]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - kernel/workqueue.c
Merge master.kernel.org:/pub/scm/linux/kernel/git/davem/sparc-2.6
[mirror_ubuntu-bionic-kernel.git] / kernel / workqueue.c
1 /*
2 * linux/kernel/workqueue.c
3 *
4 * Generic mechanism for defining kernel helper threads for running
5 * arbitrary tasks in process context.
6 *
7 * Started by Ingo Molnar, Copyright (C) 2002
8 *
9 * Derived from the taskqueue/keventd code by:
10 *
11 * David Woodhouse <dwmw2@infradead.org>
12 * Andrew Morton <andrewm@uow.edu.au>
13 * Kai Petzke <wpp@marie.physik.tu-berlin.de>
14 * Theodore Ts'o <tytso@mit.edu>
15 *
16 * Made to use alloc_percpu by Christoph Lameter <clameter@sgi.com>.
17 */
18
19 #include <linux/module.h>
20 #include <linux/kernel.h>
21 #include <linux/sched.h>
22 #include <linux/init.h>
23 #include <linux/signal.h>
24 #include <linux/completion.h>
25 #include <linux/workqueue.h>
26 #include <linux/slab.h>
27 #include <linux/cpu.h>
28 #include <linux/notifier.h>
29 #include <linux/kthread.h>
30 #include <linux/hardirq.h>
31
32 /*
33 * The per-CPU workqueue (if single thread, we always use the first
34 * possible cpu).
35 *
36 * The sequence counters are for flush_scheduled_work(). It wants to wait
37 * until until all currently-scheduled works are completed, but it doesn't
38 * want to be livelocked by new, incoming ones. So it waits until
39 * remove_sequence is >= the insert_sequence which pertained when
40 * flush_scheduled_work() was called.
41 */
42 struct cpu_workqueue_struct {
43
44 spinlock_t lock;
45
46 long remove_sequence; /* Least-recently added (next to run) */
47 long insert_sequence; /* Next to add */
48
49 struct list_head worklist;
50 wait_queue_head_t more_work;
51 wait_queue_head_t work_done;
52
53 struct workqueue_struct *wq;
54 task_t *thread;
55
56 int run_depth; /* Detect run_workqueue() recursion depth */
57 } ____cacheline_aligned;
58
59 /*
60 * The externally visible workqueue abstraction is an array of
61 * per-CPU workqueues:
62 */
63 struct workqueue_struct {
64 struct cpu_workqueue_struct *cpu_wq;
65 const char *name;
66 struct list_head list; /* Empty if single thread */
67 };
68
69 /* All the per-cpu workqueues on the system, for hotplug cpu to add/remove
70 threads to each one as cpus come/go. */
71 static DEFINE_SPINLOCK(workqueue_lock);
72 static LIST_HEAD(workqueues);
73
74 static int singlethread_cpu;
75
76 /* If it's single threaded, it isn't in the list of workqueues. */
77 static inline int is_single_threaded(struct workqueue_struct *wq)
78 {
79 return list_empty(&wq->list);
80 }
81
82 /* Preempt must be disabled. */
83 static void __queue_work(struct cpu_workqueue_struct *cwq,
84 struct work_struct *work)
85 {
86 unsigned long flags;
87
88 spin_lock_irqsave(&cwq->lock, flags);
89 work->wq_data = cwq;
90 list_add_tail(&work->entry, &cwq->worklist);
91 cwq->insert_sequence++;
92 wake_up(&cwq->more_work);
93 spin_unlock_irqrestore(&cwq->lock, flags);
94 }
95
96 /*
97 * Queue work on a workqueue. Return non-zero if it was successfully
98 * added.
99 *
100 * We queue the work to the CPU it was submitted, but there is no
101 * guarantee that it will be processed by that CPU.
102 */
103 int fastcall queue_work(struct workqueue_struct *wq, struct work_struct *work)
104 {
105 int ret = 0, cpu = get_cpu();
106
107 if (!test_and_set_bit(0, &work->pending)) {
108 if (unlikely(is_single_threaded(wq)))
109 cpu = singlethread_cpu;
110 BUG_ON(!list_empty(&work->entry));
111 __queue_work(per_cpu_ptr(wq->cpu_wq, cpu), work);
112 ret = 1;
113 }
114 put_cpu();
115 return ret;
116 }
117
118 static void delayed_work_timer_fn(unsigned long __data)
119 {
120 struct work_struct *work = (struct work_struct *)__data;
121 struct workqueue_struct *wq = work->wq_data;
122 int cpu = smp_processor_id();
123
124 if (unlikely(is_single_threaded(wq)))
125 cpu = singlethread_cpu;
126
127 __queue_work(per_cpu_ptr(wq->cpu_wq, cpu), work);
128 }
129
130 int fastcall queue_delayed_work(struct workqueue_struct *wq,
131 struct work_struct *work, unsigned long delay)
132 {
133 int ret = 0;
134 struct timer_list *timer = &work->timer;
135
136 if (!test_and_set_bit(0, &work->pending)) {
137 BUG_ON(timer_pending(timer));
138 BUG_ON(!list_empty(&work->entry));
139
140 /* This stores wq for the moment, for the timer_fn */
141 work->wq_data = wq;
142 timer->expires = jiffies + delay;
143 timer->data = (unsigned long)work;
144 timer->function = delayed_work_timer_fn;
145 add_timer(timer);
146 ret = 1;
147 }
148 return ret;
149 }
150
151 static void run_workqueue(struct cpu_workqueue_struct *cwq)
152 {
153 unsigned long flags;
154
155 /*
156 * Keep taking off work from the queue until
157 * done.
158 */
159 spin_lock_irqsave(&cwq->lock, flags);
160 cwq->run_depth++;
161 if (cwq->run_depth > 3) {
162 /* morton gets to eat his hat */
163 printk("%s: recursion depth exceeded: %d\n",
164 __FUNCTION__, cwq->run_depth);
165 dump_stack();
166 }
167 while (!list_empty(&cwq->worklist)) {
168 struct work_struct *work = list_entry(cwq->worklist.next,
169 struct work_struct, entry);
170 void (*f) (void *) = work->func;
171 void *data = work->data;
172
173 list_del_init(cwq->worklist.next);
174 spin_unlock_irqrestore(&cwq->lock, flags);
175
176 BUG_ON(work->wq_data != cwq);
177 clear_bit(0, &work->pending);
178 f(data);
179
180 spin_lock_irqsave(&cwq->lock, flags);
181 cwq->remove_sequence++;
182 wake_up(&cwq->work_done);
183 }
184 cwq->run_depth--;
185 spin_unlock_irqrestore(&cwq->lock, flags);
186 }
187
188 static int worker_thread(void *__cwq)
189 {
190 struct cpu_workqueue_struct *cwq = __cwq;
191 DECLARE_WAITQUEUE(wait, current);
192 struct k_sigaction sa;
193 sigset_t blocked;
194
195 current->flags |= PF_NOFREEZE;
196
197 set_user_nice(current, -5);
198
199 /* Block and flush all signals */
200 sigfillset(&blocked);
201 sigprocmask(SIG_BLOCK, &blocked, NULL);
202 flush_signals(current);
203
204 /* SIG_IGN makes children autoreap: see do_notify_parent(). */
205 sa.sa.sa_handler = SIG_IGN;
206 sa.sa.sa_flags = 0;
207 siginitset(&sa.sa.sa_mask, sigmask(SIGCHLD));
208 do_sigaction(SIGCHLD, &sa, (struct k_sigaction *)0);
209
210 set_current_state(TASK_INTERRUPTIBLE);
211 while (!kthread_should_stop()) {
212 add_wait_queue(&cwq->more_work, &wait);
213 if (list_empty(&cwq->worklist))
214 schedule();
215 else
216 __set_current_state(TASK_RUNNING);
217 remove_wait_queue(&cwq->more_work, &wait);
218
219 if (!list_empty(&cwq->worklist))
220 run_workqueue(cwq);
221 set_current_state(TASK_INTERRUPTIBLE);
222 }
223 __set_current_state(TASK_RUNNING);
224 return 0;
225 }
226
227 static void flush_cpu_workqueue(struct cpu_workqueue_struct *cwq)
228 {
229 if (cwq->thread == current) {
230 /*
231 * Probably keventd trying to flush its own queue. So simply run
232 * it by hand rather than deadlocking.
233 */
234 run_workqueue(cwq);
235 } else {
236 DEFINE_WAIT(wait);
237 long sequence_needed;
238
239 spin_lock_irq(&cwq->lock);
240 sequence_needed = cwq->insert_sequence;
241
242 while (sequence_needed - cwq->remove_sequence > 0) {
243 prepare_to_wait(&cwq->work_done, &wait,
244 TASK_UNINTERRUPTIBLE);
245 spin_unlock_irq(&cwq->lock);
246 schedule();
247 spin_lock_irq(&cwq->lock);
248 }
249 finish_wait(&cwq->work_done, &wait);
250 spin_unlock_irq(&cwq->lock);
251 }
252 }
253
254 /*
255 * flush_workqueue - ensure that any scheduled work has run to completion.
256 *
257 * Forces execution of the workqueue and blocks until its completion.
258 * This is typically used in driver shutdown handlers.
259 *
260 * This function will sample each workqueue's current insert_sequence number and
261 * will sleep until the head sequence is greater than or equal to that. This
262 * means that we sleep until all works which were queued on entry have been
263 * handled, but we are not livelocked by new incoming ones.
264 *
265 * This function used to run the workqueues itself. Now we just wait for the
266 * helper threads to do it.
267 */
268 void fastcall flush_workqueue(struct workqueue_struct *wq)
269 {
270 might_sleep();
271
272 if (is_single_threaded(wq)) {
273 /* Always use first cpu's area. */
274 flush_cpu_workqueue(per_cpu_ptr(wq->cpu_wq, singlethread_cpu));
275 } else {
276 int cpu;
277
278 lock_cpu_hotplug();
279 for_each_online_cpu(cpu)
280 flush_cpu_workqueue(per_cpu_ptr(wq->cpu_wq, cpu));
281 unlock_cpu_hotplug();
282 }
283 }
284
285 static struct task_struct *create_workqueue_thread(struct workqueue_struct *wq,
286 int cpu)
287 {
288 struct cpu_workqueue_struct *cwq = per_cpu_ptr(wq->cpu_wq, cpu);
289 struct task_struct *p;
290
291 spin_lock_init(&cwq->lock);
292 cwq->wq = wq;
293 cwq->thread = NULL;
294 cwq->insert_sequence = 0;
295 cwq->remove_sequence = 0;
296 INIT_LIST_HEAD(&cwq->worklist);
297 init_waitqueue_head(&cwq->more_work);
298 init_waitqueue_head(&cwq->work_done);
299
300 if (is_single_threaded(wq))
301 p = kthread_create(worker_thread, cwq, "%s", wq->name);
302 else
303 p = kthread_create(worker_thread, cwq, "%s/%d", wq->name, cpu);
304 if (IS_ERR(p))
305 return NULL;
306 cwq->thread = p;
307 return p;
308 }
309
310 struct workqueue_struct *__create_workqueue(const char *name,
311 int singlethread)
312 {
313 int cpu, destroy = 0;
314 struct workqueue_struct *wq;
315 struct task_struct *p;
316
317 wq = kzalloc(sizeof(*wq), GFP_KERNEL);
318 if (!wq)
319 return NULL;
320
321 wq->cpu_wq = alloc_percpu(struct cpu_workqueue_struct);
322 if (!wq->cpu_wq) {
323 kfree(wq);
324 return NULL;
325 }
326
327 wq->name = name;
328 /* We don't need the distraction of CPUs appearing and vanishing. */
329 lock_cpu_hotplug();
330 if (singlethread) {
331 INIT_LIST_HEAD(&wq->list);
332 p = create_workqueue_thread(wq, singlethread_cpu);
333 if (!p)
334 destroy = 1;
335 else
336 wake_up_process(p);
337 } else {
338 spin_lock(&workqueue_lock);
339 list_add(&wq->list, &workqueues);
340 spin_unlock(&workqueue_lock);
341 for_each_online_cpu(cpu) {
342 p = create_workqueue_thread(wq, cpu);
343 if (p) {
344 kthread_bind(p, cpu);
345 wake_up_process(p);
346 } else
347 destroy = 1;
348 }
349 }
350 unlock_cpu_hotplug();
351
352 /*
353 * Was there any error during startup? If yes then clean up:
354 */
355 if (destroy) {
356 destroy_workqueue(wq);
357 wq = NULL;
358 }
359 return wq;
360 }
361
362 static void cleanup_workqueue_thread(struct workqueue_struct *wq, int cpu)
363 {
364 struct cpu_workqueue_struct *cwq;
365 unsigned long flags;
366 struct task_struct *p;
367
368 cwq = per_cpu_ptr(wq->cpu_wq, cpu);
369 spin_lock_irqsave(&cwq->lock, flags);
370 p = cwq->thread;
371 cwq->thread = NULL;
372 spin_unlock_irqrestore(&cwq->lock, flags);
373 if (p)
374 kthread_stop(p);
375 }
376
377 void destroy_workqueue(struct workqueue_struct *wq)
378 {
379 int cpu;
380
381 flush_workqueue(wq);
382
383 /* We don't need the distraction of CPUs appearing and vanishing. */
384 lock_cpu_hotplug();
385 if (is_single_threaded(wq))
386 cleanup_workqueue_thread(wq, singlethread_cpu);
387 else {
388 for_each_online_cpu(cpu)
389 cleanup_workqueue_thread(wq, cpu);
390 spin_lock(&workqueue_lock);
391 list_del(&wq->list);
392 spin_unlock(&workqueue_lock);
393 }
394 unlock_cpu_hotplug();
395 free_percpu(wq->cpu_wq);
396 kfree(wq);
397 }
398
399 static struct workqueue_struct *keventd_wq;
400
401 int fastcall schedule_work(struct work_struct *work)
402 {
403 return queue_work(keventd_wq, work);
404 }
405
406 int fastcall schedule_delayed_work(struct work_struct *work, unsigned long delay)
407 {
408 return queue_delayed_work(keventd_wq, work, delay);
409 }
410
411 int schedule_delayed_work_on(int cpu,
412 struct work_struct *work, unsigned long delay)
413 {
414 int ret = 0;
415 struct timer_list *timer = &work->timer;
416
417 if (!test_and_set_bit(0, &work->pending)) {
418 BUG_ON(timer_pending(timer));
419 BUG_ON(!list_empty(&work->entry));
420 /* This stores keventd_wq for the moment, for the timer_fn */
421 work->wq_data = keventd_wq;
422 timer->expires = jiffies + delay;
423 timer->data = (unsigned long)work;
424 timer->function = delayed_work_timer_fn;
425 add_timer_on(timer, cpu);
426 ret = 1;
427 }
428 return ret;
429 }
430
431 /**
432 * schedule_on_each_cpu - call a function on each online CPU from keventd
433 * @func: the function to call
434 * @info: a pointer to pass to func()
435 *
436 * Returns zero on success.
437 * Returns -ve errno on failure.
438 *
439 * Appears to be racy against CPU hotplug.
440 *
441 * schedule_on_each_cpu() is very slow.
442 */
443 int schedule_on_each_cpu(void (*func)(void *info), void *info)
444 {
445 int cpu;
446 struct work_struct *works;
447
448 works = alloc_percpu(struct work_struct);
449 if (!works)
450 return -ENOMEM;
451
452 for_each_online_cpu(cpu) {
453 INIT_WORK(per_cpu_ptr(works, cpu), func, info);
454 __queue_work(per_cpu_ptr(keventd_wq->cpu_wq, cpu),
455 per_cpu_ptr(works, cpu));
456 }
457 flush_workqueue(keventd_wq);
458 free_percpu(works);
459 return 0;
460 }
461
462 void flush_scheduled_work(void)
463 {
464 flush_workqueue(keventd_wq);
465 }
466
467 /**
468 * cancel_rearming_delayed_workqueue - reliably kill off a delayed
469 * work whose handler rearms the delayed work.
470 * @wq: the controlling workqueue structure
471 * @work: the delayed work struct
472 */
473 void cancel_rearming_delayed_workqueue(struct workqueue_struct *wq,
474 struct work_struct *work)
475 {
476 while (!cancel_delayed_work(work))
477 flush_workqueue(wq);
478 }
479 EXPORT_SYMBOL(cancel_rearming_delayed_workqueue);
480
481 /**
482 * cancel_rearming_delayed_work - reliably kill off a delayed keventd
483 * work whose handler rearms the delayed work.
484 * @work: the delayed work struct
485 */
486 void cancel_rearming_delayed_work(struct work_struct *work)
487 {
488 cancel_rearming_delayed_workqueue(keventd_wq, work);
489 }
490 EXPORT_SYMBOL(cancel_rearming_delayed_work);
491
492 /**
493 * execute_in_process_context - reliably execute the routine with user context
494 * @fn: the function to execute
495 * @data: data to pass to the function
496 * @ew: guaranteed storage for the execute work structure (must
497 * be available when the work executes)
498 *
499 * Executes the function immediately if process context is available,
500 * otherwise schedules the function for delayed execution.
501 *
502 * Returns: 0 - function was executed
503 * 1 - function was scheduled for execution
504 */
505 int execute_in_process_context(void (*fn)(void *data), void *data,
506 struct execute_work *ew)
507 {
508 if (!in_interrupt()) {
509 fn(data);
510 return 0;
511 }
512
513 INIT_WORK(&ew->work, fn, data);
514 schedule_work(&ew->work);
515
516 return 1;
517 }
518 EXPORT_SYMBOL_GPL(execute_in_process_context);
519
520 int keventd_up(void)
521 {
522 return keventd_wq != NULL;
523 }
524
525 int current_is_keventd(void)
526 {
527 struct cpu_workqueue_struct *cwq;
528 int cpu = smp_processor_id(); /* preempt-safe: keventd is per-cpu */
529 int ret = 0;
530
531 BUG_ON(!keventd_wq);
532
533 cwq = per_cpu_ptr(keventd_wq->cpu_wq, cpu);
534 if (current == cwq->thread)
535 ret = 1;
536
537 return ret;
538
539 }
540
541 #ifdef CONFIG_HOTPLUG_CPU
542 /* Take the work from this (downed) CPU. */
543 static void take_over_work(struct workqueue_struct *wq, unsigned int cpu)
544 {
545 struct cpu_workqueue_struct *cwq = per_cpu_ptr(wq->cpu_wq, cpu);
546 struct list_head list;
547 struct work_struct *work;
548
549 spin_lock_irq(&cwq->lock);
550 list_replace_init(&cwq->worklist, &list);
551
552 while (!list_empty(&list)) {
553 printk("Taking work for %s\n", wq->name);
554 work = list_entry(list.next,struct work_struct,entry);
555 list_del(&work->entry);
556 __queue_work(per_cpu_ptr(wq->cpu_wq, smp_processor_id()), work);
557 }
558 spin_unlock_irq(&cwq->lock);
559 }
560
561 /* We're holding the cpucontrol mutex here */
562 static int workqueue_cpu_callback(struct notifier_block *nfb,
563 unsigned long action,
564 void *hcpu)
565 {
566 unsigned int hotcpu = (unsigned long)hcpu;
567 struct workqueue_struct *wq;
568
569 switch (action) {
570 case CPU_UP_PREPARE:
571 /* Create a new workqueue thread for it. */
572 list_for_each_entry(wq, &workqueues, list) {
573 if (!create_workqueue_thread(wq, hotcpu)) {
574 printk("workqueue for %i failed\n", hotcpu);
575 return NOTIFY_BAD;
576 }
577 }
578 break;
579
580 case CPU_ONLINE:
581 /* Kick off worker threads. */
582 list_for_each_entry(wq, &workqueues, list) {
583 struct cpu_workqueue_struct *cwq;
584
585 cwq = per_cpu_ptr(wq->cpu_wq, hotcpu);
586 kthread_bind(cwq->thread, hotcpu);
587 wake_up_process(cwq->thread);
588 }
589 break;
590
591 case CPU_UP_CANCELED:
592 list_for_each_entry(wq, &workqueues, list) {
593 if (!per_cpu_ptr(wq->cpu_wq, hotcpu)->thread)
594 continue;
595 /* Unbind so it can run. */
596 kthread_bind(per_cpu_ptr(wq->cpu_wq, hotcpu)->thread,
597 any_online_cpu(cpu_online_map));
598 cleanup_workqueue_thread(wq, hotcpu);
599 }
600 break;
601
602 case CPU_DEAD:
603 list_for_each_entry(wq, &workqueues, list)
604 cleanup_workqueue_thread(wq, hotcpu);
605 list_for_each_entry(wq, &workqueues, list)
606 take_over_work(wq, hotcpu);
607 break;
608 }
609
610 return NOTIFY_OK;
611 }
612 #endif
613
614 void init_workqueues(void)
615 {
616 singlethread_cpu = first_cpu(cpu_possible_map);
617 hotcpu_notifier(workqueue_cpu_callback, 0);
618 keventd_wq = create_workqueue("events");
619 BUG_ON(!keventd_wq);
620 }
621
622 EXPORT_SYMBOL_GPL(__create_workqueue);
623 EXPORT_SYMBOL_GPL(queue_work);
624 EXPORT_SYMBOL_GPL(queue_delayed_work);
625 EXPORT_SYMBOL_GPL(flush_workqueue);
626 EXPORT_SYMBOL_GPL(destroy_workqueue);
627
628 EXPORT_SYMBOL(schedule_work);
629 EXPORT_SYMBOL(schedule_delayed_work);
630 EXPORT_SYMBOL(schedule_delayed_work_on);
631 EXPORT_SYMBOL(flush_scheduled_work);