]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - kernel/workqueue.c
44fc54b7decf9d17ccef37ecdc05b985a0ac289d
[mirror_ubuntu-jammy-kernel.git] / kernel / workqueue.c
1 /*
2 * linux/kernel/workqueue.c
3 *
4 * Generic mechanism for defining kernel helper threads for running
5 * arbitrary tasks in process context.
6 *
7 * Started by Ingo Molnar, Copyright (C) 2002
8 *
9 * Derived from the taskqueue/keventd code by:
10 *
11 * David Woodhouse <dwmw2@infradead.org>
12 * Andrew Morton <andrewm@uow.edu.au>
13 * Kai Petzke <wpp@marie.physik.tu-berlin.de>
14 * Theodore Ts'o <tytso@mit.edu>
15 *
16 * Made to use alloc_percpu by Christoph Lameter <clameter@sgi.com>.
17 */
18
19 #include <linux/module.h>
20 #include <linux/kernel.h>
21 #include <linux/sched.h>
22 #include <linux/init.h>
23 #include <linux/signal.h>
24 #include <linux/completion.h>
25 #include <linux/workqueue.h>
26 #include <linux/slab.h>
27 #include <linux/cpu.h>
28 #include <linux/notifier.h>
29 #include <linux/kthread.h>
30 #include <linux/hardirq.h>
31 #include <linux/mempolicy.h>
32
33 /*
34 * The per-CPU workqueue (if single thread, we always use the first
35 * possible cpu).
36 *
37 * The sequence counters are for flush_scheduled_work(). It wants to wait
38 * until all currently-scheduled works are completed, but it doesn't
39 * want to be livelocked by new, incoming ones. So it waits until
40 * remove_sequence is >= the insert_sequence which pertained when
41 * flush_scheduled_work() was called.
42 */
43 struct cpu_workqueue_struct {
44
45 spinlock_t lock;
46
47 long remove_sequence; /* Least-recently added (next to run) */
48 long insert_sequence; /* Next to add */
49
50 struct list_head worklist;
51 wait_queue_head_t more_work;
52 wait_queue_head_t work_done;
53
54 struct workqueue_struct *wq;
55 struct task_struct *thread;
56
57 int run_depth; /* Detect run_workqueue() recursion depth */
58 } ____cacheline_aligned;
59
60 /*
61 * The externally visible workqueue abstraction is an array of
62 * per-CPU workqueues:
63 */
64 struct workqueue_struct {
65 struct cpu_workqueue_struct *cpu_wq;
66 const char *name;
67 struct list_head list; /* Empty if single thread */
68 };
69
70 /* All the per-cpu workqueues on the system, for hotplug cpu to add/remove
71 threads to each one as cpus come/go. */
72 static DEFINE_MUTEX(workqueue_mutex);
73 static LIST_HEAD(workqueues);
74
75 static int singlethread_cpu;
76
77 /* If it's single threaded, it isn't in the list of workqueues. */
78 static inline int is_single_threaded(struct workqueue_struct *wq)
79 {
80 return list_empty(&wq->list);
81 }
82
83 /* Preempt must be disabled. */
84 static void __queue_work(struct cpu_workqueue_struct *cwq,
85 struct work_struct *work)
86 {
87 unsigned long flags;
88
89 spin_lock_irqsave(&cwq->lock, flags);
90 work->wq_data = cwq;
91 list_add_tail(&work->entry, &cwq->worklist);
92 cwq->insert_sequence++;
93 wake_up(&cwq->more_work);
94 spin_unlock_irqrestore(&cwq->lock, flags);
95 }
96
97 /**
98 * queue_work - queue work on a workqueue
99 * @wq: workqueue to use
100 * @work: work to queue
101 *
102 * Returns 0 if @work was already on a queue, non-zero otherwise.
103 *
104 * We queue the work to the CPU it was submitted, but there is no
105 * guarantee that it will be processed by that CPU.
106 */
107 int fastcall queue_work(struct workqueue_struct *wq, struct work_struct *work)
108 {
109 int ret = 0, cpu = get_cpu();
110
111 if (!test_and_set_bit(0, &work->pending)) {
112 if (unlikely(is_single_threaded(wq)))
113 cpu = singlethread_cpu;
114 BUG_ON(!list_empty(&work->entry));
115 __queue_work(per_cpu_ptr(wq->cpu_wq, cpu), work);
116 ret = 1;
117 }
118 put_cpu();
119 return ret;
120 }
121 EXPORT_SYMBOL_GPL(queue_work);
122
123 static void delayed_work_timer_fn(unsigned long __data)
124 {
125 struct delayed_work *dwork = (struct delayed_work *)__data;
126 struct workqueue_struct *wq = dwork->work.wq_data;
127 int cpu = smp_processor_id();
128
129 if (unlikely(is_single_threaded(wq)))
130 cpu = singlethread_cpu;
131
132 __queue_work(per_cpu_ptr(wq->cpu_wq, cpu), &dwork->work);
133 }
134
135 /**
136 * queue_delayed_work - queue work on a workqueue after delay
137 * @wq: workqueue to use
138 * @work: delayable work to queue
139 * @delay: number of jiffies to wait before queueing
140 *
141 * Returns 0 if @work was already on a queue, non-zero otherwise.
142 */
143 int fastcall queue_delayed_work(struct workqueue_struct *wq,
144 struct delayed_work *dwork, unsigned long delay)
145 {
146 int ret = 0;
147 struct timer_list *timer = &dwork->timer;
148 struct work_struct *work = &dwork->work;
149
150 if (delay == 0)
151 return queue_work(wq, work);
152
153 if (!test_and_set_bit(0, &work->pending)) {
154 BUG_ON(timer_pending(timer));
155 BUG_ON(!list_empty(&work->entry));
156
157 /* This stores wq for the moment, for the timer_fn */
158 work->wq_data = wq;
159 timer->expires = jiffies + delay;
160 timer->data = (unsigned long)dwork;
161 timer->function = delayed_work_timer_fn;
162 add_timer(timer);
163 ret = 1;
164 }
165 return ret;
166 }
167 EXPORT_SYMBOL_GPL(queue_delayed_work);
168
169 /**
170 * queue_delayed_work_on - queue work on specific CPU after delay
171 * @cpu: CPU number to execute work on
172 * @wq: workqueue to use
173 * @work: work to queue
174 * @delay: number of jiffies to wait before queueing
175 *
176 * Returns 0 if @work was already on a queue, non-zero otherwise.
177 */
178 int queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
179 struct delayed_work *dwork, unsigned long delay)
180 {
181 int ret = 0;
182 struct timer_list *timer = &dwork->timer;
183 struct work_struct *work = &dwork->work;
184
185 if (!test_and_set_bit(0, &work->pending)) {
186 BUG_ON(timer_pending(timer));
187 BUG_ON(!list_empty(&work->entry));
188
189 /* This stores wq for the moment, for the timer_fn */
190 work->wq_data = wq;
191 timer->expires = jiffies + delay;
192 timer->data = (unsigned long)dwork;
193 timer->function = delayed_work_timer_fn;
194 add_timer_on(timer, cpu);
195 ret = 1;
196 }
197 return ret;
198 }
199 EXPORT_SYMBOL_GPL(queue_delayed_work_on);
200
201 static void run_workqueue(struct cpu_workqueue_struct *cwq)
202 {
203 unsigned long flags;
204
205 /*
206 * Keep taking off work from the queue until
207 * done.
208 */
209 spin_lock_irqsave(&cwq->lock, flags);
210 cwq->run_depth++;
211 if (cwq->run_depth > 3) {
212 /* morton gets to eat his hat */
213 printk("%s: recursion depth exceeded: %d\n",
214 __FUNCTION__, cwq->run_depth);
215 dump_stack();
216 }
217 while (!list_empty(&cwq->worklist)) {
218 struct work_struct *work = list_entry(cwq->worklist.next,
219 struct work_struct, entry);
220 void (*f) (void *) = work->func;
221 void *data = work->data;
222
223 list_del_init(cwq->worklist.next);
224 spin_unlock_irqrestore(&cwq->lock, flags);
225
226 BUG_ON(work->wq_data != cwq);
227 clear_bit(0, &work->pending);
228 f(data);
229
230 spin_lock_irqsave(&cwq->lock, flags);
231 cwq->remove_sequence++;
232 wake_up(&cwq->work_done);
233 }
234 cwq->run_depth--;
235 spin_unlock_irqrestore(&cwq->lock, flags);
236 }
237
238 static int worker_thread(void *__cwq)
239 {
240 struct cpu_workqueue_struct *cwq = __cwq;
241 DECLARE_WAITQUEUE(wait, current);
242 struct k_sigaction sa;
243 sigset_t blocked;
244
245 current->flags |= PF_NOFREEZE;
246
247 set_user_nice(current, -5);
248
249 /* Block and flush all signals */
250 sigfillset(&blocked);
251 sigprocmask(SIG_BLOCK, &blocked, NULL);
252 flush_signals(current);
253
254 /*
255 * We inherited MPOL_INTERLEAVE from the booting kernel.
256 * Set MPOL_DEFAULT to insure node local allocations.
257 */
258 numa_default_policy();
259
260 /* SIG_IGN makes children autoreap: see do_notify_parent(). */
261 sa.sa.sa_handler = SIG_IGN;
262 sa.sa.sa_flags = 0;
263 siginitset(&sa.sa.sa_mask, sigmask(SIGCHLD));
264 do_sigaction(SIGCHLD, &sa, (struct k_sigaction *)0);
265
266 set_current_state(TASK_INTERRUPTIBLE);
267 while (!kthread_should_stop()) {
268 add_wait_queue(&cwq->more_work, &wait);
269 if (list_empty(&cwq->worklist))
270 schedule();
271 else
272 __set_current_state(TASK_RUNNING);
273 remove_wait_queue(&cwq->more_work, &wait);
274
275 if (!list_empty(&cwq->worklist))
276 run_workqueue(cwq);
277 set_current_state(TASK_INTERRUPTIBLE);
278 }
279 __set_current_state(TASK_RUNNING);
280 return 0;
281 }
282
283 static void flush_cpu_workqueue(struct cpu_workqueue_struct *cwq)
284 {
285 if (cwq->thread == current) {
286 /*
287 * Probably keventd trying to flush its own queue. So simply run
288 * it by hand rather than deadlocking.
289 */
290 run_workqueue(cwq);
291 } else {
292 DEFINE_WAIT(wait);
293 long sequence_needed;
294
295 spin_lock_irq(&cwq->lock);
296 sequence_needed = cwq->insert_sequence;
297
298 while (sequence_needed - cwq->remove_sequence > 0) {
299 prepare_to_wait(&cwq->work_done, &wait,
300 TASK_UNINTERRUPTIBLE);
301 spin_unlock_irq(&cwq->lock);
302 schedule();
303 spin_lock_irq(&cwq->lock);
304 }
305 finish_wait(&cwq->work_done, &wait);
306 spin_unlock_irq(&cwq->lock);
307 }
308 }
309
310 /**
311 * flush_workqueue - ensure that any scheduled work has run to completion.
312 * @wq: workqueue to flush
313 *
314 * Forces execution of the workqueue and blocks until its completion.
315 * This is typically used in driver shutdown handlers.
316 *
317 * This function will sample each workqueue's current insert_sequence number and
318 * will sleep until the head sequence is greater than or equal to that. This
319 * means that we sleep until all works which were queued on entry have been
320 * handled, but we are not livelocked by new incoming ones.
321 *
322 * This function used to run the workqueues itself. Now we just wait for the
323 * helper threads to do it.
324 */
325 void fastcall flush_workqueue(struct workqueue_struct *wq)
326 {
327 might_sleep();
328
329 if (is_single_threaded(wq)) {
330 /* Always use first cpu's area. */
331 flush_cpu_workqueue(per_cpu_ptr(wq->cpu_wq, singlethread_cpu));
332 } else {
333 int cpu;
334
335 mutex_lock(&workqueue_mutex);
336 for_each_online_cpu(cpu)
337 flush_cpu_workqueue(per_cpu_ptr(wq->cpu_wq, cpu));
338 mutex_unlock(&workqueue_mutex);
339 }
340 }
341 EXPORT_SYMBOL_GPL(flush_workqueue);
342
343 static struct task_struct *create_workqueue_thread(struct workqueue_struct *wq,
344 int cpu)
345 {
346 struct cpu_workqueue_struct *cwq = per_cpu_ptr(wq->cpu_wq, cpu);
347 struct task_struct *p;
348
349 spin_lock_init(&cwq->lock);
350 cwq->wq = wq;
351 cwq->thread = NULL;
352 cwq->insert_sequence = 0;
353 cwq->remove_sequence = 0;
354 INIT_LIST_HEAD(&cwq->worklist);
355 init_waitqueue_head(&cwq->more_work);
356 init_waitqueue_head(&cwq->work_done);
357
358 if (is_single_threaded(wq))
359 p = kthread_create(worker_thread, cwq, "%s", wq->name);
360 else
361 p = kthread_create(worker_thread, cwq, "%s/%d", wq->name, cpu);
362 if (IS_ERR(p))
363 return NULL;
364 cwq->thread = p;
365 return p;
366 }
367
368 struct workqueue_struct *__create_workqueue(const char *name,
369 int singlethread)
370 {
371 int cpu, destroy = 0;
372 struct workqueue_struct *wq;
373 struct task_struct *p;
374
375 wq = kzalloc(sizeof(*wq), GFP_KERNEL);
376 if (!wq)
377 return NULL;
378
379 wq->cpu_wq = alloc_percpu(struct cpu_workqueue_struct);
380 if (!wq->cpu_wq) {
381 kfree(wq);
382 return NULL;
383 }
384
385 wq->name = name;
386 mutex_lock(&workqueue_mutex);
387 if (singlethread) {
388 INIT_LIST_HEAD(&wq->list);
389 p = create_workqueue_thread(wq, singlethread_cpu);
390 if (!p)
391 destroy = 1;
392 else
393 wake_up_process(p);
394 } else {
395 list_add(&wq->list, &workqueues);
396 for_each_online_cpu(cpu) {
397 p = create_workqueue_thread(wq, cpu);
398 if (p) {
399 kthread_bind(p, cpu);
400 wake_up_process(p);
401 } else
402 destroy = 1;
403 }
404 }
405 mutex_unlock(&workqueue_mutex);
406
407 /*
408 * Was there any error during startup? If yes then clean up:
409 */
410 if (destroy) {
411 destroy_workqueue(wq);
412 wq = NULL;
413 }
414 return wq;
415 }
416 EXPORT_SYMBOL_GPL(__create_workqueue);
417
418 static void cleanup_workqueue_thread(struct workqueue_struct *wq, int cpu)
419 {
420 struct cpu_workqueue_struct *cwq;
421 unsigned long flags;
422 struct task_struct *p;
423
424 cwq = per_cpu_ptr(wq->cpu_wq, cpu);
425 spin_lock_irqsave(&cwq->lock, flags);
426 p = cwq->thread;
427 cwq->thread = NULL;
428 spin_unlock_irqrestore(&cwq->lock, flags);
429 if (p)
430 kthread_stop(p);
431 }
432
433 /**
434 * destroy_workqueue - safely terminate a workqueue
435 * @wq: target workqueue
436 *
437 * Safely destroy a workqueue. All work currently pending will be done first.
438 */
439 void destroy_workqueue(struct workqueue_struct *wq)
440 {
441 int cpu;
442
443 flush_workqueue(wq);
444
445 /* We don't need the distraction of CPUs appearing and vanishing. */
446 mutex_lock(&workqueue_mutex);
447 if (is_single_threaded(wq))
448 cleanup_workqueue_thread(wq, singlethread_cpu);
449 else {
450 for_each_online_cpu(cpu)
451 cleanup_workqueue_thread(wq, cpu);
452 list_del(&wq->list);
453 }
454 mutex_unlock(&workqueue_mutex);
455 free_percpu(wq->cpu_wq);
456 kfree(wq);
457 }
458 EXPORT_SYMBOL_GPL(destroy_workqueue);
459
460 static struct workqueue_struct *keventd_wq;
461
462 /**
463 * schedule_work - put work task in global workqueue
464 * @work: job to be done
465 *
466 * This puts a job in the kernel-global workqueue.
467 */
468 int fastcall schedule_work(struct work_struct *work)
469 {
470 return queue_work(keventd_wq, work);
471 }
472 EXPORT_SYMBOL(schedule_work);
473
474 /**
475 * schedule_delayed_work - put work task in global workqueue after delay
476 * @dwork: job to be done
477 * @delay: number of jiffies to wait or 0 for immediate execution
478 *
479 * After waiting for a given time this puts a job in the kernel-global
480 * workqueue.
481 */
482 int fastcall schedule_delayed_work(struct delayed_work *dwork, unsigned long delay)
483 {
484 return queue_delayed_work(keventd_wq, dwork, delay);
485 }
486 EXPORT_SYMBOL(schedule_delayed_work);
487
488 /**
489 * schedule_delayed_work_on - queue work in global workqueue on CPU after delay
490 * @cpu: cpu to use
491 * @dwork: job to be done
492 * @delay: number of jiffies to wait
493 *
494 * After waiting for a given time this puts a job in the kernel-global
495 * workqueue on the specified CPU.
496 */
497 int schedule_delayed_work_on(int cpu,
498 struct delayed_work *dwork, unsigned long delay)
499 {
500 return queue_delayed_work_on(cpu, keventd_wq, dwork, delay);
501 }
502 EXPORT_SYMBOL(schedule_delayed_work_on);
503
504 /**
505 * schedule_on_each_cpu - call a function on each online CPU from keventd
506 * @func: the function to call
507 * @info: a pointer to pass to func()
508 *
509 * Returns zero on success.
510 * Returns -ve errno on failure.
511 *
512 * Appears to be racy against CPU hotplug.
513 *
514 * schedule_on_each_cpu() is very slow.
515 */
516 int schedule_on_each_cpu(void (*func)(void *info), void *info)
517 {
518 int cpu;
519 struct work_struct *works;
520
521 works = alloc_percpu(struct work_struct);
522 if (!works)
523 return -ENOMEM;
524
525 mutex_lock(&workqueue_mutex);
526 for_each_online_cpu(cpu) {
527 INIT_WORK(per_cpu_ptr(works, cpu), func, info);
528 __queue_work(per_cpu_ptr(keventd_wq->cpu_wq, cpu),
529 per_cpu_ptr(works, cpu));
530 }
531 mutex_unlock(&workqueue_mutex);
532 flush_workqueue(keventd_wq);
533 free_percpu(works);
534 return 0;
535 }
536
537 void flush_scheduled_work(void)
538 {
539 flush_workqueue(keventd_wq);
540 }
541 EXPORT_SYMBOL(flush_scheduled_work);
542
543 /**
544 * cancel_rearming_delayed_workqueue - reliably kill off a delayed
545 * work whose handler rearms the delayed work.
546 * @wq: the controlling workqueue structure
547 * @dwork: the delayed work struct
548 */
549 void cancel_rearming_delayed_workqueue(struct workqueue_struct *wq,
550 struct delayed_work *dwork)
551 {
552 while (!cancel_delayed_work(dwork))
553 flush_workqueue(wq);
554 }
555 EXPORT_SYMBOL(cancel_rearming_delayed_workqueue);
556
557 /**
558 * cancel_rearming_delayed_work - reliably kill off a delayed keventd
559 * work whose handler rearms the delayed work.
560 * @dwork: the delayed work struct
561 */
562 void cancel_rearming_delayed_work(struct delayed_work *dwork)
563 {
564 cancel_rearming_delayed_workqueue(keventd_wq, dwork);
565 }
566 EXPORT_SYMBOL(cancel_rearming_delayed_work);
567
568 /**
569 * execute_in_process_context - reliably execute the routine with user context
570 * @fn: the function to execute
571 * @data: data to pass to the function
572 * @ew: guaranteed storage for the execute work structure (must
573 * be available when the work executes)
574 *
575 * Executes the function immediately if process context is available,
576 * otherwise schedules the function for delayed execution.
577 *
578 * Returns: 0 - function was executed
579 * 1 - function was scheduled for execution
580 */
581 int execute_in_process_context(void (*fn)(void *data), void *data,
582 struct execute_work *ew)
583 {
584 if (!in_interrupt()) {
585 fn(data);
586 return 0;
587 }
588
589 INIT_WORK(&ew->work, fn, data);
590 schedule_work(&ew->work);
591
592 return 1;
593 }
594 EXPORT_SYMBOL_GPL(execute_in_process_context);
595
596 int keventd_up(void)
597 {
598 return keventd_wq != NULL;
599 }
600
601 int current_is_keventd(void)
602 {
603 struct cpu_workqueue_struct *cwq;
604 int cpu = smp_processor_id(); /* preempt-safe: keventd is per-cpu */
605 int ret = 0;
606
607 BUG_ON(!keventd_wq);
608
609 cwq = per_cpu_ptr(keventd_wq->cpu_wq, cpu);
610 if (current == cwq->thread)
611 ret = 1;
612
613 return ret;
614
615 }
616
617 #ifdef CONFIG_HOTPLUG_CPU
618 /* Take the work from this (downed) CPU. */
619 static void take_over_work(struct workqueue_struct *wq, unsigned int cpu)
620 {
621 struct cpu_workqueue_struct *cwq = per_cpu_ptr(wq->cpu_wq, cpu);
622 struct list_head list;
623 struct work_struct *work;
624
625 spin_lock_irq(&cwq->lock);
626 list_replace_init(&cwq->worklist, &list);
627
628 while (!list_empty(&list)) {
629 printk("Taking work for %s\n", wq->name);
630 work = list_entry(list.next,struct work_struct,entry);
631 list_del(&work->entry);
632 __queue_work(per_cpu_ptr(wq->cpu_wq, smp_processor_id()), work);
633 }
634 spin_unlock_irq(&cwq->lock);
635 }
636
637 /* We're holding the cpucontrol mutex here */
638 static int __devinit workqueue_cpu_callback(struct notifier_block *nfb,
639 unsigned long action,
640 void *hcpu)
641 {
642 unsigned int hotcpu = (unsigned long)hcpu;
643 struct workqueue_struct *wq;
644
645 switch (action) {
646 case CPU_UP_PREPARE:
647 mutex_lock(&workqueue_mutex);
648 /* Create a new workqueue thread for it. */
649 list_for_each_entry(wq, &workqueues, list) {
650 if (!create_workqueue_thread(wq, hotcpu)) {
651 printk("workqueue for %i failed\n", hotcpu);
652 return NOTIFY_BAD;
653 }
654 }
655 break;
656
657 case CPU_ONLINE:
658 /* Kick off worker threads. */
659 list_for_each_entry(wq, &workqueues, list) {
660 struct cpu_workqueue_struct *cwq;
661
662 cwq = per_cpu_ptr(wq->cpu_wq, hotcpu);
663 kthread_bind(cwq->thread, hotcpu);
664 wake_up_process(cwq->thread);
665 }
666 mutex_unlock(&workqueue_mutex);
667 break;
668
669 case CPU_UP_CANCELED:
670 list_for_each_entry(wq, &workqueues, list) {
671 if (!per_cpu_ptr(wq->cpu_wq, hotcpu)->thread)
672 continue;
673 /* Unbind so it can run. */
674 kthread_bind(per_cpu_ptr(wq->cpu_wq, hotcpu)->thread,
675 any_online_cpu(cpu_online_map));
676 cleanup_workqueue_thread(wq, hotcpu);
677 }
678 mutex_unlock(&workqueue_mutex);
679 break;
680
681 case CPU_DOWN_PREPARE:
682 mutex_lock(&workqueue_mutex);
683 break;
684
685 case CPU_DOWN_FAILED:
686 mutex_unlock(&workqueue_mutex);
687 break;
688
689 case CPU_DEAD:
690 list_for_each_entry(wq, &workqueues, list)
691 cleanup_workqueue_thread(wq, hotcpu);
692 list_for_each_entry(wq, &workqueues, list)
693 take_over_work(wq, hotcpu);
694 mutex_unlock(&workqueue_mutex);
695 break;
696 }
697
698 return NOTIFY_OK;
699 }
700 #endif
701
702 void init_workqueues(void)
703 {
704 singlethread_cpu = first_cpu(cpu_possible_map);
705 hotcpu_notifier(workqueue_cpu_callback, 0);
706 keventd_wq = create_workqueue("events");
707 BUG_ON(!keventd_wq);
708 }
709