]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - kernel/workqueue.c
Linux-2.6.12-rc2
[mirror_ubuntu-artful-kernel.git] / kernel / workqueue.c
1 /*
2 * linux/kernel/workqueue.c
3 *
4 * Generic mechanism for defining kernel helper threads for running
5 * arbitrary tasks in process context.
6 *
7 * Started by Ingo Molnar, Copyright (C) 2002
8 *
9 * Derived from the taskqueue/keventd code by:
10 *
11 * David Woodhouse <dwmw2@infradead.org>
12 * Andrew Morton <andrewm@uow.edu.au>
13 * Kai Petzke <wpp@marie.physik.tu-berlin.de>
14 * Theodore Ts'o <tytso@mit.edu>
15 */
16
17 #include <linux/module.h>
18 #include <linux/kernel.h>
19 #include <linux/sched.h>
20 #include <linux/init.h>
21 #include <linux/signal.h>
22 #include <linux/completion.h>
23 #include <linux/workqueue.h>
24 #include <linux/slab.h>
25 #include <linux/cpu.h>
26 #include <linux/notifier.h>
27 #include <linux/kthread.h>
28
29 /*
30 * The per-CPU workqueue (if single thread, we always use cpu 0's).
31 *
32 * The sequence counters are for flush_scheduled_work(). It wants to wait
33 * until until all currently-scheduled works are completed, but it doesn't
34 * want to be livelocked by new, incoming ones. So it waits until
35 * remove_sequence is >= the insert_sequence which pertained when
36 * flush_scheduled_work() was called.
37 */
38 struct cpu_workqueue_struct {
39
40 spinlock_t lock;
41
42 long remove_sequence; /* Least-recently added (next to run) */
43 long insert_sequence; /* Next to add */
44
45 struct list_head worklist;
46 wait_queue_head_t more_work;
47 wait_queue_head_t work_done;
48
49 struct workqueue_struct *wq;
50 task_t *thread;
51
52 int run_depth; /* Detect run_workqueue() recursion depth */
53 } ____cacheline_aligned;
54
55 /*
56 * The externally visible workqueue abstraction is an array of
57 * per-CPU workqueues:
58 */
59 struct workqueue_struct {
60 struct cpu_workqueue_struct cpu_wq[NR_CPUS];
61 const char *name;
62 struct list_head list; /* Empty if single thread */
63 };
64
65 /* All the per-cpu workqueues on the system, for hotplug cpu to add/remove
66 threads to each one as cpus come/go. */
67 static DEFINE_SPINLOCK(workqueue_lock);
68 static LIST_HEAD(workqueues);
69
70 /* If it's single threaded, it isn't in the list of workqueues. */
71 static inline int is_single_threaded(struct workqueue_struct *wq)
72 {
73 return list_empty(&wq->list);
74 }
75
76 /* Preempt must be disabled. */
77 static void __queue_work(struct cpu_workqueue_struct *cwq,
78 struct work_struct *work)
79 {
80 unsigned long flags;
81
82 spin_lock_irqsave(&cwq->lock, flags);
83 work->wq_data = cwq;
84 list_add_tail(&work->entry, &cwq->worklist);
85 cwq->insert_sequence++;
86 wake_up(&cwq->more_work);
87 spin_unlock_irqrestore(&cwq->lock, flags);
88 }
89
90 /*
91 * Queue work on a workqueue. Return non-zero if it was successfully
92 * added.
93 *
94 * We queue the work to the CPU it was submitted, but there is no
95 * guarantee that it will be processed by that CPU.
96 */
97 int fastcall queue_work(struct workqueue_struct *wq, struct work_struct *work)
98 {
99 int ret = 0, cpu = get_cpu();
100
101 if (!test_and_set_bit(0, &work->pending)) {
102 if (unlikely(is_single_threaded(wq)))
103 cpu = 0;
104 BUG_ON(!list_empty(&work->entry));
105 __queue_work(wq->cpu_wq + cpu, work);
106 ret = 1;
107 }
108 put_cpu();
109 return ret;
110 }
111
112 static void delayed_work_timer_fn(unsigned long __data)
113 {
114 struct work_struct *work = (struct work_struct *)__data;
115 struct workqueue_struct *wq = work->wq_data;
116 int cpu = smp_processor_id();
117
118 if (unlikely(is_single_threaded(wq)))
119 cpu = 0;
120
121 __queue_work(wq->cpu_wq + cpu, work);
122 }
123
124 int fastcall queue_delayed_work(struct workqueue_struct *wq,
125 struct work_struct *work, unsigned long delay)
126 {
127 int ret = 0;
128 struct timer_list *timer = &work->timer;
129
130 if (!test_and_set_bit(0, &work->pending)) {
131 BUG_ON(timer_pending(timer));
132 BUG_ON(!list_empty(&work->entry));
133
134 /* This stores wq for the moment, for the timer_fn */
135 work->wq_data = wq;
136 timer->expires = jiffies + delay;
137 timer->data = (unsigned long)work;
138 timer->function = delayed_work_timer_fn;
139 add_timer(timer);
140 ret = 1;
141 }
142 return ret;
143 }
144
145 static inline void run_workqueue(struct cpu_workqueue_struct *cwq)
146 {
147 unsigned long flags;
148
149 /*
150 * Keep taking off work from the queue until
151 * done.
152 */
153 spin_lock_irqsave(&cwq->lock, flags);
154 cwq->run_depth++;
155 if (cwq->run_depth > 3) {
156 /* morton gets to eat his hat */
157 printk("%s: recursion depth exceeded: %d\n",
158 __FUNCTION__, cwq->run_depth);
159 dump_stack();
160 }
161 while (!list_empty(&cwq->worklist)) {
162 struct work_struct *work = list_entry(cwq->worklist.next,
163 struct work_struct, entry);
164 void (*f) (void *) = work->func;
165 void *data = work->data;
166
167 list_del_init(cwq->worklist.next);
168 spin_unlock_irqrestore(&cwq->lock, flags);
169
170 BUG_ON(work->wq_data != cwq);
171 clear_bit(0, &work->pending);
172 f(data);
173
174 spin_lock_irqsave(&cwq->lock, flags);
175 cwq->remove_sequence++;
176 wake_up(&cwq->work_done);
177 }
178 cwq->run_depth--;
179 spin_unlock_irqrestore(&cwq->lock, flags);
180 }
181
182 static int worker_thread(void *__cwq)
183 {
184 struct cpu_workqueue_struct *cwq = __cwq;
185 DECLARE_WAITQUEUE(wait, current);
186 struct k_sigaction sa;
187 sigset_t blocked;
188
189 current->flags |= PF_NOFREEZE;
190
191 set_user_nice(current, -5);
192
193 /* Block and flush all signals */
194 sigfillset(&blocked);
195 sigprocmask(SIG_BLOCK, &blocked, NULL);
196 flush_signals(current);
197
198 /* SIG_IGN makes children autoreap: see do_notify_parent(). */
199 sa.sa.sa_handler = SIG_IGN;
200 sa.sa.sa_flags = 0;
201 siginitset(&sa.sa.sa_mask, sigmask(SIGCHLD));
202 do_sigaction(SIGCHLD, &sa, (struct k_sigaction *)0);
203
204 set_current_state(TASK_INTERRUPTIBLE);
205 while (!kthread_should_stop()) {
206 add_wait_queue(&cwq->more_work, &wait);
207 if (list_empty(&cwq->worklist))
208 schedule();
209 else
210 __set_current_state(TASK_RUNNING);
211 remove_wait_queue(&cwq->more_work, &wait);
212
213 if (!list_empty(&cwq->worklist))
214 run_workqueue(cwq);
215 set_current_state(TASK_INTERRUPTIBLE);
216 }
217 __set_current_state(TASK_RUNNING);
218 return 0;
219 }
220
221 static void flush_cpu_workqueue(struct cpu_workqueue_struct *cwq)
222 {
223 if (cwq->thread == current) {
224 /*
225 * Probably keventd trying to flush its own queue. So simply run
226 * it by hand rather than deadlocking.
227 */
228 run_workqueue(cwq);
229 } else {
230 DEFINE_WAIT(wait);
231 long sequence_needed;
232
233 spin_lock_irq(&cwq->lock);
234 sequence_needed = cwq->insert_sequence;
235
236 while (sequence_needed - cwq->remove_sequence > 0) {
237 prepare_to_wait(&cwq->work_done, &wait,
238 TASK_UNINTERRUPTIBLE);
239 spin_unlock_irq(&cwq->lock);
240 schedule();
241 spin_lock_irq(&cwq->lock);
242 }
243 finish_wait(&cwq->work_done, &wait);
244 spin_unlock_irq(&cwq->lock);
245 }
246 }
247
248 /*
249 * flush_workqueue - ensure that any scheduled work has run to completion.
250 *
251 * Forces execution of the workqueue and blocks until its completion.
252 * This is typically used in driver shutdown handlers.
253 *
254 * This function will sample each workqueue's current insert_sequence number and
255 * will sleep until the head sequence is greater than or equal to that. This
256 * means that we sleep until all works which were queued on entry have been
257 * handled, but we are not livelocked by new incoming ones.
258 *
259 * This function used to run the workqueues itself. Now we just wait for the
260 * helper threads to do it.
261 */
262 void fastcall flush_workqueue(struct workqueue_struct *wq)
263 {
264 might_sleep();
265
266 if (is_single_threaded(wq)) {
267 /* Always use cpu 0's area. */
268 flush_cpu_workqueue(wq->cpu_wq + 0);
269 } else {
270 int cpu;
271
272 lock_cpu_hotplug();
273 for_each_online_cpu(cpu)
274 flush_cpu_workqueue(wq->cpu_wq + cpu);
275 unlock_cpu_hotplug();
276 }
277 }
278
279 static struct task_struct *create_workqueue_thread(struct workqueue_struct *wq,
280 int cpu)
281 {
282 struct cpu_workqueue_struct *cwq = wq->cpu_wq + cpu;
283 struct task_struct *p;
284
285 spin_lock_init(&cwq->lock);
286 cwq->wq = wq;
287 cwq->thread = NULL;
288 cwq->insert_sequence = 0;
289 cwq->remove_sequence = 0;
290 INIT_LIST_HEAD(&cwq->worklist);
291 init_waitqueue_head(&cwq->more_work);
292 init_waitqueue_head(&cwq->work_done);
293
294 if (is_single_threaded(wq))
295 p = kthread_create(worker_thread, cwq, "%s", wq->name);
296 else
297 p = kthread_create(worker_thread, cwq, "%s/%d", wq->name, cpu);
298 if (IS_ERR(p))
299 return NULL;
300 cwq->thread = p;
301 return p;
302 }
303
304 struct workqueue_struct *__create_workqueue(const char *name,
305 int singlethread)
306 {
307 int cpu, destroy = 0;
308 struct workqueue_struct *wq;
309 struct task_struct *p;
310
311 BUG_ON(strlen(name) > 10);
312
313 wq = kmalloc(sizeof(*wq), GFP_KERNEL);
314 if (!wq)
315 return NULL;
316 memset(wq, 0, sizeof(*wq));
317
318 wq->name = name;
319 /* We don't need the distraction of CPUs appearing and vanishing. */
320 lock_cpu_hotplug();
321 if (singlethread) {
322 INIT_LIST_HEAD(&wq->list);
323 p = create_workqueue_thread(wq, 0);
324 if (!p)
325 destroy = 1;
326 else
327 wake_up_process(p);
328 } else {
329 spin_lock(&workqueue_lock);
330 list_add(&wq->list, &workqueues);
331 spin_unlock(&workqueue_lock);
332 for_each_online_cpu(cpu) {
333 p = create_workqueue_thread(wq, cpu);
334 if (p) {
335 kthread_bind(p, cpu);
336 wake_up_process(p);
337 } else
338 destroy = 1;
339 }
340 }
341 unlock_cpu_hotplug();
342
343 /*
344 * Was there any error during startup? If yes then clean up:
345 */
346 if (destroy) {
347 destroy_workqueue(wq);
348 wq = NULL;
349 }
350 return wq;
351 }
352
353 static void cleanup_workqueue_thread(struct workqueue_struct *wq, int cpu)
354 {
355 struct cpu_workqueue_struct *cwq;
356 unsigned long flags;
357 struct task_struct *p;
358
359 cwq = wq->cpu_wq + cpu;
360 spin_lock_irqsave(&cwq->lock, flags);
361 p = cwq->thread;
362 cwq->thread = NULL;
363 spin_unlock_irqrestore(&cwq->lock, flags);
364 if (p)
365 kthread_stop(p);
366 }
367
368 void destroy_workqueue(struct workqueue_struct *wq)
369 {
370 int cpu;
371
372 flush_workqueue(wq);
373
374 /* We don't need the distraction of CPUs appearing and vanishing. */
375 lock_cpu_hotplug();
376 if (is_single_threaded(wq))
377 cleanup_workqueue_thread(wq, 0);
378 else {
379 for_each_online_cpu(cpu)
380 cleanup_workqueue_thread(wq, cpu);
381 spin_lock(&workqueue_lock);
382 list_del(&wq->list);
383 spin_unlock(&workqueue_lock);
384 }
385 unlock_cpu_hotplug();
386 kfree(wq);
387 }
388
389 static struct workqueue_struct *keventd_wq;
390
391 int fastcall schedule_work(struct work_struct *work)
392 {
393 return queue_work(keventd_wq, work);
394 }
395
396 int fastcall schedule_delayed_work(struct work_struct *work, unsigned long delay)
397 {
398 return queue_delayed_work(keventd_wq, work, delay);
399 }
400
401 int schedule_delayed_work_on(int cpu,
402 struct work_struct *work, unsigned long delay)
403 {
404 int ret = 0;
405 struct timer_list *timer = &work->timer;
406
407 if (!test_and_set_bit(0, &work->pending)) {
408 BUG_ON(timer_pending(timer));
409 BUG_ON(!list_empty(&work->entry));
410 /* This stores keventd_wq for the moment, for the timer_fn */
411 work->wq_data = keventd_wq;
412 timer->expires = jiffies + delay;
413 timer->data = (unsigned long)work;
414 timer->function = delayed_work_timer_fn;
415 add_timer_on(timer, cpu);
416 ret = 1;
417 }
418 return ret;
419 }
420
421 void flush_scheduled_work(void)
422 {
423 flush_workqueue(keventd_wq);
424 }
425
426 /**
427 * cancel_rearming_delayed_workqueue - reliably kill off a delayed
428 * work whose handler rearms the delayed work.
429 * @wq: the controlling workqueue structure
430 * @work: the delayed work struct
431 */
432 static void cancel_rearming_delayed_workqueue(struct workqueue_struct *wq,
433 struct work_struct *work)
434 {
435 while (!cancel_delayed_work(work))
436 flush_workqueue(wq);
437 }
438
439 /**
440 * cancel_rearming_delayed_work - reliably kill off a delayed keventd
441 * work whose handler rearms the delayed work.
442 * @work: the delayed work struct
443 */
444 void cancel_rearming_delayed_work(struct work_struct *work)
445 {
446 cancel_rearming_delayed_workqueue(keventd_wq, work);
447 }
448 EXPORT_SYMBOL(cancel_rearming_delayed_work);
449
450 int keventd_up(void)
451 {
452 return keventd_wq != NULL;
453 }
454
455 int current_is_keventd(void)
456 {
457 struct cpu_workqueue_struct *cwq;
458 int cpu = smp_processor_id(); /* preempt-safe: keventd is per-cpu */
459 int ret = 0;
460
461 BUG_ON(!keventd_wq);
462
463 cwq = keventd_wq->cpu_wq + cpu;
464 if (current == cwq->thread)
465 ret = 1;
466
467 return ret;
468
469 }
470
471 #ifdef CONFIG_HOTPLUG_CPU
472 /* Take the work from this (downed) CPU. */
473 static void take_over_work(struct workqueue_struct *wq, unsigned int cpu)
474 {
475 struct cpu_workqueue_struct *cwq = wq->cpu_wq + cpu;
476 LIST_HEAD(list);
477 struct work_struct *work;
478
479 spin_lock_irq(&cwq->lock);
480 list_splice_init(&cwq->worklist, &list);
481
482 while (!list_empty(&list)) {
483 printk("Taking work for %s\n", wq->name);
484 work = list_entry(list.next,struct work_struct,entry);
485 list_del(&work->entry);
486 __queue_work(wq->cpu_wq + smp_processor_id(), work);
487 }
488 spin_unlock_irq(&cwq->lock);
489 }
490
491 /* We're holding the cpucontrol mutex here */
492 static int __devinit workqueue_cpu_callback(struct notifier_block *nfb,
493 unsigned long action,
494 void *hcpu)
495 {
496 unsigned int hotcpu = (unsigned long)hcpu;
497 struct workqueue_struct *wq;
498
499 switch (action) {
500 case CPU_UP_PREPARE:
501 /* Create a new workqueue thread for it. */
502 list_for_each_entry(wq, &workqueues, list) {
503 if (create_workqueue_thread(wq, hotcpu) < 0) {
504 printk("workqueue for %i failed\n", hotcpu);
505 return NOTIFY_BAD;
506 }
507 }
508 break;
509
510 case CPU_ONLINE:
511 /* Kick off worker threads. */
512 list_for_each_entry(wq, &workqueues, list) {
513 kthread_bind(wq->cpu_wq[hotcpu].thread, hotcpu);
514 wake_up_process(wq->cpu_wq[hotcpu].thread);
515 }
516 break;
517
518 case CPU_UP_CANCELED:
519 list_for_each_entry(wq, &workqueues, list) {
520 /* Unbind so it can run. */
521 kthread_bind(wq->cpu_wq[hotcpu].thread,
522 smp_processor_id());
523 cleanup_workqueue_thread(wq, hotcpu);
524 }
525 break;
526
527 case CPU_DEAD:
528 list_for_each_entry(wq, &workqueues, list)
529 cleanup_workqueue_thread(wq, hotcpu);
530 list_for_each_entry(wq, &workqueues, list)
531 take_over_work(wq, hotcpu);
532 break;
533 }
534
535 return NOTIFY_OK;
536 }
537 #endif
538
539 void init_workqueues(void)
540 {
541 hotcpu_notifier(workqueue_cpu_callback, 0);
542 keventd_wq = create_workqueue("events");
543 BUG_ON(!keventd_wq);
544 }
545
546 EXPORT_SYMBOL_GPL(__create_workqueue);
547 EXPORT_SYMBOL_GPL(queue_work);
548 EXPORT_SYMBOL_GPL(queue_delayed_work);
549 EXPORT_SYMBOL_GPL(flush_workqueue);
550 EXPORT_SYMBOL_GPL(destroy_workqueue);
551
552 EXPORT_SYMBOL(schedule_work);
553 EXPORT_SYMBOL(schedule_delayed_work);
554 EXPORT_SYMBOL(schedule_delayed_work_on);
555 EXPORT_SYMBOL(flush_scheduled_work);