]> git.proxmox.com Git - mirror_ubuntu-kernels.git/blob - kernel/workqueue.c
Merge branch 'linus' of git://git.kernel.org/pub/scm/linux/kernel/git/herbert/crypto-2.6
[mirror_ubuntu-kernels.git] / kernel / workqueue.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * kernel/workqueue.c - generic async execution with shared worker pool
4 *
5 * Copyright (C) 2002 Ingo Molnar
6 *
7 * Derived from the taskqueue/keventd code by:
8 * David Woodhouse <dwmw2@infradead.org>
9 * Andrew Morton
10 * Kai Petzke <wpp@marie.physik.tu-berlin.de>
11 * Theodore Ts'o <tytso@mit.edu>
12 *
13 * Made to use alloc_percpu by Christoph Lameter.
14 *
15 * Copyright (C) 2010 SUSE Linux Products GmbH
16 * Copyright (C) 2010 Tejun Heo <tj@kernel.org>
17 *
18 * This is the generic async execution mechanism. Work items as are
19 * executed in process context. The worker pool is shared and
20 * automatically managed. There are two worker pools for each CPU (one for
21 * normal work items and the other for high priority ones) and some extra
22 * pools for workqueues which are not bound to any specific CPU - the
23 * number of these backing pools is dynamic.
24 *
25 * Please read Documentation/core-api/workqueue.rst for details.
26 */
27
28 #include <linux/export.h>
29 #include <linux/kernel.h>
30 #include <linux/sched.h>
31 #include <linux/init.h>
32 #include <linux/signal.h>
33 #include <linux/completion.h>
34 #include <linux/workqueue.h>
35 #include <linux/slab.h>
36 #include <linux/cpu.h>
37 #include <linux/notifier.h>
38 #include <linux/kthread.h>
39 #include <linux/hardirq.h>
40 #include <linux/mempolicy.h>
41 #include <linux/freezer.h>
42 #include <linux/debug_locks.h>
43 #include <linux/lockdep.h>
44 #include <linux/idr.h>
45 #include <linux/jhash.h>
46 #include <linux/hashtable.h>
47 #include <linux/rculist.h>
48 #include <linux/nodemask.h>
49 #include <linux/moduleparam.h>
50 #include <linux/uaccess.h>
51 #include <linux/sched/isolation.h>
52 #include <linux/nmi.h>
53 #include <linux/kvm_para.h>
54
55 #include "workqueue_internal.h"
56
57 enum {
58 /*
59 * worker_pool flags
60 *
61 * A bound pool is either associated or disassociated with its CPU.
62 * While associated (!DISASSOCIATED), all workers are bound to the
63 * CPU and none has %WORKER_UNBOUND set and concurrency management
64 * is in effect.
65 *
66 * While DISASSOCIATED, the cpu may be offline and all workers have
67 * %WORKER_UNBOUND set and concurrency management disabled, and may
68 * be executing on any CPU. The pool behaves as an unbound one.
69 *
70 * Note that DISASSOCIATED should be flipped only while holding
71 * wq_pool_attach_mutex to avoid changing binding state while
72 * worker_attach_to_pool() is in progress.
73 */
74 POOL_MANAGER_ACTIVE = 1 << 0, /* being managed */
75 POOL_DISASSOCIATED = 1 << 2, /* cpu can't serve workers */
76
77 /* worker flags */
78 WORKER_DIE = 1 << 1, /* die die die */
79 WORKER_IDLE = 1 << 2, /* is idle */
80 WORKER_PREP = 1 << 3, /* preparing to run works */
81 WORKER_CPU_INTENSIVE = 1 << 6, /* cpu intensive */
82 WORKER_UNBOUND = 1 << 7, /* worker is unbound */
83 WORKER_REBOUND = 1 << 8, /* worker was rebound */
84
85 WORKER_NOT_RUNNING = WORKER_PREP | WORKER_CPU_INTENSIVE |
86 WORKER_UNBOUND | WORKER_REBOUND,
87
88 NR_STD_WORKER_POOLS = 2, /* # standard pools per cpu */
89
90 UNBOUND_POOL_HASH_ORDER = 6, /* hashed by pool->attrs */
91 BUSY_WORKER_HASH_ORDER = 6, /* 64 pointers */
92
93 MAX_IDLE_WORKERS_RATIO = 4, /* 1/4 of busy can be idle */
94 IDLE_WORKER_TIMEOUT = 300 * HZ, /* keep idle ones for 5 mins */
95
96 MAYDAY_INITIAL_TIMEOUT = HZ / 100 >= 2 ? HZ / 100 : 2,
97 /* call for help after 10ms
98 (min two ticks) */
99 MAYDAY_INTERVAL = HZ / 10, /* and then every 100ms */
100 CREATE_COOLDOWN = HZ, /* time to breath after fail */
101
102 /*
103 * Rescue workers are used only on emergencies and shared by
104 * all cpus. Give MIN_NICE.
105 */
106 RESCUER_NICE_LEVEL = MIN_NICE,
107 HIGHPRI_NICE_LEVEL = MIN_NICE,
108
109 WQ_NAME_LEN = 24,
110 };
111
112 /*
113 * Structure fields follow one of the following exclusion rules.
114 *
115 * I: Modifiable by initialization/destruction paths and read-only for
116 * everyone else.
117 *
118 * P: Preemption protected. Disabling preemption is enough and should
119 * only be modified and accessed from the local cpu.
120 *
121 * L: pool->lock protected. Access with pool->lock held.
122 *
123 * X: During normal operation, modification requires pool->lock and should
124 * be done only from local cpu. Either disabling preemption on local
125 * cpu or grabbing pool->lock is enough for read access. If
126 * POOL_DISASSOCIATED is set, it's identical to L.
127 *
128 * A: wq_pool_attach_mutex protected.
129 *
130 * PL: wq_pool_mutex protected.
131 *
132 * PR: wq_pool_mutex protected for writes. RCU protected for reads.
133 *
134 * PW: wq_pool_mutex and wq->mutex protected for writes. Either for reads.
135 *
136 * PWR: wq_pool_mutex and wq->mutex protected for writes. Either or
137 * RCU for reads.
138 *
139 * WQ: wq->mutex protected.
140 *
141 * WR: wq->mutex protected for writes. RCU protected for reads.
142 *
143 * MD: wq_mayday_lock protected.
144 */
145
146 /* struct worker is defined in workqueue_internal.h */
147
148 struct worker_pool {
149 raw_spinlock_t lock; /* the pool lock */
150 int cpu; /* I: the associated cpu */
151 int node; /* I: the associated node ID */
152 int id; /* I: pool ID */
153 unsigned int flags; /* X: flags */
154
155 unsigned long watchdog_ts; /* L: watchdog timestamp */
156
157 struct list_head worklist; /* L: list of pending works */
158
159 int nr_workers; /* L: total number of workers */
160 int nr_idle; /* L: currently idle workers */
161
162 struct list_head idle_list; /* X: list of idle workers */
163 struct timer_list idle_timer; /* L: worker idle timeout */
164 struct timer_list mayday_timer; /* L: SOS timer for workers */
165
166 /* a workers is either on busy_hash or idle_list, or the manager */
167 DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
168 /* L: hash of busy workers */
169
170 struct worker *manager; /* L: purely informational */
171 struct list_head workers; /* A: attached workers */
172 struct completion *detach_completion; /* all workers detached */
173
174 struct ida worker_ida; /* worker IDs for task name */
175
176 struct workqueue_attrs *attrs; /* I: worker attributes */
177 struct hlist_node hash_node; /* PL: unbound_pool_hash node */
178 int refcnt; /* PL: refcnt for unbound pools */
179
180 /*
181 * The current concurrency level. As it's likely to be accessed
182 * from other CPUs during try_to_wake_up(), put it in a separate
183 * cacheline.
184 */
185 atomic_t nr_running ____cacheline_aligned_in_smp;
186
187 /*
188 * Destruction of pool is RCU protected to allow dereferences
189 * from get_work_pool().
190 */
191 struct rcu_head rcu;
192 } ____cacheline_aligned_in_smp;
193
194 /*
195 * The per-pool workqueue. While queued, the lower WORK_STRUCT_FLAG_BITS
196 * of work_struct->data are used for flags and the remaining high bits
197 * point to the pwq; thus, pwqs need to be aligned at two's power of the
198 * number of flag bits.
199 */
200 struct pool_workqueue {
201 struct worker_pool *pool; /* I: the associated pool */
202 struct workqueue_struct *wq; /* I: the owning workqueue */
203 int work_color; /* L: current color */
204 int flush_color; /* L: flushing color */
205 int refcnt; /* L: reference count */
206 int nr_in_flight[WORK_NR_COLORS];
207 /* L: nr of in_flight works */
208 int nr_active; /* L: nr of active works */
209 int max_active; /* L: max active works */
210 struct list_head delayed_works; /* L: delayed works */
211 struct list_head pwqs_node; /* WR: node on wq->pwqs */
212 struct list_head mayday_node; /* MD: node on wq->maydays */
213
214 /*
215 * Release of unbound pwq is punted to system_wq. See put_pwq()
216 * and pwq_unbound_release_workfn() for details. pool_workqueue
217 * itself is also RCU protected so that the first pwq can be
218 * determined without grabbing wq->mutex.
219 */
220 struct work_struct unbound_release_work;
221 struct rcu_head rcu;
222 } __aligned(1 << WORK_STRUCT_FLAG_BITS);
223
224 /*
225 * Structure used to wait for workqueue flush.
226 */
227 struct wq_flusher {
228 struct list_head list; /* WQ: list of flushers */
229 int flush_color; /* WQ: flush color waiting for */
230 struct completion done; /* flush completion */
231 };
232
233 struct wq_device;
234
235 /*
236 * The externally visible workqueue. It relays the issued work items to
237 * the appropriate worker_pool through its pool_workqueues.
238 */
239 struct workqueue_struct {
240 struct list_head pwqs; /* WR: all pwqs of this wq */
241 struct list_head list; /* PR: list of all workqueues */
242
243 struct mutex mutex; /* protects this wq */
244 int work_color; /* WQ: current work color */
245 int flush_color; /* WQ: current flush color */
246 atomic_t nr_pwqs_to_flush; /* flush in progress */
247 struct wq_flusher *first_flusher; /* WQ: first flusher */
248 struct list_head flusher_queue; /* WQ: flush waiters */
249 struct list_head flusher_overflow; /* WQ: flush overflow list */
250
251 struct list_head maydays; /* MD: pwqs requesting rescue */
252 struct worker *rescuer; /* MD: rescue worker */
253
254 int nr_drainers; /* WQ: drain in progress */
255 int saved_max_active; /* WQ: saved pwq max_active */
256
257 struct workqueue_attrs *unbound_attrs; /* PW: only for unbound wqs */
258 struct pool_workqueue *dfl_pwq; /* PW: only for unbound wqs */
259
260 #ifdef CONFIG_SYSFS
261 struct wq_device *wq_dev; /* I: for sysfs interface */
262 #endif
263 #ifdef CONFIG_LOCKDEP
264 char *lock_name;
265 struct lock_class_key key;
266 struct lockdep_map lockdep_map;
267 #endif
268 char name[WQ_NAME_LEN]; /* I: workqueue name */
269
270 /*
271 * Destruction of workqueue_struct is RCU protected to allow walking
272 * the workqueues list without grabbing wq_pool_mutex.
273 * This is used to dump all workqueues from sysrq.
274 */
275 struct rcu_head rcu;
276
277 /* hot fields used during command issue, aligned to cacheline */
278 unsigned int flags ____cacheline_aligned; /* WQ: WQ_* flags */
279 struct pool_workqueue __percpu *cpu_pwqs; /* I: per-cpu pwqs */
280 struct pool_workqueue __rcu *numa_pwq_tbl[]; /* PWR: unbound pwqs indexed by node */
281 };
282
283 static struct kmem_cache *pwq_cache;
284
285 static cpumask_var_t *wq_numa_possible_cpumask;
286 /* possible CPUs of each node */
287
288 static bool wq_disable_numa;
289 module_param_named(disable_numa, wq_disable_numa, bool, 0444);
290
291 /* see the comment above the definition of WQ_POWER_EFFICIENT */
292 static bool wq_power_efficient = IS_ENABLED(CONFIG_WQ_POWER_EFFICIENT_DEFAULT);
293 module_param_named(power_efficient, wq_power_efficient, bool, 0444);
294
295 static bool wq_online; /* can kworkers be created yet? */
296
297 static bool wq_numa_enabled; /* unbound NUMA affinity enabled */
298
299 /* buf for wq_update_unbound_numa_attrs(), protected by CPU hotplug exclusion */
300 static struct workqueue_attrs *wq_update_unbound_numa_attrs_buf;
301
302 static DEFINE_MUTEX(wq_pool_mutex); /* protects pools and workqueues list */
303 static DEFINE_MUTEX(wq_pool_attach_mutex); /* protects worker attach/detach */
304 static DEFINE_RAW_SPINLOCK(wq_mayday_lock); /* protects wq->maydays list */
305 /* wait for manager to go away */
306 static struct rcuwait manager_wait = __RCUWAIT_INITIALIZER(manager_wait);
307
308 static LIST_HEAD(workqueues); /* PR: list of all workqueues */
309 static bool workqueue_freezing; /* PL: have wqs started freezing? */
310
311 /* PL: allowable cpus for unbound wqs and work items */
312 static cpumask_var_t wq_unbound_cpumask;
313
314 /* CPU where unbound work was last round robin scheduled from this CPU */
315 static DEFINE_PER_CPU(int, wq_rr_cpu_last);
316
317 /*
318 * Local execution of unbound work items is no longer guaranteed. The
319 * following always forces round-robin CPU selection on unbound work items
320 * to uncover usages which depend on it.
321 */
322 #ifdef CONFIG_DEBUG_WQ_FORCE_RR_CPU
323 static bool wq_debug_force_rr_cpu = true;
324 #else
325 static bool wq_debug_force_rr_cpu = false;
326 #endif
327 module_param_named(debug_force_rr_cpu, wq_debug_force_rr_cpu, bool, 0644);
328
329 /* the per-cpu worker pools */
330 static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS], cpu_worker_pools);
331
332 static DEFINE_IDR(worker_pool_idr); /* PR: idr of all pools */
333
334 /* PL: hash of all unbound pools keyed by pool->attrs */
335 static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER);
336
337 /* I: attributes used when instantiating standard unbound pools on demand */
338 static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS];
339
340 /* I: attributes used when instantiating ordered pools on demand */
341 static struct workqueue_attrs *ordered_wq_attrs[NR_STD_WORKER_POOLS];
342
343 struct workqueue_struct *system_wq __read_mostly;
344 EXPORT_SYMBOL(system_wq);
345 struct workqueue_struct *system_highpri_wq __read_mostly;
346 EXPORT_SYMBOL_GPL(system_highpri_wq);
347 struct workqueue_struct *system_long_wq __read_mostly;
348 EXPORT_SYMBOL_GPL(system_long_wq);
349 struct workqueue_struct *system_unbound_wq __read_mostly;
350 EXPORT_SYMBOL_GPL(system_unbound_wq);
351 struct workqueue_struct *system_freezable_wq __read_mostly;
352 EXPORT_SYMBOL_GPL(system_freezable_wq);
353 struct workqueue_struct *system_power_efficient_wq __read_mostly;
354 EXPORT_SYMBOL_GPL(system_power_efficient_wq);
355 struct workqueue_struct *system_freezable_power_efficient_wq __read_mostly;
356 EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq);
357
358 static int worker_thread(void *__worker);
359 static void workqueue_sysfs_unregister(struct workqueue_struct *wq);
360 static void show_pwq(struct pool_workqueue *pwq);
361
362 #define CREATE_TRACE_POINTS
363 #include <trace/events/workqueue.h>
364
365 #define assert_rcu_or_pool_mutex() \
366 RCU_LOCKDEP_WARN(!rcu_read_lock_held() && \
367 !lockdep_is_held(&wq_pool_mutex), \
368 "RCU or wq_pool_mutex should be held")
369
370 #define assert_rcu_or_wq_mutex_or_pool_mutex(wq) \
371 RCU_LOCKDEP_WARN(!rcu_read_lock_held() && \
372 !lockdep_is_held(&wq->mutex) && \
373 !lockdep_is_held(&wq_pool_mutex), \
374 "RCU, wq->mutex or wq_pool_mutex should be held")
375
376 #define for_each_cpu_worker_pool(pool, cpu) \
377 for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0]; \
378 (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
379 (pool)++)
380
381 /**
382 * for_each_pool - iterate through all worker_pools in the system
383 * @pool: iteration cursor
384 * @pi: integer used for iteration
385 *
386 * This must be called either with wq_pool_mutex held or RCU read
387 * locked. If the pool needs to be used beyond the locking in effect, the
388 * caller is responsible for guaranteeing that the pool stays online.
389 *
390 * The if/else clause exists only for the lockdep assertion and can be
391 * ignored.
392 */
393 #define for_each_pool(pool, pi) \
394 idr_for_each_entry(&worker_pool_idr, pool, pi) \
395 if (({ assert_rcu_or_pool_mutex(); false; })) { } \
396 else
397
398 /**
399 * for_each_pool_worker - iterate through all workers of a worker_pool
400 * @worker: iteration cursor
401 * @pool: worker_pool to iterate workers of
402 *
403 * This must be called with wq_pool_attach_mutex.
404 *
405 * The if/else clause exists only for the lockdep assertion and can be
406 * ignored.
407 */
408 #define for_each_pool_worker(worker, pool) \
409 list_for_each_entry((worker), &(pool)->workers, node) \
410 if (({ lockdep_assert_held(&wq_pool_attach_mutex); false; })) { } \
411 else
412
413 /**
414 * for_each_pwq - iterate through all pool_workqueues of the specified workqueue
415 * @pwq: iteration cursor
416 * @wq: the target workqueue
417 *
418 * This must be called either with wq->mutex held or RCU read locked.
419 * If the pwq needs to be used beyond the locking in effect, the caller is
420 * responsible for guaranteeing that the pwq stays online.
421 *
422 * The if/else clause exists only for the lockdep assertion and can be
423 * ignored.
424 */
425 #define for_each_pwq(pwq, wq) \
426 list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node, \
427 lockdep_is_held(&(wq->mutex)))
428
429 #ifdef CONFIG_DEBUG_OBJECTS_WORK
430
431 static const struct debug_obj_descr work_debug_descr;
432
433 static void *work_debug_hint(void *addr)
434 {
435 return ((struct work_struct *) addr)->func;
436 }
437
438 static bool work_is_static_object(void *addr)
439 {
440 struct work_struct *work = addr;
441
442 return test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work));
443 }
444
445 /*
446 * fixup_init is called when:
447 * - an active object is initialized
448 */
449 static bool work_fixup_init(void *addr, enum debug_obj_state state)
450 {
451 struct work_struct *work = addr;
452
453 switch (state) {
454 case ODEBUG_STATE_ACTIVE:
455 cancel_work_sync(work);
456 debug_object_init(work, &work_debug_descr);
457 return true;
458 default:
459 return false;
460 }
461 }
462
463 /*
464 * fixup_free is called when:
465 * - an active object is freed
466 */
467 static bool work_fixup_free(void *addr, enum debug_obj_state state)
468 {
469 struct work_struct *work = addr;
470
471 switch (state) {
472 case ODEBUG_STATE_ACTIVE:
473 cancel_work_sync(work);
474 debug_object_free(work, &work_debug_descr);
475 return true;
476 default:
477 return false;
478 }
479 }
480
481 static const struct debug_obj_descr work_debug_descr = {
482 .name = "work_struct",
483 .debug_hint = work_debug_hint,
484 .is_static_object = work_is_static_object,
485 .fixup_init = work_fixup_init,
486 .fixup_free = work_fixup_free,
487 };
488
489 static inline void debug_work_activate(struct work_struct *work)
490 {
491 debug_object_activate(work, &work_debug_descr);
492 }
493
494 static inline void debug_work_deactivate(struct work_struct *work)
495 {
496 debug_object_deactivate(work, &work_debug_descr);
497 }
498
499 void __init_work(struct work_struct *work, int onstack)
500 {
501 if (onstack)
502 debug_object_init_on_stack(work, &work_debug_descr);
503 else
504 debug_object_init(work, &work_debug_descr);
505 }
506 EXPORT_SYMBOL_GPL(__init_work);
507
508 void destroy_work_on_stack(struct work_struct *work)
509 {
510 debug_object_free(work, &work_debug_descr);
511 }
512 EXPORT_SYMBOL_GPL(destroy_work_on_stack);
513
514 void destroy_delayed_work_on_stack(struct delayed_work *work)
515 {
516 destroy_timer_on_stack(&work->timer);
517 debug_object_free(&work->work, &work_debug_descr);
518 }
519 EXPORT_SYMBOL_GPL(destroy_delayed_work_on_stack);
520
521 #else
522 static inline void debug_work_activate(struct work_struct *work) { }
523 static inline void debug_work_deactivate(struct work_struct *work) { }
524 #endif
525
526 /**
527 * worker_pool_assign_id - allocate ID and assing it to @pool
528 * @pool: the pool pointer of interest
529 *
530 * Returns 0 if ID in [0, WORK_OFFQ_POOL_NONE) is allocated and assigned
531 * successfully, -errno on failure.
532 */
533 static int worker_pool_assign_id(struct worker_pool *pool)
534 {
535 int ret;
536
537 lockdep_assert_held(&wq_pool_mutex);
538
539 ret = idr_alloc(&worker_pool_idr, pool, 0, WORK_OFFQ_POOL_NONE,
540 GFP_KERNEL);
541 if (ret >= 0) {
542 pool->id = ret;
543 return 0;
544 }
545 return ret;
546 }
547
548 /**
549 * unbound_pwq_by_node - return the unbound pool_workqueue for the given node
550 * @wq: the target workqueue
551 * @node: the node ID
552 *
553 * This must be called with any of wq_pool_mutex, wq->mutex or RCU
554 * read locked.
555 * If the pwq needs to be used beyond the locking in effect, the caller is
556 * responsible for guaranteeing that the pwq stays online.
557 *
558 * Return: The unbound pool_workqueue for @node.
559 */
560 static struct pool_workqueue *unbound_pwq_by_node(struct workqueue_struct *wq,
561 int node)
562 {
563 assert_rcu_or_wq_mutex_or_pool_mutex(wq);
564
565 /*
566 * XXX: @node can be NUMA_NO_NODE if CPU goes offline while a
567 * delayed item is pending. The plan is to keep CPU -> NODE
568 * mapping valid and stable across CPU on/offlines. Once that
569 * happens, this workaround can be removed.
570 */
571 if (unlikely(node == NUMA_NO_NODE))
572 return wq->dfl_pwq;
573
574 return rcu_dereference_raw(wq->numa_pwq_tbl[node]);
575 }
576
577 static unsigned int work_color_to_flags(int color)
578 {
579 return color << WORK_STRUCT_COLOR_SHIFT;
580 }
581
582 static int get_work_color(struct work_struct *work)
583 {
584 return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
585 ((1 << WORK_STRUCT_COLOR_BITS) - 1);
586 }
587
588 static int work_next_color(int color)
589 {
590 return (color + 1) % WORK_NR_COLORS;
591 }
592
593 /*
594 * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
595 * contain the pointer to the queued pwq. Once execution starts, the flag
596 * is cleared and the high bits contain OFFQ flags and pool ID.
597 *
598 * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling()
599 * and clear_work_data() can be used to set the pwq, pool or clear
600 * work->data. These functions should only be called while the work is
601 * owned - ie. while the PENDING bit is set.
602 *
603 * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
604 * corresponding to a work. Pool is available once the work has been
605 * queued anywhere after initialization until it is sync canceled. pwq is
606 * available only while the work item is queued.
607 *
608 * %WORK_OFFQ_CANCELING is used to mark a work item which is being
609 * canceled. While being canceled, a work item may have its PENDING set
610 * but stay off timer and worklist for arbitrarily long and nobody should
611 * try to steal the PENDING bit.
612 */
613 static inline void set_work_data(struct work_struct *work, unsigned long data,
614 unsigned long flags)
615 {
616 WARN_ON_ONCE(!work_pending(work));
617 atomic_long_set(&work->data, data | flags | work_static(work));
618 }
619
620 static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq,
621 unsigned long extra_flags)
622 {
623 set_work_data(work, (unsigned long)pwq,
624 WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags);
625 }
626
627 static void set_work_pool_and_keep_pending(struct work_struct *work,
628 int pool_id)
629 {
630 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT,
631 WORK_STRUCT_PENDING);
632 }
633
634 static void set_work_pool_and_clear_pending(struct work_struct *work,
635 int pool_id)
636 {
637 /*
638 * The following wmb is paired with the implied mb in
639 * test_and_set_bit(PENDING) and ensures all updates to @work made
640 * here are visible to and precede any updates by the next PENDING
641 * owner.
642 */
643 smp_wmb();
644 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0);
645 /*
646 * The following mb guarantees that previous clear of a PENDING bit
647 * will not be reordered with any speculative LOADS or STORES from
648 * work->current_func, which is executed afterwards. This possible
649 * reordering can lead to a missed execution on attempt to queue
650 * the same @work. E.g. consider this case:
651 *
652 * CPU#0 CPU#1
653 * ---------------------------- --------------------------------
654 *
655 * 1 STORE event_indicated
656 * 2 queue_work_on() {
657 * 3 test_and_set_bit(PENDING)
658 * 4 } set_..._and_clear_pending() {
659 * 5 set_work_data() # clear bit
660 * 6 smp_mb()
661 * 7 work->current_func() {
662 * 8 LOAD event_indicated
663 * }
664 *
665 * Without an explicit full barrier speculative LOAD on line 8 can
666 * be executed before CPU#0 does STORE on line 1. If that happens,
667 * CPU#0 observes the PENDING bit is still set and new execution of
668 * a @work is not queued in a hope, that CPU#1 will eventually
669 * finish the queued @work. Meanwhile CPU#1 does not see
670 * event_indicated is set, because speculative LOAD was executed
671 * before actual STORE.
672 */
673 smp_mb();
674 }
675
676 static void clear_work_data(struct work_struct *work)
677 {
678 smp_wmb(); /* see set_work_pool_and_clear_pending() */
679 set_work_data(work, WORK_STRUCT_NO_POOL, 0);
680 }
681
682 static struct pool_workqueue *get_work_pwq(struct work_struct *work)
683 {
684 unsigned long data = atomic_long_read(&work->data);
685
686 if (data & WORK_STRUCT_PWQ)
687 return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
688 else
689 return NULL;
690 }
691
692 /**
693 * get_work_pool - return the worker_pool a given work was associated with
694 * @work: the work item of interest
695 *
696 * Pools are created and destroyed under wq_pool_mutex, and allows read
697 * access under RCU read lock. As such, this function should be
698 * called under wq_pool_mutex or inside of a rcu_read_lock() region.
699 *
700 * All fields of the returned pool are accessible as long as the above
701 * mentioned locking is in effect. If the returned pool needs to be used
702 * beyond the critical section, the caller is responsible for ensuring the
703 * returned pool is and stays online.
704 *
705 * Return: The worker_pool @work was last associated with. %NULL if none.
706 */
707 static struct worker_pool *get_work_pool(struct work_struct *work)
708 {
709 unsigned long data = atomic_long_read(&work->data);
710 int pool_id;
711
712 assert_rcu_or_pool_mutex();
713
714 if (data & WORK_STRUCT_PWQ)
715 return ((struct pool_workqueue *)
716 (data & WORK_STRUCT_WQ_DATA_MASK))->pool;
717
718 pool_id = data >> WORK_OFFQ_POOL_SHIFT;
719 if (pool_id == WORK_OFFQ_POOL_NONE)
720 return NULL;
721
722 return idr_find(&worker_pool_idr, pool_id);
723 }
724
725 /**
726 * get_work_pool_id - return the worker pool ID a given work is associated with
727 * @work: the work item of interest
728 *
729 * Return: The worker_pool ID @work was last associated with.
730 * %WORK_OFFQ_POOL_NONE if none.
731 */
732 static int get_work_pool_id(struct work_struct *work)
733 {
734 unsigned long data = atomic_long_read(&work->data);
735
736 if (data & WORK_STRUCT_PWQ)
737 return ((struct pool_workqueue *)
738 (data & WORK_STRUCT_WQ_DATA_MASK))->pool->id;
739
740 return data >> WORK_OFFQ_POOL_SHIFT;
741 }
742
743 static void mark_work_canceling(struct work_struct *work)
744 {
745 unsigned long pool_id = get_work_pool_id(work);
746
747 pool_id <<= WORK_OFFQ_POOL_SHIFT;
748 set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING);
749 }
750
751 static bool work_is_canceling(struct work_struct *work)
752 {
753 unsigned long data = atomic_long_read(&work->data);
754
755 return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING);
756 }
757
758 /*
759 * Policy functions. These define the policies on how the global worker
760 * pools are managed. Unless noted otherwise, these functions assume that
761 * they're being called with pool->lock held.
762 */
763
764 static bool __need_more_worker(struct worker_pool *pool)
765 {
766 return !atomic_read(&pool->nr_running);
767 }
768
769 /*
770 * Need to wake up a worker? Called from anything but currently
771 * running workers.
772 *
773 * Note that, because unbound workers never contribute to nr_running, this
774 * function will always return %true for unbound pools as long as the
775 * worklist isn't empty.
776 */
777 static bool need_more_worker(struct worker_pool *pool)
778 {
779 return !list_empty(&pool->worklist) && __need_more_worker(pool);
780 }
781
782 /* Can I start working? Called from busy but !running workers. */
783 static bool may_start_working(struct worker_pool *pool)
784 {
785 return pool->nr_idle;
786 }
787
788 /* Do I need to keep working? Called from currently running workers. */
789 static bool keep_working(struct worker_pool *pool)
790 {
791 return !list_empty(&pool->worklist) &&
792 atomic_read(&pool->nr_running) <= 1;
793 }
794
795 /* Do we need a new worker? Called from manager. */
796 static bool need_to_create_worker(struct worker_pool *pool)
797 {
798 return need_more_worker(pool) && !may_start_working(pool);
799 }
800
801 /* Do we have too many workers and should some go away? */
802 static bool too_many_workers(struct worker_pool *pool)
803 {
804 bool managing = pool->flags & POOL_MANAGER_ACTIVE;
805 int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
806 int nr_busy = pool->nr_workers - nr_idle;
807
808 return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
809 }
810
811 /*
812 * Wake up functions.
813 */
814
815 /* Return the first idle worker. Safe with preemption disabled */
816 static struct worker *first_idle_worker(struct worker_pool *pool)
817 {
818 if (unlikely(list_empty(&pool->idle_list)))
819 return NULL;
820
821 return list_first_entry(&pool->idle_list, struct worker, entry);
822 }
823
824 /**
825 * wake_up_worker - wake up an idle worker
826 * @pool: worker pool to wake worker from
827 *
828 * Wake up the first idle worker of @pool.
829 *
830 * CONTEXT:
831 * raw_spin_lock_irq(pool->lock).
832 */
833 static void wake_up_worker(struct worker_pool *pool)
834 {
835 struct worker *worker = first_idle_worker(pool);
836
837 if (likely(worker))
838 wake_up_process(worker->task);
839 }
840
841 /**
842 * wq_worker_running - a worker is running again
843 * @task: task waking up
844 *
845 * This function is called when a worker returns from schedule()
846 */
847 void wq_worker_running(struct task_struct *task)
848 {
849 struct worker *worker = kthread_data(task);
850
851 if (!worker->sleeping)
852 return;
853 if (!(worker->flags & WORKER_NOT_RUNNING))
854 atomic_inc(&worker->pool->nr_running);
855 worker->sleeping = 0;
856 }
857
858 /**
859 * wq_worker_sleeping - a worker is going to sleep
860 * @task: task going to sleep
861 *
862 * This function is called from schedule() when a busy worker is
863 * going to sleep. Preemption needs to be disabled to protect ->sleeping
864 * assignment.
865 */
866 void wq_worker_sleeping(struct task_struct *task)
867 {
868 struct worker *next, *worker = kthread_data(task);
869 struct worker_pool *pool;
870
871 /*
872 * Rescuers, which may not have all the fields set up like normal
873 * workers, also reach here, let's not access anything before
874 * checking NOT_RUNNING.
875 */
876 if (worker->flags & WORKER_NOT_RUNNING)
877 return;
878
879 pool = worker->pool;
880
881 /* Return if preempted before wq_worker_running() was reached */
882 if (worker->sleeping)
883 return;
884
885 worker->sleeping = 1;
886 raw_spin_lock_irq(&pool->lock);
887
888 /*
889 * The counterpart of the following dec_and_test, implied mb,
890 * worklist not empty test sequence is in insert_work().
891 * Please read comment there.
892 *
893 * NOT_RUNNING is clear. This means that we're bound to and
894 * running on the local cpu w/ rq lock held and preemption
895 * disabled, which in turn means that none else could be
896 * manipulating idle_list, so dereferencing idle_list without pool
897 * lock is safe.
898 */
899 if (atomic_dec_and_test(&pool->nr_running) &&
900 !list_empty(&pool->worklist)) {
901 next = first_idle_worker(pool);
902 if (next)
903 wake_up_process(next->task);
904 }
905 raw_spin_unlock_irq(&pool->lock);
906 }
907
908 /**
909 * wq_worker_last_func - retrieve worker's last work function
910 * @task: Task to retrieve last work function of.
911 *
912 * Determine the last function a worker executed. This is called from
913 * the scheduler to get a worker's last known identity.
914 *
915 * CONTEXT:
916 * raw_spin_lock_irq(rq->lock)
917 *
918 * This function is called during schedule() when a kworker is going
919 * to sleep. It's used by psi to identify aggregation workers during
920 * dequeuing, to allow periodic aggregation to shut-off when that
921 * worker is the last task in the system or cgroup to go to sleep.
922 *
923 * As this function doesn't involve any workqueue-related locking, it
924 * only returns stable values when called from inside the scheduler's
925 * queuing and dequeuing paths, when @task, which must be a kworker,
926 * is guaranteed to not be processing any works.
927 *
928 * Return:
929 * The last work function %current executed as a worker, NULL if it
930 * hasn't executed any work yet.
931 */
932 work_func_t wq_worker_last_func(struct task_struct *task)
933 {
934 struct worker *worker = kthread_data(task);
935
936 return worker->last_func;
937 }
938
939 /**
940 * worker_set_flags - set worker flags and adjust nr_running accordingly
941 * @worker: self
942 * @flags: flags to set
943 *
944 * Set @flags in @worker->flags and adjust nr_running accordingly.
945 *
946 * CONTEXT:
947 * raw_spin_lock_irq(pool->lock)
948 */
949 static inline void worker_set_flags(struct worker *worker, unsigned int flags)
950 {
951 struct worker_pool *pool = worker->pool;
952
953 WARN_ON_ONCE(worker->task != current);
954
955 /* If transitioning into NOT_RUNNING, adjust nr_running. */
956 if ((flags & WORKER_NOT_RUNNING) &&
957 !(worker->flags & WORKER_NOT_RUNNING)) {
958 atomic_dec(&pool->nr_running);
959 }
960
961 worker->flags |= flags;
962 }
963
964 /**
965 * worker_clr_flags - clear worker flags and adjust nr_running accordingly
966 * @worker: self
967 * @flags: flags to clear
968 *
969 * Clear @flags in @worker->flags and adjust nr_running accordingly.
970 *
971 * CONTEXT:
972 * raw_spin_lock_irq(pool->lock)
973 */
974 static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
975 {
976 struct worker_pool *pool = worker->pool;
977 unsigned int oflags = worker->flags;
978
979 WARN_ON_ONCE(worker->task != current);
980
981 worker->flags &= ~flags;
982
983 /*
984 * If transitioning out of NOT_RUNNING, increment nr_running. Note
985 * that the nested NOT_RUNNING is not a noop. NOT_RUNNING is mask
986 * of multiple flags, not a single flag.
987 */
988 if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
989 if (!(worker->flags & WORKER_NOT_RUNNING))
990 atomic_inc(&pool->nr_running);
991 }
992
993 /**
994 * find_worker_executing_work - find worker which is executing a work
995 * @pool: pool of interest
996 * @work: work to find worker for
997 *
998 * Find a worker which is executing @work on @pool by searching
999 * @pool->busy_hash which is keyed by the address of @work. For a worker
1000 * to match, its current execution should match the address of @work and
1001 * its work function. This is to avoid unwanted dependency between
1002 * unrelated work executions through a work item being recycled while still
1003 * being executed.
1004 *
1005 * This is a bit tricky. A work item may be freed once its execution
1006 * starts and nothing prevents the freed area from being recycled for
1007 * another work item. If the same work item address ends up being reused
1008 * before the original execution finishes, workqueue will identify the
1009 * recycled work item as currently executing and make it wait until the
1010 * current execution finishes, introducing an unwanted dependency.
1011 *
1012 * This function checks the work item address and work function to avoid
1013 * false positives. Note that this isn't complete as one may construct a
1014 * work function which can introduce dependency onto itself through a
1015 * recycled work item. Well, if somebody wants to shoot oneself in the
1016 * foot that badly, there's only so much we can do, and if such deadlock
1017 * actually occurs, it should be easy to locate the culprit work function.
1018 *
1019 * CONTEXT:
1020 * raw_spin_lock_irq(pool->lock).
1021 *
1022 * Return:
1023 * Pointer to worker which is executing @work if found, %NULL
1024 * otherwise.
1025 */
1026 static struct worker *find_worker_executing_work(struct worker_pool *pool,
1027 struct work_struct *work)
1028 {
1029 struct worker *worker;
1030
1031 hash_for_each_possible(pool->busy_hash, worker, hentry,
1032 (unsigned long)work)
1033 if (worker->current_work == work &&
1034 worker->current_func == work->func)
1035 return worker;
1036
1037 return NULL;
1038 }
1039
1040 /**
1041 * move_linked_works - move linked works to a list
1042 * @work: start of series of works to be scheduled
1043 * @head: target list to append @work to
1044 * @nextp: out parameter for nested worklist walking
1045 *
1046 * Schedule linked works starting from @work to @head. Work series to
1047 * be scheduled starts at @work and includes any consecutive work with
1048 * WORK_STRUCT_LINKED set in its predecessor.
1049 *
1050 * If @nextp is not NULL, it's updated to point to the next work of
1051 * the last scheduled work. This allows move_linked_works() to be
1052 * nested inside outer list_for_each_entry_safe().
1053 *
1054 * CONTEXT:
1055 * raw_spin_lock_irq(pool->lock).
1056 */
1057 static void move_linked_works(struct work_struct *work, struct list_head *head,
1058 struct work_struct **nextp)
1059 {
1060 struct work_struct *n;
1061
1062 /*
1063 * Linked worklist will always end before the end of the list,
1064 * use NULL for list head.
1065 */
1066 list_for_each_entry_safe_from(work, n, NULL, entry) {
1067 list_move_tail(&work->entry, head);
1068 if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
1069 break;
1070 }
1071
1072 /*
1073 * If we're already inside safe list traversal and have moved
1074 * multiple works to the scheduled queue, the next position
1075 * needs to be updated.
1076 */
1077 if (nextp)
1078 *nextp = n;
1079 }
1080
1081 /**
1082 * get_pwq - get an extra reference on the specified pool_workqueue
1083 * @pwq: pool_workqueue to get
1084 *
1085 * Obtain an extra reference on @pwq. The caller should guarantee that
1086 * @pwq has positive refcnt and be holding the matching pool->lock.
1087 */
1088 static void get_pwq(struct pool_workqueue *pwq)
1089 {
1090 lockdep_assert_held(&pwq->pool->lock);
1091 WARN_ON_ONCE(pwq->refcnt <= 0);
1092 pwq->refcnt++;
1093 }
1094
1095 /**
1096 * put_pwq - put a pool_workqueue reference
1097 * @pwq: pool_workqueue to put
1098 *
1099 * Drop a reference of @pwq. If its refcnt reaches zero, schedule its
1100 * destruction. The caller should be holding the matching pool->lock.
1101 */
1102 static void put_pwq(struct pool_workqueue *pwq)
1103 {
1104 lockdep_assert_held(&pwq->pool->lock);
1105 if (likely(--pwq->refcnt))
1106 return;
1107 if (WARN_ON_ONCE(!(pwq->wq->flags & WQ_UNBOUND)))
1108 return;
1109 /*
1110 * @pwq can't be released under pool->lock, bounce to
1111 * pwq_unbound_release_workfn(). This never recurses on the same
1112 * pool->lock as this path is taken only for unbound workqueues and
1113 * the release work item is scheduled on a per-cpu workqueue. To
1114 * avoid lockdep warning, unbound pool->locks are given lockdep
1115 * subclass of 1 in get_unbound_pool().
1116 */
1117 schedule_work(&pwq->unbound_release_work);
1118 }
1119
1120 /**
1121 * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock
1122 * @pwq: pool_workqueue to put (can be %NULL)
1123 *
1124 * put_pwq() with locking. This function also allows %NULL @pwq.
1125 */
1126 static void put_pwq_unlocked(struct pool_workqueue *pwq)
1127 {
1128 if (pwq) {
1129 /*
1130 * As both pwqs and pools are RCU protected, the
1131 * following lock operations are safe.
1132 */
1133 raw_spin_lock_irq(&pwq->pool->lock);
1134 put_pwq(pwq);
1135 raw_spin_unlock_irq(&pwq->pool->lock);
1136 }
1137 }
1138
1139 static void pwq_activate_delayed_work(struct work_struct *work)
1140 {
1141 struct pool_workqueue *pwq = get_work_pwq(work);
1142
1143 trace_workqueue_activate_work(work);
1144 if (list_empty(&pwq->pool->worklist))
1145 pwq->pool->watchdog_ts = jiffies;
1146 move_linked_works(work, &pwq->pool->worklist, NULL);
1147 __clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
1148 pwq->nr_active++;
1149 }
1150
1151 static void pwq_activate_first_delayed(struct pool_workqueue *pwq)
1152 {
1153 struct work_struct *work = list_first_entry(&pwq->delayed_works,
1154 struct work_struct, entry);
1155
1156 pwq_activate_delayed_work(work);
1157 }
1158
1159 /**
1160 * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
1161 * @pwq: pwq of interest
1162 * @color: color of work which left the queue
1163 *
1164 * A work either has completed or is removed from pending queue,
1165 * decrement nr_in_flight of its pwq and handle workqueue flushing.
1166 *
1167 * CONTEXT:
1168 * raw_spin_lock_irq(pool->lock).
1169 */
1170 static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, int color)
1171 {
1172 /* uncolored work items don't participate in flushing or nr_active */
1173 if (color == WORK_NO_COLOR)
1174 goto out_put;
1175
1176 pwq->nr_in_flight[color]--;
1177
1178 pwq->nr_active--;
1179 if (!list_empty(&pwq->delayed_works)) {
1180 /* one down, submit a delayed one */
1181 if (pwq->nr_active < pwq->max_active)
1182 pwq_activate_first_delayed(pwq);
1183 }
1184
1185 /* is flush in progress and are we at the flushing tip? */
1186 if (likely(pwq->flush_color != color))
1187 goto out_put;
1188
1189 /* are there still in-flight works? */
1190 if (pwq->nr_in_flight[color])
1191 goto out_put;
1192
1193 /* this pwq is done, clear flush_color */
1194 pwq->flush_color = -1;
1195
1196 /*
1197 * If this was the last pwq, wake up the first flusher. It
1198 * will handle the rest.
1199 */
1200 if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush))
1201 complete(&pwq->wq->first_flusher->done);
1202 out_put:
1203 put_pwq(pwq);
1204 }
1205
1206 /**
1207 * try_to_grab_pending - steal work item from worklist and disable irq
1208 * @work: work item to steal
1209 * @is_dwork: @work is a delayed_work
1210 * @flags: place to store irq state
1211 *
1212 * Try to grab PENDING bit of @work. This function can handle @work in any
1213 * stable state - idle, on timer or on worklist.
1214 *
1215 * Return:
1216 *
1217 * ======== ================================================================
1218 * 1 if @work was pending and we successfully stole PENDING
1219 * 0 if @work was idle and we claimed PENDING
1220 * -EAGAIN if PENDING couldn't be grabbed at the moment, safe to busy-retry
1221 * -ENOENT if someone else is canceling @work, this state may persist
1222 * for arbitrarily long
1223 * ======== ================================================================
1224 *
1225 * Note:
1226 * On >= 0 return, the caller owns @work's PENDING bit. To avoid getting
1227 * interrupted while holding PENDING and @work off queue, irq must be
1228 * disabled on entry. This, combined with delayed_work->timer being
1229 * irqsafe, ensures that we return -EAGAIN for finite short period of time.
1230 *
1231 * On successful return, >= 0, irq is disabled and the caller is
1232 * responsible for releasing it using local_irq_restore(*@flags).
1233 *
1234 * This function is safe to call from any context including IRQ handler.
1235 */
1236 static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
1237 unsigned long *flags)
1238 {
1239 struct worker_pool *pool;
1240 struct pool_workqueue *pwq;
1241
1242 local_irq_save(*flags);
1243
1244 /* try to steal the timer if it exists */
1245 if (is_dwork) {
1246 struct delayed_work *dwork = to_delayed_work(work);
1247
1248 /*
1249 * dwork->timer is irqsafe. If del_timer() fails, it's
1250 * guaranteed that the timer is not queued anywhere and not
1251 * running on the local CPU.
1252 */
1253 if (likely(del_timer(&dwork->timer)))
1254 return 1;
1255 }
1256
1257 /* try to claim PENDING the normal way */
1258 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
1259 return 0;
1260
1261 rcu_read_lock();
1262 /*
1263 * The queueing is in progress, or it is already queued. Try to
1264 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
1265 */
1266 pool = get_work_pool(work);
1267 if (!pool)
1268 goto fail;
1269
1270 raw_spin_lock(&pool->lock);
1271 /*
1272 * work->data is guaranteed to point to pwq only while the work
1273 * item is queued on pwq->wq, and both updating work->data to point
1274 * to pwq on queueing and to pool on dequeueing are done under
1275 * pwq->pool->lock. This in turn guarantees that, if work->data
1276 * points to pwq which is associated with a locked pool, the work
1277 * item is currently queued on that pool.
1278 */
1279 pwq = get_work_pwq(work);
1280 if (pwq && pwq->pool == pool) {
1281 debug_work_deactivate(work);
1282
1283 /*
1284 * A delayed work item cannot be grabbed directly because
1285 * it might have linked NO_COLOR work items which, if left
1286 * on the delayed_list, will confuse pwq->nr_active
1287 * management later on and cause stall. Make sure the work
1288 * item is activated before grabbing.
1289 */
1290 if (*work_data_bits(work) & WORK_STRUCT_DELAYED)
1291 pwq_activate_delayed_work(work);
1292
1293 list_del_init(&work->entry);
1294 pwq_dec_nr_in_flight(pwq, get_work_color(work));
1295
1296 /* work->data points to pwq iff queued, point to pool */
1297 set_work_pool_and_keep_pending(work, pool->id);
1298
1299 raw_spin_unlock(&pool->lock);
1300 rcu_read_unlock();
1301 return 1;
1302 }
1303 raw_spin_unlock(&pool->lock);
1304 fail:
1305 rcu_read_unlock();
1306 local_irq_restore(*flags);
1307 if (work_is_canceling(work))
1308 return -ENOENT;
1309 cpu_relax();
1310 return -EAGAIN;
1311 }
1312
1313 /**
1314 * insert_work - insert a work into a pool
1315 * @pwq: pwq @work belongs to
1316 * @work: work to insert
1317 * @head: insertion point
1318 * @extra_flags: extra WORK_STRUCT_* flags to set
1319 *
1320 * Insert @work which belongs to @pwq after @head. @extra_flags is or'd to
1321 * work_struct flags.
1322 *
1323 * CONTEXT:
1324 * raw_spin_lock_irq(pool->lock).
1325 */
1326 static void insert_work(struct pool_workqueue *pwq, struct work_struct *work,
1327 struct list_head *head, unsigned int extra_flags)
1328 {
1329 struct worker_pool *pool = pwq->pool;
1330
1331 /* record the work call stack in order to print it in KASAN reports */
1332 kasan_record_aux_stack(work);
1333
1334 /* we own @work, set data and link */
1335 set_work_pwq(work, pwq, extra_flags);
1336 list_add_tail(&work->entry, head);
1337 get_pwq(pwq);
1338
1339 /*
1340 * Ensure either wq_worker_sleeping() sees the above
1341 * list_add_tail() or we see zero nr_running to avoid workers lying
1342 * around lazily while there are works to be processed.
1343 */
1344 smp_mb();
1345
1346 if (__need_more_worker(pool))
1347 wake_up_worker(pool);
1348 }
1349
1350 /*
1351 * Test whether @work is being queued from another work executing on the
1352 * same workqueue.
1353 */
1354 static bool is_chained_work(struct workqueue_struct *wq)
1355 {
1356 struct worker *worker;
1357
1358 worker = current_wq_worker();
1359 /*
1360 * Return %true iff I'm a worker executing a work item on @wq. If
1361 * I'm @worker, it's safe to dereference it without locking.
1362 */
1363 return worker && worker->current_pwq->wq == wq;
1364 }
1365
1366 /*
1367 * When queueing an unbound work item to a wq, prefer local CPU if allowed
1368 * by wq_unbound_cpumask. Otherwise, round robin among the allowed ones to
1369 * avoid perturbing sensitive tasks.
1370 */
1371 static int wq_select_unbound_cpu(int cpu)
1372 {
1373 static bool printed_dbg_warning;
1374 int new_cpu;
1375
1376 if (likely(!wq_debug_force_rr_cpu)) {
1377 if (cpumask_test_cpu(cpu, wq_unbound_cpumask))
1378 return cpu;
1379 } else if (!printed_dbg_warning) {
1380 pr_warn("workqueue: round-robin CPU selection forced, expect performance impact\n");
1381 printed_dbg_warning = true;
1382 }
1383
1384 if (cpumask_empty(wq_unbound_cpumask))
1385 return cpu;
1386
1387 new_cpu = __this_cpu_read(wq_rr_cpu_last);
1388 new_cpu = cpumask_next_and(new_cpu, wq_unbound_cpumask, cpu_online_mask);
1389 if (unlikely(new_cpu >= nr_cpu_ids)) {
1390 new_cpu = cpumask_first_and(wq_unbound_cpumask, cpu_online_mask);
1391 if (unlikely(new_cpu >= nr_cpu_ids))
1392 return cpu;
1393 }
1394 __this_cpu_write(wq_rr_cpu_last, new_cpu);
1395
1396 return new_cpu;
1397 }
1398
1399 static void __queue_work(int cpu, struct workqueue_struct *wq,
1400 struct work_struct *work)
1401 {
1402 struct pool_workqueue *pwq;
1403 struct worker_pool *last_pool;
1404 struct list_head *worklist;
1405 unsigned int work_flags;
1406 unsigned int req_cpu = cpu;
1407
1408 /*
1409 * While a work item is PENDING && off queue, a task trying to
1410 * steal the PENDING will busy-loop waiting for it to either get
1411 * queued or lose PENDING. Grabbing PENDING and queueing should
1412 * happen with IRQ disabled.
1413 */
1414 lockdep_assert_irqs_disabled();
1415
1416
1417 /* if draining, only works from the same workqueue are allowed */
1418 if (unlikely(wq->flags & __WQ_DRAINING) &&
1419 WARN_ON_ONCE(!is_chained_work(wq)))
1420 return;
1421 rcu_read_lock();
1422 retry:
1423 /* pwq which will be used unless @work is executing elsewhere */
1424 if (wq->flags & WQ_UNBOUND) {
1425 if (req_cpu == WORK_CPU_UNBOUND)
1426 cpu = wq_select_unbound_cpu(raw_smp_processor_id());
1427 pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
1428 } else {
1429 if (req_cpu == WORK_CPU_UNBOUND)
1430 cpu = raw_smp_processor_id();
1431 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
1432 }
1433
1434 /*
1435 * If @work was previously on a different pool, it might still be
1436 * running there, in which case the work needs to be queued on that
1437 * pool to guarantee non-reentrancy.
1438 */
1439 last_pool = get_work_pool(work);
1440 if (last_pool && last_pool != pwq->pool) {
1441 struct worker *worker;
1442
1443 raw_spin_lock(&last_pool->lock);
1444
1445 worker = find_worker_executing_work(last_pool, work);
1446
1447 if (worker && worker->current_pwq->wq == wq) {
1448 pwq = worker->current_pwq;
1449 } else {
1450 /* meh... not running there, queue here */
1451 raw_spin_unlock(&last_pool->lock);
1452 raw_spin_lock(&pwq->pool->lock);
1453 }
1454 } else {
1455 raw_spin_lock(&pwq->pool->lock);
1456 }
1457
1458 /*
1459 * pwq is determined and locked. For unbound pools, we could have
1460 * raced with pwq release and it could already be dead. If its
1461 * refcnt is zero, repeat pwq selection. Note that pwqs never die
1462 * without another pwq replacing it in the numa_pwq_tbl or while
1463 * work items are executing on it, so the retrying is guaranteed to
1464 * make forward-progress.
1465 */
1466 if (unlikely(!pwq->refcnt)) {
1467 if (wq->flags & WQ_UNBOUND) {
1468 raw_spin_unlock(&pwq->pool->lock);
1469 cpu_relax();
1470 goto retry;
1471 }
1472 /* oops */
1473 WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt",
1474 wq->name, cpu);
1475 }
1476
1477 /* pwq determined, queue */
1478 trace_workqueue_queue_work(req_cpu, pwq, work);
1479
1480 if (WARN_ON(!list_empty(&work->entry)))
1481 goto out;
1482
1483 pwq->nr_in_flight[pwq->work_color]++;
1484 work_flags = work_color_to_flags(pwq->work_color);
1485
1486 if (likely(pwq->nr_active < pwq->max_active)) {
1487 trace_workqueue_activate_work(work);
1488 pwq->nr_active++;
1489 worklist = &pwq->pool->worklist;
1490 if (list_empty(worklist))
1491 pwq->pool->watchdog_ts = jiffies;
1492 } else {
1493 work_flags |= WORK_STRUCT_DELAYED;
1494 worklist = &pwq->delayed_works;
1495 }
1496
1497 debug_work_activate(work);
1498 insert_work(pwq, work, worklist, work_flags);
1499
1500 out:
1501 raw_spin_unlock(&pwq->pool->lock);
1502 rcu_read_unlock();
1503 }
1504
1505 /**
1506 * queue_work_on - queue work on specific cpu
1507 * @cpu: CPU number to execute work on
1508 * @wq: workqueue to use
1509 * @work: work to queue
1510 *
1511 * We queue the work to a specific CPU, the caller must ensure it
1512 * can't go away.
1513 *
1514 * Return: %false if @work was already on a queue, %true otherwise.
1515 */
1516 bool queue_work_on(int cpu, struct workqueue_struct *wq,
1517 struct work_struct *work)
1518 {
1519 bool ret = false;
1520 unsigned long flags;
1521
1522 local_irq_save(flags);
1523
1524 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1525 __queue_work(cpu, wq, work);
1526 ret = true;
1527 }
1528
1529 local_irq_restore(flags);
1530 return ret;
1531 }
1532 EXPORT_SYMBOL(queue_work_on);
1533
1534 /**
1535 * workqueue_select_cpu_near - Select a CPU based on NUMA node
1536 * @node: NUMA node ID that we want to select a CPU from
1537 *
1538 * This function will attempt to find a "random" cpu available on a given
1539 * node. If there are no CPUs available on the given node it will return
1540 * WORK_CPU_UNBOUND indicating that we should just schedule to any
1541 * available CPU if we need to schedule this work.
1542 */
1543 static int workqueue_select_cpu_near(int node)
1544 {
1545 int cpu;
1546
1547 /* No point in doing this if NUMA isn't enabled for workqueues */
1548 if (!wq_numa_enabled)
1549 return WORK_CPU_UNBOUND;
1550
1551 /* Delay binding to CPU if node is not valid or online */
1552 if (node < 0 || node >= MAX_NUMNODES || !node_online(node))
1553 return WORK_CPU_UNBOUND;
1554
1555 /* Use local node/cpu if we are already there */
1556 cpu = raw_smp_processor_id();
1557 if (node == cpu_to_node(cpu))
1558 return cpu;
1559
1560 /* Use "random" otherwise know as "first" online CPU of node */
1561 cpu = cpumask_any_and(cpumask_of_node(node), cpu_online_mask);
1562
1563 /* If CPU is valid return that, otherwise just defer */
1564 return cpu < nr_cpu_ids ? cpu : WORK_CPU_UNBOUND;
1565 }
1566
1567 /**
1568 * queue_work_node - queue work on a "random" cpu for a given NUMA node
1569 * @node: NUMA node that we are targeting the work for
1570 * @wq: workqueue to use
1571 * @work: work to queue
1572 *
1573 * We queue the work to a "random" CPU within a given NUMA node. The basic
1574 * idea here is to provide a way to somehow associate work with a given
1575 * NUMA node.
1576 *
1577 * This function will only make a best effort attempt at getting this onto
1578 * the right NUMA node. If no node is requested or the requested node is
1579 * offline then we just fall back to standard queue_work behavior.
1580 *
1581 * Currently the "random" CPU ends up being the first available CPU in the
1582 * intersection of cpu_online_mask and the cpumask of the node, unless we
1583 * are running on the node. In that case we just use the current CPU.
1584 *
1585 * Return: %false if @work was already on a queue, %true otherwise.
1586 */
1587 bool queue_work_node(int node, struct workqueue_struct *wq,
1588 struct work_struct *work)
1589 {
1590 unsigned long flags;
1591 bool ret = false;
1592
1593 /*
1594 * This current implementation is specific to unbound workqueues.
1595 * Specifically we only return the first available CPU for a given
1596 * node instead of cycling through individual CPUs within the node.
1597 *
1598 * If this is used with a per-cpu workqueue then the logic in
1599 * workqueue_select_cpu_near would need to be updated to allow for
1600 * some round robin type logic.
1601 */
1602 WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND));
1603
1604 local_irq_save(flags);
1605
1606 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1607 int cpu = workqueue_select_cpu_near(node);
1608
1609 __queue_work(cpu, wq, work);
1610 ret = true;
1611 }
1612
1613 local_irq_restore(flags);
1614 return ret;
1615 }
1616 EXPORT_SYMBOL_GPL(queue_work_node);
1617
1618 void delayed_work_timer_fn(struct timer_list *t)
1619 {
1620 struct delayed_work *dwork = from_timer(dwork, t, timer);
1621
1622 /* should have been called from irqsafe timer with irq already off */
1623 __queue_work(dwork->cpu, dwork->wq, &dwork->work);
1624 }
1625 EXPORT_SYMBOL(delayed_work_timer_fn);
1626
1627 static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
1628 struct delayed_work *dwork, unsigned long delay)
1629 {
1630 struct timer_list *timer = &dwork->timer;
1631 struct work_struct *work = &dwork->work;
1632
1633 WARN_ON_ONCE(!wq);
1634 WARN_ON_FUNCTION_MISMATCH(timer->function, delayed_work_timer_fn);
1635 WARN_ON_ONCE(timer_pending(timer));
1636 WARN_ON_ONCE(!list_empty(&work->entry));
1637
1638 /*
1639 * If @delay is 0, queue @dwork->work immediately. This is for
1640 * both optimization and correctness. The earliest @timer can
1641 * expire is on the closest next tick and delayed_work users depend
1642 * on that there's no such delay when @delay is 0.
1643 */
1644 if (!delay) {
1645 __queue_work(cpu, wq, &dwork->work);
1646 return;
1647 }
1648
1649 dwork->wq = wq;
1650 dwork->cpu = cpu;
1651 timer->expires = jiffies + delay;
1652
1653 if (unlikely(cpu != WORK_CPU_UNBOUND))
1654 add_timer_on(timer, cpu);
1655 else
1656 add_timer(timer);
1657 }
1658
1659 /**
1660 * queue_delayed_work_on - queue work on specific CPU after delay
1661 * @cpu: CPU number to execute work on
1662 * @wq: workqueue to use
1663 * @dwork: work to queue
1664 * @delay: number of jiffies to wait before queueing
1665 *
1666 * Return: %false if @work was already on a queue, %true otherwise. If
1667 * @delay is zero and @dwork is idle, it will be scheduled for immediate
1668 * execution.
1669 */
1670 bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
1671 struct delayed_work *dwork, unsigned long delay)
1672 {
1673 struct work_struct *work = &dwork->work;
1674 bool ret = false;
1675 unsigned long flags;
1676
1677 /* read the comment in __queue_work() */
1678 local_irq_save(flags);
1679
1680 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1681 __queue_delayed_work(cpu, wq, dwork, delay);
1682 ret = true;
1683 }
1684
1685 local_irq_restore(flags);
1686 return ret;
1687 }
1688 EXPORT_SYMBOL(queue_delayed_work_on);
1689
1690 /**
1691 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
1692 * @cpu: CPU number to execute work on
1693 * @wq: workqueue to use
1694 * @dwork: work to queue
1695 * @delay: number of jiffies to wait before queueing
1696 *
1697 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
1698 * modify @dwork's timer so that it expires after @delay. If @delay is
1699 * zero, @work is guaranteed to be scheduled immediately regardless of its
1700 * current state.
1701 *
1702 * Return: %false if @dwork was idle and queued, %true if @dwork was
1703 * pending and its timer was modified.
1704 *
1705 * This function is safe to call from any context including IRQ handler.
1706 * See try_to_grab_pending() for details.
1707 */
1708 bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
1709 struct delayed_work *dwork, unsigned long delay)
1710 {
1711 unsigned long flags;
1712 int ret;
1713
1714 do {
1715 ret = try_to_grab_pending(&dwork->work, true, &flags);
1716 } while (unlikely(ret == -EAGAIN));
1717
1718 if (likely(ret >= 0)) {
1719 __queue_delayed_work(cpu, wq, dwork, delay);
1720 local_irq_restore(flags);
1721 }
1722
1723 /* -ENOENT from try_to_grab_pending() becomes %true */
1724 return ret;
1725 }
1726 EXPORT_SYMBOL_GPL(mod_delayed_work_on);
1727
1728 static void rcu_work_rcufn(struct rcu_head *rcu)
1729 {
1730 struct rcu_work *rwork = container_of(rcu, struct rcu_work, rcu);
1731
1732 /* read the comment in __queue_work() */
1733 local_irq_disable();
1734 __queue_work(WORK_CPU_UNBOUND, rwork->wq, &rwork->work);
1735 local_irq_enable();
1736 }
1737
1738 /**
1739 * queue_rcu_work - queue work after a RCU grace period
1740 * @wq: workqueue to use
1741 * @rwork: work to queue
1742 *
1743 * Return: %false if @rwork was already pending, %true otherwise. Note
1744 * that a full RCU grace period is guaranteed only after a %true return.
1745 * While @rwork is guaranteed to be executed after a %false return, the
1746 * execution may happen before a full RCU grace period has passed.
1747 */
1748 bool queue_rcu_work(struct workqueue_struct *wq, struct rcu_work *rwork)
1749 {
1750 struct work_struct *work = &rwork->work;
1751
1752 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1753 rwork->wq = wq;
1754 call_rcu(&rwork->rcu, rcu_work_rcufn);
1755 return true;
1756 }
1757
1758 return false;
1759 }
1760 EXPORT_SYMBOL(queue_rcu_work);
1761
1762 /**
1763 * worker_enter_idle - enter idle state
1764 * @worker: worker which is entering idle state
1765 *
1766 * @worker is entering idle state. Update stats and idle timer if
1767 * necessary.
1768 *
1769 * LOCKING:
1770 * raw_spin_lock_irq(pool->lock).
1771 */
1772 static void worker_enter_idle(struct worker *worker)
1773 {
1774 struct worker_pool *pool = worker->pool;
1775
1776 if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) ||
1777 WARN_ON_ONCE(!list_empty(&worker->entry) &&
1778 (worker->hentry.next || worker->hentry.pprev)))
1779 return;
1780
1781 /* can't use worker_set_flags(), also called from create_worker() */
1782 worker->flags |= WORKER_IDLE;
1783 pool->nr_idle++;
1784 worker->last_active = jiffies;
1785
1786 /* idle_list is LIFO */
1787 list_add(&worker->entry, &pool->idle_list);
1788
1789 if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
1790 mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
1791
1792 /*
1793 * Sanity check nr_running. Because unbind_workers() releases
1794 * pool->lock between setting %WORKER_UNBOUND and zapping
1795 * nr_running, the warning may trigger spuriously. Check iff
1796 * unbind is not in progress.
1797 */
1798 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
1799 pool->nr_workers == pool->nr_idle &&
1800 atomic_read(&pool->nr_running));
1801 }
1802
1803 /**
1804 * worker_leave_idle - leave idle state
1805 * @worker: worker which is leaving idle state
1806 *
1807 * @worker is leaving idle state. Update stats.
1808 *
1809 * LOCKING:
1810 * raw_spin_lock_irq(pool->lock).
1811 */
1812 static void worker_leave_idle(struct worker *worker)
1813 {
1814 struct worker_pool *pool = worker->pool;
1815
1816 if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE)))
1817 return;
1818 worker_clr_flags(worker, WORKER_IDLE);
1819 pool->nr_idle--;
1820 list_del_init(&worker->entry);
1821 }
1822
1823 static struct worker *alloc_worker(int node)
1824 {
1825 struct worker *worker;
1826
1827 worker = kzalloc_node(sizeof(*worker), GFP_KERNEL, node);
1828 if (worker) {
1829 INIT_LIST_HEAD(&worker->entry);
1830 INIT_LIST_HEAD(&worker->scheduled);
1831 INIT_LIST_HEAD(&worker->node);
1832 /* on creation a worker is in !idle && prep state */
1833 worker->flags = WORKER_PREP;
1834 }
1835 return worker;
1836 }
1837
1838 /**
1839 * worker_attach_to_pool() - attach a worker to a pool
1840 * @worker: worker to be attached
1841 * @pool: the target pool
1842 *
1843 * Attach @worker to @pool. Once attached, the %WORKER_UNBOUND flag and
1844 * cpu-binding of @worker are kept coordinated with the pool across
1845 * cpu-[un]hotplugs.
1846 */
1847 static void worker_attach_to_pool(struct worker *worker,
1848 struct worker_pool *pool)
1849 {
1850 mutex_lock(&wq_pool_attach_mutex);
1851
1852 /*
1853 * The wq_pool_attach_mutex ensures %POOL_DISASSOCIATED remains
1854 * stable across this function. See the comments above the flag
1855 * definition for details.
1856 */
1857 if (pool->flags & POOL_DISASSOCIATED)
1858 worker->flags |= WORKER_UNBOUND;
1859 else
1860 kthread_set_per_cpu(worker->task, pool->cpu);
1861
1862 if (worker->rescue_wq)
1863 set_cpus_allowed_ptr(worker->task, pool->attrs->cpumask);
1864
1865 list_add_tail(&worker->node, &pool->workers);
1866 worker->pool = pool;
1867
1868 mutex_unlock(&wq_pool_attach_mutex);
1869 }
1870
1871 /**
1872 * worker_detach_from_pool() - detach a worker from its pool
1873 * @worker: worker which is attached to its pool
1874 *
1875 * Undo the attaching which had been done in worker_attach_to_pool(). The
1876 * caller worker shouldn't access to the pool after detached except it has
1877 * other reference to the pool.
1878 */
1879 static void worker_detach_from_pool(struct worker *worker)
1880 {
1881 struct worker_pool *pool = worker->pool;
1882 struct completion *detach_completion = NULL;
1883
1884 mutex_lock(&wq_pool_attach_mutex);
1885
1886 kthread_set_per_cpu(worker->task, -1);
1887 list_del(&worker->node);
1888 worker->pool = NULL;
1889
1890 if (list_empty(&pool->workers))
1891 detach_completion = pool->detach_completion;
1892 mutex_unlock(&wq_pool_attach_mutex);
1893
1894 /* clear leftover flags without pool->lock after it is detached */
1895 worker->flags &= ~(WORKER_UNBOUND | WORKER_REBOUND);
1896
1897 if (detach_completion)
1898 complete(detach_completion);
1899 }
1900
1901 /**
1902 * create_worker - create a new workqueue worker
1903 * @pool: pool the new worker will belong to
1904 *
1905 * Create and start a new worker which is attached to @pool.
1906 *
1907 * CONTEXT:
1908 * Might sleep. Does GFP_KERNEL allocations.
1909 *
1910 * Return:
1911 * Pointer to the newly created worker.
1912 */
1913 static struct worker *create_worker(struct worker_pool *pool)
1914 {
1915 struct worker *worker = NULL;
1916 int id = -1;
1917 char id_buf[16];
1918
1919 /* ID is needed to determine kthread name */
1920 id = ida_simple_get(&pool->worker_ida, 0, 0, GFP_KERNEL);
1921 if (id < 0)
1922 goto fail;
1923
1924 worker = alloc_worker(pool->node);
1925 if (!worker)
1926 goto fail;
1927
1928 worker->id = id;
1929
1930 if (pool->cpu >= 0)
1931 snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id,
1932 pool->attrs->nice < 0 ? "H" : "");
1933 else
1934 snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id);
1935
1936 worker->task = kthread_create_on_node(worker_thread, worker, pool->node,
1937 "kworker/%s", id_buf);
1938 if (IS_ERR(worker->task))
1939 goto fail;
1940
1941 set_user_nice(worker->task, pool->attrs->nice);
1942 kthread_bind_mask(worker->task, pool->attrs->cpumask);
1943
1944 /* successful, attach the worker to the pool */
1945 worker_attach_to_pool(worker, pool);
1946
1947 /* start the newly created worker */
1948 raw_spin_lock_irq(&pool->lock);
1949 worker->pool->nr_workers++;
1950 worker_enter_idle(worker);
1951 wake_up_process(worker->task);
1952 raw_spin_unlock_irq(&pool->lock);
1953
1954 return worker;
1955
1956 fail:
1957 if (id >= 0)
1958 ida_simple_remove(&pool->worker_ida, id);
1959 kfree(worker);
1960 return NULL;
1961 }
1962
1963 /**
1964 * destroy_worker - destroy a workqueue worker
1965 * @worker: worker to be destroyed
1966 *
1967 * Destroy @worker and adjust @pool stats accordingly. The worker should
1968 * be idle.
1969 *
1970 * CONTEXT:
1971 * raw_spin_lock_irq(pool->lock).
1972 */
1973 static void destroy_worker(struct worker *worker)
1974 {
1975 struct worker_pool *pool = worker->pool;
1976
1977 lockdep_assert_held(&pool->lock);
1978
1979 /* sanity check frenzy */
1980 if (WARN_ON(worker->current_work) ||
1981 WARN_ON(!list_empty(&worker->scheduled)) ||
1982 WARN_ON(!(worker->flags & WORKER_IDLE)))
1983 return;
1984
1985 pool->nr_workers--;
1986 pool->nr_idle--;
1987
1988 list_del_init(&worker->entry);
1989 worker->flags |= WORKER_DIE;
1990 wake_up_process(worker->task);
1991 }
1992
1993 static void idle_worker_timeout(struct timer_list *t)
1994 {
1995 struct worker_pool *pool = from_timer(pool, t, idle_timer);
1996
1997 raw_spin_lock_irq(&pool->lock);
1998
1999 while (too_many_workers(pool)) {
2000 struct worker *worker;
2001 unsigned long expires;
2002
2003 /* idle_list is kept in LIFO order, check the last one */
2004 worker = list_entry(pool->idle_list.prev, struct worker, entry);
2005 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
2006
2007 if (time_before(jiffies, expires)) {
2008 mod_timer(&pool->idle_timer, expires);
2009 break;
2010 }
2011
2012 destroy_worker(worker);
2013 }
2014
2015 raw_spin_unlock_irq(&pool->lock);
2016 }
2017
2018 static void send_mayday(struct work_struct *work)
2019 {
2020 struct pool_workqueue *pwq = get_work_pwq(work);
2021 struct workqueue_struct *wq = pwq->wq;
2022
2023 lockdep_assert_held(&wq_mayday_lock);
2024
2025 if (!wq->rescuer)
2026 return;
2027
2028 /* mayday mayday mayday */
2029 if (list_empty(&pwq->mayday_node)) {
2030 /*
2031 * If @pwq is for an unbound wq, its base ref may be put at
2032 * any time due to an attribute change. Pin @pwq until the
2033 * rescuer is done with it.
2034 */
2035 get_pwq(pwq);
2036 list_add_tail(&pwq->mayday_node, &wq->maydays);
2037 wake_up_process(wq->rescuer->task);
2038 }
2039 }
2040
2041 static void pool_mayday_timeout(struct timer_list *t)
2042 {
2043 struct worker_pool *pool = from_timer(pool, t, mayday_timer);
2044 struct work_struct *work;
2045
2046 raw_spin_lock_irq(&pool->lock);
2047 raw_spin_lock(&wq_mayday_lock); /* for wq->maydays */
2048
2049 if (need_to_create_worker(pool)) {
2050 /*
2051 * We've been trying to create a new worker but
2052 * haven't been successful. We might be hitting an
2053 * allocation deadlock. Send distress signals to
2054 * rescuers.
2055 */
2056 list_for_each_entry(work, &pool->worklist, entry)
2057 send_mayday(work);
2058 }
2059
2060 raw_spin_unlock(&wq_mayday_lock);
2061 raw_spin_unlock_irq(&pool->lock);
2062
2063 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
2064 }
2065
2066 /**
2067 * maybe_create_worker - create a new worker if necessary
2068 * @pool: pool to create a new worker for
2069 *
2070 * Create a new worker for @pool if necessary. @pool is guaranteed to
2071 * have at least one idle worker on return from this function. If
2072 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
2073 * sent to all rescuers with works scheduled on @pool to resolve
2074 * possible allocation deadlock.
2075 *
2076 * On return, need_to_create_worker() is guaranteed to be %false and
2077 * may_start_working() %true.
2078 *
2079 * LOCKING:
2080 * raw_spin_lock_irq(pool->lock) which may be released and regrabbed
2081 * multiple times. Does GFP_KERNEL allocations. Called only from
2082 * manager.
2083 */
2084 static void maybe_create_worker(struct worker_pool *pool)
2085 __releases(&pool->lock)
2086 __acquires(&pool->lock)
2087 {
2088 restart:
2089 raw_spin_unlock_irq(&pool->lock);
2090
2091 /* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
2092 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
2093
2094 while (true) {
2095 if (create_worker(pool) || !need_to_create_worker(pool))
2096 break;
2097
2098 schedule_timeout_interruptible(CREATE_COOLDOWN);
2099
2100 if (!need_to_create_worker(pool))
2101 break;
2102 }
2103
2104 del_timer_sync(&pool->mayday_timer);
2105 raw_spin_lock_irq(&pool->lock);
2106 /*
2107 * This is necessary even after a new worker was just successfully
2108 * created as @pool->lock was dropped and the new worker might have
2109 * already become busy.
2110 */
2111 if (need_to_create_worker(pool))
2112 goto restart;
2113 }
2114
2115 /**
2116 * manage_workers - manage worker pool
2117 * @worker: self
2118 *
2119 * Assume the manager role and manage the worker pool @worker belongs
2120 * to. At any given time, there can be only zero or one manager per
2121 * pool. The exclusion is handled automatically by this function.
2122 *
2123 * The caller can safely start processing works on false return. On
2124 * true return, it's guaranteed that need_to_create_worker() is false
2125 * and may_start_working() is true.
2126 *
2127 * CONTEXT:
2128 * raw_spin_lock_irq(pool->lock) which may be released and regrabbed
2129 * multiple times. Does GFP_KERNEL allocations.
2130 *
2131 * Return:
2132 * %false if the pool doesn't need management and the caller can safely
2133 * start processing works, %true if management function was performed and
2134 * the conditions that the caller verified before calling the function may
2135 * no longer be true.
2136 */
2137 static bool manage_workers(struct worker *worker)
2138 {
2139 struct worker_pool *pool = worker->pool;
2140
2141 if (pool->flags & POOL_MANAGER_ACTIVE)
2142 return false;
2143
2144 pool->flags |= POOL_MANAGER_ACTIVE;
2145 pool->manager = worker;
2146
2147 maybe_create_worker(pool);
2148
2149 pool->manager = NULL;
2150 pool->flags &= ~POOL_MANAGER_ACTIVE;
2151 rcuwait_wake_up(&manager_wait);
2152 return true;
2153 }
2154
2155 /**
2156 * process_one_work - process single work
2157 * @worker: self
2158 * @work: work to process
2159 *
2160 * Process @work. This function contains all the logics necessary to
2161 * process a single work including synchronization against and
2162 * interaction with other workers on the same cpu, queueing and
2163 * flushing. As long as context requirement is met, any worker can
2164 * call this function to process a work.
2165 *
2166 * CONTEXT:
2167 * raw_spin_lock_irq(pool->lock) which is released and regrabbed.
2168 */
2169 static void process_one_work(struct worker *worker, struct work_struct *work)
2170 __releases(&pool->lock)
2171 __acquires(&pool->lock)
2172 {
2173 struct pool_workqueue *pwq = get_work_pwq(work);
2174 struct worker_pool *pool = worker->pool;
2175 bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE;
2176 int work_color;
2177 struct worker *collision;
2178 #ifdef CONFIG_LOCKDEP
2179 /*
2180 * It is permissible to free the struct work_struct from
2181 * inside the function that is called from it, this we need to
2182 * take into account for lockdep too. To avoid bogus "held
2183 * lock freed" warnings as well as problems when looking into
2184 * work->lockdep_map, make a copy and use that here.
2185 */
2186 struct lockdep_map lockdep_map;
2187
2188 lockdep_copy_map(&lockdep_map, &work->lockdep_map);
2189 #endif
2190 /* ensure we're on the correct CPU */
2191 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
2192 raw_smp_processor_id() != pool->cpu);
2193
2194 /*
2195 * A single work shouldn't be executed concurrently by
2196 * multiple workers on a single cpu. Check whether anyone is
2197 * already processing the work. If so, defer the work to the
2198 * currently executing one.
2199 */
2200 collision = find_worker_executing_work(pool, work);
2201 if (unlikely(collision)) {
2202 move_linked_works(work, &collision->scheduled, NULL);
2203 return;
2204 }
2205
2206 /* claim and dequeue */
2207 debug_work_deactivate(work);
2208 hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
2209 worker->current_work = work;
2210 worker->current_func = work->func;
2211 worker->current_pwq = pwq;
2212 work_color = get_work_color(work);
2213
2214 /*
2215 * Record wq name for cmdline and debug reporting, may get
2216 * overridden through set_worker_desc().
2217 */
2218 strscpy(worker->desc, pwq->wq->name, WORKER_DESC_LEN);
2219
2220 list_del_init(&work->entry);
2221
2222 /*
2223 * CPU intensive works don't participate in concurrency management.
2224 * They're the scheduler's responsibility. This takes @worker out
2225 * of concurrency management and the next code block will chain
2226 * execution of the pending work items.
2227 */
2228 if (unlikely(cpu_intensive))
2229 worker_set_flags(worker, WORKER_CPU_INTENSIVE);
2230
2231 /*
2232 * Wake up another worker if necessary. The condition is always
2233 * false for normal per-cpu workers since nr_running would always
2234 * be >= 1 at this point. This is used to chain execution of the
2235 * pending work items for WORKER_NOT_RUNNING workers such as the
2236 * UNBOUND and CPU_INTENSIVE ones.
2237 */
2238 if (need_more_worker(pool))
2239 wake_up_worker(pool);
2240
2241 /*
2242 * Record the last pool and clear PENDING which should be the last
2243 * update to @work. Also, do this inside @pool->lock so that
2244 * PENDING and queued state changes happen together while IRQ is
2245 * disabled.
2246 */
2247 set_work_pool_and_clear_pending(work, pool->id);
2248
2249 raw_spin_unlock_irq(&pool->lock);
2250
2251 lock_map_acquire(&pwq->wq->lockdep_map);
2252 lock_map_acquire(&lockdep_map);
2253 /*
2254 * Strictly speaking we should mark the invariant state without holding
2255 * any locks, that is, before these two lock_map_acquire()'s.
2256 *
2257 * However, that would result in:
2258 *
2259 * A(W1)
2260 * WFC(C)
2261 * A(W1)
2262 * C(C)
2263 *
2264 * Which would create W1->C->W1 dependencies, even though there is no
2265 * actual deadlock possible. There are two solutions, using a
2266 * read-recursive acquire on the work(queue) 'locks', but this will then
2267 * hit the lockdep limitation on recursive locks, or simply discard
2268 * these locks.
2269 *
2270 * AFAICT there is no possible deadlock scenario between the
2271 * flush_work() and complete() primitives (except for single-threaded
2272 * workqueues), so hiding them isn't a problem.
2273 */
2274 lockdep_invariant_state(true);
2275 trace_workqueue_execute_start(work);
2276 worker->current_func(work);
2277 /*
2278 * While we must be careful to not use "work" after this, the trace
2279 * point will only record its address.
2280 */
2281 trace_workqueue_execute_end(work, worker->current_func);
2282 lock_map_release(&lockdep_map);
2283 lock_map_release(&pwq->wq->lockdep_map);
2284
2285 if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
2286 pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
2287 " last function: %ps\n",
2288 current->comm, preempt_count(), task_pid_nr(current),
2289 worker->current_func);
2290 debug_show_held_locks(current);
2291 dump_stack();
2292 }
2293
2294 /*
2295 * The following prevents a kworker from hogging CPU on !PREEMPTION
2296 * kernels, where a requeueing work item waiting for something to
2297 * happen could deadlock with stop_machine as such work item could
2298 * indefinitely requeue itself while all other CPUs are trapped in
2299 * stop_machine. At the same time, report a quiescent RCU state so
2300 * the same condition doesn't freeze RCU.
2301 */
2302 cond_resched();
2303
2304 raw_spin_lock_irq(&pool->lock);
2305
2306 /* clear cpu intensive status */
2307 if (unlikely(cpu_intensive))
2308 worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
2309
2310 /* tag the worker for identification in schedule() */
2311 worker->last_func = worker->current_func;
2312
2313 /* we're done with it, release */
2314 hash_del(&worker->hentry);
2315 worker->current_work = NULL;
2316 worker->current_func = NULL;
2317 worker->current_pwq = NULL;
2318 pwq_dec_nr_in_flight(pwq, work_color);
2319 }
2320
2321 /**
2322 * process_scheduled_works - process scheduled works
2323 * @worker: self
2324 *
2325 * Process all scheduled works. Please note that the scheduled list
2326 * may change while processing a work, so this function repeatedly
2327 * fetches a work from the top and executes it.
2328 *
2329 * CONTEXT:
2330 * raw_spin_lock_irq(pool->lock) which may be released and regrabbed
2331 * multiple times.
2332 */
2333 static void process_scheduled_works(struct worker *worker)
2334 {
2335 while (!list_empty(&worker->scheduled)) {
2336 struct work_struct *work = list_first_entry(&worker->scheduled,
2337 struct work_struct, entry);
2338 process_one_work(worker, work);
2339 }
2340 }
2341
2342 static void set_pf_worker(bool val)
2343 {
2344 mutex_lock(&wq_pool_attach_mutex);
2345 if (val)
2346 current->flags |= PF_WQ_WORKER;
2347 else
2348 current->flags &= ~PF_WQ_WORKER;
2349 mutex_unlock(&wq_pool_attach_mutex);
2350 }
2351
2352 /**
2353 * worker_thread - the worker thread function
2354 * @__worker: self
2355 *
2356 * The worker thread function. All workers belong to a worker_pool -
2357 * either a per-cpu one or dynamic unbound one. These workers process all
2358 * work items regardless of their specific target workqueue. The only
2359 * exception is work items which belong to workqueues with a rescuer which
2360 * will be explained in rescuer_thread().
2361 *
2362 * Return: 0
2363 */
2364 static int worker_thread(void *__worker)
2365 {
2366 struct worker *worker = __worker;
2367 struct worker_pool *pool = worker->pool;
2368
2369 /* tell the scheduler that this is a workqueue worker */
2370 set_pf_worker(true);
2371 woke_up:
2372 raw_spin_lock_irq(&pool->lock);
2373
2374 /* am I supposed to die? */
2375 if (unlikely(worker->flags & WORKER_DIE)) {
2376 raw_spin_unlock_irq(&pool->lock);
2377 WARN_ON_ONCE(!list_empty(&worker->entry));
2378 set_pf_worker(false);
2379
2380 set_task_comm(worker->task, "kworker/dying");
2381 ida_simple_remove(&pool->worker_ida, worker->id);
2382 worker_detach_from_pool(worker);
2383 kfree(worker);
2384 return 0;
2385 }
2386
2387 worker_leave_idle(worker);
2388 recheck:
2389 /* no more worker necessary? */
2390 if (!need_more_worker(pool))
2391 goto sleep;
2392
2393 /* do we need to manage? */
2394 if (unlikely(!may_start_working(pool)) && manage_workers(worker))
2395 goto recheck;
2396
2397 /*
2398 * ->scheduled list can only be filled while a worker is
2399 * preparing to process a work or actually processing it.
2400 * Make sure nobody diddled with it while I was sleeping.
2401 */
2402 WARN_ON_ONCE(!list_empty(&worker->scheduled));
2403
2404 /*
2405 * Finish PREP stage. We're guaranteed to have at least one idle
2406 * worker or that someone else has already assumed the manager
2407 * role. This is where @worker starts participating in concurrency
2408 * management if applicable and concurrency management is restored
2409 * after being rebound. See rebind_workers() for details.
2410 */
2411 worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND);
2412
2413 do {
2414 struct work_struct *work =
2415 list_first_entry(&pool->worklist,
2416 struct work_struct, entry);
2417
2418 pool->watchdog_ts = jiffies;
2419
2420 if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
2421 /* optimization path, not strictly necessary */
2422 process_one_work(worker, work);
2423 if (unlikely(!list_empty(&worker->scheduled)))
2424 process_scheduled_works(worker);
2425 } else {
2426 move_linked_works(work, &worker->scheduled, NULL);
2427 process_scheduled_works(worker);
2428 }
2429 } while (keep_working(pool));
2430
2431 worker_set_flags(worker, WORKER_PREP);
2432 sleep:
2433 /*
2434 * pool->lock is held and there's no work to process and no need to
2435 * manage, sleep. Workers are woken up only while holding
2436 * pool->lock or from local cpu, so setting the current state
2437 * before releasing pool->lock is enough to prevent losing any
2438 * event.
2439 */
2440 worker_enter_idle(worker);
2441 __set_current_state(TASK_IDLE);
2442 raw_spin_unlock_irq(&pool->lock);
2443 schedule();
2444 goto woke_up;
2445 }
2446
2447 /**
2448 * rescuer_thread - the rescuer thread function
2449 * @__rescuer: self
2450 *
2451 * Workqueue rescuer thread function. There's one rescuer for each
2452 * workqueue which has WQ_MEM_RECLAIM set.
2453 *
2454 * Regular work processing on a pool may block trying to create a new
2455 * worker which uses GFP_KERNEL allocation which has slight chance of
2456 * developing into deadlock if some works currently on the same queue
2457 * need to be processed to satisfy the GFP_KERNEL allocation. This is
2458 * the problem rescuer solves.
2459 *
2460 * When such condition is possible, the pool summons rescuers of all
2461 * workqueues which have works queued on the pool and let them process
2462 * those works so that forward progress can be guaranteed.
2463 *
2464 * This should happen rarely.
2465 *
2466 * Return: 0
2467 */
2468 static int rescuer_thread(void *__rescuer)
2469 {
2470 struct worker *rescuer = __rescuer;
2471 struct workqueue_struct *wq = rescuer->rescue_wq;
2472 struct list_head *scheduled = &rescuer->scheduled;
2473 bool should_stop;
2474
2475 set_user_nice(current, RESCUER_NICE_LEVEL);
2476
2477 /*
2478 * Mark rescuer as worker too. As WORKER_PREP is never cleared, it
2479 * doesn't participate in concurrency management.
2480 */
2481 set_pf_worker(true);
2482 repeat:
2483 set_current_state(TASK_IDLE);
2484
2485 /*
2486 * By the time the rescuer is requested to stop, the workqueue
2487 * shouldn't have any work pending, but @wq->maydays may still have
2488 * pwq(s) queued. This can happen by non-rescuer workers consuming
2489 * all the work items before the rescuer got to them. Go through
2490 * @wq->maydays processing before acting on should_stop so that the
2491 * list is always empty on exit.
2492 */
2493 should_stop = kthread_should_stop();
2494
2495 /* see whether any pwq is asking for help */
2496 raw_spin_lock_irq(&wq_mayday_lock);
2497
2498 while (!list_empty(&wq->maydays)) {
2499 struct pool_workqueue *pwq = list_first_entry(&wq->maydays,
2500 struct pool_workqueue, mayday_node);
2501 struct worker_pool *pool = pwq->pool;
2502 struct work_struct *work, *n;
2503 bool first = true;
2504
2505 __set_current_state(TASK_RUNNING);
2506 list_del_init(&pwq->mayday_node);
2507
2508 raw_spin_unlock_irq(&wq_mayday_lock);
2509
2510 worker_attach_to_pool(rescuer, pool);
2511
2512 raw_spin_lock_irq(&pool->lock);
2513
2514 /*
2515 * Slurp in all works issued via this workqueue and
2516 * process'em.
2517 */
2518 WARN_ON_ONCE(!list_empty(scheduled));
2519 list_for_each_entry_safe(work, n, &pool->worklist, entry) {
2520 if (get_work_pwq(work) == pwq) {
2521 if (first)
2522 pool->watchdog_ts = jiffies;
2523 move_linked_works(work, scheduled, &n);
2524 }
2525 first = false;
2526 }
2527
2528 if (!list_empty(scheduled)) {
2529 process_scheduled_works(rescuer);
2530
2531 /*
2532 * The above execution of rescued work items could
2533 * have created more to rescue through
2534 * pwq_activate_first_delayed() or chained
2535 * queueing. Let's put @pwq back on mayday list so
2536 * that such back-to-back work items, which may be
2537 * being used to relieve memory pressure, don't
2538 * incur MAYDAY_INTERVAL delay inbetween.
2539 */
2540 if (pwq->nr_active && need_to_create_worker(pool)) {
2541 raw_spin_lock(&wq_mayday_lock);
2542 /*
2543 * Queue iff we aren't racing destruction
2544 * and somebody else hasn't queued it already.
2545 */
2546 if (wq->rescuer && list_empty(&pwq->mayday_node)) {
2547 get_pwq(pwq);
2548 list_add_tail(&pwq->mayday_node, &wq->maydays);
2549 }
2550 raw_spin_unlock(&wq_mayday_lock);
2551 }
2552 }
2553
2554 /*
2555 * Put the reference grabbed by send_mayday(). @pool won't
2556 * go away while we're still attached to it.
2557 */
2558 put_pwq(pwq);
2559
2560 /*
2561 * Leave this pool. If need_more_worker() is %true, notify a
2562 * regular worker; otherwise, we end up with 0 concurrency
2563 * and stalling the execution.
2564 */
2565 if (need_more_worker(pool))
2566 wake_up_worker(pool);
2567
2568 raw_spin_unlock_irq(&pool->lock);
2569
2570 worker_detach_from_pool(rescuer);
2571
2572 raw_spin_lock_irq(&wq_mayday_lock);
2573 }
2574
2575 raw_spin_unlock_irq(&wq_mayday_lock);
2576
2577 if (should_stop) {
2578 __set_current_state(TASK_RUNNING);
2579 set_pf_worker(false);
2580 return 0;
2581 }
2582
2583 /* rescuers should never participate in concurrency management */
2584 WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
2585 schedule();
2586 goto repeat;
2587 }
2588
2589 /**
2590 * check_flush_dependency - check for flush dependency sanity
2591 * @target_wq: workqueue being flushed
2592 * @target_work: work item being flushed (NULL for workqueue flushes)
2593 *
2594 * %current is trying to flush the whole @target_wq or @target_work on it.
2595 * If @target_wq doesn't have %WQ_MEM_RECLAIM, verify that %current is not
2596 * reclaiming memory or running on a workqueue which doesn't have
2597 * %WQ_MEM_RECLAIM as that can break forward-progress guarantee leading to
2598 * a deadlock.
2599 */
2600 static void check_flush_dependency(struct workqueue_struct *target_wq,
2601 struct work_struct *target_work)
2602 {
2603 work_func_t target_func = target_work ? target_work->func : NULL;
2604 struct worker *worker;
2605
2606 if (target_wq->flags & WQ_MEM_RECLAIM)
2607 return;
2608
2609 worker = current_wq_worker();
2610
2611 WARN_ONCE(current->flags & PF_MEMALLOC,
2612 "workqueue: PF_MEMALLOC task %d(%s) is flushing !WQ_MEM_RECLAIM %s:%ps",
2613 current->pid, current->comm, target_wq->name, target_func);
2614 WARN_ONCE(worker && ((worker->current_pwq->wq->flags &
2615 (WQ_MEM_RECLAIM | __WQ_LEGACY)) == WQ_MEM_RECLAIM),
2616 "workqueue: WQ_MEM_RECLAIM %s:%ps is flushing !WQ_MEM_RECLAIM %s:%ps",
2617 worker->current_pwq->wq->name, worker->current_func,
2618 target_wq->name, target_func);
2619 }
2620
2621 struct wq_barrier {
2622 struct work_struct work;
2623 struct completion done;
2624 struct task_struct *task; /* purely informational */
2625 };
2626
2627 static void wq_barrier_func(struct work_struct *work)
2628 {
2629 struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
2630 complete(&barr->done);
2631 }
2632
2633 /**
2634 * insert_wq_barrier - insert a barrier work
2635 * @pwq: pwq to insert barrier into
2636 * @barr: wq_barrier to insert
2637 * @target: target work to attach @barr to
2638 * @worker: worker currently executing @target, NULL if @target is not executing
2639 *
2640 * @barr is linked to @target such that @barr is completed only after
2641 * @target finishes execution. Please note that the ordering
2642 * guarantee is observed only with respect to @target and on the local
2643 * cpu.
2644 *
2645 * Currently, a queued barrier can't be canceled. This is because
2646 * try_to_grab_pending() can't determine whether the work to be
2647 * grabbed is at the head of the queue and thus can't clear LINKED
2648 * flag of the previous work while there must be a valid next work
2649 * after a work with LINKED flag set.
2650 *
2651 * Note that when @worker is non-NULL, @target may be modified
2652 * underneath us, so we can't reliably determine pwq from @target.
2653 *
2654 * CONTEXT:
2655 * raw_spin_lock_irq(pool->lock).
2656 */
2657 static void insert_wq_barrier(struct pool_workqueue *pwq,
2658 struct wq_barrier *barr,
2659 struct work_struct *target, struct worker *worker)
2660 {
2661 struct list_head *head;
2662 unsigned int linked = 0;
2663
2664 /*
2665 * debugobject calls are safe here even with pool->lock locked
2666 * as we know for sure that this will not trigger any of the
2667 * checks and call back into the fixup functions where we
2668 * might deadlock.
2669 */
2670 INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
2671 __set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
2672
2673 init_completion_map(&barr->done, &target->lockdep_map);
2674
2675 barr->task = current;
2676
2677 /*
2678 * If @target is currently being executed, schedule the
2679 * barrier to the worker; otherwise, put it after @target.
2680 */
2681 if (worker)
2682 head = worker->scheduled.next;
2683 else {
2684 unsigned long *bits = work_data_bits(target);
2685
2686 head = target->entry.next;
2687 /* there can already be other linked works, inherit and set */
2688 linked = *bits & WORK_STRUCT_LINKED;
2689 __set_bit(WORK_STRUCT_LINKED_BIT, bits);
2690 }
2691
2692 debug_work_activate(&barr->work);
2693 insert_work(pwq, &barr->work, head,
2694 work_color_to_flags(WORK_NO_COLOR) | linked);
2695 }
2696
2697 /**
2698 * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing
2699 * @wq: workqueue being flushed
2700 * @flush_color: new flush color, < 0 for no-op
2701 * @work_color: new work color, < 0 for no-op
2702 *
2703 * Prepare pwqs for workqueue flushing.
2704 *
2705 * If @flush_color is non-negative, flush_color on all pwqs should be
2706 * -1. If no pwq has in-flight commands at the specified color, all
2707 * pwq->flush_color's stay at -1 and %false is returned. If any pwq
2708 * has in flight commands, its pwq->flush_color is set to
2709 * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq
2710 * wakeup logic is armed and %true is returned.
2711 *
2712 * The caller should have initialized @wq->first_flusher prior to
2713 * calling this function with non-negative @flush_color. If
2714 * @flush_color is negative, no flush color update is done and %false
2715 * is returned.
2716 *
2717 * If @work_color is non-negative, all pwqs should have the same
2718 * work_color which is previous to @work_color and all will be
2719 * advanced to @work_color.
2720 *
2721 * CONTEXT:
2722 * mutex_lock(wq->mutex).
2723 *
2724 * Return:
2725 * %true if @flush_color >= 0 and there's something to flush. %false
2726 * otherwise.
2727 */
2728 static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq,
2729 int flush_color, int work_color)
2730 {
2731 bool wait = false;
2732 struct pool_workqueue *pwq;
2733
2734 if (flush_color >= 0) {
2735 WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush));
2736 atomic_set(&wq->nr_pwqs_to_flush, 1);
2737 }
2738
2739 for_each_pwq(pwq, wq) {
2740 struct worker_pool *pool = pwq->pool;
2741
2742 raw_spin_lock_irq(&pool->lock);
2743
2744 if (flush_color >= 0) {
2745 WARN_ON_ONCE(pwq->flush_color != -1);
2746
2747 if (pwq->nr_in_flight[flush_color]) {
2748 pwq->flush_color = flush_color;
2749 atomic_inc(&wq->nr_pwqs_to_flush);
2750 wait = true;
2751 }
2752 }
2753
2754 if (work_color >= 0) {
2755 WARN_ON_ONCE(work_color != work_next_color(pwq->work_color));
2756 pwq->work_color = work_color;
2757 }
2758
2759 raw_spin_unlock_irq(&pool->lock);
2760 }
2761
2762 if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush))
2763 complete(&wq->first_flusher->done);
2764
2765 return wait;
2766 }
2767
2768 /**
2769 * flush_workqueue - ensure that any scheduled work has run to completion.
2770 * @wq: workqueue to flush
2771 *
2772 * This function sleeps until all work items which were queued on entry
2773 * have finished execution, but it is not livelocked by new incoming ones.
2774 */
2775 void flush_workqueue(struct workqueue_struct *wq)
2776 {
2777 struct wq_flusher this_flusher = {
2778 .list = LIST_HEAD_INIT(this_flusher.list),
2779 .flush_color = -1,
2780 .done = COMPLETION_INITIALIZER_ONSTACK_MAP(this_flusher.done, wq->lockdep_map),
2781 };
2782 int next_color;
2783
2784 if (WARN_ON(!wq_online))
2785 return;
2786
2787 lock_map_acquire(&wq->lockdep_map);
2788 lock_map_release(&wq->lockdep_map);
2789
2790 mutex_lock(&wq->mutex);
2791
2792 /*
2793 * Start-to-wait phase
2794 */
2795 next_color = work_next_color(wq->work_color);
2796
2797 if (next_color != wq->flush_color) {
2798 /*
2799 * Color space is not full. The current work_color
2800 * becomes our flush_color and work_color is advanced
2801 * by one.
2802 */
2803 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow));
2804 this_flusher.flush_color = wq->work_color;
2805 wq->work_color = next_color;
2806
2807 if (!wq->first_flusher) {
2808 /* no flush in progress, become the first flusher */
2809 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2810
2811 wq->first_flusher = &this_flusher;
2812
2813 if (!flush_workqueue_prep_pwqs(wq, wq->flush_color,
2814 wq->work_color)) {
2815 /* nothing to flush, done */
2816 wq->flush_color = next_color;
2817 wq->first_flusher = NULL;
2818 goto out_unlock;
2819 }
2820 } else {
2821 /* wait in queue */
2822 WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color);
2823 list_add_tail(&this_flusher.list, &wq->flusher_queue);
2824 flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2825 }
2826 } else {
2827 /*
2828 * Oops, color space is full, wait on overflow queue.
2829 * The next flush completion will assign us
2830 * flush_color and transfer to flusher_queue.
2831 */
2832 list_add_tail(&this_flusher.list, &wq->flusher_overflow);
2833 }
2834
2835 check_flush_dependency(wq, NULL);
2836
2837 mutex_unlock(&wq->mutex);
2838
2839 wait_for_completion(&this_flusher.done);
2840
2841 /*
2842 * Wake-up-and-cascade phase
2843 *
2844 * First flushers are responsible for cascading flushes and
2845 * handling overflow. Non-first flushers can simply return.
2846 */
2847 if (READ_ONCE(wq->first_flusher) != &this_flusher)
2848 return;
2849
2850 mutex_lock(&wq->mutex);
2851
2852 /* we might have raced, check again with mutex held */
2853 if (wq->first_flusher != &this_flusher)
2854 goto out_unlock;
2855
2856 WRITE_ONCE(wq->first_flusher, NULL);
2857
2858 WARN_ON_ONCE(!list_empty(&this_flusher.list));
2859 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2860
2861 while (true) {
2862 struct wq_flusher *next, *tmp;
2863
2864 /* complete all the flushers sharing the current flush color */
2865 list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
2866 if (next->flush_color != wq->flush_color)
2867 break;
2868 list_del_init(&next->list);
2869 complete(&next->done);
2870 }
2871
2872 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) &&
2873 wq->flush_color != work_next_color(wq->work_color));
2874
2875 /* this flush_color is finished, advance by one */
2876 wq->flush_color = work_next_color(wq->flush_color);
2877
2878 /* one color has been freed, handle overflow queue */
2879 if (!list_empty(&wq->flusher_overflow)) {
2880 /*
2881 * Assign the same color to all overflowed
2882 * flushers, advance work_color and append to
2883 * flusher_queue. This is the start-to-wait
2884 * phase for these overflowed flushers.
2885 */
2886 list_for_each_entry(tmp, &wq->flusher_overflow, list)
2887 tmp->flush_color = wq->work_color;
2888
2889 wq->work_color = work_next_color(wq->work_color);
2890
2891 list_splice_tail_init(&wq->flusher_overflow,
2892 &wq->flusher_queue);
2893 flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2894 }
2895
2896 if (list_empty(&wq->flusher_queue)) {
2897 WARN_ON_ONCE(wq->flush_color != wq->work_color);
2898 break;
2899 }
2900
2901 /*
2902 * Need to flush more colors. Make the next flusher
2903 * the new first flusher and arm pwqs.
2904 */
2905 WARN_ON_ONCE(wq->flush_color == wq->work_color);
2906 WARN_ON_ONCE(wq->flush_color != next->flush_color);
2907
2908 list_del_init(&next->list);
2909 wq->first_flusher = next;
2910
2911 if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1))
2912 break;
2913
2914 /*
2915 * Meh... this color is already done, clear first
2916 * flusher and repeat cascading.
2917 */
2918 wq->first_flusher = NULL;
2919 }
2920
2921 out_unlock:
2922 mutex_unlock(&wq->mutex);
2923 }
2924 EXPORT_SYMBOL(flush_workqueue);
2925
2926 /**
2927 * drain_workqueue - drain a workqueue
2928 * @wq: workqueue to drain
2929 *
2930 * Wait until the workqueue becomes empty. While draining is in progress,
2931 * only chain queueing is allowed. IOW, only currently pending or running
2932 * work items on @wq can queue further work items on it. @wq is flushed
2933 * repeatedly until it becomes empty. The number of flushing is determined
2934 * by the depth of chaining and should be relatively short. Whine if it
2935 * takes too long.
2936 */
2937 void drain_workqueue(struct workqueue_struct *wq)
2938 {
2939 unsigned int flush_cnt = 0;
2940 struct pool_workqueue *pwq;
2941
2942 /*
2943 * __queue_work() needs to test whether there are drainers, is much
2944 * hotter than drain_workqueue() and already looks at @wq->flags.
2945 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers.
2946 */
2947 mutex_lock(&wq->mutex);
2948 if (!wq->nr_drainers++)
2949 wq->flags |= __WQ_DRAINING;
2950 mutex_unlock(&wq->mutex);
2951 reflush:
2952 flush_workqueue(wq);
2953
2954 mutex_lock(&wq->mutex);
2955
2956 for_each_pwq(pwq, wq) {
2957 bool drained;
2958
2959 raw_spin_lock_irq(&pwq->pool->lock);
2960 drained = !pwq->nr_active && list_empty(&pwq->delayed_works);
2961 raw_spin_unlock_irq(&pwq->pool->lock);
2962
2963 if (drained)
2964 continue;
2965
2966 if (++flush_cnt == 10 ||
2967 (flush_cnt % 100 == 0 && flush_cnt <= 1000))
2968 pr_warn("workqueue %s: %s() isn't complete after %u tries\n",
2969 wq->name, __func__, flush_cnt);
2970
2971 mutex_unlock(&wq->mutex);
2972 goto reflush;
2973 }
2974
2975 if (!--wq->nr_drainers)
2976 wq->flags &= ~__WQ_DRAINING;
2977 mutex_unlock(&wq->mutex);
2978 }
2979 EXPORT_SYMBOL_GPL(drain_workqueue);
2980
2981 static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr,
2982 bool from_cancel)
2983 {
2984 struct worker *worker = NULL;
2985 struct worker_pool *pool;
2986 struct pool_workqueue *pwq;
2987
2988 might_sleep();
2989
2990 rcu_read_lock();
2991 pool = get_work_pool(work);
2992 if (!pool) {
2993 rcu_read_unlock();
2994 return false;
2995 }
2996
2997 raw_spin_lock_irq(&pool->lock);
2998 /* see the comment in try_to_grab_pending() with the same code */
2999 pwq = get_work_pwq(work);
3000 if (pwq) {
3001 if (unlikely(pwq->pool != pool))
3002 goto already_gone;
3003 } else {
3004 worker = find_worker_executing_work(pool, work);
3005 if (!worker)
3006 goto already_gone;
3007 pwq = worker->current_pwq;
3008 }
3009
3010 check_flush_dependency(pwq->wq, work);
3011
3012 insert_wq_barrier(pwq, barr, work, worker);
3013 raw_spin_unlock_irq(&pool->lock);
3014
3015 /*
3016 * Force a lock recursion deadlock when using flush_work() inside a
3017 * single-threaded or rescuer equipped workqueue.
3018 *
3019 * For single threaded workqueues the deadlock happens when the work
3020 * is after the work issuing the flush_work(). For rescuer equipped
3021 * workqueues the deadlock happens when the rescuer stalls, blocking
3022 * forward progress.
3023 */
3024 if (!from_cancel &&
3025 (pwq->wq->saved_max_active == 1 || pwq->wq->rescuer)) {
3026 lock_map_acquire(&pwq->wq->lockdep_map);
3027 lock_map_release(&pwq->wq->lockdep_map);
3028 }
3029 rcu_read_unlock();
3030 return true;
3031 already_gone:
3032 raw_spin_unlock_irq(&pool->lock);
3033 rcu_read_unlock();
3034 return false;
3035 }
3036
3037 static bool __flush_work(struct work_struct *work, bool from_cancel)
3038 {
3039 struct wq_barrier barr;
3040
3041 if (WARN_ON(!wq_online))
3042 return false;
3043
3044 if (WARN_ON(!work->func))
3045 return false;
3046
3047 if (!from_cancel) {
3048 lock_map_acquire(&work->lockdep_map);
3049 lock_map_release(&work->lockdep_map);
3050 }
3051
3052 if (start_flush_work(work, &barr, from_cancel)) {
3053 wait_for_completion(&barr.done);
3054 destroy_work_on_stack(&barr.work);
3055 return true;
3056 } else {
3057 return false;
3058 }
3059 }
3060
3061 /**
3062 * flush_work - wait for a work to finish executing the last queueing instance
3063 * @work: the work to flush
3064 *
3065 * Wait until @work has finished execution. @work is guaranteed to be idle
3066 * on return if it hasn't been requeued since flush started.
3067 *
3068 * Return:
3069 * %true if flush_work() waited for the work to finish execution,
3070 * %false if it was already idle.
3071 */
3072 bool flush_work(struct work_struct *work)
3073 {
3074 return __flush_work(work, false);
3075 }
3076 EXPORT_SYMBOL_GPL(flush_work);
3077
3078 struct cwt_wait {
3079 wait_queue_entry_t wait;
3080 struct work_struct *work;
3081 };
3082
3083 static int cwt_wakefn(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
3084 {
3085 struct cwt_wait *cwait = container_of(wait, struct cwt_wait, wait);
3086
3087 if (cwait->work != key)
3088 return 0;
3089 return autoremove_wake_function(wait, mode, sync, key);
3090 }
3091
3092 static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
3093 {
3094 static DECLARE_WAIT_QUEUE_HEAD(cancel_waitq);
3095 unsigned long flags;
3096 int ret;
3097
3098 do {
3099 ret = try_to_grab_pending(work, is_dwork, &flags);
3100 /*
3101 * If someone else is already canceling, wait for it to
3102 * finish. flush_work() doesn't work for PREEMPT_NONE
3103 * because we may get scheduled between @work's completion
3104 * and the other canceling task resuming and clearing
3105 * CANCELING - flush_work() will return false immediately
3106 * as @work is no longer busy, try_to_grab_pending() will
3107 * return -ENOENT as @work is still being canceled and the
3108 * other canceling task won't be able to clear CANCELING as
3109 * we're hogging the CPU.
3110 *
3111 * Let's wait for completion using a waitqueue. As this
3112 * may lead to the thundering herd problem, use a custom
3113 * wake function which matches @work along with exclusive
3114 * wait and wakeup.
3115 */
3116 if (unlikely(ret == -ENOENT)) {
3117 struct cwt_wait cwait;
3118
3119 init_wait(&cwait.wait);
3120 cwait.wait.func = cwt_wakefn;
3121 cwait.work = work;
3122
3123 prepare_to_wait_exclusive(&cancel_waitq, &cwait.wait,
3124 TASK_UNINTERRUPTIBLE);
3125 if (work_is_canceling(work))
3126 schedule();
3127 finish_wait(&cancel_waitq, &cwait.wait);
3128 }
3129 } while (unlikely(ret < 0));
3130
3131 /* tell other tasks trying to grab @work to back off */
3132 mark_work_canceling(work);
3133 local_irq_restore(flags);
3134
3135 /*
3136 * This allows canceling during early boot. We know that @work
3137 * isn't executing.
3138 */
3139 if (wq_online)
3140 __flush_work(work, true);
3141
3142 clear_work_data(work);
3143
3144 /*
3145 * Paired with prepare_to_wait() above so that either
3146 * waitqueue_active() is visible here or !work_is_canceling() is
3147 * visible there.
3148 */
3149 smp_mb();
3150 if (waitqueue_active(&cancel_waitq))
3151 __wake_up(&cancel_waitq, TASK_NORMAL, 1, work);
3152
3153 return ret;
3154 }
3155
3156 /**
3157 * cancel_work_sync - cancel a work and wait for it to finish
3158 * @work: the work to cancel
3159 *
3160 * Cancel @work and wait for its execution to finish. This function
3161 * can be used even if the work re-queues itself or migrates to
3162 * another workqueue. On return from this function, @work is
3163 * guaranteed to be not pending or executing on any CPU.
3164 *
3165 * cancel_work_sync(&delayed_work->work) must not be used for
3166 * delayed_work's. Use cancel_delayed_work_sync() instead.
3167 *
3168 * The caller must ensure that the workqueue on which @work was last
3169 * queued can't be destroyed before this function returns.
3170 *
3171 * Return:
3172 * %true if @work was pending, %false otherwise.
3173 */
3174 bool cancel_work_sync(struct work_struct *work)
3175 {
3176 return __cancel_work_timer(work, false);
3177 }
3178 EXPORT_SYMBOL_GPL(cancel_work_sync);
3179
3180 /**
3181 * flush_delayed_work - wait for a dwork to finish executing the last queueing
3182 * @dwork: the delayed work to flush
3183 *
3184 * Delayed timer is cancelled and the pending work is queued for
3185 * immediate execution. Like flush_work(), this function only
3186 * considers the last queueing instance of @dwork.
3187 *
3188 * Return:
3189 * %true if flush_work() waited for the work to finish execution,
3190 * %false if it was already idle.
3191 */
3192 bool flush_delayed_work(struct delayed_work *dwork)
3193 {
3194 local_irq_disable();
3195 if (del_timer_sync(&dwork->timer))
3196 __queue_work(dwork->cpu, dwork->wq, &dwork->work);
3197 local_irq_enable();
3198 return flush_work(&dwork->work);
3199 }
3200 EXPORT_SYMBOL(flush_delayed_work);
3201
3202 /**
3203 * flush_rcu_work - wait for a rwork to finish executing the last queueing
3204 * @rwork: the rcu work to flush
3205 *
3206 * Return:
3207 * %true if flush_rcu_work() waited for the work to finish execution,
3208 * %false if it was already idle.
3209 */
3210 bool flush_rcu_work(struct rcu_work *rwork)
3211 {
3212 if (test_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&rwork->work))) {
3213 rcu_barrier();
3214 flush_work(&rwork->work);
3215 return true;
3216 } else {
3217 return flush_work(&rwork->work);
3218 }
3219 }
3220 EXPORT_SYMBOL(flush_rcu_work);
3221
3222 static bool __cancel_work(struct work_struct *work, bool is_dwork)
3223 {
3224 unsigned long flags;
3225 int ret;
3226
3227 do {
3228 ret = try_to_grab_pending(work, is_dwork, &flags);
3229 } while (unlikely(ret == -EAGAIN));
3230
3231 if (unlikely(ret < 0))
3232 return false;
3233
3234 set_work_pool_and_clear_pending(work, get_work_pool_id(work));
3235 local_irq_restore(flags);
3236 return ret;
3237 }
3238
3239 /**
3240 * cancel_delayed_work - cancel a delayed work
3241 * @dwork: delayed_work to cancel
3242 *
3243 * Kill off a pending delayed_work.
3244 *
3245 * Return: %true if @dwork was pending and canceled; %false if it wasn't
3246 * pending.
3247 *
3248 * Note:
3249 * The work callback function may still be running on return, unless
3250 * it returns %true and the work doesn't re-arm itself. Explicitly flush or
3251 * use cancel_delayed_work_sync() to wait on it.
3252 *
3253 * This function is safe to call from any context including IRQ handler.
3254 */
3255 bool cancel_delayed_work(struct delayed_work *dwork)
3256 {
3257 return __cancel_work(&dwork->work, true);
3258 }
3259 EXPORT_SYMBOL(cancel_delayed_work);
3260
3261 /**
3262 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
3263 * @dwork: the delayed work cancel
3264 *
3265 * This is cancel_work_sync() for delayed works.
3266 *
3267 * Return:
3268 * %true if @dwork was pending, %false otherwise.
3269 */
3270 bool cancel_delayed_work_sync(struct delayed_work *dwork)
3271 {
3272 return __cancel_work_timer(&dwork->work, true);
3273 }
3274 EXPORT_SYMBOL(cancel_delayed_work_sync);
3275
3276 /**
3277 * schedule_on_each_cpu - execute a function synchronously on each online CPU
3278 * @func: the function to call
3279 *
3280 * schedule_on_each_cpu() executes @func on each online CPU using the
3281 * system workqueue and blocks until all CPUs have completed.
3282 * schedule_on_each_cpu() is very slow.
3283 *
3284 * Return:
3285 * 0 on success, -errno on failure.
3286 */
3287 int schedule_on_each_cpu(work_func_t func)
3288 {
3289 int cpu;
3290 struct work_struct __percpu *works;
3291
3292 works = alloc_percpu(struct work_struct);
3293 if (!works)
3294 return -ENOMEM;
3295
3296 get_online_cpus();
3297
3298 for_each_online_cpu(cpu) {
3299 struct work_struct *work = per_cpu_ptr(works, cpu);
3300
3301 INIT_WORK(work, func);
3302 schedule_work_on(cpu, work);
3303 }
3304
3305 for_each_online_cpu(cpu)
3306 flush_work(per_cpu_ptr(works, cpu));
3307
3308 put_online_cpus();
3309 free_percpu(works);
3310 return 0;
3311 }
3312
3313 /**
3314 * execute_in_process_context - reliably execute the routine with user context
3315 * @fn: the function to execute
3316 * @ew: guaranteed storage for the execute work structure (must
3317 * be available when the work executes)
3318 *
3319 * Executes the function immediately if process context is available,
3320 * otherwise schedules the function for delayed execution.
3321 *
3322 * Return: 0 - function was executed
3323 * 1 - function was scheduled for execution
3324 */
3325 int execute_in_process_context(work_func_t fn, struct execute_work *ew)
3326 {
3327 if (!in_interrupt()) {
3328 fn(&ew->work);
3329 return 0;
3330 }
3331
3332 INIT_WORK(&ew->work, fn);
3333 schedule_work(&ew->work);
3334
3335 return 1;
3336 }
3337 EXPORT_SYMBOL_GPL(execute_in_process_context);
3338
3339 /**
3340 * free_workqueue_attrs - free a workqueue_attrs
3341 * @attrs: workqueue_attrs to free
3342 *
3343 * Undo alloc_workqueue_attrs().
3344 */
3345 void free_workqueue_attrs(struct workqueue_attrs *attrs)
3346 {
3347 if (attrs) {
3348 free_cpumask_var(attrs->cpumask);
3349 kfree(attrs);
3350 }
3351 }
3352
3353 /**
3354 * alloc_workqueue_attrs - allocate a workqueue_attrs
3355 *
3356 * Allocate a new workqueue_attrs, initialize with default settings and
3357 * return it.
3358 *
3359 * Return: The allocated new workqueue_attr on success. %NULL on failure.
3360 */
3361 struct workqueue_attrs *alloc_workqueue_attrs(void)
3362 {
3363 struct workqueue_attrs *attrs;
3364
3365 attrs = kzalloc(sizeof(*attrs), GFP_KERNEL);
3366 if (!attrs)
3367 goto fail;
3368 if (!alloc_cpumask_var(&attrs->cpumask, GFP_KERNEL))
3369 goto fail;
3370
3371 cpumask_copy(attrs->cpumask, cpu_possible_mask);
3372 return attrs;
3373 fail:
3374 free_workqueue_attrs(attrs);
3375 return NULL;
3376 }
3377
3378 static void copy_workqueue_attrs(struct workqueue_attrs *to,
3379 const struct workqueue_attrs *from)
3380 {
3381 to->nice = from->nice;
3382 cpumask_copy(to->cpumask, from->cpumask);
3383 /*
3384 * Unlike hash and equality test, this function doesn't ignore
3385 * ->no_numa as it is used for both pool and wq attrs. Instead,
3386 * get_unbound_pool() explicitly clears ->no_numa after copying.
3387 */
3388 to->no_numa = from->no_numa;
3389 }
3390
3391 /* hash value of the content of @attr */
3392 static u32 wqattrs_hash(const struct workqueue_attrs *attrs)
3393 {
3394 u32 hash = 0;
3395
3396 hash = jhash_1word(attrs->nice, hash);
3397 hash = jhash(cpumask_bits(attrs->cpumask),
3398 BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash);
3399 return hash;
3400 }
3401
3402 /* content equality test */
3403 static bool wqattrs_equal(const struct workqueue_attrs *a,
3404 const struct workqueue_attrs *b)
3405 {
3406 if (a->nice != b->nice)
3407 return false;
3408 if (!cpumask_equal(a->cpumask, b->cpumask))
3409 return false;
3410 return true;
3411 }
3412
3413 /**
3414 * init_worker_pool - initialize a newly zalloc'd worker_pool
3415 * @pool: worker_pool to initialize
3416 *
3417 * Initialize a newly zalloc'd @pool. It also allocates @pool->attrs.
3418 *
3419 * Return: 0 on success, -errno on failure. Even on failure, all fields
3420 * inside @pool proper are initialized and put_unbound_pool() can be called
3421 * on @pool safely to release it.
3422 */
3423 static int init_worker_pool(struct worker_pool *pool)
3424 {
3425 raw_spin_lock_init(&pool->lock);
3426 pool->id = -1;
3427 pool->cpu = -1;
3428 pool->node = NUMA_NO_NODE;
3429 pool->flags |= POOL_DISASSOCIATED;
3430 pool->watchdog_ts = jiffies;
3431 INIT_LIST_HEAD(&pool->worklist);
3432 INIT_LIST_HEAD(&pool->idle_list);
3433 hash_init(pool->busy_hash);
3434
3435 timer_setup(&pool->idle_timer, idle_worker_timeout, TIMER_DEFERRABLE);
3436
3437 timer_setup(&pool->mayday_timer, pool_mayday_timeout, 0);
3438
3439 INIT_LIST_HEAD(&pool->workers);
3440
3441 ida_init(&pool->worker_ida);
3442 INIT_HLIST_NODE(&pool->hash_node);
3443 pool->refcnt = 1;
3444
3445 /* shouldn't fail above this point */
3446 pool->attrs = alloc_workqueue_attrs();
3447 if (!pool->attrs)
3448 return -ENOMEM;
3449 return 0;
3450 }
3451
3452 #ifdef CONFIG_LOCKDEP
3453 static void wq_init_lockdep(struct workqueue_struct *wq)
3454 {
3455 char *lock_name;
3456
3457 lockdep_register_key(&wq->key);
3458 lock_name = kasprintf(GFP_KERNEL, "%s%s", "(wq_completion)", wq->name);
3459 if (!lock_name)
3460 lock_name = wq->name;
3461
3462 wq->lock_name = lock_name;
3463 lockdep_init_map(&wq->lockdep_map, lock_name, &wq->key, 0);
3464 }
3465
3466 static void wq_unregister_lockdep(struct workqueue_struct *wq)
3467 {
3468 lockdep_unregister_key(&wq->key);
3469 }
3470
3471 static void wq_free_lockdep(struct workqueue_struct *wq)
3472 {
3473 if (wq->lock_name != wq->name)
3474 kfree(wq->lock_name);
3475 }
3476 #else
3477 static void wq_init_lockdep(struct workqueue_struct *wq)
3478 {
3479 }
3480
3481 static void wq_unregister_lockdep(struct workqueue_struct *wq)
3482 {
3483 }
3484
3485 static void wq_free_lockdep(struct workqueue_struct *wq)
3486 {
3487 }
3488 #endif
3489
3490 static void rcu_free_wq(struct rcu_head *rcu)
3491 {
3492 struct workqueue_struct *wq =
3493 container_of(rcu, struct workqueue_struct, rcu);
3494
3495 wq_free_lockdep(wq);
3496
3497 if (!(wq->flags & WQ_UNBOUND))
3498 free_percpu(wq->cpu_pwqs);
3499 else
3500 free_workqueue_attrs(wq->unbound_attrs);
3501
3502 kfree(wq);
3503 }
3504
3505 static void rcu_free_pool(struct rcu_head *rcu)
3506 {
3507 struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu);
3508
3509 ida_destroy(&pool->worker_ida);
3510 free_workqueue_attrs(pool->attrs);
3511 kfree(pool);
3512 }
3513
3514 /* This returns with the lock held on success (pool manager is inactive). */
3515 static bool wq_manager_inactive(struct worker_pool *pool)
3516 {
3517 raw_spin_lock_irq(&pool->lock);
3518
3519 if (pool->flags & POOL_MANAGER_ACTIVE) {
3520 raw_spin_unlock_irq(&pool->lock);
3521 return false;
3522 }
3523 return true;
3524 }
3525
3526 /**
3527 * put_unbound_pool - put a worker_pool
3528 * @pool: worker_pool to put
3529 *
3530 * Put @pool. If its refcnt reaches zero, it gets destroyed in RCU
3531 * safe manner. get_unbound_pool() calls this function on its failure path
3532 * and this function should be able to release pools which went through,
3533 * successfully or not, init_worker_pool().
3534 *
3535 * Should be called with wq_pool_mutex held.
3536 */
3537 static void put_unbound_pool(struct worker_pool *pool)
3538 {
3539 DECLARE_COMPLETION_ONSTACK(detach_completion);
3540 struct worker *worker;
3541
3542 lockdep_assert_held(&wq_pool_mutex);
3543
3544 if (--pool->refcnt)
3545 return;
3546
3547 /* sanity checks */
3548 if (WARN_ON(!(pool->cpu < 0)) ||
3549 WARN_ON(!list_empty(&pool->worklist)))
3550 return;
3551
3552 /* release id and unhash */
3553 if (pool->id >= 0)
3554 idr_remove(&worker_pool_idr, pool->id);
3555 hash_del(&pool->hash_node);
3556
3557 /*
3558 * Become the manager and destroy all workers. This prevents
3559 * @pool's workers from blocking on attach_mutex. We're the last
3560 * manager and @pool gets freed with the flag set.
3561 * Because of how wq_manager_inactive() works, we will hold the
3562 * spinlock after a successful wait.
3563 */
3564 rcuwait_wait_event(&manager_wait, wq_manager_inactive(pool),
3565 TASK_UNINTERRUPTIBLE);
3566 pool->flags |= POOL_MANAGER_ACTIVE;
3567
3568 while ((worker = first_idle_worker(pool)))
3569 destroy_worker(worker);
3570 WARN_ON(pool->nr_workers || pool->nr_idle);
3571 raw_spin_unlock_irq(&pool->lock);
3572
3573 mutex_lock(&wq_pool_attach_mutex);
3574 if (!list_empty(&pool->workers))
3575 pool->detach_completion = &detach_completion;
3576 mutex_unlock(&wq_pool_attach_mutex);
3577
3578 if (pool->detach_completion)
3579 wait_for_completion(pool->detach_completion);
3580
3581 /* shut down the timers */
3582 del_timer_sync(&pool->idle_timer);
3583 del_timer_sync(&pool->mayday_timer);
3584
3585 /* RCU protected to allow dereferences from get_work_pool() */
3586 call_rcu(&pool->rcu, rcu_free_pool);
3587 }
3588
3589 /**
3590 * get_unbound_pool - get a worker_pool with the specified attributes
3591 * @attrs: the attributes of the worker_pool to get
3592 *
3593 * Obtain a worker_pool which has the same attributes as @attrs, bump the
3594 * reference count and return it. If there already is a matching
3595 * worker_pool, it will be used; otherwise, this function attempts to
3596 * create a new one.
3597 *
3598 * Should be called with wq_pool_mutex held.
3599 *
3600 * Return: On success, a worker_pool with the same attributes as @attrs.
3601 * On failure, %NULL.
3602 */
3603 static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs)
3604 {
3605 u32 hash = wqattrs_hash(attrs);
3606 struct worker_pool *pool;
3607 int node;
3608 int target_node = NUMA_NO_NODE;
3609
3610 lockdep_assert_held(&wq_pool_mutex);
3611
3612 /* do we already have a matching pool? */
3613 hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) {
3614 if (wqattrs_equal(pool->attrs, attrs)) {
3615 pool->refcnt++;
3616 return pool;
3617 }
3618 }
3619
3620 /* if cpumask is contained inside a NUMA node, we belong to that node */
3621 if (wq_numa_enabled) {
3622 for_each_node(node) {
3623 if (cpumask_subset(attrs->cpumask,
3624 wq_numa_possible_cpumask[node])) {
3625 target_node = node;
3626 break;
3627 }
3628 }
3629 }
3630
3631 /* nope, create a new one */
3632 pool = kzalloc_node(sizeof(*pool), GFP_KERNEL, target_node);
3633 if (!pool || init_worker_pool(pool) < 0)
3634 goto fail;
3635
3636 lockdep_set_subclass(&pool->lock, 1); /* see put_pwq() */
3637 copy_workqueue_attrs(pool->attrs, attrs);
3638 pool->node = target_node;
3639
3640 /*
3641 * no_numa isn't a worker_pool attribute, always clear it. See
3642 * 'struct workqueue_attrs' comments for detail.
3643 */
3644 pool->attrs->no_numa = false;
3645
3646 if (worker_pool_assign_id(pool) < 0)
3647 goto fail;
3648
3649 /* create and start the initial worker */
3650 if (wq_online && !create_worker(pool))
3651 goto fail;
3652
3653 /* install */
3654 hash_add(unbound_pool_hash, &pool->hash_node, hash);
3655
3656 return pool;
3657 fail:
3658 if (pool)
3659 put_unbound_pool(pool);
3660 return NULL;
3661 }
3662
3663 static void rcu_free_pwq(struct rcu_head *rcu)
3664 {
3665 kmem_cache_free(pwq_cache,
3666 container_of(rcu, struct pool_workqueue, rcu));
3667 }
3668
3669 /*
3670 * Scheduled on system_wq by put_pwq() when an unbound pwq hits zero refcnt
3671 * and needs to be destroyed.
3672 */
3673 static void pwq_unbound_release_workfn(struct work_struct *work)
3674 {
3675 struct pool_workqueue *pwq = container_of(work, struct pool_workqueue,
3676 unbound_release_work);
3677 struct workqueue_struct *wq = pwq->wq;
3678 struct worker_pool *pool = pwq->pool;
3679 bool is_last;
3680
3681 if (WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND)))
3682 return;
3683
3684 mutex_lock(&wq->mutex);
3685 list_del_rcu(&pwq->pwqs_node);
3686 is_last = list_empty(&wq->pwqs);
3687 mutex_unlock(&wq->mutex);
3688
3689 mutex_lock(&wq_pool_mutex);
3690 put_unbound_pool(pool);
3691 mutex_unlock(&wq_pool_mutex);
3692
3693 call_rcu(&pwq->rcu, rcu_free_pwq);
3694
3695 /*
3696 * If we're the last pwq going away, @wq is already dead and no one
3697 * is gonna access it anymore. Schedule RCU free.
3698 */
3699 if (is_last) {
3700 wq_unregister_lockdep(wq);
3701 call_rcu(&wq->rcu, rcu_free_wq);
3702 }
3703 }
3704
3705 /**
3706 * pwq_adjust_max_active - update a pwq's max_active to the current setting
3707 * @pwq: target pool_workqueue
3708 *
3709 * If @pwq isn't freezing, set @pwq->max_active to the associated
3710 * workqueue's saved_max_active and activate delayed work items
3711 * accordingly. If @pwq is freezing, clear @pwq->max_active to zero.
3712 */
3713 static void pwq_adjust_max_active(struct pool_workqueue *pwq)
3714 {
3715 struct workqueue_struct *wq = pwq->wq;
3716 bool freezable = wq->flags & WQ_FREEZABLE;
3717 unsigned long flags;
3718
3719 /* for @wq->saved_max_active */
3720 lockdep_assert_held(&wq->mutex);
3721
3722 /* fast exit for non-freezable wqs */
3723 if (!freezable && pwq->max_active == wq->saved_max_active)
3724 return;
3725
3726 /* this function can be called during early boot w/ irq disabled */
3727 raw_spin_lock_irqsave(&pwq->pool->lock, flags);
3728
3729 /*
3730 * During [un]freezing, the caller is responsible for ensuring that
3731 * this function is called at least once after @workqueue_freezing
3732 * is updated and visible.
3733 */
3734 if (!freezable || !workqueue_freezing) {
3735 bool kick = false;
3736
3737 pwq->max_active = wq->saved_max_active;
3738
3739 while (!list_empty(&pwq->delayed_works) &&
3740 pwq->nr_active < pwq->max_active) {
3741 pwq_activate_first_delayed(pwq);
3742 kick = true;
3743 }
3744
3745 /*
3746 * Need to kick a worker after thawed or an unbound wq's
3747 * max_active is bumped. In realtime scenarios, always kicking a
3748 * worker will cause interference on the isolated cpu cores, so
3749 * let's kick iff work items were activated.
3750 */
3751 if (kick)
3752 wake_up_worker(pwq->pool);
3753 } else {
3754 pwq->max_active = 0;
3755 }
3756
3757 raw_spin_unlock_irqrestore(&pwq->pool->lock, flags);
3758 }
3759
3760 /* initialize newly alloced @pwq which is associated with @wq and @pool */
3761 static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq,
3762 struct worker_pool *pool)
3763 {
3764 BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK);
3765
3766 memset(pwq, 0, sizeof(*pwq));
3767
3768 pwq->pool = pool;
3769 pwq->wq = wq;
3770 pwq->flush_color = -1;
3771 pwq->refcnt = 1;
3772 INIT_LIST_HEAD(&pwq->delayed_works);
3773 INIT_LIST_HEAD(&pwq->pwqs_node);
3774 INIT_LIST_HEAD(&pwq->mayday_node);
3775 INIT_WORK(&pwq->unbound_release_work, pwq_unbound_release_workfn);
3776 }
3777
3778 /* sync @pwq with the current state of its associated wq and link it */
3779 static void link_pwq(struct pool_workqueue *pwq)
3780 {
3781 struct workqueue_struct *wq = pwq->wq;
3782
3783 lockdep_assert_held(&wq->mutex);
3784
3785 /* may be called multiple times, ignore if already linked */
3786 if (!list_empty(&pwq->pwqs_node))
3787 return;
3788
3789 /* set the matching work_color */
3790 pwq->work_color = wq->work_color;
3791
3792 /* sync max_active to the current setting */
3793 pwq_adjust_max_active(pwq);
3794
3795 /* link in @pwq */
3796 list_add_rcu(&pwq->pwqs_node, &wq->pwqs);
3797 }
3798
3799 /* obtain a pool matching @attr and create a pwq associating the pool and @wq */
3800 static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq,
3801 const struct workqueue_attrs *attrs)
3802 {
3803 struct worker_pool *pool;
3804 struct pool_workqueue *pwq;
3805
3806 lockdep_assert_held(&wq_pool_mutex);
3807
3808 pool = get_unbound_pool(attrs);
3809 if (!pool)
3810 return NULL;
3811
3812 pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node);
3813 if (!pwq) {
3814 put_unbound_pool(pool);
3815 return NULL;
3816 }
3817
3818 init_pwq(pwq, wq, pool);
3819 return pwq;
3820 }
3821
3822 /**
3823 * wq_calc_node_cpumask - calculate a wq_attrs' cpumask for the specified node
3824 * @attrs: the wq_attrs of the default pwq of the target workqueue
3825 * @node: the target NUMA node
3826 * @cpu_going_down: if >= 0, the CPU to consider as offline
3827 * @cpumask: outarg, the resulting cpumask
3828 *
3829 * Calculate the cpumask a workqueue with @attrs should use on @node. If
3830 * @cpu_going_down is >= 0, that cpu is considered offline during
3831 * calculation. The result is stored in @cpumask.
3832 *
3833 * If NUMA affinity is not enabled, @attrs->cpumask is always used. If
3834 * enabled and @node has online CPUs requested by @attrs, the returned
3835 * cpumask is the intersection of the possible CPUs of @node and
3836 * @attrs->cpumask.
3837 *
3838 * The caller is responsible for ensuring that the cpumask of @node stays
3839 * stable.
3840 *
3841 * Return: %true if the resulting @cpumask is different from @attrs->cpumask,
3842 * %false if equal.
3843 */
3844 static bool wq_calc_node_cpumask(const struct workqueue_attrs *attrs, int node,
3845 int cpu_going_down, cpumask_t *cpumask)
3846 {
3847 if (!wq_numa_enabled || attrs->no_numa)
3848 goto use_dfl;
3849
3850 /* does @node have any online CPUs @attrs wants? */
3851 cpumask_and(cpumask, cpumask_of_node(node), attrs->cpumask);
3852 if (cpu_going_down >= 0)
3853 cpumask_clear_cpu(cpu_going_down, cpumask);
3854
3855 if (cpumask_empty(cpumask))
3856 goto use_dfl;
3857
3858 /* yeap, return possible CPUs in @node that @attrs wants */
3859 cpumask_and(cpumask, attrs->cpumask, wq_numa_possible_cpumask[node]);
3860
3861 if (cpumask_empty(cpumask)) {
3862 pr_warn_once("WARNING: workqueue cpumask: online intersect > "
3863 "possible intersect\n");
3864 return false;
3865 }
3866
3867 return !cpumask_equal(cpumask, attrs->cpumask);
3868
3869 use_dfl:
3870 cpumask_copy(cpumask, attrs->cpumask);
3871 return false;
3872 }
3873
3874 /* install @pwq into @wq's numa_pwq_tbl[] for @node and return the old pwq */
3875 static struct pool_workqueue *numa_pwq_tbl_install(struct workqueue_struct *wq,
3876 int node,
3877 struct pool_workqueue *pwq)
3878 {
3879 struct pool_workqueue *old_pwq;
3880
3881 lockdep_assert_held(&wq_pool_mutex);
3882 lockdep_assert_held(&wq->mutex);
3883
3884 /* link_pwq() can handle duplicate calls */
3885 link_pwq(pwq);
3886
3887 old_pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
3888 rcu_assign_pointer(wq->numa_pwq_tbl[node], pwq);
3889 return old_pwq;
3890 }
3891
3892 /* context to store the prepared attrs & pwqs before applying */
3893 struct apply_wqattrs_ctx {
3894 struct workqueue_struct *wq; /* target workqueue */
3895 struct workqueue_attrs *attrs; /* attrs to apply */
3896 struct list_head list; /* queued for batching commit */
3897 struct pool_workqueue *dfl_pwq;
3898 struct pool_workqueue *pwq_tbl[];
3899 };
3900
3901 /* free the resources after success or abort */
3902 static void apply_wqattrs_cleanup(struct apply_wqattrs_ctx *ctx)
3903 {
3904 if (ctx) {
3905 int node;
3906
3907 for_each_node(node)
3908 put_pwq_unlocked(ctx->pwq_tbl[node]);
3909 put_pwq_unlocked(ctx->dfl_pwq);
3910
3911 free_workqueue_attrs(ctx->attrs);
3912
3913 kfree(ctx);
3914 }
3915 }
3916
3917 /* allocate the attrs and pwqs for later installation */
3918 static struct apply_wqattrs_ctx *
3919 apply_wqattrs_prepare(struct workqueue_struct *wq,
3920 const struct workqueue_attrs *attrs)
3921 {
3922 struct apply_wqattrs_ctx *ctx;
3923 struct workqueue_attrs *new_attrs, *tmp_attrs;
3924 int node;
3925
3926 lockdep_assert_held(&wq_pool_mutex);
3927
3928 ctx = kzalloc(struct_size(ctx, pwq_tbl, nr_node_ids), GFP_KERNEL);
3929
3930 new_attrs = alloc_workqueue_attrs();
3931 tmp_attrs = alloc_workqueue_attrs();
3932 if (!ctx || !new_attrs || !tmp_attrs)
3933 goto out_free;
3934
3935 /*
3936 * Calculate the attrs of the default pwq.
3937 * If the user configured cpumask doesn't overlap with the
3938 * wq_unbound_cpumask, we fallback to the wq_unbound_cpumask.
3939 */
3940 copy_workqueue_attrs(new_attrs, attrs);
3941 cpumask_and(new_attrs->cpumask, new_attrs->cpumask, wq_unbound_cpumask);
3942 if (unlikely(cpumask_empty(new_attrs->cpumask)))
3943 cpumask_copy(new_attrs->cpumask, wq_unbound_cpumask);
3944
3945 /*
3946 * We may create multiple pwqs with differing cpumasks. Make a
3947 * copy of @new_attrs which will be modified and used to obtain
3948 * pools.
3949 */
3950 copy_workqueue_attrs(tmp_attrs, new_attrs);
3951
3952 /*
3953 * If something goes wrong during CPU up/down, we'll fall back to
3954 * the default pwq covering whole @attrs->cpumask. Always create
3955 * it even if we don't use it immediately.
3956 */
3957 ctx->dfl_pwq = alloc_unbound_pwq(wq, new_attrs);
3958 if (!ctx->dfl_pwq)
3959 goto out_free;
3960
3961 for_each_node(node) {
3962 if (wq_calc_node_cpumask(new_attrs, node, -1, tmp_attrs->cpumask)) {
3963 ctx->pwq_tbl[node] = alloc_unbound_pwq(wq, tmp_attrs);
3964 if (!ctx->pwq_tbl[node])
3965 goto out_free;
3966 } else {
3967 ctx->dfl_pwq->refcnt++;
3968 ctx->pwq_tbl[node] = ctx->dfl_pwq;
3969 }
3970 }
3971
3972 /* save the user configured attrs and sanitize it. */
3973 copy_workqueue_attrs(new_attrs, attrs);
3974 cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask);
3975 ctx->attrs = new_attrs;
3976
3977 ctx->wq = wq;
3978 free_workqueue_attrs(tmp_attrs);
3979 return ctx;
3980
3981 out_free:
3982 free_workqueue_attrs(tmp_attrs);
3983 free_workqueue_attrs(new_attrs);
3984 apply_wqattrs_cleanup(ctx);
3985 return NULL;
3986 }
3987
3988 /* set attrs and install prepared pwqs, @ctx points to old pwqs on return */
3989 static void apply_wqattrs_commit(struct apply_wqattrs_ctx *ctx)
3990 {
3991 int node;
3992
3993 /* all pwqs have been created successfully, let's install'em */
3994 mutex_lock(&ctx->wq->mutex);
3995
3996 copy_workqueue_attrs(ctx->wq->unbound_attrs, ctx->attrs);
3997
3998 /* save the previous pwq and install the new one */
3999 for_each_node(node)
4000 ctx->pwq_tbl[node] = numa_pwq_tbl_install(ctx->wq, node,
4001 ctx->pwq_tbl[node]);
4002
4003 /* @dfl_pwq might not have been used, ensure it's linked */
4004 link_pwq(ctx->dfl_pwq);
4005 swap(ctx->wq->dfl_pwq, ctx->dfl_pwq);
4006
4007 mutex_unlock(&ctx->wq->mutex);
4008 }
4009
4010 static void apply_wqattrs_lock(void)
4011 {
4012 /* CPUs should stay stable across pwq creations and installations */
4013 get_online_cpus();
4014 mutex_lock(&wq_pool_mutex);
4015 }
4016
4017 static void apply_wqattrs_unlock(void)
4018 {
4019 mutex_unlock(&wq_pool_mutex);
4020 put_online_cpus();
4021 }
4022
4023 static int apply_workqueue_attrs_locked(struct workqueue_struct *wq,
4024 const struct workqueue_attrs *attrs)
4025 {
4026 struct apply_wqattrs_ctx *ctx;
4027
4028 /* only unbound workqueues can change attributes */
4029 if (WARN_ON(!(wq->flags & WQ_UNBOUND)))
4030 return -EINVAL;
4031
4032 /* creating multiple pwqs breaks ordering guarantee */
4033 if (!list_empty(&wq->pwqs)) {
4034 if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
4035 return -EINVAL;
4036
4037 wq->flags &= ~__WQ_ORDERED;
4038 }
4039
4040 ctx = apply_wqattrs_prepare(wq, attrs);
4041 if (!ctx)
4042 return -ENOMEM;
4043
4044 /* the ctx has been prepared successfully, let's commit it */
4045 apply_wqattrs_commit(ctx);
4046 apply_wqattrs_cleanup(ctx);
4047
4048 return 0;
4049 }
4050
4051 /**
4052 * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue
4053 * @wq: the target workqueue
4054 * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs()
4055 *
4056 * Apply @attrs to an unbound workqueue @wq. Unless disabled, on NUMA
4057 * machines, this function maps a separate pwq to each NUMA node with
4058 * possibles CPUs in @attrs->cpumask so that work items are affine to the
4059 * NUMA node it was issued on. Older pwqs are released as in-flight work
4060 * items finish. Note that a work item which repeatedly requeues itself
4061 * back-to-back will stay on its current pwq.
4062 *
4063 * Performs GFP_KERNEL allocations.
4064 *
4065 * Assumes caller has CPU hotplug read exclusion, i.e. get_online_cpus().
4066 *
4067 * Return: 0 on success and -errno on failure.
4068 */
4069 int apply_workqueue_attrs(struct workqueue_struct *wq,
4070 const struct workqueue_attrs *attrs)
4071 {
4072 int ret;
4073
4074 lockdep_assert_cpus_held();
4075
4076 mutex_lock(&wq_pool_mutex);
4077 ret = apply_workqueue_attrs_locked(wq, attrs);
4078 mutex_unlock(&wq_pool_mutex);
4079
4080 return ret;
4081 }
4082
4083 /**
4084 * wq_update_unbound_numa - update NUMA affinity of a wq for CPU hot[un]plug
4085 * @wq: the target workqueue
4086 * @cpu: the CPU coming up or going down
4087 * @online: whether @cpu is coming up or going down
4088 *
4089 * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and
4090 * %CPU_DOWN_FAILED. @cpu is being hot[un]plugged, update NUMA affinity of
4091 * @wq accordingly.
4092 *
4093 * If NUMA affinity can't be adjusted due to memory allocation failure, it
4094 * falls back to @wq->dfl_pwq which may not be optimal but is always
4095 * correct.
4096 *
4097 * Note that when the last allowed CPU of a NUMA node goes offline for a
4098 * workqueue with a cpumask spanning multiple nodes, the workers which were
4099 * already executing the work items for the workqueue will lose their CPU
4100 * affinity and may execute on any CPU. This is similar to how per-cpu
4101 * workqueues behave on CPU_DOWN. If a workqueue user wants strict
4102 * affinity, it's the user's responsibility to flush the work item from
4103 * CPU_DOWN_PREPARE.
4104 */
4105 static void wq_update_unbound_numa(struct workqueue_struct *wq, int cpu,
4106 bool online)
4107 {
4108 int node = cpu_to_node(cpu);
4109 int cpu_off = online ? -1 : cpu;
4110 struct pool_workqueue *old_pwq = NULL, *pwq;
4111 struct workqueue_attrs *target_attrs;
4112 cpumask_t *cpumask;
4113
4114 lockdep_assert_held(&wq_pool_mutex);
4115
4116 if (!wq_numa_enabled || !(wq->flags & WQ_UNBOUND) ||
4117 wq->unbound_attrs->no_numa)
4118 return;
4119
4120 /*
4121 * We don't wanna alloc/free wq_attrs for each wq for each CPU.
4122 * Let's use a preallocated one. The following buf is protected by
4123 * CPU hotplug exclusion.
4124 */
4125 target_attrs = wq_update_unbound_numa_attrs_buf;
4126 cpumask = target_attrs->cpumask;
4127
4128 copy_workqueue_attrs(target_attrs, wq->unbound_attrs);
4129 pwq = unbound_pwq_by_node(wq, node);
4130
4131 /*
4132 * Let's determine what needs to be done. If the target cpumask is
4133 * different from the default pwq's, we need to compare it to @pwq's
4134 * and create a new one if they don't match. If the target cpumask
4135 * equals the default pwq's, the default pwq should be used.
4136 */
4137 if (wq_calc_node_cpumask(wq->dfl_pwq->pool->attrs, node, cpu_off, cpumask)) {
4138 if (cpumask_equal(cpumask, pwq->pool->attrs->cpumask))
4139 return;
4140 } else {
4141 goto use_dfl_pwq;
4142 }
4143
4144 /* create a new pwq */
4145 pwq = alloc_unbound_pwq(wq, target_attrs);
4146 if (!pwq) {
4147 pr_warn("workqueue: allocation failed while updating NUMA affinity of \"%s\"\n",
4148 wq->name);
4149 goto use_dfl_pwq;
4150 }
4151
4152 /* Install the new pwq. */
4153 mutex_lock(&wq->mutex);
4154 old_pwq = numa_pwq_tbl_install(wq, node, pwq);
4155 goto out_unlock;
4156
4157 use_dfl_pwq:
4158 mutex_lock(&wq->mutex);
4159 raw_spin_lock_irq(&wq->dfl_pwq->pool->lock);
4160 get_pwq(wq->dfl_pwq);
4161 raw_spin_unlock_irq(&wq->dfl_pwq->pool->lock);
4162 old_pwq = numa_pwq_tbl_install(wq, node, wq->dfl_pwq);
4163 out_unlock:
4164 mutex_unlock(&wq->mutex);
4165 put_pwq_unlocked(old_pwq);
4166 }
4167
4168 static int alloc_and_link_pwqs(struct workqueue_struct *wq)
4169 {
4170 bool highpri = wq->flags & WQ_HIGHPRI;
4171 int cpu, ret;
4172
4173 if (!(wq->flags & WQ_UNBOUND)) {
4174 wq->cpu_pwqs = alloc_percpu(struct pool_workqueue);
4175 if (!wq->cpu_pwqs)
4176 return -ENOMEM;
4177
4178 for_each_possible_cpu(cpu) {
4179 struct pool_workqueue *pwq =
4180 per_cpu_ptr(wq->cpu_pwqs, cpu);
4181 struct worker_pool *cpu_pools =
4182 per_cpu(cpu_worker_pools, cpu);
4183
4184 init_pwq(pwq, wq, &cpu_pools[highpri]);
4185
4186 mutex_lock(&wq->mutex);
4187 link_pwq(pwq);
4188 mutex_unlock(&wq->mutex);
4189 }
4190 return 0;
4191 }
4192
4193 get_online_cpus();
4194 if (wq->flags & __WQ_ORDERED) {
4195 ret = apply_workqueue_attrs(wq, ordered_wq_attrs[highpri]);
4196 /* there should only be single pwq for ordering guarantee */
4197 WARN(!ret && (wq->pwqs.next != &wq->dfl_pwq->pwqs_node ||
4198 wq->pwqs.prev != &wq->dfl_pwq->pwqs_node),
4199 "ordering guarantee broken for workqueue %s\n", wq->name);
4200 } else {
4201 ret = apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]);
4202 }
4203 put_online_cpus();
4204
4205 return ret;
4206 }
4207
4208 static int wq_clamp_max_active(int max_active, unsigned int flags,
4209 const char *name)
4210 {
4211 int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;
4212
4213 if (max_active < 1 || max_active > lim)
4214 pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
4215 max_active, name, 1, lim);
4216
4217 return clamp_val(max_active, 1, lim);
4218 }
4219
4220 /*
4221 * Workqueues which may be used during memory reclaim should have a rescuer
4222 * to guarantee forward progress.
4223 */
4224 static int init_rescuer(struct workqueue_struct *wq)
4225 {
4226 struct worker *rescuer;
4227 int ret;
4228
4229 if (!(wq->flags & WQ_MEM_RECLAIM))
4230 return 0;
4231
4232 rescuer = alloc_worker(NUMA_NO_NODE);
4233 if (!rescuer)
4234 return -ENOMEM;
4235
4236 rescuer->rescue_wq = wq;
4237 rescuer->task = kthread_create(rescuer_thread, rescuer, "%s", wq->name);
4238 if (IS_ERR(rescuer->task)) {
4239 ret = PTR_ERR(rescuer->task);
4240 kfree(rescuer);
4241 return ret;
4242 }
4243
4244 wq->rescuer = rescuer;
4245 kthread_bind_mask(rescuer->task, cpu_possible_mask);
4246 wake_up_process(rescuer->task);
4247
4248 return 0;
4249 }
4250
4251 __printf(1, 4)
4252 struct workqueue_struct *alloc_workqueue(const char *fmt,
4253 unsigned int flags,
4254 int max_active, ...)
4255 {
4256 size_t tbl_size = 0;
4257 va_list args;
4258 struct workqueue_struct *wq;
4259 struct pool_workqueue *pwq;
4260
4261 /*
4262 * Unbound && max_active == 1 used to imply ordered, which is no
4263 * longer the case on NUMA machines due to per-node pools. While
4264 * alloc_ordered_workqueue() is the right way to create an ordered
4265 * workqueue, keep the previous behavior to avoid subtle breakages
4266 * on NUMA.
4267 */
4268 if ((flags & WQ_UNBOUND) && max_active == 1)
4269 flags |= __WQ_ORDERED;
4270
4271 /* see the comment above the definition of WQ_POWER_EFFICIENT */
4272 if ((flags & WQ_POWER_EFFICIENT) && wq_power_efficient)
4273 flags |= WQ_UNBOUND;
4274
4275 /* allocate wq and format name */
4276 if (flags & WQ_UNBOUND)
4277 tbl_size = nr_node_ids * sizeof(wq->numa_pwq_tbl[0]);
4278
4279 wq = kzalloc(sizeof(*wq) + tbl_size, GFP_KERNEL);
4280 if (!wq)
4281 return NULL;
4282
4283 if (flags & WQ_UNBOUND) {
4284 wq->unbound_attrs = alloc_workqueue_attrs();
4285 if (!wq->unbound_attrs)
4286 goto err_free_wq;
4287 }
4288
4289 va_start(args, max_active);
4290 vsnprintf(wq->name, sizeof(wq->name), fmt, args);
4291 va_end(args);
4292
4293 max_active = max_active ?: WQ_DFL_ACTIVE;
4294 max_active = wq_clamp_max_active(max_active, flags, wq->name);
4295
4296 /* init wq */
4297 wq->flags = flags;
4298 wq->saved_max_active = max_active;
4299 mutex_init(&wq->mutex);
4300 atomic_set(&wq->nr_pwqs_to_flush, 0);
4301 INIT_LIST_HEAD(&wq->pwqs);
4302 INIT_LIST_HEAD(&wq->flusher_queue);
4303 INIT_LIST_HEAD(&wq->flusher_overflow);
4304 INIT_LIST_HEAD(&wq->maydays);
4305
4306 wq_init_lockdep(wq);
4307 INIT_LIST_HEAD(&wq->list);
4308
4309 if (alloc_and_link_pwqs(wq) < 0)
4310 goto err_unreg_lockdep;
4311
4312 if (wq_online && init_rescuer(wq) < 0)
4313 goto err_destroy;
4314
4315 if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq))
4316 goto err_destroy;
4317
4318 /*
4319 * wq_pool_mutex protects global freeze state and workqueues list.
4320 * Grab it, adjust max_active and add the new @wq to workqueues
4321 * list.
4322 */
4323 mutex_lock(&wq_pool_mutex);
4324
4325 mutex_lock(&wq->mutex);
4326 for_each_pwq(pwq, wq)
4327 pwq_adjust_max_active(pwq);
4328 mutex_unlock(&wq->mutex);
4329
4330 list_add_tail_rcu(&wq->list, &workqueues);
4331
4332 mutex_unlock(&wq_pool_mutex);
4333
4334 return wq;
4335
4336 err_unreg_lockdep:
4337 wq_unregister_lockdep(wq);
4338 wq_free_lockdep(wq);
4339 err_free_wq:
4340 free_workqueue_attrs(wq->unbound_attrs);
4341 kfree(wq);
4342 return NULL;
4343 err_destroy:
4344 destroy_workqueue(wq);
4345 return NULL;
4346 }
4347 EXPORT_SYMBOL_GPL(alloc_workqueue);
4348
4349 static bool pwq_busy(struct pool_workqueue *pwq)
4350 {
4351 int i;
4352
4353 for (i = 0; i < WORK_NR_COLORS; i++)
4354 if (pwq->nr_in_flight[i])
4355 return true;
4356
4357 if ((pwq != pwq->wq->dfl_pwq) && (pwq->refcnt > 1))
4358 return true;
4359 if (pwq->nr_active || !list_empty(&pwq->delayed_works))
4360 return true;
4361
4362 return false;
4363 }
4364
4365 /**
4366 * destroy_workqueue - safely terminate a workqueue
4367 * @wq: target workqueue
4368 *
4369 * Safely destroy a workqueue. All work currently pending will be done first.
4370 */
4371 void destroy_workqueue(struct workqueue_struct *wq)
4372 {
4373 struct pool_workqueue *pwq;
4374 int node;
4375
4376 /*
4377 * Remove it from sysfs first so that sanity check failure doesn't
4378 * lead to sysfs name conflicts.
4379 */
4380 workqueue_sysfs_unregister(wq);
4381
4382 /* drain it before proceeding with destruction */
4383 drain_workqueue(wq);
4384
4385 /* kill rescuer, if sanity checks fail, leave it w/o rescuer */
4386 if (wq->rescuer) {
4387 struct worker *rescuer = wq->rescuer;
4388
4389 /* this prevents new queueing */
4390 raw_spin_lock_irq(&wq_mayday_lock);
4391 wq->rescuer = NULL;
4392 raw_spin_unlock_irq(&wq_mayday_lock);
4393
4394 /* rescuer will empty maydays list before exiting */
4395 kthread_stop(rescuer->task);
4396 kfree(rescuer);
4397 }
4398
4399 /*
4400 * Sanity checks - grab all the locks so that we wait for all
4401 * in-flight operations which may do put_pwq().
4402 */
4403 mutex_lock(&wq_pool_mutex);
4404 mutex_lock(&wq->mutex);
4405 for_each_pwq(pwq, wq) {
4406 raw_spin_lock_irq(&pwq->pool->lock);
4407 if (WARN_ON(pwq_busy(pwq))) {
4408 pr_warn("%s: %s has the following busy pwq\n",
4409 __func__, wq->name);
4410 show_pwq(pwq);
4411 raw_spin_unlock_irq(&pwq->pool->lock);
4412 mutex_unlock(&wq->mutex);
4413 mutex_unlock(&wq_pool_mutex);
4414 show_workqueue_state();
4415 return;
4416 }
4417 raw_spin_unlock_irq(&pwq->pool->lock);
4418 }
4419 mutex_unlock(&wq->mutex);
4420
4421 /*
4422 * wq list is used to freeze wq, remove from list after
4423 * flushing is complete in case freeze races us.
4424 */
4425 list_del_rcu(&wq->list);
4426 mutex_unlock(&wq_pool_mutex);
4427
4428 if (!(wq->flags & WQ_UNBOUND)) {
4429 wq_unregister_lockdep(wq);
4430 /*
4431 * The base ref is never dropped on per-cpu pwqs. Directly
4432 * schedule RCU free.
4433 */
4434 call_rcu(&wq->rcu, rcu_free_wq);
4435 } else {
4436 /*
4437 * We're the sole accessor of @wq at this point. Directly
4438 * access numa_pwq_tbl[] and dfl_pwq to put the base refs.
4439 * @wq will be freed when the last pwq is released.
4440 */
4441 for_each_node(node) {
4442 pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
4443 RCU_INIT_POINTER(wq->numa_pwq_tbl[node], NULL);
4444 put_pwq_unlocked(pwq);
4445 }
4446
4447 /*
4448 * Put dfl_pwq. @wq may be freed any time after dfl_pwq is
4449 * put. Don't access it afterwards.
4450 */
4451 pwq = wq->dfl_pwq;
4452 wq->dfl_pwq = NULL;
4453 put_pwq_unlocked(pwq);
4454 }
4455 }
4456 EXPORT_SYMBOL_GPL(destroy_workqueue);
4457
4458 /**
4459 * workqueue_set_max_active - adjust max_active of a workqueue
4460 * @wq: target workqueue
4461 * @max_active: new max_active value.
4462 *
4463 * Set max_active of @wq to @max_active.
4464 *
4465 * CONTEXT:
4466 * Don't call from IRQ context.
4467 */
4468 void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
4469 {
4470 struct pool_workqueue *pwq;
4471
4472 /* disallow meddling with max_active for ordered workqueues */
4473 if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
4474 return;
4475
4476 max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
4477
4478 mutex_lock(&wq->mutex);
4479
4480 wq->flags &= ~__WQ_ORDERED;
4481 wq->saved_max_active = max_active;
4482
4483 for_each_pwq(pwq, wq)
4484 pwq_adjust_max_active(pwq);
4485
4486 mutex_unlock(&wq->mutex);
4487 }
4488 EXPORT_SYMBOL_GPL(workqueue_set_max_active);
4489
4490 /**
4491 * current_work - retrieve %current task's work struct
4492 *
4493 * Determine if %current task is a workqueue worker and what it's working on.
4494 * Useful to find out the context that the %current task is running in.
4495 *
4496 * Return: work struct if %current task is a workqueue worker, %NULL otherwise.
4497 */
4498 struct work_struct *current_work(void)
4499 {
4500 struct worker *worker = current_wq_worker();
4501
4502 return worker ? worker->current_work : NULL;
4503 }
4504 EXPORT_SYMBOL(current_work);
4505
4506 /**
4507 * current_is_workqueue_rescuer - is %current workqueue rescuer?
4508 *
4509 * Determine whether %current is a workqueue rescuer. Can be used from
4510 * work functions to determine whether it's being run off the rescuer task.
4511 *
4512 * Return: %true if %current is a workqueue rescuer. %false otherwise.
4513 */
4514 bool current_is_workqueue_rescuer(void)
4515 {
4516 struct worker *worker = current_wq_worker();
4517
4518 return worker && worker->rescue_wq;
4519 }
4520
4521 /**
4522 * workqueue_congested - test whether a workqueue is congested
4523 * @cpu: CPU in question
4524 * @wq: target workqueue
4525 *
4526 * Test whether @wq's cpu workqueue for @cpu is congested. There is
4527 * no synchronization around this function and the test result is
4528 * unreliable and only useful as advisory hints or for debugging.
4529 *
4530 * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU.
4531 * Note that both per-cpu and unbound workqueues may be associated with
4532 * multiple pool_workqueues which have separate congested states. A
4533 * workqueue being congested on one CPU doesn't mean the workqueue is also
4534 * contested on other CPUs / NUMA nodes.
4535 *
4536 * Return:
4537 * %true if congested, %false otherwise.
4538 */
4539 bool workqueue_congested(int cpu, struct workqueue_struct *wq)
4540 {
4541 struct pool_workqueue *pwq;
4542 bool ret;
4543
4544 rcu_read_lock();
4545 preempt_disable();
4546
4547 if (cpu == WORK_CPU_UNBOUND)
4548 cpu = smp_processor_id();
4549
4550 if (!(wq->flags & WQ_UNBOUND))
4551 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
4552 else
4553 pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
4554
4555 ret = !list_empty(&pwq->delayed_works);
4556 preempt_enable();
4557 rcu_read_unlock();
4558
4559 return ret;
4560 }
4561 EXPORT_SYMBOL_GPL(workqueue_congested);
4562
4563 /**
4564 * work_busy - test whether a work is currently pending or running
4565 * @work: the work to be tested
4566 *
4567 * Test whether @work is currently pending or running. There is no
4568 * synchronization around this function and the test result is
4569 * unreliable and only useful as advisory hints or for debugging.
4570 *
4571 * Return:
4572 * OR'd bitmask of WORK_BUSY_* bits.
4573 */
4574 unsigned int work_busy(struct work_struct *work)
4575 {
4576 struct worker_pool *pool;
4577 unsigned long flags;
4578 unsigned int ret = 0;
4579
4580 if (work_pending(work))
4581 ret |= WORK_BUSY_PENDING;
4582
4583 rcu_read_lock();
4584 pool = get_work_pool(work);
4585 if (pool) {
4586 raw_spin_lock_irqsave(&pool->lock, flags);
4587 if (find_worker_executing_work(pool, work))
4588 ret |= WORK_BUSY_RUNNING;
4589 raw_spin_unlock_irqrestore(&pool->lock, flags);
4590 }
4591 rcu_read_unlock();
4592
4593 return ret;
4594 }
4595 EXPORT_SYMBOL_GPL(work_busy);
4596
4597 /**
4598 * set_worker_desc - set description for the current work item
4599 * @fmt: printf-style format string
4600 * @...: arguments for the format string
4601 *
4602 * This function can be called by a running work function to describe what
4603 * the work item is about. If the worker task gets dumped, this
4604 * information will be printed out together to help debugging. The
4605 * description can be at most WORKER_DESC_LEN including the trailing '\0'.
4606 */
4607 void set_worker_desc(const char *fmt, ...)
4608 {
4609 struct worker *worker = current_wq_worker();
4610 va_list args;
4611
4612 if (worker) {
4613 va_start(args, fmt);
4614 vsnprintf(worker->desc, sizeof(worker->desc), fmt, args);
4615 va_end(args);
4616 }
4617 }
4618 EXPORT_SYMBOL_GPL(set_worker_desc);
4619
4620 /**
4621 * print_worker_info - print out worker information and description
4622 * @log_lvl: the log level to use when printing
4623 * @task: target task
4624 *
4625 * If @task is a worker and currently executing a work item, print out the
4626 * name of the workqueue being serviced and worker description set with
4627 * set_worker_desc() by the currently executing work item.
4628 *
4629 * This function can be safely called on any task as long as the
4630 * task_struct itself is accessible. While safe, this function isn't
4631 * synchronized and may print out mixups or garbages of limited length.
4632 */
4633 void print_worker_info(const char *log_lvl, struct task_struct *task)
4634 {
4635 work_func_t *fn = NULL;
4636 char name[WQ_NAME_LEN] = { };
4637 char desc[WORKER_DESC_LEN] = { };
4638 struct pool_workqueue *pwq = NULL;
4639 struct workqueue_struct *wq = NULL;
4640 struct worker *worker;
4641
4642 if (!(task->flags & PF_WQ_WORKER))
4643 return;
4644
4645 /*
4646 * This function is called without any synchronization and @task
4647 * could be in any state. Be careful with dereferences.
4648 */
4649 worker = kthread_probe_data(task);
4650
4651 /*
4652 * Carefully copy the associated workqueue's workfn, name and desc.
4653 * Keep the original last '\0' in case the original is garbage.
4654 */
4655 copy_from_kernel_nofault(&fn, &worker->current_func, sizeof(fn));
4656 copy_from_kernel_nofault(&pwq, &worker->current_pwq, sizeof(pwq));
4657 copy_from_kernel_nofault(&wq, &pwq->wq, sizeof(wq));
4658 copy_from_kernel_nofault(name, wq->name, sizeof(name) - 1);
4659 copy_from_kernel_nofault(desc, worker->desc, sizeof(desc) - 1);
4660
4661 if (fn || name[0] || desc[0]) {
4662 printk("%sWorkqueue: %s %ps", log_lvl, name, fn);
4663 if (strcmp(name, desc))
4664 pr_cont(" (%s)", desc);
4665 pr_cont("\n");
4666 }
4667 }
4668
4669 static void pr_cont_pool_info(struct worker_pool *pool)
4670 {
4671 pr_cont(" cpus=%*pbl", nr_cpumask_bits, pool->attrs->cpumask);
4672 if (pool->node != NUMA_NO_NODE)
4673 pr_cont(" node=%d", pool->node);
4674 pr_cont(" flags=0x%x nice=%d", pool->flags, pool->attrs->nice);
4675 }
4676
4677 static void pr_cont_work(bool comma, struct work_struct *work)
4678 {
4679 if (work->func == wq_barrier_func) {
4680 struct wq_barrier *barr;
4681
4682 barr = container_of(work, struct wq_barrier, work);
4683
4684 pr_cont("%s BAR(%d)", comma ? "," : "",
4685 task_pid_nr(barr->task));
4686 } else {
4687 pr_cont("%s %ps", comma ? "," : "", work->func);
4688 }
4689 }
4690
4691 static void show_pwq(struct pool_workqueue *pwq)
4692 {
4693 struct worker_pool *pool = pwq->pool;
4694 struct work_struct *work;
4695 struct worker *worker;
4696 bool has_in_flight = false, has_pending = false;
4697 int bkt;
4698
4699 pr_info(" pwq %d:", pool->id);
4700 pr_cont_pool_info(pool);
4701
4702 pr_cont(" active=%d/%d refcnt=%d%s\n",
4703 pwq->nr_active, pwq->max_active, pwq->refcnt,
4704 !list_empty(&pwq->mayday_node) ? " MAYDAY" : "");
4705
4706 hash_for_each(pool->busy_hash, bkt, worker, hentry) {
4707 if (worker->current_pwq == pwq) {
4708 has_in_flight = true;
4709 break;
4710 }
4711 }
4712 if (has_in_flight) {
4713 bool comma = false;
4714
4715 pr_info(" in-flight:");
4716 hash_for_each(pool->busy_hash, bkt, worker, hentry) {
4717 if (worker->current_pwq != pwq)
4718 continue;
4719
4720 pr_cont("%s %d%s:%ps", comma ? "," : "",
4721 task_pid_nr(worker->task),
4722 worker->rescue_wq ? "(RESCUER)" : "",
4723 worker->current_func);
4724 list_for_each_entry(work, &worker->scheduled, entry)
4725 pr_cont_work(false, work);
4726 comma = true;
4727 }
4728 pr_cont("\n");
4729 }
4730
4731 list_for_each_entry(work, &pool->worklist, entry) {
4732 if (get_work_pwq(work) == pwq) {
4733 has_pending = true;
4734 break;
4735 }
4736 }
4737 if (has_pending) {
4738 bool comma = false;
4739
4740 pr_info(" pending:");
4741 list_for_each_entry(work, &pool->worklist, entry) {
4742 if (get_work_pwq(work) != pwq)
4743 continue;
4744
4745 pr_cont_work(comma, work);
4746 comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
4747 }
4748 pr_cont("\n");
4749 }
4750
4751 if (!list_empty(&pwq->delayed_works)) {
4752 bool comma = false;
4753
4754 pr_info(" delayed:");
4755 list_for_each_entry(work, &pwq->delayed_works, entry) {
4756 pr_cont_work(comma, work);
4757 comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
4758 }
4759 pr_cont("\n");
4760 }
4761 }
4762
4763 /**
4764 * show_workqueue_state - dump workqueue state
4765 *
4766 * Called from a sysrq handler or try_to_freeze_tasks() and prints out
4767 * all busy workqueues and pools.
4768 */
4769 void show_workqueue_state(void)
4770 {
4771 struct workqueue_struct *wq;
4772 struct worker_pool *pool;
4773 unsigned long flags;
4774 int pi;
4775
4776 rcu_read_lock();
4777
4778 pr_info("Showing busy workqueues and worker pools:\n");
4779
4780 list_for_each_entry_rcu(wq, &workqueues, list) {
4781 struct pool_workqueue *pwq;
4782 bool idle = true;
4783
4784 for_each_pwq(pwq, wq) {
4785 if (pwq->nr_active || !list_empty(&pwq->delayed_works)) {
4786 idle = false;
4787 break;
4788 }
4789 }
4790 if (idle)
4791 continue;
4792
4793 pr_info("workqueue %s: flags=0x%x\n", wq->name, wq->flags);
4794
4795 for_each_pwq(pwq, wq) {
4796 raw_spin_lock_irqsave(&pwq->pool->lock, flags);
4797 if (pwq->nr_active || !list_empty(&pwq->delayed_works))
4798 show_pwq(pwq);
4799 raw_spin_unlock_irqrestore(&pwq->pool->lock, flags);
4800 /*
4801 * We could be printing a lot from atomic context, e.g.
4802 * sysrq-t -> show_workqueue_state(). Avoid triggering
4803 * hard lockup.
4804 */
4805 touch_nmi_watchdog();
4806 }
4807 }
4808
4809 for_each_pool(pool, pi) {
4810 struct worker *worker;
4811 bool first = true;
4812
4813 raw_spin_lock_irqsave(&pool->lock, flags);
4814 if (pool->nr_workers == pool->nr_idle)
4815 goto next_pool;
4816
4817 pr_info("pool %d:", pool->id);
4818 pr_cont_pool_info(pool);
4819 pr_cont(" hung=%us workers=%d",
4820 jiffies_to_msecs(jiffies - pool->watchdog_ts) / 1000,
4821 pool->nr_workers);
4822 if (pool->manager)
4823 pr_cont(" manager: %d",
4824 task_pid_nr(pool->manager->task));
4825 list_for_each_entry(worker, &pool->idle_list, entry) {
4826 pr_cont(" %s%d", first ? "idle: " : "",
4827 task_pid_nr(worker->task));
4828 first = false;
4829 }
4830 pr_cont("\n");
4831 next_pool:
4832 raw_spin_unlock_irqrestore(&pool->lock, flags);
4833 /*
4834 * We could be printing a lot from atomic context, e.g.
4835 * sysrq-t -> show_workqueue_state(). Avoid triggering
4836 * hard lockup.
4837 */
4838 touch_nmi_watchdog();
4839 }
4840
4841 rcu_read_unlock();
4842 }
4843
4844 /* used to show worker information through /proc/PID/{comm,stat,status} */
4845 void wq_worker_comm(char *buf, size_t size, struct task_struct *task)
4846 {
4847 int off;
4848
4849 /* always show the actual comm */
4850 off = strscpy(buf, task->comm, size);
4851 if (off < 0)
4852 return;
4853
4854 /* stabilize PF_WQ_WORKER and worker pool association */
4855 mutex_lock(&wq_pool_attach_mutex);
4856
4857 if (task->flags & PF_WQ_WORKER) {
4858 struct worker *worker = kthread_data(task);
4859 struct worker_pool *pool = worker->pool;
4860
4861 if (pool) {
4862 raw_spin_lock_irq(&pool->lock);
4863 /*
4864 * ->desc tracks information (wq name or
4865 * set_worker_desc()) for the latest execution. If
4866 * current, prepend '+', otherwise '-'.
4867 */
4868 if (worker->desc[0] != '\0') {
4869 if (worker->current_work)
4870 scnprintf(buf + off, size - off, "+%s",
4871 worker->desc);
4872 else
4873 scnprintf(buf + off, size - off, "-%s",
4874 worker->desc);
4875 }
4876 raw_spin_unlock_irq(&pool->lock);
4877 }
4878 }
4879
4880 mutex_unlock(&wq_pool_attach_mutex);
4881 }
4882
4883 #ifdef CONFIG_SMP
4884
4885 /*
4886 * CPU hotplug.
4887 *
4888 * There are two challenges in supporting CPU hotplug. Firstly, there
4889 * are a lot of assumptions on strong associations among work, pwq and
4890 * pool which make migrating pending and scheduled works very
4891 * difficult to implement without impacting hot paths. Secondly,
4892 * worker pools serve mix of short, long and very long running works making
4893 * blocked draining impractical.
4894 *
4895 * This is solved by allowing the pools to be disassociated from the CPU
4896 * running as an unbound one and allowing it to be reattached later if the
4897 * cpu comes back online.
4898 */
4899
4900 static void unbind_workers(int cpu)
4901 {
4902 struct worker_pool *pool;
4903 struct worker *worker;
4904
4905 for_each_cpu_worker_pool(pool, cpu) {
4906 mutex_lock(&wq_pool_attach_mutex);
4907 raw_spin_lock_irq(&pool->lock);
4908
4909 /*
4910 * We've blocked all attach/detach operations. Make all workers
4911 * unbound and set DISASSOCIATED. Before this, all workers
4912 * except for the ones which are still executing works from
4913 * before the last CPU down must be on the cpu. After
4914 * this, they may become diasporas.
4915 */
4916 for_each_pool_worker(worker, pool)
4917 worker->flags |= WORKER_UNBOUND;
4918
4919 pool->flags |= POOL_DISASSOCIATED;
4920
4921 raw_spin_unlock_irq(&pool->lock);
4922
4923 for_each_pool_worker(worker, pool) {
4924 kthread_set_per_cpu(worker->task, -1);
4925 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, cpu_possible_mask) < 0);
4926 }
4927
4928 mutex_unlock(&wq_pool_attach_mutex);
4929
4930 /*
4931 * Call schedule() so that we cross rq->lock and thus can
4932 * guarantee sched callbacks see the %WORKER_UNBOUND flag.
4933 * This is necessary as scheduler callbacks may be invoked
4934 * from other cpus.
4935 */
4936 schedule();
4937
4938 /*
4939 * Sched callbacks are disabled now. Zap nr_running.
4940 * After this, nr_running stays zero and need_more_worker()
4941 * and keep_working() are always true as long as the
4942 * worklist is not empty. This pool now behaves as an
4943 * unbound (in terms of concurrency management) pool which
4944 * are served by workers tied to the pool.
4945 */
4946 atomic_set(&pool->nr_running, 0);
4947
4948 /*
4949 * With concurrency management just turned off, a busy
4950 * worker blocking could lead to lengthy stalls. Kick off
4951 * unbound chain execution of currently pending work items.
4952 */
4953 raw_spin_lock_irq(&pool->lock);
4954 wake_up_worker(pool);
4955 raw_spin_unlock_irq(&pool->lock);
4956 }
4957 }
4958
4959 /**
4960 * rebind_workers - rebind all workers of a pool to the associated CPU
4961 * @pool: pool of interest
4962 *
4963 * @pool->cpu is coming online. Rebind all workers to the CPU.
4964 */
4965 static void rebind_workers(struct worker_pool *pool)
4966 {
4967 struct worker *worker;
4968
4969 lockdep_assert_held(&wq_pool_attach_mutex);
4970
4971 /*
4972 * Restore CPU affinity of all workers. As all idle workers should
4973 * be on the run-queue of the associated CPU before any local
4974 * wake-ups for concurrency management happen, restore CPU affinity
4975 * of all workers first and then clear UNBOUND. As we're called
4976 * from CPU_ONLINE, the following shouldn't fail.
4977 */
4978 for_each_pool_worker(worker, pool) {
4979 kthread_set_per_cpu(worker->task, pool->cpu);
4980 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
4981 pool->attrs->cpumask) < 0);
4982 }
4983
4984 raw_spin_lock_irq(&pool->lock);
4985
4986 pool->flags &= ~POOL_DISASSOCIATED;
4987
4988 for_each_pool_worker(worker, pool) {
4989 unsigned int worker_flags = worker->flags;
4990
4991 /*
4992 * A bound idle worker should actually be on the runqueue
4993 * of the associated CPU for local wake-ups targeting it to
4994 * work. Kick all idle workers so that they migrate to the
4995 * associated CPU. Doing this in the same loop as
4996 * replacing UNBOUND with REBOUND is safe as no worker will
4997 * be bound before @pool->lock is released.
4998 */
4999 if (worker_flags & WORKER_IDLE)
5000 wake_up_process(worker->task);
5001
5002 /*
5003 * We want to clear UNBOUND but can't directly call
5004 * worker_clr_flags() or adjust nr_running. Atomically
5005 * replace UNBOUND with another NOT_RUNNING flag REBOUND.
5006 * @worker will clear REBOUND using worker_clr_flags() when
5007 * it initiates the next execution cycle thus restoring
5008 * concurrency management. Note that when or whether
5009 * @worker clears REBOUND doesn't affect correctness.
5010 *
5011 * WRITE_ONCE() is necessary because @worker->flags may be
5012 * tested without holding any lock in
5013 * wq_worker_running(). Without it, NOT_RUNNING test may
5014 * fail incorrectly leading to premature concurrency
5015 * management operations.
5016 */
5017 WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND));
5018 worker_flags |= WORKER_REBOUND;
5019 worker_flags &= ~WORKER_UNBOUND;
5020 WRITE_ONCE(worker->flags, worker_flags);
5021 }
5022
5023 raw_spin_unlock_irq(&pool->lock);
5024 }
5025
5026 /**
5027 * restore_unbound_workers_cpumask - restore cpumask of unbound workers
5028 * @pool: unbound pool of interest
5029 * @cpu: the CPU which is coming up
5030 *
5031 * An unbound pool may end up with a cpumask which doesn't have any online
5032 * CPUs. When a worker of such pool get scheduled, the scheduler resets
5033 * its cpus_allowed. If @cpu is in @pool's cpumask which didn't have any
5034 * online CPU before, cpus_allowed of all its workers should be restored.
5035 */
5036 static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu)
5037 {
5038 static cpumask_t cpumask;
5039 struct worker *worker;
5040
5041 lockdep_assert_held(&wq_pool_attach_mutex);
5042
5043 /* is @cpu allowed for @pool? */
5044 if (!cpumask_test_cpu(cpu, pool->attrs->cpumask))
5045 return;
5046
5047 cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask);
5048
5049 /* as we're called from CPU_ONLINE, the following shouldn't fail */
5050 for_each_pool_worker(worker, pool)
5051 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, &cpumask) < 0);
5052 }
5053
5054 int workqueue_prepare_cpu(unsigned int cpu)
5055 {
5056 struct worker_pool *pool;
5057
5058 for_each_cpu_worker_pool(pool, cpu) {
5059 if (pool->nr_workers)
5060 continue;
5061 if (!create_worker(pool))
5062 return -ENOMEM;
5063 }
5064 return 0;
5065 }
5066
5067 int workqueue_online_cpu(unsigned int cpu)
5068 {
5069 struct worker_pool *pool;
5070 struct workqueue_struct *wq;
5071 int pi;
5072
5073 mutex_lock(&wq_pool_mutex);
5074
5075 for_each_pool(pool, pi) {
5076 mutex_lock(&wq_pool_attach_mutex);
5077
5078 if (pool->cpu == cpu)
5079 rebind_workers(pool);
5080 else if (pool->cpu < 0)
5081 restore_unbound_workers_cpumask(pool, cpu);
5082
5083 mutex_unlock(&wq_pool_attach_mutex);
5084 }
5085
5086 /* update NUMA affinity of unbound workqueues */
5087 list_for_each_entry(wq, &workqueues, list)
5088 wq_update_unbound_numa(wq, cpu, true);
5089
5090 mutex_unlock(&wq_pool_mutex);
5091 return 0;
5092 }
5093
5094 int workqueue_offline_cpu(unsigned int cpu)
5095 {
5096 struct workqueue_struct *wq;
5097
5098 /* unbinding per-cpu workers should happen on the local CPU */
5099 if (WARN_ON(cpu != smp_processor_id()))
5100 return -1;
5101
5102 unbind_workers(cpu);
5103
5104 /* update NUMA affinity of unbound workqueues */
5105 mutex_lock(&wq_pool_mutex);
5106 list_for_each_entry(wq, &workqueues, list)
5107 wq_update_unbound_numa(wq, cpu, false);
5108 mutex_unlock(&wq_pool_mutex);
5109
5110 return 0;
5111 }
5112
5113 struct work_for_cpu {
5114 struct work_struct work;
5115 long (*fn)(void *);
5116 void *arg;
5117 long ret;
5118 };
5119
5120 static void work_for_cpu_fn(struct work_struct *work)
5121 {
5122 struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);
5123
5124 wfc->ret = wfc->fn(wfc->arg);
5125 }
5126
5127 /**
5128 * work_on_cpu - run a function in thread context on a particular cpu
5129 * @cpu: the cpu to run on
5130 * @fn: the function to run
5131 * @arg: the function arg
5132 *
5133 * It is up to the caller to ensure that the cpu doesn't go offline.
5134 * The caller must not hold any locks which would prevent @fn from completing.
5135 *
5136 * Return: The value @fn returns.
5137 */
5138 long work_on_cpu(int cpu, long (*fn)(void *), void *arg)
5139 {
5140 struct work_for_cpu wfc = { .fn = fn, .arg = arg };
5141
5142 INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn);
5143 schedule_work_on(cpu, &wfc.work);
5144 flush_work(&wfc.work);
5145 destroy_work_on_stack(&wfc.work);
5146 return wfc.ret;
5147 }
5148 EXPORT_SYMBOL_GPL(work_on_cpu);
5149
5150 /**
5151 * work_on_cpu_safe - run a function in thread context on a particular cpu
5152 * @cpu: the cpu to run on
5153 * @fn: the function to run
5154 * @arg: the function argument
5155 *
5156 * Disables CPU hotplug and calls work_on_cpu(). The caller must not hold
5157 * any locks which would prevent @fn from completing.
5158 *
5159 * Return: The value @fn returns.
5160 */
5161 long work_on_cpu_safe(int cpu, long (*fn)(void *), void *arg)
5162 {
5163 long ret = -ENODEV;
5164
5165 get_online_cpus();
5166 if (cpu_online(cpu))
5167 ret = work_on_cpu(cpu, fn, arg);
5168 put_online_cpus();
5169 return ret;
5170 }
5171 EXPORT_SYMBOL_GPL(work_on_cpu_safe);
5172 #endif /* CONFIG_SMP */
5173
5174 #ifdef CONFIG_FREEZER
5175
5176 /**
5177 * freeze_workqueues_begin - begin freezing workqueues
5178 *
5179 * Start freezing workqueues. After this function returns, all freezable
5180 * workqueues will queue new works to their delayed_works list instead of
5181 * pool->worklist.
5182 *
5183 * CONTEXT:
5184 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
5185 */
5186 void freeze_workqueues_begin(void)
5187 {
5188 struct workqueue_struct *wq;
5189 struct pool_workqueue *pwq;
5190
5191 mutex_lock(&wq_pool_mutex);
5192
5193 WARN_ON_ONCE(workqueue_freezing);
5194 workqueue_freezing = true;
5195
5196 list_for_each_entry(wq, &workqueues, list) {
5197 mutex_lock(&wq->mutex);
5198 for_each_pwq(pwq, wq)
5199 pwq_adjust_max_active(pwq);
5200 mutex_unlock(&wq->mutex);
5201 }
5202
5203 mutex_unlock(&wq_pool_mutex);
5204 }
5205
5206 /**
5207 * freeze_workqueues_busy - are freezable workqueues still busy?
5208 *
5209 * Check whether freezing is complete. This function must be called
5210 * between freeze_workqueues_begin() and thaw_workqueues().
5211 *
5212 * CONTEXT:
5213 * Grabs and releases wq_pool_mutex.
5214 *
5215 * Return:
5216 * %true if some freezable workqueues are still busy. %false if freezing
5217 * is complete.
5218 */
5219 bool freeze_workqueues_busy(void)
5220 {
5221 bool busy = false;
5222 struct workqueue_struct *wq;
5223 struct pool_workqueue *pwq;
5224
5225 mutex_lock(&wq_pool_mutex);
5226
5227 WARN_ON_ONCE(!workqueue_freezing);
5228
5229 list_for_each_entry(wq, &workqueues, list) {
5230 if (!(wq->flags & WQ_FREEZABLE))
5231 continue;
5232 /*
5233 * nr_active is monotonically decreasing. It's safe
5234 * to peek without lock.
5235 */
5236 rcu_read_lock();
5237 for_each_pwq(pwq, wq) {
5238 WARN_ON_ONCE(pwq->nr_active < 0);
5239 if (pwq->nr_active) {
5240 busy = true;
5241 rcu_read_unlock();
5242 goto out_unlock;
5243 }
5244 }
5245 rcu_read_unlock();
5246 }
5247 out_unlock:
5248 mutex_unlock(&wq_pool_mutex);
5249 return busy;
5250 }
5251
5252 /**
5253 * thaw_workqueues - thaw workqueues
5254 *
5255 * Thaw workqueues. Normal queueing is restored and all collected
5256 * frozen works are transferred to their respective pool worklists.
5257 *
5258 * CONTEXT:
5259 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
5260 */
5261 void thaw_workqueues(void)
5262 {
5263 struct workqueue_struct *wq;
5264 struct pool_workqueue *pwq;
5265
5266 mutex_lock(&wq_pool_mutex);
5267
5268 if (!workqueue_freezing)
5269 goto out_unlock;
5270
5271 workqueue_freezing = false;
5272
5273 /* restore max_active and repopulate worklist */
5274 list_for_each_entry(wq, &workqueues, list) {
5275 mutex_lock(&wq->mutex);
5276 for_each_pwq(pwq, wq)
5277 pwq_adjust_max_active(pwq);
5278 mutex_unlock(&wq->mutex);
5279 }
5280
5281 out_unlock:
5282 mutex_unlock(&wq_pool_mutex);
5283 }
5284 #endif /* CONFIG_FREEZER */
5285
5286 static int workqueue_apply_unbound_cpumask(void)
5287 {
5288 LIST_HEAD(ctxs);
5289 int ret = 0;
5290 struct workqueue_struct *wq;
5291 struct apply_wqattrs_ctx *ctx, *n;
5292
5293 lockdep_assert_held(&wq_pool_mutex);
5294
5295 list_for_each_entry(wq, &workqueues, list) {
5296 if (!(wq->flags & WQ_UNBOUND))
5297 continue;
5298 /* creating multiple pwqs breaks ordering guarantee */
5299 if (wq->flags & __WQ_ORDERED)
5300 continue;
5301
5302 ctx = apply_wqattrs_prepare(wq, wq->unbound_attrs);
5303 if (!ctx) {
5304 ret = -ENOMEM;
5305 break;
5306 }
5307
5308 list_add_tail(&ctx->list, &ctxs);
5309 }
5310
5311 list_for_each_entry_safe(ctx, n, &ctxs, list) {
5312 if (!ret)
5313 apply_wqattrs_commit(ctx);
5314 apply_wqattrs_cleanup(ctx);
5315 }
5316
5317 return ret;
5318 }
5319
5320 /**
5321 * workqueue_set_unbound_cpumask - Set the low-level unbound cpumask
5322 * @cpumask: the cpumask to set
5323 *
5324 * The low-level workqueues cpumask is a global cpumask that limits
5325 * the affinity of all unbound workqueues. This function check the @cpumask
5326 * and apply it to all unbound workqueues and updates all pwqs of them.
5327 *
5328 * Retun: 0 - Success
5329 * -EINVAL - Invalid @cpumask
5330 * -ENOMEM - Failed to allocate memory for attrs or pwqs.
5331 */
5332 int workqueue_set_unbound_cpumask(cpumask_var_t cpumask)
5333 {
5334 int ret = -EINVAL;
5335 cpumask_var_t saved_cpumask;
5336
5337 if (!zalloc_cpumask_var(&saved_cpumask, GFP_KERNEL))
5338 return -ENOMEM;
5339
5340 /*
5341 * Not excluding isolated cpus on purpose.
5342 * If the user wishes to include them, we allow that.
5343 */
5344 cpumask_and(cpumask, cpumask, cpu_possible_mask);
5345 if (!cpumask_empty(cpumask)) {
5346 apply_wqattrs_lock();
5347
5348 /* save the old wq_unbound_cpumask. */
5349 cpumask_copy(saved_cpumask, wq_unbound_cpumask);
5350
5351 /* update wq_unbound_cpumask at first and apply it to wqs. */
5352 cpumask_copy(wq_unbound_cpumask, cpumask);
5353 ret = workqueue_apply_unbound_cpumask();
5354
5355 /* restore the wq_unbound_cpumask when failed. */
5356 if (ret < 0)
5357 cpumask_copy(wq_unbound_cpumask, saved_cpumask);
5358
5359 apply_wqattrs_unlock();
5360 }
5361
5362 free_cpumask_var(saved_cpumask);
5363 return ret;
5364 }
5365
5366 #ifdef CONFIG_SYSFS
5367 /*
5368 * Workqueues with WQ_SYSFS flag set is visible to userland via
5369 * /sys/bus/workqueue/devices/WQ_NAME. All visible workqueues have the
5370 * following attributes.
5371 *
5372 * per_cpu RO bool : whether the workqueue is per-cpu or unbound
5373 * max_active RW int : maximum number of in-flight work items
5374 *
5375 * Unbound workqueues have the following extra attributes.
5376 *
5377 * pool_ids RO int : the associated pool IDs for each node
5378 * nice RW int : nice value of the workers
5379 * cpumask RW mask : bitmask of allowed CPUs for the workers
5380 * numa RW bool : whether enable NUMA affinity
5381 */
5382 struct wq_device {
5383 struct workqueue_struct *wq;
5384 struct device dev;
5385 };
5386
5387 static struct workqueue_struct *dev_to_wq(struct device *dev)
5388 {
5389 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
5390
5391 return wq_dev->wq;
5392 }
5393
5394 static ssize_t per_cpu_show(struct device *dev, struct device_attribute *attr,
5395 char *buf)
5396 {
5397 struct workqueue_struct *wq = dev_to_wq(dev);
5398
5399 return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND));
5400 }
5401 static DEVICE_ATTR_RO(per_cpu);
5402
5403 static ssize_t max_active_show(struct device *dev,
5404 struct device_attribute *attr, char *buf)
5405 {
5406 struct workqueue_struct *wq = dev_to_wq(dev);
5407
5408 return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active);
5409 }
5410
5411 static ssize_t max_active_store(struct device *dev,
5412 struct device_attribute *attr, const char *buf,
5413 size_t count)
5414 {
5415 struct workqueue_struct *wq = dev_to_wq(dev);
5416 int val;
5417
5418 if (sscanf(buf, "%d", &val) != 1 || val <= 0)
5419 return -EINVAL;
5420
5421 workqueue_set_max_active(wq, val);
5422 return count;
5423 }
5424 static DEVICE_ATTR_RW(max_active);
5425
5426 static struct attribute *wq_sysfs_attrs[] = {
5427 &dev_attr_per_cpu.attr,
5428 &dev_attr_max_active.attr,
5429 NULL,
5430 };
5431 ATTRIBUTE_GROUPS(wq_sysfs);
5432
5433 static ssize_t wq_pool_ids_show(struct device *dev,
5434 struct device_attribute *attr, char *buf)
5435 {
5436 struct workqueue_struct *wq = dev_to_wq(dev);
5437 const char *delim = "";
5438 int node, written = 0;
5439
5440 get_online_cpus();
5441 rcu_read_lock();
5442 for_each_node(node) {
5443 written += scnprintf(buf + written, PAGE_SIZE - written,
5444 "%s%d:%d", delim, node,
5445 unbound_pwq_by_node(wq, node)->pool->id);
5446 delim = " ";
5447 }
5448 written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
5449 rcu_read_unlock();
5450 put_online_cpus();
5451
5452 return written;
5453 }
5454
5455 static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr,
5456 char *buf)
5457 {
5458 struct workqueue_struct *wq = dev_to_wq(dev);
5459 int written;
5460
5461 mutex_lock(&wq->mutex);
5462 written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice);
5463 mutex_unlock(&wq->mutex);
5464
5465 return written;
5466 }
5467
5468 /* prepare workqueue_attrs for sysfs store operations */
5469 static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq)
5470 {
5471 struct workqueue_attrs *attrs;
5472
5473 lockdep_assert_held(&wq_pool_mutex);
5474
5475 attrs = alloc_workqueue_attrs();
5476 if (!attrs)
5477 return NULL;
5478
5479 copy_workqueue_attrs(attrs, wq->unbound_attrs);
5480 return attrs;
5481 }
5482
5483 static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr,
5484 const char *buf, size_t count)
5485 {
5486 struct workqueue_struct *wq = dev_to_wq(dev);
5487 struct workqueue_attrs *attrs;
5488 int ret = -ENOMEM;
5489
5490 apply_wqattrs_lock();
5491
5492 attrs = wq_sysfs_prep_attrs(wq);
5493 if (!attrs)
5494 goto out_unlock;
5495
5496 if (sscanf(buf, "%d", &attrs->nice) == 1 &&
5497 attrs->nice >= MIN_NICE && attrs->nice <= MAX_NICE)
5498 ret = apply_workqueue_attrs_locked(wq, attrs);
5499 else
5500 ret = -EINVAL;
5501
5502 out_unlock:
5503 apply_wqattrs_unlock();
5504 free_workqueue_attrs(attrs);
5505 return ret ?: count;
5506 }
5507
5508 static ssize_t wq_cpumask_show(struct device *dev,
5509 struct device_attribute *attr, char *buf)
5510 {
5511 struct workqueue_struct *wq = dev_to_wq(dev);
5512 int written;
5513
5514 mutex_lock(&wq->mutex);
5515 written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
5516 cpumask_pr_args(wq->unbound_attrs->cpumask));
5517 mutex_unlock(&wq->mutex);
5518 return written;
5519 }
5520
5521 static ssize_t wq_cpumask_store(struct device *dev,
5522 struct device_attribute *attr,
5523 const char *buf, size_t count)
5524 {
5525 struct workqueue_struct *wq = dev_to_wq(dev);
5526 struct workqueue_attrs *attrs;
5527 int ret = -ENOMEM;
5528
5529 apply_wqattrs_lock();
5530
5531 attrs = wq_sysfs_prep_attrs(wq);
5532 if (!attrs)
5533 goto out_unlock;
5534
5535 ret = cpumask_parse(buf, attrs->cpumask);
5536 if (!ret)
5537 ret = apply_workqueue_attrs_locked(wq, attrs);
5538
5539 out_unlock:
5540 apply_wqattrs_unlock();
5541 free_workqueue_attrs(attrs);
5542 return ret ?: count;
5543 }
5544
5545 static ssize_t wq_numa_show(struct device *dev, struct device_attribute *attr,
5546 char *buf)
5547 {
5548 struct workqueue_struct *wq = dev_to_wq(dev);
5549 int written;
5550
5551 mutex_lock(&wq->mutex);
5552 written = scnprintf(buf, PAGE_SIZE, "%d\n",
5553 !wq->unbound_attrs->no_numa);
5554 mutex_unlock(&wq->mutex);
5555
5556 return written;
5557 }
5558
5559 static ssize_t wq_numa_store(struct device *dev, struct device_attribute *attr,
5560 const char *buf, size_t count)
5561 {
5562 struct workqueue_struct *wq = dev_to_wq(dev);
5563 struct workqueue_attrs *attrs;
5564 int v, ret = -ENOMEM;
5565
5566 apply_wqattrs_lock();
5567
5568 attrs = wq_sysfs_prep_attrs(wq);
5569 if (!attrs)
5570 goto out_unlock;
5571
5572 ret = -EINVAL;
5573 if (sscanf(buf, "%d", &v) == 1) {
5574 attrs->no_numa = !v;
5575 ret = apply_workqueue_attrs_locked(wq, attrs);
5576 }
5577
5578 out_unlock:
5579 apply_wqattrs_unlock();
5580 free_workqueue_attrs(attrs);
5581 return ret ?: count;
5582 }
5583
5584 static struct device_attribute wq_sysfs_unbound_attrs[] = {
5585 __ATTR(pool_ids, 0444, wq_pool_ids_show, NULL),
5586 __ATTR(nice, 0644, wq_nice_show, wq_nice_store),
5587 __ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store),
5588 __ATTR(numa, 0644, wq_numa_show, wq_numa_store),
5589 __ATTR_NULL,
5590 };
5591
5592 static struct bus_type wq_subsys = {
5593 .name = "workqueue",
5594 .dev_groups = wq_sysfs_groups,
5595 };
5596
5597 static ssize_t wq_unbound_cpumask_show(struct device *dev,
5598 struct device_attribute *attr, char *buf)
5599 {
5600 int written;
5601
5602 mutex_lock(&wq_pool_mutex);
5603 written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
5604 cpumask_pr_args(wq_unbound_cpumask));
5605 mutex_unlock(&wq_pool_mutex);
5606
5607 return written;
5608 }
5609
5610 static ssize_t wq_unbound_cpumask_store(struct device *dev,
5611 struct device_attribute *attr, const char *buf, size_t count)
5612 {
5613 cpumask_var_t cpumask;
5614 int ret;
5615
5616 if (!zalloc_cpumask_var(&cpumask, GFP_KERNEL))
5617 return -ENOMEM;
5618
5619 ret = cpumask_parse(buf, cpumask);
5620 if (!ret)
5621 ret = workqueue_set_unbound_cpumask(cpumask);
5622
5623 free_cpumask_var(cpumask);
5624 return ret ? ret : count;
5625 }
5626
5627 static struct device_attribute wq_sysfs_cpumask_attr =
5628 __ATTR(cpumask, 0644, wq_unbound_cpumask_show,
5629 wq_unbound_cpumask_store);
5630
5631 static int __init wq_sysfs_init(void)
5632 {
5633 int err;
5634
5635 err = subsys_virtual_register(&wq_subsys, NULL);
5636 if (err)
5637 return err;
5638
5639 return device_create_file(wq_subsys.dev_root, &wq_sysfs_cpumask_attr);
5640 }
5641 core_initcall(wq_sysfs_init);
5642
5643 static void wq_device_release(struct device *dev)
5644 {
5645 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
5646
5647 kfree(wq_dev);
5648 }
5649
5650 /**
5651 * workqueue_sysfs_register - make a workqueue visible in sysfs
5652 * @wq: the workqueue to register
5653 *
5654 * Expose @wq in sysfs under /sys/bus/workqueue/devices.
5655 * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set
5656 * which is the preferred method.
5657 *
5658 * Workqueue user should use this function directly iff it wants to apply
5659 * workqueue_attrs before making the workqueue visible in sysfs; otherwise,
5660 * apply_workqueue_attrs() may race against userland updating the
5661 * attributes.
5662 *
5663 * Return: 0 on success, -errno on failure.
5664 */
5665 int workqueue_sysfs_register(struct workqueue_struct *wq)
5666 {
5667 struct wq_device *wq_dev;
5668 int ret;
5669
5670 /*
5671 * Adjusting max_active or creating new pwqs by applying
5672 * attributes breaks ordering guarantee. Disallow exposing ordered
5673 * workqueues.
5674 */
5675 if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
5676 return -EINVAL;
5677
5678 wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL);
5679 if (!wq_dev)
5680 return -ENOMEM;
5681
5682 wq_dev->wq = wq;
5683 wq_dev->dev.bus = &wq_subsys;
5684 wq_dev->dev.release = wq_device_release;
5685 dev_set_name(&wq_dev->dev, "%s", wq->name);
5686
5687 /*
5688 * unbound_attrs are created separately. Suppress uevent until
5689 * everything is ready.
5690 */
5691 dev_set_uevent_suppress(&wq_dev->dev, true);
5692
5693 ret = device_register(&wq_dev->dev);
5694 if (ret) {
5695 put_device(&wq_dev->dev);
5696 wq->wq_dev = NULL;
5697 return ret;
5698 }
5699
5700 if (wq->flags & WQ_UNBOUND) {
5701 struct device_attribute *attr;
5702
5703 for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) {
5704 ret = device_create_file(&wq_dev->dev, attr);
5705 if (ret) {
5706 device_unregister(&wq_dev->dev);
5707 wq->wq_dev = NULL;
5708 return ret;
5709 }
5710 }
5711 }
5712
5713 dev_set_uevent_suppress(&wq_dev->dev, false);
5714 kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD);
5715 return 0;
5716 }
5717
5718 /**
5719 * workqueue_sysfs_unregister - undo workqueue_sysfs_register()
5720 * @wq: the workqueue to unregister
5721 *
5722 * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister.
5723 */
5724 static void workqueue_sysfs_unregister(struct workqueue_struct *wq)
5725 {
5726 struct wq_device *wq_dev = wq->wq_dev;
5727
5728 if (!wq->wq_dev)
5729 return;
5730
5731 wq->wq_dev = NULL;
5732 device_unregister(&wq_dev->dev);
5733 }
5734 #else /* CONFIG_SYSFS */
5735 static void workqueue_sysfs_unregister(struct workqueue_struct *wq) { }
5736 #endif /* CONFIG_SYSFS */
5737
5738 /*
5739 * Workqueue watchdog.
5740 *
5741 * Stall may be caused by various bugs - missing WQ_MEM_RECLAIM, illegal
5742 * flush dependency, a concurrency managed work item which stays RUNNING
5743 * indefinitely. Workqueue stalls can be very difficult to debug as the
5744 * usual warning mechanisms don't trigger and internal workqueue state is
5745 * largely opaque.
5746 *
5747 * Workqueue watchdog monitors all worker pools periodically and dumps
5748 * state if some pools failed to make forward progress for a while where
5749 * forward progress is defined as the first item on ->worklist changing.
5750 *
5751 * This mechanism is controlled through the kernel parameter
5752 * "workqueue.watchdog_thresh" which can be updated at runtime through the
5753 * corresponding sysfs parameter file.
5754 */
5755 #ifdef CONFIG_WQ_WATCHDOG
5756
5757 static unsigned long wq_watchdog_thresh = 30;
5758 static struct timer_list wq_watchdog_timer;
5759
5760 static unsigned long wq_watchdog_touched = INITIAL_JIFFIES;
5761 static DEFINE_PER_CPU(unsigned long, wq_watchdog_touched_cpu) = INITIAL_JIFFIES;
5762
5763 static void wq_watchdog_reset_touched(void)
5764 {
5765 int cpu;
5766
5767 wq_watchdog_touched = jiffies;
5768 for_each_possible_cpu(cpu)
5769 per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
5770 }
5771
5772 static void wq_watchdog_timer_fn(struct timer_list *unused)
5773 {
5774 unsigned long thresh = READ_ONCE(wq_watchdog_thresh) * HZ;
5775 bool lockup_detected = false;
5776 unsigned long now = jiffies;
5777 struct worker_pool *pool;
5778 int pi;
5779
5780 if (!thresh)
5781 return;
5782
5783 rcu_read_lock();
5784
5785 for_each_pool(pool, pi) {
5786 unsigned long pool_ts, touched, ts;
5787
5788 if (list_empty(&pool->worklist))
5789 continue;
5790
5791 /*
5792 * If a virtual machine is stopped by the host it can look to
5793 * the watchdog like a stall.
5794 */
5795 kvm_check_and_clear_guest_paused();
5796
5797 /* get the latest of pool and touched timestamps */
5798 if (pool->cpu >= 0)
5799 touched = READ_ONCE(per_cpu(wq_watchdog_touched_cpu, pool->cpu));
5800 else
5801 touched = READ_ONCE(wq_watchdog_touched);
5802 pool_ts = READ_ONCE(pool->watchdog_ts);
5803
5804 if (time_after(pool_ts, touched))
5805 ts = pool_ts;
5806 else
5807 ts = touched;
5808
5809 /* did we stall? */
5810 if (time_after(now, ts + thresh)) {
5811 lockup_detected = true;
5812 pr_emerg("BUG: workqueue lockup - pool");
5813 pr_cont_pool_info(pool);
5814 pr_cont(" stuck for %us!\n",
5815 jiffies_to_msecs(now - pool_ts) / 1000);
5816 }
5817 }
5818
5819 rcu_read_unlock();
5820
5821 if (lockup_detected)
5822 show_workqueue_state();
5823
5824 wq_watchdog_reset_touched();
5825 mod_timer(&wq_watchdog_timer, jiffies + thresh);
5826 }
5827
5828 notrace void wq_watchdog_touch(int cpu)
5829 {
5830 if (cpu >= 0)
5831 per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
5832
5833 wq_watchdog_touched = jiffies;
5834 }
5835
5836 static void wq_watchdog_set_thresh(unsigned long thresh)
5837 {
5838 wq_watchdog_thresh = 0;
5839 del_timer_sync(&wq_watchdog_timer);
5840
5841 if (thresh) {
5842 wq_watchdog_thresh = thresh;
5843 wq_watchdog_reset_touched();
5844 mod_timer(&wq_watchdog_timer, jiffies + thresh * HZ);
5845 }
5846 }
5847
5848 static int wq_watchdog_param_set_thresh(const char *val,
5849 const struct kernel_param *kp)
5850 {
5851 unsigned long thresh;
5852 int ret;
5853
5854 ret = kstrtoul(val, 0, &thresh);
5855 if (ret)
5856 return ret;
5857
5858 if (system_wq)
5859 wq_watchdog_set_thresh(thresh);
5860 else
5861 wq_watchdog_thresh = thresh;
5862
5863 return 0;
5864 }
5865
5866 static const struct kernel_param_ops wq_watchdog_thresh_ops = {
5867 .set = wq_watchdog_param_set_thresh,
5868 .get = param_get_ulong,
5869 };
5870
5871 module_param_cb(watchdog_thresh, &wq_watchdog_thresh_ops, &wq_watchdog_thresh,
5872 0644);
5873
5874 static void wq_watchdog_init(void)
5875 {
5876 timer_setup(&wq_watchdog_timer, wq_watchdog_timer_fn, TIMER_DEFERRABLE);
5877 wq_watchdog_set_thresh(wq_watchdog_thresh);
5878 }
5879
5880 #else /* CONFIG_WQ_WATCHDOG */
5881
5882 static inline void wq_watchdog_init(void) { }
5883
5884 #endif /* CONFIG_WQ_WATCHDOG */
5885
5886 static void __init wq_numa_init(void)
5887 {
5888 cpumask_var_t *tbl;
5889 int node, cpu;
5890
5891 if (num_possible_nodes() <= 1)
5892 return;
5893
5894 if (wq_disable_numa) {
5895 pr_info("workqueue: NUMA affinity support disabled\n");
5896 return;
5897 }
5898
5899 wq_update_unbound_numa_attrs_buf = alloc_workqueue_attrs();
5900 BUG_ON(!wq_update_unbound_numa_attrs_buf);
5901
5902 /*
5903 * We want masks of possible CPUs of each node which isn't readily
5904 * available. Build one from cpu_to_node() which should have been
5905 * fully initialized by now.
5906 */
5907 tbl = kcalloc(nr_node_ids, sizeof(tbl[0]), GFP_KERNEL);
5908 BUG_ON(!tbl);
5909
5910 for_each_node(node)
5911 BUG_ON(!zalloc_cpumask_var_node(&tbl[node], GFP_KERNEL,
5912 node_online(node) ? node : NUMA_NO_NODE));
5913
5914 for_each_possible_cpu(cpu) {
5915 node = cpu_to_node(cpu);
5916 if (WARN_ON(node == NUMA_NO_NODE)) {
5917 pr_warn("workqueue: NUMA node mapping not available for cpu%d, disabling NUMA support\n", cpu);
5918 /* happens iff arch is bonkers, let's just proceed */
5919 return;
5920 }
5921 cpumask_set_cpu(cpu, tbl[node]);
5922 }
5923
5924 wq_numa_possible_cpumask = tbl;
5925 wq_numa_enabled = true;
5926 }
5927
5928 /**
5929 * workqueue_init_early - early init for workqueue subsystem
5930 *
5931 * This is the first half of two-staged workqueue subsystem initialization
5932 * and invoked as soon as the bare basics - memory allocation, cpumasks and
5933 * idr are up. It sets up all the data structures and system workqueues
5934 * and allows early boot code to create workqueues and queue/cancel work
5935 * items. Actual work item execution starts only after kthreads can be
5936 * created and scheduled right before early initcalls.
5937 */
5938 void __init workqueue_init_early(void)
5939 {
5940 int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL };
5941 int hk_flags = HK_FLAG_DOMAIN | HK_FLAG_WQ;
5942 int i, cpu;
5943
5944 BUILD_BUG_ON(__alignof__(struct pool_workqueue) < __alignof__(long long));
5945
5946 BUG_ON(!alloc_cpumask_var(&wq_unbound_cpumask, GFP_KERNEL));
5947 cpumask_copy(wq_unbound_cpumask, housekeeping_cpumask(hk_flags));
5948
5949 pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC);
5950
5951 /* initialize CPU pools */
5952 for_each_possible_cpu(cpu) {
5953 struct worker_pool *pool;
5954
5955 i = 0;
5956 for_each_cpu_worker_pool(pool, cpu) {
5957 BUG_ON(init_worker_pool(pool));
5958 pool->cpu = cpu;
5959 cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu));
5960 pool->attrs->nice = std_nice[i++];
5961 pool->node = cpu_to_node(cpu);
5962
5963 /* alloc pool ID */
5964 mutex_lock(&wq_pool_mutex);
5965 BUG_ON(worker_pool_assign_id(pool));
5966 mutex_unlock(&wq_pool_mutex);
5967 }
5968 }
5969
5970 /* create default unbound and ordered wq attrs */
5971 for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
5972 struct workqueue_attrs *attrs;
5973
5974 BUG_ON(!(attrs = alloc_workqueue_attrs()));
5975 attrs->nice = std_nice[i];
5976 unbound_std_wq_attrs[i] = attrs;
5977
5978 /*
5979 * An ordered wq should have only one pwq as ordering is
5980 * guaranteed by max_active which is enforced by pwqs.
5981 * Turn off NUMA so that dfl_pwq is used for all nodes.
5982 */
5983 BUG_ON(!(attrs = alloc_workqueue_attrs()));
5984 attrs->nice = std_nice[i];
5985 attrs->no_numa = true;
5986 ordered_wq_attrs[i] = attrs;
5987 }
5988
5989 system_wq = alloc_workqueue("events", 0, 0);
5990 system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
5991 system_long_wq = alloc_workqueue("events_long", 0, 0);
5992 system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
5993 WQ_UNBOUND_MAX_ACTIVE);
5994 system_freezable_wq = alloc_workqueue("events_freezable",
5995 WQ_FREEZABLE, 0);
5996 system_power_efficient_wq = alloc_workqueue("events_power_efficient",
5997 WQ_POWER_EFFICIENT, 0);
5998 system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_power_efficient",
5999 WQ_FREEZABLE | WQ_POWER_EFFICIENT,
6000 0);
6001 BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
6002 !system_unbound_wq || !system_freezable_wq ||
6003 !system_power_efficient_wq ||
6004 !system_freezable_power_efficient_wq);
6005 }
6006
6007 /**
6008 * workqueue_init - bring workqueue subsystem fully online
6009 *
6010 * This is the latter half of two-staged workqueue subsystem initialization
6011 * and invoked as soon as kthreads can be created and scheduled.
6012 * Workqueues have been created and work items queued on them, but there
6013 * are no kworkers executing the work items yet. Populate the worker pools
6014 * with the initial workers and enable future kworker creations.
6015 */
6016 void __init workqueue_init(void)
6017 {
6018 struct workqueue_struct *wq;
6019 struct worker_pool *pool;
6020 int cpu, bkt;
6021
6022 /*
6023 * It'd be simpler to initialize NUMA in workqueue_init_early() but
6024 * CPU to node mapping may not be available that early on some
6025 * archs such as power and arm64. As per-cpu pools created
6026 * previously could be missing node hint and unbound pools NUMA
6027 * affinity, fix them up.
6028 *
6029 * Also, while iterating workqueues, create rescuers if requested.
6030 */
6031 wq_numa_init();
6032
6033 mutex_lock(&wq_pool_mutex);
6034
6035 for_each_possible_cpu(cpu) {
6036 for_each_cpu_worker_pool(pool, cpu) {
6037 pool->node = cpu_to_node(cpu);
6038 }
6039 }
6040
6041 list_for_each_entry(wq, &workqueues, list) {
6042 wq_update_unbound_numa(wq, smp_processor_id(), true);
6043 WARN(init_rescuer(wq),
6044 "workqueue: failed to create early rescuer for %s",
6045 wq->name);
6046 }
6047
6048 mutex_unlock(&wq_pool_mutex);
6049
6050 /* create the initial workers */
6051 for_each_online_cpu(cpu) {
6052 for_each_cpu_worker_pool(pool, cpu) {
6053 pool->flags &= ~POOL_DISASSOCIATED;
6054 BUG_ON(!create_worker(pool));
6055 }
6056 }
6057
6058 hash_for_each(unbound_pool_hash, bkt, pool, hash_node)
6059 BUG_ON(!create_worker(pool));
6060
6061 wq_online = true;
6062 wq_watchdog_init();
6063 }