283 */
1284 static void insert_work(struct pool_workqueue *pwq, struct work_struct *work,
1285 struct list_head *head, unsigned int extra_flags)
1286 {
1287 struct worker_pool *pool = pwq->pool;
1288
1289 /* we own @work, set data and link */
1290 set_work_pwq(work, pwq, extra_flags);
1291 list_add_tail(&work->entry, head);
1292 get_pwq(pwq);
1293
1294 /*
1295 * Ensure either wq_worker_sleeping() sees the above
1296 * list_add_tail() or we see zero nr_running to avoid workers lying
1297 * around lazily while there are works to be processed.
1298 */
1299 smp_mb();
1300
1301 if (__need_more_worker(pool))
1302 wake_up_worker(pool);
1303 }
1304
1305 /*
1306 * Test whether @work is being queued from another work executing on the
1307 * same workqueue.
1308 */
1309 static bool is_chained_work(struct workqueue_struct *wq)
1310 {
1311 struct worker *worker;
1312
1313 worker = current_wq_worker();
1314 /*
1315 * Return %true iff I'm a worker execuing a work item on @wq. If
1316 * I'm @worker, it's safe to dereference it without locking.
1317 */
1318 return worker && worker->current_pwq->wq == wq;
1319 }
1320
1321 static void __queue_work(int cpu, struct workqueue_struct *wq,
1322 struct work_struct *work)
1323 {
1324 struct pool_workqueue *pwq;
1325 struct worker_pool *last_pool;
1326 struct list_head *worklist;
1327 unsigned int work_flags;
1328 unsigned int req_cpu = cpu;
1329
1330 /*
1331 * While a work item is PENDING && off queue, a task trying to
1332 * steal the PENDING will busy-loop waiting for it to either get
1333 * queued or lose PENDING. Grabbing PENDING and queueing should
1334 * happen with IRQ disabled.
1335 */
1336 WARN_ON_ONCE(!irqs_disabled());
1337
1338 debug_work_activate(work);
1339
1340 /* if draining, only works from the same workqueue are allowed */
1341 if (unlikely(wq->flags & __WQ_DRAINING) &&
1342 WARN_ON_ONCE(!is_chained_work(wq)))
1343 return;
1344 retry:
1345 if (req_cpu == WORK_CPU_UNBOUND)
1346 cpu = raw_smp_processor_id();
1347
1348 /* pwq which will be used unless @work is executing elsewhere */
1349 if (!(wq->flags & WQ_UNBOUND))
1350 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
1351 else
1352 pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
1353
1354 /*
1355 * If @work was previously on a different pool, it might still be
1356 * running there, in which case the work needs to be queued on that
1357 * pool to guarantee non-reentrancy.
1358 */
1359 last_pool = get_work_pool(work);
1360 if (last_pool && last_pool != pwq->pool) {
1361 struct worker *worker;
1362
1363 spin_lock(&last_pool->lock);
1364
1365 worker = find_worker_executing_work(last_pool, work);
1366
1367 if (worker && worker->current_pwq->wq == wq) {
1368 pwq = worker->current_pwq;
1369 } else {
1370 /* meh... not running there, queue here */
1371 spin_unlock(&last_pool->lock);
1372 spin_lock(&pwq->pool->lock);
1373 }
1374 } else {
1375 spin_lock(&pwq->pool->lock);
1376 }
1377
1378 /*
1379 * pwq is determined and locked. For unbound pools, we could have
1380 * raced with pwq release and it could already be dead. If its
1381 * refcnt is zero, repeat pwq selection. Note that pwqs never die
1382 * without another pwq replacing it in the numa_pwq_tbl or while
1383 * work items are executing on it, so the retrying is guaranteed to
1384 * make forward-progress.
1385 */
1386 if (unlikely(!pwq->refcnt)) {
1387 if (wq->flags & WQ_UNBOUND) {
1388 spin_unlock(&pwq->pool->lock);
1389 cpu_relax();
1390 goto retry;
1391 }
1392 /* oops */
1393 WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt",
1394 wq->name, cpu);
1395 }
1396
1397 /* pwq determined, queue */
1398 trace_workqueue_queue_work(req_cpu, pwq, work);
1399
1400 if (WARN_ON(!list_empty(&work->entry))) {
1401 spin_unlock(&pwq->pool->lock);
1402 return;
1403 }
1404
1405 pwq->nr_in_flight[pwq->work_color]++;
1406 work_flags = work_color_to_flags(pwq->work_color);
1407
1408 if (likely(pwq->nr_active < pwq->max_active)) {
1409 trace_workqueue_activate_work(work);
1410 pwq->nr_active++;
1411 worklist = &pwq->pool->worklist;
1412 } else {
1413 work_flags |= WORK_STRUCT_DELAYED;
1414 worklist = &pwq->delayed_works;
1415 }
1416
1417 insert_work(pwq, work, worklist, work_flags);
1418
1419 spin_unlock(&pwq->pool->lock);
1420 }
1421
1422 /**
1423 * queue_work_on - queue work on specific cpu
1424 * @cpu: CPU number to execute work on
1425 * @wq: workqueue to use
1426 * @work: work to queue
1427 *
1428 * We queue the work to a specific CPU, the caller must ensure it
1429 * can't go away.
1430 *
1431 * Return: %false if @work was already on a queue, %true otherwise.
1432 */
1433 bool queue_work_on(int cpu, struct workqueue_struct *wq,
1434 struct work_struct *work)
1435 {
1436 bool ret = false;
1437 unsigned long flags;
1438
1439 local_irq_save(flags);
1440
1441 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1442 __queue_work(cpu, wq, work);
1443 ret = true;
1444 }
1445
1446 local_irq_restore(flags);
1447 return ret;
1448 }
1449 EXPORT_SYMBOL(queue_work_on);
1450
1451 void delayed_work_timer_fn(unsigned long __data)
1452 {
1453 struct delayed_work *dwork = (struct delayed_work *)__data;
1454
1455 /* should have been called from irqsafe timer with irq already off */
1456 __queue_work(dwork->cpu, dwork->wq, &dwork->work);
1457 }
1458 EXPORT_SYMBOL(delayed_work_timer_fn);
1459
1460 static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
1461 struct delayed_work *dwork, unsigned long delay)
1462 {
1463 struct timer_list *timer = &dwork->timer;
1464 struct work_struct *work = &dwork->work;
1465
1466 WARN_ON_ONCE(timer->function != delayed_work_timer_fn ||
1467 timer->data != (unsigned long)dwork);
1468 WARN_ON_ONCE(timer_pending(timer));
1469 WARN_ON_ONCE(!list_empty(&work->entry));
1470
1471 /*
1472 * If @delay is 0, queue @dwork->work immediately. This is for
1473 * both optimization and correctness. The earliest @timer can
1474 * expire is on the closest next tick and delayed_work users depend
1475 * on that there's no such delay when @delay is 0.
1476 */
1477 if (!delay) {
1478 __queue_work(cpu, wq, &dwork->work);
1479 return;
1480 }
1481
1482 timer_stats_timer_set_start_info(&dwork->timer);
1483
1484 dwork->wq = wq;
1485 dwork->cpu = cpu;
1486 timer->expires = jiffies + delay;
1487
1488 if (unlikely(cpu != WORK_CPU_UNBOUND))
1489 add_timer_on(timer, cpu);
1490 else
1491 add_timer(timer);
1492 }
1493
1494 /**
1495 * queue_delayed_work_on - queue work on specific CPU after delay
1496 * @cpu: CPU number to execute work on
1497 * @wq: workqueue to use
1498 * @dwork: work to queue
1499 * @delay: number of jiffies to wait before queueing
1500 *
1501 * Return: %false if @work was already on a queue, %true otherwise. If
1502 * @delay is zero and @dwork is idle, it will be scheduled for immediate
1503 * execution.
1504 */
1505 bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
1506 struct delayed_work *dwork, unsigned long delay)
1507 {
1508 struct work_struct *work = &dwork->work;
1509 bool ret = false;
1510 unsigned long flags;
1511
1512 /* read the comment in __queue_work() */
1513 local_irq_save(flags);
1514
1515 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1516 __queue_delayed_work(cpu, wq, dwork, delay);
1517 ret = true;
1518 }
1519
1520 local_irq_restore(flags);
1521 return ret;
1522 }
1523 EXPORT_SYMBOL(queue_delayed_work_on);
1524
1525 /**
1526 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
1527 * @cpu: CPU number to execute work on
1528 * @wq: workqueue to use
1529 * @dwork: work to queue
1530 * @delay: number of jiffies to wait before queueing
1531 *
1532 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
1533 * modify @dwork's timer so that it expires after @delay. If @delay is
1534 * zero, @work is guaranteed to be scheduled immediately regardless of its
1535 * current state.
1536 *
1537 * Return: %false if @dwork was idle and queued, %true if @dwork was
1538 * pending and its timer was modified.
1539 *
1540 * This function is safe to call from any context including IRQ handler.
1541 * See try_to_grab_pending() for details.
1542 */
1543 bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
1544 struct delayed_work *dwork, unsigned long delay)
1545 {
1546 unsigned long flags;
1547 int ret;
1548
1549 do {
1550 ret = try_to_grab_pending(&dwork->work, true, &flags);
1551 } while (unlikely(ret == -EAGAIN));
1552
1553 if (likely(ret >= 0)) {
1554 __queue_delayed_work(cpu, wq, dwork, delay);
1555 local_irq_restore(flags);
1556 }
1557
1558 /* -ENOENT from try_to_grab_pending() becomes %true */
1559 return ret;
1560 }
1561 EXPORT_SYMBOL_GPL(mod_delayed_work_on);
1562
1563 /**
1564 * worker_enter_idle - enter idle state
1565 * @worker: worker which is entering idle state
1566 *
1567 * @worker is entering idle state. Update stats and idle timer if
1568 * necessary.
1569 *
1570 * LOCKING:
1571 * spin_lock_irq(pool->lock).
1572 */
1573 static void worker_enter_idle(struct worker *worker)
1574 {
1575 struct worker_pool *pool = worker->pool;
1576
1577 if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) ||
1578 WARN_ON_ONCE(!list_empty(&worker->entry) &&
1579 (worker->hentry.next || worker->hentry.pprev)))
1580 return;
1581
1582 /* can't use worker_set_flags(), also called from start_worker() */
1583 worker->flags |= WORKER_IDLE;
1584 pool->nr_idle++;
1585 worker->last_active = jiffies;
1586
1587 /* idle_list is LIFO */
1588 list_add(&worker->entry, &pool->idle_list);
1589
1590 if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
1591 mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
1592
1593 /*
1594 * Sanity check nr_running. Because wq_unbind_fn() releases
1595 * pool->lock between setting %WORKER_UNBOUND and zapping
1596 * nr_running, the warning may trigger spuriously. Check iff
1597 * unbind is not in progress.
1598 */
1599 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
1600 pool->nr_workers == pool->nr_idle &&
1601 atomic_read(&pool->nr_running));
1602 }
1603
1604 /**
1605 * worker_leave_idle - leave idle state
1606 * @worker: worker which is leaving idle state
1607 *
1608 * @worker is leaving idle state. Update stats.
1609 *
1610 * LOCKING:
1611 * spin_lock_irq(pool->lock).
1612 */
1613 static void worker_leave_idle(struct worker *worker)
1614 {
1615 struct worker_pool *pool = worker->pool;
1616
1617 if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE)))
1618 return;
1619 worker_clr_flags(worker, WORKER_IDLE);
1620 pool->nr_idle--;
1621 list_del_init(&worker->entry);
1622 }
1623
1624 /**
1625 * worker_maybe_bind_and_lock - try to bind %current to worker_pool and lock it
1626 * @pool: target worker_pool
1627 *
1628 * Bind %current to the cpu of @pool if it is associated and lock @pool.
1629 *
1630 * Works which are scheduled while the cpu is online must at least be
1631 * scheduled to a worker which is bound to the cpu so that if they are
1632 * flushed from cpu callbacks while cpu is going down, they are
1633 * guaranteed to execute on the cpu.
1634 *
1635 * This function is to be used by unbound workers and rescuers to bind
1636 * themselves to the target cpu and may race with cpu going down or
1637 * coming online. kthread_bind() can't be used because it may put the
1638 * worker to already dead cpu and set_cpus_allowed_ptr() can't be used
1639 * verbatim as it's best effort and blocking and pool may be
1640 * [dis]associated in the meantime.
1641 *
1642 * This function tries set_cpus_allowed() and locks pool and verifies the
1643 * binding against %POOL_DISASSOCIATED which is set during
1644 * %CPU_DOWN_PREPARE and cleared during %CPU_ONLINE, so if the worker
1645 * enters idle state or fetches works without dropping lock, it can
1646 * guarantee the scheduling requirement described in the first paragraph.
1647 *
1648 * CONTEXT:
1649 * Might sleep. Called without any lock but returns with pool->lock
1650 * held.
1651 *
1652 * Return:
1653 * %true if the associated pool is online (@worker is successfully
1654 * bound), %false if offline.
1655 */
1656 static bool worker_maybe_bind_and_lock(struct worker_pool *pool)
1657 __acquires(&pool->lock)
1658 {
1659 while (true) {
1660 /*
1661 * The following call may fail, succeed or succeed
1662 * without actually migrating the task to the cpu if
1663 * it races with cpu hotunplug operation. Verify
1664 * against POOL_DISASSOCIATED.
1665 */
1666 if (!(pool->flags & POOL_DISASSOCIATED))
1667 set_cpus_allowed_ptr(current, pool->attrs->cpumask);
1668
1669 spin_lock_irq(&pool->lock);
1670 if (pool->flags & POOL_DISASSOCIATED)
1671 return false;
1672 if (task_cpu(current) == pool->cpu &&
1673 cpumask_equal(&current->cpus_allowed, pool->attrs->cpumask))
1674 return true;
1675 spin_unlock_irq(&pool->lock);
1676
1677 /*
1678 * We've raced with CPU hot[un]plug. Give it a breather
1679 * and retry migration. cond_resched() is required here;
1680 * otherwise, we might deadlock against cpu_stop trying to
1681 * bring down the CPU on non-preemptive kernel.
1682 */
1683 cpu_relax();
1684 cond_resched();
1685 }
1686 }
1687
1688 static struct worker *alloc_worker(void)
1689 {
1690 struct worker *worker;
1691
1692 worker = kzalloc(sizeof(*worker), GFP_KERNEL);
1693 if (worker) {
1694 INIT_LIST_HEAD(&worker->entry);
1695 INIT_LIST_HEAD(&worker->scheduled);
1696 /* on creation a worker is in !idle && prep state */
1697 worker->flags = WORKER_PREP;
1698 }
1699 return worker;
1700 }
1701
1702 /**
1703 * create_worker - create a new workqueue worker
1704 * @pool: pool the new worker will belong to
1705 *
1706 * Create a new worker which is bound to @pool. The returned worker
1707 * can be started by calling start_worker() or destroyed using
1708 * destroy_worker().
1709 *
1710 * CONTEXT:
1711 * Might sleep. Does GFP_KERNEL allocations.
1712 *
1713 * Return:
1714 * Pointer to the newly created worker.
1715 */
1716 static struct worker *create_worker(struct worker_pool *pool)
1717 {
1718 struct worker *worker = NULL;
1719 int id = -1;
1720 char id_buf[16];
1721
1722 lockdep_assert_held(&pool->manager_mutex);
1723
1724 /*
1725 * ID is needed to determine kthread name. Allocate ID first
1726 * without installing the pointer.
1727 */
1728 idr_preload(GFP_KERNEL);
1729 spin_lock_irq(&pool->lock);
1730
1731 id = idr_alloc(&pool->worker_idr, NULL, 0, 0, GFP_NOWAIT);
1732
1733 spin_unlock_irq(&pool->lock);
1734 idr_preload_end();
1735 if (id < 0)
1736 goto fail;
1737
1738 worker = alloc_worker();
1739 if (!worker)
1740 goto fail;
1741
1742 worker->pool = pool;
1743 worker->id = id;
1744
1745 if (pool->cpu >= 0)
1746 snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id,
1747 pool->attrs->nice < 0 ? "H" : "");
1748 else
1749 snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id);
1750
1751 worker->task = kthread_create_on_node(worker_thread, worker, pool->node,
1752 "kworker/%s", id_buf);
1753 if (IS_ERR(worker->task))
1754 goto fail;
1755
1756 set_user_nice(worker->task, pool->attrs->nice);
1757
1758 /* prevent userland from meddling with cpumask of workqueue workers */
1759 worker->task->flags |= PF_NO_SETAFFINITY;
1760
1761 /*
1762 * set_cpus_allowed_ptr() will fail if the cpumask doesn't have any
1763 * online CPUs. It'll be re-applied when any of the CPUs come up.
1764 */
1765 set_cpus_allowed_ptr(worker->task, pool->attrs->cpumask);
1766
1767 /*
1768 * The caller is responsible for ensuring %POOL_DISASSOCIATED
1769 * remains stable across this function. See the comments above the
1770 * flag definition for details.
1771 */
1772 if (pool->flags & POOL_DISASSOCIATED)
1773 worker->flags |= WORKER_UNBOUND;
1774
1775 /* successful, commit the pointer to idr */
1776 spin_lock_irq(&pool->lock);
1777 idr_replace(&pool->worker_idr, worker, worker->id);
1778 spin_unlock_irq(&pool->lock);
1779
1780 return worker;
1781
1782 fail:
1783 if (id >= 0) {
1784 spin_lock_irq(&pool->lock);
1785 idr_remove(&pool->worker_idr, id);
1786 spin_unlock_irq(&pool->lock);
1787 }
1788 kfree(worker);
1789 return NULL;
1790 }
1791
1792 /**
1793 * start_worker - start a newly created worker
1794 * @worker: worker to start
1795 *
1796 * Make the pool aware of @worker and start it.
1797 *
1798 * CONTEXT:
1799 * spin_lock_irq(pool->lock).
1800 */
1801 static void start_worker(struct worker *worker)
1802 {
1803 worker->flags |= WORKER_STARTED;
1804 worker->pool->nr_workers++;
1805 worker_enter_idle(worker);
1806 wake_up_process(worker->task);
1807 }
1808
1809 /**
1810 * create_and_start_worker - create and start a worker for a pool
1811 * @pool: the target pool
1812 *
1813 * Grab the managership of @pool and create and start a new worker for it.
1814 *
1815 * Return: 0 on success. A negative error code otherwise.
1816 */
1817 static int create_and_start_worker(struct worker_pool *pool)
1818 {
1819 struct worker *worker;
1820
1821 mutex_lock(&pool->manager_mutex);
1822
1823 worker = create_worker(pool);
1824 if (worker) {
1825 spin_lock_irq(&pool->lock);
1826 start_worker(worker);
1827 spin_unlock_irq(&pool->lock);
1828 }
1829
1830 mutex_unlock(&pool->manager_mutex);
1831
1832 return worker ? 0 : -ENOMEM;
1833 }
1834
1835 /**
1836 * destroy_worker - destroy a workqueue worker
1837 * @worker: worker to be destroyed
1838 *
1839 * Destroy @worker and adjust @pool stats accordingly.
1840 *
1841 * CONTEXT:
1842 * spin_lock_irq(pool->lock) which is released and regrabbed.
1843 */
1844 static void destroy_worker(struct worker *worker)
1845 {
1846 struct worker_pool *pool = worker->pool;
1847
1848 lockdep_assert_held(&pool->manager_mutex);
1849 lockdep_assert_held(&pool->lock);
1850
1851 /* sanity check frenzy */
1852 if (WARN_ON(worker->current_work) ||
1853 WARN_ON(!list_empty(&worker->scheduled)))
1854 return;
1855
1856 if (worker->flags & WORKER_STARTED)
1857 pool->nr_workers--;
1858 if (worker->flags & WORKER_IDLE)
1859 pool->nr_idle--;
1860
1861 /*
1862 * Once WORKER_DIE is set, the kworker may destroy itself at any
1863 * point. Pin to ensure the task stays until we're done with it.
1864 */
1865 get_task_struct(worker->task);
1866
1867 list_del_init(&worker->entry);
1868 worker->flags |= WORKER_DIE;
1869
1870 idr_remove(&pool->worker_idr, worker->id);
1871
1872 spin_unlock_irq(&pool->lock);
1873
1874 kthread_stop(worker->task);
1875 put_task_struct(worker->task);
1876 kfree(worker);
1877
1878 spin_lock_irq(&pool->lock);
1879 }
1880
1881 static void idle_worker_timeout(unsigned long __pool)
1882 {
1883 struct worker_pool *pool = (void *)__pool;
1884
1885 spin_lock_irq(&pool->lock);
1886
1887 if (too_many_workers(pool)) {
1888 struct worker *worker;
1889 unsigned long expires;
1890
1891 /* idle_list is kept in LIFO order, check the last one */
1892 worker = list_entry(pool->idle_list.prev, struct worker, entry);
1893 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
1894
1895 if (time_before(jiffies, expires))
1896 mod_timer(&pool->idle_timer, expires);
1897 else {
1898 /* it's been idle for too long, wake up manager */
1899 pool->flags |= POOL_MANAGE_WORKERS;
1900 wake_up_worker(pool);
1901 }
1902 }
1903
1904 spin_unlock_irq(&pool->lock);
1905 }
1906
1907 static void send_mayday(struct work_struct *work)
1908 {
1909 struct pool_workqueue *pwq = get_work_pwq(work);
1910 struct workqueue_struct *wq = pwq->wq;
1911
1912 lockdep_assert_held(&wq_mayday_lock);
1913
1914 if (!wq->rescuer)
1915 return;
1916
1917 /* mayday mayday mayday */
1918 if (list_empty(&pwq->mayday_node)) {
1919 list_add_tail(&pwq->mayday_node, &wq->maydays);
1920 wake_up_process(wq->rescuer->task);
1921 }
1922 }
1923
1924 static void pool_mayday_timeout(unsigned long __pool)
1925 {
1926 struct worker_pool *pool = (void *)__pool;
1927 struct work_struct *work;
1928
1929 spin_lock_irq(&wq_mayday_lock); /* for wq->maydays */
1930 spin_lock(&pool->lock);
1931
1932 if (need_to_create_worker(pool)) {
1933 /*
1934 * We've been trying to create a new worker but
1935 * haven't been successful. We might be hitting an
1936 * allocation deadlock. Send distress signals to
1937 * rescuers.
1938 */
1939 list_for_each_entry(work, &pool->worklist, entry)
1940 send_mayday(work);
1941 }
1942
1943 spin_unlock(&pool->lock);
1944 spin_unlock_irq(&wq_mayday_lock);
1945
1946 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
1947 }
1948
1949 /**
1950 * maybe_create_worker - create a new worker if necessary
1951 * @pool: pool to create a new worker for
1952 *
1953 * Create a new worker for @pool if necessary. @pool is guaranteed to
1954 * have at least one idle worker on return from this function. If
1955 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
1956 * sent to all rescuers with works scheduled on @pool to resolve
1957 * possible allocation deadlock.
1958 *
1959 * On return, need_to_create_worker() is guaranteed to be %false and
1960 * may_start_working() %true.
1961 *
1962 * LOCKING:
1963 * spin_lock_irq(pool->lock) which may be released and regrabbed
1964 * multiple times. Does GFP_KERNEL allocations. Called only from
1965 * manager.
1966 *
1967 * Return:
1968 * %false if no action was taken and pool->lock stayed locked, %true
1969 * otherwise.
1970 */
1971 static bool maybe_create_worker(struct worker_pool *pool)
1972 __releases(&pool->lock)
1973 __acquires(&pool->lock)
1974 {
1975 if (!need_to_create_worker(pool))
1976 return false;
1977 restart:
1978 spin_unlock_irq(&pool->lock);
1979
1980 /* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
1981 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
1982
1983 while (true) {
1984 struct worker *worker;
1985
1986 worker = create_worker(pool);
1987 if (worker) {
1988 del_timer_sync(&pool->mayday_timer);
1989 spin_lock_irq(&pool->lock);
1990 start_worker(worker);
1991 if (WARN_ON_ONCE(need_to_create_worker(pool)))
1992 goto restart;
1993 return true;
1994 }
1995
1996 if (!need_to_create_worker(pool))
1997 break;
1998
1999 __set_current_state(TASK_INTERRUPTIBLE);
2000 schedule_timeout(CREATE_COOLDOWN);
2001
2002 if (!need_to_create_worker(pool))
2003 break;
2004 }
2005
2006 del_timer_sync(&pool->mayday_timer);
2007 spin_lock_irq(&pool->lock);
2008 if (need_to_create_worker(pool))
2009 goto restart;
2010 return true;
2011 }
2012
2013 /**
2014 * maybe_destroy_worker - destroy workers which have been idle for a while
2015 * @pool: pool to destroy workers for
2016 *
2017 * Destroy @pool workers which have been idle for longer than
2018 * IDLE_WORKER_TIMEOUT.
2019 *
2020 * LOCKING:
2021 * spin_lock_irq(pool->lock) which may be released and regrabbed
2022 * multiple times. Called only from manager.
2023 *
2024 * Return:
2025 * %false if no action was taken and pool->lock stayed locked, %true
2026 * otherwise.
2027 */
2028 static bool maybe_destroy_workers(struct worker_pool *pool)
2029 {
2030 bool ret = false;
2031
2032 while (too_many_workers(pool)) {
2033 struct worker *worker;
2034 unsigned long expires;
2035
2036 worker = list_entry(pool->idle_list.prev, struct worker, entry);
2037 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
2038
2039 if (time_before(jiffies, expires)) {
2040 mod_timer(&pool->idle_timer, expires);
2041 break;
2042 }
2043
2044 destroy_worker(worker);
2045 ret = true;
2046 }
2047
2048 return ret;
2049 }
2050
2051 /**
2052 * manage_workers - manage worker pool
2053 * @worker: self
2054 *
2055 * Assume the manager role and manage the worker pool @worker belongs
2056 * to. At any given time, there can be only zero or one manager per
2057 * pool. The exclusion is handled automatically by this function.
2058 *
2059 * The caller can safely start processing works on false return. On
2060 * true return, it's guaranteed that need_to_create_worker() is false
2061 * and may_start_working() is true.
2062 *
2063 * CONTEXT:
2064 * spin_lock_irq(pool->lock) which may be released and regrabbed
2065 * multiple times. Does GFP_KERNEL allocations.
2066 *
2067 * Return:
2068 * %false if the pool don't need management and the caller can safely start
2069 * processing works, %true indicates that the function released pool->lock
2070 * and reacquired it to perform some management function and that the
2071 * conditions that the caller verified while holding the lock before
2072 * calling the function might no longer be true.
2073 */
2074 static bool manage_workers(struct worker *worker)
2075 {
2076 struct worker_pool *pool = worker->pool;
2077 bool ret = false;
2078
2079 /*
2080 * Managership is governed by two mutexes - manager_arb and
2081 * manager_mutex. manager_arb handles arbitration of manager role.
2082 * Anyone who successfully grabs manager_arb wins the arbitration
2083 * and becomes the manager. mutex_trylock() on pool->manager_arb
2084 * failure while holding pool->lock reliably indicates that someone
2085 * else is managing the pool and the worker which failed trylock
2086 * can proceed to executing work items. This means that anyone
2087 * grabbing manager_arb is responsible for actually performing
2088 * manager duties. If manager_arb is grabbed and released without
2089 * actual management, the pool may stall indefinitely.
2090 *
2091 * manager_mutex is used for exclusion of actual management
2092 * operations. The holder of manager_mutex can be sure that none
2093 * of management operations, including creation and destruction of
2094 * workers, won't take place until the mutex is released. Because
2095 * manager_mutex doesn't interfere with manager role arbitration,
2096 * it is guaranteed that the pool's management, while may be
2097 * delayed, won't be disturbed by someone else grabbing
2098 * manager_mutex.
2099 */
2100 if (!mutex_trylock(&pool->manager_arb))
2101 return ret;
2102
2103 /*
2104 * With manager arbitration won, manager_mutex would be free in
2105 * most cases. trylock first without dropping @pool->lock.
2106 */
2107 if (unlikely(!mutex_trylock(&pool->manager_mutex))) {
2108 spin_unlock_irq(&pool->lock);
2109 mutex_lock(&pool->manager_mutex);
2110 spin_lock_irq(&pool->lock);
2111 ret = true;
2112 }
2113
2114 pool->flags &= ~POOL_MANAGE_WORKERS;
2115
2116 /*
2117 * Destroy and then create so that may_start_working() is true
2118 * on return.
2119 */
2120 ret |= maybe_destroy_workers(pool);
2121 ret |= maybe_create_worker(pool);
2122
2123 mutex_unlock(&pool->manager_mutex);
2124 mutex_unlock(&pool->manager_arb);
2125 return ret;
2126 }
2127
2128 /**
2129 * process_one_work - process single work
2130 * @worker: self
2131 * @work: work to process
2132 *
2133 * Process @work. This function contains all the logics necessary to
2134 * process a single work including synchronization against and
2135 * interaction with other workers on the same cpu, queueing and
2136 * flushing. As long as context requirement is met, any worker can
2137 * call this function to process a work.
2138 *
2139 * CONTEXT:
2140 * spin_lock_irq(pool->lock) which is released and regrabbed.
2141 */
2142 static void process_one_work(struct worker *worker, struct work_struct *work)
2143 __releases(&pool->lock)
2144 __acquires(&pool->lock)
2145 {
2146 struct pool_workqueue *pwq = get_work_pwq(work);
2147 struct worker_pool *pool = worker->pool;
2148 bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE;
2149 int work_color;
2150 struct worker *collision;
2151 #ifdef CONFIG_LOCKDEP
2152 /*
2153 * It is permissible to free the struct work_struct from
2154 * inside the function that is called from it, this we need to
2155 * take into account for lockdep too. To avoid bogus "held
2156 * lock freed" warnings as well as problems when looking into
2157 * work->lockdep_map, make a copy and use that here.
2158 */
2159 struct lockdep_map lockdep_map;
2160
2161 lockdep_copy_map(&lockdep_map, &work->lockdep_map);
2162 #endif
2163 /*
2164 * Ensure we're on the correct CPU. DISASSOCIATED test is
2165 * necessary to avoid spurious warnings from rescuers servicing the
2166 * unbound or a disassociated pool.
2167 */
2168 WARN_ON_ONCE(!(worker->flags & WORKER_UNBOUND) &&
2169 !(pool->flags & POOL_DISASSOCIATED) &&
2170 raw_smp_processor_id() != pool->cpu);
2171
2172 /*
2173 * A single work shouldn't be executed concurrently by
2174 * multiple workers on a single cpu. Check whether anyone is
2175 * already processing the work. If so, defer the work to the
2176 * currently executing one.
2177 */
2178 collision = find_worker_executing_work(pool, work);
2179 if (unlikely(collision)) {
2180 move_linked_works(work, &collision->scheduled, NULL);
2181 return;
2182 }
2183
2184 /* claim and dequeue */
2185 debug_work_deactivate(work);
2186 hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
2187 worker->current_work = work;
2188 worker->current_func = work->func;
2189 worker->current_pwq = pwq;
2190 work_color = get_work_color(work);
2191
2192 list_del_init(&work->entry);
2193
2194 /*
2195 * CPU intensive works don't participate in concurrency
2196 * management. They're the scheduler's responsibility.
2197 */
2198 if (unlikely(cpu_intensive))
2199 worker_set_flags(worker, WORKER_CPU_INTENSIVE, true);
2200
2201 /*
2202 * Unbound pool isn't concurrency managed and work items should be
2203 * executed ASAP. Wake up another worker if necessary.
2204 */
2205 if ((worker->flags & WORKER_UNBOUND) && need_more_worker(pool))
2206 wake_up_worker(pool);
2207
2208 /*
2209 * Record the last pool and clear PENDING which should be the last
2210 * update to @work. Also, do this inside @pool->lock so that
2211 * PENDING and queued state changes happen together while IRQ is
2212 * disabled.
2213 */
2214 set_work_pool_and_clear_pending(work, pool->id);
2215
2216 spin_unlock_irq(&pool->lock);
2217
2218 lock_map_acquire_read(&pwq->wq->lockdep_map);
2219 lock_map_acquire(&lockdep_map);
2220 trace_workqueue_execute_start(work);
2221 worker->current_func(work);
2222 /*
2223 * While we must be careful to not use "work" after this, the trace
2224 * point will only record its address.
2225 */
2226 trace_workqueue_execute_end(work);
2227 lock_map_release(&lockdep_map);
2228 lock_map_release(&pwq->wq->lockdep_map);
2229
2230 if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
2231 pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
2232 " last function: %pf\n",
2233 current->comm, preempt_count(), task_pid_nr(current),
2234 worker->current_func);
2235 debug_show_held_locks(current);
2236 dump_stack();
2237 }
2238
2239 /*
2240 * The following prevents a kworker from hogging CPU on !PREEMPT
2241 * kernels, where a requeueing work item waiting for something to
2242 * happen could deadlock with stop_machine as such work item could
2243 * indefinitely requeue itself while all other CPUs are trapped in
2244 * stop_machine.
2245 */
2246 cond_resched();
2247
2248 spin_lock_irq(&pool->lock);
2249
2250 /* clear cpu intensive status */
2251 if (unlikely(cpu_intensive))
2252 worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
2253
2254 /* we're done with it, release */
2255 hash_del(&worker->hentry);
2256 worker->current_work = NULL;
2257 worker->current_func = NULL;
2258 worker->current_pwq = NULL;
2259 worker->desc_valid = false;
2260 pwq_dec_nr_in_flight(pwq, work_color);
2261 }
2262
2263 /**
2264 * process_scheduled_works - process scheduled works
2265 * @worker: self
2266 *
2267 * Process all scheduled works. Please note that the scheduled list
2268 * may change while processing a work, so this function repeatedly
2269 * fetches a work from the top and executes it.
2270 *
2271 * CONTEXT:
2272 * spin_lock_irq(pool->lock) which may be released and regrabbed
2273 * multiple times.
2274 */
2275 static void process_scheduled_works(struct worker *worker)
2276 {
2277 while (!list_empty(&worker->scheduled)) {
2278 struct work_struct *work = list_first_entry(&worker->scheduled,
2279 struct work_struct, entry);
2280 process_one_work(worker, work);
2281 }
2282 }
2283
2284 /**
2285 * worker_thread - the worker thread function
2286 * @__worker: self
2287 *
2288 * The worker thread function. All workers belong to a worker_pool -
2289 * either a per-cpu one or dynamic unbound one. These workers process all
2290 * work items regardless of their specific target workqueue. The only
2291 * exception is work items which belong to workqueues with a rescuer which
2292 * will be explained in rescuer_thread().
2293 *
2294 * Return: 0
2295 */
2296 static int worker_thread(void *__worker)
2297 {
2298 struct worker *worker = __worker;
2299 struct worker_pool *pool = worker->pool;
2300
2301 /* tell the scheduler that this is a workqueue worker */
2302 worker->task->flags |= PF_WQ_WORKER;
2303 woke_up:
2304 spin_lock_irq(&pool->lock);
2305
2306 /* am I supposed to die? */
2307 if (unlikely(worker->flags & WORKER_DIE)) {
2308 spin_unlock_irq(&pool->lock);
2309 WARN_ON_ONCE(!list_empty(&worker->entry));
2310 worker->task->flags &= ~PF_WQ_WORKER;
2311 return 0;
2312 }
2313
2314 worker_leave_idle(worker);
2315 recheck:
2316 /* no more worker necessary? */
2317 if (!need_more_worker(pool))
2318 goto sleep;
2319
2320 /* do we need to manage? */
2321 if (unlikely(!may_start_working(pool)) && manage_workers(worker))
2322 goto recheck;
2323
2324 /*
2325 * ->scheduled list can only be filled while a worker is
2326 * preparing to process a work or actually processing it.
2327 * Make sure nobody diddled with it while I was sleeping.
2328 */
2329 WARN_ON_ONCE(!list_empty(&worker->scheduled));
2330
2331 /*
2332 * Finish PREP stage. We're guaranteed to have at least one idle
2333 * worker or that someone else has already assumed the manager
2334 * role. This is where @worker starts participating in concurrency
2335 * management if applicable and concurrency management is restored
2336 * after being rebound. See rebind_workers() for details.
2337 */
2338 worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND);
2339
2340 do {
2341 struct work_struct *work =
2342 list_first_entry(&pool->worklist,
2343 struct work_struct, entry);
2344
2345 if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
2346 /* optimization path, not strictly necessary */
2347 process_one_work(worker, work);
2348 if (unlikely(!list_empty(&worker->scheduled)))
2349 process_scheduled_works(worker);
2350 } else {
2351 move_linked_works(work, &worker->scheduled, NULL);
2352 process_scheduled_works(worker);
2353 }
2354 } while (keep_working(pool));
2355
2356 worker_set_flags(worker, WORKER_PREP, false);
2357 sleep:
2358 if (unlikely(need_to_manage_workers(pool)) && manage_workers(worker))
2359 goto recheck;
2360
2361 /*
2362 * pool->lock is held and there's no work to process and no need to
2363 * manage, sleep. Workers are woken up only while holding
2364 * pool->lock or from local cpu, so setting the current state
2365 * before releasing pool->lock is enough to prevent losing any
2366 * event.
2367 */
2368 worker_enter_idle(worker);
2369 __set_current_state(TASK_INTERRUPTIBLE);
2370 spin_unlock_irq(&pool->lock);
2371 schedule();
2372 goto woke_up;
2373 }
2374
2375 /**
2376 * rescuer_thread - the rescuer thread function
2377 * @__rescuer: self
2378 *
2379 * Workqueue rescuer thread function. There's one rescuer for each
2380 * workqueue which has WQ_MEM_RECLAIM set.
2381 *
2382 * Regular work processing on a pool may block trying to create a new
2383 * worker which uses GFP_KERNEL allocation which has slight chance of
2384 * developing into deadlock if some works currently on the same queue
2385 * need to be processed to satisfy the GFP_KERNEL allocation. This is
2386 * the problem rescuer solves.
2387 *
2388 * When such condition is possible, the pool summons rescuers of all
2389 * workqueues which have works queued on the pool and let them process
2390 * those works so that forward progress can be guaranteed.
2391 *
2392 * This should happen rarely.
2393 *
2394 * Return: 0
2395 */
2396 static int rescuer_thread(void *__rescuer)
2397 {
2398 struct worker *rescuer = __rescuer;
2399 struct workqueue_struct *wq = rescuer->rescue_wq;
2400 struct list_head *scheduled = &rescuer->scheduled;
2401
2402 set_user_nice(current, RESCUER_NICE_LEVEL);
2403
2404 /*
2405 * Mark rescuer as worker too. As WORKER_PREP is never cleared, it
2406 * doesn't participate in concurrency management.
2407 */
2408 rescuer->task->flags |= PF_WQ_WORKER;
2409 repeat:
2410 set_current_state(TASK_INTERRUPTIBLE);
2411
2412 if (kthread_should_stop()) {
2413 __set_current_state(TASK_RUNNING);
2414 rescuer->task->flags &= ~PF_WQ_WORKER;
2415 return 0;
2416 }
2417
2418 /* see whether any pwq is asking for help */
2419 spin_lock_irq(&wq_mayday_lock);
2420
2421 while (!list_empty(&wq->maydays)) {
2422 struct pool_workqueue *pwq = list_first_entry(&wq->maydays,
2423 struct pool_workqueue, mayday_node);
2424 struct worker_pool *pool = pwq->pool;
2425 struct work_struct *work, *n;
2426
2427 __set_current_state(TASK_RUNNING);
2428 list_del_init(&pwq->mayday_node);
2429
2430 spin_unlock_irq(&wq_mayday_lock);
2431
2432 /* migrate to the target cpu if possible */
2433 worker_maybe_bind_and_lock(pool);
2434 rescuer->pool = pool;
2435
2436 /*
2437 * Slurp in all works issued via this workqueue and
2438 * process'em.
2439 */
2440 WARN_ON_ONCE(!list_empty(&rescuer->scheduled));
2441 list_for_each_entry_safe(work, n, &pool->worklist, entry)
2442 if (get_work_pwq(work) == pwq)
2443 move_linked_works(work, scheduled, &n);
2444
2445 process_scheduled_works(rescuer);
2446
2447 /*
2448 * Leave this pool. If keep_working() is %true, notify a
2449 * regular worker; otherwise, we end up with 0 concurrency
2450 * and stalling the execution.
2451 */
2452 if (keep_working(pool))
2453 wake_up_worker(pool);
2454
2455 rescuer->pool = NULL;
2456 spin_unlock(&pool->lock);
2457 spin_lock(&wq_mayday_lock);
2458 }
2459
2460 spin_unlock_irq(&wq_mayday_lock);
2461
2462 /* rescuers should never participate in concurrency management */
2463 WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
2464 schedule();
2465 goto repeat;
2466 }
2467
2468 struct wq_barrier {
2469 struct work_struct work;
2470 struct completion done;
2471 };
2472
2473 static void wq_barrier_func(struct work_struct *work)
2474 {
2475 struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
2476 complete(&barr->done);
2477 }
2478
2479 /**
2480 * insert_wq_barrier - insert a barrier work
2481 * @pwq: pwq to insert barrier into
2482 * @barr: wq_barrier to insert
2483 * @target: target work to attach @barr to
2484 * @worker: worker currently executing @target, NULL if @target is not executing
2485 *
2486 * @barr is linked to @target such that @barr is completed only after
2487 * @target finishes execution. Please note that the ordering
2488 * guarantee is observed only with respect to @target and on the local
2489 * cpu.
2490 *
2491 * Currently, a queued barrier can't be canceled. This is because
2492 * try_to_grab_pending() can't determine whether the work to be
2493 * grabbed is at the head of the queue and thus can't clear LINKED
2494 * flag of the previous work while there must be a valid next work
2495 * after a work with LINKED flag set.
2496 *
2497 * Note that when @worker is non-NULL, @target may be modified
2498 * underneath us, so we can't reliably determine pwq from @target.
2499 *
2500 * CONTEXT:
2501 * spin_lock_irq(pool->lock).
2502 */
2503 static void insert_wq_barrier(struct pool_workqueue *pwq,
2504 struct wq_barrier *barr,
2505 struct work_struct *target, struct worker *worker)
2506 {
2507 struct list_head *head;
2508 unsigned int linked = 0;
2509
2510 /*
2511 * debugobject calls are safe here even with pool->lock locked
2512 * as we know for sure that this will not trigger any of the
2513 * checks and call back into the fixup functions where we
2514 * might deadlock.
2515 */
2516 INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
2517 __set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
2518 init_completion(&barr->done);
2519
2520 /*
2521 * If @target is currently being executed, schedule the
2522 * barrier to the worker; otherwise, put it after @target.
2523 */
2524 if (worker)
2525 head = worker->scheduled.next;
2526 else {
2527 unsigned long *bits = work_data_bits(target);
2528
2529 head = target->entry.next;
2530 /* there can already be other linked works, inherit and set */
2531 linked = *bits & WORK_STRUCT_LINKED;
2532 __set_bit(WORK_STRUCT_LINKED_BIT, bits);
2533 }
2534
2535 debug_work_activate(&barr->work);
2536 insert_work(pwq, &barr->work, head,
2537 work_color_to_flags(WORK_NO_COLOR) | linked);
2538 }
2539
2540 /**
2541 * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing
2542 * @wq: workqueue being flushed
2543 * @flush_color: new flush color, < 0 for no-op
2544 * @work_color: new work color, < 0 for no-op
2545 *
2546 * Prepare pwqs for workqueue flushing.
2547 *
2548 * If @flush_color is non-negative, flush_color on all pwqs should be
2549 * -1. If no pwq has in-flight commands at the specified color, all
2550 * pwq->flush_color's stay at -1 and %false is returned. If any pwq
2551 * has in flight commands, its pwq->flush_color is set to
2552 * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq
2553 * wakeup logic is armed and %true is returned.
2554 *
2555 * The caller should have initialized @wq->first_flusher prior to
2556 * calling this function with non-negative @flush_color. If
2557 * @flush_color is negative, no flush color update is done and %false
2558 * is returned.
2559 *
2560 * If @work_color is non-negative, all pwqs should have the same
2561 * work_color which is previous to @work_color and all will be
2562 * advanced to @work_color.
2563 *
2564 * CONTEXT:
2565 * mutex_lock(wq->mutex).
2566 *
2567 * Return:
2568 * %true if @flush_color >= 0 and there's something to flush. %false
2569 * otherwise.
2570 */
2571 static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq,
2572 int flush_color, int work_color)
2573 {
2574 bool wait = false;
2575 struct pool_workqueue *pwq;
2576
2577 if (flush_color >= 0) {
2578 WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush));
2579 atomic_set(&wq->nr_pwqs_to_flush, 1);
2580 }
2581
2582 for_each_pwq(pwq, wq) {
2583 struct worker_pool *pool = pwq->pool;
2584
2585 spin_lock_irq(&pool->lock);
2586
2587 if (flush_color >= 0) {
2588 WARN_ON_ONCE(pwq->flush_color != -1);
2589
2590 if (pwq->nr_in_flight[flush_color]) {
2591 pwq->flush_color = flush_color;
2592 atomic_inc(&wq->nr_pwqs_to_flush);
2593 wait = true;
2594 }
2595 }
2596
2597 if (work_color >= 0) {
2598 WARN_ON_ONCE(work_color != work_next_color(pwq->work_color));
2599 pwq->work_color = work_color;
2600 }
2601
2602 spin_unlock_irq(&pool->lock);
2603 }
2604
2605 if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush))
2606 complete(&wq->first_flusher->done);
2607
2608 return wait;
2609 }
2610
2611 /**
2612 * flush_workqueue - ensure that any scheduled work has run to completion.
2613 * @wq: workqueue to flush
2614 *
2615 * This function sleeps until all work items which were queued on entry
2616 * have finished execution, but it is not livelocked by new incoming ones.
2617 */
2618 void flush_workqueue(struct workqueue_struct *wq)
2619 {
2620 struct wq_flusher this_flusher = {
2621 .list = LIST_HEAD_INIT(this_flusher.list),
2622 .flush_color = -1,
2623 .done = COMPLETION_INITIALIZER_ONSTACK(this_flusher.done),
2624 };
2625 int next_color;
2626
2627 lock_map_acquire(&wq->lockdep_map);
2628 lock_map_release(&wq->lockdep_map);
2629
2630 mutex_lock(&wq->mutex);
2631
2632 /*
2633 * Start-to-wait phase
2634 */
2635 next_color = work_next_color(wq->work_color);
2636
2637 if (next_color != wq->flush_color) {
2638 /*
2639 * Color space is not full. The current work_color
2640 * becomes our flush_color and work_color is advanced
2641 * by one.
2642 */
2643 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow));
2644 this_flusher.flush_color = wq->work_color;
2645 wq->work_color = next_color;
2646
2647 if (!wq->first_flusher) {
2648 /* no flush in progress, become the first flusher */
2649 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2650
2651 wq->first_flusher = &this_flusher;
2652
2653 if (!flush_workqueue_prep_pwqs(wq, wq->flush_color,
2654 wq->work_color)) {
2655 /* nothing to flush, done */
2656 wq->flush_color = next_color;
2657 wq->first_flusher = NULL;
2658 goto out_unlock;
2659 }
2660 } else {
2661 /* wait in queue */
2662 WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color);
2663 list_add_tail(&this_flusher.list, &wq->flusher_queue);
2664 flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2665 }
2666 } else {
2667 /*
2668 * Oops, color space is full, wait on overflow queue.
2669 * The next flush completion will assign us
2670 * flush_color and transfer to flusher_queue.
2671 */
2672 list_add_tail(&this_flusher.list, &wq->flusher_overflow);
2673 }
2674
2675 mutex_unlock(&wq->mutex);
2676
2677 wait_for_completion(&this_flusher.done);
2678
2679 /*
2680 * Wake-up-and-cascade phase
2681 *
2682 * First flushers are responsible for cascading flushes and
2683 * handling overflow. Non-first flushers can simply return.
2684 */
2685 if (wq->first_flusher != &this_flusher)
2686 return;
2687
2688 mutex_lock(&wq->mutex);
2689
2690 /* we might have raced, check again with mutex held */
2691 if (wq->first_flusher != &this_flusher)
2692 goto out_unlock;
2693
2694 wq->first_flusher = NULL;
2695
2696 WARN_ON_ONCE(!list_empty(&this_flusher.list));
2697 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2698
2699 while (true) {
2700 struct wq_flusher *next, *tmp;
2701
2702 /* complete all the flushers sharing the current flush color */
2703 list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
2704 if (next->flush_color != wq->flush_color)
2705 break;
2706 list_del_init(&next->list);
2707 complete(&next->done);
2708 }
2709
2710 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) &&
2711 wq->flush_color != work_next_color(wq->work_color));
2712
2713 /* this flush_color is finished, advance by one */
2714 wq->flush_color = work_next_color(wq->flush_color);
2715
2716 /* one color has been freed, handle overflow queue */
2717 if (!list_empty(&wq->flusher_overflow)) {
2718 /*
2719 * Assign the same color to all overflowed
2720 * flushers, advance work_color and append to
2721 * flusher_queue. This is the start-to-wait
2722 * phase for these overflowed flushers.
2723 */
2724 list_for_each_entry(tmp, &wq->flusher_overflow, list)
2725 tmp->flush_color = wq->work_color;
2726
2727 wq->work_color = work_next_color(wq->work_color);
2728
2729 list_splice_tail_init(&wq->flusher_overflow,
2730 &wq->flusher_queue);
2731 flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2732 }
2733
2734 if (list_empty(&wq->flusher_queue)) {
2735 WARN_ON_ONCE(wq->flush_color != wq->work_color);
2736 break;
2737 }
2738
2739 /*
2740 * Need to flush more colors. Make the next flusher
2741 * the new first flusher and arm pwqs.
2742 */
2743 WARN_ON_ONCE(wq->flush_color == wq->work_color);
2744 WARN_ON_ONCE(wq->flush_color != next->flush_color);
2745
2746 list_del_init(&next->list);
2747 wq->first_flusher = next;
2748
2749 if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1))
2750 break;
2751
2752 /*
2753 * Meh... this color is already done, clear first
2754 * flusher and repeat cascading.
2755 */
2756 wq->first_flusher = NULL;
2757 }
2758
2759 out_unlock:
2760 mutex_unlock(&wq->mutex);
2761 }
2762 EXPORT_SYMBOL_GPL(flush_workqueue);
2763
2764 /**
2765 * drain_workqueue - drain a workqueue
2766 * @wq: workqueue to drain
2767 *
2768 * Wait until the workqueue becomes empty. While draining is in progress,
2769 * only chain queueing is allowed. IOW, only currently pending or running
2770 * work items on @wq can queue further work items on it. @wq is flushed
2771 * repeatedly until it becomes empty. The number of flushing is detemined
2772 * by the depth of chaining and should be relatively short. Whine if it
2773 * takes too long.
2774 */
2775 void drain_workqueue(struct workqueue_struct *wq)
2776 {
2777 unsigned int flush_cnt = 0;
2778 struct pool_workqueue *pwq;
2779
2780 /*
2781 * __queue_work() needs to test whether there are drainers, is much
2782 * hotter than drain_workqueue() and already looks at @wq->flags.
2783 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers.
2784 */
2785 mutex_lock(&wq->mutex);
2786 if (!wq->nr_drainers++)
2787 wq->flags |= __WQ_DRAINING;
2788 mutex_unlock(&wq->mutex);
2789 reflush:
2790 flush_workqueue(wq);
2791
2792 mutex_lock(&wq->mutex);
2793
2794 for_each_pwq(pwq, wq) {
2795 bool drained;
2796
2797 spin_lock_irq(&pwq->pool->lock);
2798 drained = !pwq->nr_active && list_empty(&pwq->delayed_works);
2799 spin_unlock_irq(&pwq->pool->lock);
2800
2801 if (drained)
2802 continue;
2803
2804 if (++flush_cnt == 10 ||
2805 (flush_cnt % 100 == 0 && flush_cnt <= 1000))
2806 pr_warn("workqueue %s: drain_workqueue() isn't complete after %u tries\n",
2807 wq->name, flush_cnt);
2808
2809 mutex_unlock(&wq->mutex);
2810 goto reflush;
2811 }
2812
2813 if (!--wq->nr_drainers)
2814 wq->flags &= ~__WQ_DRAINING;
2815 mutex_unlock(&wq->mutex);
2816 }
2817 EXPORT_SYMBOL_GPL(drain_workqueue);
2818
2819 static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr)
2820 {
2821 struct worker *worker = NULL;
2822 struct worker_pool *pool;
2823 struct pool_workqueue *pwq;
2824
2825 might_sleep();
2826
2827 local_irq_disable();
2828 pool = get_work_pool(work);
2829 if (!pool) {
2830 local_irq_enable();
2831 return false;
2832 }
2833
2834 spin_lock(&pool->lock);
2835 /* see the comment in try_to_grab_pending() with the same code */
2836 pwq = get_work_pwq(work);
2837 if (pwq) {
2838 if (unlikely(pwq->pool != pool))
2839 goto already_gone;
2840 } else {
2841 worker = find_worker_executing_work(pool, work);
2842 if (!worker)
2843 goto already_gone;
2844 pwq = worker->current_pwq;
2845 }
2846
2847 insert_wq_barrier(pwq, barr, work, worker);
2848 spin_unlock_irq(&pool->lock);
2849
2850 /*
2851 * If @max_active is 1 or rescuer is in use, flushing another work
2852 * item on the same workqueue may lead to deadlock. Make sure the
2853 * flusher is not running on the same workqueue by verifying write
2854 * access.
2855 */
2856 if (pwq->wq->saved_max_active == 1 || pwq->wq->rescuer)
2857 lock_map_acquire(&pwq->wq->lockdep_map);
2858 else
2859 lock_map_acquire_read(&pwq->wq->lockdep_map);
2860 lock_map_release(&pwq->wq->lockdep_map);
2861
2862 return true;
2863 already_gone:
2864 spin_unlock_irq(&pool->lock);
2865 return false;
2866 }
2867
2868 /**
2869 * flush_work - wait for a work to finish executing the last queueing instance
2870 * @work: the work to flush
2871 *
2872 * Wait until @work has finished execution. @work is guaranteed to be idle
2873 * on return if it hasn't been requeued since flush started.
2874 *
2875 * Return:
2876 * %true if flush_work() waited for the work to finish execution,
2877 * %false if it was already idle.
2878 */
2879 bool flush_work(struct work_struct *work)
2880 {
2881 struct wq_barrier barr;
2882
2883 lock_map_acquire(&work->lockdep_map);
2884 lock_map_release(&work->lockdep_map);
2885
2886 if (start_flush_work(work, &barr)) {
2887 wait_for_completion(&barr.done);
2888 destroy_work_on_stack(&barr.work);
2889 return true;
2890 } else {
2891 return false;
2892 }
2893 }
2894 EXPORT_SYMBOL_GPL(flush_work);
2895
2896 static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
2897 {
2898 unsigned long flags;
2899 int ret;
2900
2901 do {
2902 ret = try_to_grab_pending(work, is_dwork, &flags);
2903 /*
2904 * If someone else is canceling, wait for the same event it
2905 * would be waiting for before retrying.
2906 */
2907 if (unlikely(ret == -ENOENT))
2908 flush_work(work);
2909 } while (unlikely(ret < 0));
2910
2911 /* tell other tasks trying to grab @work to back off */
2912 mark_work_canceling(work);
2913 local_irq_restore(flags);
2914
2915 flush_work(work);
2916 clear_work_data(work);
2917 return ret;
2918 }
2919
2920 /**
2921 * cancel_work_sync - cancel a work and wait for it to finish
2922 * @work: the work to cancel
2923 *
2924 * Cancel @work and wait for its execution to finish. This function
2925 * can be used even if the work re-queues itself or migrates to
2926 * another workqueue. On return from this function, @work is
2927 * guaranteed to be not pending or executing on any CPU.
2928 *
2929 * cancel_work_sync(&delayed_work->work) must not be used for
2930 * delayed_work's. Use cancel_delayed_work_sync() instead.
2931 *
2932 * The caller must ensure that the workqueue on which @work was last
2933 * queued can't be destroyed before this function returns.
2934 *
2935 * Return:
2936 * %true if @work was pending, %false otherwise.
2937 */
2938 bool cancel_work_sync(struct work_struct *work)
2939 {
2940 return __cancel_work_timer(work, false);
2941 }
2942 EXPORT_SYMBOL_GPL(cancel_work_sync);
2943
2944 /**
2945 * flush_delayed_work - wait for a dwork to finish executing the last queueing
2946 * @dwork: the delayed work to flush
2947 *
2948 * Delayed timer is cancelled and the pending work is queued for
2949 * immediate execution. Like flush_work(), this function only
2950 * considers the last queueing instance of @dwork.
2951 *
2952 * Return:
2953 * %true if flush_work() waited for the work to finish execution,
2954 * %false if it was already idle.
2955 */
2956 bool flush_delayed_work(struct delayed_work *dwork)
2957 {
2958 local_irq_disable();
2959 if (del_timer_sync(&dwork->timer))
2960 __queue_work(dwork->cpu, dwork->wq, &dwork->work);
2961 local_irq_enable();
2962 return flush_work(&dwork->work);
2963 }
2964 EXPORT_SYMBOL(flush_delayed_work);
2965
2966 /**
2967 * cancel_delayed_work - cancel a delayed work
2968 * @dwork: delayed_work to cancel
2969 *
2970 * Kill off a pending delayed_work.
2971 *
2972 * Return: %true if @dwork was pending and canceled; %false if it wasn't
2973 * pending.
2974 *
2975 * Note:
2976 * The work callback function may still be running on return, unless
2977 * it returns %true and the work doesn't re-arm itself. Explicitly flush or
2978 * use cancel_delayed_work_sync() to wait on it.
2979 *
2980 * This function is safe to call from any context including IRQ handler.
2981 */
2982 bool cancel_delayed_work(struct delayed_work *dwork)
2983 {
2984 unsigned long flags;
2985 int ret;
2986
2987 do {
2988 ret = try_to_grab_pending(&dwork->work, true, &flags);
2989 } while (unlikely(ret == -EAGAIN));
2990
2991 if (unlikely(ret < 0))
2992 return false;
2993
2994 set_work_pool_and_clear_pending(&dwork->work,
2995 get_work_pool_id(&dwork->work));
2996 local_irq_restore(flags);
2997 return ret;
2998 }
2999 EXPORT_SYMBOL(cancel_delayed_work);
3000
3001 /**
3002 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
3003 * @dwork: the delayed work cancel
3004 *
3005 * This is cancel_work_sync() for delayed works.
3006 *
3007 * Return:
3008 * %true if @dwork was pending, %false otherwise.
3009 */
3010 bool cancel_delayed_work_sync(struct delayed_work *dwork)
3011 {
3012 return __cancel_work_timer(&dwork->work, true);
3013 }
3014 EXPORT_SYMBOL(cancel_delayed_work_sync);
3015
3016 /**
3017 * schedule_on_each_cpu - execute a function synchronously on each online CPU
3018 * @func: the function to call
3019 *
3020 * schedule_on_each_cpu() executes @func on each online CPU using the
3021 * system workqueue and blocks until all CPUs have completed.
3022 * schedule_on_each_cpu() is very slow.
3023 *
3024 * Return:
3025 * 0 on success, -errno on failure.
3026 */
3027 int schedule_on_each_cpu(work_func_t func)
3028 {
3029 int cpu;
3030 struct work_struct __percpu *works;
3031
3032 works = alloc_percpu(struct work_struct);
3033 if (!works)
3034 return -ENOMEM;
3035
3036 get_online_cpus();
3037
3038 for_each_online_cpu(cpu) {
3039 struct work_struct *work = per_cpu_ptr(works, cpu);
3040
3041 INIT_WORK(work, func);
3042 schedule_work_on(cpu, work);
3043 }
3044
3045 for_each_online_cpu(cpu)
3046 flush_work(per_cpu_ptr(works, cpu));
3047
3048 put_online_cpus();
3049 free_percpu(works);
3050 return 0;
3051 }
3052
3053 /**
3054 * flush_scheduled_work - ensure that any scheduled work has run to completion.
3055 *
3056 * Forces execution of the kernel-global workqueue and blocks until its
3057 * completion.
3058 *
3059 * Think twice before calling this function! It's very easy to get into
3060 * trouble if you don't take great care. Either of the following situations
3061 * will lead to deadlock:
3062 *
3063 * One of the work items currently on the workqueue needs to acquire
3064 * a lock held by your code or its caller.
3065 *
3066 * Your code is running in the context of a work routine.
3067 *
3068 * They will be detected by lockdep when they occur, but the first might not
3069 * occur very often. It depends on what work items are on the workqueue and
3070 * what locks they need, which you have no control over.
3071 *
3072 * In most situations flushing the entire workqueue is overkill; you merely
3073 * need to know that a particular work item isn't queued and isn't running.
3074 * In such cases you should use cancel_delayed_work_sync() or
3075 * cancel_work_sync() instead.
3076 */
3077 void flush_scheduled_work(void)
3078 {
3079 flush_workqueue(system_wq);
3080 }
3081 EXPORT_SYMBOL(flush_scheduled_work);
3082
3083 /**
3084 * execute_in_process_context - reliably execute the routine with user context
3085 * @fn: the function to execute
3086 * @ew: guaranteed storage for the execute work structure (must
3087 * be available when the work executes)
3088 *
3089 * Executes the function immediately if process context is available,
3090 * otherwise schedules the function for delayed execution.
3091 *
3092 * Return: 0 - function was executed
3093 * 1 - function was scheduled for execution
3094 */
3095 int execute_in_process_context(work_func_t fn, struct execute_work *ew)
3096 {
3097 if (!in_interrupt()) {
3098 fn(&ew->work);
3099 return 0;
3100 }
3101
3102 INIT_WORK(&ew->work, fn);
3103 schedule_work(&ew->work);
3104
3105 return 1;
3106 }
3107 EXPORT_SYMBOL_GPL(execute_in_process_context);
3108
3109 #ifdef CONFIG_SYSFS
3110 /*
3111 * Workqueues with WQ_SYSFS flag set is visible to userland via
3112 * /sys/bus/workqueue/devices/WQ_NAME. All visible workqueues have the
3113 * following attributes.
3114 *
3115 * per_cpu RO bool : whether the workqueue is per-cpu or unbound
3116 * max_active RW int : maximum number of in-flight work items
3117 *
3118 * Unbound workqueues have the following extra attributes.
3119 *
3120 * id RO int : the associated pool ID
3121 * nice RW int : nice value of the workers
3122 * cpumask RW mask : bitmask of allowed CPUs for the workers
3123 */
3124 struct wq_device {
3125 struct workqueue_struct *wq;
3126 struct device dev;
3127 };
3128
3129 static struct workqueue_struct *dev_to_wq(struct device *dev)
3130 {
3131 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
3132
3133 return wq_dev->wq;
3134 }
3135
3136 static ssize_t per_cpu_show(struct device *dev, struct device_attribute *attr,
3137 char *buf)
3138 {
3139 struct workqueue_struct *wq = dev_to_wq(dev);
3140
3141 return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND));
3142 }
3143 static DEVICE_ATTR_RO(per_cpu);
3144
3145 static ssize_t max_active_show(struct device *dev,
3146 struct device_attribute *attr, char *buf)
3147 {
3148 struct workqueue_struct *wq = dev_to_wq(dev);
3149
3150 return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active);
3151 }
3152
3153 static ssize_t max_active_store(struct device *dev,
3154 struct device_attribute *attr, const char *buf,
3155 size_t count)
3156 {
3157 struct workqueue_struct *wq = dev_to_wq(dev);
3158 int val;
3159
3160 if (sscanf(buf, "%d", &val) != 1 || val <= 0)
3161 return -EINVAL;
3162
3163 workqueue_set_max_active(wq, val);
3164 return count;
3165 }
3166 static DEVICE_ATTR_RW(max_active);
3167
3168 static struct attribute *wq_sysfs_attrs[] = {
3169 &dev_attr_per_cpu.attr,
3170 &dev_attr_max_active.attr,
3171 NULL,
3172 };
3173 ATTRIBUTE_GROUPS(wq_sysfs);
3174
3175 static ssize_t wq_pool_ids_show(struct device *dev,
3176 struct device_attribute *attr, char *buf)
3177 {
3178 struct workqueue_struct *wq = dev_to_wq(dev);
3179 const char *delim = "";
3180 int node, written = 0;
3181
3182 rcu_read_lock_sched();
3183 for_each_node(node) {
3184 written += scnprintf(buf + written, PAGE_SIZE - written,
3185 "%s%d:%d", delim, node,
3186 unbound_pwq_by_node(wq, node)->pool->id);
3187 delim = " ";
3188 }
3189 written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
3190 rcu_read_unlock_sched();
3191
3192 return written;
3193 }
3194
3195 static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr,
3196 char *buf)
3197 {
3198 struct workqueue_struct *wq = dev_to_wq(dev);
3199 int written;
3200
3201 mutex_lock(&wq->mutex);
3202 written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice);
3203 mutex_unlock(&wq->mutex);
3204
3205 return written;
3206 }
3207
3208 /* prepare workqueue_attrs for sysfs store operations */
3209 static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq)
3210 {
3211 struct workqueue_attrs *attrs;
3212
3213 attrs = alloc_workqueue_attrs(GFP_KERNEL);
3214 if (!attrs)
3215 return NULL;
3216
3217 mutex_lock(&wq->mutex);
3218 copy_workqueue_attrs(attrs, wq->unbound_attrs);
3219 mutex_unlock(&wq->mutex);
3220 return attrs;
3221 }
3222
3223 static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr,
3224 const char *buf, size_t count)
3225 {
3226 struct workqueue_struct *wq = dev_to_wq(dev);
3227 struct workqueue_attrs *attrs;
3228 int ret;
3229
3230 attrs = wq_sysfs_prep_attrs(wq);
3231 if (!attrs)
3232 return -ENOMEM;
3233
3234 if (sscanf(buf, "%d", &attrs->nice) == 1 &&
3235 attrs->nice >= MIN_NICE && attrs->nice <= MAX_NICE)
3236 ret = apply_workqueue_attrs(wq, attrs);
3237 else
3238 ret = -EINVAL;
3239
3240 free_workqueue_attrs(attrs);
3241 return ret ?: count;
3242 }
3243
3244 static ssize_t wq_cpumask_show(struct device *dev,
3245 struct device_attribute *attr, char *buf)
3246 {
3247 struct workqueue_struct *wq = dev_to_wq(dev);
3248 int written;
3249
3250 mutex_lock(&wq->mutex);
3251 written = cpumask_scnprintf(buf, PAGE_SIZE, wq->unbound_attrs->cpumask);
3252 mutex_unlock(&wq->mutex);
3253
3254 written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
3255 return written;
3256 }
3257
3258 static ssize_t wq_cpumask_store(struct device *dev,
3259 struct device_attribute *attr,
3260 const char *buf, size_t count)
3261 {
3262 struct workqueue_struct *wq = dev_to_wq(dev);
3263 struct workqueue_attrs *attrs;
3264 int ret;
3265
3266 attrs = wq_sysfs_prep_attrs(wq);
3267 if (!attrs)
3268 return -ENOMEM;
3269
3270 ret = cpumask_parse(buf, attrs->cpumask);
3271 if (!ret)
3272 ret = apply_workqueue_attrs(wq, attrs);
3273
3274 free_workqueue_attrs(attrs);
3275 return ret ?: count;
3276 }
3277
3278 static ssize_t wq_numa_show(struct device *dev, struct device_attribute *attr,
3279 char *buf)
3280 {
3281 struct workqueue_struct *wq = dev_to_wq(dev);
3282 int written;
3283
3284 mutex_lock(&wq->mutex);
3285 written = scnprintf(buf, PAGE_SIZE, "%d\n",
3286 !wq->unbound_attrs->no_numa);
3287 mutex_unlock(&wq->mutex);
3288
3289 return written;
3290 }
3291
3292 static ssize_t wq_numa_store(struct device *dev, struct device_attribute *attr,
3293 const char *buf, size_t count)
3294 {
3295 struct workqueue_struct *wq = dev_to_wq(dev);
3296 struct workqueue_attrs *attrs;
3297 int v, ret;
3298
3299 attrs = wq_sysfs_prep_attrs(wq);
3300 if (!attrs)
3301 return -ENOMEM;
3302
3303 ret = -EINVAL;
3304 if (sscanf(buf, "%d", &v) == 1) {
3305 attrs->no_numa = !v;
3306 ret = apply_workqueue_attrs(wq, attrs);
3307 }
3308
3309 free_workqueue_attrs(attrs);
3310 return ret ?: count;
3311 }
3312
3313 static struct device_attribute wq_sysfs_unbound_attrs[] = {
3314 __ATTR(pool_ids, 0444, wq_pool_ids_show, NULL),
3315 __ATTR(nice, 0644, wq_nice_show, wq_nice_store),
3316 __ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store),
3317 __ATTR(numa, 0644, wq_numa_show, wq_numa_store),
3318 __ATTR_NULL,
3319 };
3320
3321 static struct bus_type wq_subsys = {
3322 .name = "workqueue",
3323 .dev_groups = wq_sysfs_groups,
3324 };
3325
3326 static int __init wq_sysfs_init(void)
3327 {
3328 return subsys_virtual_register(&wq_subsys, NULL);
3329 }
3330 core_initcall(wq_sysfs_init);
3331
3332 static void wq_device_release(struct device *dev)
3333 {
3334 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
3335
3336 kfree(wq_dev);
3337 }
3338
3339 /**
3340 * workqueue_sysfs_register - make a workqueue visible in sysfs
3341 * @wq: the workqueue to register
3342 *
3343 * Expose @wq in sysfs under /sys/bus/workqueue/devices.
3344 * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set
3345 * which is the preferred method.
3346 *
3347 * Workqueue user should use this function directly iff it wants to apply
3348 * workqueue_attrs before making the workqueue visible in sysfs; otherwise,
3349 * apply_workqueue_attrs() may race against userland updating the
3350 * attributes.
3351 *
3352 * Return: 0 on success, -errno on failure.
3353 */
3354 int workqueue_sysfs_register(struct workqueue_struct *wq)
3355 {
3356 struct wq_device *wq_dev;
3357 int ret;
3358
3359 /*
3360 * Adjusting max_active or creating new pwqs by applyting
3361 * attributes breaks ordering guarantee. Disallow exposing ordered
3362 * workqueues.
3363 */
3364 if (WARN_ON(wq->flags & __WQ_ORDERED))
3365 return -EINVAL;
3366
3367 wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL);
3368 if (!wq_dev)
3369 return -ENOMEM;
3370
3371 wq_dev->wq = wq;
3372 wq_dev->dev.bus = &wq_subsys;
3373 wq_dev->dev.init_name = wq->name;
3374 wq_dev->dev.release = wq_device_release;
3375
3376 /*
3377 * unbound_attrs are created separately. Suppress uevent until
3378 * everything is ready.
3379 */
3380 dev_set_uevent_suppress(&wq_dev->dev, true);
3381
3382 ret = device_register(&wq_dev->dev);
3383 if (ret) {
3384 kfree(wq_dev);
3385 wq->wq_dev = NULL;
3386 return ret;
3387 }
3388
3389 if (wq->flags & WQ_UNBOUND) {
3390 struct device_attribute *attr;
3391
3392 for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) {
3393 ret = device_create_file(&wq_dev->dev, attr);
3394 if (ret) {
3395 device_unregister(&wq_dev->dev);
3396 wq->wq_dev = NULL;
3397 return ret;
3398 }
3399 }
3400 }
3401
3402 kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD);
3403 return 0;
3404 }
3405
3406 /**
3407 * workqueue_sysfs_unregister - undo workqueue_sysfs_register()
3408 * @wq: the workqueue to unregister
3409 *
3410 * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister.
3411 */
3412 static void workqueue_sysfs_unregister(struct workqueue_struct *wq)
3413 {
3414 struct wq_device *wq_dev = wq->wq_dev;
3415
3416 if (!wq->wq_dev)
3417 return;
3418
3419 wq->wq_dev = NULL;
3420 device_unregister(&wq_dev->dev);
3421 }
3422 #else /* CONFIG_SYSFS */
3423 static void workqueue_sysfs_unregister(struct workqueue_struct *wq) { }
3424 #endif /* CONFIG_SYSFS */
3425
3426 /**
3427 * free_workqueue_attrs - free a workqueue_attrs
3428 * @attrs: workqueue_attrs to free
3429 *
3430 * Undo alloc_workqueue_attrs().
3431 */
3432 void free_workqueue_attrs(struct workqueue_attrs *attrs)
3433 {
3434 if (attrs) {
3435 free_cpumask_var(attrs->cpumask);
3436 kfree(attrs);
3437 }
3438 }
3439
3440 /**
3441 * alloc_workqueue_attrs - allocate a workqueue_attrs
3442 * @gfp_mask: allocation mask to use
3443 *
3444 * Allocate a new workqueue_attrs, initialize with default settings and
3445 * return it.
3446 *
3447 * Return: The allocated new workqueue_attr on success. %NULL on failure.
3448 */
3449 struct workqueue_attrs *alloc_workqueue_attrs(gfp_t gfp_mask)
3450 {
3451 struct workqueue_attrs *attrs;
3452
3453 attrs = kzalloc(sizeof(*attrs), gfp_mask);
3454 if (!attrs)
3455 goto fail;
3456 if (!alloc_cpumask_var(&attrs->cpumask, gfp_mask))
3457 goto fail;
3458
3459 cpumask_copy(attrs->cpumask, cpu_possible_mask);
3460 return attrs;
3461 fail:
3462 free_workqueue_attrs(attrs);
3463 return NULL;
3464 }
3465
3466 static void copy_workqueue_attrs(struct workqueue_attrs *to,
3467 const struct workqueue_attrs *from)
3468 {
3469 to->nice = from->nice;
3470 cpumask_copy(to->cpumask, from->cpumask);
3471 /*
3472 * Unlike hash and equality test, this function doesn't ignore
3473 * ->no_numa as it is used for both pool and wq attrs. Instead,
3474 * get_unbound_pool() explicitly clears ->no_numa after copying.
3475 */
3476 to->no_numa = from->no_numa;
3477 }
3478
3479 /* hash value of the content of @attr */
3480 static u32 wqattrs_hash(const struct workqueue_attrs *attrs)
3481 {
3482 u32 hash = 0;
3483
3484 hash = jhash_1word(attrs->nice, hash);
3485 hash = jhash(cpumask_bits(attrs->cpumask),
3486 BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash);
3487 return hash;
3488 }
3489
3490 /* content equality test */
3491 static bool wqattrs_equal(const struct workqueue_attrs *a,
3492 const struct workqueue_attrs *b)
3493 {
3494 if (a->nice != b->nice)
3495 return false;
3496 if (!cpumask_equal(a->cpumask, b->cpumask))
3497 return false;
3498 return true;
3499 }
3500
3501 /**
3502 * init_worker_pool - initialize a newly zalloc'd worker_pool
3503 * @pool: worker_pool to initialize
3504 *
3505 * Initiailize a newly zalloc'd @pool. It also allocates @pool->attrs.
3506 *
3507 * Return: 0 on success, -errno on failure. Even on failure, all fields
3508 * inside @pool proper are initialized and put_unbound_pool() can be called
3509 * on @pool safely to release it.
3510 */
3511 static int init_worker_pool(struct worker_pool *pool)
3512 {
3513 spin_lock_init(&pool->lock);
3514 pool->id = -1;
3515 pool->cpu = -1;
3516 pool->node = NUMA_NO_NODE;
3517 pool->flags |= POOL_DISASSOCIATED;
3518 INIT_LIST_HEAD(&pool->worklist);
3519 INIT_LIST_HEAD(&pool->idle_list);
3520 hash_init(pool->busy_hash);
3521
3522 init_timer_deferrable(&pool->idle_timer);
3523 pool->idle_timer.function = idle_worker_timeout;
3524 pool->idle_timer.data = (unsigned long)pool;
3525
3526 setup_timer(&pool->mayday_timer, pool_mayday_timeout,
3527 (unsigned long)pool);
3528
3529 mutex_init(&pool->manager_arb);
3530 mutex_init(&pool->manager_mutex);
3531 idr_init(&pool->worker_idr);
3532
3533 INIT_HLIST_NODE(&pool->hash_node);
3534 pool->refcnt = 1;
3535
3536 /* shouldn't fail above this point */
3537 pool->attrs = alloc_workqueue_attrs(GFP_KERNEL);
3538 if (!pool->attrs)
3539 return -ENOMEM;
3540 return 0;
3541 }
3542
3543 static void rcu_free_pool(struct rcu_head *rcu)
3544 {
3545 struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu);
3546
3547 idr_destroy(&pool->worker_idr);
3548 free_workqueue_attrs(pool->attrs);
3549 kfree(pool);
3550 }
3551
3552 /**
3553 * put_unbound_pool - put a worker_pool
3554 * @pool: worker_pool to put
3555 *
3556 * Put @pool. If its refcnt reaches zero, it gets destroyed in sched-RCU
3557 * safe manner. get_unbound_pool() calls this function on its failure path
3558 * and this function should be able to release pools which went through,
3559 * successfully or not, init_worker_pool().
3560 *
3561 * Should be called with wq_pool_mutex held.
3562 */
3563 static void put_unbound_pool(struct worker_pool *pool)
3564 {
3565 struct worker *worker;
3566
3567 lockdep_assert_held(&wq_pool_mutex);
3568
3569 if (--pool->refcnt)
3570 return;
3571
3572 /* sanity checks */
3573 if (WARN_ON(!(pool->flags & POOL_DISASSOCIATED)) ||
3574 WARN_ON(!list_empty(&pool->worklist)))
3575 return;
3576
3577 /* release id and unhash */
3578 if (pool->id >= 0)
3579 idr_remove(&worker_pool_idr, pool->id);
3580 hash_del(&pool->hash_node);
3581
3582 /*
3583 * Become the manager and destroy all workers. Grabbing
3584 * manager_arb prevents @pool's workers from blocking on
3585 * manager_mutex.
3586 */
3587 mutex_lock(&pool->manager_arb);
3588 mutex_lock(&pool->manager_mutex);
3589 spin_lock_irq(&pool->lock);
3590
3591 while ((worker = first_worker(pool)))
3592 destroy_worker(worker);
3593 WARN_ON(pool->nr_workers || pool->nr_idle);
3594
3595 spin_unlock_irq(&pool->lock);
3596 mutex_unlock(&pool->manager_mutex);
3597 mutex_unlock(&pool->manager_arb);
3598
3599 /* shut down the timers */
3600 del_timer_sync(&pool->idle_timer);
3601 del_timer_sync(&pool->mayday_timer);
3602
3603 /* sched-RCU protected to allow dereferences from get_work_pool() */
3604 call_rcu_sched(&pool->rcu, rcu_free_pool);
3605 }
3606
3607 /**
3608 * get_unbound_pool - get a worker_pool with the specified attributes
3609 * @attrs: the attributes of the worker_pool to get
3610 *
3611 * Obtain a worker_pool which has the same attributes as @attrs, bump the
3612 * reference count and return it. If there already is a matching
3613 * worker_pool, it will be used; otherwise, this function attempts to
3614 * create a new one.
3615 *
3616 * Should be called with wq_pool_mutex held.
3617 *
3618 * Return: On success, a worker_pool with the same attributes as @attrs.
3619 * On failure, %NULL.
3620 */
3621 static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs)
3622 {
3623 u32 hash = wqattrs_hash(attrs);
3624 struct worker_pool *pool;
3625 int node;
3626
3627 lockdep_assert_held(&wq_pool_mutex);
3628
3629 /* do we already have a matching pool? */
3630 hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) {
3631 if (wqattrs_equal(pool->attrs, attrs)) {
3632 pool->refcnt++;
3633 goto out_unlock;
3634 }
3635 }
3636
3637 /* nope, create a new one */
3638 pool = kzalloc(sizeof(*pool), GFP_KERNEL);
3639 if (!pool || init_worker_pool(pool) < 0)
3640 goto fail;
3641
3642 if (workqueue_freezing)
3643 pool->flags |= POOL_FREEZING;
3644
3645 lockdep_set_subclass(&pool->lock, 1); /* see put_pwq() */
3646 copy_workqueue_attrs(pool->attrs, attrs);
3647
3648 /*
3649 * no_numa isn't a worker_pool attribute, always clear it. See
3650 * 'struct workqueue_attrs' comments for detail.
3651 */
3652 pool->attrs->no_numa = false;
3653
3654 /* if cpumask is contained inside a NUMA node, we belong to that node */
3655 if (wq_numa_enabled) {
3656 for_each_node(node) {
3657 if (cpumask_subset(pool->attrs->cpumask,
3658 wq_numa_possible_cpumask[node])) {
3659 pool->node = node;
3660 break;
3661 }
3662 }
3663 }
3664
3665 if (worker_pool_assign_id(pool) < 0)
3666 goto fail;
3667
3668 /* create and start the initial worker */
3669 if (create_and_start_worker(pool) < 0)
3670 goto fail;
3671
3672 /* install */
3673 hash_add(unbound_pool_hash, &pool->hash_node, hash);
3674 out_unlock:
3675 return pool;
3676 fail:
3677 if (pool)
3678 put_unbound_pool(pool);
3679 return NULL;
3680 }
3681
3682 static void rcu_free_pwq(struct rcu_head *rcu)
3683 {
3684 kmem_cache_free(pwq_cache,
3685 container_of(rcu, struct pool_workqueue, rcu));
3686 }
3687
3688 /*
3689 * Scheduled on system_wq by put_pwq() when an unbound pwq hits zero refcnt
3690 * and needs to be destroyed.
3691 */
3692 static void pwq_unbound_release_workfn(struct work_struct *work)
3693 {
3694 struct pool_workqueue *pwq = container_of(work, struct pool_workqueue,
3695 unbound_release_work);
3696 struct workqueue_struct *wq = pwq->wq;
3697 struct worker_pool *pool = pwq->pool;
3698 bool is_last;
3699
3700 if (WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND)))
3701 return;
3702
3703 /*
3704 * Unlink @pwq. Synchronization against wq->mutex isn't strictly
3705 * necessary on release but do it anyway. It's easier to verify
3706 * and consistent with the linking path.
3707 */
3708 mutex_lock(&wq->mutex);
3709 list_del_rcu(&pwq->pwqs_node);
3710 is_last = list_empty(&wq->pwqs);
3711 mutex_unlock(&wq->mutex);
3712
3713 mutex_lock(&wq_pool_mutex);
3714 put_unbound_pool(pool);
3715 mutex_unlock(&wq_pool_mutex);
3716
3717 call_rcu_sched(&pwq->rcu, rcu_free_pwq);
3718
3719 /*
3720 * If we're the last pwq going away, @wq is already dead and no one
3721 * is gonna access it anymore. Free it.
3722 */
3723 if (is_last) {
3724 free_workqueue_attrs(wq->unbound_attrs);
3725 kfree(wq);
3726 }
3727 }
3728
3729 /**
3730 * pwq_adjust_max_active - update a pwq's max_active to the current setting
3731 * @pwq: target pool_workqueue
3732 *
3733 * If @pwq isn't freezing, set @pwq->max_active to the associated
3734 * workqueue's saved_max_active and activate delayed work items
3735 * accordingly. If @pwq is freezing, clear @pwq->max_active to zero.
3736 */
3737 static void pwq_adjust_max_active(struct pool_workqueue *pwq)
3738 {
3739 struct workqueue_struct *wq = pwq->wq;
3740 bool freezable = wq->flags & WQ_FREEZABLE;
3741
3742 /* for @wq->saved_max_active */
3743 lockdep_assert_held(&wq->mutex);
3744
3745 /* fast exit for non-freezable wqs */
3746 if (!freezable && pwq->max_active == wq->saved_max_active)
3747 return;
3748
3749 spin_lock_irq(&pwq->pool->lock);
3750
3751 if (!freezable || !(pwq->pool->flags & POOL_FREEZING)) {
3752 pwq->max_active = wq->saved_max_active;
3753
3754 while (!list_empty(&pwq->delayed_works) &&
3755 pwq->nr_active < pwq->max_active)
3756 pwq_activate_first_delayed(pwq);
3757
3758 /*
3759 * Need to kick a worker after thawed or an unbound wq's
3760 * max_active is bumped. It's a slow path. Do it always.
3761 */
3762 wake_up_worker(pwq->pool);
3763 } else {
3764 pwq->max_active = 0;
3765 }
3766
3767 spin_unlock_irq(&pwq->pool->lock);
3768 }
3769
3770 /* initialize newly alloced @pwq which is associated with @wq and @pool */
3771 static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq,
3772 struct worker_pool *pool)
3773 {
3774 BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK);
3775
3776 memset(pwq, 0, sizeof(*pwq));
3777
3778 pwq->pool = pool;
3779 pwq->wq = wq;
3780 pwq->flush_color = -1;
3781 pwq->refcnt = 1;
3782 INIT_LIST_HEAD(&pwq->delayed_works);
3783 INIT_LIST_HEAD(&pwq->pwqs_node);
3784 INIT_LIST_HEAD(&pwq->mayday_node);
3785 INIT_WORK(&pwq->unbound_release_work, pwq_unbound_release_workfn);
3786 }
3787
3788 /* sync @pwq with the current state of its associated wq and link it */
3789 static void link_pwq(struct pool_workqueue *pwq)
3790 {
3791 struct workqueue_struct *wq = pwq->wq;
3792
3793 lockdep_assert_held(&wq->mutex);
3794
3795 /* may be called multiple times, ignore if already linked */
3796 if (!list_empty(&pwq->pwqs_node))
3797 return;
3798
3799 /*
3800 * Set the matching work_color. This is synchronized with
3801 * wq->mutex to avoid confusing flush_workqueue().
3802 */
3803 pwq->work_color = wq->work_color;
3804
3805 /* sync max_active to the current setting */
3806 pwq_adjust_max_active(pwq);
3807
3808 /* link in @pwq */
3809 list_add_rcu(&pwq->pwqs_node, &wq->pwqs);
3810 }
3811
3812 /* obtain a pool matching @attr and create a pwq associating the pool and @wq */
3813 static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq,
3814 const struct workqueue_attrs *attrs)
3815 {
3816 struct worker_pool *pool;
3817 struct pool_workqueue *pwq;
3818
3819 lockdep_assert_held(&wq_pool_mutex);
3820
3821 pool = get_unbound_pool(attrs);
3822 if (!pool)
3823 return NULL;
3824
3825 pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node);
3826 if (!pwq) {
3827 put_unbound_pool(pool);
3828 return NULL;
3829 }
3830
3831 init_pwq(pwq, wq, pool);
3832 return pwq;
3833 }
3834
3835 /* undo alloc_unbound_pwq(), used only in the error path */
3836 static void free_unbound_pwq(struct pool_workqueue *pwq)
3837 {
3838 lockdep_assert_held(&wq_pool_mutex);
3839
3840 if (pwq) {
3841 put_unbound_pool(pwq->pool);
3842 kmem_cache_free(pwq_cache, pwq);
3843 }
3844 }
3845
3846 /**
3847 * wq_calc_node_mask - calculate a wq_attrs' cpumask for the specified node
3848 * @attrs: the wq_attrs of interest
3849 * @node: the target NUMA node
3850 * @cpu_going_down: if >= 0, the CPU to consider as offline
3851 * @cpumask: outarg, the resulting cpumask
3852 *
3853 * Calculate the cpumask a workqueue with @attrs should use on @node. If
3854 * @cpu_going_down is >= 0, that cpu is considered offline during
3855 * calculation. The result is stored in @cpumask.
3856 *
3857 * If NUMA affinity is not enabled, @attrs->cpumask is always used. If
3858 * enabled and @node has online CPUs requested by @attrs, the returned
3859 * cpumask is the intersection of the possible CPUs of @node and
3860 * @attrs->cpumask.
3861 *
3862 * The caller is responsible for ensuring that the cpumask of @node stays
3863 * stable.
3864 *
3865 * Return: %true if the resulting @cpumask is different from @attrs->cpumask,
3866 * %false if equal.
3867 */
3868 static bool wq_calc_node_cpumask(const struct workqueue_attrs *attrs, int node,
3869 int cpu_going_down, cpumask_t *cpumask)
3870 {
3871 if (!wq_numa_enabled || attrs->no_numa)
3872 goto use_dfl;
3873
3874 /* does @node have any online CPUs @attrs wants? */
3875 cpumask_and(cpumask, cpumask_of_node(node), attrs->cpumask);
3876 if (cpu_going_down >= 0)
3877 cpumask_clear_cpu(cpu_going_down, cpumask);
3878
3879 if (cpumask_empty(cpumask))
3880 goto use_dfl;
3881
3882 /* yeap, return possible CPUs in @node that @attrs wants */
3883 cpumask_and(cpumask, attrs->cpumask, wq_numa_possible_cpumask[node]);
3884 return !cpumask_equal(cpumask, attrs->cpumask);
3885
3886 use_dfl:
3887 cpumask_copy(cpumask, attrs->cpumask);
3888 return false;
3889 }
3890
3891 /* install @pwq into @wq's numa_pwq_tbl[] for @node and return the old pwq */
3892 static struct pool_workqueue *numa_pwq_tbl_install(struct workqueue_struct *wq,
3893 int node,
3894 struct pool_workqueue *pwq)
3895 {
3896 struct pool_workqueue *old_pwq;
3897
3898 lockdep_assert_held(&wq->mutex);
3899
3900 /* link_pwq() can handle duplicate calls */
3901 link_pwq(pwq);
3902
3903 old_pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
3904 rcu_assign_pointer(wq->numa_pwq_tbl[node], pwq);
3905 return old_pwq;
3906 }
3907
3908 /**
3909 * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue
3910 * @wq: the target workqueue
3911 * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs()
3912 *
3913 * Apply @attrs to an unbound workqueue @wq. Unless disabled, on NUMA
3914 * machines, this function maps a separate pwq to each NUMA node with
3915 * possibles CPUs in @attrs->cpumask so that work items are affine to the
3916 * NUMA node it was issued on. Older pwqs are released as in-flight work
3917 * items finish. Note that a work item which repeatedly requeues itself
3918 * back-to-back will stay on its current pwq.
3919 *
3920 * Performs GFP_KERNEL allocations.
3921 *
3922 * Return: 0 on success and -errno on failure.
3923 */
3924 int apply_workqueue_attrs(struct workqueue_struct *wq,
3925 const struct workqueue_attrs *attrs)
3926 {
3927 struct workqueue_attrs *new_attrs, *tmp_attrs;
3928 struct pool_workqueue **pwq_tbl, *dfl_pwq;
3929 int node, ret;
3930
3931 /* only unbound workqueues can change attributes */
3932 if (WARN_ON(!(wq->flags & WQ_UNBOUND)))
3933 return -EINVAL;
3934
3935 /* creating multiple pwqs breaks ordering guarantee */
3936 if (WARN_ON((wq->flags & __WQ_ORDERED) && !list_empty(&wq->pwqs)))
3937 return -EINVAL;
3938
3939 pwq_tbl = kzalloc(wq_numa_tbl_len * sizeof(pwq_tbl[0]), GFP_KERNEL);
3940 new_attrs = alloc_workqueue_attrs(GFP_KERNEL);
3941 tmp_attrs = alloc_workqueue_attrs(GFP_KERNEL);
3942 if (!pwq_tbl || !new_attrs || !tmp_attrs)
3943 goto enomem;
3944
3945 /* make a copy of @attrs and sanitize it */
3946 copy_workqueue_attrs(new_attrs, attrs);
3947 cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask);
3948
3949 /*
3950 * We may create multiple pwqs with differing cpumasks. Make a
3951 * copy of @new_attrs which will be modified and used to obtain
3952 * pools.
3953 */
3954 copy_workqueue_attrs(tmp_attrs, new_attrs);
3955
3956 /*
3957 * CPUs should stay stable across pwq creations and installations.
3958 * Pin CPUs, determine the target cpumask for each node and create
3959 * pwqs accordingly.
3960 */
3961 get_online_cpus();
3962
3963 mutex_lock(&wq_pool_mutex);
3964
3965 /*
3966 * If something goes wrong during CPU up/down, we'll fall back to
3967 * the default pwq covering whole @attrs->cpumask. Always create
3968 * it even if we don't use it immediately.
3969 */
3970 dfl_pwq = alloc_unbound_pwq(wq, new_attrs);
3971 if (!dfl_pwq)
3972 goto enomem_pwq;
3973
3974 for_each_node(node) {
3975 if (wq_calc_node_cpumask(attrs, node, -1, tmp_attrs->cpumask)) {
3976 pwq_tbl[node] = alloc_unbound_pwq(wq, tmp_attrs);
3977 if (!pwq_tbl[node])
3978 goto enomem_pwq;
3979 } else {
3980 dfl_pwq->refcnt++;
3981 pwq_tbl[node] = dfl_pwq;
3982 }
3983 }
3984
3985 mutex_unlock(&wq_pool_mutex);
3986
3987 /* all pwqs have been created successfully, let's install'em */
3988 mutex_lock(&wq->mutex);
3989
3990 copy_workqueue_attrs(wq->unbound_attrs, new_attrs);
3991
3992 /* save the previous pwq and install the new one */
3993 for_each_node(node)
3994 pwq_tbl[node] = numa_pwq_tbl_install(wq, node, pwq_tbl[node]);
3995
3996 /* @dfl_pwq might not have been used, ensure it's linked */
3997 link_pwq(dfl_pwq);
3998 swap(wq->dfl_pwq, dfl_pwq);
3999
4000 mutex_unlock(&wq->mutex);
4001
4002 /* put the old pwqs */
4003 for_each_node(node)
4004 put_pwq_unlocked(pwq_tbl[node]);
4005 put_pwq_unlocked(dfl_pwq);
4006
4007 put_online_cpus();
4008 ret = 0;
4009 /* fall through */
4010 out_free:
4011 free_workqueue_attrs(tmp_attrs);
4012 free_workqueue_attrs(new_attrs);
4013 kfree(pwq_tbl);
4014 return ret;
4015
4016 enomem_pwq:
4017 free_unbound_pwq(dfl_pwq);
4018 for_each_node(node)
4019 if (pwq_tbl && pwq_tbl[node] != dfl_pwq)
4020 free_unbound_pwq(pwq_tbl[node]);
4021 mutex_unlock(&wq_pool_mutex);
4022 put_online_cpus();
4023 enomem:
4024 ret = -ENOMEM;
4025 goto out_free;
4026 }
4027
4028 /**
4029 * wq_update_unbound_numa - update NUMA affinity of a wq for CPU hot[un]plug
4030 * @wq: the target workqueue
4031 * @cpu: the CPU coming up or going down
4032 * @online: whether @cpu is coming up or going down
4033 *
4034 * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and
4035 * %CPU_DOWN_FAILED. @cpu is being hot[un]plugged, update NUMA affinity of
4036 * @wq accordingly.
4037 *
4038 * If NUMA affinity can't be adjusted due to memory allocation failure, it
4039 * falls back to @wq->dfl_pwq which may not be optimal but is always
4040 * correct.
4041 *
4042 * Note that when the last allowed CPU of a NUMA node goes offline for a
4043 * workqueue with a cpumask spanning multiple nodes, the workers which were
4044 * already executing the work items for the workqueue will lose their CPU
4045 * affinity and may execute on any CPU. This is similar to how per-cpu
4046 * workqueues behave on CPU_DOWN. If a workqueue user wants strict
4047 * affinity, it's the user's responsibility to flush the work item from
4048 * CPU_DOWN_PREPARE.
4049 */
4050 static void wq_update_unbound_numa(struct workqueue_struct *wq, int cpu,
4051 bool online)
4052 {
4053 int node = cpu_to_node(cpu);
4054 int cpu_off = online ? -1 : cpu;
4055 struct pool_workqueue *old_pwq = NULL, *pwq;
4056 struct workqueue_attrs *target_attrs;
4057 cpumask_t *cpumask;
4058
4059 lockdep_assert_held(&wq_pool_mutex);
4060
4061 if (!wq_numa_enabled || !(wq->flags & WQ_UNBOUND))
4062 return;
4063
4064 /*
4065 * We don't wanna alloc/free wq_attrs for each wq for each CPU.
4066 * Let's use a preallocated one. The following buf is protected by
4067 * CPU hotplug exclusion.
4068 */
4069 target_attrs = wq_update_unbound_numa_attrs_buf;
4070 cpumask = target_attrs->cpumask;
4071
4072 mutex_lock(&wq->mutex);
4073 if (wq->unbound_attrs->no_numa)
4074 goto out_unlock;
4075
4076 copy_workqueue_attrs(target_attrs, wq->unbound_attrs);
4077 pwq = unbound_pwq_by_node(wq, node);
4078
4079 /*
4080 * Let's determine what needs to be done. If the target cpumask is
4081 * different from wq's, we need to compare it to @pwq's and create
4082 * a new one if they don't match. If the target cpumask equals
4083 * wq's, the default pwq should be used. If @pwq is already the
4084 * default one, nothing to do; otherwise, install the default one.
4085 */
4086 if (wq_calc_node_cpumask(wq->unbound_attrs, node, cpu_off, cpumask)) {
4087 if (cpumask_equal(cpumask, pwq->pool->attrs->cpumask))
4088 goto out_unlock;
4089 } else {
4090 if (pwq == wq->dfl_pwq)
4091 goto out_unlock;
4092 else
4093 goto use_dfl_pwq;
4094 }
4095
4096 mutex_unlock(&wq->mutex);
4097
4098 /* create a new pwq */
4099 pwq = alloc_unbound_pwq(wq, target_attrs);
4100 if (!pwq) {
4101 pr_warning("workqueue: allocation failed while updating NUMA affinity of \"%s\"\n",
4102 wq->name);
4103 goto out_unlock;
4104 }
4105
4106 /*
4107 * Install the new pwq. As this function is called only from CPU
4108 * hotplug callbacks and applying a new attrs is wrapped with
4109 * get/put_online_cpus(), @wq->unbound_attrs couldn't have changed
4110 * inbetween.
4111 */
4112 mutex_lock(&wq->mutex);
4113 old_pwq = numa_pwq_tbl_install(wq, node, pwq);
4114 goto out_unlock;
4115
4116 use_dfl_pwq:
4117 spin_lock_irq(&wq->dfl_pwq->pool->lock);
4118 get_pwq(wq->dfl_pwq);
4119 spin_unlock_irq(&wq->dfl_pwq->pool->lock);
4120 old_pwq = numa_pwq_tbl_install(wq, node, wq->dfl_pwq);
4121 out_unlock:
4122 mutex_unlock(&wq->mutex);
4123 put_pwq_unlocked(old_pwq);
4124 }
4125
4126 static int alloc_and_link_pwqs(struct workqueue_struct *wq)
4127 {
4128 bool highpri = wq->flags & WQ_HIGHPRI;
4129 int cpu, ret;
4130
4131 if (!(wq->flags & WQ_UNBOUND)) {
4132 wq->cpu_pwqs = alloc_percpu(struct pool_workqueue);
4133 if (!wq->cpu_pwqs)
4134 return -ENOMEM;
4135
4136 for_each_possible_cpu(cpu) {
4137 struct pool_workqueue *pwq =
4138 per_cpu_ptr(wq->cpu_pwqs, cpu);
4139 struct worker_pool *cpu_pools =
4140 per_cpu(cpu_worker_pools, cpu);
4141
4142 init_pwq(pwq, wq, &cpu_pools[highpri]);
4143
4144 mutex_lock(&wq->mutex);
4145 link_pwq(pwq);
4146 mutex_unlock(&wq->mutex);
4147 }
4148 return 0;
4149 } else if (wq->flags & __WQ_ORDERED) {
4150 ret = apply_workqueue_attrs(wq, ordered_wq_attrs[highpri]);
4151 /* there should only be single pwq for ordering guarantee */
4152 WARN(!ret && (wq->pwqs.next != &wq->dfl_pwq->pwqs_node ||
4153 wq->pwqs.prev != &wq->dfl_pwq->pwqs_node),
4154 "ordering guarantee broken for workqueue %s\n", wq->name);
4155 return ret;
4156 } else {
4157 return apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]);
4158 }
4159 }
4160
4161 static int wq_clamp_max_active(int max_active, unsigned int flags,
4162 const char *name)
4163 {
4164 int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;
4165
4166 if (max_active < 1 || max_active > lim)
4167 pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
4168 max_active, name, 1, lim);
4169
4170 return clamp_val(max_active, 1, lim);
4171 }
4172
4173 struct workqueue_struct *__alloc_workqueue_key(const char *fmt,
4174 unsigned int flags,
4175 int max_active,
4176 struct lock_class_key *key,
4177 const char *lock_name, ...)
4178 {
4179 size_t tbl_size = 0;
4180 va_list args;
4181 struct workqueue_struct *wq;
4182 struct pool_workqueue *pwq;
4183
4184 /* see the comment above the definition of WQ_POWER_EFFICIENT */
4185 if ((flags & WQ_POWER_EFFICIENT) && wq_power_efficient)
4186 flags |= WQ_UNBOUND;
4187
4188 /* allocate wq and format name */
4189 if (flags & WQ_UNBOUND)
4190 tbl_size = wq_numa_tbl_len * sizeof(wq->numa_pwq_tbl[0]);
4191
4192 wq = kzalloc(sizeof(*wq) + tbl_size, GFP_KERNEL);
4193 if (!wq)
4194 return NULL;
4195
4196 if (flags & WQ_UNBOUND) {
4197 wq->unbound_attrs = alloc_workqueue_attrs(GFP_KERNEL);
4198 if (!wq->unbound_attrs)
4199 goto err_free_wq;
4200 }
4201
4202 va_start(args, lock_name);
4203 vsnprintf(wq->name, sizeof(wq->name), fmt, args);
4204 va_end(args);
4205
4206 max_active = max_active ?: WQ_DFL_ACTIVE;
4207 max_active = wq_clamp_max_active(max_active, flags, wq->name);
4208
4209 /* init wq */
4210 wq->flags = flags;
4211 wq->saved_max_active = max_active;
4212 mutex_init(&wq->mutex);
4213 atomic_set(&wq->nr_pwqs_to_flush, 0);
4214 INIT_LIST_HEAD(&wq->pwqs);
4215 INIT_LIST_HEAD(&wq->flusher_queue);
4216 INIT_LIST_HEAD(&wq->flusher_overflow);
4217 INIT_LIST_HEAD(&wq->maydays);
4218
4219 lockdep_init_map(&wq->lockdep_map, lock_name, key, 0);
4220 INIT_LIST_HEAD(&wq->list);
4221
4222 if (alloc_and_link_pwqs(wq) < 0)
4223 goto err_free_wq;
4224
4225 /*
4226 * Workqueues which may be used during memory reclaim should
4227 * have a rescuer to guarantee forward progress.
4228 */
4229 if (flags & WQ_MEM_RECLAIM) {
4230 struct worker *rescuer;
4231
4232 rescuer = alloc_worker();
4233 if (!rescuer)
4234 goto err_destroy;
4235
4236 rescuer->rescue_wq = wq;
4237 rescuer->task = kthread_create(rescuer_thread, rescuer, "%s",
4238 wq->name);
4239 if (IS_ERR(rescuer->task)) {
4240 kfree(rescuer);
4241 goto err_destroy;
4242 }
4243
4244 wq->rescuer = rescuer;
4245 rescuer->task->flags |= PF_NO_SETAFFINITY;
4246 wake_up_process(rescuer->task);
4247 }
4248
4249 if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq))
4250 goto err_destroy;
4251
4252 /*
4253 * wq_pool_mutex protects global freeze state and workqueues list.
4254 * Grab it, adjust max_active and add the new @wq to workqueues
4255 * list.
4256 */
4257 mutex_lock(&wq_pool_mutex);
4258
4259 mutex_lock(&wq->mutex);
4260 for_each_pwq(pwq, wq)
4261 pwq_adjust_max_active(pwq);
4262 mutex_unlock(&wq->mutex);
4263
4264 list_add(&wq->list, &workqueues);
4265
4266 mutex_unlock(&wq_pool_mutex);
4267
4268 return wq;
4269
4270 err_free_wq:
4271 free_workqueue_attrs(wq->unbound_attrs);
4272 kfree(wq);
4273 return NULL;
4274 err_destroy:
4275 destroy_workqueue(wq);
4276 return NULL;
4277 }
4278 EXPORT_SYMBOL_GPL(__alloc_workqueue_key);
4279
4280 /**
4281 * destroy_workqueue - safely terminate a workqueue
4282 * @wq: target workqueue
4283 *
4284 * Safely destroy a workqueue. All work currently pending will be done first.
4285 */
4286 void destroy_workqueue(struct workqueue_struct *wq)
4287 {
4288 struct pool_workqueue *pwq;
4289 int node;
4290
4291 /* drain it before proceeding with destruction */
4292 drain_workqueue(wq);
4293
4294 /* sanity checks */
4295 mutex_lock(&wq->mutex);
4296 for_each_pwq(pwq, wq) {
4297 int i;
4298
4299 for (i = 0; i < WORK_NR_COLORS; i++) {
4300 if (WARN_ON(pwq->nr_in_flight[i])) {
4301 mutex_unlock(&wq->mutex);
4302 return;
4303 }
4304 }
4305
4306 if (WARN_ON((pwq != wq->dfl_pwq) && (pwq->refcnt > 1)) ||
4307 WARN_ON(pwq->nr_active) ||
4308 WARN_ON(!list_empty(&pwq->delayed_works))) {
4309 mutex_unlock(&wq->mutex);
4310 return;
4311 }
4312 }
4313 mutex_unlock(&wq->mutex);
4314
4315 /*
4316 * wq list is used to freeze wq, remove from list after
4317 * flushing is complete in case freeze races us.
4318 */
4319 mutex_lock(&wq_pool_mutex);
4320 list_del_init(&wq->list);
4321 mutex_unlock(&wq_pool_mutex);
4322
4323 workqueue_sysfs_unregister(wq);
4324
4325 if (wq->rescuer) {
4326 kthread_stop(wq->rescuer->task);
4327 kfree(wq->rescuer);
4328 wq->rescuer = NULL;
4329 }
4330
4331 if (!(wq->flags & WQ_UNBOUND)) {
4332 /*
4333 * The base ref is never dropped on per-cpu pwqs. Directly
4334 * free the pwqs and wq.
4335 */
4336 free_percpu(wq->cpu_pwqs);
4337 kfree(wq);
4338 } else {
4339 /*
4340 * We're the sole accessor of @wq at this point. Directly
4341 * access numa_pwq_tbl[] and dfl_pwq to put the base refs.
4342 * @wq will be freed when the last pwq is released.
4343 */
4344 for_each_node(node) {
4345 pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
4346 RCU_INIT_POINTER(wq->numa_pwq_tbl[node], NULL);
4347 put_pwq_unlocked(pwq);
4348 }
4349
4350 /*
4351 * Put dfl_pwq. @wq may be freed any time after dfl_pwq is
4352 * put. Don't access it afterwards.
4353 */
4354 pwq = wq->dfl_pwq;
4355 wq->dfl_pwq = NULL;
4356 put_pwq_unlocked(pwq);
4357 }
4358 }
4359 EXPORT_SYMBOL_GPL(destroy_workqueue);
4360
4361 /**
4362 * workqueue_set_max_active - adjust max_active of a workqueue
4363 * @wq: target workqueue
4364 * @max_active: new max_active value.
4365 *
4366 * Set max_active of @wq to @max_active.
4367 *
4368 * CONTEXT:
4369 * Don't call from IRQ context.
4370 */
4371 void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
4372 {
4373 struct pool_workqueue *pwq;
4374
4375 /* disallow meddling with max_active for ordered workqueues */
4376 if (WARN_ON(wq->flags & __WQ_ORDERED))
4377 return;
4378
4379 max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
4380
4381 mutex_lock(&wq->mutex);
4382
4383 wq->saved_max_active = max_active;
4384
4385 for_each_pwq(pwq, wq)
4386 pwq_adjust_max_active(pwq);
4387
4388 mutex_unlock(&wq->mutex);
4389 }
4390 EXPORT_SYMBOL_GPL(workqueue_set_max_active);
4391
4392 /**
4393 * current_is_workqueue_rescuer - is %current workqueue rescuer?
4394 *
4395 * Determine whether %current is a workqueue rescuer. Can be used from
4396 * work functions to determine whether it's being run off the rescuer task.
4397 *
4398 * Return: %true if %current is a workqueue rescuer. %false otherwise.
4399 */
4400 bool current_is_workqueue_rescuer(void)
4401 {
4402 struct worker *worker = current_wq_worker();
4403
4404 return worker && worker->rescue_wq;
4405 }
4406
4407 /**
4408 * workqueue_congested - test whether a workqueue is congested
4409 * @cpu: CPU in question
4410 * @wq: target workqueue
4411 *
4412 * Test whether @wq's cpu workqueue for @cpu is congested. There is
4413 * no synchronization around this function and the test result is
4414 * unreliable and only useful as advisory hints or for debugging.
4415 *
4416 * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU.
4417 * Note that both per-cpu and unbound workqueues may be associated with
4418 * multiple pool_workqueues which have separate congested states. A
4419 * workqueue being congested on one CPU doesn't mean the workqueue is also
4420 * contested on other CPUs / NUMA nodes.
4421 *
4422 * Return:
4423 * %true if congested, %false otherwise.
4424 */
4425 bool workqueue_congested(int cpu, struct workqueue_struct *wq)
4426 {
4427 struct pool_workqueue *pwq;
4428 bool ret;
4429
4430 rcu_read_lock_sched();
4431
4432 if (cpu == WORK_CPU_UNBOUND)
4433 cpu = smp_processor_id();
4434
4435 if (!(wq->flags & WQ_UNBOUND))
4436 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
4437 else
4438 pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
4439
4440 ret = !list_empty(&pwq->delayed_works);
4441 rcu_read_unlock_sched();
4442
4443 return ret;
4444 }
4445 EXPORT_SYMBOL_GPL(workqueue_congested);
4446
4447 /**
4448 * work_busy - test whether a work is currently pending or running
4449 * @work: the work to be tested
4450 *
4451 * Test whether @work is currently pending or running. There is no
4452 * synchronization around this function and the test result is
4453 * unreliable and only useful as advisory hints or for debugging.
4454 *
4455 * Return:
4456 * OR'd bitmask of WORK_BUSY_* bits.
4457 */
4458 unsigned int work_busy(struct work_struct *work)
4459 {
4460 struct worker_pool *pool;
4461 unsigned long flags;
4462 unsigned int ret = 0;
4463
4464 if (work_pending(work))
4465 ret |= WORK_BUSY_PENDING;
4466
4467 local_irq_save(flags);
4468 pool = get_work_pool(work);
4469 if (pool) {
4470 spin_lock(&pool->lock);
4471 if (find_worker_executing_work(pool, work))
4472 ret |= WORK_BUSY_RUNNING;
4473 spin_unlock(&pool->lock);
4474 }
4475 local_irq_restore(flags);
4476
4477 return ret;
4478 }
4479 EXPORT_SYMBOL_GPL(work_busy);
4480
4481 /**
4482 * set_worker_desc - set description for the current work item
4483 * @fmt: printf-style format string
4484 * @...: arguments for the format string
4485 *
4486 * This function can be called by a running work function to describe what
4487 * the work item is about. If the worker task gets dumped, this
4488 * information will be printed out together to help debugging. The
4489 * description can be at most WORKER_DESC_LEN including the trailing '\0'.
4490 */
4491 void set_worker_desc(const char *fmt, ...)
4492 {
4493 struct worker *worker = current_wq_worker();
4494 va_list args;
4495
4496 if (worker) {
4497 va_start(args, fmt);
4498 vsnprintf(worker->desc, sizeof(worker->desc), fmt, args);
4499 va_end(args);
4500 worker->desc_valid = true;
4501 }
4502 }
4503
4504 /**
4505 * print_worker_info - print out worker information and description
4506 * @log_lvl: the log level to use when printing
4507 * @task: target task
4508 *
4509 * If @task is a worker and currently executing a work item, print out the
4510 * name of the workqueue being serviced and worker description set with
4511 * set_worker_desc() by the currently executing work item.
4512 *
4513 * This function can be safely called on any task as long as the
4514 * task_struct itself is accessible. While safe, this function isn't
4515 * synchronized and may print out mixups or garbages of limited length.
4516 */
4517 void print_worker_info(const char *log_lvl, struct task_struct *task)
4518 {
4519 work_func_t *fn = NULL;
4520 char name[WQ_NAME_LEN] = { };
4521 char desc[WORKER_DESC_LEN] = { };
4522 struct pool_workqueue *pwq = NULL;
4523 struct workqueue_struct *wq = NULL;
4524 bool desc_valid = false;
4525 struct worker *worker;
4526
4527 if (!(task->flags & PF_WQ_WORKER))
4528 return;
4529
4530 /*
4531 * This function is called without any synchronization and @task
4532 * could be in any state. Be careful with dereferences.
4533 */
4534 worker = probe_kthread_data(task);
4535
4536 /*
4537 * Carefully copy the associated workqueue's workfn and name. Keep
4538 * the original last '\0' in case the original contains garbage.
4539 */
4540 probe_kernel_read(&fn, &worker->current_func, sizeof(fn));
4541 probe_kernel_read(&pwq, &worker->current_pwq, sizeof(pwq));
4542 probe_kernel_read(&wq, &pwq->wq, sizeof(wq));
4543 probe_kernel_read(name, wq->name, sizeof(name) - 1);
4544
4545 /* copy worker description */
4546 probe_kernel_read(&desc_valid, &worker->desc_valid, sizeof(desc_valid));
4547 if (desc_valid)
4548 probe_kernel_read(desc, worker->desc, sizeof(desc) - 1);
4549
4550 if (fn || name[0] || desc[0]) {
4551 printk("%sWorkqueue: %s %pf", log_lvl, name, fn);
4552 if (desc[0])
4553 pr_cont(" (%s)", desc);
4554 pr_cont("\n");
4555 }
4556 }
4557
4558 /*
4559 * CPU hotplug.
4560 *
4561 * There are two challenges in supporting CPU hotplug. Firstly, there
4562 * are a lot of assumptions on strong associations among work, pwq and
4563 * pool which make migrating pending and scheduled works very
4564 * difficult to implement without impacting hot paths. Secondly,
4565 * worker pools serve mix of short, long and very long running works making
4566 * blocked draining impractical.
4567 *
4568 * This is solved by allowing the pools to be disassociated from the CPU
4569 * running as an unbound one and allowing it to be reattached later if the
4570 * cpu comes back online.
4571 */
4572
4573 static void wq_unbind_fn(struct work_struct *work)
4574 {
4575 int cpu = smp_processor_id();
4576 struct worker_pool *pool;
4577 struct worker *worker;
4578 int wi;
4579
4580 for_each_cpu_worker_pool(pool, cpu) {
4581 WARN_ON_ONCE(cpu != smp_processor_id());
4582
4583 mutex_lock(&pool->manager_mutex);
4584 spin_lock_irq(&pool->lock);
4585
4586 /*
4587 * We've blocked all manager operations. Make all workers
4588 * unbound and set DISASSOCIATED. Before this, all workers
4589 * except for the ones which are still executing works from
4590 * before the last CPU down must be on the cpu. After
4591 * this, they may become diasporas.
4592 */
4593 for_each_pool_worker(worker, wi, pool)
4594 worker->flags |= WORKER_UNBOUND;
4595
4596 pool->flags |= POOL_DISASSOCIATED;
4597
4598 spin_unlock_irq(&pool->lock);
4599 mutex_unlock(&pool->manager_mutex);
4600
4601 /*
4602 * Call schedule() so that we cross rq->lock and thus can
4603 * guarantee sched callbacks see the %WORKER_UNBOUND flag.
4604 * This is necessary as scheduler callbacks may be invoked
4605 * from other cpus.
4606 */
4607 schedule();
4608
4609 /*
4610 * Sched callbacks are disabled now. Zap nr_running.
4611 * After this, nr_running stays zero and need_more_worker()
4612 * and keep_working() are always true as long as the
4613 * worklist is not empty. This pool now behaves as an
4614 * unbound (in terms of concurrency management) pool which
4615 * are served by workers tied to the pool.
4616 */
4617 atomic_set(&pool->nr_running, 0);
4618
4619 /*
4620 * With concurrency management just turned off, a busy
4621 * worker blocking could lead to lengthy stalls. Kick off
4622 * unbound chain execution of currently pending work items.
4623 */
4624 spin_lock_irq(&pool->lock);
4625 wake_up_worker(pool);
4626 spin_unlock_irq(&pool->lock);
4627 }
4628 }
4629
4630 /**
4631 * rebind_workers - rebind all workers of a pool to the associated CPU
4632 * @pool: pool of interest
4633 *
4634 * @pool->cpu is coming online. Rebind all workers to the CPU.
4635 */
4636 static void rebind_workers(struct worker_pool *pool)
4637 {
4638 struct worker *worker;
4639 int wi;
4640
4641 lockdep_assert_held(&pool->manager_mutex);
4642
4643 /*
4644 * Restore CPU affinity of all workers. As all idle workers should
4645 * be on the run-queue of the associated CPU before any local
4646 * wake-ups for concurrency management happen, restore CPU affinty
4647 * of all workers first and then clear UNBOUND. As we're called
4648 * from CPU_ONLINE, the following shouldn't fail.
4649 */
4650 for_each_pool_worker(worker, wi, pool)
4651 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
4652 pool->attrs->cpumask) < 0);
4653
4654 spin_lock_irq(&pool->lock);
4655
4656 for_each_pool_worker(worker, wi, pool) {
4657 unsigned int worker_flags = worker->flags;
4658
4659 /*
4660 * A bound idle worker should actually be on the runqueue
4661 * of the associated CPU for local wake-ups targeting it to
4662 * work. Kick all idle workers so that they migrate to the
4663 * associated CPU. Doing this in the same loop as
4664 * replacing UNBOUND with REBOUND is safe as no worker will
4665 * be bound before @pool->lock is released.
4666 */
4667 if (worker_flags & WORKER_IDLE)
4668 wake_up_process(worker->task);
4669
4670 /*
4671 * We want to clear UNBOUND but can't directly call
4672 * worker_clr_flags() or adjust nr_running. Atomically
4673 * replace UNBOUND with another NOT_RUNNING flag REBOUND.
4674 * @worker will clear REBOUND using worker_clr_flags() when
4675 * it initiates the next execution cycle thus restoring
4676 * concurrency management. Note that when or whether
4677 * @worker clears REBOUND doesn't affect correctness.
4678 *
4679 * ACCESS_ONCE() is necessary because @worker->flags may be
4680 * tested without holding any lock in
4681 * wq_worker_waking_up(). Without it, NOT_RUNNING test may
4682 * fail incorrectly leading to premature concurrency
4683 * management operations.
4684 */
4685 WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND));
4686 worker_flags |= WORKER_REBOUND;
4687 worker_flags &= ~WORKER_UNBOUND;
4688 ACCESS_ONCE(worker->flags) = worker_flags;
4689 }
4690
4691 spin_unlock_irq(&pool->lock);
4692 }
4693
4694 /**
4695 * restore_unbound_workers_cpumask - restore cpumask of unbound workers
4696 * @pool: unbound pool of interest
4697 * @cpu: the CPU which is coming up
4698 *
4699 * An unbound pool may end up with a cpumask which doesn't have any online
4700 * CPUs. When a worker of such pool get scheduled, the scheduler resets
4701 * its cpus_allowed. If @cpu is in @pool's cpumask which didn't have any
4702 * online CPU before, cpus_allowed of all its workers should be restored.
4703 */
4704 static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu)
4705 {
4706 static cpumask_t cpumask;
4707 struct worker *worker;
4708 int wi;
4709
4710 lockdep_assert_held(&pool->manager_mutex);
4711
4712 /* is @cpu allowed for @pool? */
4713 if (!cpumask_test_cpu(cpu, pool->attrs->cpumask))
4714 return;
4715
4716 /* is @cpu the only online CPU? */
4717 cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask);
4718 if (cpumask_weight(&cpumask) != 1)
4719 return;
4720
4721 /* as we're called from CPU_ONLINE, the following shouldn't fail */
4722 for_each_pool_worker(worker, wi, pool)
4723 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
4724 pool->attrs->cpumask) < 0);
4725 }
4726
4727 /*
4728 * Workqueues should be brought up before normal priority CPU notifiers.
4729 * This will be registered high priority CPU notifier.
4730 */
4731 static int workqueue_cpu_up_callback(struct notifier_block *nfb,
4732 unsigned long action,
4733 void *hcpu)
4734 {
4735 int cpu = (unsigned long)hcpu;
4736 struct worker_pool *pool;
4737 struct workqueue_struct *wq;
4738 int pi;
4739
4740 switch (action & ~CPU_TASKS_FROZEN) {
4741 case CPU_UP_PREPARE:
4742 for_each_cpu_worker_pool(pool, cpu) {
4743 if (pool->nr_workers)
4744 continue;
4745 if (create_and_start_worker(pool) < 0)
4746 return NOTIFY_BAD;
4747 }
4748 break;
4749
4750 case CPU_DOWN_FAILED:
4751 case CPU_ONLINE:
4752 mutex_lock(&wq_pool_mutex);
4753
4754 for_each_pool(pool, pi) {
4755 mutex_lock(&pool->manager_mutex);
4756
4757 if (pool->cpu == cpu) {
4758 spin_lock_irq(&pool->lock);
4759 pool->flags &= ~POOL_DISASSOCIATED;
4760 spin_unlock_irq(&pool->lock);
4761
4762 rebind_workers(pool);
4763 } else if (pool->cpu < 0) {
4764 restore_unbound_workers_cpumask(pool, cpu);
4765 }
4766
4767 mutex_unlock(&pool->manager_mutex);
4768 }
4769
4770 /* update NUMA affinity of unbound workqueues */
4771 list_for_each_entry(wq, &workqueues, list)
4772 wq_update_unbound_numa(wq, cpu, true);
4773
4774 mutex_unlock(&wq_pool_mutex);
4775 break;
4776 }
4777 return NOTIFY_OK;
4778 }
4779
4780 /*
4781 * Workqueues should be brought down after normal priority CPU notifiers.
4782 * This will be registered as low priority CPU notifier.
4783 */
4784 static int workqueue_cpu_down_callback(struct notifier_block *nfb,
4785 unsigned long action,
4786 void *hcpu)
4787 {
4788 int cpu = (unsigned long)hcpu;
4789 struct work_struct unbind_work;
4790 struct workqueue_struct *wq;
4791
4792 switch (action & ~CPU_TASKS_FROZEN) {
4793 case CPU_DOWN_PREPARE:
4794 /* unbinding per-cpu workers should happen on the local CPU */
4795 INIT_WORK_ONSTACK(&unbind_work, wq_unbind_fn);
4796 queue_work_on(cpu, system_highpri_wq, &unbind_work);
4797
4798 /* update NUMA affinity of unbound workqueues */
4799 mutex_lock(&wq_pool_mutex);
4800 list_for_each_entry(wq, &workqueues, list)
4801 wq_update_unbound_numa(wq, cpu, false);
4802 mutex_unlock(&wq_pool_mutex);
4803
4804 /* wait for per-cpu unbinding to finish */
4805 flush_work(&unbind_work);
4806 destroy_work_on_stack(&unbind_work);
4807 break;
4808 }
4809 return NOTIFY_OK;
4810 }
4811
4812 #ifdef CONFIG_SMP
4813
4814 struct work_for_cpu {
4815 struct work_struct work;
4816 long (*fn)(void *);
4817 void *arg;
4818 long ret;
4819 };
4820
4821 static void work_for_cpu_fn(struct work_struct *work)
4822 {
4823 struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);
4824
4825 wfc->ret = wfc->fn(wfc->arg);
4826 }
4827
4828 /**
4829 * work_on_cpu - run a function in user context on a particular cpu
4830 * @cpu: the cpu to run on
4831 * @fn: the function to run
4832 * @arg: the function arg
4833 *
4834 * It is up to the caller to ensure that the cpu doesn't go offline.
4835 * The caller must not hold any locks which would prevent @fn from completing.
4836 *
4837 * Return: The value @fn returns.
4838 */
4839 long work_on_cpu(int cpu, long (*fn)(void *), void *arg)
4840 {
4841 struct work_for_cpu wfc = { .fn = fn, .arg = arg };
4842
4843 INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn);
4844 schedule_work_on(cpu, &wfc.work);
4845 flush_work(&wfc.work);
4846 destroy_work_on_stack(&wfc.work);
4847 return wfc.ret;
4848 }
4849 EXPORT_SYMBOL_GPL(work_on_cpu);
4850 #endif /* CONFIG_SMP */
4851
4852 #ifdef CONFIG_FREEZER
4853
4854 /**
4855 * freeze_workqueues_begin - begin freezing workqueues
4856 *
4857 * Start freezing workqueues. After this function returns, all freezable
4858 * workqueues will queue new works to their delayed_works list instead of
4859 * pool->worklist.
4860 *
4861 * CONTEXT:
4862 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
4863 */
4864 void freeze_workqueues_begin(void)
4865 {
4866 struct worker_pool *pool;
4867 struct workqueue_struct *wq;
4868 struct pool_workqueue *pwq;
4869 int pi;
4870
4871 mutex_lock(&wq_pool_mutex);
4872
4873 WARN_ON_ONCE(workqueue_freezing);
4874 workqueue_freezing = true;
4875
4876 /* set FREEZING */
4877 for_each_pool(pool, pi) {
4878 spin_lock_irq(&pool->lock);
4879 WARN_ON_ONCE(pool->flags & POOL_FREEZING);
4880 pool->flags |= POOL_FREEZING;
4881 spin_unlock_irq(&pool->lock);
4882 }
4883
4884 list_for_each_entry(wq, &workqueues, list) {
4885 mutex_lock(&wq->mutex);
4886 for_each_pwq(pwq, wq)
4887 pwq_adjust_max_active(pwq);
4888 mutex_unlock(&wq->mutex);
4889 }
4890
4891 mutex_unlock(&wq_pool_mutex);
4892 }
4893
4894 /**
4895 * freeze_workqueues_busy - are freezable workqueues still busy?
4896 *
4897 * Check whether freezing is complete. This function must be called
4898 * between freeze_workqueues_begin() and thaw_workqueues().
4899 *
4900 * CONTEXT:
4901 * Grabs and releases wq_pool_mutex.
4902 *
4903 * Return:
4904 * %true if some freezable workqueues are still busy. %false if freezing
4905 * is complete.
4906 */
4907 bool freeze_workqueues_busy(void)
4908 {
4909 bool busy = false;
4910 struct workqueue_struct *wq;
4911 struct pool_workqueue *pwq;
4912
4913 mutex_lock(&wq_pool_mutex);
4914
4915 WARN_ON_ONCE(!workqueue_freezing);
4916
4917 list_for_each_entry(wq, &workqueues, list) {
4918 if (!(wq->flags & WQ_FREEZABLE))
4919 continue;
4920 /*
4921 * nr_active is monotonically decreasing. It's safe
4922 * to peek without lock.
4923 */
4924 rcu_read_lock_sched();
4925 for_each_pwq(pwq, wq) {
4926 WARN_ON_ONCE(pwq->nr_active < 0);
4927 if (pwq->nr_active) {
4928 busy = true;
4929 rcu_read_unlock_sched();
4930 goto out_unlock;
4931 }
4932 }
4933 rcu_read_unlock_sched();
4934 }
4935 out_unlock:
4936 mutex_unlock(&wq_pool_mutex);
4937 return busy;
4938 }
4939
4940 /**
4941 * thaw_workqueues - thaw workqueues
4942 *
4943 * Thaw workqueues. Normal queueing is restored and all collected
4944 * frozen works are transferred to their respective pool worklists.
4945 *
4946 * CONTEXT:
4947 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
4948 */
4949 void thaw_workqueues(void)
4950 {
4951 struct workqueue_struct *wq;
4952 struct pool_workqueue *pwq;
4953 struct worker_pool *pool;
4954 int pi;
4955
4956 mutex_lock(&wq_pool_mutex);
4957
4958 if (!workqueue_freezing)
4959 goto out_unlock;
4960
4961 /* clear FREEZING */
4962 for_each_pool(pool, pi) {
4963 spin_lock_irq(&pool->lock);
4964 WARN_ON_ONCE(!(pool->flags & POOL_FREEZING));
4965 pool->flags &= ~POOL_FREEZING;
4966 spin_unlock_irq(&pool->lock);
4967 }
4968
4969 /* restore max_active and repopulate worklist */
4970 list_for_each_entry(wq, &workqueues, list) {
4971 mutex_lock(&wq->mutex);
4972 for_each_pwq(pwq, wq)
4973 pwq_adjust_max_active(pwq);
4974 mutex_unlock(&wq->mutex);
4975 }
4976
4977 workqueue_freezing = false;
4978 out_unlock:
4979 mutex_unlock(&wq_pool_mutex);
4980 }
4981 #endif /* CONFIG_FREEZER */
4982
4983 static void __init wq_numa_init(void)
4984 {
4985 cpumask_var_t *tbl;
4986 int node, cpu;
4987
4988 /* determine NUMA pwq table len - highest node id + 1 */
4989 for_each_node(node)
4990 wq_numa_tbl_len = max(wq_numa_tbl_len, node + 1);
4991
4992 if (num_possible_nodes() <= 1)
4993 return;
4994
4995 if (wq_disable_numa) {
4996 pr_info("workqueue: NUMA affinity support disabled\n");
4997 return;
4998 }
4999
5000 wq_update_unbound_numa_attrs_buf = alloc_workqueue_attrs(GFP_KERNEL);
5001 BUG_ON(!wq_update_unbound_numa_attrs_buf);
5002
5003 /*
5004 * We want masks of possible CPUs of each node which isn't readily
5005 * available. Build one from cpu_to_node() which should have been
5006 * fully initialized by now.
5007 */
5008 tbl = kzalloc(wq_numa_tbl_len * sizeof(tbl[0]), GFP_KERNEL);
5009 BUG_ON(!tbl);
5010
5011 for_each_node(node)
5012 BUG_ON(!alloc_cpumask_var_node(&tbl[node], GFP_KERNEL,
5013 node_online(node) ? node : NUMA_NO_NODE));
5014
5015 for_each_possible_cpu(cpu) {
5016 node = cpu_to_node(cpu);
5017 if (WARN_ON(node == NUMA_NO_NODE)) {
5018 pr_warn("workqueue: NUMA node mapping not available for cpu%d, disabling NUMA support\n", cpu);
5019 /* happens iff arch is bonkers, let's just proceed */
5020 return;
5021 }
5022 cpumask_set_cpu(cpu, tbl[node]);
5023 }
5024
5025 wq_numa_possible_cpumask = tbl;
5026 wq_numa_enabled = true;
5027 }
5028
5029 static int __init init_workqueues(void)
5030 {
5031 int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL };
5032 int i, cpu;
5033
5034 WARN_ON(__alignof__(struct pool_workqueue) < __alignof__(long long));
5035
5036 pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC);
5037
5038 cpu_notifier(workqueue_cpu_up_callback, CPU_PRI_WORKQUEUE_UP);
5039 hotcpu_notifier(workqueue_cpu_down_callback, CPU_PRI_WORKQUEUE_DOWN);
5040
5041 wq_numa_init();
5042
5043 /* initialize CPU pools */
5044 for_each_possible_cpu(cpu) {
5045 struct worker_pool *pool;
5046
5047 i = 0;
5048 for_each_cpu_worker_pool(pool, cpu) {
5049 BUG_ON(init_worker_pool(pool));
5050 pool->cpu = cpu;
5051 cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu));
5052 pool->attrs->nice = std_nice[i++];
5053 pool->node = cpu_to_node(cpu);
5054
5055 /* alloc pool ID */
5056 mutex_lock(&wq_pool_mutex);
5057 BUG_ON(worker_pool_assign_id(pool));
5058 mutex_unlock(&wq_pool_mutex);
5059 }
5060 }
5061
5062 /* create the initial worker */
5063 for_each_online_cpu(cpu) {
5064 struct worker_pool *pool;
5065
5066 for_each_cpu_worker_pool(pool, cpu) {
5067 pool->flags &= ~POOL_DISASSOCIATED;
5068 BUG_ON(create_and_start_worker(pool) < 0);
5069 }
5070 }
5071
5072 /* create default unbound and ordered wq attrs */
5073 for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
5074 struct workqueue_attrs *attrs;
5075
5076 BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
5077 attrs->nice = std_nice[i];
5078 unbound_std_wq_attrs[i] = attrs;
5079
5080 /*
5081 * An ordered wq should have only one pwq as ordering is
5082 * guaranteed by max_active which is enforced by pwqs.
5083 * Turn off NUMA so that dfl_pwq is used for all nodes.
5084 */
5085 BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
5086 attrs->nice = std_nice[i];
5087 attrs->no_numa = true;
5088 ordered_wq_attrs[i] = attrs;
5089 }
5090
5091 system_wq = alloc_workqueue("events", 0, 0);
5092 system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
5093 system_long_wq = alloc_workqueue("events_long", 0, 0);
5094 system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
5095 WQ_UNBOUND_MAX_ACTIVE);
5096 system_freezable_wq = alloc_workqueue("events_freezable",
5097 WQ_FREEZABLE, 0);
5098 system_power_efficient_wq = alloc_workqueue("events_power_efficient",
5099 WQ_POWER_EFFICIENT, 0);
5100 system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_power_efficient",
5101 WQ_FREEZABLE | WQ_POWER_EFFICIENT,
5102 0);
5103 BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
5104 !system_unbound_wq || !system_freezable_wq ||
5105 !system_power_efficient_wq ||
5106 !system_freezable_power_efficient_wq);
5107 return 0;
5108 }
5109 early_initcall(init_workqueues);