]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - kernel/workqueue.c
flush_workqueue(): use preempt_disable to hold off cpu hotplug
[mirror_ubuntu-bionic-kernel.git] / kernel / workqueue.c
1 /*
2 * linux/kernel/workqueue.c
3 *
4 * Generic mechanism for defining kernel helper threads for running
5 * arbitrary tasks in process context.
6 *
7 * Started by Ingo Molnar, Copyright (C) 2002
8 *
9 * Derived from the taskqueue/keventd code by:
10 *
11 * David Woodhouse <dwmw2@infradead.org>
12 * Andrew Morton <andrewm@uow.edu.au>
13 * Kai Petzke <wpp@marie.physik.tu-berlin.de>
14 * Theodore Ts'o <tytso@mit.edu>
15 *
16 * Made to use alloc_percpu by Christoph Lameter <clameter@sgi.com>.
17 */
18
19 #include <linux/module.h>
20 #include <linux/kernel.h>
21 #include <linux/sched.h>
22 #include <linux/init.h>
23 #include <linux/signal.h>
24 #include <linux/completion.h>
25 #include <linux/workqueue.h>
26 #include <linux/slab.h>
27 #include <linux/cpu.h>
28 #include <linux/notifier.h>
29 #include <linux/kthread.h>
30 #include <linux/hardirq.h>
31 #include <linux/mempolicy.h>
32 #include <linux/freezer.h>
33 #include <linux/kallsyms.h>
34 #include <linux/debug_locks.h>
35
36 /*
37 * The per-CPU workqueue (if single thread, we always use the first
38 * possible cpu).
39 */
40 struct cpu_workqueue_struct {
41
42 spinlock_t lock;
43
44 struct list_head worklist;
45 wait_queue_head_t more_work;
46
47 struct workqueue_struct *wq;
48 struct task_struct *thread;
49 struct work_struct *current_work;
50
51 int run_depth; /* Detect run_workqueue() recursion depth */
52
53 int freezeable; /* Freeze the thread during suspend */
54 } ____cacheline_aligned;
55
56 /*
57 * The externally visible workqueue abstraction is an array of
58 * per-CPU workqueues:
59 */
60 struct workqueue_struct {
61 struct cpu_workqueue_struct *cpu_wq;
62 const char *name;
63 struct list_head list; /* Empty if single thread */
64 };
65
66 /* All the per-cpu workqueues on the system, for hotplug cpu to add/remove
67 threads to each one as cpus come/go. */
68 static DEFINE_MUTEX(workqueue_mutex);
69 static LIST_HEAD(workqueues);
70
71 static int singlethread_cpu;
72
73 /* If it's single threaded, it isn't in the list of workqueues. */
74 static inline int is_single_threaded(struct workqueue_struct *wq)
75 {
76 return list_empty(&wq->list);
77 }
78
79 /*
80 * Set the workqueue on which a work item is to be run
81 * - Must *only* be called if the pending flag is set
82 */
83 static inline void set_wq_data(struct work_struct *work, void *wq)
84 {
85 unsigned long new;
86
87 BUG_ON(!work_pending(work));
88
89 new = (unsigned long) wq | (1UL << WORK_STRUCT_PENDING);
90 new |= WORK_STRUCT_FLAG_MASK & *work_data_bits(work);
91 atomic_long_set(&work->data, new);
92 }
93
94 static inline void *get_wq_data(struct work_struct *work)
95 {
96 return (void *) (atomic_long_read(&work->data) & WORK_STRUCT_WQ_DATA_MASK);
97 }
98
99 static int __run_work(struct cpu_workqueue_struct *cwq, struct work_struct *work)
100 {
101 int ret = 0;
102 unsigned long flags;
103
104 spin_lock_irqsave(&cwq->lock, flags);
105 /*
106 * We need to re-validate the work info after we've gotten
107 * the cpu_workqueue lock. We can run the work now iff:
108 *
109 * - the wq_data still matches the cpu_workqueue_struct
110 * - AND the work is still marked pending
111 * - AND the work is still on a list (which will be this
112 * workqueue_struct list)
113 *
114 * All these conditions are important, because we
115 * need to protect against the work being run right
116 * now on another CPU (all but the last one might be
117 * true if it's currently running and has not been
118 * released yet, for example).
119 */
120 if (get_wq_data(work) == cwq
121 && work_pending(work)
122 && !list_empty(&work->entry)) {
123 work_func_t f = work->func;
124 cwq->current_work = work;
125 list_del_init(&work->entry);
126 spin_unlock_irqrestore(&cwq->lock, flags);
127
128 if (!test_bit(WORK_STRUCT_NOAUTOREL, work_data_bits(work)))
129 work_release(work);
130 f(work);
131
132 spin_lock_irqsave(&cwq->lock, flags);
133 cwq->current_work = NULL;
134 ret = 1;
135 }
136 spin_unlock_irqrestore(&cwq->lock, flags);
137 return ret;
138 }
139
140 /**
141 * run_scheduled_work - run scheduled work synchronously
142 * @work: work to run
143 *
144 * This checks if the work was pending, and runs it
145 * synchronously if so. It returns a boolean to indicate
146 * whether it had any scheduled work to run or not.
147 *
148 * NOTE! This _only_ works for normal work_structs. You
149 * CANNOT use this for delayed work, because the wq data
150 * for delayed work will not point properly to the per-
151 * CPU workqueue struct, but will change!
152 */
153 int fastcall run_scheduled_work(struct work_struct *work)
154 {
155 for (;;) {
156 struct cpu_workqueue_struct *cwq;
157
158 if (!work_pending(work))
159 return 0;
160 if (list_empty(&work->entry))
161 return 0;
162 /* NOTE! This depends intimately on __queue_work! */
163 cwq = get_wq_data(work);
164 if (!cwq)
165 return 0;
166 if (__run_work(cwq, work))
167 return 1;
168 }
169 }
170 EXPORT_SYMBOL(run_scheduled_work);
171
172 static void insert_work(struct cpu_workqueue_struct *cwq,
173 struct work_struct *work, int tail)
174 {
175 set_wq_data(work, cwq);
176 if (tail)
177 list_add_tail(&work->entry, &cwq->worklist);
178 else
179 list_add(&work->entry, &cwq->worklist);
180 wake_up(&cwq->more_work);
181 }
182
183 /* Preempt must be disabled. */
184 static void __queue_work(struct cpu_workqueue_struct *cwq,
185 struct work_struct *work)
186 {
187 unsigned long flags;
188
189 spin_lock_irqsave(&cwq->lock, flags);
190 insert_work(cwq, work, 1);
191 spin_unlock_irqrestore(&cwq->lock, flags);
192 }
193
194 /**
195 * queue_work - queue work on a workqueue
196 * @wq: workqueue to use
197 * @work: work to queue
198 *
199 * Returns 0 if @work was already on a queue, non-zero otherwise.
200 *
201 * We queue the work to the CPU it was submitted, but there is no
202 * guarantee that it will be processed by that CPU.
203 */
204 int fastcall queue_work(struct workqueue_struct *wq, struct work_struct *work)
205 {
206 int ret = 0, cpu = get_cpu();
207
208 if (!test_and_set_bit(WORK_STRUCT_PENDING, work_data_bits(work))) {
209 if (unlikely(is_single_threaded(wq)))
210 cpu = singlethread_cpu;
211 BUG_ON(!list_empty(&work->entry));
212 __queue_work(per_cpu_ptr(wq->cpu_wq, cpu), work);
213 ret = 1;
214 }
215 put_cpu();
216 return ret;
217 }
218 EXPORT_SYMBOL_GPL(queue_work);
219
220 void delayed_work_timer_fn(unsigned long __data)
221 {
222 struct delayed_work *dwork = (struct delayed_work *)__data;
223 struct workqueue_struct *wq = get_wq_data(&dwork->work);
224 int cpu = smp_processor_id();
225
226 if (unlikely(is_single_threaded(wq)))
227 cpu = singlethread_cpu;
228
229 __queue_work(per_cpu_ptr(wq->cpu_wq, cpu), &dwork->work);
230 }
231
232 /**
233 * queue_delayed_work - queue work on a workqueue after delay
234 * @wq: workqueue to use
235 * @dwork: delayable work to queue
236 * @delay: number of jiffies to wait before queueing
237 *
238 * Returns 0 if @work was already on a queue, non-zero otherwise.
239 */
240 int fastcall queue_delayed_work(struct workqueue_struct *wq,
241 struct delayed_work *dwork, unsigned long delay)
242 {
243 int ret = 0;
244 struct timer_list *timer = &dwork->timer;
245 struct work_struct *work = &dwork->work;
246
247 timer_stats_timer_set_start_info(timer);
248 if (delay == 0)
249 return queue_work(wq, work);
250
251 if (!test_and_set_bit(WORK_STRUCT_PENDING, work_data_bits(work))) {
252 BUG_ON(timer_pending(timer));
253 BUG_ON(!list_empty(&work->entry));
254
255 /* This stores wq for the moment, for the timer_fn */
256 set_wq_data(work, wq);
257 timer->expires = jiffies + delay;
258 timer->data = (unsigned long)dwork;
259 timer->function = delayed_work_timer_fn;
260 add_timer(timer);
261 ret = 1;
262 }
263 return ret;
264 }
265 EXPORT_SYMBOL_GPL(queue_delayed_work);
266
267 /**
268 * queue_delayed_work_on - queue work on specific CPU after delay
269 * @cpu: CPU number to execute work on
270 * @wq: workqueue to use
271 * @dwork: work to queue
272 * @delay: number of jiffies to wait before queueing
273 *
274 * Returns 0 if @work was already on a queue, non-zero otherwise.
275 */
276 int queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
277 struct delayed_work *dwork, unsigned long delay)
278 {
279 int ret = 0;
280 struct timer_list *timer = &dwork->timer;
281 struct work_struct *work = &dwork->work;
282
283 if (!test_and_set_bit(WORK_STRUCT_PENDING, work_data_bits(work))) {
284 BUG_ON(timer_pending(timer));
285 BUG_ON(!list_empty(&work->entry));
286
287 /* This stores wq for the moment, for the timer_fn */
288 set_wq_data(work, wq);
289 timer->expires = jiffies + delay;
290 timer->data = (unsigned long)dwork;
291 timer->function = delayed_work_timer_fn;
292 add_timer_on(timer, cpu);
293 ret = 1;
294 }
295 return ret;
296 }
297 EXPORT_SYMBOL_GPL(queue_delayed_work_on);
298
299 static void run_workqueue(struct cpu_workqueue_struct *cwq)
300 {
301 unsigned long flags;
302
303 /*
304 * Keep taking off work from the queue until
305 * done.
306 */
307 spin_lock_irqsave(&cwq->lock, flags);
308 cwq->run_depth++;
309 if (cwq->run_depth > 3) {
310 /* morton gets to eat his hat */
311 printk("%s: recursion depth exceeded: %d\n",
312 __FUNCTION__, cwq->run_depth);
313 dump_stack();
314 }
315 while (!list_empty(&cwq->worklist)) {
316 struct work_struct *work = list_entry(cwq->worklist.next,
317 struct work_struct, entry);
318 work_func_t f = work->func;
319
320 cwq->current_work = work;
321 list_del_init(cwq->worklist.next);
322 spin_unlock_irqrestore(&cwq->lock, flags);
323
324 BUG_ON(get_wq_data(work) != cwq);
325 if (!test_bit(WORK_STRUCT_NOAUTOREL, work_data_bits(work)))
326 work_release(work);
327 f(work);
328
329 if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
330 printk(KERN_ERR "BUG: workqueue leaked lock or atomic: "
331 "%s/0x%08x/%d\n",
332 current->comm, preempt_count(),
333 current->pid);
334 printk(KERN_ERR " last function: ");
335 print_symbol("%s\n", (unsigned long)f);
336 debug_show_held_locks(current);
337 dump_stack();
338 }
339
340 spin_lock_irqsave(&cwq->lock, flags);
341 cwq->current_work = NULL;
342 }
343 cwq->run_depth--;
344 spin_unlock_irqrestore(&cwq->lock, flags);
345 }
346
347 static int worker_thread(void *__cwq)
348 {
349 struct cpu_workqueue_struct *cwq = __cwq;
350 DECLARE_WAITQUEUE(wait, current);
351 struct k_sigaction sa;
352 sigset_t blocked;
353
354 if (!cwq->freezeable)
355 current->flags |= PF_NOFREEZE;
356
357 set_user_nice(current, -5);
358
359 /* Block and flush all signals */
360 sigfillset(&blocked);
361 sigprocmask(SIG_BLOCK, &blocked, NULL);
362 flush_signals(current);
363
364 /*
365 * We inherited MPOL_INTERLEAVE from the booting kernel.
366 * Set MPOL_DEFAULT to insure node local allocations.
367 */
368 numa_default_policy();
369
370 /* SIG_IGN makes children autoreap: see do_notify_parent(). */
371 sa.sa.sa_handler = SIG_IGN;
372 sa.sa.sa_flags = 0;
373 siginitset(&sa.sa.sa_mask, sigmask(SIGCHLD));
374 do_sigaction(SIGCHLD, &sa, (struct k_sigaction *)0);
375
376 set_current_state(TASK_INTERRUPTIBLE);
377 while (!kthread_should_stop()) {
378 if (cwq->freezeable)
379 try_to_freeze();
380
381 add_wait_queue(&cwq->more_work, &wait);
382 if (list_empty(&cwq->worklist))
383 schedule();
384 else
385 __set_current_state(TASK_RUNNING);
386 remove_wait_queue(&cwq->more_work, &wait);
387
388 if (!list_empty(&cwq->worklist))
389 run_workqueue(cwq);
390 set_current_state(TASK_INTERRUPTIBLE);
391 }
392 __set_current_state(TASK_RUNNING);
393 return 0;
394 }
395
396 struct wq_barrier {
397 struct work_struct work;
398 struct completion done;
399 };
400
401 static void wq_barrier_func(struct work_struct *work)
402 {
403 struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
404 complete(&barr->done);
405 }
406
407 static inline void init_wq_barrier(struct wq_barrier *barr)
408 {
409 INIT_WORK(&barr->work, wq_barrier_func);
410 __set_bit(WORK_STRUCT_PENDING, work_data_bits(&barr->work));
411
412 init_completion(&barr->done);
413 }
414
415 static void flush_cpu_workqueue(struct cpu_workqueue_struct *cwq)
416 {
417 if (cwq->thread == current) {
418 /*
419 * Probably keventd trying to flush its own queue. So simply run
420 * it by hand rather than deadlocking.
421 */
422 preempt_enable();
423 /*
424 * We can still touch *cwq here because we are keventd, and
425 * hot-unplug will be waiting us to exit.
426 */
427 run_workqueue(cwq);
428 preempt_disable();
429 } else {
430 struct wq_barrier barr;
431
432 init_wq_barrier(&barr);
433 __queue_work(cwq, &barr.work);
434
435 preempt_enable(); /* Can no longer touch *cwq */
436 wait_for_completion(&barr.done);
437 preempt_disable();
438 }
439 }
440
441 /**
442 * flush_workqueue - ensure that any scheduled work has run to completion.
443 * @wq: workqueue to flush
444 *
445 * Forces execution of the workqueue and blocks until its completion.
446 * This is typically used in driver shutdown handlers.
447 *
448 * We sleep until all works which were queued on entry have been handled,
449 * but we are not livelocked by new incoming ones.
450 *
451 * This function used to run the workqueues itself. Now we just wait for the
452 * helper threads to do it.
453 */
454 void fastcall flush_workqueue(struct workqueue_struct *wq)
455 {
456 preempt_disable(); /* CPU hotplug */
457 if (is_single_threaded(wq)) {
458 /* Always use first cpu's area. */
459 flush_cpu_workqueue(per_cpu_ptr(wq->cpu_wq, singlethread_cpu));
460 } else {
461 int cpu;
462
463 for_each_online_cpu(cpu)
464 flush_cpu_workqueue(per_cpu_ptr(wq->cpu_wq, cpu));
465 }
466 preempt_enable();
467 }
468 EXPORT_SYMBOL_GPL(flush_workqueue);
469
470 static void wait_on_work(struct cpu_workqueue_struct *cwq,
471 struct work_struct *work)
472 {
473 struct wq_barrier barr;
474 int running = 0;
475
476 spin_lock_irq(&cwq->lock);
477 if (unlikely(cwq->current_work == work)) {
478 init_wq_barrier(&barr);
479 insert_work(cwq, &barr.work, 0);
480 running = 1;
481 }
482 spin_unlock_irq(&cwq->lock);
483
484 if (unlikely(running)) {
485 mutex_unlock(&workqueue_mutex);
486 wait_for_completion(&barr.done);
487 mutex_lock(&workqueue_mutex);
488 }
489 }
490
491 /**
492 * flush_work - block until a work_struct's callback has terminated
493 * @wq: the workqueue on which the work is queued
494 * @work: the work which is to be flushed
495 *
496 * flush_work() will attempt to cancel the work if it is queued. If the work's
497 * callback appears to be running, flush_work() will block until it has
498 * completed.
499 *
500 * flush_work() is designed to be used when the caller is tearing down data
501 * structures which the callback function operates upon. It is expected that,
502 * prior to calling flush_work(), the caller has arranged for the work to not
503 * be requeued.
504 */
505 void flush_work(struct workqueue_struct *wq, struct work_struct *work)
506 {
507 struct cpu_workqueue_struct *cwq;
508
509 mutex_lock(&workqueue_mutex);
510 cwq = get_wq_data(work);
511 /* Was it ever queued ? */
512 if (!cwq)
513 goto out;
514
515 /*
516 * This work can't be re-queued, and the lock above protects us
517 * from take_over_work(), no need to re-check that get_wq_data()
518 * is still the same when we take cwq->lock.
519 */
520 spin_lock_irq(&cwq->lock);
521 list_del_init(&work->entry);
522 work_release(work);
523 spin_unlock_irq(&cwq->lock);
524
525 if (is_single_threaded(wq)) {
526 /* Always use first cpu's area. */
527 wait_on_work(per_cpu_ptr(wq->cpu_wq, singlethread_cpu), work);
528 } else {
529 int cpu;
530
531 for_each_online_cpu(cpu)
532 wait_on_work(per_cpu_ptr(wq->cpu_wq, cpu), work);
533 }
534 out:
535 mutex_unlock(&workqueue_mutex);
536 }
537 EXPORT_SYMBOL_GPL(flush_work);
538
539 static struct task_struct *create_workqueue_thread(struct workqueue_struct *wq,
540 int cpu, int freezeable)
541 {
542 struct cpu_workqueue_struct *cwq = per_cpu_ptr(wq->cpu_wq, cpu);
543 struct task_struct *p;
544
545 spin_lock_init(&cwq->lock);
546 cwq->wq = wq;
547 cwq->thread = NULL;
548 cwq->freezeable = freezeable;
549 INIT_LIST_HEAD(&cwq->worklist);
550 init_waitqueue_head(&cwq->more_work);
551
552 if (is_single_threaded(wq))
553 p = kthread_create(worker_thread, cwq, "%s", wq->name);
554 else
555 p = kthread_create(worker_thread, cwq, "%s/%d", wq->name, cpu);
556 if (IS_ERR(p))
557 return NULL;
558 cwq->thread = p;
559 return p;
560 }
561
562 struct workqueue_struct *__create_workqueue(const char *name,
563 int singlethread, int freezeable)
564 {
565 int cpu, destroy = 0;
566 struct workqueue_struct *wq;
567 struct task_struct *p;
568
569 wq = kzalloc(sizeof(*wq), GFP_KERNEL);
570 if (!wq)
571 return NULL;
572
573 wq->cpu_wq = alloc_percpu(struct cpu_workqueue_struct);
574 if (!wq->cpu_wq) {
575 kfree(wq);
576 return NULL;
577 }
578
579 wq->name = name;
580 mutex_lock(&workqueue_mutex);
581 if (singlethread) {
582 INIT_LIST_HEAD(&wq->list);
583 p = create_workqueue_thread(wq, singlethread_cpu, freezeable);
584 if (!p)
585 destroy = 1;
586 else
587 wake_up_process(p);
588 } else {
589 list_add(&wq->list, &workqueues);
590 for_each_online_cpu(cpu) {
591 p = create_workqueue_thread(wq, cpu, freezeable);
592 if (p) {
593 kthread_bind(p, cpu);
594 wake_up_process(p);
595 } else
596 destroy = 1;
597 }
598 }
599 mutex_unlock(&workqueue_mutex);
600
601 /*
602 * Was there any error during startup? If yes then clean up:
603 */
604 if (destroy) {
605 destroy_workqueue(wq);
606 wq = NULL;
607 }
608 return wq;
609 }
610 EXPORT_SYMBOL_GPL(__create_workqueue);
611
612 static void cleanup_workqueue_thread(struct workqueue_struct *wq, int cpu)
613 {
614 struct cpu_workqueue_struct *cwq;
615 unsigned long flags;
616 struct task_struct *p;
617
618 cwq = per_cpu_ptr(wq->cpu_wq, cpu);
619 spin_lock_irqsave(&cwq->lock, flags);
620 p = cwq->thread;
621 cwq->thread = NULL;
622 spin_unlock_irqrestore(&cwq->lock, flags);
623 if (p)
624 kthread_stop(p);
625 }
626
627 /**
628 * destroy_workqueue - safely terminate a workqueue
629 * @wq: target workqueue
630 *
631 * Safely destroy a workqueue. All work currently pending will be done first.
632 */
633 void destroy_workqueue(struct workqueue_struct *wq)
634 {
635 int cpu;
636
637 flush_workqueue(wq);
638
639 /* We don't need the distraction of CPUs appearing and vanishing. */
640 mutex_lock(&workqueue_mutex);
641 if (is_single_threaded(wq))
642 cleanup_workqueue_thread(wq, singlethread_cpu);
643 else {
644 for_each_online_cpu(cpu)
645 cleanup_workqueue_thread(wq, cpu);
646 list_del(&wq->list);
647 }
648 mutex_unlock(&workqueue_mutex);
649 free_percpu(wq->cpu_wq);
650 kfree(wq);
651 }
652 EXPORT_SYMBOL_GPL(destroy_workqueue);
653
654 static struct workqueue_struct *keventd_wq;
655
656 /**
657 * schedule_work - put work task in global workqueue
658 * @work: job to be done
659 *
660 * This puts a job in the kernel-global workqueue.
661 */
662 int fastcall schedule_work(struct work_struct *work)
663 {
664 return queue_work(keventd_wq, work);
665 }
666 EXPORT_SYMBOL(schedule_work);
667
668 /**
669 * schedule_delayed_work - put work task in global workqueue after delay
670 * @dwork: job to be done
671 * @delay: number of jiffies to wait or 0 for immediate execution
672 *
673 * After waiting for a given time this puts a job in the kernel-global
674 * workqueue.
675 */
676 int fastcall schedule_delayed_work(struct delayed_work *dwork,
677 unsigned long delay)
678 {
679 timer_stats_timer_set_start_info(&dwork->timer);
680 return queue_delayed_work(keventd_wq, dwork, delay);
681 }
682 EXPORT_SYMBOL(schedule_delayed_work);
683
684 /**
685 * schedule_delayed_work_on - queue work in global workqueue on CPU after delay
686 * @cpu: cpu to use
687 * @dwork: job to be done
688 * @delay: number of jiffies to wait
689 *
690 * After waiting for a given time this puts a job in the kernel-global
691 * workqueue on the specified CPU.
692 */
693 int schedule_delayed_work_on(int cpu,
694 struct delayed_work *dwork, unsigned long delay)
695 {
696 return queue_delayed_work_on(cpu, keventd_wq, dwork, delay);
697 }
698 EXPORT_SYMBOL(schedule_delayed_work_on);
699
700 /**
701 * schedule_on_each_cpu - call a function on each online CPU from keventd
702 * @func: the function to call
703 *
704 * Returns zero on success.
705 * Returns -ve errno on failure.
706 *
707 * Appears to be racy against CPU hotplug.
708 *
709 * schedule_on_each_cpu() is very slow.
710 */
711 int schedule_on_each_cpu(work_func_t func)
712 {
713 int cpu;
714 struct work_struct *works;
715
716 works = alloc_percpu(struct work_struct);
717 if (!works)
718 return -ENOMEM;
719
720 preempt_disable(); /* CPU hotplug */
721 for_each_online_cpu(cpu) {
722 struct work_struct *work = per_cpu_ptr(works, cpu);
723
724 INIT_WORK(work, func);
725 set_bit(WORK_STRUCT_PENDING, work_data_bits(work));
726 __queue_work(per_cpu_ptr(keventd_wq->cpu_wq, cpu), work);
727 }
728 preempt_enable();
729 flush_workqueue(keventd_wq);
730 free_percpu(works);
731 return 0;
732 }
733
734 void flush_scheduled_work(void)
735 {
736 flush_workqueue(keventd_wq);
737 }
738 EXPORT_SYMBOL(flush_scheduled_work);
739
740 void flush_work_keventd(struct work_struct *work)
741 {
742 flush_work(keventd_wq, work);
743 }
744 EXPORT_SYMBOL(flush_work_keventd);
745
746 /**
747 * cancel_rearming_delayed_workqueue - reliably kill off a delayed work whose handler rearms the delayed work.
748 * @wq: the controlling workqueue structure
749 * @dwork: the delayed work struct
750 */
751 void cancel_rearming_delayed_workqueue(struct workqueue_struct *wq,
752 struct delayed_work *dwork)
753 {
754 while (!cancel_delayed_work(dwork))
755 flush_workqueue(wq);
756 }
757 EXPORT_SYMBOL(cancel_rearming_delayed_workqueue);
758
759 /**
760 * cancel_rearming_delayed_work - reliably kill off a delayed keventd work whose handler rearms the delayed work.
761 * @dwork: the delayed work struct
762 */
763 void cancel_rearming_delayed_work(struct delayed_work *dwork)
764 {
765 cancel_rearming_delayed_workqueue(keventd_wq, dwork);
766 }
767 EXPORT_SYMBOL(cancel_rearming_delayed_work);
768
769 /**
770 * execute_in_process_context - reliably execute the routine with user context
771 * @fn: the function to execute
772 * @ew: guaranteed storage for the execute work structure (must
773 * be available when the work executes)
774 *
775 * Executes the function immediately if process context is available,
776 * otherwise schedules the function for delayed execution.
777 *
778 * Returns: 0 - function was executed
779 * 1 - function was scheduled for execution
780 */
781 int execute_in_process_context(work_func_t fn, struct execute_work *ew)
782 {
783 if (!in_interrupt()) {
784 fn(&ew->work);
785 return 0;
786 }
787
788 INIT_WORK(&ew->work, fn);
789 schedule_work(&ew->work);
790
791 return 1;
792 }
793 EXPORT_SYMBOL_GPL(execute_in_process_context);
794
795 int keventd_up(void)
796 {
797 return keventd_wq != NULL;
798 }
799
800 int current_is_keventd(void)
801 {
802 struct cpu_workqueue_struct *cwq;
803 int cpu = smp_processor_id(); /* preempt-safe: keventd is per-cpu */
804 int ret = 0;
805
806 BUG_ON(!keventd_wq);
807
808 cwq = per_cpu_ptr(keventd_wq->cpu_wq, cpu);
809 if (current == cwq->thread)
810 ret = 1;
811
812 return ret;
813
814 }
815
816 /* Take the work from this (downed) CPU. */
817 static void take_over_work(struct workqueue_struct *wq, unsigned int cpu)
818 {
819 struct cpu_workqueue_struct *cwq = per_cpu_ptr(wq->cpu_wq, cpu);
820 struct list_head list;
821 struct work_struct *work;
822
823 spin_lock_irq(&cwq->lock);
824 list_replace_init(&cwq->worklist, &list);
825
826 while (!list_empty(&list)) {
827 printk("Taking work for %s\n", wq->name);
828 work = list_entry(list.next,struct work_struct,entry);
829 list_del(&work->entry);
830 __queue_work(per_cpu_ptr(wq->cpu_wq, smp_processor_id()), work);
831 }
832 spin_unlock_irq(&cwq->lock);
833 }
834
835 /* We're holding the cpucontrol mutex here */
836 static int __devinit workqueue_cpu_callback(struct notifier_block *nfb,
837 unsigned long action,
838 void *hcpu)
839 {
840 unsigned int hotcpu = (unsigned long)hcpu;
841 struct workqueue_struct *wq;
842
843 switch (action) {
844 case CPU_UP_PREPARE:
845 mutex_lock(&workqueue_mutex);
846 /* Create a new workqueue thread for it. */
847 list_for_each_entry(wq, &workqueues, list) {
848 if (!create_workqueue_thread(wq, hotcpu, 0)) {
849 printk("workqueue for %i failed\n", hotcpu);
850 return NOTIFY_BAD;
851 }
852 }
853 break;
854
855 case CPU_ONLINE:
856 /* Kick off worker threads. */
857 list_for_each_entry(wq, &workqueues, list) {
858 struct cpu_workqueue_struct *cwq;
859
860 cwq = per_cpu_ptr(wq->cpu_wq, hotcpu);
861 kthread_bind(cwq->thread, hotcpu);
862 wake_up_process(cwq->thread);
863 }
864 mutex_unlock(&workqueue_mutex);
865 break;
866
867 case CPU_UP_CANCELED:
868 list_for_each_entry(wq, &workqueues, list) {
869 if (!per_cpu_ptr(wq->cpu_wq, hotcpu)->thread)
870 continue;
871 /* Unbind so it can run. */
872 kthread_bind(per_cpu_ptr(wq->cpu_wq, hotcpu)->thread,
873 any_online_cpu(cpu_online_map));
874 cleanup_workqueue_thread(wq, hotcpu);
875 }
876 mutex_unlock(&workqueue_mutex);
877 break;
878
879 case CPU_DOWN_PREPARE:
880 mutex_lock(&workqueue_mutex);
881 break;
882
883 case CPU_DOWN_FAILED:
884 mutex_unlock(&workqueue_mutex);
885 break;
886
887 case CPU_DEAD:
888 list_for_each_entry(wq, &workqueues, list)
889 cleanup_workqueue_thread(wq, hotcpu);
890 list_for_each_entry(wq, &workqueues, list)
891 take_over_work(wq, hotcpu);
892 mutex_unlock(&workqueue_mutex);
893 break;
894 }
895
896 return NOTIFY_OK;
897 }
898
899 void init_workqueues(void)
900 {
901 singlethread_cpu = first_cpu(cpu_possible_map);
902 hotcpu_notifier(workqueue_cpu_callback, 0);
903 keventd_wq = create_workqueue("events");
904 BUG_ON(!keventd_wq);
905 }
906