]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - kernel/workqueue.c
4b3663b1c67773651ff23b682b8a312558571aa7
[mirror_ubuntu-zesty-kernel.git] / kernel / workqueue.c
1 /*
2 * kernel/workqueue.c - generic async execution with shared worker pool
3 *
4 * Copyright (C) 2002 Ingo Molnar
5 *
6 * Derived from the taskqueue/keventd code by:
7 * David Woodhouse <dwmw2@infradead.org>
8 * Andrew Morton
9 * Kai Petzke <wpp@marie.physik.tu-berlin.de>
10 * Theodore Ts'o <tytso@mit.edu>
11 *
12 * Made to use alloc_percpu by Christoph Lameter.
13 *
14 * Copyright (C) 2010 SUSE Linux Products GmbH
15 * Copyright (C) 2010 Tejun Heo <tj@kernel.org>
16 *
17 * This is the generic async execution mechanism. Work items as are
18 * executed in process context. The worker pool is shared and
19 * automatically managed. There is one worker pool for each CPU and
20 * one extra for works which are better served by workers which are
21 * not bound to any specific CPU.
22 *
23 * Please read Documentation/workqueue.txt for details.
24 */
25
26 #include <linux/export.h>
27 #include <linux/kernel.h>
28 #include <linux/sched.h>
29 #include <linux/init.h>
30 #include <linux/signal.h>
31 #include <linux/completion.h>
32 #include <linux/workqueue.h>
33 #include <linux/slab.h>
34 #include <linux/cpu.h>
35 #include <linux/notifier.h>
36 #include <linux/kthread.h>
37 #include <linux/hardirq.h>
38 #include <linux/mempolicy.h>
39 #include <linux/freezer.h>
40 #include <linux/kallsyms.h>
41 #include <linux/debug_locks.h>
42 #include <linux/lockdep.h>
43 #include <linux/idr.h>
44
45 #include "workqueue_sched.h"
46
47 enum {
48 /*
49 * global_cwq flags
50 *
51 * A bound gcwq is either associated or disassociated with its CPU.
52 * While associated (!DISASSOCIATED), all workers are bound to the
53 * CPU and none has %WORKER_UNBOUND set and concurrency management
54 * is in effect.
55 *
56 * While DISASSOCIATED, the cpu may be offline and all workers have
57 * %WORKER_UNBOUND set and concurrency management disabled, and may
58 * be executing on any CPU. The gcwq behaves as an unbound one.
59 *
60 * Note that DISASSOCIATED can be flipped only while holding
61 * managership of all pools on the gcwq to avoid changing binding
62 * state while create_worker() is in progress.
63 */
64 GCWQ_DISASSOCIATED = 1 << 0, /* cpu can't serve workers */
65 GCWQ_FREEZING = 1 << 1, /* freeze in progress */
66
67 /* pool flags */
68 POOL_MANAGE_WORKERS = 1 << 0, /* need to manage workers */
69
70 /* worker flags */
71 WORKER_STARTED = 1 << 0, /* started */
72 WORKER_DIE = 1 << 1, /* die die die */
73 WORKER_IDLE = 1 << 2, /* is idle */
74 WORKER_PREP = 1 << 3, /* preparing to run works */
75 WORKER_REBIND = 1 << 5, /* mom is home, come back */
76 WORKER_CPU_INTENSIVE = 1 << 6, /* cpu intensive */
77 WORKER_UNBOUND = 1 << 7, /* worker is unbound */
78
79 WORKER_NOT_RUNNING = WORKER_PREP | WORKER_REBIND | WORKER_UNBOUND |
80 WORKER_CPU_INTENSIVE,
81
82 NR_WORKER_POOLS = 2, /* # worker pools per gcwq */
83
84 BUSY_WORKER_HASH_ORDER = 6, /* 64 pointers */
85 BUSY_WORKER_HASH_SIZE = 1 << BUSY_WORKER_HASH_ORDER,
86 BUSY_WORKER_HASH_MASK = BUSY_WORKER_HASH_SIZE - 1,
87
88 MAX_IDLE_WORKERS_RATIO = 4, /* 1/4 of busy can be idle */
89 IDLE_WORKER_TIMEOUT = 300 * HZ, /* keep idle ones for 5 mins */
90
91 MAYDAY_INITIAL_TIMEOUT = HZ / 100 >= 2 ? HZ / 100 : 2,
92 /* call for help after 10ms
93 (min two ticks) */
94 MAYDAY_INTERVAL = HZ / 10, /* and then every 100ms */
95 CREATE_COOLDOWN = HZ, /* time to breath after fail */
96
97 /*
98 * Rescue workers are used only on emergencies and shared by
99 * all cpus. Give -20.
100 */
101 RESCUER_NICE_LEVEL = -20,
102 HIGHPRI_NICE_LEVEL = -20,
103 };
104
105 /*
106 * Structure fields follow one of the following exclusion rules.
107 *
108 * I: Modifiable by initialization/destruction paths and read-only for
109 * everyone else.
110 *
111 * P: Preemption protected. Disabling preemption is enough and should
112 * only be modified and accessed from the local cpu.
113 *
114 * L: gcwq->lock protected. Access with gcwq->lock held.
115 *
116 * X: During normal operation, modification requires gcwq->lock and
117 * should be done only from local cpu. Either disabling preemption
118 * on local cpu or grabbing gcwq->lock is enough for read access.
119 * If GCWQ_DISASSOCIATED is set, it's identical to L.
120 *
121 * F: wq->flush_mutex protected.
122 *
123 * W: workqueue_lock protected.
124 */
125
126 struct global_cwq;
127 struct worker_pool;
128 struct idle_rebind;
129
130 /*
131 * The poor guys doing the actual heavy lifting. All on-duty workers
132 * are either serving the manager role, on idle list or on busy hash.
133 */
134 struct worker {
135 /* on idle list while idle, on busy hash table while busy */
136 union {
137 struct list_head entry; /* L: while idle */
138 struct hlist_node hentry; /* L: while busy */
139 };
140
141 struct work_struct *current_work; /* L: work being processed */
142 struct cpu_workqueue_struct *current_cwq; /* L: current_work's cwq */
143 struct list_head scheduled; /* L: scheduled works */
144 struct task_struct *task; /* I: worker task */
145 struct worker_pool *pool; /* I: the associated pool */
146 /* 64 bytes boundary on 64bit, 32 on 32bit */
147 unsigned long last_active; /* L: last active timestamp */
148 unsigned int flags; /* X: flags */
149 int id; /* I: worker id */
150
151 /* for rebinding worker to CPU */
152 struct idle_rebind *idle_rebind; /* L: for idle worker */
153 struct work_struct rebind_work; /* L: for busy worker */
154 };
155
156 struct worker_pool {
157 struct global_cwq *gcwq; /* I: the owning gcwq */
158 unsigned int flags; /* X: flags */
159
160 struct list_head worklist; /* L: list of pending works */
161 int nr_workers; /* L: total number of workers */
162 int nr_idle; /* L: currently idle ones */
163
164 struct list_head idle_list; /* X: list of idle workers */
165 struct timer_list idle_timer; /* L: worker idle timeout */
166 struct timer_list mayday_timer; /* L: SOS timer for workers */
167
168 struct mutex manager_mutex; /* mutex manager should hold */
169 struct ida worker_ida; /* L: for worker IDs */
170 };
171
172 /*
173 * Global per-cpu workqueue. There's one and only one for each cpu
174 * and all works are queued and processed here regardless of their
175 * target workqueues.
176 */
177 struct global_cwq {
178 spinlock_t lock; /* the gcwq lock */
179 unsigned int cpu; /* I: the associated cpu */
180 unsigned int flags; /* L: GCWQ_* flags */
181
182 /* workers are chained either in busy_hash or pool idle_list */
183 struct hlist_head busy_hash[BUSY_WORKER_HASH_SIZE];
184 /* L: hash of busy workers */
185
186 struct worker_pool pools[2]; /* normal and highpri pools */
187
188 wait_queue_head_t rebind_hold; /* rebind hold wait */
189 } ____cacheline_aligned_in_smp;
190
191 /*
192 * The per-CPU workqueue. The lower WORK_STRUCT_FLAG_BITS of
193 * work_struct->data are used for flags and thus cwqs need to be
194 * aligned at two's power of the number of flag bits.
195 */
196 struct cpu_workqueue_struct {
197 struct worker_pool *pool; /* I: the associated pool */
198 struct workqueue_struct *wq; /* I: the owning workqueue */
199 int work_color; /* L: current color */
200 int flush_color; /* L: flushing color */
201 int nr_in_flight[WORK_NR_COLORS];
202 /* L: nr of in_flight works */
203 int nr_active; /* L: nr of active works */
204 int max_active; /* L: max active works */
205 struct list_head delayed_works; /* L: delayed works */
206 };
207
208 /*
209 * Structure used to wait for workqueue flush.
210 */
211 struct wq_flusher {
212 struct list_head list; /* F: list of flushers */
213 int flush_color; /* F: flush color waiting for */
214 struct completion done; /* flush completion */
215 };
216
217 /*
218 * All cpumasks are assumed to be always set on UP and thus can't be
219 * used to determine whether there's something to be done.
220 */
221 #ifdef CONFIG_SMP
222 typedef cpumask_var_t mayday_mask_t;
223 #define mayday_test_and_set_cpu(cpu, mask) \
224 cpumask_test_and_set_cpu((cpu), (mask))
225 #define mayday_clear_cpu(cpu, mask) cpumask_clear_cpu((cpu), (mask))
226 #define for_each_mayday_cpu(cpu, mask) for_each_cpu((cpu), (mask))
227 #define alloc_mayday_mask(maskp, gfp) zalloc_cpumask_var((maskp), (gfp))
228 #define free_mayday_mask(mask) free_cpumask_var((mask))
229 #else
230 typedef unsigned long mayday_mask_t;
231 #define mayday_test_and_set_cpu(cpu, mask) test_and_set_bit(0, &(mask))
232 #define mayday_clear_cpu(cpu, mask) clear_bit(0, &(mask))
233 #define for_each_mayday_cpu(cpu, mask) if ((cpu) = 0, (mask))
234 #define alloc_mayday_mask(maskp, gfp) true
235 #define free_mayday_mask(mask) do { } while (0)
236 #endif
237
238 /*
239 * The externally visible workqueue abstraction is an array of
240 * per-CPU workqueues:
241 */
242 struct workqueue_struct {
243 unsigned int flags; /* W: WQ_* flags */
244 union {
245 struct cpu_workqueue_struct __percpu *pcpu;
246 struct cpu_workqueue_struct *single;
247 unsigned long v;
248 } cpu_wq; /* I: cwq's */
249 struct list_head list; /* W: list of all workqueues */
250
251 struct mutex flush_mutex; /* protects wq flushing */
252 int work_color; /* F: current work color */
253 int flush_color; /* F: current flush color */
254 atomic_t nr_cwqs_to_flush; /* flush in progress */
255 struct wq_flusher *first_flusher; /* F: first flusher */
256 struct list_head flusher_queue; /* F: flush waiters */
257 struct list_head flusher_overflow; /* F: flush overflow list */
258
259 mayday_mask_t mayday_mask; /* cpus requesting rescue */
260 struct worker *rescuer; /* I: rescue worker */
261
262 int nr_drainers; /* W: drain in progress */
263 int saved_max_active; /* W: saved cwq max_active */
264 #ifdef CONFIG_LOCKDEP
265 struct lockdep_map lockdep_map;
266 #endif
267 char name[]; /* I: workqueue name */
268 };
269
270 struct workqueue_struct *system_wq __read_mostly;
271 struct workqueue_struct *system_long_wq __read_mostly;
272 struct workqueue_struct *system_nrt_wq __read_mostly;
273 struct workqueue_struct *system_unbound_wq __read_mostly;
274 struct workqueue_struct *system_freezable_wq __read_mostly;
275 struct workqueue_struct *system_nrt_freezable_wq __read_mostly;
276 EXPORT_SYMBOL_GPL(system_wq);
277 EXPORT_SYMBOL_GPL(system_long_wq);
278 EXPORT_SYMBOL_GPL(system_nrt_wq);
279 EXPORT_SYMBOL_GPL(system_unbound_wq);
280 EXPORT_SYMBOL_GPL(system_freezable_wq);
281 EXPORT_SYMBOL_GPL(system_nrt_freezable_wq);
282
283 #define CREATE_TRACE_POINTS
284 #include <trace/events/workqueue.h>
285
286 #define for_each_worker_pool(pool, gcwq) \
287 for ((pool) = &(gcwq)->pools[0]; \
288 (pool) < &(gcwq)->pools[NR_WORKER_POOLS]; (pool)++)
289
290 #define for_each_busy_worker(worker, i, pos, gcwq) \
291 for (i = 0; i < BUSY_WORKER_HASH_SIZE; i++) \
292 hlist_for_each_entry(worker, pos, &gcwq->busy_hash[i], hentry)
293
294 static inline int __next_gcwq_cpu(int cpu, const struct cpumask *mask,
295 unsigned int sw)
296 {
297 if (cpu < nr_cpu_ids) {
298 if (sw & 1) {
299 cpu = cpumask_next(cpu, mask);
300 if (cpu < nr_cpu_ids)
301 return cpu;
302 }
303 if (sw & 2)
304 return WORK_CPU_UNBOUND;
305 }
306 return WORK_CPU_NONE;
307 }
308
309 static inline int __next_wq_cpu(int cpu, const struct cpumask *mask,
310 struct workqueue_struct *wq)
311 {
312 return __next_gcwq_cpu(cpu, mask, !(wq->flags & WQ_UNBOUND) ? 1 : 2);
313 }
314
315 /*
316 * CPU iterators
317 *
318 * An extra gcwq is defined for an invalid cpu number
319 * (WORK_CPU_UNBOUND) to host workqueues which are not bound to any
320 * specific CPU. The following iterators are similar to
321 * for_each_*_cpu() iterators but also considers the unbound gcwq.
322 *
323 * for_each_gcwq_cpu() : possible CPUs + WORK_CPU_UNBOUND
324 * for_each_online_gcwq_cpu() : online CPUs + WORK_CPU_UNBOUND
325 * for_each_cwq_cpu() : possible CPUs for bound workqueues,
326 * WORK_CPU_UNBOUND for unbound workqueues
327 */
328 #define for_each_gcwq_cpu(cpu) \
329 for ((cpu) = __next_gcwq_cpu(-1, cpu_possible_mask, 3); \
330 (cpu) < WORK_CPU_NONE; \
331 (cpu) = __next_gcwq_cpu((cpu), cpu_possible_mask, 3))
332
333 #define for_each_online_gcwq_cpu(cpu) \
334 for ((cpu) = __next_gcwq_cpu(-1, cpu_online_mask, 3); \
335 (cpu) < WORK_CPU_NONE; \
336 (cpu) = __next_gcwq_cpu((cpu), cpu_online_mask, 3))
337
338 #define for_each_cwq_cpu(cpu, wq) \
339 for ((cpu) = __next_wq_cpu(-1, cpu_possible_mask, (wq)); \
340 (cpu) < WORK_CPU_NONE; \
341 (cpu) = __next_wq_cpu((cpu), cpu_possible_mask, (wq)))
342
343 #ifdef CONFIG_DEBUG_OBJECTS_WORK
344
345 static struct debug_obj_descr work_debug_descr;
346
347 static void *work_debug_hint(void *addr)
348 {
349 return ((struct work_struct *) addr)->func;
350 }
351
352 /*
353 * fixup_init is called when:
354 * - an active object is initialized
355 */
356 static int work_fixup_init(void *addr, enum debug_obj_state state)
357 {
358 struct work_struct *work = addr;
359
360 switch (state) {
361 case ODEBUG_STATE_ACTIVE:
362 cancel_work_sync(work);
363 debug_object_init(work, &work_debug_descr);
364 return 1;
365 default:
366 return 0;
367 }
368 }
369
370 /*
371 * fixup_activate is called when:
372 * - an active object is activated
373 * - an unknown object is activated (might be a statically initialized object)
374 */
375 static int work_fixup_activate(void *addr, enum debug_obj_state state)
376 {
377 struct work_struct *work = addr;
378
379 switch (state) {
380
381 case ODEBUG_STATE_NOTAVAILABLE:
382 /*
383 * This is not really a fixup. The work struct was
384 * statically initialized. We just make sure that it
385 * is tracked in the object tracker.
386 */
387 if (test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work))) {
388 debug_object_init(work, &work_debug_descr);
389 debug_object_activate(work, &work_debug_descr);
390 return 0;
391 }
392 WARN_ON_ONCE(1);
393 return 0;
394
395 case ODEBUG_STATE_ACTIVE:
396 WARN_ON(1);
397
398 default:
399 return 0;
400 }
401 }
402
403 /*
404 * fixup_free is called when:
405 * - an active object is freed
406 */
407 static int work_fixup_free(void *addr, enum debug_obj_state state)
408 {
409 struct work_struct *work = addr;
410
411 switch (state) {
412 case ODEBUG_STATE_ACTIVE:
413 cancel_work_sync(work);
414 debug_object_free(work, &work_debug_descr);
415 return 1;
416 default:
417 return 0;
418 }
419 }
420
421 static struct debug_obj_descr work_debug_descr = {
422 .name = "work_struct",
423 .debug_hint = work_debug_hint,
424 .fixup_init = work_fixup_init,
425 .fixup_activate = work_fixup_activate,
426 .fixup_free = work_fixup_free,
427 };
428
429 static inline void debug_work_activate(struct work_struct *work)
430 {
431 debug_object_activate(work, &work_debug_descr);
432 }
433
434 static inline void debug_work_deactivate(struct work_struct *work)
435 {
436 debug_object_deactivate(work, &work_debug_descr);
437 }
438
439 void __init_work(struct work_struct *work, int onstack)
440 {
441 if (onstack)
442 debug_object_init_on_stack(work, &work_debug_descr);
443 else
444 debug_object_init(work, &work_debug_descr);
445 }
446 EXPORT_SYMBOL_GPL(__init_work);
447
448 void destroy_work_on_stack(struct work_struct *work)
449 {
450 debug_object_free(work, &work_debug_descr);
451 }
452 EXPORT_SYMBOL_GPL(destroy_work_on_stack);
453
454 #else
455 static inline void debug_work_activate(struct work_struct *work) { }
456 static inline void debug_work_deactivate(struct work_struct *work) { }
457 #endif
458
459 /* Serializes the accesses to the list of workqueues. */
460 static DEFINE_SPINLOCK(workqueue_lock);
461 static LIST_HEAD(workqueues);
462 static bool workqueue_freezing; /* W: have wqs started freezing? */
463
464 /*
465 * The almighty global cpu workqueues. nr_running is the only field
466 * which is expected to be used frequently by other cpus via
467 * try_to_wake_up(). Put it in a separate cacheline.
468 */
469 static DEFINE_PER_CPU(struct global_cwq, global_cwq);
470 static DEFINE_PER_CPU_SHARED_ALIGNED(atomic_t, pool_nr_running[NR_WORKER_POOLS]);
471
472 /*
473 * Global cpu workqueue and nr_running counter for unbound gcwq. The
474 * gcwq is always online, has GCWQ_DISASSOCIATED set, and all its
475 * workers have WORKER_UNBOUND set.
476 */
477 static struct global_cwq unbound_global_cwq;
478 static atomic_t unbound_pool_nr_running[NR_WORKER_POOLS] = {
479 [0 ... NR_WORKER_POOLS - 1] = ATOMIC_INIT(0), /* always 0 */
480 };
481
482 static int worker_thread(void *__worker);
483
484 static int worker_pool_pri(struct worker_pool *pool)
485 {
486 return pool - pool->gcwq->pools;
487 }
488
489 static struct global_cwq *get_gcwq(unsigned int cpu)
490 {
491 if (cpu != WORK_CPU_UNBOUND)
492 return &per_cpu(global_cwq, cpu);
493 else
494 return &unbound_global_cwq;
495 }
496
497 static atomic_t *get_pool_nr_running(struct worker_pool *pool)
498 {
499 int cpu = pool->gcwq->cpu;
500 int idx = worker_pool_pri(pool);
501
502 if (cpu != WORK_CPU_UNBOUND)
503 return &per_cpu(pool_nr_running, cpu)[idx];
504 else
505 return &unbound_pool_nr_running[idx];
506 }
507
508 static struct cpu_workqueue_struct *get_cwq(unsigned int cpu,
509 struct workqueue_struct *wq)
510 {
511 if (!(wq->flags & WQ_UNBOUND)) {
512 if (likely(cpu < nr_cpu_ids))
513 return per_cpu_ptr(wq->cpu_wq.pcpu, cpu);
514 } else if (likely(cpu == WORK_CPU_UNBOUND))
515 return wq->cpu_wq.single;
516 return NULL;
517 }
518
519 static unsigned int work_color_to_flags(int color)
520 {
521 return color << WORK_STRUCT_COLOR_SHIFT;
522 }
523
524 static int get_work_color(struct work_struct *work)
525 {
526 return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
527 ((1 << WORK_STRUCT_COLOR_BITS) - 1);
528 }
529
530 static int work_next_color(int color)
531 {
532 return (color + 1) % WORK_NR_COLORS;
533 }
534
535 /*
536 * While queued, %WORK_STRUCT_CWQ is set and non flag bits of a work's data
537 * contain the pointer to the queued cwq. Once execution starts, the flag
538 * is cleared and the high bits contain OFFQ flags and CPU number.
539 *
540 * set_work_cwq(), set_work_cpu_and_clear_pending() and clear_work_data()
541 * can be used to set the cwq, cpu or clear work->data. These functions
542 * should only be called while the work is owned - ie. while the PENDING
543 * bit is set.
544 *
545 * get_work_[g]cwq() can be used to obtain the gcwq or cwq
546 * corresponding to a work. gcwq is available once the work has been
547 * queued anywhere after initialization. cwq is available only from
548 * queueing until execution starts.
549 */
550 static inline void set_work_data(struct work_struct *work, unsigned long data,
551 unsigned long flags)
552 {
553 BUG_ON(!work_pending(work));
554 atomic_long_set(&work->data, data | flags | work_static(work));
555 }
556
557 static void set_work_cwq(struct work_struct *work,
558 struct cpu_workqueue_struct *cwq,
559 unsigned long extra_flags)
560 {
561 set_work_data(work, (unsigned long)cwq,
562 WORK_STRUCT_PENDING | WORK_STRUCT_CWQ | extra_flags);
563 }
564
565 static void set_work_cpu_and_clear_pending(struct work_struct *work,
566 unsigned int cpu)
567 {
568 set_work_data(work, (unsigned long)cpu << WORK_OFFQ_CPU_SHIFT, 0);
569 }
570
571 static void clear_work_data(struct work_struct *work)
572 {
573 set_work_data(work, WORK_STRUCT_NO_CPU, 0);
574 }
575
576 static struct cpu_workqueue_struct *get_work_cwq(struct work_struct *work)
577 {
578 unsigned long data = atomic_long_read(&work->data);
579
580 if (data & WORK_STRUCT_CWQ)
581 return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
582 else
583 return NULL;
584 }
585
586 static struct global_cwq *get_work_gcwq(struct work_struct *work)
587 {
588 unsigned long data = atomic_long_read(&work->data);
589 unsigned int cpu;
590
591 if (data & WORK_STRUCT_CWQ)
592 return ((struct cpu_workqueue_struct *)
593 (data & WORK_STRUCT_WQ_DATA_MASK))->pool->gcwq;
594
595 cpu = data >> WORK_OFFQ_CPU_SHIFT;
596 if (cpu == WORK_CPU_NONE)
597 return NULL;
598
599 BUG_ON(cpu >= nr_cpu_ids && cpu != WORK_CPU_UNBOUND);
600 return get_gcwq(cpu);
601 }
602
603 /*
604 * Policy functions. These define the policies on how the global worker
605 * pools are managed. Unless noted otherwise, these functions assume that
606 * they're being called with gcwq->lock held.
607 */
608
609 static bool __need_more_worker(struct worker_pool *pool)
610 {
611 return !atomic_read(get_pool_nr_running(pool));
612 }
613
614 /*
615 * Need to wake up a worker? Called from anything but currently
616 * running workers.
617 *
618 * Note that, because unbound workers never contribute to nr_running, this
619 * function will always return %true for unbound gcwq as long as the
620 * worklist isn't empty.
621 */
622 static bool need_more_worker(struct worker_pool *pool)
623 {
624 return !list_empty(&pool->worklist) && __need_more_worker(pool);
625 }
626
627 /* Can I start working? Called from busy but !running workers. */
628 static bool may_start_working(struct worker_pool *pool)
629 {
630 return pool->nr_idle;
631 }
632
633 /* Do I need to keep working? Called from currently running workers. */
634 static bool keep_working(struct worker_pool *pool)
635 {
636 atomic_t *nr_running = get_pool_nr_running(pool);
637
638 return !list_empty(&pool->worklist) && atomic_read(nr_running) <= 1;
639 }
640
641 /* Do we need a new worker? Called from manager. */
642 static bool need_to_create_worker(struct worker_pool *pool)
643 {
644 return need_more_worker(pool) && !may_start_working(pool);
645 }
646
647 /* Do I need to be the manager? */
648 static bool need_to_manage_workers(struct worker_pool *pool)
649 {
650 return need_to_create_worker(pool) ||
651 (pool->flags & POOL_MANAGE_WORKERS);
652 }
653
654 /* Do we have too many workers and should some go away? */
655 static bool too_many_workers(struct worker_pool *pool)
656 {
657 bool managing = mutex_is_locked(&pool->manager_mutex);
658 int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
659 int nr_busy = pool->nr_workers - nr_idle;
660
661 return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
662 }
663
664 /*
665 * Wake up functions.
666 */
667
668 /* Return the first worker. Safe with preemption disabled */
669 static struct worker *first_worker(struct worker_pool *pool)
670 {
671 if (unlikely(list_empty(&pool->idle_list)))
672 return NULL;
673
674 return list_first_entry(&pool->idle_list, struct worker, entry);
675 }
676
677 /**
678 * wake_up_worker - wake up an idle worker
679 * @pool: worker pool to wake worker from
680 *
681 * Wake up the first idle worker of @pool.
682 *
683 * CONTEXT:
684 * spin_lock_irq(gcwq->lock).
685 */
686 static void wake_up_worker(struct worker_pool *pool)
687 {
688 struct worker *worker = first_worker(pool);
689
690 if (likely(worker))
691 wake_up_process(worker->task);
692 }
693
694 /**
695 * wq_worker_waking_up - a worker is waking up
696 * @task: task waking up
697 * @cpu: CPU @task is waking up to
698 *
699 * This function is called during try_to_wake_up() when a worker is
700 * being awoken.
701 *
702 * CONTEXT:
703 * spin_lock_irq(rq->lock)
704 */
705 void wq_worker_waking_up(struct task_struct *task, unsigned int cpu)
706 {
707 struct worker *worker = kthread_data(task);
708
709 if (!(worker->flags & WORKER_NOT_RUNNING))
710 atomic_inc(get_pool_nr_running(worker->pool));
711 }
712
713 /**
714 * wq_worker_sleeping - a worker is going to sleep
715 * @task: task going to sleep
716 * @cpu: CPU in question, must be the current CPU number
717 *
718 * This function is called during schedule() when a busy worker is
719 * going to sleep. Worker on the same cpu can be woken up by
720 * returning pointer to its task.
721 *
722 * CONTEXT:
723 * spin_lock_irq(rq->lock)
724 *
725 * RETURNS:
726 * Worker task on @cpu to wake up, %NULL if none.
727 */
728 struct task_struct *wq_worker_sleeping(struct task_struct *task,
729 unsigned int cpu)
730 {
731 struct worker *worker = kthread_data(task), *to_wakeup = NULL;
732 struct worker_pool *pool = worker->pool;
733 atomic_t *nr_running = get_pool_nr_running(pool);
734
735 if (worker->flags & WORKER_NOT_RUNNING)
736 return NULL;
737
738 /* this can only happen on the local cpu */
739 BUG_ON(cpu != raw_smp_processor_id());
740
741 /*
742 * The counterpart of the following dec_and_test, implied mb,
743 * worklist not empty test sequence is in insert_work().
744 * Please read comment there.
745 *
746 * NOT_RUNNING is clear. This means that we're bound to and
747 * running on the local cpu w/ rq lock held and preemption
748 * disabled, which in turn means that none else could be
749 * manipulating idle_list, so dereferencing idle_list without gcwq
750 * lock is safe.
751 */
752 if (atomic_dec_and_test(nr_running) && !list_empty(&pool->worklist))
753 to_wakeup = first_worker(pool);
754 return to_wakeup ? to_wakeup->task : NULL;
755 }
756
757 /**
758 * worker_set_flags - set worker flags and adjust nr_running accordingly
759 * @worker: self
760 * @flags: flags to set
761 * @wakeup: wakeup an idle worker if necessary
762 *
763 * Set @flags in @worker->flags and adjust nr_running accordingly. If
764 * nr_running becomes zero and @wakeup is %true, an idle worker is
765 * woken up.
766 *
767 * CONTEXT:
768 * spin_lock_irq(gcwq->lock)
769 */
770 static inline void worker_set_flags(struct worker *worker, unsigned int flags,
771 bool wakeup)
772 {
773 struct worker_pool *pool = worker->pool;
774
775 WARN_ON_ONCE(worker->task != current);
776
777 /*
778 * If transitioning into NOT_RUNNING, adjust nr_running and
779 * wake up an idle worker as necessary if requested by
780 * @wakeup.
781 */
782 if ((flags & WORKER_NOT_RUNNING) &&
783 !(worker->flags & WORKER_NOT_RUNNING)) {
784 atomic_t *nr_running = get_pool_nr_running(pool);
785
786 if (wakeup) {
787 if (atomic_dec_and_test(nr_running) &&
788 !list_empty(&pool->worklist))
789 wake_up_worker(pool);
790 } else
791 atomic_dec(nr_running);
792 }
793
794 worker->flags |= flags;
795 }
796
797 /**
798 * worker_clr_flags - clear worker flags and adjust nr_running accordingly
799 * @worker: self
800 * @flags: flags to clear
801 *
802 * Clear @flags in @worker->flags and adjust nr_running accordingly.
803 *
804 * CONTEXT:
805 * spin_lock_irq(gcwq->lock)
806 */
807 static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
808 {
809 struct worker_pool *pool = worker->pool;
810 unsigned int oflags = worker->flags;
811
812 WARN_ON_ONCE(worker->task != current);
813
814 worker->flags &= ~flags;
815
816 /*
817 * If transitioning out of NOT_RUNNING, increment nr_running. Note
818 * that the nested NOT_RUNNING is not a noop. NOT_RUNNING is mask
819 * of multiple flags, not a single flag.
820 */
821 if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
822 if (!(worker->flags & WORKER_NOT_RUNNING))
823 atomic_inc(get_pool_nr_running(pool));
824 }
825
826 /**
827 * busy_worker_head - return the busy hash head for a work
828 * @gcwq: gcwq of interest
829 * @work: work to be hashed
830 *
831 * Return hash head of @gcwq for @work.
832 *
833 * CONTEXT:
834 * spin_lock_irq(gcwq->lock).
835 *
836 * RETURNS:
837 * Pointer to the hash head.
838 */
839 static struct hlist_head *busy_worker_head(struct global_cwq *gcwq,
840 struct work_struct *work)
841 {
842 const int base_shift = ilog2(sizeof(struct work_struct));
843 unsigned long v = (unsigned long)work;
844
845 /* simple shift and fold hash, do we need something better? */
846 v >>= base_shift;
847 v += v >> BUSY_WORKER_HASH_ORDER;
848 v &= BUSY_WORKER_HASH_MASK;
849
850 return &gcwq->busy_hash[v];
851 }
852
853 /**
854 * __find_worker_executing_work - find worker which is executing a work
855 * @gcwq: gcwq of interest
856 * @bwh: hash head as returned by busy_worker_head()
857 * @work: work to find worker for
858 *
859 * Find a worker which is executing @work on @gcwq. @bwh should be
860 * the hash head obtained by calling busy_worker_head() with the same
861 * work.
862 *
863 * CONTEXT:
864 * spin_lock_irq(gcwq->lock).
865 *
866 * RETURNS:
867 * Pointer to worker which is executing @work if found, NULL
868 * otherwise.
869 */
870 static struct worker *__find_worker_executing_work(struct global_cwq *gcwq,
871 struct hlist_head *bwh,
872 struct work_struct *work)
873 {
874 struct worker *worker;
875 struct hlist_node *tmp;
876
877 hlist_for_each_entry(worker, tmp, bwh, hentry)
878 if (worker->current_work == work)
879 return worker;
880 return NULL;
881 }
882
883 /**
884 * find_worker_executing_work - find worker which is executing a work
885 * @gcwq: gcwq of interest
886 * @work: work to find worker for
887 *
888 * Find a worker which is executing @work on @gcwq. This function is
889 * identical to __find_worker_executing_work() except that this
890 * function calculates @bwh itself.
891 *
892 * CONTEXT:
893 * spin_lock_irq(gcwq->lock).
894 *
895 * RETURNS:
896 * Pointer to worker which is executing @work if found, NULL
897 * otherwise.
898 */
899 static struct worker *find_worker_executing_work(struct global_cwq *gcwq,
900 struct work_struct *work)
901 {
902 return __find_worker_executing_work(gcwq, busy_worker_head(gcwq, work),
903 work);
904 }
905
906 /**
907 * move_linked_works - move linked works to a list
908 * @work: start of series of works to be scheduled
909 * @head: target list to append @work to
910 * @nextp: out paramter for nested worklist walking
911 *
912 * Schedule linked works starting from @work to @head. Work series to
913 * be scheduled starts at @work and includes any consecutive work with
914 * WORK_STRUCT_LINKED set in its predecessor.
915 *
916 * If @nextp is not NULL, it's updated to point to the next work of
917 * the last scheduled work. This allows move_linked_works() to be
918 * nested inside outer list_for_each_entry_safe().
919 *
920 * CONTEXT:
921 * spin_lock_irq(gcwq->lock).
922 */
923 static void move_linked_works(struct work_struct *work, struct list_head *head,
924 struct work_struct **nextp)
925 {
926 struct work_struct *n;
927
928 /*
929 * Linked worklist will always end before the end of the list,
930 * use NULL for list head.
931 */
932 list_for_each_entry_safe_from(work, n, NULL, entry) {
933 list_move_tail(&work->entry, head);
934 if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
935 break;
936 }
937
938 /*
939 * If we're already inside safe list traversal and have moved
940 * multiple works to the scheduled queue, the next position
941 * needs to be updated.
942 */
943 if (nextp)
944 *nextp = n;
945 }
946
947 static void cwq_activate_first_delayed(struct cpu_workqueue_struct *cwq)
948 {
949 struct work_struct *work = list_first_entry(&cwq->delayed_works,
950 struct work_struct, entry);
951
952 trace_workqueue_activate_work(work);
953 move_linked_works(work, &cwq->pool->worklist, NULL);
954 __clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
955 cwq->nr_active++;
956 }
957
958 /**
959 * cwq_dec_nr_in_flight - decrement cwq's nr_in_flight
960 * @cwq: cwq of interest
961 * @color: color of work which left the queue
962 * @delayed: for a delayed work
963 *
964 * A work either has completed or is removed from pending queue,
965 * decrement nr_in_flight of its cwq and handle workqueue flushing.
966 *
967 * CONTEXT:
968 * spin_lock_irq(gcwq->lock).
969 */
970 static void cwq_dec_nr_in_flight(struct cpu_workqueue_struct *cwq, int color,
971 bool delayed)
972 {
973 /* ignore uncolored works */
974 if (color == WORK_NO_COLOR)
975 return;
976
977 cwq->nr_in_flight[color]--;
978
979 if (!delayed) {
980 cwq->nr_active--;
981 if (!list_empty(&cwq->delayed_works)) {
982 /* one down, submit a delayed one */
983 if (cwq->nr_active < cwq->max_active)
984 cwq_activate_first_delayed(cwq);
985 }
986 }
987
988 /* is flush in progress and are we at the flushing tip? */
989 if (likely(cwq->flush_color != color))
990 return;
991
992 /* are there still in-flight works? */
993 if (cwq->nr_in_flight[color])
994 return;
995
996 /* this cwq is done, clear flush_color */
997 cwq->flush_color = -1;
998
999 /*
1000 * If this was the last cwq, wake up the first flusher. It
1001 * will handle the rest.
1002 */
1003 if (atomic_dec_and_test(&cwq->wq->nr_cwqs_to_flush))
1004 complete(&cwq->wq->first_flusher->done);
1005 }
1006
1007 /**
1008 * try_to_grab_pending - steal work item from worklist
1009 * @work: work item to steal
1010 * @is_dwork: @work is a delayed_work
1011 *
1012 * Try to grab PENDING bit of @work. This function can handle @work in any
1013 * stable state - idle, on timer or on worklist. Return values are
1014 *
1015 * 1 if @work was pending and we successfully stole PENDING
1016 * 0 if @work was idle and we claimed PENDING
1017 * -EAGAIN if PENDING couldn't be grabbed at the moment, safe to busy-retry
1018 *
1019 * On >= 0 return, the caller owns @work's PENDING bit.
1020 */
1021 static int try_to_grab_pending(struct work_struct *work, bool is_dwork)
1022 {
1023 struct global_cwq *gcwq;
1024
1025 /* try to steal the timer if it exists */
1026 if (is_dwork) {
1027 struct delayed_work *dwork = to_delayed_work(work);
1028
1029 if (likely(del_timer(&dwork->timer)))
1030 return 1;
1031 }
1032
1033 /* try to claim PENDING the normal way */
1034 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
1035 return 0;
1036
1037 /*
1038 * The queueing is in progress, or it is already queued. Try to
1039 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
1040 */
1041 gcwq = get_work_gcwq(work);
1042 if (!gcwq)
1043 return -EAGAIN;
1044
1045 spin_lock_irq(&gcwq->lock);
1046 if (!list_empty(&work->entry)) {
1047 /*
1048 * This work is queued, but perhaps we locked the wrong gcwq.
1049 * In that case we must see the new value after rmb(), see
1050 * insert_work()->wmb().
1051 */
1052 smp_rmb();
1053 if (gcwq == get_work_gcwq(work)) {
1054 debug_work_deactivate(work);
1055 list_del_init(&work->entry);
1056 cwq_dec_nr_in_flight(get_work_cwq(work),
1057 get_work_color(work),
1058 *work_data_bits(work) & WORK_STRUCT_DELAYED);
1059
1060 spin_unlock_irq(&gcwq->lock);
1061 return 1;
1062 }
1063 }
1064 spin_unlock_irq(&gcwq->lock);
1065
1066 return -EAGAIN;
1067 }
1068
1069 /**
1070 * insert_work - insert a work into gcwq
1071 * @cwq: cwq @work belongs to
1072 * @work: work to insert
1073 * @head: insertion point
1074 * @extra_flags: extra WORK_STRUCT_* flags to set
1075 *
1076 * Insert @work which belongs to @cwq into @gcwq after @head.
1077 * @extra_flags is or'd to work_struct flags.
1078 *
1079 * CONTEXT:
1080 * spin_lock_irq(gcwq->lock).
1081 */
1082 static void insert_work(struct cpu_workqueue_struct *cwq,
1083 struct work_struct *work, struct list_head *head,
1084 unsigned int extra_flags)
1085 {
1086 struct worker_pool *pool = cwq->pool;
1087
1088 /* we own @work, set data and link */
1089 set_work_cwq(work, cwq, extra_flags);
1090
1091 /*
1092 * Ensure that we get the right work->data if we see the
1093 * result of list_add() below, see try_to_grab_pending().
1094 */
1095 smp_wmb();
1096
1097 list_add_tail(&work->entry, head);
1098
1099 /*
1100 * Ensure either worker_sched_deactivated() sees the above
1101 * list_add_tail() or we see zero nr_running to avoid workers
1102 * lying around lazily while there are works to be processed.
1103 */
1104 smp_mb();
1105
1106 if (__need_more_worker(pool))
1107 wake_up_worker(pool);
1108 }
1109
1110 /*
1111 * Test whether @work is being queued from another work executing on the
1112 * same workqueue. This is rather expensive and should only be used from
1113 * cold paths.
1114 */
1115 static bool is_chained_work(struct workqueue_struct *wq)
1116 {
1117 unsigned long flags;
1118 unsigned int cpu;
1119
1120 for_each_gcwq_cpu(cpu) {
1121 struct global_cwq *gcwq = get_gcwq(cpu);
1122 struct worker *worker;
1123 struct hlist_node *pos;
1124 int i;
1125
1126 spin_lock_irqsave(&gcwq->lock, flags);
1127 for_each_busy_worker(worker, i, pos, gcwq) {
1128 if (worker->task != current)
1129 continue;
1130 spin_unlock_irqrestore(&gcwq->lock, flags);
1131 /*
1132 * I'm @worker, no locking necessary. See if @work
1133 * is headed to the same workqueue.
1134 */
1135 return worker->current_cwq->wq == wq;
1136 }
1137 spin_unlock_irqrestore(&gcwq->lock, flags);
1138 }
1139 return false;
1140 }
1141
1142 static void __queue_work(unsigned int cpu, struct workqueue_struct *wq,
1143 struct work_struct *work)
1144 {
1145 struct global_cwq *gcwq;
1146 struct cpu_workqueue_struct *cwq;
1147 struct list_head *worklist;
1148 unsigned int work_flags;
1149
1150 /*
1151 * While a work item is PENDING && off queue, a task trying to
1152 * steal the PENDING will busy-loop waiting for it to either get
1153 * queued or lose PENDING. Grabbing PENDING and queueing should
1154 * happen with IRQ disabled.
1155 */
1156 WARN_ON_ONCE(!irqs_disabled());
1157
1158 debug_work_activate(work);
1159
1160 /* if dying, only works from the same workqueue are allowed */
1161 if (unlikely(wq->flags & WQ_DRAINING) &&
1162 WARN_ON_ONCE(!is_chained_work(wq)))
1163 return;
1164
1165 /* determine gcwq to use */
1166 if (!(wq->flags & WQ_UNBOUND)) {
1167 struct global_cwq *last_gcwq;
1168
1169 if (cpu == WORK_CPU_UNBOUND)
1170 cpu = raw_smp_processor_id();
1171
1172 /*
1173 * It's multi cpu. If @wq is non-reentrant and @work
1174 * was previously on a different cpu, it might still
1175 * be running there, in which case the work needs to
1176 * be queued on that cpu to guarantee non-reentrance.
1177 */
1178 gcwq = get_gcwq(cpu);
1179 if (wq->flags & WQ_NON_REENTRANT &&
1180 (last_gcwq = get_work_gcwq(work)) && last_gcwq != gcwq) {
1181 struct worker *worker;
1182
1183 spin_lock(&last_gcwq->lock);
1184
1185 worker = find_worker_executing_work(last_gcwq, work);
1186
1187 if (worker && worker->current_cwq->wq == wq)
1188 gcwq = last_gcwq;
1189 else {
1190 /* meh... not running there, queue here */
1191 spin_unlock(&last_gcwq->lock);
1192 spin_lock(&gcwq->lock);
1193 }
1194 } else {
1195 spin_lock(&gcwq->lock);
1196 }
1197 } else {
1198 gcwq = get_gcwq(WORK_CPU_UNBOUND);
1199 spin_lock(&gcwq->lock);
1200 }
1201
1202 /* gcwq determined, get cwq and queue */
1203 cwq = get_cwq(gcwq->cpu, wq);
1204 trace_workqueue_queue_work(cpu, cwq, work);
1205
1206 if (WARN_ON(!list_empty(&work->entry))) {
1207 spin_unlock(&gcwq->lock);
1208 return;
1209 }
1210
1211 cwq->nr_in_flight[cwq->work_color]++;
1212 work_flags = work_color_to_flags(cwq->work_color);
1213
1214 if (likely(cwq->nr_active < cwq->max_active)) {
1215 trace_workqueue_activate_work(work);
1216 cwq->nr_active++;
1217 worklist = &cwq->pool->worklist;
1218 } else {
1219 work_flags |= WORK_STRUCT_DELAYED;
1220 worklist = &cwq->delayed_works;
1221 }
1222
1223 insert_work(cwq, work, worklist, work_flags);
1224
1225 spin_unlock(&gcwq->lock);
1226 }
1227
1228 /**
1229 * queue_work_on - queue work on specific cpu
1230 * @cpu: CPU number to execute work on
1231 * @wq: workqueue to use
1232 * @work: work to queue
1233 *
1234 * Returns %false if @work was already on a queue, %true otherwise.
1235 *
1236 * We queue the work to a specific CPU, the caller must ensure it
1237 * can't go away.
1238 */
1239 bool queue_work_on(int cpu, struct workqueue_struct *wq,
1240 struct work_struct *work)
1241 {
1242 bool ret = false;
1243 unsigned long flags;
1244
1245 local_irq_save(flags);
1246
1247 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1248 __queue_work(cpu, wq, work);
1249 ret = true;
1250 }
1251
1252 local_irq_restore(flags);
1253 return ret;
1254 }
1255 EXPORT_SYMBOL_GPL(queue_work_on);
1256
1257 /**
1258 * queue_work - queue work on a workqueue
1259 * @wq: workqueue to use
1260 * @work: work to queue
1261 *
1262 * Returns %false if @work was already on a queue, %true otherwise.
1263 *
1264 * We queue the work to the CPU on which it was submitted, but if the CPU dies
1265 * it can be processed by another CPU.
1266 */
1267 bool queue_work(struct workqueue_struct *wq, struct work_struct *work)
1268 {
1269 return queue_work_on(WORK_CPU_UNBOUND, wq, work);
1270 }
1271 EXPORT_SYMBOL_GPL(queue_work);
1272
1273 void delayed_work_timer_fn(unsigned long __data)
1274 {
1275 struct delayed_work *dwork = (struct delayed_work *)__data;
1276 struct cpu_workqueue_struct *cwq = get_work_cwq(&dwork->work);
1277
1278 local_irq_disable();
1279 __queue_work(WORK_CPU_UNBOUND, cwq->wq, &dwork->work);
1280 local_irq_enable();
1281 }
1282 EXPORT_SYMBOL_GPL(delayed_work_timer_fn);
1283
1284 static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
1285 struct delayed_work *dwork, unsigned long delay)
1286 {
1287 struct timer_list *timer = &dwork->timer;
1288 struct work_struct *work = &dwork->work;
1289 unsigned int lcpu;
1290
1291 WARN_ON_ONCE(timer->function != delayed_work_timer_fn ||
1292 timer->data != (unsigned long)dwork);
1293 BUG_ON(timer_pending(timer));
1294 BUG_ON(!list_empty(&work->entry));
1295
1296 timer_stats_timer_set_start_info(&dwork->timer);
1297
1298 /*
1299 * This stores cwq for the moment, for the timer_fn. Note that the
1300 * work's gcwq is preserved to allow reentrance detection for
1301 * delayed works.
1302 */
1303 if (!(wq->flags & WQ_UNBOUND)) {
1304 struct global_cwq *gcwq = get_work_gcwq(work);
1305
1306 if (gcwq && gcwq->cpu != WORK_CPU_UNBOUND)
1307 lcpu = gcwq->cpu;
1308 else
1309 lcpu = raw_smp_processor_id();
1310 } else {
1311 lcpu = WORK_CPU_UNBOUND;
1312 }
1313
1314 set_work_cwq(work, get_cwq(lcpu, wq), 0);
1315
1316 timer->expires = jiffies + delay;
1317
1318 if (unlikely(cpu != WORK_CPU_UNBOUND))
1319 add_timer_on(timer, cpu);
1320 else
1321 add_timer(timer);
1322 }
1323
1324 /**
1325 * queue_delayed_work_on - queue work on specific CPU after delay
1326 * @cpu: CPU number to execute work on
1327 * @wq: workqueue to use
1328 * @dwork: work to queue
1329 * @delay: number of jiffies to wait before queueing
1330 *
1331 * Returns %false if @work was already on a queue, %true otherwise. If
1332 * @delay is zero and @dwork is idle, it will be scheduled for immediate
1333 * execution.
1334 */
1335 bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
1336 struct delayed_work *dwork, unsigned long delay)
1337 {
1338 struct work_struct *work = &dwork->work;
1339 bool ret = false;
1340 unsigned long flags;
1341
1342 if (!delay)
1343 return queue_work_on(cpu, wq, &dwork->work);
1344
1345 /* read the comment in __queue_work() */
1346 local_irq_save(flags);
1347
1348 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1349 __queue_delayed_work(cpu, wq, dwork, delay);
1350 ret = true;
1351 }
1352
1353 local_irq_restore(flags);
1354 return ret;
1355 }
1356 EXPORT_SYMBOL_GPL(queue_delayed_work_on);
1357
1358 /**
1359 * queue_delayed_work - queue work on a workqueue after delay
1360 * @wq: workqueue to use
1361 * @dwork: delayable work to queue
1362 * @delay: number of jiffies to wait before queueing
1363 *
1364 * Equivalent to queue_delayed_work_on() but tries to use the local CPU.
1365 */
1366 bool queue_delayed_work(struct workqueue_struct *wq,
1367 struct delayed_work *dwork, unsigned long delay)
1368 {
1369 return queue_delayed_work_on(WORK_CPU_UNBOUND, wq, dwork, delay);
1370 }
1371 EXPORT_SYMBOL_GPL(queue_delayed_work);
1372
1373 /**
1374 * worker_enter_idle - enter idle state
1375 * @worker: worker which is entering idle state
1376 *
1377 * @worker is entering idle state. Update stats and idle timer if
1378 * necessary.
1379 *
1380 * LOCKING:
1381 * spin_lock_irq(gcwq->lock).
1382 */
1383 static void worker_enter_idle(struct worker *worker)
1384 {
1385 struct worker_pool *pool = worker->pool;
1386 struct global_cwq *gcwq = pool->gcwq;
1387
1388 BUG_ON(worker->flags & WORKER_IDLE);
1389 BUG_ON(!list_empty(&worker->entry) &&
1390 (worker->hentry.next || worker->hentry.pprev));
1391
1392 /* can't use worker_set_flags(), also called from start_worker() */
1393 worker->flags |= WORKER_IDLE;
1394 pool->nr_idle++;
1395 worker->last_active = jiffies;
1396
1397 /* idle_list is LIFO */
1398 list_add(&worker->entry, &pool->idle_list);
1399
1400 if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
1401 mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
1402
1403 /*
1404 * Sanity check nr_running. Because gcwq_unbind_fn() releases
1405 * gcwq->lock between setting %WORKER_UNBOUND and zapping
1406 * nr_running, the warning may trigger spuriously. Check iff
1407 * unbind is not in progress.
1408 */
1409 WARN_ON_ONCE(!(gcwq->flags & GCWQ_DISASSOCIATED) &&
1410 pool->nr_workers == pool->nr_idle &&
1411 atomic_read(get_pool_nr_running(pool)));
1412 }
1413
1414 /**
1415 * worker_leave_idle - leave idle state
1416 * @worker: worker which is leaving idle state
1417 *
1418 * @worker is leaving idle state. Update stats.
1419 *
1420 * LOCKING:
1421 * spin_lock_irq(gcwq->lock).
1422 */
1423 static void worker_leave_idle(struct worker *worker)
1424 {
1425 struct worker_pool *pool = worker->pool;
1426
1427 BUG_ON(!(worker->flags & WORKER_IDLE));
1428 worker_clr_flags(worker, WORKER_IDLE);
1429 pool->nr_idle--;
1430 list_del_init(&worker->entry);
1431 }
1432
1433 /**
1434 * worker_maybe_bind_and_lock - bind worker to its cpu if possible and lock gcwq
1435 * @worker: self
1436 *
1437 * Works which are scheduled while the cpu is online must at least be
1438 * scheduled to a worker which is bound to the cpu so that if they are
1439 * flushed from cpu callbacks while cpu is going down, they are
1440 * guaranteed to execute on the cpu.
1441 *
1442 * This function is to be used by rogue workers and rescuers to bind
1443 * themselves to the target cpu and may race with cpu going down or
1444 * coming online. kthread_bind() can't be used because it may put the
1445 * worker to already dead cpu and set_cpus_allowed_ptr() can't be used
1446 * verbatim as it's best effort and blocking and gcwq may be
1447 * [dis]associated in the meantime.
1448 *
1449 * This function tries set_cpus_allowed() and locks gcwq and verifies the
1450 * binding against %GCWQ_DISASSOCIATED which is set during
1451 * %CPU_DOWN_PREPARE and cleared during %CPU_ONLINE, so if the worker
1452 * enters idle state or fetches works without dropping lock, it can
1453 * guarantee the scheduling requirement described in the first paragraph.
1454 *
1455 * CONTEXT:
1456 * Might sleep. Called without any lock but returns with gcwq->lock
1457 * held.
1458 *
1459 * RETURNS:
1460 * %true if the associated gcwq is online (@worker is successfully
1461 * bound), %false if offline.
1462 */
1463 static bool worker_maybe_bind_and_lock(struct worker *worker)
1464 __acquires(&gcwq->lock)
1465 {
1466 struct global_cwq *gcwq = worker->pool->gcwq;
1467 struct task_struct *task = worker->task;
1468
1469 while (true) {
1470 /*
1471 * The following call may fail, succeed or succeed
1472 * without actually migrating the task to the cpu if
1473 * it races with cpu hotunplug operation. Verify
1474 * against GCWQ_DISASSOCIATED.
1475 */
1476 if (!(gcwq->flags & GCWQ_DISASSOCIATED))
1477 set_cpus_allowed_ptr(task, get_cpu_mask(gcwq->cpu));
1478
1479 spin_lock_irq(&gcwq->lock);
1480 if (gcwq->flags & GCWQ_DISASSOCIATED)
1481 return false;
1482 if (task_cpu(task) == gcwq->cpu &&
1483 cpumask_equal(&current->cpus_allowed,
1484 get_cpu_mask(gcwq->cpu)))
1485 return true;
1486 spin_unlock_irq(&gcwq->lock);
1487
1488 /*
1489 * We've raced with CPU hot[un]plug. Give it a breather
1490 * and retry migration. cond_resched() is required here;
1491 * otherwise, we might deadlock against cpu_stop trying to
1492 * bring down the CPU on non-preemptive kernel.
1493 */
1494 cpu_relax();
1495 cond_resched();
1496 }
1497 }
1498
1499 struct idle_rebind {
1500 int cnt; /* # workers to be rebound */
1501 struct completion done; /* all workers rebound */
1502 };
1503
1504 /*
1505 * Rebind an idle @worker to its CPU. During CPU onlining, this has to
1506 * happen synchronously for idle workers. worker_thread() will test
1507 * %WORKER_REBIND before leaving idle and call this function.
1508 */
1509 static void idle_worker_rebind(struct worker *worker)
1510 {
1511 struct global_cwq *gcwq = worker->pool->gcwq;
1512
1513 /* CPU must be online at this point */
1514 WARN_ON(!worker_maybe_bind_and_lock(worker));
1515 if (!--worker->idle_rebind->cnt)
1516 complete(&worker->idle_rebind->done);
1517 spin_unlock_irq(&worker->pool->gcwq->lock);
1518
1519 /* we did our part, wait for rebind_workers() to finish up */
1520 wait_event(gcwq->rebind_hold, !(worker->flags & WORKER_REBIND));
1521 }
1522
1523 /*
1524 * Function for @worker->rebind.work used to rebind unbound busy workers to
1525 * the associated cpu which is coming back online. This is scheduled by
1526 * cpu up but can race with other cpu hotplug operations and may be
1527 * executed twice without intervening cpu down.
1528 */
1529 static void busy_worker_rebind_fn(struct work_struct *work)
1530 {
1531 struct worker *worker = container_of(work, struct worker, rebind_work);
1532 struct global_cwq *gcwq = worker->pool->gcwq;
1533
1534 if (worker_maybe_bind_and_lock(worker))
1535 worker_clr_flags(worker, WORKER_REBIND);
1536
1537 spin_unlock_irq(&gcwq->lock);
1538 }
1539
1540 /**
1541 * rebind_workers - rebind all workers of a gcwq to the associated CPU
1542 * @gcwq: gcwq of interest
1543 *
1544 * @gcwq->cpu is coming online. Rebind all workers to the CPU. Rebinding
1545 * is different for idle and busy ones.
1546 *
1547 * The idle ones should be rebound synchronously and idle rebinding should
1548 * be complete before any worker starts executing work items with
1549 * concurrency management enabled; otherwise, scheduler may oops trying to
1550 * wake up non-local idle worker from wq_worker_sleeping().
1551 *
1552 * This is achieved by repeatedly requesting rebinding until all idle
1553 * workers are known to have been rebound under @gcwq->lock and holding all
1554 * idle workers from becoming busy until idle rebinding is complete.
1555 *
1556 * Once idle workers are rebound, busy workers can be rebound as they
1557 * finish executing their current work items. Queueing the rebind work at
1558 * the head of their scheduled lists is enough. Note that nr_running will
1559 * be properbly bumped as busy workers rebind.
1560 *
1561 * On return, all workers are guaranteed to either be bound or have rebind
1562 * work item scheduled.
1563 */
1564 static void rebind_workers(struct global_cwq *gcwq)
1565 __releases(&gcwq->lock) __acquires(&gcwq->lock)
1566 {
1567 struct idle_rebind idle_rebind;
1568 struct worker_pool *pool;
1569 struct worker *worker;
1570 struct hlist_node *pos;
1571 int i;
1572
1573 lockdep_assert_held(&gcwq->lock);
1574
1575 for_each_worker_pool(pool, gcwq)
1576 lockdep_assert_held(&pool->manager_mutex);
1577
1578 /*
1579 * Rebind idle workers. Interlocked both ways. We wait for
1580 * workers to rebind via @idle_rebind.done. Workers will wait for
1581 * us to finish up by watching %WORKER_REBIND.
1582 */
1583 init_completion(&idle_rebind.done);
1584 retry:
1585 idle_rebind.cnt = 1;
1586 INIT_COMPLETION(idle_rebind.done);
1587
1588 /* set REBIND and kick idle ones, we'll wait for these later */
1589 for_each_worker_pool(pool, gcwq) {
1590 list_for_each_entry(worker, &pool->idle_list, entry) {
1591 if (worker->flags & WORKER_REBIND)
1592 continue;
1593
1594 /* morph UNBOUND to REBIND */
1595 worker->flags &= ~WORKER_UNBOUND;
1596 worker->flags |= WORKER_REBIND;
1597
1598 idle_rebind.cnt++;
1599 worker->idle_rebind = &idle_rebind;
1600
1601 /* worker_thread() will call idle_worker_rebind() */
1602 wake_up_process(worker->task);
1603 }
1604 }
1605
1606 if (--idle_rebind.cnt) {
1607 spin_unlock_irq(&gcwq->lock);
1608 wait_for_completion(&idle_rebind.done);
1609 spin_lock_irq(&gcwq->lock);
1610 /* busy ones might have become idle while waiting, retry */
1611 goto retry;
1612 }
1613
1614 /*
1615 * All idle workers are rebound and waiting for %WORKER_REBIND to
1616 * be cleared inside idle_worker_rebind(). Clear and release.
1617 * Clearing %WORKER_REBIND from this foreign context is safe
1618 * because these workers are still guaranteed to be idle.
1619 */
1620 for_each_worker_pool(pool, gcwq)
1621 list_for_each_entry(worker, &pool->idle_list, entry)
1622 worker->flags &= ~WORKER_REBIND;
1623
1624 wake_up_all(&gcwq->rebind_hold);
1625
1626 /* rebind busy workers */
1627 for_each_busy_worker(worker, i, pos, gcwq) {
1628 struct work_struct *rebind_work = &worker->rebind_work;
1629
1630 /* morph UNBOUND to REBIND */
1631 worker->flags &= ~WORKER_UNBOUND;
1632 worker->flags |= WORKER_REBIND;
1633
1634 if (test_and_set_bit(WORK_STRUCT_PENDING_BIT,
1635 work_data_bits(rebind_work)))
1636 continue;
1637
1638 /* wq doesn't matter, use the default one */
1639 debug_work_activate(rebind_work);
1640 insert_work(get_cwq(gcwq->cpu, system_wq), rebind_work,
1641 worker->scheduled.next,
1642 work_color_to_flags(WORK_NO_COLOR));
1643 }
1644 }
1645
1646 static struct worker *alloc_worker(void)
1647 {
1648 struct worker *worker;
1649
1650 worker = kzalloc(sizeof(*worker), GFP_KERNEL);
1651 if (worker) {
1652 INIT_LIST_HEAD(&worker->entry);
1653 INIT_LIST_HEAD(&worker->scheduled);
1654 INIT_WORK(&worker->rebind_work, busy_worker_rebind_fn);
1655 /* on creation a worker is in !idle && prep state */
1656 worker->flags = WORKER_PREP;
1657 }
1658 return worker;
1659 }
1660
1661 /**
1662 * create_worker - create a new workqueue worker
1663 * @pool: pool the new worker will belong to
1664 *
1665 * Create a new worker which is bound to @pool. The returned worker
1666 * can be started by calling start_worker() or destroyed using
1667 * destroy_worker().
1668 *
1669 * CONTEXT:
1670 * Might sleep. Does GFP_KERNEL allocations.
1671 *
1672 * RETURNS:
1673 * Pointer to the newly created worker.
1674 */
1675 static struct worker *create_worker(struct worker_pool *pool)
1676 {
1677 struct global_cwq *gcwq = pool->gcwq;
1678 const char *pri = worker_pool_pri(pool) ? "H" : "";
1679 struct worker *worker = NULL;
1680 int id = -1;
1681
1682 spin_lock_irq(&gcwq->lock);
1683 while (ida_get_new(&pool->worker_ida, &id)) {
1684 spin_unlock_irq(&gcwq->lock);
1685 if (!ida_pre_get(&pool->worker_ida, GFP_KERNEL))
1686 goto fail;
1687 spin_lock_irq(&gcwq->lock);
1688 }
1689 spin_unlock_irq(&gcwq->lock);
1690
1691 worker = alloc_worker();
1692 if (!worker)
1693 goto fail;
1694
1695 worker->pool = pool;
1696 worker->id = id;
1697
1698 if (gcwq->cpu != WORK_CPU_UNBOUND)
1699 worker->task = kthread_create_on_node(worker_thread,
1700 worker, cpu_to_node(gcwq->cpu),
1701 "kworker/%u:%d%s", gcwq->cpu, id, pri);
1702 else
1703 worker->task = kthread_create(worker_thread, worker,
1704 "kworker/u:%d%s", id, pri);
1705 if (IS_ERR(worker->task))
1706 goto fail;
1707
1708 if (worker_pool_pri(pool))
1709 set_user_nice(worker->task, HIGHPRI_NICE_LEVEL);
1710
1711 /*
1712 * Determine CPU binding of the new worker depending on
1713 * %GCWQ_DISASSOCIATED. The caller is responsible for ensuring the
1714 * flag remains stable across this function. See the comments
1715 * above the flag definition for details.
1716 *
1717 * As an unbound worker may later become a regular one if CPU comes
1718 * online, make sure every worker has %PF_THREAD_BOUND set.
1719 */
1720 if (!(gcwq->flags & GCWQ_DISASSOCIATED)) {
1721 kthread_bind(worker->task, gcwq->cpu);
1722 } else {
1723 worker->task->flags |= PF_THREAD_BOUND;
1724 worker->flags |= WORKER_UNBOUND;
1725 }
1726
1727 return worker;
1728 fail:
1729 if (id >= 0) {
1730 spin_lock_irq(&gcwq->lock);
1731 ida_remove(&pool->worker_ida, id);
1732 spin_unlock_irq(&gcwq->lock);
1733 }
1734 kfree(worker);
1735 return NULL;
1736 }
1737
1738 /**
1739 * start_worker - start a newly created worker
1740 * @worker: worker to start
1741 *
1742 * Make the gcwq aware of @worker and start it.
1743 *
1744 * CONTEXT:
1745 * spin_lock_irq(gcwq->lock).
1746 */
1747 static void start_worker(struct worker *worker)
1748 {
1749 worker->flags |= WORKER_STARTED;
1750 worker->pool->nr_workers++;
1751 worker_enter_idle(worker);
1752 wake_up_process(worker->task);
1753 }
1754
1755 /**
1756 * destroy_worker - destroy a workqueue worker
1757 * @worker: worker to be destroyed
1758 *
1759 * Destroy @worker and adjust @gcwq stats accordingly.
1760 *
1761 * CONTEXT:
1762 * spin_lock_irq(gcwq->lock) which is released and regrabbed.
1763 */
1764 static void destroy_worker(struct worker *worker)
1765 {
1766 struct worker_pool *pool = worker->pool;
1767 struct global_cwq *gcwq = pool->gcwq;
1768 int id = worker->id;
1769
1770 /* sanity check frenzy */
1771 BUG_ON(worker->current_work);
1772 BUG_ON(!list_empty(&worker->scheduled));
1773
1774 if (worker->flags & WORKER_STARTED)
1775 pool->nr_workers--;
1776 if (worker->flags & WORKER_IDLE)
1777 pool->nr_idle--;
1778
1779 list_del_init(&worker->entry);
1780 worker->flags |= WORKER_DIE;
1781
1782 spin_unlock_irq(&gcwq->lock);
1783
1784 kthread_stop(worker->task);
1785 kfree(worker);
1786
1787 spin_lock_irq(&gcwq->lock);
1788 ida_remove(&pool->worker_ida, id);
1789 }
1790
1791 static void idle_worker_timeout(unsigned long __pool)
1792 {
1793 struct worker_pool *pool = (void *)__pool;
1794 struct global_cwq *gcwq = pool->gcwq;
1795
1796 spin_lock_irq(&gcwq->lock);
1797
1798 if (too_many_workers(pool)) {
1799 struct worker *worker;
1800 unsigned long expires;
1801
1802 /* idle_list is kept in LIFO order, check the last one */
1803 worker = list_entry(pool->idle_list.prev, struct worker, entry);
1804 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
1805
1806 if (time_before(jiffies, expires))
1807 mod_timer(&pool->idle_timer, expires);
1808 else {
1809 /* it's been idle for too long, wake up manager */
1810 pool->flags |= POOL_MANAGE_WORKERS;
1811 wake_up_worker(pool);
1812 }
1813 }
1814
1815 spin_unlock_irq(&gcwq->lock);
1816 }
1817
1818 static bool send_mayday(struct work_struct *work)
1819 {
1820 struct cpu_workqueue_struct *cwq = get_work_cwq(work);
1821 struct workqueue_struct *wq = cwq->wq;
1822 unsigned int cpu;
1823
1824 if (!(wq->flags & WQ_RESCUER))
1825 return false;
1826
1827 /* mayday mayday mayday */
1828 cpu = cwq->pool->gcwq->cpu;
1829 /* WORK_CPU_UNBOUND can't be set in cpumask, use cpu 0 instead */
1830 if (cpu == WORK_CPU_UNBOUND)
1831 cpu = 0;
1832 if (!mayday_test_and_set_cpu(cpu, wq->mayday_mask))
1833 wake_up_process(wq->rescuer->task);
1834 return true;
1835 }
1836
1837 static void gcwq_mayday_timeout(unsigned long __pool)
1838 {
1839 struct worker_pool *pool = (void *)__pool;
1840 struct global_cwq *gcwq = pool->gcwq;
1841 struct work_struct *work;
1842
1843 spin_lock_irq(&gcwq->lock);
1844
1845 if (need_to_create_worker(pool)) {
1846 /*
1847 * We've been trying to create a new worker but
1848 * haven't been successful. We might be hitting an
1849 * allocation deadlock. Send distress signals to
1850 * rescuers.
1851 */
1852 list_for_each_entry(work, &pool->worklist, entry)
1853 send_mayday(work);
1854 }
1855
1856 spin_unlock_irq(&gcwq->lock);
1857
1858 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
1859 }
1860
1861 /**
1862 * maybe_create_worker - create a new worker if necessary
1863 * @pool: pool to create a new worker for
1864 *
1865 * Create a new worker for @pool if necessary. @pool is guaranteed to
1866 * have at least one idle worker on return from this function. If
1867 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
1868 * sent to all rescuers with works scheduled on @pool to resolve
1869 * possible allocation deadlock.
1870 *
1871 * On return, need_to_create_worker() is guaranteed to be false and
1872 * may_start_working() true.
1873 *
1874 * LOCKING:
1875 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
1876 * multiple times. Does GFP_KERNEL allocations. Called only from
1877 * manager.
1878 *
1879 * RETURNS:
1880 * false if no action was taken and gcwq->lock stayed locked, true
1881 * otherwise.
1882 */
1883 static bool maybe_create_worker(struct worker_pool *pool)
1884 __releases(&gcwq->lock)
1885 __acquires(&gcwq->lock)
1886 {
1887 struct global_cwq *gcwq = pool->gcwq;
1888
1889 if (!need_to_create_worker(pool))
1890 return false;
1891 restart:
1892 spin_unlock_irq(&gcwq->lock);
1893
1894 /* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
1895 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
1896
1897 while (true) {
1898 struct worker *worker;
1899
1900 worker = create_worker(pool);
1901 if (worker) {
1902 del_timer_sync(&pool->mayday_timer);
1903 spin_lock_irq(&gcwq->lock);
1904 start_worker(worker);
1905 BUG_ON(need_to_create_worker(pool));
1906 return true;
1907 }
1908
1909 if (!need_to_create_worker(pool))
1910 break;
1911
1912 __set_current_state(TASK_INTERRUPTIBLE);
1913 schedule_timeout(CREATE_COOLDOWN);
1914
1915 if (!need_to_create_worker(pool))
1916 break;
1917 }
1918
1919 del_timer_sync(&pool->mayday_timer);
1920 spin_lock_irq(&gcwq->lock);
1921 if (need_to_create_worker(pool))
1922 goto restart;
1923 return true;
1924 }
1925
1926 /**
1927 * maybe_destroy_worker - destroy workers which have been idle for a while
1928 * @pool: pool to destroy workers for
1929 *
1930 * Destroy @pool workers which have been idle for longer than
1931 * IDLE_WORKER_TIMEOUT.
1932 *
1933 * LOCKING:
1934 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
1935 * multiple times. Called only from manager.
1936 *
1937 * RETURNS:
1938 * false if no action was taken and gcwq->lock stayed locked, true
1939 * otherwise.
1940 */
1941 static bool maybe_destroy_workers(struct worker_pool *pool)
1942 {
1943 bool ret = false;
1944
1945 while (too_many_workers(pool)) {
1946 struct worker *worker;
1947 unsigned long expires;
1948
1949 worker = list_entry(pool->idle_list.prev, struct worker, entry);
1950 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
1951
1952 if (time_before(jiffies, expires)) {
1953 mod_timer(&pool->idle_timer, expires);
1954 break;
1955 }
1956
1957 destroy_worker(worker);
1958 ret = true;
1959 }
1960
1961 return ret;
1962 }
1963
1964 /**
1965 * manage_workers - manage worker pool
1966 * @worker: self
1967 *
1968 * Assume the manager role and manage gcwq worker pool @worker belongs
1969 * to. At any given time, there can be only zero or one manager per
1970 * gcwq. The exclusion is handled automatically by this function.
1971 *
1972 * The caller can safely start processing works on false return. On
1973 * true return, it's guaranteed that need_to_create_worker() is false
1974 * and may_start_working() is true.
1975 *
1976 * CONTEXT:
1977 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
1978 * multiple times. Does GFP_KERNEL allocations.
1979 *
1980 * RETURNS:
1981 * false if no action was taken and gcwq->lock stayed locked, true if
1982 * some action was taken.
1983 */
1984 static bool manage_workers(struct worker *worker)
1985 {
1986 struct worker_pool *pool = worker->pool;
1987 bool ret = false;
1988
1989 if (!mutex_trylock(&pool->manager_mutex))
1990 return ret;
1991
1992 pool->flags &= ~POOL_MANAGE_WORKERS;
1993
1994 /*
1995 * Destroy and then create so that may_start_working() is true
1996 * on return.
1997 */
1998 ret |= maybe_destroy_workers(pool);
1999 ret |= maybe_create_worker(pool);
2000
2001 mutex_unlock(&pool->manager_mutex);
2002 return ret;
2003 }
2004
2005 /**
2006 * process_one_work - process single work
2007 * @worker: self
2008 * @work: work to process
2009 *
2010 * Process @work. This function contains all the logics necessary to
2011 * process a single work including synchronization against and
2012 * interaction with other workers on the same cpu, queueing and
2013 * flushing. As long as context requirement is met, any worker can
2014 * call this function to process a work.
2015 *
2016 * CONTEXT:
2017 * spin_lock_irq(gcwq->lock) which is released and regrabbed.
2018 */
2019 static void process_one_work(struct worker *worker, struct work_struct *work)
2020 __releases(&gcwq->lock)
2021 __acquires(&gcwq->lock)
2022 {
2023 struct cpu_workqueue_struct *cwq = get_work_cwq(work);
2024 struct worker_pool *pool = worker->pool;
2025 struct global_cwq *gcwq = pool->gcwq;
2026 struct hlist_head *bwh = busy_worker_head(gcwq, work);
2027 bool cpu_intensive = cwq->wq->flags & WQ_CPU_INTENSIVE;
2028 work_func_t f = work->func;
2029 int work_color;
2030 struct worker *collision;
2031 #ifdef CONFIG_LOCKDEP
2032 /*
2033 * It is permissible to free the struct work_struct from
2034 * inside the function that is called from it, this we need to
2035 * take into account for lockdep too. To avoid bogus "held
2036 * lock freed" warnings as well as problems when looking into
2037 * work->lockdep_map, make a copy and use that here.
2038 */
2039 struct lockdep_map lockdep_map;
2040
2041 lockdep_copy_map(&lockdep_map, &work->lockdep_map);
2042 #endif
2043 /*
2044 * Ensure we're on the correct CPU. DISASSOCIATED test is
2045 * necessary to avoid spurious warnings from rescuers servicing the
2046 * unbound or a disassociated gcwq.
2047 */
2048 WARN_ON_ONCE(!(worker->flags & (WORKER_UNBOUND | WORKER_REBIND)) &&
2049 !(gcwq->flags & GCWQ_DISASSOCIATED) &&
2050 raw_smp_processor_id() != gcwq->cpu);
2051
2052 /*
2053 * A single work shouldn't be executed concurrently by
2054 * multiple workers on a single cpu. Check whether anyone is
2055 * already processing the work. If so, defer the work to the
2056 * currently executing one.
2057 */
2058 collision = __find_worker_executing_work(gcwq, bwh, work);
2059 if (unlikely(collision)) {
2060 move_linked_works(work, &collision->scheduled, NULL);
2061 return;
2062 }
2063
2064 /* claim and dequeue */
2065 debug_work_deactivate(work);
2066 hlist_add_head(&worker->hentry, bwh);
2067 worker->current_work = work;
2068 worker->current_cwq = cwq;
2069 work_color = get_work_color(work);
2070
2071 list_del_init(&work->entry);
2072
2073 /*
2074 * CPU intensive works don't participate in concurrency
2075 * management. They're the scheduler's responsibility.
2076 */
2077 if (unlikely(cpu_intensive))
2078 worker_set_flags(worker, WORKER_CPU_INTENSIVE, true);
2079
2080 /*
2081 * Unbound gcwq isn't concurrency managed and work items should be
2082 * executed ASAP. Wake up another worker if necessary.
2083 */
2084 if ((worker->flags & WORKER_UNBOUND) && need_more_worker(pool))
2085 wake_up_worker(pool);
2086
2087 /*
2088 * Record the last CPU and clear PENDING. The following wmb is
2089 * paired with the implied mb in test_and_set_bit(PENDING) and
2090 * ensures all updates to @work made here are visible to and
2091 * precede any updates by the next PENDING owner. Also, clear
2092 * PENDING inside @gcwq->lock so that PENDING and queued state
2093 * changes happen together while IRQ is disabled.
2094 */
2095 smp_wmb();
2096 set_work_cpu_and_clear_pending(work, gcwq->cpu);
2097
2098 spin_unlock_irq(&gcwq->lock);
2099
2100 lock_map_acquire_read(&cwq->wq->lockdep_map);
2101 lock_map_acquire(&lockdep_map);
2102 trace_workqueue_execute_start(work);
2103 f(work);
2104 /*
2105 * While we must be careful to not use "work" after this, the trace
2106 * point will only record its address.
2107 */
2108 trace_workqueue_execute_end(work);
2109 lock_map_release(&lockdep_map);
2110 lock_map_release(&cwq->wq->lockdep_map);
2111
2112 if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
2113 printk(KERN_ERR "BUG: workqueue leaked lock or atomic: "
2114 "%s/0x%08x/%d\n",
2115 current->comm, preempt_count(), task_pid_nr(current));
2116 printk(KERN_ERR " last function: ");
2117 print_symbol("%s\n", (unsigned long)f);
2118 debug_show_held_locks(current);
2119 dump_stack();
2120 }
2121
2122 spin_lock_irq(&gcwq->lock);
2123
2124 /* clear cpu intensive status */
2125 if (unlikely(cpu_intensive))
2126 worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
2127
2128 /* we're done with it, release */
2129 hlist_del_init(&worker->hentry);
2130 worker->current_work = NULL;
2131 worker->current_cwq = NULL;
2132 cwq_dec_nr_in_flight(cwq, work_color, false);
2133 }
2134
2135 /**
2136 * process_scheduled_works - process scheduled works
2137 * @worker: self
2138 *
2139 * Process all scheduled works. Please note that the scheduled list
2140 * may change while processing a work, so this function repeatedly
2141 * fetches a work from the top and executes it.
2142 *
2143 * CONTEXT:
2144 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
2145 * multiple times.
2146 */
2147 static void process_scheduled_works(struct worker *worker)
2148 {
2149 while (!list_empty(&worker->scheduled)) {
2150 struct work_struct *work = list_first_entry(&worker->scheduled,
2151 struct work_struct, entry);
2152 process_one_work(worker, work);
2153 }
2154 }
2155
2156 /**
2157 * worker_thread - the worker thread function
2158 * @__worker: self
2159 *
2160 * The gcwq worker thread function. There's a single dynamic pool of
2161 * these per each cpu. These workers process all works regardless of
2162 * their specific target workqueue. The only exception is works which
2163 * belong to workqueues with a rescuer which will be explained in
2164 * rescuer_thread().
2165 */
2166 static int worker_thread(void *__worker)
2167 {
2168 struct worker *worker = __worker;
2169 struct worker_pool *pool = worker->pool;
2170 struct global_cwq *gcwq = pool->gcwq;
2171
2172 /* tell the scheduler that this is a workqueue worker */
2173 worker->task->flags |= PF_WQ_WORKER;
2174 woke_up:
2175 spin_lock_irq(&gcwq->lock);
2176
2177 /*
2178 * DIE can be set only while idle and REBIND set while busy has
2179 * @worker->rebind_work scheduled. Checking here is enough.
2180 */
2181 if (unlikely(worker->flags & (WORKER_REBIND | WORKER_DIE))) {
2182 spin_unlock_irq(&gcwq->lock);
2183
2184 if (worker->flags & WORKER_DIE) {
2185 worker->task->flags &= ~PF_WQ_WORKER;
2186 return 0;
2187 }
2188
2189 idle_worker_rebind(worker);
2190 goto woke_up;
2191 }
2192
2193 worker_leave_idle(worker);
2194 recheck:
2195 /* no more worker necessary? */
2196 if (!need_more_worker(pool))
2197 goto sleep;
2198
2199 /* do we need to manage? */
2200 if (unlikely(!may_start_working(pool)) && manage_workers(worker))
2201 goto recheck;
2202
2203 /*
2204 * ->scheduled list can only be filled while a worker is
2205 * preparing to process a work or actually processing it.
2206 * Make sure nobody diddled with it while I was sleeping.
2207 */
2208 BUG_ON(!list_empty(&worker->scheduled));
2209
2210 /*
2211 * When control reaches this point, we're guaranteed to have
2212 * at least one idle worker or that someone else has already
2213 * assumed the manager role.
2214 */
2215 worker_clr_flags(worker, WORKER_PREP);
2216
2217 do {
2218 struct work_struct *work =
2219 list_first_entry(&pool->worklist,
2220 struct work_struct, entry);
2221
2222 if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
2223 /* optimization path, not strictly necessary */
2224 process_one_work(worker, work);
2225 if (unlikely(!list_empty(&worker->scheduled)))
2226 process_scheduled_works(worker);
2227 } else {
2228 move_linked_works(work, &worker->scheduled, NULL);
2229 process_scheduled_works(worker);
2230 }
2231 } while (keep_working(pool));
2232
2233 worker_set_flags(worker, WORKER_PREP, false);
2234 sleep:
2235 if (unlikely(need_to_manage_workers(pool)) && manage_workers(worker))
2236 goto recheck;
2237
2238 /*
2239 * gcwq->lock is held and there's no work to process and no
2240 * need to manage, sleep. Workers are woken up only while
2241 * holding gcwq->lock or from local cpu, so setting the
2242 * current state before releasing gcwq->lock is enough to
2243 * prevent losing any event.
2244 */
2245 worker_enter_idle(worker);
2246 __set_current_state(TASK_INTERRUPTIBLE);
2247 spin_unlock_irq(&gcwq->lock);
2248 schedule();
2249 goto woke_up;
2250 }
2251
2252 /**
2253 * rescuer_thread - the rescuer thread function
2254 * @__wq: the associated workqueue
2255 *
2256 * Workqueue rescuer thread function. There's one rescuer for each
2257 * workqueue which has WQ_RESCUER set.
2258 *
2259 * Regular work processing on a gcwq may block trying to create a new
2260 * worker which uses GFP_KERNEL allocation which has slight chance of
2261 * developing into deadlock if some works currently on the same queue
2262 * need to be processed to satisfy the GFP_KERNEL allocation. This is
2263 * the problem rescuer solves.
2264 *
2265 * When such condition is possible, the gcwq summons rescuers of all
2266 * workqueues which have works queued on the gcwq and let them process
2267 * those works so that forward progress can be guaranteed.
2268 *
2269 * This should happen rarely.
2270 */
2271 static int rescuer_thread(void *__wq)
2272 {
2273 struct workqueue_struct *wq = __wq;
2274 struct worker *rescuer = wq->rescuer;
2275 struct list_head *scheduled = &rescuer->scheduled;
2276 bool is_unbound = wq->flags & WQ_UNBOUND;
2277 unsigned int cpu;
2278
2279 set_user_nice(current, RESCUER_NICE_LEVEL);
2280 repeat:
2281 set_current_state(TASK_INTERRUPTIBLE);
2282
2283 if (kthread_should_stop())
2284 return 0;
2285
2286 /*
2287 * See whether any cpu is asking for help. Unbounded
2288 * workqueues use cpu 0 in mayday_mask for CPU_UNBOUND.
2289 */
2290 for_each_mayday_cpu(cpu, wq->mayday_mask) {
2291 unsigned int tcpu = is_unbound ? WORK_CPU_UNBOUND : cpu;
2292 struct cpu_workqueue_struct *cwq = get_cwq(tcpu, wq);
2293 struct worker_pool *pool = cwq->pool;
2294 struct global_cwq *gcwq = pool->gcwq;
2295 struct work_struct *work, *n;
2296
2297 __set_current_state(TASK_RUNNING);
2298 mayday_clear_cpu(cpu, wq->mayday_mask);
2299
2300 /* migrate to the target cpu if possible */
2301 rescuer->pool = pool;
2302 worker_maybe_bind_and_lock(rescuer);
2303
2304 /*
2305 * Slurp in all works issued via this workqueue and
2306 * process'em.
2307 */
2308 BUG_ON(!list_empty(&rescuer->scheduled));
2309 list_for_each_entry_safe(work, n, &pool->worklist, entry)
2310 if (get_work_cwq(work) == cwq)
2311 move_linked_works(work, scheduled, &n);
2312
2313 process_scheduled_works(rescuer);
2314
2315 /*
2316 * Leave this gcwq. If keep_working() is %true, notify a
2317 * regular worker; otherwise, we end up with 0 concurrency
2318 * and stalling the execution.
2319 */
2320 if (keep_working(pool))
2321 wake_up_worker(pool);
2322
2323 spin_unlock_irq(&gcwq->lock);
2324 }
2325
2326 schedule();
2327 goto repeat;
2328 }
2329
2330 struct wq_barrier {
2331 struct work_struct work;
2332 struct completion done;
2333 };
2334
2335 static void wq_barrier_func(struct work_struct *work)
2336 {
2337 struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
2338 complete(&barr->done);
2339 }
2340
2341 /**
2342 * insert_wq_barrier - insert a barrier work
2343 * @cwq: cwq to insert barrier into
2344 * @barr: wq_barrier to insert
2345 * @target: target work to attach @barr to
2346 * @worker: worker currently executing @target, NULL if @target is not executing
2347 *
2348 * @barr is linked to @target such that @barr is completed only after
2349 * @target finishes execution. Please note that the ordering
2350 * guarantee is observed only with respect to @target and on the local
2351 * cpu.
2352 *
2353 * Currently, a queued barrier can't be canceled. This is because
2354 * try_to_grab_pending() can't determine whether the work to be
2355 * grabbed is at the head of the queue and thus can't clear LINKED
2356 * flag of the previous work while there must be a valid next work
2357 * after a work with LINKED flag set.
2358 *
2359 * Note that when @worker is non-NULL, @target may be modified
2360 * underneath us, so we can't reliably determine cwq from @target.
2361 *
2362 * CONTEXT:
2363 * spin_lock_irq(gcwq->lock).
2364 */
2365 static void insert_wq_barrier(struct cpu_workqueue_struct *cwq,
2366 struct wq_barrier *barr,
2367 struct work_struct *target, struct worker *worker)
2368 {
2369 struct list_head *head;
2370 unsigned int linked = 0;
2371
2372 /*
2373 * debugobject calls are safe here even with gcwq->lock locked
2374 * as we know for sure that this will not trigger any of the
2375 * checks and call back into the fixup functions where we
2376 * might deadlock.
2377 */
2378 INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
2379 __set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
2380 init_completion(&barr->done);
2381
2382 /*
2383 * If @target is currently being executed, schedule the
2384 * barrier to the worker; otherwise, put it after @target.
2385 */
2386 if (worker)
2387 head = worker->scheduled.next;
2388 else {
2389 unsigned long *bits = work_data_bits(target);
2390
2391 head = target->entry.next;
2392 /* there can already be other linked works, inherit and set */
2393 linked = *bits & WORK_STRUCT_LINKED;
2394 __set_bit(WORK_STRUCT_LINKED_BIT, bits);
2395 }
2396
2397 debug_work_activate(&barr->work);
2398 insert_work(cwq, &barr->work, head,
2399 work_color_to_flags(WORK_NO_COLOR) | linked);
2400 }
2401
2402 /**
2403 * flush_workqueue_prep_cwqs - prepare cwqs for workqueue flushing
2404 * @wq: workqueue being flushed
2405 * @flush_color: new flush color, < 0 for no-op
2406 * @work_color: new work color, < 0 for no-op
2407 *
2408 * Prepare cwqs for workqueue flushing.
2409 *
2410 * If @flush_color is non-negative, flush_color on all cwqs should be
2411 * -1. If no cwq has in-flight commands at the specified color, all
2412 * cwq->flush_color's stay at -1 and %false is returned. If any cwq
2413 * has in flight commands, its cwq->flush_color is set to
2414 * @flush_color, @wq->nr_cwqs_to_flush is updated accordingly, cwq
2415 * wakeup logic is armed and %true is returned.
2416 *
2417 * The caller should have initialized @wq->first_flusher prior to
2418 * calling this function with non-negative @flush_color. If
2419 * @flush_color is negative, no flush color update is done and %false
2420 * is returned.
2421 *
2422 * If @work_color is non-negative, all cwqs should have the same
2423 * work_color which is previous to @work_color and all will be
2424 * advanced to @work_color.
2425 *
2426 * CONTEXT:
2427 * mutex_lock(wq->flush_mutex).
2428 *
2429 * RETURNS:
2430 * %true if @flush_color >= 0 and there's something to flush. %false
2431 * otherwise.
2432 */
2433 static bool flush_workqueue_prep_cwqs(struct workqueue_struct *wq,
2434 int flush_color, int work_color)
2435 {
2436 bool wait = false;
2437 unsigned int cpu;
2438
2439 if (flush_color >= 0) {
2440 BUG_ON(atomic_read(&wq->nr_cwqs_to_flush));
2441 atomic_set(&wq->nr_cwqs_to_flush, 1);
2442 }
2443
2444 for_each_cwq_cpu(cpu, wq) {
2445 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
2446 struct global_cwq *gcwq = cwq->pool->gcwq;
2447
2448 spin_lock_irq(&gcwq->lock);
2449
2450 if (flush_color >= 0) {
2451 BUG_ON(cwq->flush_color != -1);
2452
2453 if (cwq->nr_in_flight[flush_color]) {
2454 cwq->flush_color = flush_color;
2455 atomic_inc(&wq->nr_cwqs_to_flush);
2456 wait = true;
2457 }
2458 }
2459
2460 if (work_color >= 0) {
2461 BUG_ON(work_color != work_next_color(cwq->work_color));
2462 cwq->work_color = work_color;
2463 }
2464
2465 spin_unlock_irq(&gcwq->lock);
2466 }
2467
2468 if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_cwqs_to_flush))
2469 complete(&wq->first_flusher->done);
2470
2471 return wait;
2472 }
2473
2474 /**
2475 * flush_workqueue - ensure that any scheduled work has run to completion.
2476 * @wq: workqueue to flush
2477 *
2478 * Forces execution of the workqueue and blocks until its completion.
2479 * This is typically used in driver shutdown handlers.
2480 *
2481 * We sleep until all works which were queued on entry have been handled,
2482 * but we are not livelocked by new incoming ones.
2483 */
2484 void flush_workqueue(struct workqueue_struct *wq)
2485 {
2486 struct wq_flusher this_flusher = {
2487 .list = LIST_HEAD_INIT(this_flusher.list),
2488 .flush_color = -1,
2489 .done = COMPLETION_INITIALIZER_ONSTACK(this_flusher.done),
2490 };
2491 int next_color;
2492
2493 lock_map_acquire(&wq->lockdep_map);
2494 lock_map_release(&wq->lockdep_map);
2495
2496 mutex_lock(&wq->flush_mutex);
2497
2498 /*
2499 * Start-to-wait phase
2500 */
2501 next_color = work_next_color(wq->work_color);
2502
2503 if (next_color != wq->flush_color) {
2504 /*
2505 * Color space is not full. The current work_color
2506 * becomes our flush_color and work_color is advanced
2507 * by one.
2508 */
2509 BUG_ON(!list_empty(&wq->flusher_overflow));
2510 this_flusher.flush_color = wq->work_color;
2511 wq->work_color = next_color;
2512
2513 if (!wq->first_flusher) {
2514 /* no flush in progress, become the first flusher */
2515 BUG_ON(wq->flush_color != this_flusher.flush_color);
2516
2517 wq->first_flusher = &this_flusher;
2518
2519 if (!flush_workqueue_prep_cwqs(wq, wq->flush_color,
2520 wq->work_color)) {
2521 /* nothing to flush, done */
2522 wq->flush_color = next_color;
2523 wq->first_flusher = NULL;
2524 goto out_unlock;
2525 }
2526 } else {
2527 /* wait in queue */
2528 BUG_ON(wq->flush_color == this_flusher.flush_color);
2529 list_add_tail(&this_flusher.list, &wq->flusher_queue);
2530 flush_workqueue_prep_cwqs(wq, -1, wq->work_color);
2531 }
2532 } else {
2533 /*
2534 * Oops, color space is full, wait on overflow queue.
2535 * The next flush completion will assign us
2536 * flush_color and transfer to flusher_queue.
2537 */
2538 list_add_tail(&this_flusher.list, &wq->flusher_overflow);
2539 }
2540
2541 mutex_unlock(&wq->flush_mutex);
2542
2543 wait_for_completion(&this_flusher.done);
2544
2545 /*
2546 * Wake-up-and-cascade phase
2547 *
2548 * First flushers are responsible for cascading flushes and
2549 * handling overflow. Non-first flushers can simply return.
2550 */
2551 if (wq->first_flusher != &this_flusher)
2552 return;
2553
2554 mutex_lock(&wq->flush_mutex);
2555
2556 /* we might have raced, check again with mutex held */
2557 if (wq->first_flusher != &this_flusher)
2558 goto out_unlock;
2559
2560 wq->first_flusher = NULL;
2561
2562 BUG_ON(!list_empty(&this_flusher.list));
2563 BUG_ON(wq->flush_color != this_flusher.flush_color);
2564
2565 while (true) {
2566 struct wq_flusher *next, *tmp;
2567
2568 /* complete all the flushers sharing the current flush color */
2569 list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
2570 if (next->flush_color != wq->flush_color)
2571 break;
2572 list_del_init(&next->list);
2573 complete(&next->done);
2574 }
2575
2576 BUG_ON(!list_empty(&wq->flusher_overflow) &&
2577 wq->flush_color != work_next_color(wq->work_color));
2578
2579 /* this flush_color is finished, advance by one */
2580 wq->flush_color = work_next_color(wq->flush_color);
2581
2582 /* one color has been freed, handle overflow queue */
2583 if (!list_empty(&wq->flusher_overflow)) {
2584 /*
2585 * Assign the same color to all overflowed
2586 * flushers, advance work_color and append to
2587 * flusher_queue. This is the start-to-wait
2588 * phase for these overflowed flushers.
2589 */
2590 list_for_each_entry(tmp, &wq->flusher_overflow, list)
2591 tmp->flush_color = wq->work_color;
2592
2593 wq->work_color = work_next_color(wq->work_color);
2594
2595 list_splice_tail_init(&wq->flusher_overflow,
2596 &wq->flusher_queue);
2597 flush_workqueue_prep_cwqs(wq, -1, wq->work_color);
2598 }
2599
2600 if (list_empty(&wq->flusher_queue)) {
2601 BUG_ON(wq->flush_color != wq->work_color);
2602 break;
2603 }
2604
2605 /*
2606 * Need to flush more colors. Make the next flusher
2607 * the new first flusher and arm cwqs.
2608 */
2609 BUG_ON(wq->flush_color == wq->work_color);
2610 BUG_ON(wq->flush_color != next->flush_color);
2611
2612 list_del_init(&next->list);
2613 wq->first_flusher = next;
2614
2615 if (flush_workqueue_prep_cwqs(wq, wq->flush_color, -1))
2616 break;
2617
2618 /*
2619 * Meh... this color is already done, clear first
2620 * flusher and repeat cascading.
2621 */
2622 wq->first_flusher = NULL;
2623 }
2624
2625 out_unlock:
2626 mutex_unlock(&wq->flush_mutex);
2627 }
2628 EXPORT_SYMBOL_GPL(flush_workqueue);
2629
2630 /**
2631 * drain_workqueue - drain a workqueue
2632 * @wq: workqueue to drain
2633 *
2634 * Wait until the workqueue becomes empty. While draining is in progress,
2635 * only chain queueing is allowed. IOW, only currently pending or running
2636 * work items on @wq can queue further work items on it. @wq is flushed
2637 * repeatedly until it becomes empty. The number of flushing is detemined
2638 * by the depth of chaining and should be relatively short. Whine if it
2639 * takes too long.
2640 */
2641 void drain_workqueue(struct workqueue_struct *wq)
2642 {
2643 unsigned int flush_cnt = 0;
2644 unsigned int cpu;
2645
2646 /*
2647 * __queue_work() needs to test whether there are drainers, is much
2648 * hotter than drain_workqueue() and already looks at @wq->flags.
2649 * Use WQ_DRAINING so that queue doesn't have to check nr_drainers.
2650 */
2651 spin_lock(&workqueue_lock);
2652 if (!wq->nr_drainers++)
2653 wq->flags |= WQ_DRAINING;
2654 spin_unlock(&workqueue_lock);
2655 reflush:
2656 flush_workqueue(wq);
2657
2658 for_each_cwq_cpu(cpu, wq) {
2659 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
2660 bool drained;
2661
2662 spin_lock_irq(&cwq->pool->gcwq->lock);
2663 drained = !cwq->nr_active && list_empty(&cwq->delayed_works);
2664 spin_unlock_irq(&cwq->pool->gcwq->lock);
2665
2666 if (drained)
2667 continue;
2668
2669 if (++flush_cnt == 10 ||
2670 (flush_cnt % 100 == 0 && flush_cnt <= 1000))
2671 pr_warning("workqueue %s: flush on destruction isn't complete after %u tries\n",
2672 wq->name, flush_cnt);
2673 goto reflush;
2674 }
2675
2676 spin_lock(&workqueue_lock);
2677 if (!--wq->nr_drainers)
2678 wq->flags &= ~WQ_DRAINING;
2679 spin_unlock(&workqueue_lock);
2680 }
2681 EXPORT_SYMBOL_GPL(drain_workqueue);
2682
2683 static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr,
2684 bool wait_executing)
2685 {
2686 struct worker *worker = NULL;
2687 struct global_cwq *gcwq;
2688 struct cpu_workqueue_struct *cwq;
2689
2690 might_sleep();
2691 gcwq = get_work_gcwq(work);
2692 if (!gcwq)
2693 return false;
2694
2695 spin_lock_irq(&gcwq->lock);
2696 if (!list_empty(&work->entry)) {
2697 /*
2698 * See the comment near try_to_grab_pending()->smp_rmb().
2699 * If it was re-queued to a different gcwq under us, we
2700 * are not going to wait.
2701 */
2702 smp_rmb();
2703 cwq = get_work_cwq(work);
2704 if (unlikely(!cwq || gcwq != cwq->pool->gcwq))
2705 goto already_gone;
2706 } else if (wait_executing) {
2707 worker = find_worker_executing_work(gcwq, work);
2708 if (!worker)
2709 goto already_gone;
2710 cwq = worker->current_cwq;
2711 } else
2712 goto already_gone;
2713
2714 insert_wq_barrier(cwq, barr, work, worker);
2715 spin_unlock_irq(&gcwq->lock);
2716
2717 /*
2718 * If @max_active is 1 or rescuer is in use, flushing another work
2719 * item on the same workqueue may lead to deadlock. Make sure the
2720 * flusher is not running on the same workqueue by verifying write
2721 * access.
2722 */
2723 if (cwq->wq->saved_max_active == 1 || cwq->wq->flags & WQ_RESCUER)
2724 lock_map_acquire(&cwq->wq->lockdep_map);
2725 else
2726 lock_map_acquire_read(&cwq->wq->lockdep_map);
2727 lock_map_release(&cwq->wq->lockdep_map);
2728
2729 return true;
2730 already_gone:
2731 spin_unlock_irq(&gcwq->lock);
2732 return false;
2733 }
2734
2735 /**
2736 * flush_work - wait for a work to finish executing the last queueing instance
2737 * @work: the work to flush
2738 *
2739 * Wait until @work has finished execution. This function considers
2740 * only the last queueing instance of @work. If @work has been
2741 * enqueued across different CPUs on a non-reentrant workqueue or on
2742 * multiple workqueues, @work might still be executing on return on
2743 * some of the CPUs from earlier queueing.
2744 *
2745 * If @work was queued only on a non-reentrant, ordered or unbound
2746 * workqueue, @work is guaranteed to be idle on return if it hasn't
2747 * been requeued since flush started.
2748 *
2749 * RETURNS:
2750 * %true if flush_work() waited for the work to finish execution,
2751 * %false if it was already idle.
2752 */
2753 bool flush_work(struct work_struct *work)
2754 {
2755 struct wq_barrier barr;
2756
2757 lock_map_acquire(&work->lockdep_map);
2758 lock_map_release(&work->lockdep_map);
2759
2760 if (start_flush_work(work, &barr, true)) {
2761 wait_for_completion(&barr.done);
2762 destroy_work_on_stack(&barr.work);
2763 return true;
2764 } else
2765 return false;
2766 }
2767 EXPORT_SYMBOL_GPL(flush_work);
2768
2769 static bool wait_on_cpu_work(struct global_cwq *gcwq, struct work_struct *work)
2770 {
2771 struct wq_barrier barr;
2772 struct worker *worker;
2773
2774 spin_lock_irq(&gcwq->lock);
2775
2776 worker = find_worker_executing_work(gcwq, work);
2777 if (unlikely(worker))
2778 insert_wq_barrier(worker->current_cwq, &barr, work, worker);
2779
2780 spin_unlock_irq(&gcwq->lock);
2781
2782 if (unlikely(worker)) {
2783 wait_for_completion(&barr.done);
2784 destroy_work_on_stack(&barr.work);
2785 return true;
2786 } else
2787 return false;
2788 }
2789
2790 static bool wait_on_work(struct work_struct *work)
2791 {
2792 bool ret = false;
2793 int cpu;
2794
2795 might_sleep();
2796
2797 lock_map_acquire(&work->lockdep_map);
2798 lock_map_release(&work->lockdep_map);
2799
2800 for_each_gcwq_cpu(cpu)
2801 ret |= wait_on_cpu_work(get_gcwq(cpu), work);
2802 return ret;
2803 }
2804
2805 /**
2806 * flush_work_sync - wait until a work has finished execution
2807 * @work: the work to flush
2808 *
2809 * Wait until @work has finished execution. On return, it's
2810 * guaranteed that all queueing instances of @work which happened
2811 * before this function is called are finished. In other words, if
2812 * @work hasn't been requeued since this function was called, @work is
2813 * guaranteed to be idle on return.
2814 *
2815 * RETURNS:
2816 * %true if flush_work_sync() waited for the work to finish execution,
2817 * %false if it was already idle.
2818 */
2819 bool flush_work_sync(struct work_struct *work)
2820 {
2821 struct wq_barrier barr;
2822 bool pending, waited;
2823
2824 /* we'll wait for executions separately, queue barr only if pending */
2825 pending = start_flush_work(work, &barr, false);
2826
2827 /* wait for executions to finish */
2828 waited = wait_on_work(work);
2829
2830 /* wait for the pending one */
2831 if (pending) {
2832 wait_for_completion(&barr.done);
2833 destroy_work_on_stack(&barr.work);
2834 }
2835
2836 return pending || waited;
2837 }
2838 EXPORT_SYMBOL_GPL(flush_work_sync);
2839
2840 static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
2841 {
2842 int ret;
2843
2844 do {
2845 ret = try_to_grab_pending(work, is_dwork);
2846 wait_on_work(work);
2847 } while (unlikely(ret < 0));
2848
2849 clear_work_data(work);
2850 return ret;
2851 }
2852
2853 /**
2854 * cancel_work_sync - cancel a work and wait for it to finish
2855 * @work: the work to cancel
2856 *
2857 * Cancel @work and wait for its execution to finish. This function
2858 * can be used even if the work re-queues itself or migrates to
2859 * another workqueue. On return from this function, @work is
2860 * guaranteed to be not pending or executing on any CPU.
2861 *
2862 * cancel_work_sync(&delayed_work->work) must not be used for
2863 * delayed_work's. Use cancel_delayed_work_sync() instead.
2864 *
2865 * The caller must ensure that the workqueue on which @work was last
2866 * queued can't be destroyed before this function returns.
2867 *
2868 * RETURNS:
2869 * %true if @work was pending, %false otherwise.
2870 */
2871 bool cancel_work_sync(struct work_struct *work)
2872 {
2873 return __cancel_work_timer(work, false);
2874 }
2875 EXPORT_SYMBOL_GPL(cancel_work_sync);
2876
2877 /**
2878 * flush_delayed_work - wait for a dwork to finish executing the last queueing
2879 * @dwork: the delayed work to flush
2880 *
2881 * Delayed timer is cancelled and the pending work is queued for
2882 * immediate execution. Like flush_work(), this function only
2883 * considers the last queueing instance of @dwork.
2884 *
2885 * RETURNS:
2886 * %true if flush_work() waited for the work to finish execution,
2887 * %false if it was already idle.
2888 */
2889 bool flush_delayed_work(struct delayed_work *dwork)
2890 {
2891 local_irq_disable();
2892 if (del_timer_sync(&dwork->timer))
2893 __queue_work(WORK_CPU_UNBOUND,
2894 get_work_cwq(&dwork->work)->wq, &dwork->work);
2895 local_irq_enable();
2896 return flush_work(&dwork->work);
2897 }
2898 EXPORT_SYMBOL(flush_delayed_work);
2899
2900 /**
2901 * flush_delayed_work_sync - wait for a dwork to finish
2902 * @dwork: the delayed work to flush
2903 *
2904 * Delayed timer is cancelled and the pending work is queued for
2905 * execution immediately. Other than timer handling, its behavior
2906 * is identical to flush_work_sync().
2907 *
2908 * RETURNS:
2909 * %true if flush_work_sync() waited for the work to finish execution,
2910 * %false if it was already idle.
2911 */
2912 bool flush_delayed_work_sync(struct delayed_work *dwork)
2913 {
2914 local_irq_disable();
2915 if (del_timer_sync(&dwork->timer))
2916 __queue_work(WORK_CPU_UNBOUND,
2917 get_work_cwq(&dwork->work)->wq, &dwork->work);
2918 local_irq_enable();
2919 return flush_work_sync(&dwork->work);
2920 }
2921 EXPORT_SYMBOL(flush_delayed_work_sync);
2922
2923 /**
2924 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
2925 * @dwork: the delayed work cancel
2926 *
2927 * This is cancel_work_sync() for delayed works.
2928 *
2929 * RETURNS:
2930 * %true if @dwork was pending, %false otherwise.
2931 */
2932 bool cancel_delayed_work_sync(struct delayed_work *dwork)
2933 {
2934 return __cancel_work_timer(&dwork->work, true);
2935 }
2936 EXPORT_SYMBOL(cancel_delayed_work_sync);
2937
2938 /**
2939 * schedule_work_on - put work task on a specific cpu
2940 * @cpu: cpu to put the work task on
2941 * @work: job to be done
2942 *
2943 * This puts a job on a specific cpu
2944 */
2945 bool schedule_work_on(int cpu, struct work_struct *work)
2946 {
2947 return queue_work_on(cpu, system_wq, work);
2948 }
2949 EXPORT_SYMBOL(schedule_work_on);
2950
2951 /**
2952 * schedule_work - put work task in global workqueue
2953 * @work: job to be done
2954 *
2955 * Returns %false if @work was already on the kernel-global workqueue and
2956 * %true otherwise.
2957 *
2958 * This puts a job in the kernel-global workqueue if it was not already
2959 * queued and leaves it in the same position on the kernel-global
2960 * workqueue otherwise.
2961 */
2962 bool schedule_work(struct work_struct *work)
2963 {
2964 return queue_work(system_wq, work);
2965 }
2966 EXPORT_SYMBOL(schedule_work);
2967
2968 /**
2969 * schedule_delayed_work_on - queue work in global workqueue on CPU after delay
2970 * @cpu: cpu to use
2971 * @dwork: job to be done
2972 * @delay: number of jiffies to wait
2973 *
2974 * After waiting for a given time this puts a job in the kernel-global
2975 * workqueue on the specified CPU.
2976 */
2977 bool schedule_delayed_work_on(int cpu, struct delayed_work *dwork,
2978 unsigned long delay)
2979 {
2980 return queue_delayed_work_on(cpu, system_wq, dwork, delay);
2981 }
2982 EXPORT_SYMBOL(schedule_delayed_work_on);
2983
2984 /**
2985 * schedule_delayed_work - put work task in global workqueue after delay
2986 * @dwork: job to be done
2987 * @delay: number of jiffies to wait or 0 for immediate execution
2988 *
2989 * After waiting for a given time this puts a job in the kernel-global
2990 * workqueue.
2991 */
2992 bool schedule_delayed_work(struct delayed_work *dwork, unsigned long delay)
2993 {
2994 return queue_delayed_work(system_wq, dwork, delay);
2995 }
2996 EXPORT_SYMBOL(schedule_delayed_work);
2997
2998 /**
2999 * schedule_on_each_cpu - execute a function synchronously on each online CPU
3000 * @func: the function to call
3001 *
3002 * schedule_on_each_cpu() executes @func on each online CPU using the
3003 * system workqueue and blocks until all CPUs have completed.
3004 * schedule_on_each_cpu() is very slow.
3005 *
3006 * RETURNS:
3007 * 0 on success, -errno on failure.
3008 */
3009 int schedule_on_each_cpu(work_func_t func)
3010 {
3011 int cpu;
3012 struct work_struct __percpu *works;
3013
3014 works = alloc_percpu(struct work_struct);
3015 if (!works)
3016 return -ENOMEM;
3017
3018 get_online_cpus();
3019
3020 for_each_online_cpu(cpu) {
3021 struct work_struct *work = per_cpu_ptr(works, cpu);
3022
3023 INIT_WORK(work, func);
3024 schedule_work_on(cpu, work);
3025 }
3026
3027 for_each_online_cpu(cpu)
3028 flush_work(per_cpu_ptr(works, cpu));
3029
3030 put_online_cpus();
3031 free_percpu(works);
3032 return 0;
3033 }
3034
3035 /**
3036 * flush_scheduled_work - ensure that any scheduled work has run to completion.
3037 *
3038 * Forces execution of the kernel-global workqueue and blocks until its
3039 * completion.
3040 *
3041 * Think twice before calling this function! It's very easy to get into
3042 * trouble if you don't take great care. Either of the following situations
3043 * will lead to deadlock:
3044 *
3045 * One of the work items currently on the workqueue needs to acquire
3046 * a lock held by your code or its caller.
3047 *
3048 * Your code is running in the context of a work routine.
3049 *
3050 * They will be detected by lockdep when they occur, but the first might not
3051 * occur very often. It depends on what work items are on the workqueue and
3052 * what locks they need, which you have no control over.
3053 *
3054 * In most situations flushing the entire workqueue is overkill; you merely
3055 * need to know that a particular work item isn't queued and isn't running.
3056 * In such cases you should use cancel_delayed_work_sync() or
3057 * cancel_work_sync() instead.
3058 */
3059 void flush_scheduled_work(void)
3060 {
3061 flush_workqueue(system_wq);
3062 }
3063 EXPORT_SYMBOL(flush_scheduled_work);
3064
3065 /**
3066 * execute_in_process_context - reliably execute the routine with user context
3067 * @fn: the function to execute
3068 * @ew: guaranteed storage for the execute work structure (must
3069 * be available when the work executes)
3070 *
3071 * Executes the function immediately if process context is available,
3072 * otherwise schedules the function for delayed execution.
3073 *
3074 * Returns: 0 - function was executed
3075 * 1 - function was scheduled for execution
3076 */
3077 int execute_in_process_context(work_func_t fn, struct execute_work *ew)
3078 {
3079 if (!in_interrupt()) {
3080 fn(&ew->work);
3081 return 0;
3082 }
3083
3084 INIT_WORK(&ew->work, fn);
3085 schedule_work(&ew->work);
3086
3087 return 1;
3088 }
3089 EXPORT_SYMBOL_GPL(execute_in_process_context);
3090
3091 int keventd_up(void)
3092 {
3093 return system_wq != NULL;
3094 }
3095
3096 static int alloc_cwqs(struct workqueue_struct *wq)
3097 {
3098 /*
3099 * cwqs are forced aligned according to WORK_STRUCT_FLAG_BITS.
3100 * Make sure that the alignment isn't lower than that of
3101 * unsigned long long.
3102 */
3103 const size_t size = sizeof(struct cpu_workqueue_struct);
3104 const size_t align = max_t(size_t, 1 << WORK_STRUCT_FLAG_BITS,
3105 __alignof__(unsigned long long));
3106
3107 if (!(wq->flags & WQ_UNBOUND))
3108 wq->cpu_wq.pcpu = __alloc_percpu(size, align);
3109 else {
3110 void *ptr;
3111
3112 /*
3113 * Allocate enough room to align cwq and put an extra
3114 * pointer at the end pointing back to the originally
3115 * allocated pointer which will be used for free.
3116 */
3117 ptr = kzalloc(size + align + sizeof(void *), GFP_KERNEL);
3118 if (ptr) {
3119 wq->cpu_wq.single = PTR_ALIGN(ptr, align);
3120 *(void **)(wq->cpu_wq.single + 1) = ptr;
3121 }
3122 }
3123
3124 /* just in case, make sure it's actually aligned */
3125 BUG_ON(!IS_ALIGNED(wq->cpu_wq.v, align));
3126 return wq->cpu_wq.v ? 0 : -ENOMEM;
3127 }
3128
3129 static void free_cwqs(struct workqueue_struct *wq)
3130 {
3131 if (!(wq->flags & WQ_UNBOUND))
3132 free_percpu(wq->cpu_wq.pcpu);
3133 else if (wq->cpu_wq.single) {
3134 /* the pointer to free is stored right after the cwq */
3135 kfree(*(void **)(wq->cpu_wq.single + 1));
3136 }
3137 }
3138
3139 static int wq_clamp_max_active(int max_active, unsigned int flags,
3140 const char *name)
3141 {
3142 int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;
3143
3144 if (max_active < 1 || max_active > lim)
3145 printk(KERN_WARNING "workqueue: max_active %d requested for %s "
3146 "is out of range, clamping between %d and %d\n",
3147 max_active, name, 1, lim);
3148
3149 return clamp_val(max_active, 1, lim);
3150 }
3151
3152 struct workqueue_struct *__alloc_workqueue_key(const char *fmt,
3153 unsigned int flags,
3154 int max_active,
3155 struct lock_class_key *key,
3156 const char *lock_name, ...)
3157 {
3158 va_list args, args1;
3159 struct workqueue_struct *wq;
3160 unsigned int cpu;
3161 size_t namelen;
3162
3163 /* determine namelen, allocate wq and format name */
3164 va_start(args, lock_name);
3165 va_copy(args1, args);
3166 namelen = vsnprintf(NULL, 0, fmt, args) + 1;
3167
3168 wq = kzalloc(sizeof(*wq) + namelen, GFP_KERNEL);
3169 if (!wq)
3170 goto err;
3171
3172 vsnprintf(wq->name, namelen, fmt, args1);
3173 va_end(args);
3174 va_end(args1);
3175
3176 /*
3177 * Workqueues which may be used during memory reclaim should
3178 * have a rescuer to guarantee forward progress.
3179 */
3180 if (flags & WQ_MEM_RECLAIM)
3181 flags |= WQ_RESCUER;
3182
3183 max_active = max_active ?: WQ_DFL_ACTIVE;
3184 max_active = wq_clamp_max_active(max_active, flags, wq->name);
3185
3186 /* init wq */
3187 wq->flags = flags;
3188 wq->saved_max_active = max_active;
3189 mutex_init(&wq->flush_mutex);
3190 atomic_set(&wq->nr_cwqs_to_flush, 0);
3191 INIT_LIST_HEAD(&wq->flusher_queue);
3192 INIT_LIST_HEAD(&wq->flusher_overflow);
3193
3194 lockdep_init_map(&wq->lockdep_map, lock_name, key, 0);
3195 INIT_LIST_HEAD(&wq->list);
3196
3197 if (alloc_cwqs(wq) < 0)
3198 goto err;
3199
3200 for_each_cwq_cpu(cpu, wq) {
3201 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3202 struct global_cwq *gcwq = get_gcwq(cpu);
3203 int pool_idx = (bool)(flags & WQ_HIGHPRI);
3204
3205 BUG_ON((unsigned long)cwq & WORK_STRUCT_FLAG_MASK);
3206 cwq->pool = &gcwq->pools[pool_idx];
3207 cwq->wq = wq;
3208 cwq->flush_color = -1;
3209 cwq->max_active = max_active;
3210 INIT_LIST_HEAD(&cwq->delayed_works);
3211 }
3212
3213 if (flags & WQ_RESCUER) {
3214 struct worker *rescuer;
3215
3216 if (!alloc_mayday_mask(&wq->mayday_mask, GFP_KERNEL))
3217 goto err;
3218
3219 wq->rescuer = rescuer = alloc_worker();
3220 if (!rescuer)
3221 goto err;
3222
3223 rescuer->task = kthread_create(rescuer_thread, wq, "%s",
3224 wq->name);
3225 if (IS_ERR(rescuer->task))
3226 goto err;
3227
3228 rescuer->task->flags |= PF_THREAD_BOUND;
3229 wake_up_process(rescuer->task);
3230 }
3231
3232 /*
3233 * workqueue_lock protects global freeze state and workqueues
3234 * list. Grab it, set max_active accordingly and add the new
3235 * workqueue to workqueues list.
3236 */
3237 spin_lock(&workqueue_lock);
3238
3239 if (workqueue_freezing && wq->flags & WQ_FREEZABLE)
3240 for_each_cwq_cpu(cpu, wq)
3241 get_cwq(cpu, wq)->max_active = 0;
3242
3243 list_add(&wq->list, &workqueues);
3244
3245 spin_unlock(&workqueue_lock);
3246
3247 return wq;
3248 err:
3249 if (wq) {
3250 free_cwqs(wq);
3251 free_mayday_mask(wq->mayday_mask);
3252 kfree(wq->rescuer);
3253 kfree(wq);
3254 }
3255 return NULL;
3256 }
3257 EXPORT_SYMBOL_GPL(__alloc_workqueue_key);
3258
3259 /**
3260 * destroy_workqueue - safely terminate a workqueue
3261 * @wq: target workqueue
3262 *
3263 * Safely destroy a workqueue. All work currently pending will be done first.
3264 */
3265 void destroy_workqueue(struct workqueue_struct *wq)
3266 {
3267 unsigned int cpu;
3268
3269 /* drain it before proceeding with destruction */
3270 drain_workqueue(wq);
3271
3272 /*
3273 * wq list is used to freeze wq, remove from list after
3274 * flushing is complete in case freeze races us.
3275 */
3276 spin_lock(&workqueue_lock);
3277 list_del(&wq->list);
3278 spin_unlock(&workqueue_lock);
3279
3280 /* sanity check */
3281 for_each_cwq_cpu(cpu, wq) {
3282 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3283 int i;
3284
3285 for (i = 0; i < WORK_NR_COLORS; i++)
3286 BUG_ON(cwq->nr_in_flight[i]);
3287 BUG_ON(cwq->nr_active);
3288 BUG_ON(!list_empty(&cwq->delayed_works));
3289 }
3290
3291 if (wq->flags & WQ_RESCUER) {
3292 kthread_stop(wq->rescuer->task);
3293 free_mayday_mask(wq->mayday_mask);
3294 kfree(wq->rescuer);
3295 }
3296
3297 free_cwqs(wq);
3298 kfree(wq);
3299 }
3300 EXPORT_SYMBOL_GPL(destroy_workqueue);
3301
3302 /**
3303 * workqueue_set_max_active - adjust max_active of a workqueue
3304 * @wq: target workqueue
3305 * @max_active: new max_active value.
3306 *
3307 * Set max_active of @wq to @max_active.
3308 *
3309 * CONTEXT:
3310 * Don't call from IRQ context.
3311 */
3312 void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
3313 {
3314 unsigned int cpu;
3315
3316 max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
3317
3318 spin_lock(&workqueue_lock);
3319
3320 wq->saved_max_active = max_active;
3321
3322 for_each_cwq_cpu(cpu, wq) {
3323 struct global_cwq *gcwq = get_gcwq(cpu);
3324
3325 spin_lock_irq(&gcwq->lock);
3326
3327 if (!(wq->flags & WQ_FREEZABLE) ||
3328 !(gcwq->flags & GCWQ_FREEZING))
3329 get_cwq(gcwq->cpu, wq)->max_active = max_active;
3330
3331 spin_unlock_irq(&gcwq->lock);
3332 }
3333
3334 spin_unlock(&workqueue_lock);
3335 }
3336 EXPORT_SYMBOL_GPL(workqueue_set_max_active);
3337
3338 /**
3339 * workqueue_congested - test whether a workqueue is congested
3340 * @cpu: CPU in question
3341 * @wq: target workqueue
3342 *
3343 * Test whether @wq's cpu workqueue for @cpu is congested. There is
3344 * no synchronization around this function and the test result is
3345 * unreliable and only useful as advisory hints or for debugging.
3346 *
3347 * RETURNS:
3348 * %true if congested, %false otherwise.
3349 */
3350 bool workqueue_congested(unsigned int cpu, struct workqueue_struct *wq)
3351 {
3352 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3353
3354 return !list_empty(&cwq->delayed_works);
3355 }
3356 EXPORT_SYMBOL_GPL(workqueue_congested);
3357
3358 /**
3359 * work_cpu - return the last known associated cpu for @work
3360 * @work: the work of interest
3361 *
3362 * RETURNS:
3363 * CPU number if @work was ever queued. WORK_CPU_NONE otherwise.
3364 */
3365 unsigned int work_cpu(struct work_struct *work)
3366 {
3367 struct global_cwq *gcwq = get_work_gcwq(work);
3368
3369 return gcwq ? gcwq->cpu : WORK_CPU_NONE;
3370 }
3371 EXPORT_SYMBOL_GPL(work_cpu);
3372
3373 /**
3374 * work_busy - test whether a work is currently pending or running
3375 * @work: the work to be tested
3376 *
3377 * Test whether @work is currently pending or running. There is no
3378 * synchronization around this function and the test result is
3379 * unreliable and only useful as advisory hints or for debugging.
3380 * Especially for reentrant wqs, the pending state might hide the
3381 * running state.
3382 *
3383 * RETURNS:
3384 * OR'd bitmask of WORK_BUSY_* bits.
3385 */
3386 unsigned int work_busy(struct work_struct *work)
3387 {
3388 struct global_cwq *gcwq = get_work_gcwq(work);
3389 unsigned long flags;
3390 unsigned int ret = 0;
3391
3392 if (!gcwq)
3393 return false;
3394
3395 spin_lock_irqsave(&gcwq->lock, flags);
3396
3397 if (work_pending(work))
3398 ret |= WORK_BUSY_PENDING;
3399 if (find_worker_executing_work(gcwq, work))
3400 ret |= WORK_BUSY_RUNNING;
3401
3402 spin_unlock_irqrestore(&gcwq->lock, flags);
3403
3404 return ret;
3405 }
3406 EXPORT_SYMBOL_GPL(work_busy);
3407
3408 /*
3409 * CPU hotplug.
3410 *
3411 * There are two challenges in supporting CPU hotplug. Firstly, there
3412 * are a lot of assumptions on strong associations among work, cwq and
3413 * gcwq which make migrating pending and scheduled works very
3414 * difficult to implement without impacting hot paths. Secondly,
3415 * gcwqs serve mix of short, long and very long running works making
3416 * blocked draining impractical.
3417 *
3418 * This is solved by allowing a gcwq to be disassociated from the CPU
3419 * running as an unbound one and allowing it to be reattached later if the
3420 * cpu comes back online.
3421 */
3422
3423 /* claim manager positions of all pools */
3424 static void gcwq_claim_management_and_lock(struct global_cwq *gcwq)
3425 {
3426 struct worker_pool *pool;
3427
3428 for_each_worker_pool(pool, gcwq)
3429 mutex_lock_nested(&pool->manager_mutex, pool - gcwq->pools);
3430 spin_lock_irq(&gcwq->lock);
3431 }
3432
3433 /* release manager positions */
3434 static void gcwq_release_management_and_unlock(struct global_cwq *gcwq)
3435 {
3436 struct worker_pool *pool;
3437
3438 spin_unlock_irq(&gcwq->lock);
3439 for_each_worker_pool(pool, gcwq)
3440 mutex_unlock(&pool->manager_mutex);
3441 }
3442
3443 static void gcwq_unbind_fn(struct work_struct *work)
3444 {
3445 struct global_cwq *gcwq = get_gcwq(smp_processor_id());
3446 struct worker_pool *pool;
3447 struct worker *worker;
3448 struct hlist_node *pos;
3449 int i;
3450
3451 BUG_ON(gcwq->cpu != smp_processor_id());
3452
3453 gcwq_claim_management_and_lock(gcwq);
3454
3455 /*
3456 * We've claimed all manager positions. Make all workers unbound
3457 * and set DISASSOCIATED. Before this, all workers except for the
3458 * ones which are still executing works from before the last CPU
3459 * down must be on the cpu. After this, they may become diasporas.
3460 */
3461 for_each_worker_pool(pool, gcwq)
3462 list_for_each_entry(worker, &pool->idle_list, entry)
3463 worker->flags |= WORKER_UNBOUND;
3464
3465 for_each_busy_worker(worker, i, pos, gcwq)
3466 worker->flags |= WORKER_UNBOUND;
3467
3468 gcwq->flags |= GCWQ_DISASSOCIATED;
3469
3470 gcwq_release_management_and_unlock(gcwq);
3471
3472 /*
3473 * Call schedule() so that we cross rq->lock and thus can guarantee
3474 * sched callbacks see the %WORKER_UNBOUND flag. This is necessary
3475 * as scheduler callbacks may be invoked from other cpus.
3476 */
3477 schedule();
3478
3479 /*
3480 * Sched callbacks are disabled now. Zap nr_running. After this,
3481 * nr_running stays zero and need_more_worker() and keep_working()
3482 * are always true as long as the worklist is not empty. @gcwq now
3483 * behaves as unbound (in terms of concurrency management) gcwq
3484 * which is served by workers tied to the CPU.
3485 *
3486 * On return from this function, the current worker would trigger
3487 * unbound chain execution of pending work items if other workers
3488 * didn't already.
3489 */
3490 for_each_worker_pool(pool, gcwq)
3491 atomic_set(get_pool_nr_running(pool), 0);
3492 }
3493
3494 /*
3495 * Workqueues should be brought up before normal priority CPU notifiers.
3496 * This will be registered high priority CPU notifier.
3497 */
3498 static int __devinit workqueue_cpu_up_callback(struct notifier_block *nfb,
3499 unsigned long action,
3500 void *hcpu)
3501 {
3502 unsigned int cpu = (unsigned long)hcpu;
3503 struct global_cwq *gcwq = get_gcwq(cpu);
3504 struct worker_pool *pool;
3505
3506 switch (action & ~CPU_TASKS_FROZEN) {
3507 case CPU_UP_PREPARE:
3508 for_each_worker_pool(pool, gcwq) {
3509 struct worker *worker;
3510
3511 if (pool->nr_workers)
3512 continue;
3513
3514 worker = create_worker(pool);
3515 if (!worker)
3516 return NOTIFY_BAD;
3517
3518 spin_lock_irq(&gcwq->lock);
3519 start_worker(worker);
3520 spin_unlock_irq(&gcwq->lock);
3521 }
3522 break;
3523
3524 case CPU_DOWN_FAILED:
3525 case CPU_ONLINE:
3526 gcwq_claim_management_and_lock(gcwq);
3527 gcwq->flags &= ~GCWQ_DISASSOCIATED;
3528 rebind_workers(gcwq);
3529 gcwq_release_management_and_unlock(gcwq);
3530 break;
3531 }
3532 return NOTIFY_OK;
3533 }
3534
3535 /*
3536 * Workqueues should be brought down after normal priority CPU notifiers.
3537 * This will be registered as low priority CPU notifier.
3538 */
3539 static int __devinit workqueue_cpu_down_callback(struct notifier_block *nfb,
3540 unsigned long action,
3541 void *hcpu)
3542 {
3543 unsigned int cpu = (unsigned long)hcpu;
3544 struct work_struct unbind_work;
3545
3546 switch (action & ~CPU_TASKS_FROZEN) {
3547 case CPU_DOWN_PREPARE:
3548 /* unbinding should happen on the local CPU */
3549 INIT_WORK_ONSTACK(&unbind_work, gcwq_unbind_fn);
3550 schedule_work_on(cpu, &unbind_work);
3551 flush_work(&unbind_work);
3552 break;
3553 }
3554 return NOTIFY_OK;
3555 }
3556
3557 #ifdef CONFIG_SMP
3558
3559 struct work_for_cpu {
3560 struct completion completion;
3561 long (*fn)(void *);
3562 void *arg;
3563 long ret;
3564 };
3565
3566 static int do_work_for_cpu(void *_wfc)
3567 {
3568 struct work_for_cpu *wfc = _wfc;
3569 wfc->ret = wfc->fn(wfc->arg);
3570 complete(&wfc->completion);
3571 return 0;
3572 }
3573
3574 /**
3575 * work_on_cpu - run a function in user context on a particular cpu
3576 * @cpu: the cpu to run on
3577 * @fn: the function to run
3578 * @arg: the function arg
3579 *
3580 * This will return the value @fn returns.
3581 * It is up to the caller to ensure that the cpu doesn't go offline.
3582 * The caller must not hold any locks which would prevent @fn from completing.
3583 */
3584 long work_on_cpu(unsigned int cpu, long (*fn)(void *), void *arg)
3585 {
3586 struct task_struct *sub_thread;
3587 struct work_for_cpu wfc = {
3588 .completion = COMPLETION_INITIALIZER_ONSTACK(wfc.completion),
3589 .fn = fn,
3590 .arg = arg,
3591 };
3592
3593 sub_thread = kthread_create(do_work_for_cpu, &wfc, "work_for_cpu");
3594 if (IS_ERR(sub_thread))
3595 return PTR_ERR(sub_thread);
3596 kthread_bind(sub_thread, cpu);
3597 wake_up_process(sub_thread);
3598 wait_for_completion(&wfc.completion);
3599 return wfc.ret;
3600 }
3601 EXPORT_SYMBOL_GPL(work_on_cpu);
3602 #endif /* CONFIG_SMP */
3603
3604 #ifdef CONFIG_FREEZER
3605
3606 /**
3607 * freeze_workqueues_begin - begin freezing workqueues
3608 *
3609 * Start freezing workqueues. After this function returns, all freezable
3610 * workqueues will queue new works to their frozen_works list instead of
3611 * gcwq->worklist.
3612 *
3613 * CONTEXT:
3614 * Grabs and releases workqueue_lock and gcwq->lock's.
3615 */
3616 void freeze_workqueues_begin(void)
3617 {
3618 unsigned int cpu;
3619
3620 spin_lock(&workqueue_lock);
3621
3622 BUG_ON(workqueue_freezing);
3623 workqueue_freezing = true;
3624
3625 for_each_gcwq_cpu(cpu) {
3626 struct global_cwq *gcwq = get_gcwq(cpu);
3627 struct workqueue_struct *wq;
3628
3629 spin_lock_irq(&gcwq->lock);
3630
3631 BUG_ON(gcwq->flags & GCWQ_FREEZING);
3632 gcwq->flags |= GCWQ_FREEZING;
3633
3634 list_for_each_entry(wq, &workqueues, list) {
3635 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3636
3637 if (cwq && wq->flags & WQ_FREEZABLE)
3638 cwq->max_active = 0;
3639 }
3640
3641 spin_unlock_irq(&gcwq->lock);
3642 }
3643
3644 spin_unlock(&workqueue_lock);
3645 }
3646
3647 /**
3648 * freeze_workqueues_busy - are freezable workqueues still busy?
3649 *
3650 * Check whether freezing is complete. This function must be called
3651 * between freeze_workqueues_begin() and thaw_workqueues().
3652 *
3653 * CONTEXT:
3654 * Grabs and releases workqueue_lock.
3655 *
3656 * RETURNS:
3657 * %true if some freezable workqueues are still busy. %false if freezing
3658 * is complete.
3659 */
3660 bool freeze_workqueues_busy(void)
3661 {
3662 unsigned int cpu;
3663 bool busy = false;
3664
3665 spin_lock(&workqueue_lock);
3666
3667 BUG_ON(!workqueue_freezing);
3668
3669 for_each_gcwq_cpu(cpu) {
3670 struct workqueue_struct *wq;
3671 /*
3672 * nr_active is monotonically decreasing. It's safe
3673 * to peek without lock.
3674 */
3675 list_for_each_entry(wq, &workqueues, list) {
3676 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3677
3678 if (!cwq || !(wq->flags & WQ_FREEZABLE))
3679 continue;
3680
3681 BUG_ON(cwq->nr_active < 0);
3682 if (cwq->nr_active) {
3683 busy = true;
3684 goto out_unlock;
3685 }
3686 }
3687 }
3688 out_unlock:
3689 spin_unlock(&workqueue_lock);
3690 return busy;
3691 }
3692
3693 /**
3694 * thaw_workqueues - thaw workqueues
3695 *
3696 * Thaw workqueues. Normal queueing is restored and all collected
3697 * frozen works are transferred to their respective gcwq worklists.
3698 *
3699 * CONTEXT:
3700 * Grabs and releases workqueue_lock and gcwq->lock's.
3701 */
3702 void thaw_workqueues(void)
3703 {
3704 unsigned int cpu;
3705
3706 spin_lock(&workqueue_lock);
3707
3708 if (!workqueue_freezing)
3709 goto out_unlock;
3710
3711 for_each_gcwq_cpu(cpu) {
3712 struct global_cwq *gcwq = get_gcwq(cpu);
3713 struct worker_pool *pool;
3714 struct workqueue_struct *wq;
3715
3716 spin_lock_irq(&gcwq->lock);
3717
3718 BUG_ON(!(gcwq->flags & GCWQ_FREEZING));
3719 gcwq->flags &= ~GCWQ_FREEZING;
3720
3721 list_for_each_entry(wq, &workqueues, list) {
3722 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3723
3724 if (!cwq || !(wq->flags & WQ_FREEZABLE))
3725 continue;
3726
3727 /* restore max_active and repopulate worklist */
3728 cwq->max_active = wq->saved_max_active;
3729
3730 while (!list_empty(&cwq->delayed_works) &&
3731 cwq->nr_active < cwq->max_active)
3732 cwq_activate_first_delayed(cwq);
3733 }
3734
3735 for_each_worker_pool(pool, gcwq)
3736 wake_up_worker(pool);
3737
3738 spin_unlock_irq(&gcwq->lock);
3739 }
3740
3741 workqueue_freezing = false;
3742 out_unlock:
3743 spin_unlock(&workqueue_lock);
3744 }
3745 #endif /* CONFIG_FREEZER */
3746
3747 static int __init init_workqueues(void)
3748 {
3749 unsigned int cpu;
3750 int i;
3751
3752 /* make sure we have enough bits for OFFQ CPU number */
3753 BUILD_BUG_ON((1LU << (BITS_PER_LONG - WORK_OFFQ_CPU_SHIFT)) <
3754 WORK_CPU_LAST);
3755
3756 cpu_notifier(workqueue_cpu_up_callback, CPU_PRI_WORKQUEUE_UP);
3757 cpu_notifier(workqueue_cpu_down_callback, CPU_PRI_WORKQUEUE_DOWN);
3758
3759 /* initialize gcwqs */
3760 for_each_gcwq_cpu(cpu) {
3761 struct global_cwq *gcwq = get_gcwq(cpu);
3762 struct worker_pool *pool;
3763
3764 spin_lock_init(&gcwq->lock);
3765 gcwq->cpu = cpu;
3766 gcwq->flags |= GCWQ_DISASSOCIATED;
3767
3768 for (i = 0; i < BUSY_WORKER_HASH_SIZE; i++)
3769 INIT_HLIST_HEAD(&gcwq->busy_hash[i]);
3770
3771 for_each_worker_pool(pool, gcwq) {
3772 pool->gcwq = gcwq;
3773 INIT_LIST_HEAD(&pool->worklist);
3774 INIT_LIST_HEAD(&pool->idle_list);
3775
3776 init_timer_deferrable(&pool->idle_timer);
3777 pool->idle_timer.function = idle_worker_timeout;
3778 pool->idle_timer.data = (unsigned long)pool;
3779
3780 setup_timer(&pool->mayday_timer, gcwq_mayday_timeout,
3781 (unsigned long)pool);
3782
3783 mutex_init(&pool->manager_mutex);
3784 ida_init(&pool->worker_ida);
3785 }
3786
3787 init_waitqueue_head(&gcwq->rebind_hold);
3788 }
3789
3790 /* create the initial worker */
3791 for_each_online_gcwq_cpu(cpu) {
3792 struct global_cwq *gcwq = get_gcwq(cpu);
3793 struct worker_pool *pool;
3794
3795 if (cpu != WORK_CPU_UNBOUND)
3796 gcwq->flags &= ~GCWQ_DISASSOCIATED;
3797
3798 for_each_worker_pool(pool, gcwq) {
3799 struct worker *worker;
3800
3801 worker = create_worker(pool);
3802 BUG_ON(!worker);
3803 spin_lock_irq(&gcwq->lock);
3804 start_worker(worker);
3805 spin_unlock_irq(&gcwq->lock);
3806 }
3807 }
3808
3809 system_wq = alloc_workqueue("events", 0, 0);
3810 system_long_wq = alloc_workqueue("events_long", 0, 0);
3811 system_nrt_wq = alloc_workqueue("events_nrt", WQ_NON_REENTRANT, 0);
3812 system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
3813 WQ_UNBOUND_MAX_ACTIVE);
3814 system_freezable_wq = alloc_workqueue("events_freezable",
3815 WQ_FREEZABLE, 0);
3816 system_nrt_freezable_wq = alloc_workqueue("events_nrt_freezable",
3817 WQ_NON_REENTRANT | WQ_FREEZABLE, 0);
3818 BUG_ON(!system_wq || !system_long_wq || !system_nrt_wq ||
3819 !system_unbound_wq || !system_freezable_wq ||
3820 !system_nrt_freezable_wq);
3821 return 0;
3822 }
3823 early_initcall(init_workqueues);