]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - kernel/workqueue.c
kthread_work: remove the unused wait_queue_head
[mirror_ubuntu-hirsute-kernel.git] / kernel / workqueue.c
1 /*
2 * kernel/workqueue.c - generic async execution with shared worker pool
3 *
4 * Copyright (C) 2002 Ingo Molnar
5 *
6 * Derived from the taskqueue/keventd code by:
7 * David Woodhouse <dwmw2@infradead.org>
8 * Andrew Morton
9 * Kai Petzke <wpp@marie.physik.tu-berlin.de>
10 * Theodore Ts'o <tytso@mit.edu>
11 *
12 * Made to use alloc_percpu by Christoph Lameter.
13 *
14 * Copyright (C) 2010 SUSE Linux Products GmbH
15 * Copyright (C) 2010 Tejun Heo <tj@kernel.org>
16 *
17 * This is the generic async execution mechanism. Work items as are
18 * executed in process context. The worker pool is shared and
19 * automatically managed. There are two worker pools for each CPU (one for
20 * normal work items and the other for high priority ones) and some extra
21 * pools for workqueues which are not bound to any specific CPU - the
22 * number of these backing pools is dynamic.
23 *
24 * Please read Documentation/workqueue.txt for details.
25 */
26
27 #include <linux/export.h>
28 #include <linux/kernel.h>
29 #include <linux/sched.h>
30 #include <linux/init.h>
31 #include <linux/signal.h>
32 #include <linux/completion.h>
33 #include <linux/workqueue.h>
34 #include <linux/slab.h>
35 #include <linux/cpu.h>
36 #include <linux/notifier.h>
37 #include <linux/kthread.h>
38 #include <linux/hardirq.h>
39 #include <linux/mempolicy.h>
40 #include <linux/freezer.h>
41 #include <linux/kallsyms.h>
42 #include <linux/debug_locks.h>
43 #include <linux/lockdep.h>
44 #include <linux/idr.h>
45 #include <linux/jhash.h>
46 #include <linux/hashtable.h>
47 #include <linux/rculist.h>
48 #include <linux/nodemask.h>
49 #include <linux/moduleparam.h>
50 #include <linux/uaccess.h>
51
52 #include "workqueue_internal.h"
53
54 enum {
55 /*
56 * worker_pool flags
57 *
58 * A bound pool is either associated or disassociated with its CPU.
59 * While associated (!DISASSOCIATED), all workers are bound to the
60 * CPU and none has %WORKER_UNBOUND set and concurrency management
61 * is in effect.
62 *
63 * While DISASSOCIATED, the cpu may be offline and all workers have
64 * %WORKER_UNBOUND set and concurrency management disabled, and may
65 * be executing on any CPU. The pool behaves as an unbound one.
66 *
67 * Note that DISASSOCIATED should be flipped only while holding
68 * attach_mutex to avoid changing binding state while
69 * worker_attach_to_pool() is in progress.
70 */
71 POOL_DISASSOCIATED = 1 << 2, /* cpu can't serve workers */
72
73 /* worker flags */
74 WORKER_DIE = 1 << 1, /* die die die */
75 WORKER_IDLE = 1 << 2, /* is idle */
76 WORKER_PREP = 1 << 3, /* preparing to run works */
77 WORKER_CPU_INTENSIVE = 1 << 6, /* cpu intensive */
78 WORKER_UNBOUND = 1 << 7, /* worker is unbound */
79 WORKER_REBOUND = 1 << 8, /* worker was rebound */
80
81 WORKER_NOT_RUNNING = WORKER_PREP | WORKER_CPU_INTENSIVE |
82 WORKER_UNBOUND | WORKER_REBOUND,
83
84 NR_STD_WORKER_POOLS = 2, /* # standard pools per cpu */
85
86 UNBOUND_POOL_HASH_ORDER = 6, /* hashed by pool->attrs */
87 BUSY_WORKER_HASH_ORDER = 6, /* 64 pointers */
88
89 MAX_IDLE_WORKERS_RATIO = 4, /* 1/4 of busy can be idle */
90 IDLE_WORKER_TIMEOUT = 300 * HZ, /* keep idle ones for 5 mins */
91
92 MAYDAY_INITIAL_TIMEOUT = HZ / 100 >= 2 ? HZ / 100 : 2,
93 /* call for help after 10ms
94 (min two ticks) */
95 MAYDAY_INTERVAL = HZ / 10, /* and then every 100ms */
96 CREATE_COOLDOWN = HZ, /* time to breath after fail */
97
98 /*
99 * Rescue workers are used only on emergencies and shared by
100 * all cpus. Give MIN_NICE.
101 */
102 RESCUER_NICE_LEVEL = MIN_NICE,
103 HIGHPRI_NICE_LEVEL = MIN_NICE,
104
105 WQ_NAME_LEN = 24,
106 };
107
108 /*
109 * Structure fields follow one of the following exclusion rules.
110 *
111 * I: Modifiable by initialization/destruction paths and read-only for
112 * everyone else.
113 *
114 * P: Preemption protected. Disabling preemption is enough and should
115 * only be modified and accessed from the local cpu.
116 *
117 * L: pool->lock protected. Access with pool->lock held.
118 *
119 * X: During normal operation, modification requires pool->lock and should
120 * be done only from local cpu. Either disabling preemption on local
121 * cpu or grabbing pool->lock is enough for read access. If
122 * POOL_DISASSOCIATED is set, it's identical to L.
123 *
124 * A: pool->attach_mutex protected.
125 *
126 * PL: wq_pool_mutex protected.
127 *
128 * PR: wq_pool_mutex protected for writes. Sched-RCU protected for reads.
129 *
130 * WQ: wq->mutex protected.
131 *
132 * WR: wq->mutex protected for writes. Sched-RCU protected for reads.
133 *
134 * MD: wq_mayday_lock protected.
135 */
136
137 /* struct worker is defined in workqueue_internal.h */
138
139 struct worker_pool {
140 spinlock_t lock; /* the pool lock */
141 int cpu; /* I: the associated cpu */
142 int node; /* I: the associated node ID */
143 int id; /* I: pool ID */
144 unsigned int flags; /* X: flags */
145
146 struct list_head worklist; /* L: list of pending works */
147 int nr_workers; /* L: total number of workers */
148
149 /* nr_idle includes the ones off idle_list for rebinding */
150 int nr_idle; /* L: currently idle ones */
151
152 struct list_head idle_list; /* X: list of idle workers */
153 struct timer_list idle_timer; /* L: worker idle timeout */
154 struct timer_list mayday_timer; /* L: SOS timer for workers */
155
156 /* a workers is either on busy_hash or idle_list, or the manager */
157 DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
158 /* L: hash of busy workers */
159
160 /* see manage_workers() for details on the two manager mutexes */
161 struct mutex manager_arb; /* manager arbitration */
162 struct mutex attach_mutex; /* attach/detach exclusion */
163 struct list_head workers; /* A: attached workers */
164 struct completion *detach_completion; /* all workers detached */
165
166 struct ida worker_ida; /* worker IDs for task name */
167
168 struct workqueue_attrs *attrs; /* I: worker attributes */
169 struct hlist_node hash_node; /* PL: unbound_pool_hash node */
170 int refcnt; /* PL: refcnt for unbound pools */
171
172 /*
173 * The current concurrency level. As it's likely to be accessed
174 * from other CPUs during try_to_wake_up(), put it in a separate
175 * cacheline.
176 */
177 atomic_t nr_running ____cacheline_aligned_in_smp;
178
179 /*
180 * Destruction of pool is sched-RCU protected to allow dereferences
181 * from get_work_pool().
182 */
183 struct rcu_head rcu;
184 } ____cacheline_aligned_in_smp;
185
186 /*
187 * The per-pool workqueue. While queued, the lower WORK_STRUCT_FLAG_BITS
188 * of work_struct->data are used for flags and the remaining high bits
189 * point to the pwq; thus, pwqs need to be aligned at two's power of the
190 * number of flag bits.
191 */
192 struct pool_workqueue {
193 struct worker_pool *pool; /* I: the associated pool */
194 struct workqueue_struct *wq; /* I: the owning workqueue */
195 int work_color; /* L: current color */
196 int flush_color; /* L: flushing color */
197 int refcnt; /* L: reference count */
198 int nr_in_flight[WORK_NR_COLORS];
199 /* L: nr of in_flight works */
200 int nr_active; /* L: nr of active works */
201 int max_active; /* L: max active works */
202 struct list_head delayed_works; /* L: delayed works */
203 struct list_head pwqs_node; /* WR: node on wq->pwqs */
204 struct list_head mayday_node; /* MD: node on wq->maydays */
205
206 /*
207 * Release of unbound pwq is punted to system_wq. See put_pwq()
208 * and pwq_unbound_release_workfn() for details. pool_workqueue
209 * itself is also sched-RCU protected so that the first pwq can be
210 * determined without grabbing wq->mutex.
211 */
212 struct work_struct unbound_release_work;
213 struct rcu_head rcu;
214 } __aligned(1 << WORK_STRUCT_FLAG_BITS);
215
216 /*
217 * Structure used to wait for workqueue flush.
218 */
219 struct wq_flusher {
220 struct list_head list; /* WQ: list of flushers */
221 int flush_color; /* WQ: flush color waiting for */
222 struct completion done; /* flush completion */
223 };
224
225 struct wq_device;
226
227 /*
228 * The externally visible workqueue. It relays the issued work items to
229 * the appropriate worker_pool through its pool_workqueues.
230 */
231 struct workqueue_struct {
232 struct list_head pwqs; /* WR: all pwqs of this wq */
233 struct list_head list; /* PL: list of all workqueues */
234
235 struct mutex mutex; /* protects this wq */
236 int work_color; /* WQ: current work color */
237 int flush_color; /* WQ: current flush color */
238 atomic_t nr_pwqs_to_flush; /* flush in progress */
239 struct wq_flusher *first_flusher; /* WQ: first flusher */
240 struct list_head flusher_queue; /* WQ: flush waiters */
241 struct list_head flusher_overflow; /* WQ: flush overflow list */
242
243 struct list_head maydays; /* MD: pwqs requesting rescue */
244 struct worker *rescuer; /* I: rescue worker */
245
246 int nr_drainers; /* WQ: drain in progress */
247 int saved_max_active; /* WQ: saved pwq max_active */
248
249 struct workqueue_attrs *unbound_attrs; /* WQ: only for unbound wqs */
250 struct pool_workqueue *dfl_pwq; /* WQ: only for unbound wqs */
251
252 #ifdef CONFIG_SYSFS
253 struct wq_device *wq_dev; /* I: for sysfs interface */
254 #endif
255 #ifdef CONFIG_LOCKDEP
256 struct lockdep_map lockdep_map;
257 #endif
258 char name[WQ_NAME_LEN]; /* I: workqueue name */
259
260 /* hot fields used during command issue, aligned to cacheline */
261 unsigned int flags ____cacheline_aligned; /* WQ: WQ_* flags */
262 struct pool_workqueue __percpu *cpu_pwqs; /* I: per-cpu pwqs */
263 struct pool_workqueue __rcu *numa_pwq_tbl[]; /* FR: unbound pwqs indexed by node */
264 };
265
266 static struct kmem_cache *pwq_cache;
267
268 static cpumask_var_t *wq_numa_possible_cpumask;
269 /* possible CPUs of each node */
270
271 static bool wq_disable_numa;
272 module_param_named(disable_numa, wq_disable_numa, bool, 0444);
273
274 /* see the comment above the definition of WQ_POWER_EFFICIENT */
275 #ifdef CONFIG_WQ_POWER_EFFICIENT_DEFAULT
276 static bool wq_power_efficient = true;
277 #else
278 static bool wq_power_efficient;
279 #endif
280
281 module_param_named(power_efficient, wq_power_efficient, bool, 0444);
282
283 static bool wq_numa_enabled; /* unbound NUMA affinity enabled */
284
285 /* buf for wq_update_unbound_numa_attrs(), protected by CPU hotplug exclusion */
286 static struct workqueue_attrs *wq_update_unbound_numa_attrs_buf;
287
288 static DEFINE_MUTEX(wq_pool_mutex); /* protects pools and workqueues list */
289 static DEFINE_SPINLOCK(wq_mayday_lock); /* protects wq->maydays list */
290
291 static LIST_HEAD(workqueues); /* PL: list of all workqueues */
292 static bool workqueue_freezing; /* PL: have wqs started freezing? */
293
294 /* the per-cpu worker pools */
295 static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS],
296 cpu_worker_pools);
297
298 static DEFINE_IDR(worker_pool_idr); /* PR: idr of all pools */
299
300 /* PL: hash of all unbound pools keyed by pool->attrs */
301 static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER);
302
303 /* I: attributes used when instantiating standard unbound pools on demand */
304 static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS];
305
306 /* I: attributes used when instantiating ordered pools on demand */
307 static struct workqueue_attrs *ordered_wq_attrs[NR_STD_WORKER_POOLS];
308
309 struct workqueue_struct *system_wq __read_mostly;
310 EXPORT_SYMBOL(system_wq);
311 struct workqueue_struct *system_highpri_wq __read_mostly;
312 EXPORT_SYMBOL_GPL(system_highpri_wq);
313 struct workqueue_struct *system_long_wq __read_mostly;
314 EXPORT_SYMBOL_GPL(system_long_wq);
315 struct workqueue_struct *system_unbound_wq __read_mostly;
316 EXPORT_SYMBOL_GPL(system_unbound_wq);
317 struct workqueue_struct *system_freezable_wq __read_mostly;
318 EXPORT_SYMBOL_GPL(system_freezable_wq);
319 struct workqueue_struct *system_power_efficient_wq __read_mostly;
320 EXPORT_SYMBOL_GPL(system_power_efficient_wq);
321 struct workqueue_struct *system_freezable_power_efficient_wq __read_mostly;
322 EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq);
323
324 static int worker_thread(void *__worker);
325 static void copy_workqueue_attrs(struct workqueue_attrs *to,
326 const struct workqueue_attrs *from);
327
328 #define CREATE_TRACE_POINTS
329 #include <trace/events/workqueue.h>
330
331 #define assert_rcu_or_pool_mutex() \
332 rcu_lockdep_assert(rcu_read_lock_sched_held() || \
333 lockdep_is_held(&wq_pool_mutex), \
334 "sched RCU or wq_pool_mutex should be held")
335
336 #define assert_rcu_or_wq_mutex(wq) \
337 rcu_lockdep_assert(rcu_read_lock_sched_held() || \
338 lockdep_is_held(&wq->mutex), \
339 "sched RCU or wq->mutex should be held")
340
341 #define for_each_cpu_worker_pool(pool, cpu) \
342 for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0]; \
343 (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
344 (pool)++)
345
346 /**
347 * for_each_pool - iterate through all worker_pools in the system
348 * @pool: iteration cursor
349 * @pi: integer used for iteration
350 *
351 * This must be called either with wq_pool_mutex held or sched RCU read
352 * locked. If the pool needs to be used beyond the locking in effect, the
353 * caller is responsible for guaranteeing that the pool stays online.
354 *
355 * The if/else clause exists only for the lockdep assertion and can be
356 * ignored.
357 */
358 #define for_each_pool(pool, pi) \
359 idr_for_each_entry(&worker_pool_idr, pool, pi) \
360 if (({ assert_rcu_or_pool_mutex(); false; })) { } \
361 else
362
363 /**
364 * for_each_pool_worker - iterate through all workers of a worker_pool
365 * @worker: iteration cursor
366 * @pool: worker_pool to iterate workers of
367 *
368 * This must be called with @pool->attach_mutex.
369 *
370 * The if/else clause exists only for the lockdep assertion and can be
371 * ignored.
372 */
373 #define for_each_pool_worker(worker, pool) \
374 list_for_each_entry((worker), &(pool)->workers, node) \
375 if (({ lockdep_assert_held(&pool->attach_mutex); false; })) { } \
376 else
377
378 /**
379 * for_each_pwq - iterate through all pool_workqueues of the specified workqueue
380 * @pwq: iteration cursor
381 * @wq: the target workqueue
382 *
383 * This must be called either with wq->mutex held or sched RCU read locked.
384 * If the pwq needs to be used beyond the locking in effect, the caller is
385 * responsible for guaranteeing that the pwq stays online.
386 *
387 * The if/else clause exists only for the lockdep assertion and can be
388 * ignored.
389 */
390 #define for_each_pwq(pwq, wq) \
391 list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node) \
392 if (({ assert_rcu_or_wq_mutex(wq); false; })) { } \
393 else
394
395 #ifdef CONFIG_DEBUG_OBJECTS_WORK
396
397 static struct debug_obj_descr work_debug_descr;
398
399 static void *work_debug_hint(void *addr)
400 {
401 return ((struct work_struct *) addr)->func;
402 }
403
404 /*
405 * fixup_init is called when:
406 * - an active object is initialized
407 */
408 static int work_fixup_init(void *addr, enum debug_obj_state state)
409 {
410 struct work_struct *work = addr;
411
412 switch (state) {
413 case ODEBUG_STATE_ACTIVE:
414 cancel_work_sync(work);
415 debug_object_init(work, &work_debug_descr);
416 return 1;
417 default:
418 return 0;
419 }
420 }
421
422 /*
423 * fixup_activate is called when:
424 * - an active object is activated
425 * - an unknown object is activated (might be a statically initialized object)
426 */
427 static int work_fixup_activate(void *addr, enum debug_obj_state state)
428 {
429 struct work_struct *work = addr;
430
431 switch (state) {
432
433 case ODEBUG_STATE_NOTAVAILABLE:
434 /*
435 * This is not really a fixup. The work struct was
436 * statically initialized. We just make sure that it
437 * is tracked in the object tracker.
438 */
439 if (test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work))) {
440 debug_object_init(work, &work_debug_descr);
441 debug_object_activate(work, &work_debug_descr);
442 return 0;
443 }
444 WARN_ON_ONCE(1);
445 return 0;
446
447 case ODEBUG_STATE_ACTIVE:
448 WARN_ON(1);
449
450 default:
451 return 0;
452 }
453 }
454
455 /*
456 * fixup_free is called when:
457 * - an active object is freed
458 */
459 static int work_fixup_free(void *addr, enum debug_obj_state state)
460 {
461 struct work_struct *work = addr;
462
463 switch (state) {
464 case ODEBUG_STATE_ACTIVE:
465 cancel_work_sync(work);
466 debug_object_free(work, &work_debug_descr);
467 return 1;
468 default:
469 return 0;
470 }
471 }
472
473 static struct debug_obj_descr work_debug_descr = {
474 .name = "work_struct",
475 .debug_hint = work_debug_hint,
476 .fixup_init = work_fixup_init,
477 .fixup_activate = work_fixup_activate,
478 .fixup_free = work_fixup_free,
479 };
480
481 static inline void debug_work_activate(struct work_struct *work)
482 {
483 debug_object_activate(work, &work_debug_descr);
484 }
485
486 static inline void debug_work_deactivate(struct work_struct *work)
487 {
488 debug_object_deactivate(work, &work_debug_descr);
489 }
490
491 void __init_work(struct work_struct *work, int onstack)
492 {
493 if (onstack)
494 debug_object_init_on_stack(work, &work_debug_descr);
495 else
496 debug_object_init(work, &work_debug_descr);
497 }
498 EXPORT_SYMBOL_GPL(__init_work);
499
500 void destroy_work_on_stack(struct work_struct *work)
501 {
502 debug_object_free(work, &work_debug_descr);
503 }
504 EXPORT_SYMBOL_GPL(destroy_work_on_stack);
505
506 void destroy_delayed_work_on_stack(struct delayed_work *work)
507 {
508 destroy_timer_on_stack(&work->timer);
509 debug_object_free(&work->work, &work_debug_descr);
510 }
511 EXPORT_SYMBOL_GPL(destroy_delayed_work_on_stack);
512
513 #else
514 static inline void debug_work_activate(struct work_struct *work) { }
515 static inline void debug_work_deactivate(struct work_struct *work) { }
516 #endif
517
518 /**
519 * worker_pool_assign_id - allocate ID and assing it to @pool
520 * @pool: the pool pointer of interest
521 *
522 * Returns 0 if ID in [0, WORK_OFFQ_POOL_NONE) is allocated and assigned
523 * successfully, -errno on failure.
524 */
525 static int worker_pool_assign_id(struct worker_pool *pool)
526 {
527 int ret;
528
529 lockdep_assert_held(&wq_pool_mutex);
530
531 ret = idr_alloc(&worker_pool_idr, pool, 0, WORK_OFFQ_POOL_NONE,
532 GFP_KERNEL);
533 if (ret >= 0) {
534 pool->id = ret;
535 return 0;
536 }
537 return ret;
538 }
539
540 /**
541 * unbound_pwq_by_node - return the unbound pool_workqueue for the given node
542 * @wq: the target workqueue
543 * @node: the node ID
544 *
545 * This must be called either with pwq_lock held or sched RCU read locked.
546 * If the pwq needs to be used beyond the locking in effect, the caller is
547 * responsible for guaranteeing that the pwq stays online.
548 *
549 * Return: The unbound pool_workqueue for @node.
550 */
551 static struct pool_workqueue *unbound_pwq_by_node(struct workqueue_struct *wq,
552 int node)
553 {
554 assert_rcu_or_wq_mutex(wq);
555 return rcu_dereference_raw(wq->numa_pwq_tbl[node]);
556 }
557
558 static unsigned int work_color_to_flags(int color)
559 {
560 return color << WORK_STRUCT_COLOR_SHIFT;
561 }
562
563 static int get_work_color(struct work_struct *work)
564 {
565 return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
566 ((1 << WORK_STRUCT_COLOR_BITS) - 1);
567 }
568
569 static int work_next_color(int color)
570 {
571 return (color + 1) % WORK_NR_COLORS;
572 }
573
574 /*
575 * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
576 * contain the pointer to the queued pwq. Once execution starts, the flag
577 * is cleared and the high bits contain OFFQ flags and pool ID.
578 *
579 * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling()
580 * and clear_work_data() can be used to set the pwq, pool or clear
581 * work->data. These functions should only be called while the work is
582 * owned - ie. while the PENDING bit is set.
583 *
584 * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
585 * corresponding to a work. Pool is available once the work has been
586 * queued anywhere after initialization until it is sync canceled. pwq is
587 * available only while the work item is queued.
588 *
589 * %WORK_OFFQ_CANCELING is used to mark a work item which is being
590 * canceled. While being canceled, a work item may have its PENDING set
591 * but stay off timer and worklist for arbitrarily long and nobody should
592 * try to steal the PENDING bit.
593 */
594 static inline void set_work_data(struct work_struct *work, unsigned long data,
595 unsigned long flags)
596 {
597 WARN_ON_ONCE(!work_pending(work));
598 atomic_long_set(&work->data, data | flags | work_static(work));
599 }
600
601 static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq,
602 unsigned long extra_flags)
603 {
604 set_work_data(work, (unsigned long)pwq,
605 WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags);
606 }
607
608 static void set_work_pool_and_keep_pending(struct work_struct *work,
609 int pool_id)
610 {
611 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT,
612 WORK_STRUCT_PENDING);
613 }
614
615 static void set_work_pool_and_clear_pending(struct work_struct *work,
616 int pool_id)
617 {
618 /*
619 * The following wmb is paired with the implied mb in
620 * test_and_set_bit(PENDING) and ensures all updates to @work made
621 * here are visible to and precede any updates by the next PENDING
622 * owner.
623 */
624 smp_wmb();
625 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0);
626 }
627
628 static void clear_work_data(struct work_struct *work)
629 {
630 smp_wmb(); /* see set_work_pool_and_clear_pending() */
631 set_work_data(work, WORK_STRUCT_NO_POOL, 0);
632 }
633
634 static struct pool_workqueue *get_work_pwq(struct work_struct *work)
635 {
636 unsigned long data = atomic_long_read(&work->data);
637
638 if (data & WORK_STRUCT_PWQ)
639 return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
640 else
641 return NULL;
642 }
643
644 /**
645 * get_work_pool - return the worker_pool a given work was associated with
646 * @work: the work item of interest
647 *
648 * Pools are created and destroyed under wq_pool_mutex, and allows read
649 * access under sched-RCU read lock. As such, this function should be
650 * called under wq_pool_mutex or with preemption disabled.
651 *
652 * All fields of the returned pool are accessible as long as the above
653 * mentioned locking is in effect. If the returned pool needs to be used
654 * beyond the critical section, the caller is responsible for ensuring the
655 * returned pool is and stays online.
656 *
657 * Return: The worker_pool @work was last associated with. %NULL if none.
658 */
659 static struct worker_pool *get_work_pool(struct work_struct *work)
660 {
661 unsigned long data = atomic_long_read(&work->data);
662 int pool_id;
663
664 assert_rcu_or_pool_mutex();
665
666 if (data & WORK_STRUCT_PWQ)
667 return ((struct pool_workqueue *)
668 (data & WORK_STRUCT_WQ_DATA_MASK))->pool;
669
670 pool_id = data >> WORK_OFFQ_POOL_SHIFT;
671 if (pool_id == WORK_OFFQ_POOL_NONE)
672 return NULL;
673
674 return idr_find(&worker_pool_idr, pool_id);
675 }
676
677 /**
678 * get_work_pool_id - return the worker pool ID a given work is associated with
679 * @work: the work item of interest
680 *
681 * Return: The worker_pool ID @work was last associated with.
682 * %WORK_OFFQ_POOL_NONE if none.
683 */
684 static int get_work_pool_id(struct work_struct *work)
685 {
686 unsigned long data = atomic_long_read(&work->data);
687
688 if (data & WORK_STRUCT_PWQ)
689 return ((struct pool_workqueue *)
690 (data & WORK_STRUCT_WQ_DATA_MASK))->pool->id;
691
692 return data >> WORK_OFFQ_POOL_SHIFT;
693 }
694
695 static void mark_work_canceling(struct work_struct *work)
696 {
697 unsigned long pool_id = get_work_pool_id(work);
698
699 pool_id <<= WORK_OFFQ_POOL_SHIFT;
700 set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING);
701 }
702
703 static bool work_is_canceling(struct work_struct *work)
704 {
705 unsigned long data = atomic_long_read(&work->data);
706
707 return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING);
708 }
709
710 /*
711 * Policy functions. These define the policies on how the global worker
712 * pools are managed. Unless noted otherwise, these functions assume that
713 * they're being called with pool->lock held.
714 */
715
716 static bool __need_more_worker(struct worker_pool *pool)
717 {
718 return !atomic_read(&pool->nr_running);
719 }
720
721 /*
722 * Need to wake up a worker? Called from anything but currently
723 * running workers.
724 *
725 * Note that, because unbound workers never contribute to nr_running, this
726 * function will always return %true for unbound pools as long as the
727 * worklist isn't empty.
728 */
729 static bool need_more_worker(struct worker_pool *pool)
730 {
731 return !list_empty(&pool->worklist) && __need_more_worker(pool);
732 }
733
734 /* Can I start working? Called from busy but !running workers. */
735 static bool may_start_working(struct worker_pool *pool)
736 {
737 return pool->nr_idle;
738 }
739
740 /* Do I need to keep working? Called from currently running workers. */
741 static bool keep_working(struct worker_pool *pool)
742 {
743 return !list_empty(&pool->worklist) &&
744 atomic_read(&pool->nr_running) <= 1;
745 }
746
747 /* Do we need a new worker? Called from manager. */
748 static bool need_to_create_worker(struct worker_pool *pool)
749 {
750 return need_more_worker(pool) && !may_start_working(pool);
751 }
752
753 /* Do we have too many workers and should some go away? */
754 static bool too_many_workers(struct worker_pool *pool)
755 {
756 bool managing = mutex_is_locked(&pool->manager_arb);
757 int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
758 int nr_busy = pool->nr_workers - nr_idle;
759
760 return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
761 }
762
763 /*
764 * Wake up functions.
765 */
766
767 /* Return the first idle worker. Safe with preemption disabled */
768 static struct worker *first_idle_worker(struct worker_pool *pool)
769 {
770 if (unlikely(list_empty(&pool->idle_list)))
771 return NULL;
772
773 return list_first_entry(&pool->idle_list, struct worker, entry);
774 }
775
776 /**
777 * wake_up_worker - wake up an idle worker
778 * @pool: worker pool to wake worker from
779 *
780 * Wake up the first idle worker of @pool.
781 *
782 * CONTEXT:
783 * spin_lock_irq(pool->lock).
784 */
785 static void wake_up_worker(struct worker_pool *pool)
786 {
787 struct worker *worker = first_idle_worker(pool);
788
789 if (likely(worker))
790 wake_up_process(worker->task);
791 }
792
793 /**
794 * wq_worker_waking_up - a worker is waking up
795 * @task: task waking up
796 * @cpu: CPU @task is waking up to
797 *
798 * This function is called during try_to_wake_up() when a worker is
799 * being awoken.
800 *
801 * CONTEXT:
802 * spin_lock_irq(rq->lock)
803 */
804 void wq_worker_waking_up(struct task_struct *task, int cpu)
805 {
806 struct worker *worker = kthread_data(task);
807
808 if (!(worker->flags & WORKER_NOT_RUNNING)) {
809 WARN_ON_ONCE(worker->pool->cpu != cpu);
810 atomic_inc(&worker->pool->nr_running);
811 }
812 }
813
814 /**
815 * wq_worker_sleeping - a worker is going to sleep
816 * @task: task going to sleep
817 * @cpu: CPU in question, must be the current CPU number
818 *
819 * This function is called during schedule() when a busy worker is
820 * going to sleep. Worker on the same cpu can be woken up by
821 * returning pointer to its task.
822 *
823 * CONTEXT:
824 * spin_lock_irq(rq->lock)
825 *
826 * Return:
827 * Worker task on @cpu to wake up, %NULL if none.
828 */
829 struct task_struct *wq_worker_sleeping(struct task_struct *task, int cpu)
830 {
831 struct worker *worker = kthread_data(task), *to_wakeup = NULL;
832 struct worker_pool *pool;
833
834 /*
835 * Rescuers, which may not have all the fields set up like normal
836 * workers, also reach here, let's not access anything before
837 * checking NOT_RUNNING.
838 */
839 if (worker->flags & WORKER_NOT_RUNNING)
840 return NULL;
841
842 pool = worker->pool;
843
844 /* this can only happen on the local cpu */
845 if (WARN_ON_ONCE(cpu != raw_smp_processor_id() || pool->cpu != cpu))
846 return NULL;
847
848 /*
849 * The counterpart of the following dec_and_test, implied mb,
850 * worklist not empty test sequence is in insert_work().
851 * Please read comment there.
852 *
853 * NOT_RUNNING is clear. This means that we're bound to and
854 * running on the local cpu w/ rq lock held and preemption
855 * disabled, which in turn means that none else could be
856 * manipulating idle_list, so dereferencing idle_list without pool
857 * lock is safe.
858 */
859 if (atomic_dec_and_test(&pool->nr_running) &&
860 !list_empty(&pool->worklist))
861 to_wakeup = first_idle_worker(pool);
862 return to_wakeup ? to_wakeup->task : NULL;
863 }
864
865 /**
866 * worker_set_flags - set worker flags and adjust nr_running accordingly
867 * @worker: self
868 * @flags: flags to set
869 *
870 * Set @flags in @worker->flags and adjust nr_running accordingly.
871 *
872 * CONTEXT:
873 * spin_lock_irq(pool->lock)
874 */
875 static inline void worker_set_flags(struct worker *worker, unsigned int flags)
876 {
877 struct worker_pool *pool = worker->pool;
878
879 WARN_ON_ONCE(worker->task != current);
880
881 /* If transitioning into NOT_RUNNING, adjust nr_running. */
882 if ((flags & WORKER_NOT_RUNNING) &&
883 !(worker->flags & WORKER_NOT_RUNNING)) {
884 atomic_dec(&pool->nr_running);
885 }
886
887 worker->flags |= flags;
888 }
889
890 /**
891 * worker_clr_flags - clear worker flags and adjust nr_running accordingly
892 * @worker: self
893 * @flags: flags to clear
894 *
895 * Clear @flags in @worker->flags and adjust nr_running accordingly.
896 *
897 * CONTEXT:
898 * spin_lock_irq(pool->lock)
899 */
900 static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
901 {
902 struct worker_pool *pool = worker->pool;
903 unsigned int oflags = worker->flags;
904
905 WARN_ON_ONCE(worker->task != current);
906
907 worker->flags &= ~flags;
908
909 /*
910 * If transitioning out of NOT_RUNNING, increment nr_running. Note
911 * that the nested NOT_RUNNING is not a noop. NOT_RUNNING is mask
912 * of multiple flags, not a single flag.
913 */
914 if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
915 if (!(worker->flags & WORKER_NOT_RUNNING))
916 atomic_inc(&pool->nr_running);
917 }
918
919 /**
920 * find_worker_executing_work - find worker which is executing a work
921 * @pool: pool of interest
922 * @work: work to find worker for
923 *
924 * Find a worker which is executing @work on @pool by searching
925 * @pool->busy_hash which is keyed by the address of @work. For a worker
926 * to match, its current execution should match the address of @work and
927 * its work function. This is to avoid unwanted dependency between
928 * unrelated work executions through a work item being recycled while still
929 * being executed.
930 *
931 * This is a bit tricky. A work item may be freed once its execution
932 * starts and nothing prevents the freed area from being recycled for
933 * another work item. If the same work item address ends up being reused
934 * before the original execution finishes, workqueue will identify the
935 * recycled work item as currently executing and make it wait until the
936 * current execution finishes, introducing an unwanted dependency.
937 *
938 * This function checks the work item address and work function to avoid
939 * false positives. Note that this isn't complete as one may construct a
940 * work function which can introduce dependency onto itself through a
941 * recycled work item. Well, if somebody wants to shoot oneself in the
942 * foot that badly, there's only so much we can do, and if such deadlock
943 * actually occurs, it should be easy to locate the culprit work function.
944 *
945 * CONTEXT:
946 * spin_lock_irq(pool->lock).
947 *
948 * Return:
949 * Pointer to worker which is executing @work if found, %NULL
950 * otherwise.
951 */
952 static struct worker *find_worker_executing_work(struct worker_pool *pool,
953 struct work_struct *work)
954 {
955 struct worker *worker;
956
957 hash_for_each_possible(pool->busy_hash, worker, hentry,
958 (unsigned long)work)
959 if (worker->current_work == work &&
960 worker->current_func == work->func)
961 return worker;
962
963 return NULL;
964 }
965
966 /**
967 * move_linked_works - move linked works to a list
968 * @work: start of series of works to be scheduled
969 * @head: target list to append @work to
970 * @nextp: out paramter for nested worklist walking
971 *
972 * Schedule linked works starting from @work to @head. Work series to
973 * be scheduled starts at @work and includes any consecutive work with
974 * WORK_STRUCT_LINKED set in its predecessor.
975 *
976 * If @nextp is not NULL, it's updated to point to the next work of
977 * the last scheduled work. This allows move_linked_works() to be
978 * nested inside outer list_for_each_entry_safe().
979 *
980 * CONTEXT:
981 * spin_lock_irq(pool->lock).
982 */
983 static void move_linked_works(struct work_struct *work, struct list_head *head,
984 struct work_struct **nextp)
985 {
986 struct work_struct *n;
987
988 /*
989 * Linked worklist will always end before the end of the list,
990 * use NULL for list head.
991 */
992 list_for_each_entry_safe_from(work, n, NULL, entry) {
993 list_move_tail(&work->entry, head);
994 if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
995 break;
996 }
997
998 /*
999 * If we're already inside safe list traversal and have moved
1000 * multiple works to the scheduled queue, the next position
1001 * needs to be updated.
1002 */
1003 if (nextp)
1004 *nextp = n;
1005 }
1006
1007 /**
1008 * get_pwq - get an extra reference on the specified pool_workqueue
1009 * @pwq: pool_workqueue to get
1010 *
1011 * Obtain an extra reference on @pwq. The caller should guarantee that
1012 * @pwq has positive refcnt and be holding the matching pool->lock.
1013 */
1014 static void get_pwq(struct pool_workqueue *pwq)
1015 {
1016 lockdep_assert_held(&pwq->pool->lock);
1017 WARN_ON_ONCE(pwq->refcnt <= 0);
1018 pwq->refcnt++;
1019 }
1020
1021 /**
1022 * put_pwq - put a pool_workqueue reference
1023 * @pwq: pool_workqueue to put
1024 *
1025 * Drop a reference of @pwq. If its refcnt reaches zero, schedule its
1026 * destruction. The caller should be holding the matching pool->lock.
1027 */
1028 static void put_pwq(struct pool_workqueue *pwq)
1029 {
1030 lockdep_assert_held(&pwq->pool->lock);
1031 if (likely(--pwq->refcnt))
1032 return;
1033 if (WARN_ON_ONCE(!(pwq->wq->flags & WQ_UNBOUND)))
1034 return;
1035 /*
1036 * @pwq can't be released under pool->lock, bounce to
1037 * pwq_unbound_release_workfn(). This never recurses on the same
1038 * pool->lock as this path is taken only for unbound workqueues and
1039 * the release work item is scheduled on a per-cpu workqueue. To
1040 * avoid lockdep warning, unbound pool->locks are given lockdep
1041 * subclass of 1 in get_unbound_pool().
1042 */
1043 schedule_work(&pwq->unbound_release_work);
1044 }
1045
1046 /**
1047 * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock
1048 * @pwq: pool_workqueue to put (can be %NULL)
1049 *
1050 * put_pwq() with locking. This function also allows %NULL @pwq.
1051 */
1052 static void put_pwq_unlocked(struct pool_workqueue *pwq)
1053 {
1054 if (pwq) {
1055 /*
1056 * As both pwqs and pools are sched-RCU protected, the
1057 * following lock operations are safe.
1058 */
1059 spin_lock_irq(&pwq->pool->lock);
1060 put_pwq(pwq);
1061 spin_unlock_irq(&pwq->pool->lock);
1062 }
1063 }
1064
1065 static void pwq_activate_delayed_work(struct work_struct *work)
1066 {
1067 struct pool_workqueue *pwq = get_work_pwq(work);
1068
1069 trace_workqueue_activate_work(work);
1070 move_linked_works(work, &pwq->pool->worklist, NULL);
1071 __clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
1072 pwq->nr_active++;
1073 }
1074
1075 static void pwq_activate_first_delayed(struct pool_workqueue *pwq)
1076 {
1077 struct work_struct *work = list_first_entry(&pwq->delayed_works,
1078 struct work_struct, entry);
1079
1080 pwq_activate_delayed_work(work);
1081 }
1082
1083 /**
1084 * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
1085 * @pwq: pwq of interest
1086 * @color: color of work which left the queue
1087 *
1088 * A work either has completed or is removed from pending queue,
1089 * decrement nr_in_flight of its pwq and handle workqueue flushing.
1090 *
1091 * CONTEXT:
1092 * spin_lock_irq(pool->lock).
1093 */
1094 static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, int color)
1095 {
1096 /* uncolored work items don't participate in flushing or nr_active */
1097 if (color == WORK_NO_COLOR)
1098 goto out_put;
1099
1100 pwq->nr_in_flight[color]--;
1101
1102 pwq->nr_active--;
1103 if (!list_empty(&pwq->delayed_works)) {
1104 /* one down, submit a delayed one */
1105 if (pwq->nr_active < pwq->max_active)
1106 pwq_activate_first_delayed(pwq);
1107 }
1108
1109 /* is flush in progress and are we at the flushing tip? */
1110 if (likely(pwq->flush_color != color))
1111 goto out_put;
1112
1113 /* are there still in-flight works? */
1114 if (pwq->nr_in_flight[color])
1115 goto out_put;
1116
1117 /* this pwq is done, clear flush_color */
1118 pwq->flush_color = -1;
1119
1120 /*
1121 * If this was the last pwq, wake up the first flusher. It
1122 * will handle the rest.
1123 */
1124 if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush))
1125 complete(&pwq->wq->first_flusher->done);
1126 out_put:
1127 put_pwq(pwq);
1128 }
1129
1130 /**
1131 * try_to_grab_pending - steal work item from worklist and disable irq
1132 * @work: work item to steal
1133 * @is_dwork: @work is a delayed_work
1134 * @flags: place to store irq state
1135 *
1136 * Try to grab PENDING bit of @work. This function can handle @work in any
1137 * stable state - idle, on timer or on worklist.
1138 *
1139 * Return:
1140 * 1 if @work was pending and we successfully stole PENDING
1141 * 0 if @work was idle and we claimed PENDING
1142 * -EAGAIN if PENDING couldn't be grabbed at the moment, safe to busy-retry
1143 * -ENOENT if someone else is canceling @work, this state may persist
1144 * for arbitrarily long
1145 *
1146 * Note:
1147 * On >= 0 return, the caller owns @work's PENDING bit. To avoid getting
1148 * interrupted while holding PENDING and @work off queue, irq must be
1149 * disabled on entry. This, combined with delayed_work->timer being
1150 * irqsafe, ensures that we return -EAGAIN for finite short period of time.
1151 *
1152 * On successful return, >= 0, irq is disabled and the caller is
1153 * responsible for releasing it using local_irq_restore(*@flags).
1154 *
1155 * This function is safe to call from any context including IRQ handler.
1156 */
1157 static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
1158 unsigned long *flags)
1159 {
1160 struct worker_pool *pool;
1161 struct pool_workqueue *pwq;
1162
1163 local_irq_save(*flags);
1164
1165 /* try to steal the timer if it exists */
1166 if (is_dwork) {
1167 struct delayed_work *dwork = to_delayed_work(work);
1168
1169 /*
1170 * dwork->timer is irqsafe. If del_timer() fails, it's
1171 * guaranteed that the timer is not queued anywhere and not
1172 * running on the local CPU.
1173 */
1174 if (likely(del_timer(&dwork->timer)))
1175 return 1;
1176 }
1177
1178 /* try to claim PENDING the normal way */
1179 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
1180 return 0;
1181
1182 /*
1183 * The queueing is in progress, or it is already queued. Try to
1184 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
1185 */
1186 pool = get_work_pool(work);
1187 if (!pool)
1188 goto fail;
1189
1190 spin_lock(&pool->lock);
1191 /*
1192 * work->data is guaranteed to point to pwq only while the work
1193 * item is queued on pwq->wq, and both updating work->data to point
1194 * to pwq on queueing and to pool on dequeueing are done under
1195 * pwq->pool->lock. This in turn guarantees that, if work->data
1196 * points to pwq which is associated with a locked pool, the work
1197 * item is currently queued on that pool.
1198 */
1199 pwq = get_work_pwq(work);
1200 if (pwq && pwq->pool == pool) {
1201 debug_work_deactivate(work);
1202
1203 /*
1204 * A delayed work item cannot be grabbed directly because
1205 * it might have linked NO_COLOR work items which, if left
1206 * on the delayed_list, will confuse pwq->nr_active
1207 * management later on and cause stall. Make sure the work
1208 * item is activated before grabbing.
1209 */
1210 if (*work_data_bits(work) & WORK_STRUCT_DELAYED)
1211 pwq_activate_delayed_work(work);
1212
1213 list_del_init(&work->entry);
1214 pwq_dec_nr_in_flight(pwq, get_work_color(work));
1215
1216 /* work->data points to pwq iff queued, point to pool */
1217 set_work_pool_and_keep_pending(work, pool->id);
1218
1219 spin_unlock(&pool->lock);
1220 return 1;
1221 }
1222 spin_unlock(&pool->lock);
1223 fail:
1224 local_irq_restore(*flags);
1225 if (work_is_canceling(work))
1226 return -ENOENT;
1227 cpu_relax();
1228 return -EAGAIN;
1229 }
1230
1231 /**
1232 * insert_work - insert a work into a pool
1233 * @pwq: pwq @work belongs to
1234 * @work: work to insert
1235 * @head: insertion point
1236 * @extra_flags: extra WORK_STRUCT_* flags to set
1237 *
1238 * Insert @work which belongs to @pwq after @head. @extra_flags is or'd to
1239 * work_struct flags.
1240 *
1241 * CONTEXT:
1242 * spin_lock_irq(pool->lock).
1243 */
1244 static void insert_work(struct pool_workqueue *pwq, struct work_struct *work,
1245 struct list_head *head, unsigned int extra_flags)
1246 {
1247 struct worker_pool *pool = pwq->pool;
1248
1249 /* we own @work, set data and link */
1250 set_work_pwq(work, pwq, extra_flags);
1251 list_add_tail(&work->entry, head);
1252 get_pwq(pwq);
1253
1254 /*
1255 * Ensure either wq_worker_sleeping() sees the above
1256 * list_add_tail() or we see zero nr_running to avoid workers lying
1257 * around lazily while there are works to be processed.
1258 */
1259 smp_mb();
1260
1261 if (__need_more_worker(pool))
1262 wake_up_worker(pool);
1263 }
1264
1265 /*
1266 * Test whether @work is being queued from another work executing on the
1267 * same workqueue.
1268 */
1269 static bool is_chained_work(struct workqueue_struct *wq)
1270 {
1271 struct worker *worker;
1272
1273 worker = current_wq_worker();
1274 /*
1275 * Return %true iff I'm a worker execuing a work item on @wq. If
1276 * I'm @worker, it's safe to dereference it without locking.
1277 */
1278 return worker && worker->current_pwq->wq == wq;
1279 }
1280
1281 static void __queue_work(int cpu, struct workqueue_struct *wq,
1282 struct work_struct *work)
1283 {
1284 struct pool_workqueue *pwq;
1285 struct worker_pool *last_pool;
1286 struct list_head *worklist;
1287 unsigned int work_flags;
1288 unsigned int req_cpu = cpu;
1289
1290 /*
1291 * While a work item is PENDING && off queue, a task trying to
1292 * steal the PENDING will busy-loop waiting for it to either get
1293 * queued or lose PENDING. Grabbing PENDING and queueing should
1294 * happen with IRQ disabled.
1295 */
1296 WARN_ON_ONCE(!irqs_disabled());
1297
1298 debug_work_activate(work);
1299
1300 /* if draining, only works from the same workqueue are allowed */
1301 if (unlikely(wq->flags & __WQ_DRAINING) &&
1302 WARN_ON_ONCE(!is_chained_work(wq)))
1303 return;
1304 retry:
1305 if (req_cpu == WORK_CPU_UNBOUND)
1306 cpu = raw_smp_processor_id();
1307
1308 /* pwq which will be used unless @work is executing elsewhere */
1309 if (!(wq->flags & WQ_UNBOUND))
1310 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
1311 else
1312 pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
1313
1314 /*
1315 * If @work was previously on a different pool, it might still be
1316 * running there, in which case the work needs to be queued on that
1317 * pool to guarantee non-reentrancy.
1318 */
1319 last_pool = get_work_pool(work);
1320 if (last_pool && last_pool != pwq->pool) {
1321 struct worker *worker;
1322
1323 spin_lock(&last_pool->lock);
1324
1325 worker = find_worker_executing_work(last_pool, work);
1326
1327 if (worker && worker->current_pwq->wq == wq) {
1328 pwq = worker->current_pwq;
1329 } else {
1330 /* meh... not running there, queue here */
1331 spin_unlock(&last_pool->lock);
1332 spin_lock(&pwq->pool->lock);
1333 }
1334 } else {
1335 spin_lock(&pwq->pool->lock);
1336 }
1337
1338 /*
1339 * pwq is determined and locked. For unbound pools, we could have
1340 * raced with pwq release and it could already be dead. If its
1341 * refcnt is zero, repeat pwq selection. Note that pwqs never die
1342 * without another pwq replacing it in the numa_pwq_tbl or while
1343 * work items are executing on it, so the retrying is guaranteed to
1344 * make forward-progress.
1345 */
1346 if (unlikely(!pwq->refcnt)) {
1347 if (wq->flags & WQ_UNBOUND) {
1348 spin_unlock(&pwq->pool->lock);
1349 cpu_relax();
1350 goto retry;
1351 }
1352 /* oops */
1353 WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt",
1354 wq->name, cpu);
1355 }
1356
1357 /* pwq determined, queue */
1358 trace_workqueue_queue_work(req_cpu, pwq, work);
1359
1360 if (WARN_ON(!list_empty(&work->entry))) {
1361 spin_unlock(&pwq->pool->lock);
1362 return;
1363 }
1364
1365 pwq->nr_in_flight[pwq->work_color]++;
1366 work_flags = work_color_to_flags(pwq->work_color);
1367
1368 if (likely(pwq->nr_active < pwq->max_active)) {
1369 trace_workqueue_activate_work(work);
1370 pwq->nr_active++;
1371 worklist = &pwq->pool->worklist;
1372 } else {
1373 work_flags |= WORK_STRUCT_DELAYED;
1374 worklist = &pwq->delayed_works;
1375 }
1376
1377 insert_work(pwq, work, worklist, work_flags);
1378
1379 spin_unlock(&pwq->pool->lock);
1380 }
1381
1382 /**
1383 * queue_work_on - queue work on specific cpu
1384 * @cpu: CPU number to execute work on
1385 * @wq: workqueue to use
1386 * @work: work to queue
1387 *
1388 * We queue the work to a specific CPU, the caller must ensure it
1389 * can't go away.
1390 *
1391 * Return: %false if @work was already on a queue, %true otherwise.
1392 */
1393 bool queue_work_on(int cpu, struct workqueue_struct *wq,
1394 struct work_struct *work)
1395 {
1396 bool ret = false;
1397 unsigned long flags;
1398
1399 local_irq_save(flags);
1400
1401 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1402 __queue_work(cpu, wq, work);
1403 ret = true;
1404 }
1405
1406 local_irq_restore(flags);
1407 return ret;
1408 }
1409 EXPORT_SYMBOL(queue_work_on);
1410
1411 void delayed_work_timer_fn(unsigned long __data)
1412 {
1413 struct delayed_work *dwork = (struct delayed_work *)__data;
1414
1415 /* should have been called from irqsafe timer with irq already off */
1416 __queue_work(dwork->cpu, dwork->wq, &dwork->work);
1417 }
1418 EXPORT_SYMBOL(delayed_work_timer_fn);
1419
1420 static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
1421 struct delayed_work *dwork, unsigned long delay)
1422 {
1423 struct timer_list *timer = &dwork->timer;
1424 struct work_struct *work = &dwork->work;
1425
1426 WARN_ON_ONCE(timer->function != delayed_work_timer_fn ||
1427 timer->data != (unsigned long)dwork);
1428 WARN_ON_ONCE(timer_pending(timer));
1429 WARN_ON_ONCE(!list_empty(&work->entry));
1430
1431 /*
1432 * If @delay is 0, queue @dwork->work immediately. This is for
1433 * both optimization and correctness. The earliest @timer can
1434 * expire is on the closest next tick and delayed_work users depend
1435 * on that there's no such delay when @delay is 0.
1436 */
1437 if (!delay) {
1438 __queue_work(cpu, wq, &dwork->work);
1439 return;
1440 }
1441
1442 timer_stats_timer_set_start_info(&dwork->timer);
1443
1444 dwork->wq = wq;
1445 dwork->cpu = cpu;
1446 timer->expires = jiffies + delay;
1447
1448 if (unlikely(cpu != WORK_CPU_UNBOUND))
1449 add_timer_on(timer, cpu);
1450 else
1451 add_timer(timer);
1452 }
1453
1454 /**
1455 * queue_delayed_work_on - queue work on specific CPU after delay
1456 * @cpu: CPU number to execute work on
1457 * @wq: workqueue to use
1458 * @dwork: work to queue
1459 * @delay: number of jiffies to wait before queueing
1460 *
1461 * Return: %false if @work was already on a queue, %true otherwise. If
1462 * @delay is zero and @dwork is idle, it will be scheduled for immediate
1463 * execution.
1464 */
1465 bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
1466 struct delayed_work *dwork, unsigned long delay)
1467 {
1468 struct work_struct *work = &dwork->work;
1469 bool ret = false;
1470 unsigned long flags;
1471
1472 /* read the comment in __queue_work() */
1473 local_irq_save(flags);
1474
1475 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1476 __queue_delayed_work(cpu, wq, dwork, delay);
1477 ret = true;
1478 }
1479
1480 local_irq_restore(flags);
1481 return ret;
1482 }
1483 EXPORT_SYMBOL(queue_delayed_work_on);
1484
1485 /**
1486 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
1487 * @cpu: CPU number to execute work on
1488 * @wq: workqueue to use
1489 * @dwork: work to queue
1490 * @delay: number of jiffies to wait before queueing
1491 *
1492 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
1493 * modify @dwork's timer so that it expires after @delay. If @delay is
1494 * zero, @work is guaranteed to be scheduled immediately regardless of its
1495 * current state.
1496 *
1497 * Return: %false if @dwork was idle and queued, %true if @dwork was
1498 * pending and its timer was modified.
1499 *
1500 * This function is safe to call from any context including IRQ handler.
1501 * See try_to_grab_pending() for details.
1502 */
1503 bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
1504 struct delayed_work *dwork, unsigned long delay)
1505 {
1506 unsigned long flags;
1507 int ret;
1508
1509 do {
1510 ret = try_to_grab_pending(&dwork->work, true, &flags);
1511 } while (unlikely(ret == -EAGAIN));
1512
1513 if (likely(ret >= 0)) {
1514 __queue_delayed_work(cpu, wq, dwork, delay);
1515 local_irq_restore(flags);
1516 }
1517
1518 /* -ENOENT from try_to_grab_pending() becomes %true */
1519 return ret;
1520 }
1521 EXPORT_SYMBOL_GPL(mod_delayed_work_on);
1522
1523 /**
1524 * worker_enter_idle - enter idle state
1525 * @worker: worker which is entering idle state
1526 *
1527 * @worker is entering idle state. Update stats and idle timer if
1528 * necessary.
1529 *
1530 * LOCKING:
1531 * spin_lock_irq(pool->lock).
1532 */
1533 static void worker_enter_idle(struct worker *worker)
1534 {
1535 struct worker_pool *pool = worker->pool;
1536
1537 if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) ||
1538 WARN_ON_ONCE(!list_empty(&worker->entry) &&
1539 (worker->hentry.next || worker->hentry.pprev)))
1540 return;
1541
1542 /* can't use worker_set_flags(), also called from create_worker() */
1543 worker->flags |= WORKER_IDLE;
1544 pool->nr_idle++;
1545 worker->last_active = jiffies;
1546
1547 /* idle_list is LIFO */
1548 list_add(&worker->entry, &pool->idle_list);
1549
1550 if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
1551 mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
1552
1553 /*
1554 * Sanity check nr_running. Because wq_unbind_fn() releases
1555 * pool->lock between setting %WORKER_UNBOUND and zapping
1556 * nr_running, the warning may trigger spuriously. Check iff
1557 * unbind is not in progress.
1558 */
1559 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
1560 pool->nr_workers == pool->nr_idle &&
1561 atomic_read(&pool->nr_running));
1562 }
1563
1564 /**
1565 * worker_leave_idle - leave idle state
1566 * @worker: worker which is leaving idle state
1567 *
1568 * @worker is leaving idle state. Update stats.
1569 *
1570 * LOCKING:
1571 * spin_lock_irq(pool->lock).
1572 */
1573 static void worker_leave_idle(struct worker *worker)
1574 {
1575 struct worker_pool *pool = worker->pool;
1576
1577 if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE)))
1578 return;
1579 worker_clr_flags(worker, WORKER_IDLE);
1580 pool->nr_idle--;
1581 list_del_init(&worker->entry);
1582 }
1583
1584 static struct worker *alloc_worker(int node)
1585 {
1586 struct worker *worker;
1587
1588 worker = kzalloc_node(sizeof(*worker), GFP_KERNEL, node);
1589 if (worker) {
1590 INIT_LIST_HEAD(&worker->entry);
1591 INIT_LIST_HEAD(&worker->scheduled);
1592 INIT_LIST_HEAD(&worker->node);
1593 /* on creation a worker is in !idle && prep state */
1594 worker->flags = WORKER_PREP;
1595 }
1596 return worker;
1597 }
1598
1599 /**
1600 * worker_attach_to_pool() - attach a worker to a pool
1601 * @worker: worker to be attached
1602 * @pool: the target pool
1603 *
1604 * Attach @worker to @pool. Once attached, the %WORKER_UNBOUND flag and
1605 * cpu-binding of @worker are kept coordinated with the pool across
1606 * cpu-[un]hotplugs.
1607 */
1608 static void worker_attach_to_pool(struct worker *worker,
1609 struct worker_pool *pool)
1610 {
1611 mutex_lock(&pool->attach_mutex);
1612
1613 /*
1614 * set_cpus_allowed_ptr() will fail if the cpumask doesn't have any
1615 * online CPUs. It'll be re-applied when any of the CPUs come up.
1616 */
1617 set_cpus_allowed_ptr(worker->task, pool->attrs->cpumask);
1618
1619 /*
1620 * The pool->attach_mutex ensures %POOL_DISASSOCIATED remains
1621 * stable across this function. See the comments above the
1622 * flag definition for details.
1623 */
1624 if (pool->flags & POOL_DISASSOCIATED)
1625 worker->flags |= WORKER_UNBOUND;
1626
1627 list_add_tail(&worker->node, &pool->workers);
1628
1629 mutex_unlock(&pool->attach_mutex);
1630 }
1631
1632 /**
1633 * worker_detach_from_pool() - detach a worker from its pool
1634 * @worker: worker which is attached to its pool
1635 * @pool: the pool @worker is attached to
1636 *
1637 * Undo the attaching which had been done in worker_attach_to_pool(). The
1638 * caller worker shouldn't access to the pool after detached except it has
1639 * other reference to the pool.
1640 */
1641 static void worker_detach_from_pool(struct worker *worker,
1642 struct worker_pool *pool)
1643 {
1644 struct completion *detach_completion = NULL;
1645
1646 mutex_lock(&pool->attach_mutex);
1647 list_del(&worker->node);
1648 if (list_empty(&pool->workers))
1649 detach_completion = pool->detach_completion;
1650 mutex_unlock(&pool->attach_mutex);
1651
1652 /* clear leftover flags without pool->lock after it is detached */
1653 worker->flags &= ~(WORKER_UNBOUND | WORKER_REBOUND);
1654
1655 if (detach_completion)
1656 complete(detach_completion);
1657 }
1658
1659 /**
1660 * create_worker - create a new workqueue worker
1661 * @pool: pool the new worker will belong to
1662 *
1663 * Create and start a new worker which is attached to @pool.
1664 *
1665 * CONTEXT:
1666 * Might sleep. Does GFP_KERNEL allocations.
1667 *
1668 * Return:
1669 * Pointer to the newly created worker.
1670 */
1671 static struct worker *create_worker(struct worker_pool *pool)
1672 {
1673 struct worker *worker = NULL;
1674 int id = -1;
1675 char id_buf[16];
1676
1677 /* ID is needed to determine kthread name */
1678 id = ida_simple_get(&pool->worker_ida, 0, 0, GFP_KERNEL);
1679 if (id < 0)
1680 goto fail;
1681
1682 worker = alloc_worker(pool->node);
1683 if (!worker)
1684 goto fail;
1685
1686 worker->pool = pool;
1687 worker->id = id;
1688
1689 if (pool->cpu >= 0)
1690 snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id,
1691 pool->attrs->nice < 0 ? "H" : "");
1692 else
1693 snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id);
1694
1695 worker->task = kthread_create_on_node(worker_thread, worker, pool->node,
1696 "kworker/%s", id_buf);
1697 if (IS_ERR(worker->task))
1698 goto fail;
1699
1700 set_user_nice(worker->task, pool->attrs->nice);
1701
1702 /* prevent userland from meddling with cpumask of workqueue workers */
1703 worker->task->flags |= PF_NO_SETAFFINITY;
1704
1705 /* successful, attach the worker to the pool */
1706 worker_attach_to_pool(worker, pool);
1707
1708 /* start the newly created worker */
1709 spin_lock_irq(&pool->lock);
1710 worker->pool->nr_workers++;
1711 worker_enter_idle(worker);
1712 wake_up_process(worker->task);
1713 spin_unlock_irq(&pool->lock);
1714
1715 return worker;
1716
1717 fail:
1718 if (id >= 0)
1719 ida_simple_remove(&pool->worker_ida, id);
1720 kfree(worker);
1721 return NULL;
1722 }
1723
1724 /**
1725 * destroy_worker - destroy a workqueue worker
1726 * @worker: worker to be destroyed
1727 *
1728 * Destroy @worker and adjust @pool stats accordingly. The worker should
1729 * be idle.
1730 *
1731 * CONTEXT:
1732 * spin_lock_irq(pool->lock).
1733 */
1734 static void destroy_worker(struct worker *worker)
1735 {
1736 struct worker_pool *pool = worker->pool;
1737
1738 lockdep_assert_held(&pool->lock);
1739
1740 /* sanity check frenzy */
1741 if (WARN_ON(worker->current_work) ||
1742 WARN_ON(!list_empty(&worker->scheduled)) ||
1743 WARN_ON(!(worker->flags & WORKER_IDLE)))
1744 return;
1745
1746 pool->nr_workers--;
1747 pool->nr_idle--;
1748
1749 list_del_init(&worker->entry);
1750 worker->flags |= WORKER_DIE;
1751 wake_up_process(worker->task);
1752 }
1753
1754 static void idle_worker_timeout(unsigned long __pool)
1755 {
1756 struct worker_pool *pool = (void *)__pool;
1757
1758 spin_lock_irq(&pool->lock);
1759
1760 while (too_many_workers(pool)) {
1761 struct worker *worker;
1762 unsigned long expires;
1763
1764 /* idle_list is kept in LIFO order, check the last one */
1765 worker = list_entry(pool->idle_list.prev, struct worker, entry);
1766 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
1767
1768 if (time_before(jiffies, expires)) {
1769 mod_timer(&pool->idle_timer, expires);
1770 break;
1771 }
1772
1773 destroy_worker(worker);
1774 }
1775
1776 spin_unlock_irq(&pool->lock);
1777 }
1778
1779 static void send_mayday(struct work_struct *work)
1780 {
1781 struct pool_workqueue *pwq = get_work_pwq(work);
1782 struct workqueue_struct *wq = pwq->wq;
1783
1784 lockdep_assert_held(&wq_mayday_lock);
1785
1786 if (!wq->rescuer)
1787 return;
1788
1789 /* mayday mayday mayday */
1790 if (list_empty(&pwq->mayday_node)) {
1791 /*
1792 * If @pwq is for an unbound wq, its base ref may be put at
1793 * any time due to an attribute change. Pin @pwq until the
1794 * rescuer is done with it.
1795 */
1796 get_pwq(pwq);
1797 list_add_tail(&pwq->mayday_node, &wq->maydays);
1798 wake_up_process(wq->rescuer->task);
1799 }
1800 }
1801
1802 static void pool_mayday_timeout(unsigned long __pool)
1803 {
1804 struct worker_pool *pool = (void *)__pool;
1805 struct work_struct *work;
1806
1807 spin_lock_irq(&wq_mayday_lock); /* for wq->maydays */
1808 spin_lock(&pool->lock);
1809
1810 if (need_to_create_worker(pool)) {
1811 /*
1812 * We've been trying to create a new worker but
1813 * haven't been successful. We might be hitting an
1814 * allocation deadlock. Send distress signals to
1815 * rescuers.
1816 */
1817 list_for_each_entry(work, &pool->worklist, entry)
1818 send_mayday(work);
1819 }
1820
1821 spin_unlock(&pool->lock);
1822 spin_unlock_irq(&wq_mayday_lock);
1823
1824 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
1825 }
1826
1827 /**
1828 * maybe_create_worker - create a new worker if necessary
1829 * @pool: pool to create a new worker for
1830 *
1831 * Create a new worker for @pool if necessary. @pool is guaranteed to
1832 * have at least one idle worker on return from this function. If
1833 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
1834 * sent to all rescuers with works scheduled on @pool to resolve
1835 * possible allocation deadlock.
1836 *
1837 * On return, need_to_create_worker() is guaranteed to be %false and
1838 * may_start_working() %true.
1839 *
1840 * LOCKING:
1841 * spin_lock_irq(pool->lock) which may be released and regrabbed
1842 * multiple times. Does GFP_KERNEL allocations. Called only from
1843 * manager.
1844 *
1845 * Return:
1846 * %false if no action was taken and pool->lock stayed locked, %true
1847 * otherwise.
1848 */
1849 static bool maybe_create_worker(struct worker_pool *pool)
1850 __releases(&pool->lock)
1851 __acquires(&pool->lock)
1852 {
1853 if (!need_to_create_worker(pool))
1854 return false;
1855 restart:
1856 spin_unlock_irq(&pool->lock);
1857
1858 /* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
1859 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
1860
1861 while (true) {
1862 if (create_worker(pool) || !need_to_create_worker(pool))
1863 break;
1864
1865 schedule_timeout_interruptible(CREATE_COOLDOWN);
1866
1867 if (!need_to_create_worker(pool))
1868 break;
1869 }
1870
1871 del_timer_sync(&pool->mayday_timer);
1872 spin_lock_irq(&pool->lock);
1873 /*
1874 * This is necessary even after a new worker was just successfully
1875 * created as @pool->lock was dropped and the new worker might have
1876 * already become busy.
1877 */
1878 if (need_to_create_worker(pool))
1879 goto restart;
1880 return true;
1881 }
1882
1883 /**
1884 * manage_workers - manage worker pool
1885 * @worker: self
1886 *
1887 * Assume the manager role and manage the worker pool @worker belongs
1888 * to. At any given time, there can be only zero or one manager per
1889 * pool. The exclusion is handled automatically by this function.
1890 *
1891 * The caller can safely start processing works on false return. On
1892 * true return, it's guaranteed that need_to_create_worker() is false
1893 * and may_start_working() is true.
1894 *
1895 * CONTEXT:
1896 * spin_lock_irq(pool->lock) which may be released and regrabbed
1897 * multiple times. Does GFP_KERNEL allocations.
1898 *
1899 * Return:
1900 * %false if the pool don't need management and the caller can safely start
1901 * processing works, %true indicates that the function released pool->lock
1902 * and reacquired it to perform some management function and that the
1903 * conditions that the caller verified while holding the lock before
1904 * calling the function might no longer be true.
1905 */
1906 static bool manage_workers(struct worker *worker)
1907 {
1908 struct worker_pool *pool = worker->pool;
1909 bool ret = false;
1910
1911 /*
1912 * Anyone who successfully grabs manager_arb wins the arbitration
1913 * and becomes the manager. mutex_trylock() on pool->manager_arb
1914 * failure while holding pool->lock reliably indicates that someone
1915 * else is managing the pool and the worker which failed trylock
1916 * can proceed to executing work items. This means that anyone
1917 * grabbing manager_arb is responsible for actually performing
1918 * manager duties. If manager_arb is grabbed and released without
1919 * actual management, the pool may stall indefinitely.
1920 */
1921 if (!mutex_trylock(&pool->manager_arb))
1922 return ret;
1923
1924 ret |= maybe_create_worker(pool);
1925
1926 mutex_unlock(&pool->manager_arb);
1927 return ret;
1928 }
1929
1930 /**
1931 * process_one_work - process single work
1932 * @worker: self
1933 * @work: work to process
1934 *
1935 * Process @work. This function contains all the logics necessary to
1936 * process a single work including synchronization against and
1937 * interaction with other workers on the same cpu, queueing and
1938 * flushing. As long as context requirement is met, any worker can
1939 * call this function to process a work.
1940 *
1941 * CONTEXT:
1942 * spin_lock_irq(pool->lock) which is released and regrabbed.
1943 */
1944 static void process_one_work(struct worker *worker, struct work_struct *work)
1945 __releases(&pool->lock)
1946 __acquires(&pool->lock)
1947 {
1948 struct pool_workqueue *pwq = get_work_pwq(work);
1949 struct worker_pool *pool = worker->pool;
1950 bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE;
1951 int work_color;
1952 struct worker *collision;
1953 #ifdef CONFIG_LOCKDEP
1954 /*
1955 * It is permissible to free the struct work_struct from
1956 * inside the function that is called from it, this we need to
1957 * take into account for lockdep too. To avoid bogus "held
1958 * lock freed" warnings as well as problems when looking into
1959 * work->lockdep_map, make a copy and use that here.
1960 */
1961 struct lockdep_map lockdep_map;
1962
1963 lockdep_copy_map(&lockdep_map, &work->lockdep_map);
1964 #endif
1965 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
1966 raw_smp_processor_id() != pool->cpu);
1967
1968 /*
1969 * A single work shouldn't be executed concurrently by
1970 * multiple workers on a single cpu. Check whether anyone is
1971 * already processing the work. If so, defer the work to the
1972 * currently executing one.
1973 */
1974 collision = find_worker_executing_work(pool, work);
1975 if (unlikely(collision)) {
1976 move_linked_works(work, &collision->scheduled, NULL);
1977 return;
1978 }
1979
1980 /* claim and dequeue */
1981 debug_work_deactivate(work);
1982 hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
1983 worker->current_work = work;
1984 worker->current_func = work->func;
1985 worker->current_pwq = pwq;
1986 work_color = get_work_color(work);
1987
1988 list_del_init(&work->entry);
1989
1990 /*
1991 * CPU intensive works don't participate in concurrency management.
1992 * They're the scheduler's responsibility. This takes @worker out
1993 * of concurrency management and the next code block will chain
1994 * execution of the pending work items.
1995 */
1996 if (unlikely(cpu_intensive))
1997 worker_set_flags(worker, WORKER_CPU_INTENSIVE);
1998
1999 /*
2000 * Wake up another worker if necessary. The condition is always
2001 * false for normal per-cpu workers since nr_running would always
2002 * be >= 1 at this point. This is used to chain execution of the
2003 * pending work items for WORKER_NOT_RUNNING workers such as the
2004 * UNBOUND and CPU_INTENSIVE ones.
2005 */
2006 if (need_more_worker(pool))
2007 wake_up_worker(pool);
2008
2009 /*
2010 * Record the last pool and clear PENDING which should be the last
2011 * update to @work. Also, do this inside @pool->lock so that
2012 * PENDING and queued state changes happen together while IRQ is
2013 * disabled.
2014 */
2015 set_work_pool_and_clear_pending(work, pool->id);
2016
2017 spin_unlock_irq(&pool->lock);
2018
2019 lock_map_acquire_read(&pwq->wq->lockdep_map);
2020 lock_map_acquire(&lockdep_map);
2021 trace_workqueue_execute_start(work);
2022 worker->current_func(work);
2023 /*
2024 * While we must be careful to not use "work" after this, the trace
2025 * point will only record its address.
2026 */
2027 trace_workqueue_execute_end(work);
2028 lock_map_release(&lockdep_map);
2029 lock_map_release(&pwq->wq->lockdep_map);
2030
2031 if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
2032 pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
2033 " last function: %pf\n",
2034 current->comm, preempt_count(), task_pid_nr(current),
2035 worker->current_func);
2036 debug_show_held_locks(current);
2037 dump_stack();
2038 }
2039
2040 /*
2041 * The following prevents a kworker from hogging CPU on !PREEMPT
2042 * kernels, where a requeueing work item waiting for something to
2043 * happen could deadlock with stop_machine as such work item could
2044 * indefinitely requeue itself while all other CPUs are trapped in
2045 * stop_machine.
2046 */
2047 cond_resched();
2048
2049 spin_lock_irq(&pool->lock);
2050
2051 /* clear cpu intensive status */
2052 if (unlikely(cpu_intensive))
2053 worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
2054
2055 /* we're done with it, release */
2056 hash_del(&worker->hentry);
2057 worker->current_work = NULL;
2058 worker->current_func = NULL;
2059 worker->current_pwq = NULL;
2060 worker->desc_valid = false;
2061 pwq_dec_nr_in_flight(pwq, work_color);
2062 }
2063
2064 /**
2065 * process_scheduled_works - process scheduled works
2066 * @worker: self
2067 *
2068 * Process all scheduled works. Please note that the scheduled list
2069 * may change while processing a work, so this function repeatedly
2070 * fetches a work from the top and executes it.
2071 *
2072 * CONTEXT:
2073 * spin_lock_irq(pool->lock) which may be released and regrabbed
2074 * multiple times.
2075 */
2076 static void process_scheduled_works(struct worker *worker)
2077 {
2078 while (!list_empty(&worker->scheduled)) {
2079 struct work_struct *work = list_first_entry(&worker->scheduled,
2080 struct work_struct, entry);
2081 process_one_work(worker, work);
2082 }
2083 }
2084
2085 /**
2086 * worker_thread - the worker thread function
2087 * @__worker: self
2088 *
2089 * The worker thread function. All workers belong to a worker_pool -
2090 * either a per-cpu one or dynamic unbound one. These workers process all
2091 * work items regardless of their specific target workqueue. The only
2092 * exception is work items which belong to workqueues with a rescuer which
2093 * will be explained in rescuer_thread().
2094 *
2095 * Return: 0
2096 */
2097 static int worker_thread(void *__worker)
2098 {
2099 struct worker *worker = __worker;
2100 struct worker_pool *pool = worker->pool;
2101
2102 /* tell the scheduler that this is a workqueue worker */
2103 worker->task->flags |= PF_WQ_WORKER;
2104 woke_up:
2105 spin_lock_irq(&pool->lock);
2106
2107 /* am I supposed to die? */
2108 if (unlikely(worker->flags & WORKER_DIE)) {
2109 spin_unlock_irq(&pool->lock);
2110 WARN_ON_ONCE(!list_empty(&worker->entry));
2111 worker->task->flags &= ~PF_WQ_WORKER;
2112
2113 set_task_comm(worker->task, "kworker/dying");
2114 ida_simple_remove(&pool->worker_ida, worker->id);
2115 worker_detach_from_pool(worker, pool);
2116 kfree(worker);
2117 return 0;
2118 }
2119
2120 worker_leave_idle(worker);
2121 recheck:
2122 /* no more worker necessary? */
2123 if (!need_more_worker(pool))
2124 goto sleep;
2125
2126 /* do we need to manage? */
2127 if (unlikely(!may_start_working(pool)) && manage_workers(worker))
2128 goto recheck;
2129
2130 /*
2131 * ->scheduled list can only be filled while a worker is
2132 * preparing to process a work or actually processing it.
2133 * Make sure nobody diddled with it while I was sleeping.
2134 */
2135 WARN_ON_ONCE(!list_empty(&worker->scheduled));
2136
2137 /*
2138 * Finish PREP stage. We're guaranteed to have at least one idle
2139 * worker or that someone else has already assumed the manager
2140 * role. This is where @worker starts participating in concurrency
2141 * management if applicable and concurrency management is restored
2142 * after being rebound. See rebind_workers() for details.
2143 */
2144 worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND);
2145
2146 do {
2147 struct work_struct *work =
2148 list_first_entry(&pool->worklist,
2149 struct work_struct, entry);
2150
2151 if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
2152 /* optimization path, not strictly necessary */
2153 process_one_work(worker, work);
2154 if (unlikely(!list_empty(&worker->scheduled)))
2155 process_scheduled_works(worker);
2156 } else {
2157 move_linked_works(work, &worker->scheduled, NULL);
2158 process_scheduled_works(worker);
2159 }
2160 } while (keep_working(pool));
2161
2162 worker_set_flags(worker, WORKER_PREP);
2163 sleep:
2164 /*
2165 * pool->lock is held and there's no work to process and no need to
2166 * manage, sleep. Workers are woken up only while holding
2167 * pool->lock or from local cpu, so setting the current state
2168 * before releasing pool->lock is enough to prevent losing any
2169 * event.
2170 */
2171 worker_enter_idle(worker);
2172 __set_current_state(TASK_INTERRUPTIBLE);
2173 spin_unlock_irq(&pool->lock);
2174 schedule();
2175 goto woke_up;
2176 }
2177
2178 /**
2179 * rescuer_thread - the rescuer thread function
2180 * @__rescuer: self
2181 *
2182 * Workqueue rescuer thread function. There's one rescuer for each
2183 * workqueue which has WQ_MEM_RECLAIM set.
2184 *
2185 * Regular work processing on a pool may block trying to create a new
2186 * worker which uses GFP_KERNEL allocation which has slight chance of
2187 * developing into deadlock if some works currently on the same queue
2188 * need to be processed to satisfy the GFP_KERNEL allocation. This is
2189 * the problem rescuer solves.
2190 *
2191 * When such condition is possible, the pool summons rescuers of all
2192 * workqueues which have works queued on the pool and let them process
2193 * those works so that forward progress can be guaranteed.
2194 *
2195 * This should happen rarely.
2196 *
2197 * Return: 0
2198 */
2199 static int rescuer_thread(void *__rescuer)
2200 {
2201 struct worker *rescuer = __rescuer;
2202 struct workqueue_struct *wq = rescuer->rescue_wq;
2203 struct list_head *scheduled = &rescuer->scheduled;
2204 bool should_stop;
2205
2206 set_user_nice(current, RESCUER_NICE_LEVEL);
2207
2208 /*
2209 * Mark rescuer as worker too. As WORKER_PREP is never cleared, it
2210 * doesn't participate in concurrency management.
2211 */
2212 rescuer->task->flags |= PF_WQ_WORKER;
2213 repeat:
2214 set_current_state(TASK_INTERRUPTIBLE);
2215
2216 /*
2217 * By the time the rescuer is requested to stop, the workqueue
2218 * shouldn't have any work pending, but @wq->maydays may still have
2219 * pwq(s) queued. This can happen by non-rescuer workers consuming
2220 * all the work items before the rescuer got to them. Go through
2221 * @wq->maydays processing before acting on should_stop so that the
2222 * list is always empty on exit.
2223 */
2224 should_stop = kthread_should_stop();
2225
2226 /* see whether any pwq is asking for help */
2227 spin_lock_irq(&wq_mayday_lock);
2228
2229 while (!list_empty(&wq->maydays)) {
2230 struct pool_workqueue *pwq = list_first_entry(&wq->maydays,
2231 struct pool_workqueue, mayday_node);
2232 struct worker_pool *pool = pwq->pool;
2233 struct work_struct *work, *n;
2234
2235 __set_current_state(TASK_RUNNING);
2236 list_del_init(&pwq->mayday_node);
2237
2238 spin_unlock_irq(&wq_mayday_lock);
2239
2240 worker_attach_to_pool(rescuer, pool);
2241
2242 spin_lock_irq(&pool->lock);
2243 rescuer->pool = pool;
2244
2245 /*
2246 * Slurp in all works issued via this workqueue and
2247 * process'em.
2248 */
2249 WARN_ON_ONCE(!list_empty(&rescuer->scheduled));
2250 list_for_each_entry_safe(work, n, &pool->worklist, entry)
2251 if (get_work_pwq(work) == pwq)
2252 move_linked_works(work, scheduled, &n);
2253
2254 process_scheduled_works(rescuer);
2255
2256 /*
2257 * Put the reference grabbed by send_mayday(). @pool won't
2258 * go away while we're still attached to it.
2259 */
2260 put_pwq(pwq);
2261
2262 /*
2263 * Leave this pool. If need_more_worker() is %true, notify a
2264 * regular worker; otherwise, we end up with 0 concurrency
2265 * and stalling the execution.
2266 */
2267 if (need_more_worker(pool))
2268 wake_up_worker(pool);
2269
2270 rescuer->pool = NULL;
2271 spin_unlock_irq(&pool->lock);
2272
2273 worker_detach_from_pool(rescuer, pool);
2274
2275 spin_lock_irq(&wq_mayday_lock);
2276 }
2277
2278 spin_unlock_irq(&wq_mayday_lock);
2279
2280 if (should_stop) {
2281 __set_current_state(TASK_RUNNING);
2282 rescuer->task->flags &= ~PF_WQ_WORKER;
2283 return 0;
2284 }
2285
2286 /* rescuers should never participate in concurrency management */
2287 WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
2288 schedule();
2289 goto repeat;
2290 }
2291
2292 struct wq_barrier {
2293 struct work_struct work;
2294 struct completion done;
2295 };
2296
2297 static void wq_barrier_func(struct work_struct *work)
2298 {
2299 struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
2300 complete(&barr->done);
2301 }
2302
2303 /**
2304 * insert_wq_barrier - insert a barrier work
2305 * @pwq: pwq to insert barrier into
2306 * @barr: wq_barrier to insert
2307 * @target: target work to attach @barr to
2308 * @worker: worker currently executing @target, NULL if @target is not executing
2309 *
2310 * @barr is linked to @target such that @barr is completed only after
2311 * @target finishes execution. Please note that the ordering
2312 * guarantee is observed only with respect to @target and on the local
2313 * cpu.
2314 *
2315 * Currently, a queued barrier can't be canceled. This is because
2316 * try_to_grab_pending() can't determine whether the work to be
2317 * grabbed is at the head of the queue and thus can't clear LINKED
2318 * flag of the previous work while there must be a valid next work
2319 * after a work with LINKED flag set.
2320 *
2321 * Note that when @worker is non-NULL, @target may be modified
2322 * underneath us, so we can't reliably determine pwq from @target.
2323 *
2324 * CONTEXT:
2325 * spin_lock_irq(pool->lock).
2326 */
2327 static void insert_wq_barrier(struct pool_workqueue *pwq,
2328 struct wq_barrier *barr,
2329 struct work_struct *target, struct worker *worker)
2330 {
2331 struct list_head *head;
2332 unsigned int linked = 0;
2333
2334 /*
2335 * debugobject calls are safe here even with pool->lock locked
2336 * as we know for sure that this will not trigger any of the
2337 * checks and call back into the fixup functions where we
2338 * might deadlock.
2339 */
2340 INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
2341 __set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
2342 init_completion(&barr->done);
2343
2344 /*
2345 * If @target is currently being executed, schedule the
2346 * barrier to the worker; otherwise, put it after @target.
2347 */
2348 if (worker)
2349 head = worker->scheduled.next;
2350 else {
2351 unsigned long *bits = work_data_bits(target);
2352
2353 head = target->entry.next;
2354 /* there can already be other linked works, inherit and set */
2355 linked = *bits & WORK_STRUCT_LINKED;
2356 __set_bit(WORK_STRUCT_LINKED_BIT, bits);
2357 }
2358
2359 debug_work_activate(&barr->work);
2360 insert_work(pwq, &barr->work, head,
2361 work_color_to_flags(WORK_NO_COLOR) | linked);
2362 }
2363
2364 /**
2365 * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing
2366 * @wq: workqueue being flushed
2367 * @flush_color: new flush color, < 0 for no-op
2368 * @work_color: new work color, < 0 for no-op
2369 *
2370 * Prepare pwqs for workqueue flushing.
2371 *
2372 * If @flush_color is non-negative, flush_color on all pwqs should be
2373 * -1. If no pwq has in-flight commands at the specified color, all
2374 * pwq->flush_color's stay at -1 and %false is returned. If any pwq
2375 * has in flight commands, its pwq->flush_color is set to
2376 * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq
2377 * wakeup logic is armed and %true is returned.
2378 *
2379 * The caller should have initialized @wq->first_flusher prior to
2380 * calling this function with non-negative @flush_color. If
2381 * @flush_color is negative, no flush color update is done and %false
2382 * is returned.
2383 *
2384 * If @work_color is non-negative, all pwqs should have the same
2385 * work_color which is previous to @work_color and all will be
2386 * advanced to @work_color.
2387 *
2388 * CONTEXT:
2389 * mutex_lock(wq->mutex).
2390 *
2391 * Return:
2392 * %true if @flush_color >= 0 and there's something to flush. %false
2393 * otherwise.
2394 */
2395 static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq,
2396 int flush_color, int work_color)
2397 {
2398 bool wait = false;
2399 struct pool_workqueue *pwq;
2400
2401 if (flush_color >= 0) {
2402 WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush));
2403 atomic_set(&wq->nr_pwqs_to_flush, 1);
2404 }
2405
2406 for_each_pwq(pwq, wq) {
2407 struct worker_pool *pool = pwq->pool;
2408
2409 spin_lock_irq(&pool->lock);
2410
2411 if (flush_color >= 0) {
2412 WARN_ON_ONCE(pwq->flush_color != -1);
2413
2414 if (pwq->nr_in_flight[flush_color]) {
2415 pwq->flush_color = flush_color;
2416 atomic_inc(&wq->nr_pwqs_to_flush);
2417 wait = true;
2418 }
2419 }
2420
2421 if (work_color >= 0) {
2422 WARN_ON_ONCE(work_color != work_next_color(pwq->work_color));
2423 pwq->work_color = work_color;
2424 }
2425
2426 spin_unlock_irq(&pool->lock);
2427 }
2428
2429 if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush))
2430 complete(&wq->first_flusher->done);
2431
2432 return wait;
2433 }
2434
2435 /**
2436 * flush_workqueue - ensure that any scheduled work has run to completion.
2437 * @wq: workqueue to flush
2438 *
2439 * This function sleeps until all work items which were queued on entry
2440 * have finished execution, but it is not livelocked by new incoming ones.
2441 */
2442 void flush_workqueue(struct workqueue_struct *wq)
2443 {
2444 struct wq_flusher this_flusher = {
2445 .list = LIST_HEAD_INIT(this_flusher.list),
2446 .flush_color = -1,
2447 .done = COMPLETION_INITIALIZER_ONSTACK(this_flusher.done),
2448 };
2449 int next_color;
2450
2451 lock_map_acquire(&wq->lockdep_map);
2452 lock_map_release(&wq->lockdep_map);
2453
2454 mutex_lock(&wq->mutex);
2455
2456 /*
2457 * Start-to-wait phase
2458 */
2459 next_color = work_next_color(wq->work_color);
2460
2461 if (next_color != wq->flush_color) {
2462 /*
2463 * Color space is not full. The current work_color
2464 * becomes our flush_color and work_color is advanced
2465 * by one.
2466 */
2467 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow));
2468 this_flusher.flush_color = wq->work_color;
2469 wq->work_color = next_color;
2470
2471 if (!wq->first_flusher) {
2472 /* no flush in progress, become the first flusher */
2473 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2474
2475 wq->first_flusher = &this_flusher;
2476
2477 if (!flush_workqueue_prep_pwqs(wq, wq->flush_color,
2478 wq->work_color)) {
2479 /* nothing to flush, done */
2480 wq->flush_color = next_color;
2481 wq->first_flusher = NULL;
2482 goto out_unlock;
2483 }
2484 } else {
2485 /* wait in queue */
2486 WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color);
2487 list_add_tail(&this_flusher.list, &wq->flusher_queue);
2488 flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2489 }
2490 } else {
2491 /*
2492 * Oops, color space is full, wait on overflow queue.
2493 * The next flush completion will assign us
2494 * flush_color and transfer to flusher_queue.
2495 */
2496 list_add_tail(&this_flusher.list, &wq->flusher_overflow);
2497 }
2498
2499 mutex_unlock(&wq->mutex);
2500
2501 wait_for_completion(&this_flusher.done);
2502
2503 /*
2504 * Wake-up-and-cascade phase
2505 *
2506 * First flushers are responsible for cascading flushes and
2507 * handling overflow. Non-first flushers can simply return.
2508 */
2509 if (wq->first_flusher != &this_flusher)
2510 return;
2511
2512 mutex_lock(&wq->mutex);
2513
2514 /* we might have raced, check again with mutex held */
2515 if (wq->first_flusher != &this_flusher)
2516 goto out_unlock;
2517
2518 wq->first_flusher = NULL;
2519
2520 WARN_ON_ONCE(!list_empty(&this_flusher.list));
2521 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2522
2523 while (true) {
2524 struct wq_flusher *next, *tmp;
2525
2526 /* complete all the flushers sharing the current flush color */
2527 list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
2528 if (next->flush_color != wq->flush_color)
2529 break;
2530 list_del_init(&next->list);
2531 complete(&next->done);
2532 }
2533
2534 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) &&
2535 wq->flush_color != work_next_color(wq->work_color));
2536
2537 /* this flush_color is finished, advance by one */
2538 wq->flush_color = work_next_color(wq->flush_color);
2539
2540 /* one color has been freed, handle overflow queue */
2541 if (!list_empty(&wq->flusher_overflow)) {
2542 /*
2543 * Assign the same color to all overflowed
2544 * flushers, advance work_color and append to
2545 * flusher_queue. This is the start-to-wait
2546 * phase for these overflowed flushers.
2547 */
2548 list_for_each_entry(tmp, &wq->flusher_overflow, list)
2549 tmp->flush_color = wq->work_color;
2550
2551 wq->work_color = work_next_color(wq->work_color);
2552
2553 list_splice_tail_init(&wq->flusher_overflow,
2554 &wq->flusher_queue);
2555 flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2556 }
2557
2558 if (list_empty(&wq->flusher_queue)) {
2559 WARN_ON_ONCE(wq->flush_color != wq->work_color);
2560 break;
2561 }
2562
2563 /*
2564 * Need to flush more colors. Make the next flusher
2565 * the new first flusher and arm pwqs.
2566 */
2567 WARN_ON_ONCE(wq->flush_color == wq->work_color);
2568 WARN_ON_ONCE(wq->flush_color != next->flush_color);
2569
2570 list_del_init(&next->list);
2571 wq->first_flusher = next;
2572
2573 if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1))
2574 break;
2575
2576 /*
2577 * Meh... this color is already done, clear first
2578 * flusher and repeat cascading.
2579 */
2580 wq->first_flusher = NULL;
2581 }
2582
2583 out_unlock:
2584 mutex_unlock(&wq->mutex);
2585 }
2586 EXPORT_SYMBOL_GPL(flush_workqueue);
2587
2588 /**
2589 * drain_workqueue - drain a workqueue
2590 * @wq: workqueue to drain
2591 *
2592 * Wait until the workqueue becomes empty. While draining is in progress,
2593 * only chain queueing is allowed. IOW, only currently pending or running
2594 * work items on @wq can queue further work items on it. @wq is flushed
2595 * repeatedly until it becomes empty. The number of flushing is detemined
2596 * by the depth of chaining and should be relatively short. Whine if it
2597 * takes too long.
2598 */
2599 void drain_workqueue(struct workqueue_struct *wq)
2600 {
2601 unsigned int flush_cnt = 0;
2602 struct pool_workqueue *pwq;
2603
2604 /*
2605 * __queue_work() needs to test whether there are drainers, is much
2606 * hotter than drain_workqueue() and already looks at @wq->flags.
2607 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers.
2608 */
2609 mutex_lock(&wq->mutex);
2610 if (!wq->nr_drainers++)
2611 wq->flags |= __WQ_DRAINING;
2612 mutex_unlock(&wq->mutex);
2613 reflush:
2614 flush_workqueue(wq);
2615
2616 mutex_lock(&wq->mutex);
2617
2618 for_each_pwq(pwq, wq) {
2619 bool drained;
2620
2621 spin_lock_irq(&pwq->pool->lock);
2622 drained = !pwq->nr_active && list_empty(&pwq->delayed_works);
2623 spin_unlock_irq(&pwq->pool->lock);
2624
2625 if (drained)
2626 continue;
2627
2628 if (++flush_cnt == 10 ||
2629 (flush_cnt % 100 == 0 && flush_cnt <= 1000))
2630 pr_warn("workqueue %s: drain_workqueue() isn't complete after %u tries\n",
2631 wq->name, flush_cnt);
2632
2633 mutex_unlock(&wq->mutex);
2634 goto reflush;
2635 }
2636
2637 if (!--wq->nr_drainers)
2638 wq->flags &= ~__WQ_DRAINING;
2639 mutex_unlock(&wq->mutex);
2640 }
2641 EXPORT_SYMBOL_GPL(drain_workqueue);
2642
2643 static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr)
2644 {
2645 struct worker *worker = NULL;
2646 struct worker_pool *pool;
2647 struct pool_workqueue *pwq;
2648
2649 might_sleep();
2650
2651 local_irq_disable();
2652 pool = get_work_pool(work);
2653 if (!pool) {
2654 local_irq_enable();
2655 return false;
2656 }
2657
2658 spin_lock(&pool->lock);
2659 /* see the comment in try_to_grab_pending() with the same code */
2660 pwq = get_work_pwq(work);
2661 if (pwq) {
2662 if (unlikely(pwq->pool != pool))
2663 goto already_gone;
2664 } else {
2665 worker = find_worker_executing_work(pool, work);
2666 if (!worker)
2667 goto already_gone;
2668 pwq = worker->current_pwq;
2669 }
2670
2671 insert_wq_barrier(pwq, barr, work, worker);
2672 spin_unlock_irq(&pool->lock);
2673
2674 /*
2675 * If @max_active is 1 or rescuer is in use, flushing another work
2676 * item on the same workqueue may lead to deadlock. Make sure the
2677 * flusher is not running on the same workqueue by verifying write
2678 * access.
2679 */
2680 if (pwq->wq->saved_max_active == 1 || pwq->wq->rescuer)
2681 lock_map_acquire(&pwq->wq->lockdep_map);
2682 else
2683 lock_map_acquire_read(&pwq->wq->lockdep_map);
2684 lock_map_release(&pwq->wq->lockdep_map);
2685
2686 return true;
2687 already_gone:
2688 spin_unlock_irq(&pool->lock);
2689 return false;
2690 }
2691
2692 /**
2693 * flush_work - wait for a work to finish executing the last queueing instance
2694 * @work: the work to flush
2695 *
2696 * Wait until @work has finished execution. @work is guaranteed to be idle
2697 * on return if it hasn't been requeued since flush started.
2698 *
2699 * Return:
2700 * %true if flush_work() waited for the work to finish execution,
2701 * %false if it was already idle.
2702 */
2703 bool flush_work(struct work_struct *work)
2704 {
2705 struct wq_barrier barr;
2706
2707 lock_map_acquire(&work->lockdep_map);
2708 lock_map_release(&work->lockdep_map);
2709
2710 if (start_flush_work(work, &barr)) {
2711 wait_for_completion(&barr.done);
2712 destroy_work_on_stack(&barr.work);
2713 return true;
2714 } else {
2715 return false;
2716 }
2717 }
2718 EXPORT_SYMBOL_GPL(flush_work);
2719
2720 static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
2721 {
2722 unsigned long flags;
2723 int ret;
2724
2725 do {
2726 ret = try_to_grab_pending(work, is_dwork, &flags);
2727 /*
2728 * If someone else is canceling, wait for the same event it
2729 * would be waiting for before retrying.
2730 */
2731 if (unlikely(ret == -ENOENT))
2732 flush_work(work);
2733 } while (unlikely(ret < 0));
2734
2735 /* tell other tasks trying to grab @work to back off */
2736 mark_work_canceling(work);
2737 local_irq_restore(flags);
2738
2739 flush_work(work);
2740 clear_work_data(work);
2741 return ret;
2742 }
2743
2744 /**
2745 * cancel_work_sync - cancel a work and wait for it to finish
2746 * @work: the work to cancel
2747 *
2748 * Cancel @work and wait for its execution to finish. This function
2749 * can be used even if the work re-queues itself or migrates to
2750 * another workqueue. On return from this function, @work is
2751 * guaranteed to be not pending or executing on any CPU.
2752 *
2753 * cancel_work_sync(&delayed_work->work) must not be used for
2754 * delayed_work's. Use cancel_delayed_work_sync() instead.
2755 *
2756 * The caller must ensure that the workqueue on which @work was last
2757 * queued can't be destroyed before this function returns.
2758 *
2759 * Return:
2760 * %true if @work was pending, %false otherwise.
2761 */
2762 bool cancel_work_sync(struct work_struct *work)
2763 {
2764 return __cancel_work_timer(work, false);
2765 }
2766 EXPORT_SYMBOL_GPL(cancel_work_sync);
2767
2768 /**
2769 * flush_delayed_work - wait for a dwork to finish executing the last queueing
2770 * @dwork: the delayed work to flush
2771 *
2772 * Delayed timer is cancelled and the pending work is queued for
2773 * immediate execution. Like flush_work(), this function only
2774 * considers the last queueing instance of @dwork.
2775 *
2776 * Return:
2777 * %true if flush_work() waited for the work to finish execution,
2778 * %false if it was already idle.
2779 */
2780 bool flush_delayed_work(struct delayed_work *dwork)
2781 {
2782 local_irq_disable();
2783 if (del_timer_sync(&dwork->timer))
2784 __queue_work(dwork->cpu, dwork->wq, &dwork->work);
2785 local_irq_enable();
2786 return flush_work(&dwork->work);
2787 }
2788 EXPORT_SYMBOL(flush_delayed_work);
2789
2790 /**
2791 * cancel_delayed_work - cancel a delayed work
2792 * @dwork: delayed_work to cancel
2793 *
2794 * Kill off a pending delayed_work.
2795 *
2796 * Return: %true if @dwork was pending and canceled; %false if it wasn't
2797 * pending.
2798 *
2799 * Note:
2800 * The work callback function may still be running on return, unless
2801 * it returns %true and the work doesn't re-arm itself. Explicitly flush or
2802 * use cancel_delayed_work_sync() to wait on it.
2803 *
2804 * This function is safe to call from any context including IRQ handler.
2805 */
2806 bool cancel_delayed_work(struct delayed_work *dwork)
2807 {
2808 unsigned long flags;
2809 int ret;
2810
2811 do {
2812 ret = try_to_grab_pending(&dwork->work, true, &flags);
2813 } while (unlikely(ret == -EAGAIN));
2814
2815 if (unlikely(ret < 0))
2816 return false;
2817
2818 set_work_pool_and_clear_pending(&dwork->work,
2819 get_work_pool_id(&dwork->work));
2820 local_irq_restore(flags);
2821 return ret;
2822 }
2823 EXPORT_SYMBOL(cancel_delayed_work);
2824
2825 /**
2826 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
2827 * @dwork: the delayed work cancel
2828 *
2829 * This is cancel_work_sync() for delayed works.
2830 *
2831 * Return:
2832 * %true if @dwork was pending, %false otherwise.
2833 */
2834 bool cancel_delayed_work_sync(struct delayed_work *dwork)
2835 {
2836 return __cancel_work_timer(&dwork->work, true);
2837 }
2838 EXPORT_SYMBOL(cancel_delayed_work_sync);
2839
2840 /**
2841 * schedule_on_each_cpu - execute a function synchronously on each online CPU
2842 * @func: the function to call
2843 *
2844 * schedule_on_each_cpu() executes @func on each online CPU using the
2845 * system workqueue and blocks until all CPUs have completed.
2846 * schedule_on_each_cpu() is very slow.
2847 *
2848 * Return:
2849 * 0 on success, -errno on failure.
2850 */
2851 int schedule_on_each_cpu(work_func_t func)
2852 {
2853 int cpu;
2854 struct work_struct __percpu *works;
2855
2856 works = alloc_percpu(struct work_struct);
2857 if (!works)
2858 return -ENOMEM;
2859
2860 get_online_cpus();
2861
2862 for_each_online_cpu(cpu) {
2863 struct work_struct *work = per_cpu_ptr(works, cpu);
2864
2865 INIT_WORK(work, func);
2866 schedule_work_on(cpu, work);
2867 }
2868
2869 for_each_online_cpu(cpu)
2870 flush_work(per_cpu_ptr(works, cpu));
2871
2872 put_online_cpus();
2873 free_percpu(works);
2874 return 0;
2875 }
2876
2877 /**
2878 * flush_scheduled_work - ensure that any scheduled work has run to completion.
2879 *
2880 * Forces execution of the kernel-global workqueue and blocks until its
2881 * completion.
2882 *
2883 * Think twice before calling this function! It's very easy to get into
2884 * trouble if you don't take great care. Either of the following situations
2885 * will lead to deadlock:
2886 *
2887 * One of the work items currently on the workqueue needs to acquire
2888 * a lock held by your code or its caller.
2889 *
2890 * Your code is running in the context of a work routine.
2891 *
2892 * They will be detected by lockdep when they occur, but the first might not
2893 * occur very often. It depends on what work items are on the workqueue and
2894 * what locks they need, which you have no control over.
2895 *
2896 * In most situations flushing the entire workqueue is overkill; you merely
2897 * need to know that a particular work item isn't queued and isn't running.
2898 * In such cases you should use cancel_delayed_work_sync() or
2899 * cancel_work_sync() instead.
2900 */
2901 void flush_scheduled_work(void)
2902 {
2903 flush_workqueue(system_wq);
2904 }
2905 EXPORT_SYMBOL(flush_scheduled_work);
2906
2907 /**
2908 * execute_in_process_context - reliably execute the routine with user context
2909 * @fn: the function to execute
2910 * @ew: guaranteed storage for the execute work structure (must
2911 * be available when the work executes)
2912 *
2913 * Executes the function immediately if process context is available,
2914 * otherwise schedules the function for delayed execution.
2915 *
2916 * Return: 0 - function was executed
2917 * 1 - function was scheduled for execution
2918 */
2919 int execute_in_process_context(work_func_t fn, struct execute_work *ew)
2920 {
2921 if (!in_interrupt()) {
2922 fn(&ew->work);
2923 return 0;
2924 }
2925
2926 INIT_WORK(&ew->work, fn);
2927 schedule_work(&ew->work);
2928
2929 return 1;
2930 }
2931 EXPORT_SYMBOL_GPL(execute_in_process_context);
2932
2933 #ifdef CONFIG_SYSFS
2934 /*
2935 * Workqueues with WQ_SYSFS flag set is visible to userland via
2936 * /sys/bus/workqueue/devices/WQ_NAME. All visible workqueues have the
2937 * following attributes.
2938 *
2939 * per_cpu RO bool : whether the workqueue is per-cpu or unbound
2940 * max_active RW int : maximum number of in-flight work items
2941 *
2942 * Unbound workqueues have the following extra attributes.
2943 *
2944 * id RO int : the associated pool ID
2945 * nice RW int : nice value of the workers
2946 * cpumask RW mask : bitmask of allowed CPUs for the workers
2947 */
2948 struct wq_device {
2949 struct workqueue_struct *wq;
2950 struct device dev;
2951 };
2952
2953 static struct workqueue_struct *dev_to_wq(struct device *dev)
2954 {
2955 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
2956
2957 return wq_dev->wq;
2958 }
2959
2960 static ssize_t per_cpu_show(struct device *dev, struct device_attribute *attr,
2961 char *buf)
2962 {
2963 struct workqueue_struct *wq = dev_to_wq(dev);
2964
2965 return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND));
2966 }
2967 static DEVICE_ATTR_RO(per_cpu);
2968
2969 static ssize_t max_active_show(struct device *dev,
2970 struct device_attribute *attr, char *buf)
2971 {
2972 struct workqueue_struct *wq = dev_to_wq(dev);
2973
2974 return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active);
2975 }
2976
2977 static ssize_t max_active_store(struct device *dev,
2978 struct device_attribute *attr, const char *buf,
2979 size_t count)
2980 {
2981 struct workqueue_struct *wq = dev_to_wq(dev);
2982 int val;
2983
2984 if (sscanf(buf, "%d", &val) != 1 || val <= 0)
2985 return -EINVAL;
2986
2987 workqueue_set_max_active(wq, val);
2988 return count;
2989 }
2990 static DEVICE_ATTR_RW(max_active);
2991
2992 static struct attribute *wq_sysfs_attrs[] = {
2993 &dev_attr_per_cpu.attr,
2994 &dev_attr_max_active.attr,
2995 NULL,
2996 };
2997 ATTRIBUTE_GROUPS(wq_sysfs);
2998
2999 static ssize_t wq_pool_ids_show(struct device *dev,
3000 struct device_attribute *attr, char *buf)
3001 {
3002 struct workqueue_struct *wq = dev_to_wq(dev);
3003 const char *delim = "";
3004 int node, written = 0;
3005
3006 rcu_read_lock_sched();
3007 for_each_node(node) {
3008 written += scnprintf(buf + written, PAGE_SIZE - written,
3009 "%s%d:%d", delim, node,
3010 unbound_pwq_by_node(wq, node)->pool->id);
3011 delim = " ";
3012 }
3013 written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
3014 rcu_read_unlock_sched();
3015
3016 return written;
3017 }
3018
3019 static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr,
3020 char *buf)
3021 {
3022 struct workqueue_struct *wq = dev_to_wq(dev);
3023 int written;
3024
3025 mutex_lock(&wq->mutex);
3026 written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice);
3027 mutex_unlock(&wq->mutex);
3028
3029 return written;
3030 }
3031
3032 /* prepare workqueue_attrs for sysfs store operations */
3033 static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq)
3034 {
3035 struct workqueue_attrs *attrs;
3036
3037 attrs = alloc_workqueue_attrs(GFP_KERNEL);
3038 if (!attrs)
3039 return NULL;
3040
3041 mutex_lock(&wq->mutex);
3042 copy_workqueue_attrs(attrs, wq->unbound_attrs);
3043 mutex_unlock(&wq->mutex);
3044 return attrs;
3045 }
3046
3047 static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr,
3048 const char *buf, size_t count)
3049 {
3050 struct workqueue_struct *wq = dev_to_wq(dev);
3051 struct workqueue_attrs *attrs;
3052 int ret;
3053
3054 attrs = wq_sysfs_prep_attrs(wq);
3055 if (!attrs)
3056 return -ENOMEM;
3057
3058 if (sscanf(buf, "%d", &attrs->nice) == 1 &&
3059 attrs->nice >= MIN_NICE && attrs->nice <= MAX_NICE)
3060 ret = apply_workqueue_attrs(wq, attrs);
3061 else
3062 ret = -EINVAL;
3063
3064 free_workqueue_attrs(attrs);
3065 return ret ?: count;
3066 }
3067
3068 static ssize_t wq_cpumask_show(struct device *dev,
3069 struct device_attribute *attr, char *buf)
3070 {
3071 struct workqueue_struct *wq = dev_to_wq(dev);
3072 int written;
3073
3074 mutex_lock(&wq->mutex);
3075 written = cpumask_scnprintf(buf, PAGE_SIZE, wq->unbound_attrs->cpumask);
3076 mutex_unlock(&wq->mutex);
3077
3078 written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
3079 return written;
3080 }
3081
3082 static ssize_t wq_cpumask_store(struct device *dev,
3083 struct device_attribute *attr,
3084 const char *buf, size_t count)
3085 {
3086 struct workqueue_struct *wq = dev_to_wq(dev);
3087 struct workqueue_attrs *attrs;
3088 int ret;
3089
3090 attrs = wq_sysfs_prep_attrs(wq);
3091 if (!attrs)
3092 return -ENOMEM;
3093
3094 ret = cpumask_parse(buf, attrs->cpumask);
3095 if (!ret)
3096 ret = apply_workqueue_attrs(wq, attrs);
3097
3098 free_workqueue_attrs(attrs);
3099 return ret ?: count;
3100 }
3101
3102 static ssize_t wq_numa_show(struct device *dev, struct device_attribute *attr,
3103 char *buf)
3104 {
3105 struct workqueue_struct *wq = dev_to_wq(dev);
3106 int written;
3107
3108 mutex_lock(&wq->mutex);
3109 written = scnprintf(buf, PAGE_SIZE, "%d\n",
3110 !wq->unbound_attrs->no_numa);
3111 mutex_unlock(&wq->mutex);
3112
3113 return written;
3114 }
3115
3116 static ssize_t wq_numa_store(struct device *dev, struct device_attribute *attr,
3117 const char *buf, size_t count)
3118 {
3119 struct workqueue_struct *wq = dev_to_wq(dev);
3120 struct workqueue_attrs *attrs;
3121 int v, ret;
3122
3123 attrs = wq_sysfs_prep_attrs(wq);
3124 if (!attrs)
3125 return -ENOMEM;
3126
3127 ret = -EINVAL;
3128 if (sscanf(buf, "%d", &v) == 1) {
3129 attrs->no_numa = !v;
3130 ret = apply_workqueue_attrs(wq, attrs);
3131 }
3132
3133 free_workqueue_attrs(attrs);
3134 return ret ?: count;
3135 }
3136
3137 static struct device_attribute wq_sysfs_unbound_attrs[] = {
3138 __ATTR(pool_ids, 0444, wq_pool_ids_show, NULL),
3139 __ATTR(nice, 0644, wq_nice_show, wq_nice_store),
3140 __ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store),
3141 __ATTR(numa, 0644, wq_numa_show, wq_numa_store),
3142 __ATTR_NULL,
3143 };
3144
3145 static struct bus_type wq_subsys = {
3146 .name = "workqueue",
3147 .dev_groups = wq_sysfs_groups,
3148 };
3149
3150 static int __init wq_sysfs_init(void)
3151 {
3152 return subsys_virtual_register(&wq_subsys, NULL);
3153 }
3154 core_initcall(wq_sysfs_init);
3155
3156 static void wq_device_release(struct device *dev)
3157 {
3158 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
3159
3160 kfree(wq_dev);
3161 }
3162
3163 /**
3164 * workqueue_sysfs_register - make a workqueue visible in sysfs
3165 * @wq: the workqueue to register
3166 *
3167 * Expose @wq in sysfs under /sys/bus/workqueue/devices.
3168 * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set
3169 * which is the preferred method.
3170 *
3171 * Workqueue user should use this function directly iff it wants to apply
3172 * workqueue_attrs before making the workqueue visible in sysfs; otherwise,
3173 * apply_workqueue_attrs() may race against userland updating the
3174 * attributes.
3175 *
3176 * Return: 0 on success, -errno on failure.
3177 */
3178 int workqueue_sysfs_register(struct workqueue_struct *wq)
3179 {
3180 struct wq_device *wq_dev;
3181 int ret;
3182
3183 /*
3184 * Adjusting max_active or creating new pwqs by applyting
3185 * attributes breaks ordering guarantee. Disallow exposing ordered
3186 * workqueues.
3187 */
3188 if (WARN_ON(wq->flags & __WQ_ORDERED))
3189 return -EINVAL;
3190
3191 wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL);
3192 if (!wq_dev)
3193 return -ENOMEM;
3194
3195 wq_dev->wq = wq;
3196 wq_dev->dev.bus = &wq_subsys;
3197 wq_dev->dev.init_name = wq->name;
3198 wq_dev->dev.release = wq_device_release;
3199
3200 /*
3201 * unbound_attrs are created separately. Suppress uevent until
3202 * everything is ready.
3203 */
3204 dev_set_uevent_suppress(&wq_dev->dev, true);
3205
3206 ret = device_register(&wq_dev->dev);
3207 if (ret) {
3208 kfree(wq_dev);
3209 wq->wq_dev = NULL;
3210 return ret;
3211 }
3212
3213 if (wq->flags & WQ_UNBOUND) {
3214 struct device_attribute *attr;
3215
3216 for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) {
3217 ret = device_create_file(&wq_dev->dev, attr);
3218 if (ret) {
3219 device_unregister(&wq_dev->dev);
3220 wq->wq_dev = NULL;
3221 return ret;
3222 }
3223 }
3224 }
3225
3226 kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD);
3227 return 0;
3228 }
3229
3230 /**
3231 * workqueue_sysfs_unregister - undo workqueue_sysfs_register()
3232 * @wq: the workqueue to unregister
3233 *
3234 * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister.
3235 */
3236 static void workqueue_sysfs_unregister(struct workqueue_struct *wq)
3237 {
3238 struct wq_device *wq_dev = wq->wq_dev;
3239
3240 if (!wq->wq_dev)
3241 return;
3242
3243 wq->wq_dev = NULL;
3244 device_unregister(&wq_dev->dev);
3245 }
3246 #else /* CONFIG_SYSFS */
3247 static void workqueue_sysfs_unregister(struct workqueue_struct *wq) { }
3248 #endif /* CONFIG_SYSFS */
3249
3250 /**
3251 * free_workqueue_attrs - free a workqueue_attrs
3252 * @attrs: workqueue_attrs to free
3253 *
3254 * Undo alloc_workqueue_attrs().
3255 */
3256 void free_workqueue_attrs(struct workqueue_attrs *attrs)
3257 {
3258 if (attrs) {
3259 free_cpumask_var(attrs->cpumask);
3260 kfree(attrs);
3261 }
3262 }
3263
3264 /**
3265 * alloc_workqueue_attrs - allocate a workqueue_attrs
3266 * @gfp_mask: allocation mask to use
3267 *
3268 * Allocate a new workqueue_attrs, initialize with default settings and
3269 * return it.
3270 *
3271 * Return: The allocated new workqueue_attr on success. %NULL on failure.
3272 */
3273 struct workqueue_attrs *alloc_workqueue_attrs(gfp_t gfp_mask)
3274 {
3275 struct workqueue_attrs *attrs;
3276
3277 attrs = kzalloc(sizeof(*attrs), gfp_mask);
3278 if (!attrs)
3279 goto fail;
3280 if (!alloc_cpumask_var(&attrs->cpumask, gfp_mask))
3281 goto fail;
3282
3283 cpumask_copy(attrs->cpumask, cpu_possible_mask);
3284 return attrs;
3285 fail:
3286 free_workqueue_attrs(attrs);
3287 return NULL;
3288 }
3289
3290 static void copy_workqueue_attrs(struct workqueue_attrs *to,
3291 const struct workqueue_attrs *from)
3292 {
3293 to->nice = from->nice;
3294 cpumask_copy(to->cpumask, from->cpumask);
3295 /*
3296 * Unlike hash and equality test, this function doesn't ignore
3297 * ->no_numa as it is used for both pool and wq attrs. Instead,
3298 * get_unbound_pool() explicitly clears ->no_numa after copying.
3299 */
3300 to->no_numa = from->no_numa;
3301 }
3302
3303 /* hash value of the content of @attr */
3304 static u32 wqattrs_hash(const struct workqueue_attrs *attrs)
3305 {
3306 u32 hash = 0;
3307
3308 hash = jhash_1word(attrs->nice, hash);
3309 hash = jhash(cpumask_bits(attrs->cpumask),
3310 BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash);
3311 return hash;
3312 }
3313
3314 /* content equality test */
3315 static bool wqattrs_equal(const struct workqueue_attrs *a,
3316 const struct workqueue_attrs *b)
3317 {
3318 if (a->nice != b->nice)
3319 return false;
3320 if (!cpumask_equal(a->cpumask, b->cpumask))
3321 return false;
3322 return true;
3323 }
3324
3325 /**
3326 * init_worker_pool - initialize a newly zalloc'd worker_pool
3327 * @pool: worker_pool to initialize
3328 *
3329 * Initiailize a newly zalloc'd @pool. It also allocates @pool->attrs.
3330 *
3331 * Return: 0 on success, -errno on failure. Even on failure, all fields
3332 * inside @pool proper are initialized and put_unbound_pool() can be called
3333 * on @pool safely to release it.
3334 */
3335 static int init_worker_pool(struct worker_pool *pool)
3336 {
3337 spin_lock_init(&pool->lock);
3338 pool->id = -1;
3339 pool->cpu = -1;
3340 pool->node = NUMA_NO_NODE;
3341 pool->flags |= POOL_DISASSOCIATED;
3342 INIT_LIST_HEAD(&pool->worklist);
3343 INIT_LIST_HEAD(&pool->idle_list);
3344 hash_init(pool->busy_hash);
3345
3346 init_timer_deferrable(&pool->idle_timer);
3347 pool->idle_timer.function = idle_worker_timeout;
3348 pool->idle_timer.data = (unsigned long)pool;
3349
3350 setup_timer(&pool->mayday_timer, pool_mayday_timeout,
3351 (unsigned long)pool);
3352
3353 mutex_init(&pool->manager_arb);
3354 mutex_init(&pool->attach_mutex);
3355 INIT_LIST_HEAD(&pool->workers);
3356
3357 ida_init(&pool->worker_ida);
3358 INIT_HLIST_NODE(&pool->hash_node);
3359 pool->refcnt = 1;
3360
3361 /* shouldn't fail above this point */
3362 pool->attrs = alloc_workqueue_attrs(GFP_KERNEL);
3363 if (!pool->attrs)
3364 return -ENOMEM;
3365 return 0;
3366 }
3367
3368 static void rcu_free_pool(struct rcu_head *rcu)
3369 {
3370 struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu);
3371
3372 ida_destroy(&pool->worker_ida);
3373 free_workqueue_attrs(pool->attrs);
3374 kfree(pool);
3375 }
3376
3377 /**
3378 * put_unbound_pool - put a worker_pool
3379 * @pool: worker_pool to put
3380 *
3381 * Put @pool. If its refcnt reaches zero, it gets destroyed in sched-RCU
3382 * safe manner. get_unbound_pool() calls this function on its failure path
3383 * and this function should be able to release pools which went through,
3384 * successfully or not, init_worker_pool().
3385 *
3386 * Should be called with wq_pool_mutex held.
3387 */
3388 static void put_unbound_pool(struct worker_pool *pool)
3389 {
3390 DECLARE_COMPLETION_ONSTACK(detach_completion);
3391 struct worker *worker;
3392
3393 lockdep_assert_held(&wq_pool_mutex);
3394
3395 if (--pool->refcnt)
3396 return;
3397
3398 /* sanity checks */
3399 if (WARN_ON(!(pool->cpu < 0)) ||
3400 WARN_ON(!list_empty(&pool->worklist)))
3401 return;
3402
3403 /* release id and unhash */
3404 if (pool->id >= 0)
3405 idr_remove(&worker_pool_idr, pool->id);
3406 hash_del(&pool->hash_node);
3407
3408 /*
3409 * Become the manager and destroy all workers. Grabbing
3410 * manager_arb prevents @pool's workers from blocking on
3411 * attach_mutex.
3412 */
3413 mutex_lock(&pool->manager_arb);
3414
3415 spin_lock_irq(&pool->lock);
3416 while ((worker = first_idle_worker(pool)))
3417 destroy_worker(worker);
3418 WARN_ON(pool->nr_workers || pool->nr_idle);
3419 spin_unlock_irq(&pool->lock);
3420
3421 mutex_lock(&pool->attach_mutex);
3422 if (!list_empty(&pool->workers))
3423 pool->detach_completion = &detach_completion;
3424 mutex_unlock(&pool->attach_mutex);
3425
3426 if (pool->detach_completion)
3427 wait_for_completion(pool->detach_completion);
3428
3429 mutex_unlock(&pool->manager_arb);
3430
3431 /* shut down the timers */
3432 del_timer_sync(&pool->idle_timer);
3433 del_timer_sync(&pool->mayday_timer);
3434
3435 /* sched-RCU protected to allow dereferences from get_work_pool() */
3436 call_rcu_sched(&pool->rcu, rcu_free_pool);
3437 }
3438
3439 /**
3440 * get_unbound_pool - get a worker_pool with the specified attributes
3441 * @attrs: the attributes of the worker_pool to get
3442 *
3443 * Obtain a worker_pool which has the same attributes as @attrs, bump the
3444 * reference count and return it. If there already is a matching
3445 * worker_pool, it will be used; otherwise, this function attempts to
3446 * create a new one.
3447 *
3448 * Should be called with wq_pool_mutex held.
3449 *
3450 * Return: On success, a worker_pool with the same attributes as @attrs.
3451 * On failure, %NULL.
3452 */
3453 static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs)
3454 {
3455 u32 hash = wqattrs_hash(attrs);
3456 struct worker_pool *pool;
3457 int node;
3458
3459 lockdep_assert_held(&wq_pool_mutex);
3460
3461 /* do we already have a matching pool? */
3462 hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) {
3463 if (wqattrs_equal(pool->attrs, attrs)) {
3464 pool->refcnt++;
3465 return pool;
3466 }
3467 }
3468
3469 /* nope, create a new one */
3470 pool = kzalloc(sizeof(*pool), GFP_KERNEL);
3471 if (!pool || init_worker_pool(pool) < 0)
3472 goto fail;
3473
3474 lockdep_set_subclass(&pool->lock, 1); /* see put_pwq() */
3475 copy_workqueue_attrs(pool->attrs, attrs);
3476
3477 /*
3478 * no_numa isn't a worker_pool attribute, always clear it. See
3479 * 'struct workqueue_attrs' comments for detail.
3480 */
3481 pool->attrs->no_numa = false;
3482
3483 /* if cpumask is contained inside a NUMA node, we belong to that node */
3484 if (wq_numa_enabled) {
3485 for_each_node(node) {
3486 if (cpumask_subset(pool->attrs->cpumask,
3487 wq_numa_possible_cpumask[node])) {
3488 pool->node = node;
3489 break;
3490 }
3491 }
3492 }
3493
3494 if (worker_pool_assign_id(pool) < 0)
3495 goto fail;
3496
3497 /* create and start the initial worker */
3498 if (!create_worker(pool))
3499 goto fail;
3500
3501 /* install */
3502 hash_add(unbound_pool_hash, &pool->hash_node, hash);
3503
3504 return pool;
3505 fail:
3506 if (pool)
3507 put_unbound_pool(pool);
3508 return NULL;
3509 }
3510
3511 static void rcu_free_pwq(struct rcu_head *rcu)
3512 {
3513 kmem_cache_free(pwq_cache,
3514 container_of(rcu, struct pool_workqueue, rcu));
3515 }
3516
3517 /*
3518 * Scheduled on system_wq by put_pwq() when an unbound pwq hits zero refcnt
3519 * and needs to be destroyed.
3520 */
3521 static void pwq_unbound_release_workfn(struct work_struct *work)
3522 {
3523 struct pool_workqueue *pwq = container_of(work, struct pool_workqueue,
3524 unbound_release_work);
3525 struct workqueue_struct *wq = pwq->wq;
3526 struct worker_pool *pool = pwq->pool;
3527 bool is_last;
3528
3529 if (WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND)))
3530 return;
3531
3532 mutex_lock(&wq->mutex);
3533 list_del_rcu(&pwq->pwqs_node);
3534 is_last = list_empty(&wq->pwqs);
3535 mutex_unlock(&wq->mutex);
3536
3537 mutex_lock(&wq_pool_mutex);
3538 put_unbound_pool(pool);
3539 mutex_unlock(&wq_pool_mutex);
3540
3541 call_rcu_sched(&pwq->rcu, rcu_free_pwq);
3542
3543 /*
3544 * If we're the last pwq going away, @wq is already dead and no one
3545 * is gonna access it anymore. Free it.
3546 */
3547 if (is_last) {
3548 free_workqueue_attrs(wq->unbound_attrs);
3549 kfree(wq);
3550 }
3551 }
3552
3553 /**
3554 * pwq_adjust_max_active - update a pwq's max_active to the current setting
3555 * @pwq: target pool_workqueue
3556 *
3557 * If @pwq isn't freezing, set @pwq->max_active to the associated
3558 * workqueue's saved_max_active and activate delayed work items
3559 * accordingly. If @pwq is freezing, clear @pwq->max_active to zero.
3560 */
3561 static void pwq_adjust_max_active(struct pool_workqueue *pwq)
3562 {
3563 struct workqueue_struct *wq = pwq->wq;
3564 bool freezable = wq->flags & WQ_FREEZABLE;
3565
3566 /* for @wq->saved_max_active */
3567 lockdep_assert_held(&wq->mutex);
3568
3569 /* fast exit for non-freezable wqs */
3570 if (!freezable && pwq->max_active == wq->saved_max_active)
3571 return;
3572
3573 spin_lock_irq(&pwq->pool->lock);
3574
3575 /*
3576 * During [un]freezing, the caller is responsible for ensuring that
3577 * this function is called at least once after @workqueue_freezing
3578 * is updated and visible.
3579 */
3580 if (!freezable || !workqueue_freezing) {
3581 pwq->max_active = wq->saved_max_active;
3582
3583 while (!list_empty(&pwq->delayed_works) &&
3584 pwq->nr_active < pwq->max_active)
3585 pwq_activate_first_delayed(pwq);
3586
3587 /*
3588 * Need to kick a worker after thawed or an unbound wq's
3589 * max_active is bumped. It's a slow path. Do it always.
3590 */
3591 wake_up_worker(pwq->pool);
3592 } else {
3593 pwq->max_active = 0;
3594 }
3595
3596 spin_unlock_irq(&pwq->pool->lock);
3597 }
3598
3599 /* initialize newly alloced @pwq which is associated with @wq and @pool */
3600 static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq,
3601 struct worker_pool *pool)
3602 {
3603 BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK);
3604
3605 memset(pwq, 0, sizeof(*pwq));
3606
3607 pwq->pool = pool;
3608 pwq->wq = wq;
3609 pwq->flush_color = -1;
3610 pwq->refcnt = 1;
3611 INIT_LIST_HEAD(&pwq->delayed_works);
3612 INIT_LIST_HEAD(&pwq->pwqs_node);
3613 INIT_LIST_HEAD(&pwq->mayday_node);
3614 INIT_WORK(&pwq->unbound_release_work, pwq_unbound_release_workfn);
3615 }
3616
3617 /* sync @pwq with the current state of its associated wq and link it */
3618 static void link_pwq(struct pool_workqueue *pwq)
3619 {
3620 struct workqueue_struct *wq = pwq->wq;
3621
3622 lockdep_assert_held(&wq->mutex);
3623
3624 /* may be called multiple times, ignore if already linked */
3625 if (!list_empty(&pwq->pwqs_node))
3626 return;
3627
3628 /* set the matching work_color */
3629 pwq->work_color = wq->work_color;
3630
3631 /* sync max_active to the current setting */
3632 pwq_adjust_max_active(pwq);
3633
3634 /* link in @pwq */
3635 list_add_rcu(&pwq->pwqs_node, &wq->pwqs);
3636 }
3637
3638 /* obtain a pool matching @attr and create a pwq associating the pool and @wq */
3639 static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq,
3640 const struct workqueue_attrs *attrs)
3641 {
3642 struct worker_pool *pool;
3643 struct pool_workqueue *pwq;
3644
3645 lockdep_assert_held(&wq_pool_mutex);
3646
3647 pool = get_unbound_pool(attrs);
3648 if (!pool)
3649 return NULL;
3650
3651 pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node);
3652 if (!pwq) {
3653 put_unbound_pool(pool);
3654 return NULL;
3655 }
3656
3657 init_pwq(pwq, wq, pool);
3658 return pwq;
3659 }
3660
3661 /* undo alloc_unbound_pwq(), used only in the error path */
3662 static void free_unbound_pwq(struct pool_workqueue *pwq)
3663 {
3664 lockdep_assert_held(&wq_pool_mutex);
3665
3666 if (pwq) {
3667 put_unbound_pool(pwq->pool);
3668 kmem_cache_free(pwq_cache, pwq);
3669 }
3670 }
3671
3672 /**
3673 * wq_calc_node_mask - calculate a wq_attrs' cpumask for the specified node
3674 * @attrs: the wq_attrs of interest
3675 * @node: the target NUMA node
3676 * @cpu_going_down: if >= 0, the CPU to consider as offline
3677 * @cpumask: outarg, the resulting cpumask
3678 *
3679 * Calculate the cpumask a workqueue with @attrs should use on @node. If
3680 * @cpu_going_down is >= 0, that cpu is considered offline during
3681 * calculation. The result is stored in @cpumask.
3682 *
3683 * If NUMA affinity is not enabled, @attrs->cpumask is always used. If
3684 * enabled and @node has online CPUs requested by @attrs, the returned
3685 * cpumask is the intersection of the possible CPUs of @node and
3686 * @attrs->cpumask.
3687 *
3688 * The caller is responsible for ensuring that the cpumask of @node stays
3689 * stable.
3690 *
3691 * Return: %true if the resulting @cpumask is different from @attrs->cpumask,
3692 * %false if equal.
3693 */
3694 static bool wq_calc_node_cpumask(const struct workqueue_attrs *attrs, int node,
3695 int cpu_going_down, cpumask_t *cpumask)
3696 {
3697 if (!wq_numa_enabled || attrs->no_numa)
3698 goto use_dfl;
3699
3700 /* does @node have any online CPUs @attrs wants? */
3701 cpumask_and(cpumask, cpumask_of_node(node), attrs->cpumask);
3702 if (cpu_going_down >= 0)
3703 cpumask_clear_cpu(cpu_going_down, cpumask);
3704
3705 if (cpumask_empty(cpumask))
3706 goto use_dfl;
3707
3708 /* yeap, return possible CPUs in @node that @attrs wants */
3709 cpumask_and(cpumask, attrs->cpumask, wq_numa_possible_cpumask[node]);
3710 return !cpumask_equal(cpumask, attrs->cpumask);
3711
3712 use_dfl:
3713 cpumask_copy(cpumask, attrs->cpumask);
3714 return false;
3715 }
3716
3717 /* install @pwq into @wq's numa_pwq_tbl[] for @node and return the old pwq */
3718 static struct pool_workqueue *numa_pwq_tbl_install(struct workqueue_struct *wq,
3719 int node,
3720 struct pool_workqueue *pwq)
3721 {
3722 struct pool_workqueue *old_pwq;
3723
3724 lockdep_assert_held(&wq->mutex);
3725
3726 /* link_pwq() can handle duplicate calls */
3727 link_pwq(pwq);
3728
3729 old_pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
3730 rcu_assign_pointer(wq->numa_pwq_tbl[node], pwq);
3731 return old_pwq;
3732 }
3733
3734 /**
3735 * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue
3736 * @wq: the target workqueue
3737 * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs()
3738 *
3739 * Apply @attrs to an unbound workqueue @wq. Unless disabled, on NUMA
3740 * machines, this function maps a separate pwq to each NUMA node with
3741 * possibles CPUs in @attrs->cpumask so that work items are affine to the
3742 * NUMA node it was issued on. Older pwqs are released as in-flight work
3743 * items finish. Note that a work item which repeatedly requeues itself
3744 * back-to-back will stay on its current pwq.
3745 *
3746 * Performs GFP_KERNEL allocations.
3747 *
3748 * Return: 0 on success and -errno on failure.
3749 */
3750 int apply_workqueue_attrs(struct workqueue_struct *wq,
3751 const struct workqueue_attrs *attrs)
3752 {
3753 struct workqueue_attrs *new_attrs, *tmp_attrs;
3754 struct pool_workqueue **pwq_tbl, *dfl_pwq;
3755 int node, ret;
3756
3757 /* only unbound workqueues can change attributes */
3758 if (WARN_ON(!(wq->flags & WQ_UNBOUND)))
3759 return -EINVAL;
3760
3761 /* creating multiple pwqs breaks ordering guarantee */
3762 if (WARN_ON((wq->flags & __WQ_ORDERED) && !list_empty(&wq->pwqs)))
3763 return -EINVAL;
3764
3765 pwq_tbl = kzalloc(nr_node_ids * sizeof(pwq_tbl[0]), GFP_KERNEL);
3766 new_attrs = alloc_workqueue_attrs(GFP_KERNEL);
3767 tmp_attrs = alloc_workqueue_attrs(GFP_KERNEL);
3768 if (!pwq_tbl || !new_attrs || !tmp_attrs)
3769 goto enomem;
3770
3771 /* make a copy of @attrs and sanitize it */
3772 copy_workqueue_attrs(new_attrs, attrs);
3773 cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask);
3774
3775 /*
3776 * We may create multiple pwqs with differing cpumasks. Make a
3777 * copy of @new_attrs which will be modified and used to obtain
3778 * pools.
3779 */
3780 copy_workqueue_attrs(tmp_attrs, new_attrs);
3781
3782 /*
3783 * CPUs should stay stable across pwq creations and installations.
3784 * Pin CPUs, determine the target cpumask for each node and create
3785 * pwqs accordingly.
3786 */
3787 get_online_cpus();
3788
3789 mutex_lock(&wq_pool_mutex);
3790
3791 /*
3792 * If something goes wrong during CPU up/down, we'll fall back to
3793 * the default pwq covering whole @attrs->cpumask. Always create
3794 * it even if we don't use it immediately.
3795 */
3796 dfl_pwq = alloc_unbound_pwq(wq, new_attrs);
3797 if (!dfl_pwq)
3798 goto enomem_pwq;
3799
3800 for_each_node(node) {
3801 if (wq_calc_node_cpumask(attrs, node, -1, tmp_attrs->cpumask)) {
3802 pwq_tbl[node] = alloc_unbound_pwq(wq, tmp_attrs);
3803 if (!pwq_tbl[node])
3804 goto enomem_pwq;
3805 } else {
3806 dfl_pwq->refcnt++;
3807 pwq_tbl[node] = dfl_pwq;
3808 }
3809 }
3810
3811 mutex_unlock(&wq_pool_mutex);
3812
3813 /* all pwqs have been created successfully, let's install'em */
3814 mutex_lock(&wq->mutex);
3815
3816 copy_workqueue_attrs(wq->unbound_attrs, new_attrs);
3817
3818 /* save the previous pwq and install the new one */
3819 for_each_node(node)
3820 pwq_tbl[node] = numa_pwq_tbl_install(wq, node, pwq_tbl[node]);
3821
3822 /* @dfl_pwq might not have been used, ensure it's linked */
3823 link_pwq(dfl_pwq);
3824 swap(wq->dfl_pwq, dfl_pwq);
3825
3826 mutex_unlock(&wq->mutex);
3827
3828 /* put the old pwqs */
3829 for_each_node(node)
3830 put_pwq_unlocked(pwq_tbl[node]);
3831 put_pwq_unlocked(dfl_pwq);
3832
3833 put_online_cpus();
3834 ret = 0;
3835 /* fall through */
3836 out_free:
3837 free_workqueue_attrs(tmp_attrs);
3838 free_workqueue_attrs(new_attrs);
3839 kfree(pwq_tbl);
3840 return ret;
3841
3842 enomem_pwq:
3843 free_unbound_pwq(dfl_pwq);
3844 for_each_node(node)
3845 if (pwq_tbl && pwq_tbl[node] != dfl_pwq)
3846 free_unbound_pwq(pwq_tbl[node]);
3847 mutex_unlock(&wq_pool_mutex);
3848 put_online_cpus();
3849 enomem:
3850 ret = -ENOMEM;
3851 goto out_free;
3852 }
3853
3854 /**
3855 * wq_update_unbound_numa - update NUMA affinity of a wq for CPU hot[un]plug
3856 * @wq: the target workqueue
3857 * @cpu: the CPU coming up or going down
3858 * @online: whether @cpu is coming up or going down
3859 *
3860 * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and
3861 * %CPU_DOWN_FAILED. @cpu is being hot[un]plugged, update NUMA affinity of
3862 * @wq accordingly.
3863 *
3864 * If NUMA affinity can't be adjusted due to memory allocation failure, it
3865 * falls back to @wq->dfl_pwq which may not be optimal but is always
3866 * correct.
3867 *
3868 * Note that when the last allowed CPU of a NUMA node goes offline for a
3869 * workqueue with a cpumask spanning multiple nodes, the workers which were
3870 * already executing the work items for the workqueue will lose their CPU
3871 * affinity and may execute on any CPU. This is similar to how per-cpu
3872 * workqueues behave on CPU_DOWN. If a workqueue user wants strict
3873 * affinity, it's the user's responsibility to flush the work item from
3874 * CPU_DOWN_PREPARE.
3875 */
3876 static void wq_update_unbound_numa(struct workqueue_struct *wq, int cpu,
3877 bool online)
3878 {
3879 int node = cpu_to_node(cpu);
3880 int cpu_off = online ? -1 : cpu;
3881 struct pool_workqueue *old_pwq = NULL, *pwq;
3882 struct workqueue_attrs *target_attrs;
3883 cpumask_t *cpumask;
3884
3885 lockdep_assert_held(&wq_pool_mutex);
3886
3887 if (!wq_numa_enabled || !(wq->flags & WQ_UNBOUND))
3888 return;
3889
3890 /*
3891 * We don't wanna alloc/free wq_attrs for each wq for each CPU.
3892 * Let's use a preallocated one. The following buf is protected by
3893 * CPU hotplug exclusion.
3894 */
3895 target_attrs = wq_update_unbound_numa_attrs_buf;
3896 cpumask = target_attrs->cpumask;
3897
3898 mutex_lock(&wq->mutex);
3899 if (wq->unbound_attrs->no_numa)
3900 goto out_unlock;
3901
3902 copy_workqueue_attrs(target_attrs, wq->unbound_attrs);
3903 pwq = unbound_pwq_by_node(wq, node);
3904
3905 /*
3906 * Let's determine what needs to be done. If the target cpumask is
3907 * different from wq's, we need to compare it to @pwq's and create
3908 * a new one if they don't match. If the target cpumask equals
3909 * wq's, the default pwq should be used.
3910 */
3911 if (wq_calc_node_cpumask(wq->unbound_attrs, node, cpu_off, cpumask)) {
3912 if (cpumask_equal(cpumask, pwq->pool->attrs->cpumask))
3913 goto out_unlock;
3914 } else {
3915 goto use_dfl_pwq;
3916 }
3917
3918 mutex_unlock(&wq->mutex);
3919
3920 /* create a new pwq */
3921 pwq = alloc_unbound_pwq(wq, target_attrs);
3922 if (!pwq) {
3923 pr_warn("workqueue: allocation failed while updating NUMA affinity of \"%s\"\n",
3924 wq->name);
3925 mutex_lock(&wq->mutex);
3926 goto use_dfl_pwq;
3927 }
3928
3929 /*
3930 * Install the new pwq. As this function is called only from CPU
3931 * hotplug callbacks and applying a new attrs is wrapped with
3932 * get/put_online_cpus(), @wq->unbound_attrs couldn't have changed
3933 * inbetween.
3934 */
3935 mutex_lock(&wq->mutex);
3936 old_pwq = numa_pwq_tbl_install(wq, node, pwq);
3937 goto out_unlock;
3938
3939 use_dfl_pwq:
3940 spin_lock_irq(&wq->dfl_pwq->pool->lock);
3941 get_pwq(wq->dfl_pwq);
3942 spin_unlock_irq(&wq->dfl_pwq->pool->lock);
3943 old_pwq = numa_pwq_tbl_install(wq, node, wq->dfl_pwq);
3944 out_unlock:
3945 mutex_unlock(&wq->mutex);
3946 put_pwq_unlocked(old_pwq);
3947 }
3948
3949 static int alloc_and_link_pwqs(struct workqueue_struct *wq)
3950 {
3951 bool highpri = wq->flags & WQ_HIGHPRI;
3952 int cpu, ret;
3953
3954 if (!(wq->flags & WQ_UNBOUND)) {
3955 wq->cpu_pwqs = alloc_percpu(struct pool_workqueue);
3956 if (!wq->cpu_pwqs)
3957 return -ENOMEM;
3958
3959 for_each_possible_cpu(cpu) {
3960 struct pool_workqueue *pwq =
3961 per_cpu_ptr(wq->cpu_pwqs, cpu);
3962 struct worker_pool *cpu_pools =
3963 per_cpu(cpu_worker_pools, cpu);
3964
3965 init_pwq(pwq, wq, &cpu_pools[highpri]);
3966
3967 mutex_lock(&wq->mutex);
3968 link_pwq(pwq);
3969 mutex_unlock(&wq->mutex);
3970 }
3971 return 0;
3972 } else if (wq->flags & __WQ_ORDERED) {
3973 ret = apply_workqueue_attrs(wq, ordered_wq_attrs[highpri]);
3974 /* there should only be single pwq for ordering guarantee */
3975 WARN(!ret && (wq->pwqs.next != &wq->dfl_pwq->pwqs_node ||
3976 wq->pwqs.prev != &wq->dfl_pwq->pwqs_node),
3977 "ordering guarantee broken for workqueue %s\n", wq->name);
3978 return ret;
3979 } else {
3980 return apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]);
3981 }
3982 }
3983
3984 static int wq_clamp_max_active(int max_active, unsigned int flags,
3985 const char *name)
3986 {
3987 int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;
3988
3989 if (max_active < 1 || max_active > lim)
3990 pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
3991 max_active, name, 1, lim);
3992
3993 return clamp_val(max_active, 1, lim);
3994 }
3995
3996 struct workqueue_struct *__alloc_workqueue_key(const char *fmt,
3997 unsigned int flags,
3998 int max_active,
3999 struct lock_class_key *key,
4000 const char *lock_name, ...)
4001 {
4002 size_t tbl_size = 0;
4003 va_list args;
4004 struct workqueue_struct *wq;
4005 struct pool_workqueue *pwq;
4006
4007 /* see the comment above the definition of WQ_POWER_EFFICIENT */
4008 if ((flags & WQ_POWER_EFFICIENT) && wq_power_efficient)
4009 flags |= WQ_UNBOUND;
4010
4011 /* allocate wq and format name */
4012 if (flags & WQ_UNBOUND)
4013 tbl_size = nr_node_ids * sizeof(wq->numa_pwq_tbl[0]);
4014
4015 wq = kzalloc(sizeof(*wq) + tbl_size, GFP_KERNEL);
4016 if (!wq)
4017 return NULL;
4018
4019 if (flags & WQ_UNBOUND) {
4020 wq->unbound_attrs = alloc_workqueue_attrs(GFP_KERNEL);
4021 if (!wq->unbound_attrs)
4022 goto err_free_wq;
4023 }
4024
4025 va_start(args, lock_name);
4026 vsnprintf(wq->name, sizeof(wq->name), fmt, args);
4027 va_end(args);
4028
4029 max_active = max_active ?: WQ_DFL_ACTIVE;
4030 max_active = wq_clamp_max_active(max_active, flags, wq->name);
4031
4032 /* init wq */
4033 wq->flags = flags;
4034 wq->saved_max_active = max_active;
4035 mutex_init(&wq->mutex);
4036 atomic_set(&wq->nr_pwqs_to_flush, 0);
4037 INIT_LIST_HEAD(&wq->pwqs);
4038 INIT_LIST_HEAD(&wq->flusher_queue);
4039 INIT_LIST_HEAD(&wq->flusher_overflow);
4040 INIT_LIST_HEAD(&wq->maydays);
4041
4042 lockdep_init_map(&wq->lockdep_map, lock_name, key, 0);
4043 INIT_LIST_HEAD(&wq->list);
4044
4045 if (alloc_and_link_pwqs(wq) < 0)
4046 goto err_free_wq;
4047
4048 /*
4049 * Workqueues which may be used during memory reclaim should
4050 * have a rescuer to guarantee forward progress.
4051 */
4052 if (flags & WQ_MEM_RECLAIM) {
4053 struct worker *rescuer;
4054
4055 rescuer = alloc_worker(NUMA_NO_NODE);
4056 if (!rescuer)
4057 goto err_destroy;
4058
4059 rescuer->rescue_wq = wq;
4060 rescuer->task = kthread_create(rescuer_thread, rescuer, "%s",
4061 wq->name);
4062 if (IS_ERR(rescuer->task)) {
4063 kfree(rescuer);
4064 goto err_destroy;
4065 }
4066
4067 wq->rescuer = rescuer;
4068 rescuer->task->flags |= PF_NO_SETAFFINITY;
4069 wake_up_process(rescuer->task);
4070 }
4071
4072 if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq))
4073 goto err_destroy;
4074
4075 /*
4076 * wq_pool_mutex protects global freeze state and workqueues list.
4077 * Grab it, adjust max_active and add the new @wq to workqueues
4078 * list.
4079 */
4080 mutex_lock(&wq_pool_mutex);
4081
4082 mutex_lock(&wq->mutex);
4083 for_each_pwq(pwq, wq)
4084 pwq_adjust_max_active(pwq);
4085 mutex_unlock(&wq->mutex);
4086
4087 list_add(&wq->list, &workqueues);
4088
4089 mutex_unlock(&wq_pool_mutex);
4090
4091 return wq;
4092
4093 err_free_wq:
4094 free_workqueue_attrs(wq->unbound_attrs);
4095 kfree(wq);
4096 return NULL;
4097 err_destroy:
4098 destroy_workqueue(wq);
4099 return NULL;
4100 }
4101 EXPORT_SYMBOL_GPL(__alloc_workqueue_key);
4102
4103 /**
4104 * destroy_workqueue - safely terminate a workqueue
4105 * @wq: target workqueue
4106 *
4107 * Safely destroy a workqueue. All work currently pending will be done first.
4108 */
4109 void destroy_workqueue(struct workqueue_struct *wq)
4110 {
4111 struct pool_workqueue *pwq;
4112 int node;
4113
4114 /* drain it before proceeding with destruction */
4115 drain_workqueue(wq);
4116
4117 /* sanity checks */
4118 mutex_lock(&wq->mutex);
4119 for_each_pwq(pwq, wq) {
4120 int i;
4121
4122 for (i = 0; i < WORK_NR_COLORS; i++) {
4123 if (WARN_ON(pwq->nr_in_flight[i])) {
4124 mutex_unlock(&wq->mutex);
4125 return;
4126 }
4127 }
4128
4129 if (WARN_ON((pwq != wq->dfl_pwq) && (pwq->refcnt > 1)) ||
4130 WARN_ON(pwq->nr_active) ||
4131 WARN_ON(!list_empty(&pwq->delayed_works))) {
4132 mutex_unlock(&wq->mutex);
4133 return;
4134 }
4135 }
4136 mutex_unlock(&wq->mutex);
4137
4138 /*
4139 * wq list is used to freeze wq, remove from list after
4140 * flushing is complete in case freeze races us.
4141 */
4142 mutex_lock(&wq_pool_mutex);
4143 list_del_init(&wq->list);
4144 mutex_unlock(&wq_pool_mutex);
4145
4146 workqueue_sysfs_unregister(wq);
4147
4148 if (wq->rescuer) {
4149 kthread_stop(wq->rescuer->task);
4150 kfree(wq->rescuer);
4151 wq->rescuer = NULL;
4152 }
4153
4154 if (!(wq->flags & WQ_UNBOUND)) {
4155 /*
4156 * The base ref is never dropped on per-cpu pwqs. Directly
4157 * free the pwqs and wq.
4158 */
4159 free_percpu(wq->cpu_pwqs);
4160 kfree(wq);
4161 } else {
4162 /*
4163 * We're the sole accessor of @wq at this point. Directly
4164 * access numa_pwq_tbl[] and dfl_pwq to put the base refs.
4165 * @wq will be freed when the last pwq is released.
4166 */
4167 for_each_node(node) {
4168 pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
4169 RCU_INIT_POINTER(wq->numa_pwq_tbl[node], NULL);
4170 put_pwq_unlocked(pwq);
4171 }
4172
4173 /*
4174 * Put dfl_pwq. @wq may be freed any time after dfl_pwq is
4175 * put. Don't access it afterwards.
4176 */
4177 pwq = wq->dfl_pwq;
4178 wq->dfl_pwq = NULL;
4179 put_pwq_unlocked(pwq);
4180 }
4181 }
4182 EXPORT_SYMBOL_GPL(destroy_workqueue);
4183
4184 /**
4185 * workqueue_set_max_active - adjust max_active of a workqueue
4186 * @wq: target workqueue
4187 * @max_active: new max_active value.
4188 *
4189 * Set max_active of @wq to @max_active.
4190 *
4191 * CONTEXT:
4192 * Don't call from IRQ context.
4193 */
4194 void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
4195 {
4196 struct pool_workqueue *pwq;
4197
4198 /* disallow meddling with max_active for ordered workqueues */
4199 if (WARN_ON(wq->flags & __WQ_ORDERED))
4200 return;
4201
4202 max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
4203
4204 mutex_lock(&wq->mutex);
4205
4206 wq->saved_max_active = max_active;
4207
4208 for_each_pwq(pwq, wq)
4209 pwq_adjust_max_active(pwq);
4210
4211 mutex_unlock(&wq->mutex);
4212 }
4213 EXPORT_SYMBOL_GPL(workqueue_set_max_active);
4214
4215 /**
4216 * current_is_workqueue_rescuer - is %current workqueue rescuer?
4217 *
4218 * Determine whether %current is a workqueue rescuer. Can be used from
4219 * work functions to determine whether it's being run off the rescuer task.
4220 *
4221 * Return: %true if %current is a workqueue rescuer. %false otherwise.
4222 */
4223 bool current_is_workqueue_rescuer(void)
4224 {
4225 struct worker *worker = current_wq_worker();
4226
4227 return worker && worker->rescue_wq;
4228 }
4229
4230 /**
4231 * workqueue_congested - test whether a workqueue is congested
4232 * @cpu: CPU in question
4233 * @wq: target workqueue
4234 *
4235 * Test whether @wq's cpu workqueue for @cpu is congested. There is
4236 * no synchronization around this function and the test result is
4237 * unreliable and only useful as advisory hints or for debugging.
4238 *
4239 * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU.
4240 * Note that both per-cpu and unbound workqueues may be associated with
4241 * multiple pool_workqueues which have separate congested states. A
4242 * workqueue being congested on one CPU doesn't mean the workqueue is also
4243 * contested on other CPUs / NUMA nodes.
4244 *
4245 * Return:
4246 * %true if congested, %false otherwise.
4247 */
4248 bool workqueue_congested(int cpu, struct workqueue_struct *wq)
4249 {
4250 struct pool_workqueue *pwq;
4251 bool ret;
4252
4253 rcu_read_lock_sched();
4254
4255 if (cpu == WORK_CPU_UNBOUND)
4256 cpu = smp_processor_id();
4257
4258 if (!(wq->flags & WQ_UNBOUND))
4259 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
4260 else
4261 pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
4262
4263 ret = !list_empty(&pwq->delayed_works);
4264 rcu_read_unlock_sched();
4265
4266 return ret;
4267 }
4268 EXPORT_SYMBOL_GPL(workqueue_congested);
4269
4270 /**
4271 * work_busy - test whether a work is currently pending or running
4272 * @work: the work to be tested
4273 *
4274 * Test whether @work is currently pending or running. There is no
4275 * synchronization around this function and the test result is
4276 * unreliable and only useful as advisory hints or for debugging.
4277 *
4278 * Return:
4279 * OR'd bitmask of WORK_BUSY_* bits.
4280 */
4281 unsigned int work_busy(struct work_struct *work)
4282 {
4283 struct worker_pool *pool;
4284 unsigned long flags;
4285 unsigned int ret = 0;
4286
4287 if (work_pending(work))
4288 ret |= WORK_BUSY_PENDING;
4289
4290 local_irq_save(flags);
4291 pool = get_work_pool(work);
4292 if (pool) {
4293 spin_lock(&pool->lock);
4294 if (find_worker_executing_work(pool, work))
4295 ret |= WORK_BUSY_RUNNING;
4296 spin_unlock(&pool->lock);
4297 }
4298 local_irq_restore(flags);
4299
4300 return ret;
4301 }
4302 EXPORT_SYMBOL_GPL(work_busy);
4303
4304 /**
4305 * set_worker_desc - set description for the current work item
4306 * @fmt: printf-style format string
4307 * @...: arguments for the format string
4308 *
4309 * This function can be called by a running work function to describe what
4310 * the work item is about. If the worker task gets dumped, this
4311 * information will be printed out together to help debugging. The
4312 * description can be at most WORKER_DESC_LEN including the trailing '\0'.
4313 */
4314 void set_worker_desc(const char *fmt, ...)
4315 {
4316 struct worker *worker = current_wq_worker();
4317 va_list args;
4318
4319 if (worker) {
4320 va_start(args, fmt);
4321 vsnprintf(worker->desc, sizeof(worker->desc), fmt, args);
4322 va_end(args);
4323 worker->desc_valid = true;
4324 }
4325 }
4326
4327 /**
4328 * print_worker_info - print out worker information and description
4329 * @log_lvl: the log level to use when printing
4330 * @task: target task
4331 *
4332 * If @task is a worker and currently executing a work item, print out the
4333 * name of the workqueue being serviced and worker description set with
4334 * set_worker_desc() by the currently executing work item.
4335 *
4336 * This function can be safely called on any task as long as the
4337 * task_struct itself is accessible. While safe, this function isn't
4338 * synchronized and may print out mixups or garbages of limited length.
4339 */
4340 void print_worker_info(const char *log_lvl, struct task_struct *task)
4341 {
4342 work_func_t *fn = NULL;
4343 char name[WQ_NAME_LEN] = { };
4344 char desc[WORKER_DESC_LEN] = { };
4345 struct pool_workqueue *pwq = NULL;
4346 struct workqueue_struct *wq = NULL;
4347 bool desc_valid = false;
4348 struct worker *worker;
4349
4350 if (!(task->flags & PF_WQ_WORKER))
4351 return;
4352
4353 /*
4354 * This function is called without any synchronization and @task
4355 * could be in any state. Be careful with dereferences.
4356 */
4357 worker = probe_kthread_data(task);
4358
4359 /*
4360 * Carefully copy the associated workqueue's workfn and name. Keep
4361 * the original last '\0' in case the original contains garbage.
4362 */
4363 probe_kernel_read(&fn, &worker->current_func, sizeof(fn));
4364 probe_kernel_read(&pwq, &worker->current_pwq, sizeof(pwq));
4365 probe_kernel_read(&wq, &pwq->wq, sizeof(wq));
4366 probe_kernel_read(name, wq->name, sizeof(name) - 1);
4367
4368 /* copy worker description */
4369 probe_kernel_read(&desc_valid, &worker->desc_valid, sizeof(desc_valid));
4370 if (desc_valid)
4371 probe_kernel_read(desc, worker->desc, sizeof(desc) - 1);
4372
4373 if (fn || name[0] || desc[0]) {
4374 printk("%sWorkqueue: %s %pf", log_lvl, name, fn);
4375 if (desc[0])
4376 pr_cont(" (%s)", desc);
4377 pr_cont("\n");
4378 }
4379 }
4380
4381 /*
4382 * CPU hotplug.
4383 *
4384 * There are two challenges in supporting CPU hotplug. Firstly, there
4385 * are a lot of assumptions on strong associations among work, pwq and
4386 * pool which make migrating pending and scheduled works very
4387 * difficult to implement without impacting hot paths. Secondly,
4388 * worker pools serve mix of short, long and very long running works making
4389 * blocked draining impractical.
4390 *
4391 * This is solved by allowing the pools to be disassociated from the CPU
4392 * running as an unbound one and allowing it to be reattached later if the
4393 * cpu comes back online.
4394 */
4395
4396 static void wq_unbind_fn(struct work_struct *work)
4397 {
4398 int cpu = smp_processor_id();
4399 struct worker_pool *pool;
4400 struct worker *worker;
4401
4402 for_each_cpu_worker_pool(pool, cpu) {
4403 mutex_lock(&pool->attach_mutex);
4404 spin_lock_irq(&pool->lock);
4405
4406 /*
4407 * We've blocked all attach/detach operations. Make all workers
4408 * unbound and set DISASSOCIATED. Before this, all workers
4409 * except for the ones which are still executing works from
4410 * before the last CPU down must be on the cpu. After
4411 * this, they may become diasporas.
4412 */
4413 for_each_pool_worker(worker, pool)
4414 worker->flags |= WORKER_UNBOUND;
4415
4416 pool->flags |= POOL_DISASSOCIATED;
4417
4418 spin_unlock_irq(&pool->lock);
4419 mutex_unlock(&pool->attach_mutex);
4420
4421 /*
4422 * Call schedule() so that we cross rq->lock and thus can
4423 * guarantee sched callbacks see the %WORKER_UNBOUND flag.
4424 * This is necessary as scheduler callbacks may be invoked
4425 * from other cpus.
4426 */
4427 schedule();
4428
4429 /*
4430 * Sched callbacks are disabled now. Zap nr_running.
4431 * After this, nr_running stays zero and need_more_worker()
4432 * and keep_working() are always true as long as the
4433 * worklist is not empty. This pool now behaves as an
4434 * unbound (in terms of concurrency management) pool which
4435 * are served by workers tied to the pool.
4436 */
4437 atomic_set(&pool->nr_running, 0);
4438
4439 /*
4440 * With concurrency management just turned off, a busy
4441 * worker blocking could lead to lengthy stalls. Kick off
4442 * unbound chain execution of currently pending work items.
4443 */
4444 spin_lock_irq(&pool->lock);
4445 wake_up_worker(pool);
4446 spin_unlock_irq(&pool->lock);
4447 }
4448 }
4449
4450 /**
4451 * rebind_workers - rebind all workers of a pool to the associated CPU
4452 * @pool: pool of interest
4453 *
4454 * @pool->cpu is coming online. Rebind all workers to the CPU.
4455 */
4456 static void rebind_workers(struct worker_pool *pool)
4457 {
4458 struct worker *worker;
4459
4460 lockdep_assert_held(&pool->attach_mutex);
4461
4462 /*
4463 * Restore CPU affinity of all workers. As all idle workers should
4464 * be on the run-queue of the associated CPU before any local
4465 * wake-ups for concurrency management happen, restore CPU affinty
4466 * of all workers first and then clear UNBOUND. As we're called
4467 * from CPU_ONLINE, the following shouldn't fail.
4468 */
4469 for_each_pool_worker(worker, pool)
4470 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
4471 pool->attrs->cpumask) < 0);
4472
4473 spin_lock_irq(&pool->lock);
4474 pool->flags &= ~POOL_DISASSOCIATED;
4475
4476 for_each_pool_worker(worker, pool) {
4477 unsigned int worker_flags = worker->flags;
4478
4479 /*
4480 * A bound idle worker should actually be on the runqueue
4481 * of the associated CPU for local wake-ups targeting it to
4482 * work. Kick all idle workers so that they migrate to the
4483 * associated CPU. Doing this in the same loop as
4484 * replacing UNBOUND with REBOUND is safe as no worker will
4485 * be bound before @pool->lock is released.
4486 */
4487 if (worker_flags & WORKER_IDLE)
4488 wake_up_process(worker->task);
4489
4490 /*
4491 * We want to clear UNBOUND but can't directly call
4492 * worker_clr_flags() or adjust nr_running. Atomically
4493 * replace UNBOUND with another NOT_RUNNING flag REBOUND.
4494 * @worker will clear REBOUND using worker_clr_flags() when
4495 * it initiates the next execution cycle thus restoring
4496 * concurrency management. Note that when or whether
4497 * @worker clears REBOUND doesn't affect correctness.
4498 *
4499 * ACCESS_ONCE() is necessary because @worker->flags may be
4500 * tested without holding any lock in
4501 * wq_worker_waking_up(). Without it, NOT_RUNNING test may
4502 * fail incorrectly leading to premature concurrency
4503 * management operations.
4504 */
4505 WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND));
4506 worker_flags |= WORKER_REBOUND;
4507 worker_flags &= ~WORKER_UNBOUND;
4508 ACCESS_ONCE(worker->flags) = worker_flags;
4509 }
4510
4511 spin_unlock_irq(&pool->lock);
4512 }
4513
4514 /**
4515 * restore_unbound_workers_cpumask - restore cpumask of unbound workers
4516 * @pool: unbound pool of interest
4517 * @cpu: the CPU which is coming up
4518 *
4519 * An unbound pool may end up with a cpumask which doesn't have any online
4520 * CPUs. When a worker of such pool get scheduled, the scheduler resets
4521 * its cpus_allowed. If @cpu is in @pool's cpumask which didn't have any
4522 * online CPU before, cpus_allowed of all its workers should be restored.
4523 */
4524 static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu)
4525 {
4526 static cpumask_t cpumask;
4527 struct worker *worker;
4528
4529 lockdep_assert_held(&pool->attach_mutex);
4530
4531 /* is @cpu allowed for @pool? */
4532 if (!cpumask_test_cpu(cpu, pool->attrs->cpumask))
4533 return;
4534
4535 /* is @cpu the only online CPU? */
4536 cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask);
4537 if (cpumask_weight(&cpumask) != 1)
4538 return;
4539
4540 /* as we're called from CPU_ONLINE, the following shouldn't fail */
4541 for_each_pool_worker(worker, pool)
4542 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
4543 pool->attrs->cpumask) < 0);
4544 }
4545
4546 /*
4547 * Workqueues should be brought up before normal priority CPU notifiers.
4548 * This will be registered high priority CPU notifier.
4549 */
4550 static int workqueue_cpu_up_callback(struct notifier_block *nfb,
4551 unsigned long action,
4552 void *hcpu)
4553 {
4554 int cpu = (unsigned long)hcpu;
4555 struct worker_pool *pool;
4556 struct workqueue_struct *wq;
4557 int pi;
4558
4559 switch (action & ~CPU_TASKS_FROZEN) {
4560 case CPU_UP_PREPARE:
4561 for_each_cpu_worker_pool(pool, cpu) {
4562 if (pool->nr_workers)
4563 continue;
4564 if (!create_worker(pool))
4565 return NOTIFY_BAD;
4566 }
4567 break;
4568
4569 case CPU_DOWN_FAILED:
4570 case CPU_ONLINE:
4571 mutex_lock(&wq_pool_mutex);
4572
4573 for_each_pool(pool, pi) {
4574 mutex_lock(&pool->attach_mutex);
4575
4576 if (pool->cpu == cpu) {
4577 rebind_workers(pool);
4578 } else if (pool->cpu < 0) {
4579 restore_unbound_workers_cpumask(pool, cpu);
4580 }
4581
4582 mutex_unlock(&pool->attach_mutex);
4583 }
4584
4585 /* update NUMA affinity of unbound workqueues */
4586 list_for_each_entry(wq, &workqueues, list)
4587 wq_update_unbound_numa(wq, cpu, true);
4588
4589 mutex_unlock(&wq_pool_mutex);
4590 break;
4591 }
4592 return NOTIFY_OK;
4593 }
4594
4595 /*
4596 * Workqueues should be brought down after normal priority CPU notifiers.
4597 * This will be registered as low priority CPU notifier.
4598 */
4599 static int workqueue_cpu_down_callback(struct notifier_block *nfb,
4600 unsigned long action,
4601 void *hcpu)
4602 {
4603 int cpu = (unsigned long)hcpu;
4604 struct work_struct unbind_work;
4605 struct workqueue_struct *wq;
4606
4607 switch (action & ~CPU_TASKS_FROZEN) {
4608 case CPU_DOWN_PREPARE:
4609 /* unbinding per-cpu workers should happen on the local CPU */
4610 INIT_WORK_ONSTACK(&unbind_work, wq_unbind_fn);
4611 queue_work_on(cpu, system_highpri_wq, &unbind_work);
4612
4613 /* update NUMA affinity of unbound workqueues */
4614 mutex_lock(&wq_pool_mutex);
4615 list_for_each_entry(wq, &workqueues, list)
4616 wq_update_unbound_numa(wq, cpu, false);
4617 mutex_unlock(&wq_pool_mutex);
4618
4619 /* wait for per-cpu unbinding to finish */
4620 flush_work(&unbind_work);
4621 destroy_work_on_stack(&unbind_work);
4622 break;
4623 }
4624 return NOTIFY_OK;
4625 }
4626
4627 #ifdef CONFIG_SMP
4628
4629 struct work_for_cpu {
4630 struct work_struct work;
4631 long (*fn)(void *);
4632 void *arg;
4633 long ret;
4634 };
4635
4636 static void work_for_cpu_fn(struct work_struct *work)
4637 {
4638 struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);
4639
4640 wfc->ret = wfc->fn(wfc->arg);
4641 }
4642
4643 /**
4644 * work_on_cpu - run a function in user context on a particular cpu
4645 * @cpu: the cpu to run on
4646 * @fn: the function to run
4647 * @arg: the function arg
4648 *
4649 * It is up to the caller to ensure that the cpu doesn't go offline.
4650 * The caller must not hold any locks which would prevent @fn from completing.
4651 *
4652 * Return: The value @fn returns.
4653 */
4654 long work_on_cpu(int cpu, long (*fn)(void *), void *arg)
4655 {
4656 struct work_for_cpu wfc = { .fn = fn, .arg = arg };
4657
4658 INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn);
4659 schedule_work_on(cpu, &wfc.work);
4660 flush_work(&wfc.work);
4661 destroy_work_on_stack(&wfc.work);
4662 return wfc.ret;
4663 }
4664 EXPORT_SYMBOL_GPL(work_on_cpu);
4665 #endif /* CONFIG_SMP */
4666
4667 #ifdef CONFIG_FREEZER
4668
4669 /**
4670 * freeze_workqueues_begin - begin freezing workqueues
4671 *
4672 * Start freezing workqueues. After this function returns, all freezable
4673 * workqueues will queue new works to their delayed_works list instead of
4674 * pool->worklist.
4675 *
4676 * CONTEXT:
4677 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
4678 */
4679 void freeze_workqueues_begin(void)
4680 {
4681 struct workqueue_struct *wq;
4682 struct pool_workqueue *pwq;
4683
4684 mutex_lock(&wq_pool_mutex);
4685
4686 WARN_ON_ONCE(workqueue_freezing);
4687 workqueue_freezing = true;
4688
4689 list_for_each_entry(wq, &workqueues, list) {
4690 mutex_lock(&wq->mutex);
4691 for_each_pwq(pwq, wq)
4692 pwq_adjust_max_active(pwq);
4693 mutex_unlock(&wq->mutex);
4694 }
4695
4696 mutex_unlock(&wq_pool_mutex);
4697 }
4698
4699 /**
4700 * freeze_workqueues_busy - are freezable workqueues still busy?
4701 *
4702 * Check whether freezing is complete. This function must be called
4703 * between freeze_workqueues_begin() and thaw_workqueues().
4704 *
4705 * CONTEXT:
4706 * Grabs and releases wq_pool_mutex.
4707 *
4708 * Return:
4709 * %true if some freezable workqueues are still busy. %false if freezing
4710 * is complete.
4711 */
4712 bool freeze_workqueues_busy(void)
4713 {
4714 bool busy = false;
4715 struct workqueue_struct *wq;
4716 struct pool_workqueue *pwq;
4717
4718 mutex_lock(&wq_pool_mutex);
4719
4720 WARN_ON_ONCE(!workqueue_freezing);
4721
4722 list_for_each_entry(wq, &workqueues, list) {
4723 if (!(wq->flags & WQ_FREEZABLE))
4724 continue;
4725 /*
4726 * nr_active is monotonically decreasing. It's safe
4727 * to peek without lock.
4728 */
4729 rcu_read_lock_sched();
4730 for_each_pwq(pwq, wq) {
4731 WARN_ON_ONCE(pwq->nr_active < 0);
4732 if (pwq->nr_active) {
4733 busy = true;
4734 rcu_read_unlock_sched();
4735 goto out_unlock;
4736 }
4737 }
4738 rcu_read_unlock_sched();
4739 }
4740 out_unlock:
4741 mutex_unlock(&wq_pool_mutex);
4742 return busy;
4743 }
4744
4745 /**
4746 * thaw_workqueues - thaw workqueues
4747 *
4748 * Thaw workqueues. Normal queueing is restored and all collected
4749 * frozen works are transferred to their respective pool worklists.
4750 *
4751 * CONTEXT:
4752 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
4753 */
4754 void thaw_workqueues(void)
4755 {
4756 struct workqueue_struct *wq;
4757 struct pool_workqueue *pwq;
4758
4759 mutex_lock(&wq_pool_mutex);
4760
4761 if (!workqueue_freezing)
4762 goto out_unlock;
4763
4764 workqueue_freezing = false;
4765
4766 /* restore max_active and repopulate worklist */
4767 list_for_each_entry(wq, &workqueues, list) {
4768 mutex_lock(&wq->mutex);
4769 for_each_pwq(pwq, wq)
4770 pwq_adjust_max_active(pwq);
4771 mutex_unlock(&wq->mutex);
4772 }
4773
4774 out_unlock:
4775 mutex_unlock(&wq_pool_mutex);
4776 }
4777 #endif /* CONFIG_FREEZER */
4778
4779 static void __init wq_numa_init(void)
4780 {
4781 cpumask_var_t *tbl;
4782 int node, cpu;
4783
4784 if (num_possible_nodes() <= 1)
4785 return;
4786
4787 if (wq_disable_numa) {
4788 pr_info("workqueue: NUMA affinity support disabled\n");
4789 return;
4790 }
4791
4792 wq_update_unbound_numa_attrs_buf = alloc_workqueue_attrs(GFP_KERNEL);
4793 BUG_ON(!wq_update_unbound_numa_attrs_buf);
4794
4795 /*
4796 * We want masks of possible CPUs of each node which isn't readily
4797 * available. Build one from cpu_to_node() which should have been
4798 * fully initialized by now.
4799 */
4800 tbl = kzalloc(nr_node_ids * sizeof(tbl[0]), GFP_KERNEL);
4801 BUG_ON(!tbl);
4802
4803 for_each_node(node)
4804 BUG_ON(!alloc_cpumask_var_node(&tbl[node], GFP_KERNEL,
4805 node_online(node) ? node : NUMA_NO_NODE));
4806
4807 for_each_possible_cpu(cpu) {
4808 node = cpu_to_node(cpu);
4809 if (WARN_ON(node == NUMA_NO_NODE)) {
4810 pr_warn("workqueue: NUMA node mapping not available for cpu%d, disabling NUMA support\n", cpu);
4811 /* happens iff arch is bonkers, let's just proceed */
4812 return;
4813 }
4814 cpumask_set_cpu(cpu, tbl[node]);
4815 }
4816
4817 wq_numa_possible_cpumask = tbl;
4818 wq_numa_enabled = true;
4819 }
4820
4821 static int __init init_workqueues(void)
4822 {
4823 int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL };
4824 int i, cpu;
4825
4826 WARN_ON(__alignof__(struct pool_workqueue) < __alignof__(long long));
4827
4828 pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC);
4829
4830 cpu_notifier(workqueue_cpu_up_callback, CPU_PRI_WORKQUEUE_UP);
4831 hotcpu_notifier(workqueue_cpu_down_callback, CPU_PRI_WORKQUEUE_DOWN);
4832
4833 wq_numa_init();
4834
4835 /* initialize CPU pools */
4836 for_each_possible_cpu(cpu) {
4837 struct worker_pool *pool;
4838
4839 i = 0;
4840 for_each_cpu_worker_pool(pool, cpu) {
4841 BUG_ON(init_worker_pool(pool));
4842 pool->cpu = cpu;
4843 cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu));
4844 pool->attrs->nice = std_nice[i++];
4845 pool->node = cpu_to_node(cpu);
4846
4847 /* alloc pool ID */
4848 mutex_lock(&wq_pool_mutex);
4849 BUG_ON(worker_pool_assign_id(pool));
4850 mutex_unlock(&wq_pool_mutex);
4851 }
4852 }
4853
4854 /* create the initial worker */
4855 for_each_online_cpu(cpu) {
4856 struct worker_pool *pool;
4857
4858 for_each_cpu_worker_pool(pool, cpu) {
4859 pool->flags &= ~POOL_DISASSOCIATED;
4860 BUG_ON(!create_worker(pool));
4861 }
4862 }
4863
4864 /* create default unbound and ordered wq attrs */
4865 for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
4866 struct workqueue_attrs *attrs;
4867
4868 BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
4869 attrs->nice = std_nice[i];
4870 unbound_std_wq_attrs[i] = attrs;
4871
4872 /*
4873 * An ordered wq should have only one pwq as ordering is
4874 * guaranteed by max_active which is enforced by pwqs.
4875 * Turn off NUMA so that dfl_pwq is used for all nodes.
4876 */
4877 BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
4878 attrs->nice = std_nice[i];
4879 attrs->no_numa = true;
4880 ordered_wq_attrs[i] = attrs;
4881 }
4882
4883 system_wq = alloc_workqueue("events", 0, 0);
4884 system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
4885 system_long_wq = alloc_workqueue("events_long", 0, 0);
4886 system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
4887 WQ_UNBOUND_MAX_ACTIVE);
4888 system_freezable_wq = alloc_workqueue("events_freezable",
4889 WQ_FREEZABLE, 0);
4890 system_power_efficient_wq = alloc_workqueue("events_power_efficient",
4891 WQ_POWER_EFFICIENT, 0);
4892 system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_power_efficient",
4893 WQ_FREEZABLE | WQ_POWER_EFFICIENT,
4894 0);
4895 BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
4896 !system_unbound_wq || !system_freezable_wq ||
4897 !system_power_efficient_wq ||
4898 !system_freezable_power_efficient_wq);
4899 return 0;
4900 }
4901 early_initcall(init_workqueues);