]> git.proxmox.com Git - mirror_ubuntu-kernels.git/blob - kernel/workqueue.c
net/sunrpc: fix reference count leaks in rpc_sysfs_xprt_state_change
[mirror_ubuntu-kernels.git] / kernel / workqueue.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * kernel/workqueue.c - generic async execution with shared worker pool
4 *
5 * Copyright (C) 2002 Ingo Molnar
6 *
7 * Derived from the taskqueue/keventd code by:
8 * David Woodhouse <dwmw2@infradead.org>
9 * Andrew Morton
10 * Kai Petzke <wpp@marie.physik.tu-berlin.de>
11 * Theodore Ts'o <tytso@mit.edu>
12 *
13 * Made to use alloc_percpu by Christoph Lameter.
14 *
15 * Copyright (C) 2010 SUSE Linux Products GmbH
16 * Copyright (C) 2010 Tejun Heo <tj@kernel.org>
17 *
18 * This is the generic async execution mechanism. Work items as are
19 * executed in process context. The worker pool is shared and
20 * automatically managed. There are two worker pools for each CPU (one for
21 * normal work items and the other for high priority ones) and some extra
22 * pools for workqueues which are not bound to any specific CPU - the
23 * number of these backing pools is dynamic.
24 *
25 * Please read Documentation/core-api/workqueue.rst for details.
26 */
27
28 #include <linux/export.h>
29 #include <linux/kernel.h>
30 #include <linux/sched.h>
31 #include <linux/init.h>
32 #include <linux/signal.h>
33 #include <linux/completion.h>
34 #include <linux/workqueue.h>
35 #include <linux/slab.h>
36 #include <linux/cpu.h>
37 #include <linux/notifier.h>
38 #include <linux/kthread.h>
39 #include <linux/hardirq.h>
40 #include <linux/mempolicy.h>
41 #include <linux/freezer.h>
42 #include <linux/debug_locks.h>
43 #include <linux/lockdep.h>
44 #include <linux/idr.h>
45 #include <linux/jhash.h>
46 #include <linux/hashtable.h>
47 #include <linux/rculist.h>
48 #include <linux/nodemask.h>
49 #include <linux/moduleparam.h>
50 #include <linux/uaccess.h>
51 #include <linux/sched/isolation.h>
52 #include <linux/nmi.h>
53 #include <linux/kvm_para.h>
54
55 #include "workqueue_internal.h"
56
57 enum {
58 /*
59 * worker_pool flags
60 *
61 * A bound pool is either associated or disassociated with its CPU.
62 * While associated (!DISASSOCIATED), all workers are bound to the
63 * CPU and none has %WORKER_UNBOUND set and concurrency management
64 * is in effect.
65 *
66 * While DISASSOCIATED, the cpu may be offline and all workers have
67 * %WORKER_UNBOUND set and concurrency management disabled, and may
68 * be executing on any CPU. The pool behaves as an unbound one.
69 *
70 * Note that DISASSOCIATED should be flipped only while holding
71 * wq_pool_attach_mutex to avoid changing binding state while
72 * worker_attach_to_pool() is in progress.
73 */
74 POOL_MANAGER_ACTIVE = 1 << 0, /* being managed */
75 POOL_DISASSOCIATED = 1 << 2, /* cpu can't serve workers */
76
77 /* worker flags */
78 WORKER_DIE = 1 << 1, /* die die die */
79 WORKER_IDLE = 1 << 2, /* is idle */
80 WORKER_PREP = 1 << 3, /* preparing to run works */
81 WORKER_CPU_INTENSIVE = 1 << 6, /* cpu intensive */
82 WORKER_UNBOUND = 1 << 7, /* worker is unbound */
83 WORKER_REBOUND = 1 << 8, /* worker was rebound */
84
85 WORKER_NOT_RUNNING = WORKER_PREP | WORKER_CPU_INTENSIVE |
86 WORKER_UNBOUND | WORKER_REBOUND,
87
88 NR_STD_WORKER_POOLS = 2, /* # standard pools per cpu */
89
90 UNBOUND_POOL_HASH_ORDER = 6, /* hashed by pool->attrs */
91 BUSY_WORKER_HASH_ORDER = 6, /* 64 pointers */
92
93 MAX_IDLE_WORKERS_RATIO = 4, /* 1/4 of busy can be idle */
94 IDLE_WORKER_TIMEOUT = 300 * HZ, /* keep idle ones for 5 mins */
95
96 MAYDAY_INITIAL_TIMEOUT = HZ / 100 >= 2 ? HZ / 100 : 2,
97 /* call for help after 10ms
98 (min two ticks) */
99 MAYDAY_INTERVAL = HZ / 10, /* and then every 100ms */
100 CREATE_COOLDOWN = HZ, /* time to breath after fail */
101
102 /*
103 * Rescue workers are used only on emergencies and shared by
104 * all cpus. Give MIN_NICE.
105 */
106 RESCUER_NICE_LEVEL = MIN_NICE,
107 HIGHPRI_NICE_LEVEL = MIN_NICE,
108
109 WQ_NAME_LEN = 24,
110 };
111
112 /*
113 * Structure fields follow one of the following exclusion rules.
114 *
115 * I: Modifiable by initialization/destruction paths and read-only for
116 * everyone else.
117 *
118 * P: Preemption protected. Disabling preemption is enough and should
119 * only be modified and accessed from the local cpu.
120 *
121 * L: pool->lock protected. Access with pool->lock held.
122 *
123 * X: During normal operation, modification requires pool->lock and should
124 * be done only from local cpu. Either disabling preemption on local
125 * cpu or grabbing pool->lock is enough for read access. If
126 * POOL_DISASSOCIATED is set, it's identical to L.
127 *
128 * A: wq_pool_attach_mutex protected.
129 *
130 * PL: wq_pool_mutex protected.
131 *
132 * PR: wq_pool_mutex protected for writes. RCU protected for reads.
133 *
134 * PW: wq_pool_mutex and wq->mutex protected for writes. Either for reads.
135 *
136 * PWR: wq_pool_mutex and wq->mutex protected for writes. Either or
137 * RCU for reads.
138 *
139 * WQ: wq->mutex protected.
140 *
141 * WR: wq->mutex protected for writes. RCU protected for reads.
142 *
143 * MD: wq_mayday_lock protected.
144 */
145
146 /* struct worker is defined in workqueue_internal.h */
147
148 struct worker_pool {
149 raw_spinlock_t lock; /* the pool lock */
150 int cpu; /* I: the associated cpu */
151 int node; /* I: the associated node ID */
152 int id; /* I: pool ID */
153 unsigned int flags; /* X: flags */
154
155 unsigned long watchdog_ts; /* L: watchdog timestamp */
156
157 struct list_head worklist; /* L: list of pending works */
158
159 int nr_workers; /* L: total number of workers */
160 int nr_idle; /* L: currently idle workers */
161
162 struct list_head idle_list; /* X: list of idle workers */
163 struct timer_list idle_timer; /* L: worker idle timeout */
164 struct timer_list mayday_timer; /* L: SOS timer for workers */
165
166 /* a workers is either on busy_hash or idle_list, or the manager */
167 DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
168 /* L: hash of busy workers */
169
170 struct worker *manager; /* L: purely informational */
171 struct list_head workers; /* A: attached workers */
172 struct completion *detach_completion; /* all workers detached */
173
174 struct ida worker_ida; /* worker IDs for task name */
175
176 struct workqueue_attrs *attrs; /* I: worker attributes */
177 struct hlist_node hash_node; /* PL: unbound_pool_hash node */
178 int refcnt; /* PL: refcnt for unbound pools */
179
180 /*
181 * The current concurrency level. As it's likely to be accessed
182 * from other CPUs during try_to_wake_up(), put it in a separate
183 * cacheline.
184 */
185 atomic_t nr_running ____cacheline_aligned_in_smp;
186
187 /*
188 * Destruction of pool is RCU protected to allow dereferences
189 * from get_work_pool().
190 */
191 struct rcu_head rcu;
192 } ____cacheline_aligned_in_smp;
193
194 /*
195 * The per-pool workqueue. While queued, the lower WORK_STRUCT_FLAG_BITS
196 * of work_struct->data are used for flags and the remaining high bits
197 * point to the pwq; thus, pwqs need to be aligned at two's power of the
198 * number of flag bits.
199 */
200 struct pool_workqueue {
201 struct worker_pool *pool; /* I: the associated pool */
202 struct workqueue_struct *wq; /* I: the owning workqueue */
203 int work_color; /* L: current color */
204 int flush_color; /* L: flushing color */
205 int refcnt; /* L: reference count */
206 int nr_in_flight[WORK_NR_COLORS];
207 /* L: nr of in_flight works */
208
209 /*
210 * nr_active management and WORK_STRUCT_INACTIVE:
211 *
212 * When pwq->nr_active >= max_active, new work item is queued to
213 * pwq->inactive_works instead of pool->worklist and marked with
214 * WORK_STRUCT_INACTIVE.
215 *
216 * All work items marked with WORK_STRUCT_INACTIVE do not participate
217 * in pwq->nr_active and all work items in pwq->inactive_works are
218 * marked with WORK_STRUCT_INACTIVE. But not all WORK_STRUCT_INACTIVE
219 * work items are in pwq->inactive_works. Some of them are ready to
220 * run in pool->worklist or worker->scheduled. Those work itmes are
221 * only struct wq_barrier which is used for flush_work() and should
222 * not participate in pwq->nr_active. For non-barrier work item, it
223 * is marked with WORK_STRUCT_INACTIVE iff it is in pwq->inactive_works.
224 */
225 int nr_active; /* L: nr of active works */
226 int max_active; /* L: max active works */
227 struct list_head inactive_works; /* L: inactive works */
228 struct list_head pwqs_node; /* WR: node on wq->pwqs */
229 struct list_head mayday_node; /* MD: node on wq->maydays */
230
231 /*
232 * Release of unbound pwq is punted to system_wq. See put_pwq()
233 * and pwq_unbound_release_workfn() for details. pool_workqueue
234 * itself is also RCU protected so that the first pwq can be
235 * determined without grabbing wq->mutex.
236 */
237 struct work_struct unbound_release_work;
238 struct rcu_head rcu;
239 } __aligned(1 << WORK_STRUCT_FLAG_BITS);
240
241 /*
242 * Structure used to wait for workqueue flush.
243 */
244 struct wq_flusher {
245 struct list_head list; /* WQ: list of flushers */
246 int flush_color; /* WQ: flush color waiting for */
247 struct completion done; /* flush completion */
248 };
249
250 struct wq_device;
251
252 /*
253 * The externally visible workqueue. It relays the issued work items to
254 * the appropriate worker_pool through its pool_workqueues.
255 */
256 struct workqueue_struct {
257 struct list_head pwqs; /* WR: all pwqs of this wq */
258 struct list_head list; /* PR: list of all workqueues */
259
260 struct mutex mutex; /* protects this wq */
261 int work_color; /* WQ: current work color */
262 int flush_color; /* WQ: current flush color */
263 atomic_t nr_pwqs_to_flush; /* flush in progress */
264 struct wq_flusher *first_flusher; /* WQ: first flusher */
265 struct list_head flusher_queue; /* WQ: flush waiters */
266 struct list_head flusher_overflow; /* WQ: flush overflow list */
267
268 struct list_head maydays; /* MD: pwqs requesting rescue */
269 struct worker *rescuer; /* MD: rescue worker */
270
271 int nr_drainers; /* WQ: drain in progress */
272 int saved_max_active; /* WQ: saved pwq max_active */
273
274 struct workqueue_attrs *unbound_attrs; /* PW: only for unbound wqs */
275 struct pool_workqueue *dfl_pwq; /* PW: only for unbound wqs */
276
277 #ifdef CONFIG_SYSFS
278 struct wq_device *wq_dev; /* I: for sysfs interface */
279 #endif
280 #ifdef CONFIG_LOCKDEP
281 char *lock_name;
282 struct lock_class_key key;
283 struct lockdep_map lockdep_map;
284 #endif
285 char name[WQ_NAME_LEN]; /* I: workqueue name */
286
287 /*
288 * Destruction of workqueue_struct is RCU protected to allow walking
289 * the workqueues list without grabbing wq_pool_mutex.
290 * This is used to dump all workqueues from sysrq.
291 */
292 struct rcu_head rcu;
293
294 /* hot fields used during command issue, aligned to cacheline */
295 unsigned int flags ____cacheline_aligned; /* WQ: WQ_* flags */
296 struct pool_workqueue __percpu *cpu_pwqs; /* I: per-cpu pwqs */
297 struct pool_workqueue __rcu *numa_pwq_tbl[]; /* PWR: unbound pwqs indexed by node */
298 };
299
300 static struct kmem_cache *pwq_cache;
301
302 static cpumask_var_t *wq_numa_possible_cpumask;
303 /* possible CPUs of each node */
304
305 static bool wq_disable_numa;
306 module_param_named(disable_numa, wq_disable_numa, bool, 0444);
307
308 /* see the comment above the definition of WQ_POWER_EFFICIENT */
309 static bool wq_power_efficient = IS_ENABLED(CONFIG_WQ_POWER_EFFICIENT_DEFAULT);
310 module_param_named(power_efficient, wq_power_efficient, bool, 0444);
311
312 static bool wq_online; /* can kworkers be created yet? */
313
314 static bool wq_numa_enabled; /* unbound NUMA affinity enabled */
315
316 /* buf for wq_update_unbound_numa_attrs(), protected by CPU hotplug exclusion */
317 static struct workqueue_attrs *wq_update_unbound_numa_attrs_buf;
318
319 static DEFINE_MUTEX(wq_pool_mutex); /* protects pools and workqueues list */
320 static DEFINE_MUTEX(wq_pool_attach_mutex); /* protects worker attach/detach */
321 static DEFINE_RAW_SPINLOCK(wq_mayday_lock); /* protects wq->maydays list */
322 /* wait for manager to go away */
323 static struct rcuwait manager_wait = __RCUWAIT_INITIALIZER(manager_wait);
324
325 static LIST_HEAD(workqueues); /* PR: list of all workqueues */
326 static bool workqueue_freezing; /* PL: have wqs started freezing? */
327
328 /* PL: allowable cpus for unbound wqs and work items */
329 static cpumask_var_t wq_unbound_cpumask;
330
331 /* CPU where unbound work was last round robin scheduled from this CPU */
332 static DEFINE_PER_CPU(int, wq_rr_cpu_last);
333
334 /*
335 * Local execution of unbound work items is no longer guaranteed. The
336 * following always forces round-robin CPU selection on unbound work items
337 * to uncover usages which depend on it.
338 */
339 #ifdef CONFIG_DEBUG_WQ_FORCE_RR_CPU
340 static bool wq_debug_force_rr_cpu = true;
341 #else
342 static bool wq_debug_force_rr_cpu = false;
343 #endif
344 module_param_named(debug_force_rr_cpu, wq_debug_force_rr_cpu, bool, 0644);
345
346 /* the per-cpu worker pools */
347 static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS], cpu_worker_pools);
348
349 static DEFINE_IDR(worker_pool_idr); /* PR: idr of all pools */
350
351 /* PL: hash of all unbound pools keyed by pool->attrs */
352 static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER);
353
354 /* I: attributes used when instantiating standard unbound pools on demand */
355 static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS];
356
357 /* I: attributes used when instantiating ordered pools on demand */
358 static struct workqueue_attrs *ordered_wq_attrs[NR_STD_WORKER_POOLS];
359
360 struct workqueue_struct *system_wq __read_mostly;
361 EXPORT_SYMBOL(system_wq);
362 struct workqueue_struct *system_highpri_wq __read_mostly;
363 EXPORT_SYMBOL_GPL(system_highpri_wq);
364 struct workqueue_struct *system_long_wq __read_mostly;
365 EXPORT_SYMBOL_GPL(system_long_wq);
366 struct workqueue_struct *system_unbound_wq __read_mostly;
367 EXPORT_SYMBOL_GPL(system_unbound_wq);
368 struct workqueue_struct *system_freezable_wq __read_mostly;
369 EXPORT_SYMBOL_GPL(system_freezable_wq);
370 struct workqueue_struct *system_power_efficient_wq __read_mostly;
371 EXPORT_SYMBOL_GPL(system_power_efficient_wq);
372 struct workqueue_struct *system_freezable_power_efficient_wq __read_mostly;
373 EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq);
374
375 static int worker_thread(void *__worker);
376 static void workqueue_sysfs_unregister(struct workqueue_struct *wq);
377 static void show_pwq(struct pool_workqueue *pwq);
378 static void show_one_worker_pool(struct worker_pool *pool);
379
380 #define CREATE_TRACE_POINTS
381 #include <trace/events/workqueue.h>
382
383 #define assert_rcu_or_pool_mutex() \
384 RCU_LOCKDEP_WARN(!rcu_read_lock_held() && \
385 !lockdep_is_held(&wq_pool_mutex), \
386 "RCU or wq_pool_mutex should be held")
387
388 #define assert_rcu_or_wq_mutex_or_pool_mutex(wq) \
389 RCU_LOCKDEP_WARN(!rcu_read_lock_held() && \
390 !lockdep_is_held(&wq->mutex) && \
391 !lockdep_is_held(&wq_pool_mutex), \
392 "RCU, wq->mutex or wq_pool_mutex should be held")
393
394 #define for_each_cpu_worker_pool(pool, cpu) \
395 for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0]; \
396 (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
397 (pool)++)
398
399 /**
400 * for_each_pool - iterate through all worker_pools in the system
401 * @pool: iteration cursor
402 * @pi: integer used for iteration
403 *
404 * This must be called either with wq_pool_mutex held or RCU read
405 * locked. If the pool needs to be used beyond the locking in effect, the
406 * caller is responsible for guaranteeing that the pool stays online.
407 *
408 * The if/else clause exists only for the lockdep assertion and can be
409 * ignored.
410 */
411 #define for_each_pool(pool, pi) \
412 idr_for_each_entry(&worker_pool_idr, pool, pi) \
413 if (({ assert_rcu_or_pool_mutex(); false; })) { } \
414 else
415
416 /**
417 * for_each_pool_worker - iterate through all workers of a worker_pool
418 * @worker: iteration cursor
419 * @pool: worker_pool to iterate workers of
420 *
421 * This must be called with wq_pool_attach_mutex.
422 *
423 * The if/else clause exists only for the lockdep assertion and can be
424 * ignored.
425 */
426 #define for_each_pool_worker(worker, pool) \
427 list_for_each_entry((worker), &(pool)->workers, node) \
428 if (({ lockdep_assert_held(&wq_pool_attach_mutex); false; })) { } \
429 else
430
431 /**
432 * for_each_pwq - iterate through all pool_workqueues of the specified workqueue
433 * @pwq: iteration cursor
434 * @wq: the target workqueue
435 *
436 * This must be called either with wq->mutex held or RCU read locked.
437 * If the pwq needs to be used beyond the locking in effect, the caller is
438 * responsible for guaranteeing that the pwq stays online.
439 *
440 * The if/else clause exists only for the lockdep assertion and can be
441 * ignored.
442 */
443 #define for_each_pwq(pwq, wq) \
444 list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node, \
445 lockdep_is_held(&(wq->mutex)))
446
447 #ifdef CONFIG_DEBUG_OBJECTS_WORK
448
449 static const struct debug_obj_descr work_debug_descr;
450
451 static void *work_debug_hint(void *addr)
452 {
453 return ((struct work_struct *) addr)->func;
454 }
455
456 static bool work_is_static_object(void *addr)
457 {
458 struct work_struct *work = addr;
459
460 return test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work));
461 }
462
463 /*
464 * fixup_init is called when:
465 * - an active object is initialized
466 */
467 static bool work_fixup_init(void *addr, enum debug_obj_state state)
468 {
469 struct work_struct *work = addr;
470
471 switch (state) {
472 case ODEBUG_STATE_ACTIVE:
473 cancel_work_sync(work);
474 debug_object_init(work, &work_debug_descr);
475 return true;
476 default:
477 return false;
478 }
479 }
480
481 /*
482 * fixup_free is called when:
483 * - an active object is freed
484 */
485 static bool work_fixup_free(void *addr, enum debug_obj_state state)
486 {
487 struct work_struct *work = addr;
488
489 switch (state) {
490 case ODEBUG_STATE_ACTIVE:
491 cancel_work_sync(work);
492 debug_object_free(work, &work_debug_descr);
493 return true;
494 default:
495 return false;
496 }
497 }
498
499 static const struct debug_obj_descr work_debug_descr = {
500 .name = "work_struct",
501 .debug_hint = work_debug_hint,
502 .is_static_object = work_is_static_object,
503 .fixup_init = work_fixup_init,
504 .fixup_free = work_fixup_free,
505 };
506
507 static inline void debug_work_activate(struct work_struct *work)
508 {
509 debug_object_activate(work, &work_debug_descr);
510 }
511
512 static inline void debug_work_deactivate(struct work_struct *work)
513 {
514 debug_object_deactivate(work, &work_debug_descr);
515 }
516
517 void __init_work(struct work_struct *work, int onstack)
518 {
519 if (onstack)
520 debug_object_init_on_stack(work, &work_debug_descr);
521 else
522 debug_object_init(work, &work_debug_descr);
523 }
524 EXPORT_SYMBOL_GPL(__init_work);
525
526 void destroy_work_on_stack(struct work_struct *work)
527 {
528 debug_object_free(work, &work_debug_descr);
529 }
530 EXPORT_SYMBOL_GPL(destroy_work_on_stack);
531
532 void destroy_delayed_work_on_stack(struct delayed_work *work)
533 {
534 destroy_timer_on_stack(&work->timer);
535 debug_object_free(&work->work, &work_debug_descr);
536 }
537 EXPORT_SYMBOL_GPL(destroy_delayed_work_on_stack);
538
539 #else
540 static inline void debug_work_activate(struct work_struct *work) { }
541 static inline void debug_work_deactivate(struct work_struct *work) { }
542 #endif
543
544 /**
545 * worker_pool_assign_id - allocate ID and assign it to @pool
546 * @pool: the pool pointer of interest
547 *
548 * Returns 0 if ID in [0, WORK_OFFQ_POOL_NONE) is allocated and assigned
549 * successfully, -errno on failure.
550 */
551 static int worker_pool_assign_id(struct worker_pool *pool)
552 {
553 int ret;
554
555 lockdep_assert_held(&wq_pool_mutex);
556
557 ret = idr_alloc(&worker_pool_idr, pool, 0, WORK_OFFQ_POOL_NONE,
558 GFP_KERNEL);
559 if (ret >= 0) {
560 pool->id = ret;
561 return 0;
562 }
563 return ret;
564 }
565
566 /**
567 * unbound_pwq_by_node - return the unbound pool_workqueue for the given node
568 * @wq: the target workqueue
569 * @node: the node ID
570 *
571 * This must be called with any of wq_pool_mutex, wq->mutex or RCU
572 * read locked.
573 * If the pwq needs to be used beyond the locking in effect, the caller is
574 * responsible for guaranteeing that the pwq stays online.
575 *
576 * Return: The unbound pool_workqueue for @node.
577 */
578 static struct pool_workqueue *unbound_pwq_by_node(struct workqueue_struct *wq,
579 int node)
580 {
581 assert_rcu_or_wq_mutex_or_pool_mutex(wq);
582
583 /*
584 * XXX: @node can be NUMA_NO_NODE if CPU goes offline while a
585 * delayed item is pending. The plan is to keep CPU -> NODE
586 * mapping valid and stable across CPU on/offlines. Once that
587 * happens, this workaround can be removed.
588 */
589 if (unlikely(node == NUMA_NO_NODE))
590 return wq->dfl_pwq;
591
592 return rcu_dereference_raw(wq->numa_pwq_tbl[node]);
593 }
594
595 static unsigned int work_color_to_flags(int color)
596 {
597 return color << WORK_STRUCT_COLOR_SHIFT;
598 }
599
600 static int get_work_color(unsigned long work_data)
601 {
602 return (work_data >> WORK_STRUCT_COLOR_SHIFT) &
603 ((1 << WORK_STRUCT_COLOR_BITS) - 1);
604 }
605
606 static int work_next_color(int color)
607 {
608 return (color + 1) % WORK_NR_COLORS;
609 }
610
611 /*
612 * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
613 * contain the pointer to the queued pwq. Once execution starts, the flag
614 * is cleared and the high bits contain OFFQ flags and pool ID.
615 *
616 * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling()
617 * and clear_work_data() can be used to set the pwq, pool or clear
618 * work->data. These functions should only be called while the work is
619 * owned - ie. while the PENDING bit is set.
620 *
621 * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
622 * corresponding to a work. Pool is available once the work has been
623 * queued anywhere after initialization until it is sync canceled. pwq is
624 * available only while the work item is queued.
625 *
626 * %WORK_OFFQ_CANCELING is used to mark a work item which is being
627 * canceled. While being canceled, a work item may have its PENDING set
628 * but stay off timer and worklist for arbitrarily long and nobody should
629 * try to steal the PENDING bit.
630 */
631 static inline void set_work_data(struct work_struct *work, unsigned long data,
632 unsigned long flags)
633 {
634 WARN_ON_ONCE(!work_pending(work));
635 atomic_long_set(&work->data, data | flags | work_static(work));
636 }
637
638 static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq,
639 unsigned long extra_flags)
640 {
641 set_work_data(work, (unsigned long)pwq,
642 WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags);
643 }
644
645 static void set_work_pool_and_keep_pending(struct work_struct *work,
646 int pool_id)
647 {
648 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT,
649 WORK_STRUCT_PENDING);
650 }
651
652 static void set_work_pool_and_clear_pending(struct work_struct *work,
653 int pool_id)
654 {
655 /*
656 * The following wmb is paired with the implied mb in
657 * test_and_set_bit(PENDING) and ensures all updates to @work made
658 * here are visible to and precede any updates by the next PENDING
659 * owner.
660 */
661 smp_wmb();
662 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0);
663 /*
664 * The following mb guarantees that previous clear of a PENDING bit
665 * will not be reordered with any speculative LOADS or STORES from
666 * work->current_func, which is executed afterwards. This possible
667 * reordering can lead to a missed execution on attempt to queue
668 * the same @work. E.g. consider this case:
669 *
670 * CPU#0 CPU#1
671 * ---------------------------- --------------------------------
672 *
673 * 1 STORE event_indicated
674 * 2 queue_work_on() {
675 * 3 test_and_set_bit(PENDING)
676 * 4 } set_..._and_clear_pending() {
677 * 5 set_work_data() # clear bit
678 * 6 smp_mb()
679 * 7 work->current_func() {
680 * 8 LOAD event_indicated
681 * }
682 *
683 * Without an explicit full barrier speculative LOAD on line 8 can
684 * be executed before CPU#0 does STORE on line 1. If that happens,
685 * CPU#0 observes the PENDING bit is still set and new execution of
686 * a @work is not queued in a hope, that CPU#1 will eventually
687 * finish the queued @work. Meanwhile CPU#1 does not see
688 * event_indicated is set, because speculative LOAD was executed
689 * before actual STORE.
690 */
691 smp_mb();
692 }
693
694 static void clear_work_data(struct work_struct *work)
695 {
696 smp_wmb(); /* see set_work_pool_and_clear_pending() */
697 set_work_data(work, WORK_STRUCT_NO_POOL, 0);
698 }
699
700 static struct pool_workqueue *get_work_pwq(struct work_struct *work)
701 {
702 unsigned long data = atomic_long_read(&work->data);
703
704 if (data & WORK_STRUCT_PWQ)
705 return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
706 else
707 return NULL;
708 }
709
710 /**
711 * get_work_pool - return the worker_pool a given work was associated with
712 * @work: the work item of interest
713 *
714 * Pools are created and destroyed under wq_pool_mutex, and allows read
715 * access under RCU read lock. As such, this function should be
716 * called under wq_pool_mutex or inside of a rcu_read_lock() region.
717 *
718 * All fields of the returned pool are accessible as long as the above
719 * mentioned locking is in effect. If the returned pool needs to be used
720 * beyond the critical section, the caller is responsible for ensuring the
721 * returned pool is and stays online.
722 *
723 * Return: The worker_pool @work was last associated with. %NULL if none.
724 */
725 static struct worker_pool *get_work_pool(struct work_struct *work)
726 {
727 unsigned long data = atomic_long_read(&work->data);
728 int pool_id;
729
730 assert_rcu_or_pool_mutex();
731
732 if (data & WORK_STRUCT_PWQ)
733 return ((struct pool_workqueue *)
734 (data & WORK_STRUCT_WQ_DATA_MASK))->pool;
735
736 pool_id = data >> WORK_OFFQ_POOL_SHIFT;
737 if (pool_id == WORK_OFFQ_POOL_NONE)
738 return NULL;
739
740 return idr_find(&worker_pool_idr, pool_id);
741 }
742
743 /**
744 * get_work_pool_id - return the worker pool ID a given work is associated with
745 * @work: the work item of interest
746 *
747 * Return: The worker_pool ID @work was last associated with.
748 * %WORK_OFFQ_POOL_NONE if none.
749 */
750 static int get_work_pool_id(struct work_struct *work)
751 {
752 unsigned long data = atomic_long_read(&work->data);
753
754 if (data & WORK_STRUCT_PWQ)
755 return ((struct pool_workqueue *)
756 (data & WORK_STRUCT_WQ_DATA_MASK))->pool->id;
757
758 return data >> WORK_OFFQ_POOL_SHIFT;
759 }
760
761 static void mark_work_canceling(struct work_struct *work)
762 {
763 unsigned long pool_id = get_work_pool_id(work);
764
765 pool_id <<= WORK_OFFQ_POOL_SHIFT;
766 set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING);
767 }
768
769 static bool work_is_canceling(struct work_struct *work)
770 {
771 unsigned long data = atomic_long_read(&work->data);
772
773 return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING);
774 }
775
776 /*
777 * Policy functions. These define the policies on how the global worker
778 * pools are managed. Unless noted otherwise, these functions assume that
779 * they're being called with pool->lock held.
780 */
781
782 static bool __need_more_worker(struct worker_pool *pool)
783 {
784 return !atomic_read(&pool->nr_running);
785 }
786
787 /*
788 * Need to wake up a worker? Called from anything but currently
789 * running workers.
790 *
791 * Note that, because unbound workers never contribute to nr_running, this
792 * function will always return %true for unbound pools as long as the
793 * worklist isn't empty.
794 */
795 static bool need_more_worker(struct worker_pool *pool)
796 {
797 return !list_empty(&pool->worklist) && __need_more_worker(pool);
798 }
799
800 /* Can I start working? Called from busy but !running workers. */
801 static bool may_start_working(struct worker_pool *pool)
802 {
803 return pool->nr_idle;
804 }
805
806 /* Do I need to keep working? Called from currently running workers. */
807 static bool keep_working(struct worker_pool *pool)
808 {
809 return !list_empty(&pool->worklist) &&
810 atomic_read(&pool->nr_running) <= 1;
811 }
812
813 /* Do we need a new worker? Called from manager. */
814 static bool need_to_create_worker(struct worker_pool *pool)
815 {
816 return need_more_worker(pool) && !may_start_working(pool);
817 }
818
819 /* Do we have too many workers and should some go away? */
820 static bool too_many_workers(struct worker_pool *pool)
821 {
822 bool managing = pool->flags & POOL_MANAGER_ACTIVE;
823 int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
824 int nr_busy = pool->nr_workers - nr_idle;
825
826 return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
827 }
828
829 /*
830 * Wake up functions.
831 */
832
833 /* Return the first idle worker. Safe with preemption disabled */
834 static struct worker *first_idle_worker(struct worker_pool *pool)
835 {
836 if (unlikely(list_empty(&pool->idle_list)))
837 return NULL;
838
839 return list_first_entry(&pool->idle_list, struct worker, entry);
840 }
841
842 /**
843 * wake_up_worker - wake up an idle worker
844 * @pool: worker pool to wake worker from
845 *
846 * Wake up the first idle worker of @pool.
847 *
848 * CONTEXT:
849 * raw_spin_lock_irq(pool->lock).
850 */
851 static void wake_up_worker(struct worker_pool *pool)
852 {
853 struct worker *worker = first_idle_worker(pool);
854
855 if (likely(worker))
856 wake_up_process(worker->task);
857 }
858
859 /**
860 * wq_worker_running - a worker is running again
861 * @task: task waking up
862 *
863 * This function is called when a worker returns from schedule()
864 */
865 void wq_worker_running(struct task_struct *task)
866 {
867 struct worker *worker = kthread_data(task);
868
869 if (!worker->sleeping)
870 return;
871 if (!(worker->flags & WORKER_NOT_RUNNING))
872 atomic_inc(&worker->pool->nr_running);
873 worker->sleeping = 0;
874 }
875
876 /**
877 * wq_worker_sleeping - a worker is going to sleep
878 * @task: task going to sleep
879 *
880 * This function is called from schedule() when a busy worker is
881 * going to sleep. Preemption needs to be disabled to protect ->sleeping
882 * assignment.
883 */
884 void wq_worker_sleeping(struct task_struct *task)
885 {
886 struct worker *next, *worker = kthread_data(task);
887 struct worker_pool *pool;
888
889 /*
890 * Rescuers, which may not have all the fields set up like normal
891 * workers, also reach here, let's not access anything before
892 * checking NOT_RUNNING.
893 */
894 if (worker->flags & WORKER_NOT_RUNNING)
895 return;
896
897 pool = worker->pool;
898
899 /* Return if preempted before wq_worker_running() was reached */
900 if (worker->sleeping)
901 return;
902
903 worker->sleeping = 1;
904 raw_spin_lock_irq(&pool->lock);
905
906 /*
907 * The counterpart of the following dec_and_test, implied mb,
908 * worklist not empty test sequence is in insert_work().
909 * Please read comment there.
910 *
911 * NOT_RUNNING is clear. This means that we're bound to and
912 * running on the local cpu w/ rq lock held and preemption
913 * disabled, which in turn means that none else could be
914 * manipulating idle_list, so dereferencing idle_list without pool
915 * lock is safe.
916 */
917 if (atomic_dec_and_test(&pool->nr_running) &&
918 !list_empty(&pool->worklist)) {
919 next = first_idle_worker(pool);
920 if (next)
921 wake_up_process(next->task);
922 }
923 raw_spin_unlock_irq(&pool->lock);
924 }
925
926 /**
927 * wq_worker_last_func - retrieve worker's last work function
928 * @task: Task to retrieve last work function of.
929 *
930 * Determine the last function a worker executed. This is called from
931 * the scheduler to get a worker's last known identity.
932 *
933 * CONTEXT:
934 * raw_spin_lock_irq(rq->lock)
935 *
936 * This function is called during schedule() when a kworker is going
937 * to sleep. It's used by psi to identify aggregation workers during
938 * dequeuing, to allow periodic aggregation to shut-off when that
939 * worker is the last task in the system or cgroup to go to sleep.
940 *
941 * As this function doesn't involve any workqueue-related locking, it
942 * only returns stable values when called from inside the scheduler's
943 * queuing and dequeuing paths, when @task, which must be a kworker,
944 * is guaranteed to not be processing any works.
945 *
946 * Return:
947 * The last work function %current executed as a worker, NULL if it
948 * hasn't executed any work yet.
949 */
950 work_func_t wq_worker_last_func(struct task_struct *task)
951 {
952 struct worker *worker = kthread_data(task);
953
954 return worker->last_func;
955 }
956
957 /**
958 * worker_set_flags - set worker flags and adjust nr_running accordingly
959 * @worker: self
960 * @flags: flags to set
961 *
962 * Set @flags in @worker->flags and adjust nr_running accordingly.
963 *
964 * CONTEXT:
965 * raw_spin_lock_irq(pool->lock)
966 */
967 static inline void worker_set_flags(struct worker *worker, unsigned int flags)
968 {
969 struct worker_pool *pool = worker->pool;
970
971 WARN_ON_ONCE(worker->task != current);
972
973 /* If transitioning into NOT_RUNNING, adjust nr_running. */
974 if ((flags & WORKER_NOT_RUNNING) &&
975 !(worker->flags & WORKER_NOT_RUNNING)) {
976 atomic_dec(&pool->nr_running);
977 }
978
979 worker->flags |= flags;
980 }
981
982 /**
983 * worker_clr_flags - clear worker flags and adjust nr_running accordingly
984 * @worker: self
985 * @flags: flags to clear
986 *
987 * Clear @flags in @worker->flags and adjust nr_running accordingly.
988 *
989 * CONTEXT:
990 * raw_spin_lock_irq(pool->lock)
991 */
992 static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
993 {
994 struct worker_pool *pool = worker->pool;
995 unsigned int oflags = worker->flags;
996
997 WARN_ON_ONCE(worker->task != current);
998
999 worker->flags &= ~flags;
1000
1001 /*
1002 * If transitioning out of NOT_RUNNING, increment nr_running. Note
1003 * that the nested NOT_RUNNING is not a noop. NOT_RUNNING is mask
1004 * of multiple flags, not a single flag.
1005 */
1006 if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
1007 if (!(worker->flags & WORKER_NOT_RUNNING))
1008 atomic_inc(&pool->nr_running);
1009 }
1010
1011 /**
1012 * find_worker_executing_work - find worker which is executing a work
1013 * @pool: pool of interest
1014 * @work: work to find worker for
1015 *
1016 * Find a worker which is executing @work on @pool by searching
1017 * @pool->busy_hash which is keyed by the address of @work. For a worker
1018 * to match, its current execution should match the address of @work and
1019 * its work function. This is to avoid unwanted dependency between
1020 * unrelated work executions through a work item being recycled while still
1021 * being executed.
1022 *
1023 * This is a bit tricky. A work item may be freed once its execution
1024 * starts and nothing prevents the freed area from being recycled for
1025 * another work item. If the same work item address ends up being reused
1026 * before the original execution finishes, workqueue will identify the
1027 * recycled work item as currently executing and make it wait until the
1028 * current execution finishes, introducing an unwanted dependency.
1029 *
1030 * This function checks the work item address and work function to avoid
1031 * false positives. Note that this isn't complete as one may construct a
1032 * work function which can introduce dependency onto itself through a
1033 * recycled work item. Well, if somebody wants to shoot oneself in the
1034 * foot that badly, there's only so much we can do, and if such deadlock
1035 * actually occurs, it should be easy to locate the culprit work function.
1036 *
1037 * CONTEXT:
1038 * raw_spin_lock_irq(pool->lock).
1039 *
1040 * Return:
1041 * Pointer to worker which is executing @work if found, %NULL
1042 * otherwise.
1043 */
1044 static struct worker *find_worker_executing_work(struct worker_pool *pool,
1045 struct work_struct *work)
1046 {
1047 struct worker *worker;
1048
1049 hash_for_each_possible(pool->busy_hash, worker, hentry,
1050 (unsigned long)work)
1051 if (worker->current_work == work &&
1052 worker->current_func == work->func)
1053 return worker;
1054
1055 return NULL;
1056 }
1057
1058 /**
1059 * move_linked_works - move linked works to a list
1060 * @work: start of series of works to be scheduled
1061 * @head: target list to append @work to
1062 * @nextp: out parameter for nested worklist walking
1063 *
1064 * Schedule linked works starting from @work to @head. Work series to
1065 * be scheduled starts at @work and includes any consecutive work with
1066 * WORK_STRUCT_LINKED set in its predecessor.
1067 *
1068 * If @nextp is not NULL, it's updated to point to the next work of
1069 * the last scheduled work. This allows move_linked_works() to be
1070 * nested inside outer list_for_each_entry_safe().
1071 *
1072 * CONTEXT:
1073 * raw_spin_lock_irq(pool->lock).
1074 */
1075 static void move_linked_works(struct work_struct *work, struct list_head *head,
1076 struct work_struct **nextp)
1077 {
1078 struct work_struct *n;
1079
1080 /*
1081 * Linked worklist will always end before the end of the list,
1082 * use NULL for list head.
1083 */
1084 list_for_each_entry_safe_from(work, n, NULL, entry) {
1085 list_move_tail(&work->entry, head);
1086 if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
1087 break;
1088 }
1089
1090 /*
1091 * If we're already inside safe list traversal and have moved
1092 * multiple works to the scheduled queue, the next position
1093 * needs to be updated.
1094 */
1095 if (nextp)
1096 *nextp = n;
1097 }
1098
1099 /**
1100 * get_pwq - get an extra reference on the specified pool_workqueue
1101 * @pwq: pool_workqueue to get
1102 *
1103 * Obtain an extra reference on @pwq. The caller should guarantee that
1104 * @pwq has positive refcnt and be holding the matching pool->lock.
1105 */
1106 static void get_pwq(struct pool_workqueue *pwq)
1107 {
1108 lockdep_assert_held(&pwq->pool->lock);
1109 WARN_ON_ONCE(pwq->refcnt <= 0);
1110 pwq->refcnt++;
1111 }
1112
1113 /**
1114 * put_pwq - put a pool_workqueue reference
1115 * @pwq: pool_workqueue to put
1116 *
1117 * Drop a reference of @pwq. If its refcnt reaches zero, schedule its
1118 * destruction. The caller should be holding the matching pool->lock.
1119 */
1120 static void put_pwq(struct pool_workqueue *pwq)
1121 {
1122 lockdep_assert_held(&pwq->pool->lock);
1123 if (likely(--pwq->refcnt))
1124 return;
1125 if (WARN_ON_ONCE(!(pwq->wq->flags & WQ_UNBOUND)))
1126 return;
1127 /*
1128 * @pwq can't be released under pool->lock, bounce to
1129 * pwq_unbound_release_workfn(). This never recurses on the same
1130 * pool->lock as this path is taken only for unbound workqueues and
1131 * the release work item is scheduled on a per-cpu workqueue. To
1132 * avoid lockdep warning, unbound pool->locks are given lockdep
1133 * subclass of 1 in get_unbound_pool().
1134 */
1135 schedule_work(&pwq->unbound_release_work);
1136 }
1137
1138 /**
1139 * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock
1140 * @pwq: pool_workqueue to put (can be %NULL)
1141 *
1142 * put_pwq() with locking. This function also allows %NULL @pwq.
1143 */
1144 static void put_pwq_unlocked(struct pool_workqueue *pwq)
1145 {
1146 if (pwq) {
1147 /*
1148 * As both pwqs and pools are RCU protected, the
1149 * following lock operations are safe.
1150 */
1151 raw_spin_lock_irq(&pwq->pool->lock);
1152 put_pwq(pwq);
1153 raw_spin_unlock_irq(&pwq->pool->lock);
1154 }
1155 }
1156
1157 static void pwq_activate_inactive_work(struct work_struct *work)
1158 {
1159 struct pool_workqueue *pwq = get_work_pwq(work);
1160
1161 trace_workqueue_activate_work(work);
1162 if (list_empty(&pwq->pool->worklist))
1163 pwq->pool->watchdog_ts = jiffies;
1164 move_linked_works(work, &pwq->pool->worklist, NULL);
1165 __clear_bit(WORK_STRUCT_INACTIVE_BIT, work_data_bits(work));
1166 pwq->nr_active++;
1167 }
1168
1169 static void pwq_activate_first_inactive(struct pool_workqueue *pwq)
1170 {
1171 struct work_struct *work = list_first_entry(&pwq->inactive_works,
1172 struct work_struct, entry);
1173
1174 pwq_activate_inactive_work(work);
1175 }
1176
1177 /**
1178 * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
1179 * @pwq: pwq of interest
1180 * @work_data: work_data of work which left the queue
1181 *
1182 * A work either has completed or is removed from pending queue,
1183 * decrement nr_in_flight of its pwq and handle workqueue flushing.
1184 *
1185 * CONTEXT:
1186 * raw_spin_lock_irq(pool->lock).
1187 */
1188 static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, unsigned long work_data)
1189 {
1190 int color = get_work_color(work_data);
1191
1192 if (!(work_data & WORK_STRUCT_INACTIVE)) {
1193 pwq->nr_active--;
1194 if (!list_empty(&pwq->inactive_works)) {
1195 /* one down, submit an inactive one */
1196 if (pwq->nr_active < pwq->max_active)
1197 pwq_activate_first_inactive(pwq);
1198 }
1199 }
1200
1201 pwq->nr_in_flight[color]--;
1202
1203 /* is flush in progress and are we at the flushing tip? */
1204 if (likely(pwq->flush_color != color))
1205 goto out_put;
1206
1207 /* are there still in-flight works? */
1208 if (pwq->nr_in_flight[color])
1209 goto out_put;
1210
1211 /* this pwq is done, clear flush_color */
1212 pwq->flush_color = -1;
1213
1214 /*
1215 * If this was the last pwq, wake up the first flusher. It
1216 * will handle the rest.
1217 */
1218 if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush))
1219 complete(&pwq->wq->first_flusher->done);
1220 out_put:
1221 put_pwq(pwq);
1222 }
1223
1224 /**
1225 * try_to_grab_pending - steal work item from worklist and disable irq
1226 * @work: work item to steal
1227 * @is_dwork: @work is a delayed_work
1228 * @flags: place to store irq state
1229 *
1230 * Try to grab PENDING bit of @work. This function can handle @work in any
1231 * stable state - idle, on timer or on worklist.
1232 *
1233 * Return:
1234 *
1235 * ======== ================================================================
1236 * 1 if @work was pending and we successfully stole PENDING
1237 * 0 if @work was idle and we claimed PENDING
1238 * -EAGAIN if PENDING couldn't be grabbed at the moment, safe to busy-retry
1239 * -ENOENT if someone else is canceling @work, this state may persist
1240 * for arbitrarily long
1241 * ======== ================================================================
1242 *
1243 * Note:
1244 * On >= 0 return, the caller owns @work's PENDING bit. To avoid getting
1245 * interrupted while holding PENDING and @work off queue, irq must be
1246 * disabled on entry. This, combined with delayed_work->timer being
1247 * irqsafe, ensures that we return -EAGAIN for finite short period of time.
1248 *
1249 * On successful return, >= 0, irq is disabled and the caller is
1250 * responsible for releasing it using local_irq_restore(*@flags).
1251 *
1252 * This function is safe to call from any context including IRQ handler.
1253 */
1254 static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
1255 unsigned long *flags)
1256 {
1257 struct worker_pool *pool;
1258 struct pool_workqueue *pwq;
1259
1260 local_irq_save(*flags);
1261
1262 /* try to steal the timer if it exists */
1263 if (is_dwork) {
1264 struct delayed_work *dwork = to_delayed_work(work);
1265
1266 /*
1267 * dwork->timer is irqsafe. If del_timer() fails, it's
1268 * guaranteed that the timer is not queued anywhere and not
1269 * running on the local CPU.
1270 */
1271 if (likely(del_timer(&dwork->timer)))
1272 return 1;
1273 }
1274
1275 /* try to claim PENDING the normal way */
1276 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
1277 return 0;
1278
1279 rcu_read_lock();
1280 /*
1281 * The queueing is in progress, or it is already queued. Try to
1282 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
1283 */
1284 pool = get_work_pool(work);
1285 if (!pool)
1286 goto fail;
1287
1288 raw_spin_lock(&pool->lock);
1289 /*
1290 * work->data is guaranteed to point to pwq only while the work
1291 * item is queued on pwq->wq, and both updating work->data to point
1292 * to pwq on queueing and to pool on dequeueing are done under
1293 * pwq->pool->lock. This in turn guarantees that, if work->data
1294 * points to pwq which is associated with a locked pool, the work
1295 * item is currently queued on that pool.
1296 */
1297 pwq = get_work_pwq(work);
1298 if (pwq && pwq->pool == pool) {
1299 debug_work_deactivate(work);
1300
1301 /*
1302 * A cancelable inactive work item must be in the
1303 * pwq->inactive_works since a queued barrier can't be
1304 * canceled (see the comments in insert_wq_barrier()).
1305 *
1306 * An inactive work item cannot be grabbed directly because
1307 * it might have linked barrier work items which, if left
1308 * on the inactive_works list, will confuse pwq->nr_active
1309 * management later on and cause stall. Make sure the work
1310 * item is activated before grabbing.
1311 */
1312 if (*work_data_bits(work) & WORK_STRUCT_INACTIVE)
1313 pwq_activate_inactive_work(work);
1314
1315 list_del_init(&work->entry);
1316 pwq_dec_nr_in_flight(pwq, *work_data_bits(work));
1317
1318 /* work->data points to pwq iff queued, point to pool */
1319 set_work_pool_and_keep_pending(work, pool->id);
1320
1321 raw_spin_unlock(&pool->lock);
1322 rcu_read_unlock();
1323 return 1;
1324 }
1325 raw_spin_unlock(&pool->lock);
1326 fail:
1327 rcu_read_unlock();
1328 local_irq_restore(*flags);
1329 if (work_is_canceling(work))
1330 return -ENOENT;
1331 cpu_relax();
1332 return -EAGAIN;
1333 }
1334
1335 /**
1336 * insert_work - insert a work into a pool
1337 * @pwq: pwq @work belongs to
1338 * @work: work to insert
1339 * @head: insertion point
1340 * @extra_flags: extra WORK_STRUCT_* flags to set
1341 *
1342 * Insert @work which belongs to @pwq after @head. @extra_flags is or'd to
1343 * work_struct flags.
1344 *
1345 * CONTEXT:
1346 * raw_spin_lock_irq(pool->lock).
1347 */
1348 static void insert_work(struct pool_workqueue *pwq, struct work_struct *work,
1349 struct list_head *head, unsigned int extra_flags)
1350 {
1351 struct worker_pool *pool = pwq->pool;
1352
1353 /* record the work call stack in order to print it in KASAN reports */
1354 kasan_record_aux_stack_noalloc(work);
1355
1356 /* we own @work, set data and link */
1357 set_work_pwq(work, pwq, extra_flags);
1358 list_add_tail(&work->entry, head);
1359 get_pwq(pwq);
1360
1361 /*
1362 * Ensure either wq_worker_sleeping() sees the above
1363 * list_add_tail() or we see zero nr_running to avoid workers lying
1364 * around lazily while there are works to be processed.
1365 */
1366 smp_mb();
1367
1368 if (__need_more_worker(pool))
1369 wake_up_worker(pool);
1370 }
1371
1372 /*
1373 * Test whether @work is being queued from another work executing on the
1374 * same workqueue.
1375 */
1376 static bool is_chained_work(struct workqueue_struct *wq)
1377 {
1378 struct worker *worker;
1379
1380 worker = current_wq_worker();
1381 /*
1382 * Return %true iff I'm a worker executing a work item on @wq. If
1383 * I'm @worker, it's safe to dereference it without locking.
1384 */
1385 return worker && worker->current_pwq->wq == wq;
1386 }
1387
1388 /*
1389 * When queueing an unbound work item to a wq, prefer local CPU if allowed
1390 * by wq_unbound_cpumask. Otherwise, round robin among the allowed ones to
1391 * avoid perturbing sensitive tasks.
1392 */
1393 static int wq_select_unbound_cpu(int cpu)
1394 {
1395 static bool printed_dbg_warning;
1396 int new_cpu;
1397
1398 if (likely(!wq_debug_force_rr_cpu)) {
1399 if (cpumask_test_cpu(cpu, wq_unbound_cpumask))
1400 return cpu;
1401 } else if (!printed_dbg_warning) {
1402 pr_warn("workqueue: round-robin CPU selection forced, expect performance impact\n");
1403 printed_dbg_warning = true;
1404 }
1405
1406 if (cpumask_empty(wq_unbound_cpumask))
1407 return cpu;
1408
1409 new_cpu = __this_cpu_read(wq_rr_cpu_last);
1410 new_cpu = cpumask_next_and(new_cpu, wq_unbound_cpumask, cpu_online_mask);
1411 if (unlikely(new_cpu >= nr_cpu_ids)) {
1412 new_cpu = cpumask_first_and(wq_unbound_cpumask, cpu_online_mask);
1413 if (unlikely(new_cpu >= nr_cpu_ids))
1414 return cpu;
1415 }
1416 __this_cpu_write(wq_rr_cpu_last, new_cpu);
1417
1418 return new_cpu;
1419 }
1420
1421 static void __queue_work(int cpu, struct workqueue_struct *wq,
1422 struct work_struct *work)
1423 {
1424 struct pool_workqueue *pwq;
1425 struct worker_pool *last_pool;
1426 struct list_head *worklist;
1427 unsigned int work_flags;
1428 unsigned int req_cpu = cpu;
1429
1430 /*
1431 * While a work item is PENDING && off queue, a task trying to
1432 * steal the PENDING will busy-loop waiting for it to either get
1433 * queued or lose PENDING. Grabbing PENDING and queueing should
1434 * happen with IRQ disabled.
1435 */
1436 lockdep_assert_irqs_disabled();
1437
1438
1439 /* if draining, only works from the same workqueue are allowed */
1440 if (unlikely(wq->flags & __WQ_DRAINING) &&
1441 WARN_ON_ONCE(!is_chained_work(wq)))
1442 return;
1443 rcu_read_lock();
1444 retry:
1445 /* pwq which will be used unless @work is executing elsewhere */
1446 if (wq->flags & WQ_UNBOUND) {
1447 if (req_cpu == WORK_CPU_UNBOUND)
1448 cpu = wq_select_unbound_cpu(raw_smp_processor_id());
1449 pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
1450 } else {
1451 if (req_cpu == WORK_CPU_UNBOUND)
1452 cpu = raw_smp_processor_id();
1453 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
1454 }
1455
1456 /*
1457 * If @work was previously on a different pool, it might still be
1458 * running there, in which case the work needs to be queued on that
1459 * pool to guarantee non-reentrancy.
1460 */
1461 last_pool = get_work_pool(work);
1462 if (last_pool && last_pool != pwq->pool) {
1463 struct worker *worker;
1464
1465 raw_spin_lock(&last_pool->lock);
1466
1467 worker = find_worker_executing_work(last_pool, work);
1468
1469 if (worker && worker->current_pwq->wq == wq) {
1470 pwq = worker->current_pwq;
1471 } else {
1472 /* meh... not running there, queue here */
1473 raw_spin_unlock(&last_pool->lock);
1474 raw_spin_lock(&pwq->pool->lock);
1475 }
1476 } else {
1477 raw_spin_lock(&pwq->pool->lock);
1478 }
1479
1480 /*
1481 * pwq is determined and locked. For unbound pools, we could have
1482 * raced with pwq release and it could already be dead. If its
1483 * refcnt is zero, repeat pwq selection. Note that pwqs never die
1484 * without another pwq replacing it in the numa_pwq_tbl or while
1485 * work items are executing on it, so the retrying is guaranteed to
1486 * make forward-progress.
1487 */
1488 if (unlikely(!pwq->refcnt)) {
1489 if (wq->flags & WQ_UNBOUND) {
1490 raw_spin_unlock(&pwq->pool->lock);
1491 cpu_relax();
1492 goto retry;
1493 }
1494 /* oops */
1495 WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt",
1496 wq->name, cpu);
1497 }
1498
1499 /* pwq determined, queue */
1500 trace_workqueue_queue_work(req_cpu, pwq, work);
1501
1502 if (WARN_ON(!list_empty(&work->entry)))
1503 goto out;
1504
1505 pwq->nr_in_flight[pwq->work_color]++;
1506 work_flags = work_color_to_flags(pwq->work_color);
1507
1508 if (likely(pwq->nr_active < pwq->max_active)) {
1509 trace_workqueue_activate_work(work);
1510 pwq->nr_active++;
1511 worklist = &pwq->pool->worklist;
1512 if (list_empty(worklist))
1513 pwq->pool->watchdog_ts = jiffies;
1514 } else {
1515 work_flags |= WORK_STRUCT_INACTIVE;
1516 worklist = &pwq->inactive_works;
1517 }
1518
1519 debug_work_activate(work);
1520 insert_work(pwq, work, worklist, work_flags);
1521
1522 out:
1523 raw_spin_unlock(&pwq->pool->lock);
1524 rcu_read_unlock();
1525 }
1526
1527 /**
1528 * queue_work_on - queue work on specific cpu
1529 * @cpu: CPU number to execute work on
1530 * @wq: workqueue to use
1531 * @work: work to queue
1532 *
1533 * We queue the work to a specific CPU, the caller must ensure it
1534 * can't go away.
1535 *
1536 * Return: %false if @work was already on a queue, %true otherwise.
1537 */
1538 bool queue_work_on(int cpu, struct workqueue_struct *wq,
1539 struct work_struct *work)
1540 {
1541 bool ret = false;
1542 unsigned long flags;
1543
1544 local_irq_save(flags);
1545
1546 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1547 __queue_work(cpu, wq, work);
1548 ret = true;
1549 }
1550
1551 local_irq_restore(flags);
1552 return ret;
1553 }
1554 EXPORT_SYMBOL(queue_work_on);
1555
1556 /**
1557 * workqueue_select_cpu_near - Select a CPU based on NUMA node
1558 * @node: NUMA node ID that we want to select a CPU from
1559 *
1560 * This function will attempt to find a "random" cpu available on a given
1561 * node. If there are no CPUs available on the given node it will return
1562 * WORK_CPU_UNBOUND indicating that we should just schedule to any
1563 * available CPU if we need to schedule this work.
1564 */
1565 static int workqueue_select_cpu_near(int node)
1566 {
1567 int cpu;
1568
1569 /* No point in doing this if NUMA isn't enabled for workqueues */
1570 if (!wq_numa_enabled)
1571 return WORK_CPU_UNBOUND;
1572
1573 /* Delay binding to CPU if node is not valid or online */
1574 if (node < 0 || node >= MAX_NUMNODES || !node_online(node))
1575 return WORK_CPU_UNBOUND;
1576
1577 /* Use local node/cpu if we are already there */
1578 cpu = raw_smp_processor_id();
1579 if (node == cpu_to_node(cpu))
1580 return cpu;
1581
1582 /* Use "random" otherwise know as "first" online CPU of node */
1583 cpu = cpumask_any_and(cpumask_of_node(node), cpu_online_mask);
1584
1585 /* If CPU is valid return that, otherwise just defer */
1586 return cpu < nr_cpu_ids ? cpu : WORK_CPU_UNBOUND;
1587 }
1588
1589 /**
1590 * queue_work_node - queue work on a "random" cpu for a given NUMA node
1591 * @node: NUMA node that we are targeting the work for
1592 * @wq: workqueue to use
1593 * @work: work to queue
1594 *
1595 * We queue the work to a "random" CPU within a given NUMA node. The basic
1596 * idea here is to provide a way to somehow associate work with a given
1597 * NUMA node.
1598 *
1599 * This function will only make a best effort attempt at getting this onto
1600 * the right NUMA node. If no node is requested or the requested node is
1601 * offline then we just fall back to standard queue_work behavior.
1602 *
1603 * Currently the "random" CPU ends up being the first available CPU in the
1604 * intersection of cpu_online_mask and the cpumask of the node, unless we
1605 * are running on the node. In that case we just use the current CPU.
1606 *
1607 * Return: %false if @work was already on a queue, %true otherwise.
1608 */
1609 bool queue_work_node(int node, struct workqueue_struct *wq,
1610 struct work_struct *work)
1611 {
1612 unsigned long flags;
1613 bool ret = false;
1614
1615 /*
1616 * This current implementation is specific to unbound workqueues.
1617 * Specifically we only return the first available CPU for a given
1618 * node instead of cycling through individual CPUs within the node.
1619 *
1620 * If this is used with a per-cpu workqueue then the logic in
1621 * workqueue_select_cpu_near would need to be updated to allow for
1622 * some round robin type logic.
1623 */
1624 WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND));
1625
1626 local_irq_save(flags);
1627
1628 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1629 int cpu = workqueue_select_cpu_near(node);
1630
1631 __queue_work(cpu, wq, work);
1632 ret = true;
1633 }
1634
1635 local_irq_restore(flags);
1636 return ret;
1637 }
1638 EXPORT_SYMBOL_GPL(queue_work_node);
1639
1640 void delayed_work_timer_fn(struct timer_list *t)
1641 {
1642 struct delayed_work *dwork = from_timer(dwork, t, timer);
1643
1644 /* should have been called from irqsafe timer with irq already off */
1645 __queue_work(dwork->cpu, dwork->wq, &dwork->work);
1646 }
1647 EXPORT_SYMBOL(delayed_work_timer_fn);
1648
1649 static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
1650 struct delayed_work *dwork, unsigned long delay)
1651 {
1652 struct timer_list *timer = &dwork->timer;
1653 struct work_struct *work = &dwork->work;
1654
1655 WARN_ON_ONCE(!wq);
1656 WARN_ON_FUNCTION_MISMATCH(timer->function, delayed_work_timer_fn);
1657 WARN_ON_ONCE(timer_pending(timer));
1658 WARN_ON_ONCE(!list_empty(&work->entry));
1659
1660 /*
1661 * If @delay is 0, queue @dwork->work immediately. This is for
1662 * both optimization and correctness. The earliest @timer can
1663 * expire is on the closest next tick and delayed_work users depend
1664 * on that there's no such delay when @delay is 0.
1665 */
1666 if (!delay) {
1667 __queue_work(cpu, wq, &dwork->work);
1668 return;
1669 }
1670
1671 dwork->wq = wq;
1672 dwork->cpu = cpu;
1673 timer->expires = jiffies + delay;
1674
1675 if (unlikely(cpu != WORK_CPU_UNBOUND))
1676 add_timer_on(timer, cpu);
1677 else
1678 add_timer(timer);
1679 }
1680
1681 /**
1682 * queue_delayed_work_on - queue work on specific CPU after delay
1683 * @cpu: CPU number to execute work on
1684 * @wq: workqueue to use
1685 * @dwork: work to queue
1686 * @delay: number of jiffies to wait before queueing
1687 *
1688 * Return: %false if @work was already on a queue, %true otherwise. If
1689 * @delay is zero and @dwork is idle, it will be scheduled for immediate
1690 * execution.
1691 */
1692 bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
1693 struct delayed_work *dwork, unsigned long delay)
1694 {
1695 struct work_struct *work = &dwork->work;
1696 bool ret = false;
1697 unsigned long flags;
1698
1699 /* read the comment in __queue_work() */
1700 local_irq_save(flags);
1701
1702 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1703 __queue_delayed_work(cpu, wq, dwork, delay);
1704 ret = true;
1705 }
1706
1707 local_irq_restore(flags);
1708 return ret;
1709 }
1710 EXPORT_SYMBOL(queue_delayed_work_on);
1711
1712 /**
1713 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
1714 * @cpu: CPU number to execute work on
1715 * @wq: workqueue to use
1716 * @dwork: work to queue
1717 * @delay: number of jiffies to wait before queueing
1718 *
1719 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
1720 * modify @dwork's timer so that it expires after @delay. If @delay is
1721 * zero, @work is guaranteed to be scheduled immediately regardless of its
1722 * current state.
1723 *
1724 * Return: %false if @dwork was idle and queued, %true if @dwork was
1725 * pending and its timer was modified.
1726 *
1727 * This function is safe to call from any context including IRQ handler.
1728 * See try_to_grab_pending() for details.
1729 */
1730 bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
1731 struct delayed_work *dwork, unsigned long delay)
1732 {
1733 unsigned long flags;
1734 int ret;
1735
1736 do {
1737 ret = try_to_grab_pending(&dwork->work, true, &flags);
1738 } while (unlikely(ret == -EAGAIN));
1739
1740 if (likely(ret >= 0)) {
1741 __queue_delayed_work(cpu, wq, dwork, delay);
1742 local_irq_restore(flags);
1743 }
1744
1745 /* -ENOENT from try_to_grab_pending() becomes %true */
1746 return ret;
1747 }
1748 EXPORT_SYMBOL_GPL(mod_delayed_work_on);
1749
1750 static void rcu_work_rcufn(struct rcu_head *rcu)
1751 {
1752 struct rcu_work *rwork = container_of(rcu, struct rcu_work, rcu);
1753
1754 /* read the comment in __queue_work() */
1755 local_irq_disable();
1756 __queue_work(WORK_CPU_UNBOUND, rwork->wq, &rwork->work);
1757 local_irq_enable();
1758 }
1759
1760 /**
1761 * queue_rcu_work - queue work after a RCU grace period
1762 * @wq: workqueue to use
1763 * @rwork: work to queue
1764 *
1765 * Return: %false if @rwork was already pending, %true otherwise. Note
1766 * that a full RCU grace period is guaranteed only after a %true return.
1767 * While @rwork is guaranteed to be executed after a %false return, the
1768 * execution may happen before a full RCU grace period has passed.
1769 */
1770 bool queue_rcu_work(struct workqueue_struct *wq, struct rcu_work *rwork)
1771 {
1772 struct work_struct *work = &rwork->work;
1773
1774 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1775 rwork->wq = wq;
1776 call_rcu(&rwork->rcu, rcu_work_rcufn);
1777 return true;
1778 }
1779
1780 return false;
1781 }
1782 EXPORT_SYMBOL(queue_rcu_work);
1783
1784 /**
1785 * worker_enter_idle - enter idle state
1786 * @worker: worker which is entering idle state
1787 *
1788 * @worker is entering idle state. Update stats and idle timer if
1789 * necessary.
1790 *
1791 * LOCKING:
1792 * raw_spin_lock_irq(pool->lock).
1793 */
1794 static void worker_enter_idle(struct worker *worker)
1795 {
1796 struct worker_pool *pool = worker->pool;
1797
1798 if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) ||
1799 WARN_ON_ONCE(!list_empty(&worker->entry) &&
1800 (worker->hentry.next || worker->hentry.pprev)))
1801 return;
1802
1803 /* can't use worker_set_flags(), also called from create_worker() */
1804 worker->flags |= WORKER_IDLE;
1805 pool->nr_idle++;
1806 worker->last_active = jiffies;
1807
1808 /* idle_list is LIFO */
1809 list_add(&worker->entry, &pool->idle_list);
1810
1811 if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
1812 mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
1813
1814 /*
1815 * Sanity check nr_running. Because unbind_workers() releases
1816 * pool->lock between setting %WORKER_UNBOUND and zapping
1817 * nr_running, the warning may trigger spuriously. Check iff
1818 * unbind is not in progress.
1819 */
1820 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
1821 pool->nr_workers == pool->nr_idle &&
1822 atomic_read(&pool->nr_running));
1823 }
1824
1825 /**
1826 * worker_leave_idle - leave idle state
1827 * @worker: worker which is leaving idle state
1828 *
1829 * @worker is leaving idle state. Update stats.
1830 *
1831 * LOCKING:
1832 * raw_spin_lock_irq(pool->lock).
1833 */
1834 static void worker_leave_idle(struct worker *worker)
1835 {
1836 struct worker_pool *pool = worker->pool;
1837
1838 if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE)))
1839 return;
1840 worker_clr_flags(worker, WORKER_IDLE);
1841 pool->nr_idle--;
1842 list_del_init(&worker->entry);
1843 }
1844
1845 static struct worker *alloc_worker(int node)
1846 {
1847 struct worker *worker;
1848
1849 worker = kzalloc_node(sizeof(*worker), GFP_KERNEL, node);
1850 if (worker) {
1851 INIT_LIST_HEAD(&worker->entry);
1852 INIT_LIST_HEAD(&worker->scheduled);
1853 INIT_LIST_HEAD(&worker->node);
1854 /* on creation a worker is in !idle && prep state */
1855 worker->flags = WORKER_PREP;
1856 }
1857 return worker;
1858 }
1859
1860 /**
1861 * worker_attach_to_pool() - attach a worker to a pool
1862 * @worker: worker to be attached
1863 * @pool: the target pool
1864 *
1865 * Attach @worker to @pool. Once attached, the %WORKER_UNBOUND flag and
1866 * cpu-binding of @worker are kept coordinated with the pool across
1867 * cpu-[un]hotplugs.
1868 */
1869 static void worker_attach_to_pool(struct worker *worker,
1870 struct worker_pool *pool)
1871 {
1872 mutex_lock(&wq_pool_attach_mutex);
1873
1874 /*
1875 * The wq_pool_attach_mutex ensures %POOL_DISASSOCIATED remains
1876 * stable across this function. See the comments above the flag
1877 * definition for details.
1878 */
1879 if (pool->flags & POOL_DISASSOCIATED)
1880 worker->flags |= WORKER_UNBOUND;
1881 else
1882 kthread_set_per_cpu(worker->task, pool->cpu);
1883
1884 if (worker->rescue_wq)
1885 set_cpus_allowed_ptr(worker->task, pool->attrs->cpumask);
1886
1887 list_add_tail(&worker->node, &pool->workers);
1888 worker->pool = pool;
1889
1890 mutex_unlock(&wq_pool_attach_mutex);
1891 }
1892
1893 /**
1894 * worker_detach_from_pool() - detach a worker from its pool
1895 * @worker: worker which is attached to its pool
1896 *
1897 * Undo the attaching which had been done in worker_attach_to_pool(). The
1898 * caller worker shouldn't access to the pool after detached except it has
1899 * other reference to the pool.
1900 */
1901 static void worker_detach_from_pool(struct worker *worker)
1902 {
1903 struct worker_pool *pool = worker->pool;
1904 struct completion *detach_completion = NULL;
1905
1906 mutex_lock(&wq_pool_attach_mutex);
1907
1908 kthread_set_per_cpu(worker->task, -1);
1909 list_del(&worker->node);
1910 worker->pool = NULL;
1911
1912 if (list_empty(&pool->workers))
1913 detach_completion = pool->detach_completion;
1914 mutex_unlock(&wq_pool_attach_mutex);
1915
1916 /* clear leftover flags without pool->lock after it is detached */
1917 worker->flags &= ~(WORKER_UNBOUND | WORKER_REBOUND);
1918
1919 if (detach_completion)
1920 complete(detach_completion);
1921 }
1922
1923 /**
1924 * create_worker - create a new workqueue worker
1925 * @pool: pool the new worker will belong to
1926 *
1927 * Create and start a new worker which is attached to @pool.
1928 *
1929 * CONTEXT:
1930 * Might sleep. Does GFP_KERNEL allocations.
1931 *
1932 * Return:
1933 * Pointer to the newly created worker.
1934 */
1935 static struct worker *create_worker(struct worker_pool *pool)
1936 {
1937 struct worker *worker;
1938 int id;
1939 char id_buf[16];
1940
1941 /* ID is needed to determine kthread name */
1942 id = ida_alloc(&pool->worker_ida, GFP_KERNEL);
1943 if (id < 0)
1944 return NULL;
1945
1946 worker = alloc_worker(pool->node);
1947 if (!worker)
1948 goto fail;
1949
1950 worker->id = id;
1951
1952 if (pool->cpu >= 0)
1953 snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id,
1954 pool->attrs->nice < 0 ? "H" : "");
1955 else
1956 snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id);
1957
1958 worker->task = kthread_create_on_node(worker_thread, worker, pool->node,
1959 "kworker/%s", id_buf);
1960 if (IS_ERR(worker->task))
1961 goto fail;
1962
1963 set_user_nice(worker->task, pool->attrs->nice);
1964 kthread_bind_mask(worker->task, pool->attrs->cpumask);
1965
1966 /* successful, attach the worker to the pool */
1967 worker_attach_to_pool(worker, pool);
1968
1969 /* start the newly created worker */
1970 raw_spin_lock_irq(&pool->lock);
1971 worker->pool->nr_workers++;
1972 worker_enter_idle(worker);
1973 wake_up_process(worker->task);
1974 raw_spin_unlock_irq(&pool->lock);
1975
1976 return worker;
1977
1978 fail:
1979 ida_free(&pool->worker_ida, id);
1980 kfree(worker);
1981 return NULL;
1982 }
1983
1984 /**
1985 * destroy_worker - destroy a workqueue worker
1986 * @worker: worker to be destroyed
1987 *
1988 * Destroy @worker and adjust @pool stats accordingly. The worker should
1989 * be idle.
1990 *
1991 * CONTEXT:
1992 * raw_spin_lock_irq(pool->lock).
1993 */
1994 static void destroy_worker(struct worker *worker)
1995 {
1996 struct worker_pool *pool = worker->pool;
1997
1998 lockdep_assert_held(&pool->lock);
1999
2000 /* sanity check frenzy */
2001 if (WARN_ON(worker->current_work) ||
2002 WARN_ON(!list_empty(&worker->scheduled)) ||
2003 WARN_ON(!(worker->flags & WORKER_IDLE)))
2004 return;
2005
2006 pool->nr_workers--;
2007 pool->nr_idle--;
2008
2009 list_del_init(&worker->entry);
2010 worker->flags |= WORKER_DIE;
2011 wake_up_process(worker->task);
2012 }
2013
2014 static void idle_worker_timeout(struct timer_list *t)
2015 {
2016 struct worker_pool *pool = from_timer(pool, t, idle_timer);
2017
2018 raw_spin_lock_irq(&pool->lock);
2019
2020 while (too_many_workers(pool)) {
2021 struct worker *worker;
2022 unsigned long expires;
2023
2024 /* idle_list is kept in LIFO order, check the last one */
2025 worker = list_entry(pool->idle_list.prev, struct worker, entry);
2026 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
2027
2028 if (time_before(jiffies, expires)) {
2029 mod_timer(&pool->idle_timer, expires);
2030 break;
2031 }
2032
2033 destroy_worker(worker);
2034 }
2035
2036 raw_spin_unlock_irq(&pool->lock);
2037 }
2038
2039 static void send_mayday(struct work_struct *work)
2040 {
2041 struct pool_workqueue *pwq = get_work_pwq(work);
2042 struct workqueue_struct *wq = pwq->wq;
2043
2044 lockdep_assert_held(&wq_mayday_lock);
2045
2046 if (!wq->rescuer)
2047 return;
2048
2049 /* mayday mayday mayday */
2050 if (list_empty(&pwq->mayday_node)) {
2051 /*
2052 * If @pwq is for an unbound wq, its base ref may be put at
2053 * any time due to an attribute change. Pin @pwq until the
2054 * rescuer is done with it.
2055 */
2056 get_pwq(pwq);
2057 list_add_tail(&pwq->mayday_node, &wq->maydays);
2058 wake_up_process(wq->rescuer->task);
2059 }
2060 }
2061
2062 static void pool_mayday_timeout(struct timer_list *t)
2063 {
2064 struct worker_pool *pool = from_timer(pool, t, mayday_timer);
2065 struct work_struct *work;
2066
2067 raw_spin_lock_irq(&pool->lock);
2068 raw_spin_lock(&wq_mayday_lock); /* for wq->maydays */
2069
2070 if (need_to_create_worker(pool)) {
2071 /*
2072 * We've been trying to create a new worker but
2073 * haven't been successful. We might be hitting an
2074 * allocation deadlock. Send distress signals to
2075 * rescuers.
2076 */
2077 list_for_each_entry(work, &pool->worklist, entry)
2078 send_mayday(work);
2079 }
2080
2081 raw_spin_unlock(&wq_mayday_lock);
2082 raw_spin_unlock_irq(&pool->lock);
2083
2084 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
2085 }
2086
2087 /**
2088 * maybe_create_worker - create a new worker if necessary
2089 * @pool: pool to create a new worker for
2090 *
2091 * Create a new worker for @pool if necessary. @pool is guaranteed to
2092 * have at least one idle worker on return from this function. If
2093 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
2094 * sent to all rescuers with works scheduled on @pool to resolve
2095 * possible allocation deadlock.
2096 *
2097 * On return, need_to_create_worker() is guaranteed to be %false and
2098 * may_start_working() %true.
2099 *
2100 * LOCKING:
2101 * raw_spin_lock_irq(pool->lock) which may be released and regrabbed
2102 * multiple times. Does GFP_KERNEL allocations. Called only from
2103 * manager.
2104 */
2105 static void maybe_create_worker(struct worker_pool *pool)
2106 __releases(&pool->lock)
2107 __acquires(&pool->lock)
2108 {
2109 restart:
2110 raw_spin_unlock_irq(&pool->lock);
2111
2112 /* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
2113 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
2114
2115 while (true) {
2116 if (create_worker(pool) || !need_to_create_worker(pool))
2117 break;
2118
2119 schedule_timeout_interruptible(CREATE_COOLDOWN);
2120
2121 if (!need_to_create_worker(pool))
2122 break;
2123 }
2124
2125 del_timer_sync(&pool->mayday_timer);
2126 raw_spin_lock_irq(&pool->lock);
2127 /*
2128 * This is necessary even after a new worker was just successfully
2129 * created as @pool->lock was dropped and the new worker might have
2130 * already become busy.
2131 */
2132 if (need_to_create_worker(pool))
2133 goto restart;
2134 }
2135
2136 /**
2137 * manage_workers - manage worker pool
2138 * @worker: self
2139 *
2140 * Assume the manager role and manage the worker pool @worker belongs
2141 * to. At any given time, there can be only zero or one manager per
2142 * pool. The exclusion is handled automatically by this function.
2143 *
2144 * The caller can safely start processing works on false return. On
2145 * true return, it's guaranteed that need_to_create_worker() is false
2146 * and may_start_working() is true.
2147 *
2148 * CONTEXT:
2149 * raw_spin_lock_irq(pool->lock) which may be released and regrabbed
2150 * multiple times. Does GFP_KERNEL allocations.
2151 *
2152 * Return:
2153 * %false if the pool doesn't need management and the caller can safely
2154 * start processing works, %true if management function was performed and
2155 * the conditions that the caller verified before calling the function may
2156 * no longer be true.
2157 */
2158 static bool manage_workers(struct worker *worker)
2159 {
2160 struct worker_pool *pool = worker->pool;
2161
2162 if (pool->flags & POOL_MANAGER_ACTIVE)
2163 return false;
2164
2165 pool->flags |= POOL_MANAGER_ACTIVE;
2166 pool->manager = worker;
2167
2168 maybe_create_worker(pool);
2169
2170 pool->manager = NULL;
2171 pool->flags &= ~POOL_MANAGER_ACTIVE;
2172 rcuwait_wake_up(&manager_wait);
2173 return true;
2174 }
2175
2176 /**
2177 * process_one_work - process single work
2178 * @worker: self
2179 * @work: work to process
2180 *
2181 * Process @work. This function contains all the logics necessary to
2182 * process a single work including synchronization against and
2183 * interaction with other workers on the same cpu, queueing and
2184 * flushing. As long as context requirement is met, any worker can
2185 * call this function to process a work.
2186 *
2187 * CONTEXT:
2188 * raw_spin_lock_irq(pool->lock) which is released and regrabbed.
2189 */
2190 static void process_one_work(struct worker *worker, struct work_struct *work)
2191 __releases(&pool->lock)
2192 __acquires(&pool->lock)
2193 {
2194 struct pool_workqueue *pwq = get_work_pwq(work);
2195 struct worker_pool *pool = worker->pool;
2196 bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE;
2197 unsigned long work_data;
2198 struct worker *collision;
2199 #ifdef CONFIG_LOCKDEP
2200 /*
2201 * It is permissible to free the struct work_struct from
2202 * inside the function that is called from it, this we need to
2203 * take into account for lockdep too. To avoid bogus "held
2204 * lock freed" warnings as well as problems when looking into
2205 * work->lockdep_map, make a copy and use that here.
2206 */
2207 struct lockdep_map lockdep_map;
2208
2209 lockdep_copy_map(&lockdep_map, &work->lockdep_map);
2210 #endif
2211 /* ensure we're on the correct CPU */
2212 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
2213 raw_smp_processor_id() != pool->cpu);
2214
2215 /*
2216 * A single work shouldn't be executed concurrently by
2217 * multiple workers on a single cpu. Check whether anyone is
2218 * already processing the work. If so, defer the work to the
2219 * currently executing one.
2220 */
2221 collision = find_worker_executing_work(pool, work);
2222 if (unlikely(collision)) {
2223 move_linked_works(work, &collision->scheduled, NULL);
2224 return;
2225 }
2226
2227 /* claim and dequeue */
2228 debug_work_deactivate(work);
2229 hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
2230 worker->current_work = work;
2231 worker->current_func = work->func;
2232 worker->current_pwq = pwq;
2233 work_data = *work_data_bits(work);
2234 worker->current_color = get_work_color(work_data);
2235
2236 /*
2237 * Record wq name for cmdline and debug reporting, may get
2238 * overridden through set_worker_desc().
2239 */
2240 strscpy(worker->desc, pwq->wq->name, WORKER_DESC_LEN);
2241
2242 list_del_init(&work->entry);
2243
2244 /*
2245 * CPU intensive works don't participate in concurrency management.
2246 * They're the scheduler's responsibility. This takes @worker out
2247 * of concurrency management and the next code block will chain
2248 * execution of the pending work items.
2249 */
2250 if (unlikely(cpu_intensive))
2251 worker_set_flags(worker, WORKER_CPU_INTENSIVE);
2252
2253 /*
2254 * Wake up another worker if necessary. The condition is always
2255 * false for normal per-cpu workers since nr_running would always
2256 * be >= 1 at this point. This is used to chain execution of the
2257 * pending work items for WORKER_NOT_RUNNING workers such as the
2258 * UNBOUND and CPU_INTENSIVE ones.
2259 */
2260 if (need_more_worker(pool))
2261 wake_up_worker(pool);
2262
2263 /*
2264 * Record the last pool and clear PENDING which should be the last
2265 * update to @work. Also, do this inside @pool->lock so that
2266 * PENDING and queued state changes happen together while IRQ is
2267 * disabled.
2268 */
2269 set_work_pool_and_clear_pending(work, pool->id);
2270
2271 raw_spin_unlock_irq(&pool->lock);
2272
2273 lock_map_acquire(&pwq->wq->lockdep_map);
2274 lock_map_acquire(&lockdep_map);
2275 /*
2276 * Strictly speaking we should mark the invariant state without holding
2277 * any locks, that is, before these two lock_map_acquire()'s.
2278 *
2279 * However, that would result in:
2280 *
2281 * A(W1)
2282 * WFC(C)
2283 * A(W1)
2284 * C(C)
2285 *
2286 * Which would create W1->C->W1 dependencies, even though there is no
2287 * actual deadlock possible. There are two solutions, using a
2288 * read-recursive acquire on the work(queue) 'locks', but this will then
2289 * hit the lockdep limitation on recursive locks, or simply discard
2290 * these locks.
2291 *
2292 * AFAICT there is no possible deadlock scenario between the
2293 * flush_work() and complete() primitives (except for single-threaded
2294 * workqueues), so hiding them isn't a problem.
2295 */
2296 lockdep_invariant_state(true);
2297 trace_workqueue_execute_start(work);
2298 worker->current_func(work);
2299 /*
2300 * While we must be careful to not use "work" after this, the trace
2301 * point will only record its address.
2302 */
2303 trace_workqueue_execute_end(work, worker->current_func);
2304 lock_map_release(&lockdep_map);
2305 lock_map_release(&pwq->wq->lockdep_map);
2306
2307 if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
2308 pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
2309 " last function: %ps\n",
2310 current->comm, preempt_count(), task_pid_nr(current),
2311 worker->current_func);
2312 debug_show_held_locks(current);
2313 dump_stack();
2314 }
2315
2316 /*
2317 * The following prevents a kworker from hogging CPU on !PREEMPTION
2318 * kernels, where a requeueing work item waiting for something to
2319 * happen could deadlock with stop_machine as such work item could
2320 * indefinitely requeue itself while all other CPUs are trapped in
2321 * stop_machine. At the same time, report a quiescent RCU state so
2322 * the same condition doesn't freeze RCU.
2323 */
2324 cond_resched();
2325
2326 raw_spin_lock_irq(&pool->lock);
2327
2328 /* clear cpu intensive status */
2329 if (unlikely(cpu_intensive))
2330 worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
2331
2332 /* tag the worker for identification in schedule() */
2333 worker->last_func = worker->current_func;
2334
2335 /* we're done with it, release */
2336 hash_del(&worker->hentry);
2337 worker->current_work = NULL;
2338 worker->current_func = NULL;
2339 worker->current_pwq = NULL;
2340 worker->current_color = INT_MAX;
2341 pwq_dec_nr_in_flight(pwq, work_data);
2342 }
2343
2344 /**
2345 * process_scheduled_works - process scheduled works
2346 * @worker: self
2347 *
2348 * Process all scheduled works. Please note that the scheduled list
2349 * may change while processing a work, so this function repeatedly
2350 * fetches a work from the top and executes it.
2351 *
2352 * CONTEXT:
2353 * raw_spin_lock_irq(pool->lock) which may be released and regrabbed
2354 * multiple times.
2355 */
2356 static void process_scheduled_works(struct worker *worker)
2357 {
2358 while (!list_empty(&worker->scheduled)) {
2359 struct work_struct *work = list_first_entry(&worker->scheduled,
2360 struct work_struct, entry);
2361 process_one_work(worker, work);
2362 }
2363 }
2364
2365 static void set_pf_worker(bool val)
2366 {
2367 mutex_lock(&wq_pool_attach_mutex);
2368 if (val)
2369 current->flags |= PF_WQ_WORKER;
2370 else
2371 current->flags &= ~PF_WQ_WORKER;
2372 mutex_unlock(&wq_pool_attach_mutex);
2373 }
2374
2375 /**
2376 * worker_thread - the worker thread function
2377 * @__worker: self
2378 *
2379 * The worker thread function. All workers belong to a worker_pool -
2380 * either a per-cpu one or dynamic unbound one. These workers process all
2381 * work items regardless of their specific target workqueue. The only
2382 * exception is work items which belong to workqueues with a rescuer which
2383 * will be explained in rescuer_thread().
2384 *
2385 * Return: 0
2386 */
2387 static int worker_thread(void *__worker)
2388 {
2389 struct worker *worker = __worker;
2390 struct worker_pool *pool = worker->pool;
2391
2392 /* tell the scheduler that this is a workqueue worker */
2393 set_pf_worker(true);
2394 woke_up:
2395 raw_spin_lock_irq(&pool->lock);
2396
2397 /* am I supposed to die? */
2398 if (unlikely(worker->flags & WORKER_DIE)) {
2399 raw_spin_unlock_irq(&pool->lock);
2400 WARN_ON_ONCE(!list_empty(&worker->entry));
2401 set_pf_worker(false);
2402
2403 set_task_comm(worker->task, "kworker/dying");
2404 ida_free(&pool->worker_ida, worker->id);
2405 worker_detach_from_pool(worker);
2406 kfree(worker);
2407 return 0;
2408 }
2409
2410 worker_leave_idle(worker);
2411 recheck:
2412 /* no more worker necessary? */
2413 if (!need_more_worker(pool))
2414 goto sleep;
2415
2416 /* do we need to manage? */
2417 if (unlikely(!may_start_working(pool)) && manage_workers(worker))
2418 goto recheck;
2419
2420 /*
2421 * ->scheduled list can only be filled while a worker is
2422 * preparing to process a work or actually processing it.
2423 * Make sure nobody diddled with it while I was sleeping.
2424 */
2425 WARN_ON_ONCE(!list_empty(&worker->scheduled));
2426
2427 /*
2428 * Finish PREP stage. We're guaranteed to have at least one idle
2429 * worker or that someone else has already assumed the manager
2430 * role. This is where @worker starts participating in concurrency
2431 * management if applicable and concurrency management is restored
2432 * after being rebound. See rebind_workers() for details.
2433 */
2434 worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND);
2435
2436 do {
2437 struct work_struct *work =
2438 list_first_entry(&pool->worklist,
2439 struct work_struct, entry);
2440
2441 pool->watchdog_ts = jiffies;
2442
2443 if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
2444 /* optimization path, not strictly necessary */
2445 process_one_work(worker, work);
2446 if (unlikely(!list_empty(&worker->scheduled)))
2447 process_scheduled_works(worker);
2448 } else {
2449 move_linked_works(work, &worker->scheduled, NULL);
2450 process_scheduled_works(worker);
2451 }
2452 } while (keep_working(pool));
2453
2454 worker_set_flags(worker, WORKER_PREP);
2455 sleep:
2456 /*
2457 * pool->lock is held and there's no work to process and no need to
2458 * manage, sleep. Workers are woken up only while holding
2459 * pool->lock or from local cpu, so setting the current state
2460 * before releasing pool->lock is enough to prevent losing any
2461 * event.
2462 */
2463 worker_enter_idle(worker);
2464 __set_current_state(TASK_IDLE);
2465 raw_spin_unlock_irq(&pool->lock);
2466 schedule();
2467 goto woke_up;
2468 }
2469
2470 /**
2471 * rescuer_thread - the rescuer thread function
2472 * @__rescuer: self
2473 *
2474 * Workqueue rescuer thread function. There's one rescuer for each
2475 * workqueue which has WQ_MEM_RECLAIM set.
2476 *
2477 * Regular work processing on a pool may block trying to create a new
2478 * worker which uses GFP_KERNEL allocation which has slight chance of
2479 * developing into deadlock if some works currently on the same queue
2480 * need to be processed to satisfy the GFP_KERNEL allocation. This is
2481 * the problem rescuer solves.
2482 *
2483 * When such condition is possible, the pool summons rescuers of all
2484 * workqueues which have works queued on the pool and let them process
2485 * those works so that forward progress can be guaranteed.
2486 *
2487 * This should happen rarely.
2488 *
2489 * Return: 0
2490 */
2491 static int rescuer_thread(void *__rescuer)
2492 {
2493 struct worker *rescuer = __rescuer;
2494 struct workqueue_struct *wq = rescuer->rescue_wq;
2495 struct list_head *scheduled = &rescuer->scheduled;
2496 bool should_stop;
2497
2498 set_user_nice(current, RESCUER_NICE_LEVEL);
2499
2500 /*
2501 * Mark rescuer as worker too. As WORKER_PREP is never cleared, it
2502 * doesn't participate in concurrency management.
2503 */
2504 set_pf_worker(true);
2505 repeat:
2506 set_current_state(TASK_IDLE);
2507
2508 /*
2509 * By the time the rescuer is requested to stop, the workqueue
2510 * shouldn't have any work pending, but @wq->maydays may still have
2511 * pwq(s) queued. This can happen by non-rescuer workers consuming
2512 * all the work items before the rescuer got to them. Go through
2513 * @wq->maydays processing before acting on should_stop so that the
2514 * list is always empty on exit.
2515 */
2516 should_stop = kthread_should_stop();
2517
2518 /* see whether any pwq is asking for help */
2519 raw_spin_lock_irq(&wq_mayday_lock);
2520
2521 while (!list_empty(&wq->maydays)) {
2522 struct pool_workqueue *pwq = list_first_entry(&wq->maydays,
2523 struct pool_workqueue, mayday_node);
2524 struct worker_pool *pool = pwq->pool;
2525 struct work_struct *work, *n;
2526 bool first = true;
2527
2528 __set_current_state(TASK_RUNNING);
2529 list_del_init(&pwq->mayday_node);
2530
2531 raw_spin_unlock_irq(&wq_mayday_lock);
2532
2533 worker_attach_to_pool(rescuer, pool);
2534
2535 raw_spin_lock_irq(&pool->lock);
2536
2537 /*
2538 * Slurp in all works issued via this workqueue and
2539 * process'em.
2540 */
2541 WARN_ON_ONCE(!list_empty(scheduled));
2542 list_for_each_entry_safe(work, n, &pool->worklist, entry) {
2543 if (get_work_pwq(work) == pwq) {
2544 if (first)
2545 pool->watchdog_ts = jiffies;
2546 move_linked_works(work, scheduled, &n);
2547 }
2548 first = false;
2549 }
2550
2551 if (!list_empty(scheduled)) {
2552 process_scheduled_works(rescuer);
2553
2554 /*
2555 * The above execution of rescued work items could
2556 * have created more to rescue through
2557 * pwq_activate_first_inactive() or chained
2558 * queueing. Let's put @pwq back on mayday list so
2559 * that such back-to-back work items, which may be
2560 * being used to relieve memory pressure, don't
2561 * incur MAYDAY_INTERVAL delay inbetween.
2562 */
2563 if (pwq->nr_active && need_to_create_worker(pool)) {
2564 raw_spin_lock(&wq_mayday_lock);
2565 /*
2566 * Queue iff we aren't racing destruction
2567 * and somebody else hasn't queued it already.
2568 */
2569 if (wq->rescuer && list_empty(&pwq->mayday_node)) {
2570 get_pwq(pwq);
2571 list_add_tail(&pwq->mayday_node, &wq->maydays);
2572 }
2573 raw_spin_unlock(&wq_mayday_lock);
2574 }
2575 }
2576
2577 /*
2578 * Put the reference grabbed by send_mayday(). @pool won't
2579 * go away while we're still attached to it.
2580 */
2581 put_pwq(pwq);
2582
2583 /*
2584 * Leave this pool. If need_more_worker() is %true, notify a
2585 * regular worker; otherwise, we end up with 0 concurrency
2586 * and stalling the execution.
2587 */
2588 if (need_more_worker(pool))
2589 wake_up_worker(pool);
2590
2591 raw_spin_unlock_irq(&pool->lock);
2592
2593 worker_detach_from_pool(rescuer);
2594
2595 raw_spin_lock_irq(&wq_mayday_lock);
2596 }
2597
2598 raw_spin_unlock_irq(&wq_mayday_lock);
2599
2600 if (should_stop) {
2601 __set_current_state(TASK_RUNNING);
2602 set_pf_worker(false);
2603 return 0;
2604 }
2605
2606 /* rescuers should never participate in concurrency management */
2607 WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
2608 schedule();
2609 goto repeat;
2610 }
2611
2612 /**
2613 * check_flush_dependency - check for flush dependency sanity
2614 * @target_wq: workqueue being flushed
2615 * @target_work: work item being flushed (NULL for workqueue flushes)
2616 *
2617 * %current is trying to flush the whole @target_wq or @target_work on it.
2618 * If @target_wq doesn't have %WQ_MEM_RECLAIM, verify that %current is not
2619 * reclaiming memory or running on a workqueue which doesn't have
2620 * %WQ_MEM_RECLAIM as that can break forward-progress guarantee leading to
2621 * a deadlock.
2622 */
2623 static void check_flush_dependency(struct workqueue_struct *target_wq,
2624 struct work_struct *target_work)
2625 {
2626 work_func_t target_func = target_work ? target_work->func : NULL;
2627 struct worker *worker;
2628
2629 if (target_wq->flags & WQ_MEM_RECLAIM)
2630 return;
2631
2632 worker = current_wq_worker();
2633
2634 WARN_ONCE(current->flags & PF_MEMALLOC,
2635 "workqueue: PF_MEMALLOC task %d(%s) is flushing !WQ_MEM_RECLAIM %s:%ps",
2636 current->pid, current->comm, target_wq->name, target_func);
2637 WARN_ONCE(worker && ((worker->current_pwq->wq->flags &
2638 (WQ_MEM_RECLAIM | __WQ_LEGACY)) == WQ_MEM_RECLAIM),
2639 "workqueue: WQ_MEM_RECLAIM %s:%ps is flushing !WQ_MEM_RECLAIM %s:%ps",
2640 worker->current_pwq->wq->name, worker->current_func,
2641 target_wq->name, target_func);
2642 }
2643
2644 struct wq_barrier {
2645 struct work_struct work;
2646 struct completion done;
2647 struct task_struct *task; /* purely informational */
2648 };
2649
2650 static void wq_barrier_func(struct work_struct *work)
2651 {
2652 struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
2653 complete(&barr->done);
2654 }
2655
2656 /**
2657 * insert_wq_barrier - insert a barrier work
2658 * @pwq: pwq to insert barrier into
2659 * @barr: wq_barrier to insert
2660 * @target: target work to attach @barr to
2661 * @worker: worker currently executing @target, NULL if @target is not executing
2662 *
2663 * @barr is linked to @target such that @barr is completed only after
2664 * @target finishes execution. Please note that the ordering
2665 * guarantee is observed only with respect to @target and on the local
2666 * cpu.
2667 *
2668 * Currently, a queued barrier can't be canceled. This is because
2669 * try_to_grab_pending() can't determine whether the work to be
2670 * grabbed is at the head of the queue and thus can't clear LINKED
2671 * flag of the previous work while there must be a valid next work
2672 * after a work with LINKED flag set.
2673 *
2674 * Note that when @worker is non-NULL, @target may be modified
2675 * underneath us, so we can't reliably determine pwq from @target.
2676 *
2677 * CONTEXT:
2678 * raw_spin_lock_irq(pool->lock).
2679 */
2680 static void insert_wq_barrier(struct pool_workqueue *pwq,
2681 struct wq_barrier *barr,
2682 struct work_struct *target, struct worker *worker)
2683 {
2684 unsigned int work_flags = 0;
2685 unsigned int work_color;
2686 struct list_head *head;
2687
2688 /*
2689 * debugobject calls are safe here even with pool->lock locked
2690 * as we know for sure that this will not trigger any of the
2691 * checks and call back into the fixup functions where we
2692 * might deadlock.
2693 */
2694 INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
2695 __set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
2696
2697 init_completion_map(&barr->done, &target->lockdep_map);
2698
2699 barr->task = current;
2700
2701 /* The barrier work item does not participate in pwq->nr_active. */
2702 work_flags |= WORK_STRUCT_INACTIVE;
2703
2704 /*
2705 * If @target is currently being executed, schedule the
2706 * barrier to the worker; otherwise, put it after @target.
2707 */
2708 if (worker) {
2709 head = worker->scheduled.next;
2710 work_color = worker->current_color;
2711 } else {
2712 unsigned long *bits = work_data_bits(target);
2713
2714 head = target->entry.next;
2715 /* there can already be other linked works, inherit and set */
2716 work_flags |= *bits & WORK_STRUCT_LINKED;
2717 work_color = get_work_color(*bits);
2718 __set_bit(WORK_STRUCT_LINKED_BIT, bits);
2719 }
2720
2721 pwq->nr_in_flight[work_color]++;
2722 work_flags |= work_color_to_flags(work_color);
2723
2724 debug_work_activate(&barr->work);
2725 insert_work(pwq, &barr->work, head, work_flags);
2726 }
2727
2728 /**
2729 * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing
2730 * @wq: workqueue being flushed
2731 * @flush_color: new flush color, < 0 for no-op
2732 * @work_color: new work color, < 0 for no-op
2733 *
2734 * Prepare pwqs for workqueue flushing.
2735 *
2736 * If @flush_color is non-negative, flush_color on all pwqs should be
2737 * -1. If no pwq has in-flight commands at the specified color, all
2738 * pwq->flush_color's stay at -1 and %false is returned. If any pwq
2739 * has in flight commands, its pwq->flush_color is set to
2740 * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq
2741 * wakeup logic is armed and %true is returned.
2742 *
2743 * The caller should have initialized @wq->first_flusher prior to
2744 * calling this function with non-negative @flush_color. If
2745 * @flush_color is negative, no flush color update is done and %false
2746 * is returned.
2747 *
2748 * If @work_color is non-negative, all pwqs should have the same
2749 * work_color which is previous to @work_color and all will be
2750 * advanced to @work_color.
2751 *
2752 * CONTEXT:
2753 * mutex_lock(wq->mutex).
2754 *
2755 * Return:
2756 * %true if @flush_color >= 0 and there's something to flush. %false
2757 * otherwise.
2758 */
2759 static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq,
2760 int flush_color, int work_color)
2761 {
2762 bool wait = false;
2763 struct pool_workqueue *pwq;
2764
2765 if (flush_color >= 0) {
2766 WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush));
2767 atomic_set(&wq->nr_pwqs_to_flush, 1);
2768 }
2769
2770 for_each_pwq(pwq, wq) {
2771 struct worker_pool *pool = pwq->pool;
2772
2773 raw_spin_lock_irq(&pool->lock);
2774
2775 if (flush_color >= 0) {
2776 WARN_ON_ONCE(pwq->flush_color != -1);
2777
2778 if (pwq->nr_in_flight[flush_color]) {
2779 pwq->flush_color = flush_color;
2780 atomic_inc(&wq->nr_pwqs_to_flush);
2781 wait = true;
2782 }
2783 }
2784
2785 if (work_color >= 0) {
2786 WARN_ON_ONCE(work_color != work_next_color(pwq->work_color));
2787 pwq->work_color = work_color;
2788 }
2789
2790 raw_spin_unlock_irq(&pool->lock);
2791 }
2792
2793 if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush))
2794 complete(&wq->first_flusher->done);
2795
2796 return wait;
2797 }
2798
2799 /**
2800 * flush_workqueue - ensure that any scheduled work has run to completion.
2801 * @wq: workqueue to flush
2802 *
2803 * This function sleeps until all work items which were queued on entry
2804 * have finished execution, but it is not livelocked by new incoming ones.
2805 */
2806 void flush_workqueue(struct workqueue_struct *wq)
2807 {
2808 struct wq_flusher this_flusher = {
2809 .list = LIST_HEAD_INIT(this_flusher.list),
2810 .flush_color = -1,
2811 .done = COMPLETION_INITIALIZER_ONSTACK_MAP(this_flusher.done, wq->lockdep_map),
2812 };
2813 int next_color;
2814
2815 if (WARN_ON(!wq_online))
2816 return;
2817
2818 lock_map_acquire(&wq->lockdep_map);
2819 lock_map_release(&wq->lockdep_map);
2820
2821 mutex_lock(&wq->mutex);
2822
2823 /*
2824 * Start-to-wait phase
2825 */
2826 next_color = work_next_color(wq->work_color);
2827
2828 if (next_color != wq->flush_color) {
2829 /*
2830 * Color space is not full. The current work_color
2831 * becomes our flush_color and work_color is advanced
2832 * by one.
2833 */
2834 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow));
2835 this_flusher.flush_color = wq->work_color;
2836 wq->work_color = next_color;
2837
2838 if (!wq->first_flusher) {
2839 /* no flush in progress, become the first flusher */
2840 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2841
2842 wq->first_flusher = &this_flusher;
2843
2844 if (!flush_workqueue_prep_pwqs(wq, wq->flush_color,
2845 wq->work_color)) {
2846 /* nothing to flush, done */
2847 wq->flush_color = next_color;
2848 wq->first_flusher = NULL;
2849 goto out_unlock;
2850 }
2851 } else {
2852 /* wait in queue */
2853 WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color);
2854 list_add_tail(&this_flusher.list, &wq->flusher_queue);
2855 flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2856 }
2857 } else {
2858 /*
2859 * Oops, color space is full, wait on overflow queue.
2860 * The next flush completion will assign us
2861 * flush_color and transfer to flusher_queue.
2862 */
2863 list_add_tail(&this_flusher.list, &wq->flusher_overflow);
2864 }
2865
2866 check_flush_dependency(wq, NULL);
2867
2868 mutex_unlock(&wq->mutex);
2869
2870 wait_for_completion(&this_flusher.done);
2871
2872 /*
2873 * Wake-up-and-cascade phase
2874 *
2875 * First flushers are responsible for cascading flushes and
2876 * handling overflow. Non-first flushers can simply return.
2877 */
2878 if (READ_ONCE(wq->first_flusher) != &this_flusher)
2879 return;
2880
2881 mutex_lock(&wq->mutex);
2882
2883 /* we might have raced, check again with mutex held */
2884 if (wq->first_flusher != &this_flusher)
2885 goto out_unlock;
2886
2887 WRITE_ONCE(wq->first_flusher, NULL);
2888
2889 WARN_ON_ONCE(!list_empty(&this_flusher.list));
2890 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2891
2892 while (true) {
2893 struct wq_flusher *next, *tmp;
2894
2895 /* complete all the flushers sharing the current flush color */
2896 list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
2897 if (next->flush_color != wq->flush_color)
2898 break;
2899 list_del_init(&next->list);
2900 complete(&next->done);
2901 }
2902
2903 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) &&
2904 wq->flush_color != work_next_color(wq->work_color));
2905
2906 /* this flush_color is finished, advance by one */
2907 wq->flush_color = work_next_color(wq->flush_color);
2908
2909 /* one color has been freed, handle overflow queue */
2910 if (!list_empty(&wq->flusher_overflow)) {
2911 /*
2912 * Assign the same color to all overflowed
2913 * flushers, advance work_color and append to
2914 * flusher_queue. This is the start-to-wait
2915 * phase for these overflowed flushers.
2916 */
2917 list_for_each_entry(tmp, &wq->flusher_overflow, list)
2918 tmp->flush_color = wq->work_color;
2919
2920 wq->work_color = work_next_color(wq->work_color);
2921
2922 list_splice_tail_init(&wq->flusher_overflow,
2923 &wq->flusher_queue);
2924 flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2925 }
2926
2927 if (list_empty(&wq->flusher_queue)) {
2928 WARN_ON_ONCE(wq->flush_color != wq->work_color);
2929 break;
2930 }
2931
2932 /*
2933 * Need to flush more colors. Make the next flusher
2934 * the new first flusher and arm pwqs.
2935 */
2936 WARN_ON_ONCE(wq->flush_color == wq->work_color);
2937 WARN_ON_ONCE(wq->flush_color != next->flush_color);
2938
2939 list_del_init(&next->list);
2940 wq->first_flusher = next;
2941
2942 if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1))
2943 break;
2944
2945 /*
2946 * Meh... this color is already done, clear first
2947 * flusher and repeat cascading.
2948 */
2949 wq->first_flusher = NULL;
2950 }
2951
2952 out_unlock:
2953 mutex_unlock(&wq->mutex);
2954 }
2955 EXPORT_SYMBOL(flush_workqueue);
2956
2957 /**
2958 * drain_workqueue - drain a workqueue
2959 * @wq: workqueue to drain
2960 *
2961 * Wait until the workqueue becomes empty. While draining is in progress,
2962 * only chain queueing is allowed. IOW, only currently pending or running
2963 * work items on @wq can queue further work items on it. @wq is flushed
2964 * repeatedly until it becomes empty. The number of flushing is determined
2965 * by the depth of chaining and should be relatively short. Whine if it
2966 * takes too long.
2967 */
2968 void drain_workqueue(struct workqueue_struct *wq)
2969 {
2970 unsigned int flush_cnt = 0;
2971 struct pool_workqueue *pwq;
2972
2973 /*
2974 * __queue_work() needs to test whether there are drainers, is much
2975 * hotter than drain_workqueue() and already looks at @wq->flags.
2976 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers.
2977 */
2978 mutex_lock(&wq->mutex);
2979 if (!wq->nr_drainers++)
2980 wq->flags |= __WQ_DRAINING;
2981 mutex_unlock(&wq->mutex);
2982 reflush:
2983 flush_workqueue(wq);
2984
2985 mutex_lock(&wq->mutex);
2986
2987 for_each_pwq(pwq, wq) {
2988 bool drained;
2989
2990 raw_spin_lock_irq(&pwq->pool->lock);
2991 drained = !pwq->nr_active && list_empty(&pwq->inactive_works);
2992 raw_spin_unlock_irq(&pwq->pool->lock);
2993
2994 if (drained)
2995 continue;
2996
2997 if (++flush_cnt == 10 ||
2998 (flush_cnt % 100 == 0 && flush_cnt <= 1000))
2999 pr_warn("workqueue %s: %s() isn't complete after %u tries\n",
3000 wq->name, __func__, flush_cnt);
3001
3002 mutex_unlock(&wq->mutex);
3003 goto reflush;
3004 }
3005
3006 if (!--wq->nr_drainers)
3007 wq->flags &= ~__WQ_DRAINING;
3008 mutex_unlock(&wq->mutex);
3009 }
3010 EXPORT_SYMBOL_GPL(drain_workqueue);
3011
3012 static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr,
3013 bool from_cancel)
3014 {
3015 struct worker *worker = NULL;
3016 struct worker_pool *pool;
3017 struct pool_workqueue *pwq;
3018
3019 might_sleep();
3020
3021 rcu_read_lock();
3022 pool = get_work_pool(work);
3023 if (!pool) {
3024 rcu_read_unlock();
3025 return false;
3026 }
3027
3028 raw_spin_lock_irq(&pool->lock);
3029 /* see the comment in try_to_grab_pending() with the same code */
3030 pwq = get_work_pwq(work);
3031 if (pwq) {
3032 if (unlikely(pwq->pool != pool))
3033 goto already_gone;
3034 } else {
3035 worker = find_worker_executing_work(pool, work);
3036 if (!worker)
3037 goto already_gone;
3038 pwq = worker->current_pwq;
3039 }
3040
3041 check_flush_dependency(pwq->wq, work);
3042
3043 insert_wq_barrier(pwq, barr, work, worker);
3044 raw_spin_unlock_irq(&pool->lock);
3045
3046 /*
3047 * Force a lock recursion deadlock when using flush_work() inside a
3048 * single-threaded or rescuer equipped workqueue.
3049 *
3050 * For single threaded workqueues the deadlock happens when the work
3051 * is after the work issuing the flush_work(). For rescuer equipped
3052 * workqueues the deadlock happens when the rescuer stalls, blocking
3053 * forward progress.
3054 */
3055 if (!from_cancel &&
3056 (pwq->wq->saved_max_active == 1 || pwq->wq->rescuer)) {
3057 lock_map_acquire(&pwq->wq->lockdep_map);
3058 lock_map_release(&pwq->wq->lockdep_map);
3059 }
3060 rcu_read_unlock();
3061 return true;
3062 already_gone:
3063 raw_spin_unlock_irq(&pool->lock);
3064 rcu_read_unlock();
3065 return false;
3066 }
3067
3068 static bool __flush_work(struct work_struct *work, bool from_cancel)
3069 {
3070 struct wq_barrier barr;
3071
3072 if (WARN_ON(!wq_online))
3073 return false;
3074
3075 if (WARN_ON(!work->func))
3076 return false;
3077
3078 if (!from_cancel) {
3079 lock_map_acquire(&work->lockdep_map);
3080 lock_map_release(&work->lockdep_map);
3081 }
3082
3083 if (start_flush_work(work, &barr, from_cancel)) {
3084 wait_for_completion(&barr.done);
3085 destroy_work_on_stack(&barr.work);
3086 return true;
3087 } else {
3088 return false;
3089 }
3090 }
3091
3092 /**
3093 * flush_work - wait for a work to finish executing the last queueing instance
3094 * @work: the work to flush
3095 *
3096 * Wait until @work has finished execution. @work is guaranteed to be idle
3097 * on return if it hasn't been requeued since flush started.
3098 *
3099 * Return:
3100 * %true if flush_work() waited for the work to finish execution,
3101 * %false if it was already idle.
3102 */
3103 bool flush_work(struct work_struct *work)
3104 {
3105 return __flush_work(work, false);
3106 }
3107 EXPORT_SYMBOL_GPL(flush_work);
3108
3109 struct cwt_wait {
3110 wait_queue_entry_t wait;
3111 struct work_struct *work;
3112 };
3113
3114 static int cwt_wakefn(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
3115 {
3116 struct cwt_wait *cwait = container_of(wait, struct cwt_wait, wait);
3117
3118 if (cwait->work != key)
3119 return 0;
3120 return autoremove_wake_function(wait, mode, sync, key);
3121 }
3122
3123 static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
3124 {
3125 static DECLARE_WAIT_QUEUE_HEAD(cancel_waitq);
3126 unsigned long flags;
3127 int ret;
3128
3129 do {
3130 ret = try_to_grab_pending(work, is_dwork, &flags);
3131 /*
3132 * If someone else is already canceling, wait for it to
3133 * finish. flush_work() doesn't work for PREEMPT_NONE
3134 * because we may get scheduled between @work's completion
3135 * and the other canceling task resuming and clearing
3136 * CANCELING - flush_work() will return false immediately
3137 * as @work is no longer busy, try_to_grab_pending() will
3138 * return -ENOENT as @work is still being canceled and the
3139 * other canceling task won't be able to clear CANCELING as
3140 * we're hogging the CPU.
3141 *
3142 * Let's wait for completion using a waitqueue. As this
3143 * may lead to the thundering herd problem, use a custom
3144 * wake function which matches @work along with exclusive
3145 * wait and wakeup.
3146 */
3147 if (unlikely(ret == -ENOENT)) {
3148 struct cwt_wait cwait;
3149
3150 init_wait(&cwait.wait);
3151 cwait.wait.func = cwt_wakefn;
3152 cwait.work = work;
3153
3154 prepare_to_wait_exclusive(&cancel_waitq, &cwait.wait,
3155 TASK_UNINTERRUPTIBLE);
3156 if (work_is_canceling(work))
3157 schedule();
3158 finish_wait(&cancel_waitq, &cwait.wait);
3159 }
3160 } while (unlikely(ret < 0));
3161
3162 /* tell other tasks trying to grab @work to back off */
3163 mark_work_canceling(work);
3164 local_irq_restore(flags);
3165
3166 /*
3167 * This allows canceling during early boot. We know that @work
3168 * isn't executing.
3169 */
3170 if (wq_online)
3171 __flush_work(work, true);
3172
3173 clear_work_data(work);
3174
3175 /*
3176 * Paired with prepare_to_wait() above so that either
3177 * waitqueue_active() is visible here or !work_is_canceling() is
3178 * visible there.
3179 */
3180 smp_mb();
3181 if (waitqueue_active(&cancel_waitq))
3182 __wake_up(&cancel_waitq, TASK_NORMAL, 1, work);
3183
3184 return ret;
3185 }
3186
3187 /**
3188 * cancel_work_sync - cancel a work and wait for it to finish
3189 * @work: the work to cancel
3190 *
3191 * Cancel @work and wait for its execution to finish. This function
3192 * can be used even if the work re-queues itself or migrates to
3193 * another workqueue. On return from this function, @work is
3194 * guaranteed to be not pending or executing on any CPU.
3195 *
3196 * cancel_work_sync(&delayed_work->work) must not be used for
3197 * delayed_work's. Use cancel_delayed_work_sync() instead.
3198 *
3199 * The caller must ensure that the workqueue on which @work was last
3200 * queued can't be destroyed before this function returns.
3201 *
3202 * Return:
3203 * %true if @work was pending, %false otherwise.
3204 */
3205 bool cancel_work_sync(struct work_struct *work)
3206 {
3207 return __cancel_work_timer(work, false);
3208 }
3209 EXPORT_SYMBOL_GPL(cancel_work_sync);
3210
3211 /**
3212 * flush_delayed_work - wait for a dwork to finish executing the last queueing
3213 * @dwork: the delayed work to flush
3214 *
3215 * Delayed timer is cancelled and the pending work is queued for
3216 * immediate execution. Like flush_work(), this function only
3217 * considers the last queueing instance of @dwork.
3218 *
3219 * Return:
3220 * %true if flush_work() waited for the work to finish execution,
3221 * %false if it was already idle.
3222 */
3223 bool flush_delayed_work(struct delayed_work *dwork)
3224 {
3225 local_irq_disable();
3226 if (del_timer_sync(&dwork->timer))
3227 __queue_work(dwork->cpu, dwork->wq, &dwork->work);
3228 local_irq_enable();
3229 return flush_work(&dwork->work);
3230 }
3231 EXPORT_SYMBOL(flush_delayed_work);
3232
3233 /**
3234 * flush_rcu_work - wait for a rwork to finish executing the last queueing
3235 * @rwork: the rcu work to flush
3236 *
3237 * Return:
3238 * %true if flush_rcu_work() waited for the work to finish execution,
3239 * %false if it was already idle.
3240 */
3241 bool flush_rcu_work(struct rcu_work *rwork)
3242 {
3243 if (test_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&rwork->work))) {
3244 rcu_barrier();
3245 flush_work(&rwork->work);
3246 return true;
3247 } else {
3248 return flush_work(&rwork->work);
3249 }
3250 }
3251 EXPORT_SYMBOL(flush_rcu_work);
3252
3253 static bool __cancel_work(struct work_struct *work, bool is_dwork)
3254 {
3255 unsigned long flags;
3256 int ret;
3257
3258 do {
3259 ret = try_to_grab_pending(work, is_dwork, &flags);
3260 } while (unlikely(ret == -EAGAIN));
3261
3262 if (unlikely(ret < 0))
3263 return false;
3264
3265 set_work_pool_and_clear_pending(work, get_work_pool_id(work));
3266 local_irq_restore(flags);
3267 return ret;
3268 }
3269
3270 /**
3271 * cancel_delayed_work - cancel a delayed work
3272 * @dwork: delayed_work to cancel
3273 *
3274 * Kill off a pending delayed_work.
3275 *
3276 * Return: %true if @dwork was pending and canceled; %false if it wasn't
3277 * pending.
3278 *
3279 * Note:
3280 * The work callback function may still be running on return, unless
3281 * it returns %true and the work doesn't re-arm itself. Explicitly flush or
3282 * use cancel_delayed_work_sync() to wait on it.
3283 *
3284 * This function is safe to call from any context including IRQ handler.
3285 */
3286 bool cancel_delayed_work(struct delayed_work *dwork)
3287 {
3288 return __cancel_work(&dwork->work, true);
3289 }
3290 EXPORT_SYMBOL(cancel_delayed_work);
3291
3292 /**
3293 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
3294 * @dwork: the delayed work cancel
3295 *
3296 * This is cancel_work_sync() for delayed works.
3297 *
3298 * Return:
3299 * %true if @dwork was pending, %false otherwise.
3300 */
3301 bool cancel_delayed_work_sync(struct delayed_work *dwork)
3302 {
3303 return __cancel_work_timer(&dwork->work, true);
3304 }
3305 EXPORT_SYMBOL(cancel_delayed_work_sync);
3306
3307 /**
3308 * schedule_on_each_cpu - execute a function synchronously on each online CPU
3309 * @func: the function to call
3310 *
3311 * schedule_on_each_cpu() executes @func on each online CPU using the
3312 * system workqueue and blocks until all CPUs have completed.
3313 * schedule_on_each_cpu() is very slow.
3314 *
3315 * Return:
3316 * 0 on success, -errno on failure.
3317 */
3318 int schedule_on_each_cpu(work_func_t func)
3319 {
3320 int cpu;
3321 struct work_struct __percpu *works;
3322
3323 works = alloc_percpu(struct work_struct);
3324 if (!works)
3325 return -ENOMEM;
3326
3327 cpus_read_lock();
3328
3329 for_each_online_cpu(cpu) {
3330 struct work_struct *work = per_cpu_ptr(works, cpu);
3331
3332 INIT_WORK(work, func);
3333 schedule_work_on(cpu, work);
3334 }
3335
3336 for_each_online_cpu(cpu)
3337 flush_work(per_cpu_ptr(works, cpu));
3338
3339 cpus_read_unlock();
3340 free_percpu(works);
3341 return 0;
3342 }
3343
3344 /**
3345 * execute_in_process_context - reliably execute the routine with user context
3346 * @fn: the function to execute
3347 * @ew: guaranteed storage for the execute work structure (must
3348 * be available when the work executes)
3349 *
3350 * Executes the function immediately if process context is available,
3351 * otherwise schedules the function for delayed execution.
3352 *
3353 * Return: 0 - function was executed
3354 * 1 - function was scheduled for execution
3355 */
3356 int execute_in_process_context(work_func_t fn, struct execute_work *ew)
3357 {
3358 if (!in_interrupt()) {
3359 fn(&ew->work);
3360 return 0;
3361 }
3362
3363 INIT_WORK(&ew->work, fn);
3364 schedule_work(&ew->work);
3365
3366 return 1;
3367 }
3368 EXPORT_SYMBOL_GPL(execute_in_process_context);
3369
3370 /**
3371 * free_workqueue_attrs - free a workqueue_attrs
3372 * @attrs: workqueue_attrs to free
3373 *
3374 * Undo alloc_workqueue_attrs().
3375 */
3376 void free_workqueue_attrs(struct workqueue_attrs *attrs)
3377 {
3378 if (attrs) {
3379 free_cpumask_var(attrs->cpumask);
3380 kfree(attrs);
3381 }
3382 }
3383
3384 /**
3385 * alloc_workqueue_attrs - allocate a workqueue_attrs
3386 *
3387 * Allocate a new workqueue_attrs, initialize with default settings and
3388 * return it.
3389 *
3390 * Return: The allocated new workqueue_attr on success. %NULL on failure.
3391 */
3392 struct workqueue_attrs *alloc_workqueue_attrs(void)
3393 {
3394 struct workqueue_attrs *attrs;
3395
3396 attrs = kzalloc(sizeof(*attrs), GFP_KERNEL);
3397 if (!attrs)
3398 goto fail;
3399 if (!alloc_cpumask_var(&attrs->cpumask, GFP_KERNEL))
3400 goto fail;
3401
3402 cpumask_copy(attrs->cpumask, cpu_possible_mask);
3403 return attrs;
3404 fail:
3405 free_workqueue_attrs(attrs);
3406 return NULL;
3407 }
3408
3409 static void copy_workqueue_attrs(struct workqueue_attrs *to,
3410 const struct workqueue_attrs *from)
3411 {
3412 to->nice = from->nice;
3413 cpumask_copy(to->cpumask, from->cpumask);
3414 /*
3415 * Unlike hash and equality test, this function doesn't ignore
3416 * ->no_numa as it is used for both pool and wq attrs. Instead,
3417 * get_unbound_pool() explicitly clears ->no_numa after copying.
3418 */
3419 to->no_numa = from->no_numa;
3420 }
3421
3422 /* hash value of the content of @attr */
3423 static u32 wqattrs_hash(const struct workqueue_attrs *attrs)
3424 {
3425 u32 hash = 0;
3426
3427 hash = jhash_1word(attrs->nice, hash);
3428 hash = jhash(cpumask_bits(attrs->cpumask),
3429 BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash);
3430 return hash;
3431 }
3432
3433 /* content equality test */
3434 static bool wqattrs_equal(const struct workqueue_attrs *a,
3435 const struct workqueue_attrs *b)
3436 {
3437 if (a->nice != b->nice)
3438 return false;
3439 if (!cpumask_equal(a->cpumask, b->cpumask))
3440 return false;
3441 return true;
3442 }
3443
3444 /**
3445 * init_worker_pool - initialize a newly zalloc'd worker_pool
3446 * @pool: worker_pool to initialize
3447 *
3448 * Initialize a newly zalloc'd @pool. It also allocates @pool->attrs.
3449 *
3450 * Return: 0 on success, -errno on failure. Even on failure, all fields
3451 * inside @pool proper are initialized and put_unbound_pool() can be called
3452 * on @pool safely to release it.
3453 */
3454 static int init_worker_pool(struct worker_pool *pool)
3455 {
3456 raw_spin_lock_init(&pool->lock);
3457 pool->id = -1;
3458 pool->cpu = -1;
3459 pool->node = NUMA_NO_NODE;
3460 pool->flags |= POOL_DISASSOCIATED;
3461 pool->watchdog_ts = jiffies;
3462 INIT_LIST_HEAD(&pool->worklist);
3463 INIT_LIST_HEAD(&pool->idle_list);
3464 hash_init(pool->busy_hash);
3465
3466 timer_setup(&pool->idle_timer, idle_worker_timeout, TIMER_DEFERRABLE);
3467
3468 timer_setup(&pool->mayday_timer, pool_mayday_timeout, 0);
3469
3470 INIT_LIST_HEAD(&pool->workers);
3471
3472 ida_init(&pool->worker_ida);
3473 INIT_HLIST_NODE(&pool->hash_node);
3474 pool->refcnt = 1;
3475
3476 /* shouldn't fail above this point */
3477 pool->attrs = alloc_workqueue_attrs();
3478 if (!pool->attrs)
3479 return -ENOMEM;
3480 return 0;
3481 }
3482
3483 #ifdef CONFIG_LOCKDEP
3484 static void wq_init_lockdep(struct workqueue_struct *wq)
3485 {
3486 char *lock_name;
3487
3488 lockdep_register_key(&wq->key);
3489 lock_name = kasprintf(GFP_KERNEL, "%s%s", "(wq_completion)", wq->name);
3490 if (!lock_name)
3491 lock_name = wq->name;
3492
3493 wq->lock_name = lock_name;
3494 lockdep_init_map(&wq->lockdep_map, lock_name, &wq->key, 0);
3495 }
3496
3497 static void wq_unregister_lockdep(struct workqueue_struct *wq)
3498 {
3499 lockdep_unregister_key(&wq->key);
3500 }
3501
3502 static void wq_free_lockdep(struct workqueue_struct *wq)
3503 {
3504 if (wq->lock_name != wq->name)
3505 kfree(wq->lock_name);
3506 }
3507 #else
3508 static void wq_init_lockdep(struct workqueue_struct *wq)
3509 {
3510 }
3511
3512 static void wq_unregister_lockdep(struct workqueue_struct *wq)
3513 {
3514 }
3515
3516 static void wq_free_lockdep(struct workqueue_struct *wq)
3517 {
3518 }
3519 #endif
3520
3521 static void rcu_free_wq(struct rcu_head *rcu)
3522 {
3523 struct workqueue_struct *wq =
3524 container_of(rcu, struct workqueue_struct, rcu);
3525
3526 wq_free_lockdep(wq);
3527
3528 if (!(wq->flags & WQ_UNBOUND))
3529 free_percpu(wq->cpu_pwqs);
3530 else
3531 free_workqueue_attrs(wq->unbound_attrs);
3532
3533 kfree(wq);
3534 }
3535
3536 static void rcu_free_pool(struct rcu_head *rcu)
3537 {
3538 struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu);
3539
3540 ida_destroy(&pool->worker_ida);
3541 free_workqueue_attrs(pool->attrs);
3542 kfree(pool);
3543 }
3544
3545 /* This returns with the lock held on success (pool manager is inactive). */
3546 static bool wq_manager_inactive(struct worker_pool *pool)
3547 {
3548 raw_spin_lock_irq(&pool->lock);
3549
3550 if (pool->flags & POOL_MANAGER_ACTIVE) {
3551 raw_spin_unlock_irq(&pool->lock);
3552 return false;
3553 }
3554 return true;
3555 }
3556
3557 /**
3558 * put_unbound_pool - put a worker_pool
3559 * @pool: worker_pool to put
3560 *
3561 * Put @pool. If its refcnt reaches zero, it gets destroyed in RCU
3562 * safe manner. get_unbound_pool() calls this function on its failure path
3563 * and this function should be able to release pools which went through,
3564 * successfully or not, init_worker_pool().
3565 *
3566 * Should be called with wq_pool_mutex held.
3567 */
3568 static void put_unbound_pool(struct worker_pool *pool)
3569 {
3570 DECLARE_COMPLETION_ONSTACK(detach_completion);
3571 struct worker *worker;
3572
3573 lockdep_assert_held(&wq_pool_mutex);
3574
3575 if (--pool->refcnt)
3576 return;
3577
3578 /* sanity checks */
3579 if (WARN_ON(!(pool->cpu < 0)) ||
3580 WARN_ON(!list_empty(&pool->worklist)))
3581 return;
3582
3583 /* release id and unhash */
3584 if (pool->id >= 0)
3585 idr_remove(&worker_pool_idr, pool->id);
3586 hash_del(&pool->hash_node);
3587
3588 /*
3589 * Become the manager and destroy all workers. This prevents
3590 * @pool's workers from blocking on attach_mutex. We're the last
3591 * manager and @pool gets freed with the flag set.
3592 * Because of how wq_manager_inactive() works, we will hold the
3593 * spinlock after a successful wait.
3594 */
3595 rcuwait_wait_event(&manager_wait, wq_manager_inactive(pool),
3596 TASK_UNINTERRUPTIBLE);
3597 pool->flags |= POOL_MANAGER_ACTIVE;
3598
3599 while ((worker = first_idle_worker(pool)))
3600 destroy_worker(worker);
3601 WARN_ON(pool->nr_workers || pool->nr_idle);
3602 raw_spin_unlock_irq(&pool->lock);
3603
3604 mutex_lock(&wq_pool_attach_mutex);
3605 if (!list_empty(&pool->workers))
3606 pool->detach_completion = &detach_completion;
3607 mutex_unlock(&wq_pool_attach_mutex);
3608
3609 if (pool->detach_completion)
3610 wait_for_completion(pool->detach_completion);
3611
3612 /* shut down the timers */
3613 del_timer_sync(&pool->idle_timer);
3614 del_timer_sync(&pool->mayday_timer);
3615
3616 /* RCU protected to allow dereferences from get_work_pool() */
3617 call_rcu(&pool->rcu, rcu_free_pool);
3618 }
3619
3620 /**
3621 * get_unbound_pool - get a worker_pool with the specified attributes
3622 * @attrs: the attributes of the worker_pool to get
3623 *
3624 * Obtain a worker_pool which has the same attributes as @attrs, bump the
3625 * reference count and return it. If there already is a matching
3626 * worker_pool, it will be used; otherwise, this function attempts to
3627 * create a new one.
3628 *
3629 * Should be called with wq_pool_mutex held.
3630 *
3631 * Return: On success, a worker_pool with the same attributes as @attrs.
3632 * On failure, %NULL.
3633 */
3634 static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs)
3635 {
3636 u32 hash = wqattrs_hash(attrs);
3637 struct worker_pool *pool;
3638 int node;
3639 int target_node = NUMA_NO_NODE;
3640
3641 lockdep_assert_held(&wq_pool_mutex);
3642
3643 /* do we already have a matching pool? */
3644 hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) {
3645 if (wqattrs_equal(pool->attrs, attrs)) {
3646 pool->refcnt++;
3647 return pool;
3648 }
3649 }
3650
3651 /* if cpumask is contained inside a NUMA node, we belong to that node */
3652 if (wq_numa_enabled) {
3653 for_each_node(node) {
3654 if (cpumask_subset(attrs->cpumask,
3655 wq_numa_possible_cpumask[node])) {
3656 target_node = node;
3657 break;
3658 }
3659 }
3660 }
3661
3662 /* nope, create a new one */
3663 pool = kzalloc_node(sizeof(*pool), GFP_KERNEL, target_node);
3664 if (!pool || init_worker_pool(pool) < 0)
3665 goto fail;
3666
3667 lockdep_set_subclass(&pool->lock, 1); /* see put_pwq() */
3668 copy_workqueue_attrs(pool->attrs, attrs);
3669 pool->node = target_node;
3670
3671 /*
3672 * no_numa isn't a worker_pool attribute, always clear it. See
3673 * 'struct workqueue_attrs' comments for detail.
3674 */
3675 pool->attrs->no_numa = false;
3676
3677 if (worker_pool_assign_id(pool) < 0)
3678 goto fail;
3679
3680 /* create and start the initial worker */
3681 if (wq_online && !create_worker(pool))
3682 goto fail;
3683
3684 /* install */
3685 hash_add(unbound_pool_hash, &pool->hash_node, hash);
3686
3687 return pool;
3688 fail:
3689 if (pool)
3690 put_unbound_pool(pool);
3691 return NULL;
3692 }
3693
3694 static void rcu_free_pwq(struct rcu_head *rcu)
3695 {
3696 kmem_cache_free(pwq_cache,
3697 container_of(rcu, struct pool_workqueue, rcu));
3698 }
3699
3700 /*
3701 * Scheduled on system_wq by put_pwq() when an unbound pwq hits zero refcnt
3702 * and needs to be destroyed.
3703 */
3704 static void pwq_unbound_release_workfn(struct work_struct *work)
3705 {
3706 struct pool_workqueue *pwq = container_of(work, struct pool_workqueue,
3707 unbound_release_work);
3708 struct workqueue_struct *wq = pwq->wq;
3709 struct worker_pool *pool = pwq->pool;
3710 bool is_last = false;
3711
3712 /*
3713 * when @pwq is not linked, it doesn't hold any reference to the
3714 * @wq, and @wq is invalid to access.
3715 */
3716 if (!list_empty(&pwq->pwqs_node)) {
3717 if (WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND)))
3718 return;
3719
3720 mutex_lock(&wq->mutex);
3721 list_del_rcu(&pwq->pwqs_node);
3722 is_last = list_empty(&wq->pwqs);
3723 mutex_unlock(&wq->mutex);
3724 }
3725
3726 mutex_lock(&wq_pool_mutex);
3727 put_unbound_pool(pool);
3728 mutex_unlock(&wq_pool_mutex);
3729
3730 call_rcu(&pwq->rcu, rcu_free_pwq);
3731
3732 /*
3733 * If we're the last pwq going away, @wq is already dead and no one
3734 * is gonna access it anymore. Schedule RCU free.
3735 */
3736 if (is_last) {
3737 wq_unregister_lockdep(wq);
3738 call_rcu(&wq->rcu, rcu_free_wq);
3739 }
3740 }
3741
3742 /**
3743 * pwq_adjust_max_active - update a pwq's max_active to the current setting
3744 * @pwq: target pool_workqueue
3745 *
3746 * If @pwq isn't freezing, set @pwq->max_active to the associated
3747 * workqueue's saved_max_active and activate inactive work items
3748 * accordingly. If @pwq is freezing, clear @pwq->max_active to zero.
3749 */
3750 static void pwq_adjust_max_active(struct pool_workqueue *pwq)
3751 {
3752 struct workqueue_struct *wq = pwq->wq;
3753 bool freezable = wq->flags & WQ_FREEZABLE;
3754 unsigned long flags;
3755
3756 /* for @wq->saved_max_active */
3757 lockdep_assert_held(&wq->mutex);
3758
3759 /* fast exit for non-freezable wqs */
3760 if (!freezable && pwq->max_active == wq->saved_max_active)
3761 return;
3762
3763 /* this function can be called during early boot w/ irq disabled */
3764 raw_spin_lock_irqsave(&pwq->pool->lock, flags);
3765
3766 /*
3767 * During [un]freezing, the caller is responsible for ensuring that
3768 * this function is called at least once after @workqueue_freezing
3769 * is updated and visible.
3770 */
3771 if (!freezable || !workqueue_freezing) {
3772 bool kick = false;
3773
3774 pwq->max_active = wq->saved_max_active;
3775
3776 while (!list_empty(&pwq->inactive_works) &&
3777 pwq->nr_active < pwq->max_active) {
3778 pwq_activate_first_inactive(pwq);
3779 kick = true;
3780 }
3781
3782 /*
3783 * Need to kick a worker after thawed or an unbound wq's
3784 * max_active is bumped. In realtime scenarios, always kicking a
3785 * worker will cause interference on the isolated cpu cores, so
3786 * let's kick iff work items were activated.
3787 */
3788 if (kick)
3789 wake_up_worker(pwq->pool);
3790 } else {
3791 pwq->max_active = 0;
3792 }
3793
3794 raw_spin_unlock_irqrestore(&pwq->pool->lock, flags);
3795 }
3796
3797 /* initialize newly allocated @pwq which is associated with @wq and @pool */
3798 static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq,
3799 struct worker_pool *pool)
3800 {
3801 BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK);
3802
3803 memset(pwq, 0, sizeof(*pwq));
3804
3805 pwq->pool = pool;
3806 pwq->wq = wq;
3807 pwq->flush_color = -1;
3808 pwq->refcnt = 1;
3809 INIT_LIST_HEAD(&pwq->inactive_works);
3810 INIT_LIST_HEAD(&pwq->pwqs_node);
3811 INIT_LIST_HEAD(&pwq->mayday_node);
3812 INIT_WORK(&pwq->unbound_release_work, pwq_unbound_release_workfn);
3813 }
3814
3815 /* sync @pwq with the current state of its associated wq and link it */
3816 static void link_pwq(struct pool_workqueue *pwq)
3817 {
3818 struct workqueue_struct *wq = pwq->wq;
3819
3820 lockdep_assert_held(&wq->mutex);
3821
3822 /* may be called multiple times, ignore if already linked */
3823 if (!list_empty(&pwq->pwqs_node))
3824 return;
3825
3826 /* set the matching work_color */
3827 pwq->work_color = wq->work_color;
3828
3829 /* sync max_active to the current setting */
3830 pwq_adjust_max_active(pwq);
3831
3832 /* link in @pwq */
3833 list_add_rcu(&pwq->pwqs_node, &wq->pwqs);
3834 }
3835
3836 /* obtain a pool matching @attr and create a pwq associating the pool and @wq */
3837 static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq,
3838 const struct workqueue_attrs *attrs)
3839 {
3840 struct worker_pool *pool;
3841 struct pool_workqueue *pwq;
3842
3843 lockdep_assert_held(&wq_pool_mutex);
3844
3845 pool = get_unbound_pool(attrs);
3846 if (!pool)
3847 return NULL;
3848
3849 pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node);
3850 if (!pwq) {
3851 put_unbound_pool(pool);
3852 return NULL;
3853 }
3854
3855 init_pwq(pwq, wq, pool);
3856 return pwq;
3857 }
3858
3859 /**
3860 * wq_calc_node_cpumask - calculate a wq_attrs' cpumask for the specified node
3861 * @attrs: the wq_attrs of the default pwq of the target workqueue
3862 * @node: the target NUMA node
3863 * @cpu_going_down: if >= 0, the CPU to consider as offline
3864 * @cpumask: outarg, the resulting cpumask
3865 *
3866 * Calculate the cpumask a workqueue with @attrs should use on @node. If
3867 * @cpu_going_down is >= 0, that cpu is considered offline during
3868 * calculation. The result is stored in @cpumask.
3869 *
3870 * If NUMA affinity is not enabled, @attrs->cpumask is always used. If
3871 * enabled and @node has online CPUs requested by @attrs, the returned
3872 * cpumask is the intersection of the possible CPUs of @node and
3873 * @attrs->cpumask.
3874 *
3875 * The caller is responsible for ensuring that the cpumask of @node stays
3876 * stable.
3877 *
3878 * Return: %true if the resulting @cpumask is different from @attrs->cpumask,
3879 * %false if equal.
3880 */
3881 static bool wq_calc_node_cpumask(const struct workqueue_attrs *attrs, int node,
3882 int cpu_going_down, cpumask_t *cpumask)
3883 {
3884 if (!wq_numa_enabled || attrs->no_numa)
3885 goto use_dfl;
3886
3887 /* does @node have any online CPUs @attrs wants? */
3888 cpumask_and(cpumask, cpumask_of_node(node), attrs->cpumask);
3889 if (cpu_going_down >= 0)
3890 cpumask_clear_cpu(cpu_going_down, cpumask);
3891
3892 if (cpumask_empty(cpumask))
3893 goto use_dfl;
3894
3895 /* yeap, return possible CPUs in @node that @attrs wants */
3896 cpumask_and(cpumask, attrs->cpumask, wq_numa_possible_cpumask[node]);
3897
3898 if (cpumask_empty(cpumask)) {
3899 pr_warn_once("WARNING: workqueue cpumask: online intersect > "
3900 "possible intersect\n");
3901 return false;
3902 }
3903
3904 return !cpumask_equal(cpumask, attrs->cpumask);
3905
3906 use_dfl:
3907 cpumask_copy(cpumask, attrs->cpumask);
3908 return false;
3909 }
3910
3911 /* install @pwq into @wq's numa_pwq_tbl[] for @node and return the old pwq */
3912 static struct pool_workqueue *numa_pwq_tbl_install(struct workqueue_struct *wq,
3913 int node,
3914 struct pool_workqueue *pwq)
3915 {
3916 struct pool_workqueue *old_pwq;
3917
3918 lockdep_assert_held(&wq_pool_mutex);
3919 lockdep_assert_held(&wq->mutex);
3920
3921 /* link_pwq() can handle duplicate calls */
3922 link_pwq(pwq);
3923
3924 old_pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
3925 rcu_assign_pointer(wq->numa_pwq_tbl[node], pwq);
3926 return old_pwq;
3927 }
3928
3929 /* context to store the prepared attrs & pwqs before applying */
3930 struct apply_wqattrs_ctx {
3931 struct workqueue_struct *wq; /* target workqueue */
3932 struct workqueue_attrs *attrs; /* attrs to apply */
3933 struct list_head list; /* queued for batching commit */
3934 struct pool_workqueue *dfl_pwq;
3935 struct pool_workqueue *pwq_tbl[];
3936 };
3937
3938 /* free the resources after success or abort */
3939 static void apply_wqattrs_cleanup(struct apply_wqattrs_ctx *ctx)
3940 {
3941 if (ctx) {
3942 int node;
3943
3944 for_each_node(node)
3945 put_pwq_unlocked(ctx->pwq_tbl[node]);
3946 put_pwq_unlocked(ctx->dfl_pwq);
3947
3948 free_workqueue_attrs(ctx->attrs);
3949
3950 kfree(ctx);
3951 }
3952 }
3953
3954 /* allocate the attrs and pwqs for later installation */
3955 static struct apply_wqattrs_ctx *
3956 apply_wqattrs_prepare(struct workqueue_struct *wq,
3957 const struct workqueue_attrs *attrs)
3958 {
3959 struct apply_wqattrs_ctx *ctx;
3960 struct workqueue_attrs *new_attrs, *tmp_attrs;
3961 int node;
3962
3963 lockdep_assert_held(&wq_pool_mutex);
3964
3965 ctx = kzalloc(struct_size(ctx, pwq_tbl, nr_node_ids), GFP_KERNEL);
3966
3967 new_attrs = alloc_workqueue_attrs();
3968 tmp_attrs = alloc_workqueue_attrs();
3969 if (!ctx || !new_attrs || !tmp_attrs)
3970 goto out_free;
3971
3972 /*
3973 * Calculate the attrs of the default pwq.
3974 * If the user configured cpumask doesn't overlap with the
3975 * wq_unbound_cpumask, we fallback to the wq_unbound_cpumask.
3976 */
3977 copy_workqueue_attrs(new_attrs, attrs);
3978 cpumask_and(new_attrs->cpumask, new_attrs->cpumask, wq_unbound_cpumask);
3979 if (unlikely(cpumask_empty(new_attrs->cpumask)))
3980 cpumask_copy(new_attrs->cpumask, wq_unbound_cpumask);
3981
3982 /*
3983 * We may create multiple pwqs with differing cpumasks. Make a
3984 * copy of @new_attrs which will be modified and used to obtain
3985 * pools.
3986 */
3987 copy_workqueue_attrs(tmp_attrs, new_attrs);
3988
3989 /*
3990 * If something goes wrong during CPU up/down, we'll fall back to
3991 * the default pwq covering whole @attrs->cpumask. Always create
3992 * it even if we don't use it immediately.
3993 */
3994 ctx->dfl_pwq = alloc_unbound_pwq(wq, new_attrs);
3995 if (!ctx->dfl_pwq)
3996 goto out_free;
3997
3998 for_each_node(node) {
3999 if (wq_calc_node_cpumask(new_attrs, node, -1, tmp_attrs->cpumask)) {
4000 ctx->pwq_tbl[node] = alloc_unbound_pwq(wq, tmp_attrs);
4001 if (!ctx->pwq_tbl[node])
4002 goto out_free;
4003 } else {
4004 ctx->dfl_pwq->refcnt++;
4005 ctx->pwq_tbl[node] = ctx->dfl_pwq;
4006 }
4007 }
4008
4009 /* save the user configured attrs and sanitize it. */
4010 copy_workqueue_attrs(new_attrs, attrs);
4011 cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask);
4012 ctx->attrs = new_attrs;
4013
4014 ctx->wq = wq;
4015 free_workqueue_attrs(tmp_attrs);
4016 return ctx;
4017
4018 out_free:
4019 free_workqueue_attrs(tmp_attrs);
4020 free_workqueue_attrs(new_attrs);
4021 apply_wqattrs_cleanup(ctx);
4022 return NULL;
4023 }
4024
4025 /* set attrs and install prepared pwqs, @ctx points to old pwqs on return */
4026 static void apply_wqattrs_commit(struct apply_wqattrs_ctx *ctx)
4027 {
4028 int node;
4029
4030 /* all pwqs have been created successfully, let's install'em */
4031 mutex_lock(&ctx->wq->mutex);
4032
4033 copy_workqueue_attrs(ctx->wq->unbound_attrs, ctx->attrs);
4034
4035 /* save the previous pwq and install the new one */
4036 for_each_node(node)
4037 ctx->pwq_tbl[node] = numa_pwq_tbl_install(ctx->wq, node,
4038 ctx->pwq_tbl[node]);
4039
4040 /* @dfl_pwq might not have been used, ensure it's linked */
4041 link_pwq(ctx->dfl_pwq);
4042 swap(ctx->wq->dfl_pwq, ctx->dfl_pwq);
4043
4044 mutex_unlock(&ctx->wq->mutex);
4045 }
4046
4047 static void apply_wqattrs_lock(void)
4048 {
4049 /* CPUs should stay stable across pwq creations and installations */
4050 cpus_read_lock();
4051 mutex_lock(&wq_pool_mutex);
4052 }
4053
4054 static void apply_wqattrs_unlock(void)
4055 {
4056 mutex_unlock(&wq_pool_mutex);
4057 cpus_read_unlock();
4058 }
4059
4060 static int apply_workqueue_attrs_locked(struct workqueue_struct *wq,
4061 const struct workqueue_attrs *attrs)
4062 {
4063 struct apply_wqattrs_ctx *ctx;
4064
4065 /* only unbound workqueues can change attributes */
4066 if (WARN_ON(!(wq->flags & WQ_UNBOUND)))
4067 return -EINVAL;
4068
4069 /* creating multiple pwqs breaks ordering guarantee */
4070 if (!list_empty(&wq->pwqs)) {
4071 if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
4072 return -EINVAL;
4073
4074 wq->flags &= ~__WQ_ORDERED;
4075 }
4076
4077 ctx = apply_wqattrs_prepare(wq, attrs);
4078 if (!ctx)
4079 return -ENOMEM;
4080
4081 /* the ctx has been prepared successfully, let's commit it */
4082 apply_wqattrs_commit(ctx);
4083 apply_wqattrs_cleanup(ctx);
4084
4085 return 0;
4086 }
4087
4088 /**
4089 * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue
4090 * @wq: the target workqueue
4091 * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs()
4092 *
4093 * Apply @attrs to an unbound workqueue @wq. Unless disabled, on NUMA
4094 * machines, this function maps a separate pwq to each NUMA node with
4095 * possibles CPUs in @attrs->cpumask so that work items are affine to the
4096 * NUMA node it was issued on. Older pwqs are released as in-flight work
4097 * items finish. Note that a work item which repeatedly requeues itself
4098 * back-to-back will stay on its current pwq.
4099 *
4100 * Performs GFP_KERNEL allocations.
4101 *
4102 * Assumes caller has CPU hotplug read exclusion, i.e. cpus_read_lock().
4103 *
4104 * Return: 0 on success and -errno on failure.
4105 */
4106 int apply_workqueue_attrs(struct workqueue_struct *wq,
4107 const struct workqueue_attrs *attrs)
4108 {
4109 int ret;
4110
4111 lockdep_assert_cpus_held();
4112
4113 mutex_lock(&wq_pool_mutex);
4114 ret = apply_workqueue_attrs_locked(wq, attrs);
4115 mutex_unlock(&wq_pool_mutex);
4116
4117 return ret;
4118 }
4119
4120 /**
4121 * wq_update_unbound_numa - update NUMA affinity of a wq for CPU hot[un]plug
4122 * @wq: the target workqueue
4123 * @cpu: the CPU coming up or going down
4124 * @online: whether @cpu is coming up or going down
4125 *
4126 * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and
4127 * %CPU_DOWN_FAILED. @cpu is being hot[un]plugged, update NUMA affinity of
4128 * @wq accordingly.
4129 *
4130 * If NUMA affinity can't be adjusted due to memory allocation failure, it
4131 * falls back to @wq->dfl_pwq which may not be optimal but is always
4132 * correct.
4133 *
4134 * Note that when the last allowed CPU of a NUMA node goes offline for a
4135 * workqueue with a cpumask spanning multiple nodes, the workers which were
4136 * already executing the work items for the workqueue will lose their CPU
4137 * affinity and may execute on any CPU. This is similar to how per-cpu
4138 * workqueues behave on CPU_DOWN. If a workqueue user wants strict
4139 * affinity, it's the user's responsibility to flush the work item from
4140 * CPU_DOWN_PREPARE.
4141 */
4142 static void wq_update_unbound_numa(struct workqueue_struct *wq, int cpu,
4143 bool online)
4144 {
4145 int node = cpu_to_node(cpu);
4146 int cpu_off = online ? -1 : cpu;
4147 struct pool_workqueue *old_pwq = NULL, *pwq;
4148 struct workqueue_attrs *target_attrs;
4149 cpumask_t *cpumask;
4150
4151 lockdep_assert_held(&wq_pool_mutex);
4152
4153 if (!wq_numa_enabled || !(wq->flags & WQ_UNBOUND) ||
4154 wq->unbound_attrs->no_numa)
4155 return;
4156
4157 /*
4158 * We don't wanna alloc/free wq_attrs for each wq for each CPU.
4159 * Let's use a preallocated one. The following buf is protected by
4160 * CPU hotplug exclusion.
4161 */
4162 target_attrs = wq_update_unbound_numa_attrs_buf;
4163 cpumask = target_attrs->cpumask;
4164
4165 copy_workqueue_attrs(target_attrs, wq->unbound_attrs);
4166 pwq = unbound_pwq_by_node(wq, node);
4167
4168 /*
4169 * Let's determine what needs to be done. If the target cpumask is
4170 * different from the default pwq's, we need to compare it to @pwq's
4171 * and create a new one if they don't match. If the target cpumask
4172 * equals the default pwq's, the default pwq should be used.
4173 */
4174 if (wq_calc_node_cpumask(wq->dfl_pwq->pool->attrs, node, cpu_off, cpumask)) {
4175 if (cpumask_equal(cpumask, pwq->pool->attrs->cpumask))
4176 return;
4177 } else {
4178 goto use_dfl_pwq;
4179 }
4180
4181 /* create a new pwq */
4182 pwq = alloc_unbound_pwq(wq, target_attrs);
4183 if (!pwq) {
4184 pr_warn("workqueue: allocation failed while updating NUMA affinity of \"%s\"\n",
4185 wq->name);
4186 goto use_dfl_pwq;
4187 }
4188
4189 /* Install the new pwq. */
4190 mutex_lock(&wq->mutex);
4191 old_pwq = numa_pwq_tbl_install(wq, node, pwq);
4192 goto out_unlock;
4193
4194 use_dfl_pwq:
4195 mutex_lock(&wq->mutex);
4196 raw_spin_lock_irq(&wq->dfl_pwq->pool->lock);
4197 get_pwq(wq->dfl_pwq);
4198 raw_spin_unlock_irq(&wq->dfl_pwq->pool->lock);
4199 old_pwq = numa_pwq_tbl_install(wq, node, wq->dfl_pwq);
4200 out_unlock:
4201 mutex_unlock(&wq->mutex);
4202 put_pwq_unlocked(old_pwq);
4203 }
4204
4205 static int alloc_and_link_pwqs(struct workqueue_struct *wq)
4206 {
4207 bool highpri = wq->flags & WQ_HIGHPRI;
4208 int cpu, ret;
4209
4210 if (!(wq->flags & WQ_UNBOUND)) {
4211 wq->cpu_pwqs = alloc_percpu(struct pool_workqueue);
4212 if (!wq->cpu_pwqs)
4213 return -ENOMEM;
4214
4215 for_each_possible_cpu(cpu) {
4216 struct pool_workqueue *pwq =
4217 per_cpu_ptr(wq->cpu_pwqs, cpu);
4218 struct worker_pool *cpu_pools =
4219 per_cpu(cpu_worker_pools, cpu);
4220
4221 init_pwq(pwq, wq, &cpu_pools[highpri]);
4222
4223 mutex_lock(&wq->mutex);
4224 link_pwq(pwq);
4225 mutex_unlock(&wq->mutex);
4226 }
4227 return 0;
4228 }
4229
4230 cpus_read_lock();
4231 if (wq->flags & __WQ_ORDERED) {
4232 ret = apply_workqueue_attrs(wq, ordered_wq_attrs[highpri]);
4233 /* there should only be single pwq for ordering guarantee */
4234 WARN(!ret && (wq->pwqs.next != &wq->dfl_pwq->pwqs_node ||
4235 wq->pwqs.prev != &wq->dfl_pwq->pwqs_node),
4236 "ordering guarantee broken for workqueue %s\n", wq->name);
4237 } else {
4238 ret = apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]);
4239 }
4240 cpus_read_unlock();
4241
4242 return ret;
4243 }
4244
4245 static int wq_clamp_max_active(int max_active, unsigned int flags,
4246 const char *name)
4247 {
4248 int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;
4249
4250 if (max_active < 1 || max_active > lim)
4251 pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
4252 max_active, name, 1, lim);
4253
4254 return clamp_val(max_active, 1, lim);
4255 }
4256
4257 /*
4258 * Workqueues which may be used during memory reclaim should have a rescuer
4259 * to guarantee forward progress.
4260 */
4261 static int init_rescuer(struct workqueue_struct *wq)
4262 {
4263 struct worker *rescuer;
4264 int ret;
4265
4266 if (!(wq->flags & WQ_MEM_RECLAIM))
4267 return 0;
4268
4269 rescuer = alloc_worker(NUMA_NO_NODE);
4270 if (!rescuer)
4271 return -ENOMEM;
4272
4273 rescuer->rescue_wq = wq;
4274 rescuer->task = kthread_create(rescuer_thread, rescuer, "%s", wq->name);
4275 if (IS_ERR(rescuer->task)) {
4276 ret = PTR_ERR(rescuer->task);
4277 kfree(rescuer);
4278 return ret;
4279 }
4280
4281 wq->rescuer = rescuer;
4282 kthread_bind_mask(rescuer->task, cpu_possible_mask);
4283 wake_up_process(rescuer->task);
4284
4285 return 0;
4286 }
4287
4288 __printf(1, 4)
4289 struct workqueue_struct *alloc_workqueue(const char *fmt,
4290 unsigned int flags,
4291 int max_active, ...)
4292 {
4293 size_t tbl_size = 0;
4294 va_list args;
4295 struct workqueue_struct *wq;
4296 struct pool_workqueue *pwq;
4297
4298 /*
4299 * Unbound && max_active == 1 used to imply ordered, which is no
4300 * longer the case on NUMA machines due to per-node pools. While
4301 * alloc_ordered_workqueue() is the right way to create an ordered
4302 * workqueue, keep the previous behavior to avoid subtle breakages
4303 * on NUMA.
4304 */
4305 if ((flags & WQ_UNBOUND) && max_active == 1)
4306 flags |= __WQ_ORDERED;
4307
4308 /* see the comment above the definition of WQ_POWER_EFFICIENT */
4309 if ((flags & WQ_POWER_EFFICIENT) && wq_power_efficient)
4310 flags |= WQ_UNBOUND;
4311
4312 /* allocate wq and format name */
4313 if (flags & WQ_UNBOUND)
4314 tbl_size = nr_node_ids * sizeof(wq->numa_pwq_tbl[0]);
4315
4316 wq = kzalloc(sizeof(*wq) + tbl_size, GFP_KERNEL);
4317 if (!wq)
4318 return NULL;
4319
4320 if (flags & WQ_UNBOUND) {
4321 wq->unbound_attrs = alloc_workqueue_attrs();
4322 if (!wq->unbound_attrs)
4323 goto err_free_wq;
4324 }
4325
4326 va_start(args, max_active);
4327 vsnprintf(wq->name, sizeof(wq->name), fmt, args);
4328 va_end(args);
4329
4330 max_active = max_active ?: WQ_DFL_ACTIVE;
4331 max_active = wq_clamp_max_active(max_active, flags, wq->name);
4332
4333 /* init wq */
4334 wq->flags = flags;
4335 wq->saved_max_active = max_active;
4336 mutex_init(&wq->mutex);
4337 atomic_set(&wq->nr_pwqs_to_flush, 0);
4338 INIT_LIST_HEAD(&wq->pwqs);
4339 INIT_LIST_HEAD(&wq->flusher_queue);
4340 INIT_LIST_HEAD(&wq->flusher_overflow);
4341 INIT_LIST_HEAD(&wq->maydays);
4342
4343 wq_init_lockdep(wq);
4344 INIT_LIST_HEAD(&wq->list);
4345
4346 if (alloc_and_link_pwqs(wq) < 0)
4347 goto err_unreg_lockdep;
4348
4349 if (wq_online && init_rescuer(wq) < 0)
4350 goto err_destroy;
4351
4352 if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq))
4353 goto err_destroy;
4354
4355 /*
4356 * wq_pool_mutex protects global freeze state and workqueues list.
4357 * Grab it, adjust max_active and add the new @wq to workqueues
4358 * list.
4359 */
4360 mutex_lock(&wq_pool_mutex);
4361
4362 mutex_lock(&wq->mutex);
4363 for_each_pwq(pwq, wq)
4364 pwq_adjust_max_active(pwq);
4365 mutex_unlock(&wq->mutex);
4366
4367 list_add_tail_rcu(&wq->list, &workqueues);
4368
4369 mutex_unlock(&wq_pool_mutex);
4370
4371 return wq;
4372
4373 err_unreg_lockdep:
4374 wq_unregister_lockdep(wq);
4375 wq_free_lockdep(wq);
4376 err_free_wq:
4377 free_workqueue_attrs(wq->unbound_attrs);
4378 kfree(wq);
4379 return NULL;
4380 err_destroy:
4381 destroy_workqueue(wq);
4382 return NULL;
4383 }
4384 EXPORT_SYMBOL_GPL(alloc_workqueue);
4385
4386 static bool pwq_busy(struct pool_workqueue *pwq)
4387 {
4388 int i;
4389
4390 for (i = 0; i < WORK_NR_COLORS; i++)
4391 if (pwq->nr_in_flight[i])
4392 return true;
4393
4394 if ((pwq != pwq->wq->dfl_pwq) && (pwq->refcnt > 1))
4395 return true;
4396 if (pwq->nr_active || !list_empty(&pwq->inactive_works))
4397 return true;
4398
4399 return false;
4400 }
4401
4402 /**
4403 * destroy_workqueue - safely terminate a workqueue
4404 * @wq: target workqueue
4405 *
4406 * Safely destroy a workqueue. All work currently pending will be done first.
4407 */
4408 void destroy_workqueue(struct workqueue_struct *wq)
4409 {
4410 struct pool_workqueue *pwq;
4411 int node;
4412
4413 /*
4414 * Remove it from sysfs first so that sanity check failure doesn't
4415 * lead to sysfs name conflicts.
4416 */
4417 workqueue_sysfs_unregister(wq);
4418
4419 /* drain it before proceeding with destruction */
4420 drain_workqueue(wq);
4421
4422 /* kill rescuer, if sanity checks fail, leave it w/o rescuer */
4423 if (wq->rescuer) {
4424 struct worker *rescuer = wq->rescuer;
4425
4426 /* this prevents new queueing */
4427 raw_spin_lock_irq(&wq_mayday_lock);
4428 wq->rescuer = NULL;
4429 raw_spin_unlock_irq(&wq_mayday_lock);
4430
4431 /* rescuer will empty maydays list before exiting */
4432 kthread_stop(rescuer->task);
4433 kfree(rescuer);
4434 }
4435
4436 /*
4437 * Sanity checks - grab all the locks so that we wait for all
4438 * in-flight operations which may do put_pwq().
4439 */
4440 mutex_lock(&wq_pool_mutex);
4441 mutex_lock(&wq->mutex);
4442 for_each_pwq(pwq, wq) {
4443 raw_spin_lock_irq(&pwq->pool->lock);
4444 if (WARN_ON(pwq_busy(pwq))) {
4445 pr_warn("%s: %s has the following busy pwq\n",
4446 __func__, wq->name);
4447 show_pwq(pwq);
4448 raw_spin_unlock_irq(&pwq->pool->lock);
4449 mutex_unlock(&wq->mutex);
4450 mutex_unlock(&wq_pool_mutex);
4451 show_one_workqueue(wq);
4452 return;
4453 }
4454 raw_spin_unlock_irq(&pwq->pool->lock);
4455 }
4456 mutex_unlock(&wq->mutex);
4457
4458 /*
4459 * wq list is used to freeze wq, remove from list after
4460 * flushing is complete in case freeze races us.
4461 */
4462 list_del_rcu(&wq->list);
4463 mutex_unlock(&wq_pool_mutex);
4464
4465 if (!(wq->flags & WQ_UNBOUND)) {
4466 wq_unregister_lockdep(wq);
4467 /*
4468 * The base ref is never dropped on per-cpu pwqs. Directly
4469 * schedule RCU free.
4470 */
4471 call_rcu(&wq->rcu, rcu_free_wq);
4472 } else {
4473 /*
4474 * We're the sole accessor of @wq at this point. Directly
4475 * access numa_pwq_tbl[] and dfl_pwq to put the base refs.
4476 * @wq will be freed when the last pwq is released.
4477 */
4478 for_each_node(node) {
4479 pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
4480 RCU_INIT_POINTER(wq->numa_pwq_tbl[node], NULL);
4481 put_pwq_unlocked(pwq);
4482 }
4483
4484 /*
4485 * Put dfl_pwq. @wq may be freed any time after dfl_pwq is
4486 * put. Don't access it afterwards.
4487 */
4488 pwq = wq->dfl_pwq;
4489 wq->dfl_pwq = NULL;
4490 put_pwq_unlocked(pwq);
4491 }
4492 }
4493 EXPORT_SYMBOL_GPL(destroy_workqueue);
4494
4495 /**
4496 * workqueue_set_max_active - adjust max_active of a workqueue
4497 * @wq: target workqueue
4498 * @max_active: new max_active value.
4499 *
4500 * Set max_active of @wq to @max_active.
4501 *
4502 * CONTEXT:
4503 * Don't call from IRQ context.
4504 */
4505 void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
4506 {
4507 struct pool_workqueue *pwq;
4508
4509 /* disallow meddling with max_active for ordered workqueues */
4510 if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
4511 return;
4512
4513 max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
4514
4515 mutex_lock(&wq->mutex);
4516
4517 wq->flags &= ~__WQ_ORDERED;
4518 wq->saved_max_active = max_active;
4519
4520 for_each_pwq(pwq, wq)
4521 pwq_adjust_max_active(pwq);
4522
4523 mutex_unlock(&wq->mutex);
4524 }
4525 EXPORT_SYMBOL_GPL(workqueue_set_max_active);
4526
4527 /**
4528 * current_work - retrieve %current task's work struct
4529 *
4530 * Determine if %current task is a workqueue worker and what it's working on.
4531 * Useful to find out the context that the %current task is running in.
4532 *
4533 * Return: work struct if %current task is a workqueue worker, %NULL otherwise.
4534 */
4535 struct work_struct *current_work(void)
4536 {
4537 struct worker *worker = current_wq_worker();
4538
4539 return worker ? worker->current_work : NULL;
4540 }
4541 EXPORT_SYMBOL(current_work);
4542
4543 /**
4544 * current_is_workqueue_rescuer - is %current workqueue rescuer?
4545 *
4546 * Determine whether %current is a workqueue rescuer. Can be used from
4547 * work functions to determine whether it's being run off the rescuer task.
4548 *
4549 * Return: %true if %current is a workqueue rescuer. %false otherwise.
4550 */
4551 bool current_is_workqueue_rescuer(void)
4552 {
4553 struct worker *worker = current_wq_worker();
4554
4555 return worker && worker->rescue_wq;
4556 }
4557
4558 /**
4559 * workqueue_congested - test whether a workqueue is congested
4560 * @cpu: CPU in question
4561 * @wq: target workqueue
4562 *
4563 * Test whether @wq's cpu workqueue for @cpu is congested. There is
4564 * no synchronization around this function and the test result is
4565 * unreliable and only useful as advisory hints or for debugging.
4566 *
4567 * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU.
4568 * Note that both per-cpu and unbound workqueues may be associated with
4569 * multiple pool_workqueues which have separate congested states. A
4570 * workqueue being congested on one CPU doesn't mean the workqueue is also
4571 * contested on other CPUs / NUMA nodes.
4572 *
4573 * Return:
4574 * %true if congested, %false otherwise.
4575 */
4576 bool workqueue_congested(int cpu, struct workqueue_struct *wq)
4577 {
4578 struct pool_workqueue *pwq;
4579 bool ret;
4580
4581 rcu_read_lock();
4582 preempt_disable();
4583
4584 if (cpu == WORK_CPU_UNBOUND)
4585 cpu = smp_processor_id();
4586
4587 if (!(wq->flags & WQ_UNBOUND))
4588 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
4589 else
4590 pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
4591
4592 ret = !list_empty(&pwq->inactive_works);
4593 preempt_enable();
4594 rcu_read_unlock();
4595
4596 return ret;
4597 }
4598 EXPORT_SYMBOL_GPL(workqueue_congested);
4599
4600 /**
4601 * work_busy - test whether a work is currently pending or running
4602 * @work: the work to be tested
4603 *
4604 * Test whether @work is currently pending or running. There is no
4605 * synchronization around this function and the test result is
4606 * unreliable and only useful as advisory hints or for debugging.
4607 *
4608 * Return:
4609 * OR'd bitmask of WORK_BUSY_* bits.
4610 */
4611 unsigned int work_busy(struct work_struct *work)
4612 {
4613 struct worker_pool *pool;
4614 unsigned long flags;
4615 unsigned int ret = 0;
4616
4617 if (work_pending(work))
4618 ret |= WORK_BUSY_PENDING;
4619
4620 rcu_read_lock();
4621 pool = get_work_pool(work);
4622 if (pool) {
4623 raw_spin_lock_irqsave(&pool->lock, flags);
4624 if (find_worker_executing_work(pool, work))
4625 ret |= WORK_BUSY_RUNNING;
4626 raw_spin_unlock_irqrestore(&pool->lock, flags);
4627 }
4628 rcu_read_unlock();
4629
4630 return ret;
4631 }
4632 EXPORT_SYMBOL_GPL(work_busy);
4633
4634 /**
4635 * set_worker_desc - set description for the current work item
4636 * @fmt: printf-style format string
4637 * @...: arguments for the format string
4638 *
4639 * This function can be called by a running work function to describe what
4640 * the work item is about. If the worker task gets dumped, this
4641 * information will be printed out together to help debugging. The
4642 * description can be at most WORKER_DESC_LEN including the trailing '\0'.
4643 */
4644 void set_worker_desc(const char *fmt, ...)
4645 {
4646 struct worker *worker = current_wq_worker();
4647 va_list args;
4648
4649 if (worker) {
4650 va_start(args, fmt);
4651 vsnprintf(worker->desc, sizeof(worker->desc), fmt, args);
4652 va_end(args);
4653 }
4654 }
4655 EXPORT_SYMBOL_GPL(set_worker_desc);
4656
4657 /**
4658 * print_worker_info - print out worker information and description
4659 * @log_lvl: the log level to use when printing
4660 * @task: target task
4661 *
4662 * If @task is a worker and currently executing a work item, print out the
4663 * name of the workqueue being serviced and worker description set with
4664 * set_worker_desc() by the currently executing work item.
4665 *
4666 * This function can be safely called on any task as long as the
4667 * task_struct itself is accessible. While safe, this function isn't
4668 * synchronized and may print out mixups or garbages of limited length.
4669 */
4670 void print_worker_info(const char *log_lvl, struct task_struct *task)
4671 {
4672 work_func_t *fn = NULL;
4673 char name[WQ_NAME_LEN] = { };
4674 char desc[WORKER_DESC_LEN] = { };
4675 struct pool_workqueue *pwq = NULL;
4676 struct workqueue_struct *wq = NULL;
4677 struct worker *worker;
4678
4679 if (!(task->flags & PF_WQ_WORKER))
4680 return;
4681
4682 /*
4683 * This function is called without any synchronization and @task
4684 * could be in any state. Be careful with dereferences.
4685 */
4686 worker = kthread_probe_data(task);
4687
4688 /*
4689 * Carefully copy the associated workqueue's workfn, name and desc.
4690 * Keep the original last '\0' in case the original is garbage.
4691 */
4692 copy_from_kernel_nofault(&fn, &worker->current_func, sizeof(fn));
4693 copy_from_kernel_nofault(&pwq, &worker->current_pwq, sizeof(pwq));
4694 copy_from_kernel_nofault(&wq, &pwq->wq, sizeof(wq));
4695 copy_from_kernel_nofault(name, wq->name, sizeof(name) - 1);
4696 copy_from_kernel_nofault(desc, worker->desc, sizeof(desc) - 1);
4697
4698 if (fn || name[0] || desc[0]) {
4699 printk("%sWorkqueue: %s %ps", log_lvl, name, fn);
4700 if (strcmp(name, desc))
4701 pr_cont(" (%s)", desc);
4702 pr_cont("\n");
4703 }
4704 }
4705
4706 static void pr_cont_pool_info(struct worker_pool *pool)
4707 {
4708 pr_cont(" cpus=%*pbl", nr_cpumask_bits, pool->attrs->cpumask);
4709 if (pool->node != NUMA_NO_NODE)
4710 pr_cont(" node=%d", pool->node);
4711 pr_cont(" flags=0x%x nice=%d", pool->flags, pool->attrs->nice);
4712 }
4713
4714 static void pr_cont_work(bool comma, struct work_struct *work)
4715 {
4716 if (work->func == wq_barrier_func) {
4717 struct wq_barrier *barr;
4718
4719 barr = container_of(work, struct wq_barrier, work);
4720
4721 pr_cont("%s BAR(%d)", comma ? "," : "",
4722 task_pid_nr(barr->task));
4723 } else {
4724 pr_cont("%s %ps", comma ? "," : "", work->func);
4725 }
4726 }
4727
4728 static void show_pwq(struct pool_workqueue *pwq)
4729 {
4730 struct worker_pool *pool = pwq->pool;
4731 struct work_struct *work;
4732 struct worker *worker;
4733 bool has_in_flight = false, has_pending = false;
4734 int bkt;
4735
4736 pr_info(" pwq %d:", pool->id);
4737 pr_cont_pool_info(pool);
4738
4739 pr_cont(" active=%d/%d refcnt=%d%s\n",
4740 pwq->nr_active, pwq->max_active, pwq->refcnt,
4741 !list_empty(&pwq->mayday_node) ? " MAYDAY" : "");
4742
4743 hash_for_each(pool->busy_hash, bkt, worker, hentry) {
4744 if (worker->current_pwq == pwq) {
4745 has_in_flight = true;
4746 break;
4747 }
4748 }
4749 if (has_in_flight) {
4750 bool comma = false;
4751
4752 pr_info(" in-flight:");
4753 hash_for_each(pool->busy_hash, bkt, worker, hentry) {
4754 if (worker->current_pwq != pwq)
4755 continue;
4756
4757 pr_cont("%s %d%s:%ps", comma ? "," : "",
4758 task_pid_nr(worker->task),
4759 worker->rescue_wq ? "(RESCUER)" : "",
4760 worker->current_func);
4761 list_for_each_entry(work, &worker->scheduled, entry)
4762 pr_cont_work(false, work);
4763 comma = true;
4764 }
4765 pr_cont("\n");
4766 }
4767
4768 list_for_each_entry(work, &pool->worklist, entry) {
4769 if (get_work_pwq(work) == pwq) {
4770 has_pending = true;
4771 break;
4772 }
4773 }
4774 if (has_pending) {
4775 bool comma = false;
4776
4777 pr_info(" pending:");
4778 list_for_each_entry(work, &pool->worklist, entry) {
4779 if (get_work_pwq(work) != pwq)
4780 continue;
4781
4782 pr_cont_work(comma, work);
4783 comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
4784 }
4785 pr_cont("\n");
4786 }
4787
4788 if (!list_empty(&pwq->inactive_works)) {
4789 bool comma = false;
4790
4791 pr_info(" inactive:");
4792 list_for_each_entry(work, &pwq->inactive_works, entry) {
4793 pr_cont_work(comma, work);
4794 comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
4795 }
4796 pr_cont("\n");
4797 }
4798 }
4799
4800 /**
4801 * show_one_workqueue - dump state of specified workqueue
4802 * @wq: workqueue whose state will be printed
4803 */
4804 void show_one_workqueue(struct workqueue_struct *wq)
4805 {
4806 struct pool_workqueue *pwq;
4807 bool idle = true;
4808 unsigned long flags;
4809
4810 for_each_pwq(pwq, wq) {
4811 if (pwq->nr_active || !list_empty(&pwq->inactive_works)) {
4812 idle = false;
4813 break;
4814 }
4815 }
4816 if (idle) /* Nothing to print for idle workqueue */
4817 return;
4818
4819 pr_info("workqueue %s: flags=0x%x\n", wq->name, wq->flags);
4820
4821 for_each_pwq(pwq, wq) {
4822 raw_spin_lock_irqsave(&pwq->pool->lock, flags);
4823 if (pwq->nr_active || !list_empty(&pwq->inactive_works)) {
4824 /*
4825 * Defer printing to avoid deadlocks in console
4826 * drivers that queue work while holding locks
4827 * also taken in their write paths.
4828 */
4829 printk_deferred_enter();
4830 show_pwq(pwq);
4831 printk_deferred_exit();
4832 }
4833 raw_spin_unlock_irqrestore(&pwq->pool->lock, flags);
4834 /*
4835 * We could be printing a lot from atomic context, e.g.
4836 * sysrq-t -> show_all_workqueues(). Avoid triggering
4837 * hard lockup.
4838 */
4839 touch_nmi_watchdog();
4840 }
4841
4842 }
4843
4844 /**
4845 * show_one_worker_pool - dump state of specified worker pool
4846 * @pool: worker pool whose state will be printed
4847 */
4848 static void show_one_worker_pool(struct worker_pool *pool)
4849 {
4850 struct worker *worker;
4851 bool first = true;
4852 unsigned long flags;
4853
4854 raw_spin_lock_irqsave(&pool->lock, flags);
4855 if (pool->nr_workers == pool->nr_idle)
4856 goto next_pool;
4857 /*
4858 * Defer printing to avoid deadlocks in console drivers that
4859 * queue work while holding locks also taken in their write
4860 * paths.
4861 */
4862 printk_deferred_enter();
4863 pr_info("pool %d:", pool->id);
4864 pr_cont_pool_info(pool);
4865 pr_cont(" hung=%us workers=%d",
4866 jiffies_to_msecs(jiffies - pool->watchdog_ts) / 1000,
4867 pool->nr_workers);
4868 if (pool->manager)
4869 pr_cont(" manager: %d",
4870 task_pid_nr(pool->manager->task));
4871 list_for_each_entry(worker, &pool->idle_list, entry) {
4872 pr_cont(" %s%d", first ? "idle: " : "",
4873 task_pid_nr(worker->task));
4874 first = false;
4875 }
4876 pr_cont("\n");
4877 printk_deferred_exit();
4878 next_pool:
4879 raw_spin_unlock_irqrestore(&pool->lock, flags);
4880 /*
4881 * We could be printing a lot from atomic context, e.g.
4882 * sysrq-t -> show_all_workqueues(). Avoid triggering
4883 * hard lockup.
4884 */
4885 touch_nmi_watchdog();
4886
4887 }
4888
4889 /**
4890 * show_all_workqueues - dump workqueue state
4891 *
4892 * Called from a sysrq handler or try_to_freeze_tasks() and prints out
4893 * all busy workqueues and pools.
4894 */
4895 void show_all_workqueues(void)
4896 {
4897 struct workqueue_struct *wq;
4898 struct worker_pool *pool;
4899 int pi;
4900
4901 rcu_read_lock();
4902
4903 pr_info("Showing busy workqueues and worker pools:\n");
4904
4905 list_for_each_entry_rcu(wq, &workqueues, list)
4906 show_one_workqueue(wq);
4907
4908 for_each_pool(pool, pi)
4909 show_one_worker_pool(pool);
4910
4911 rcu_read_unlock();
4912 }
4913
4914 /* used to show worker information through /proc/PID/{comm,stat,status} */
4915 void wq_worker_comm(char *buf, size_t size, struct task_struct *task)
4916 {
4917 int off;
4918
4919 /* always show the actual comm */
4920 off = strscpy(buf, task->comm, size);
4921 if (off < 0)
4922 return;
4923
4924 /* stabilize PF_WQ_WORKER and worker pool association */
4925 mutex_lock(&wq_pool_attach_mutex);
4926
4927 if (task->flags & PF_WQ_WORKER) {
4928 struct worker *worker = kthread_data(task);
4929 struct worker_pool *pool = worker->pool;
4930
4931 if (pool) {
4932 raw_spin_lock_irq(&pool->lock);
4933 /*
4934 * ->desc tracks information (wq name or
4935 * set_worker_desc()) for the latest execution. If
4936 * current, prepend '+', otherwise '-'.
4937 */
4938 if (worker->desc[0] != '\0') {
4939 if (worker->current_work)
4940 scnprintf(buf + off, size - off, "+%s",
4941 worker->desc);
4942 else
4943 scnprintf(buf + off, size - off, "-%s",
4944 worker->desc);
4945 }
4946 raw_spin_unlock_irq(&pool->lock);
4947 }
4948 }
4949
4950 mutex_unlock(&wq_pool_attach_mutex);
4951 }
4952
4953 #ifdef CONFIG_SMP
4954
4955 /*
4956 * CPU hotplug.
4957 *
4958 * There are two challenges in supporting CPU hotplug. Firstly, there
4959 * are a lot of assumptions on strong associations among work, pwq and
4960 * pool which make migrating pending and scheduled works very
4961 * difficult to implement without impacting hot paths. Secondly,
4962 * worker pools serve mix of short, long and very long running works making
4963 * blocked draining impractical.
4964 *
4965 * This is solved by allowing the pools to be disassociated from the CPU
4966 * running as an unbound one and allowing it to be reattached later if the
4967 * cpu comes back online.
4968 */
4969
4970 static void unbind_workers(int cpu)
4971 {
4972 struct worker_pool *pool;
4973 struct worker *worker;
4974
4975 for_each_cpu_worker_pool(pool, cpu) {
4976 mutex_lock(&wq_pool_attach_mutex);
4977 raw_spin_lock_irq(&pool->lock);
4978
4979 /*
4980 * We've blocked all attach/detach operations. Make all workers
4981 * unbound and set DISASSOCIATED. Before this, all workers
4982 * except for the ones which are still executing works from
4983 * before the last CPU down must be on the cpu. After
4984 * this, they may become diasporas.
4985 */
4986 for_each_pool_worker(worker, pool)
4987 worker->flags |= WORKER_UNBOUND;
4988
4989 pool->flags |= POOL_DISASSOCIATED;
4990
4991 raw_spin_unlock_irq(&pool->lock);
4992
4993 for_each_pool_worker(worker, pool) {
4994 kthread_set_per_cpu(worker->task, -1);
4995 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, cpu_possible_mask) < 0);
4996 }
4997
4998 mutex_unlock(&wq_pool_attach_mutex);
4999
5000 /*
5001 * Call schedule() so that we cross rq->lock and thus can
5002 * guarantee sched callbacks see the %WORKER_UNBOUND flag.
5003 * This is necessary as scheduler callbacks may be invoked
5004 * from other cpus.
5005 */
5006 schedule();
5007
5008 /*
5009 * Sched callbacks are disabled now. Zap nr_running.
5010 * After this, nr_running stays zero and need_more_worker()
5011 * and keep_working() are always true as long as the
5012 * worklist is not empty. This pool now behaves as an
5013 * unbound (in terms of concurrency management) pool which
5014 * are served by workers tied to the pool.
5015 */
5016 atomic_set(&pool->nr_running, 0);
5017
5018 /*
5019 * With concurrency management just turned off, a busy
5020 * worker blocking could lead to lengthy stalls. Kick off
5021 * unbound chain execution of currently pending work items.
5022 */
5023 raw_spin_lock_irq(&pool->lock);
5024 wake_up_worker(pool);
5025 raw_spin_unlock_irq(&pool->lock);
5026 }
5027 }
5028
5029 /**
5030 * rebind_workers - rebind all workers of a pool to the associated CPU
5031 * @pool: pool of interest
5032 *
5033 * @pool->cpu is coming online. Rebind all workers to the CPU.
5034 */
5035 static void rebind_workers(struct worker_pool *pool)
5036 {
5037 struct worker *worker;
5038
5039 lockdep_assert_held(&wq_pool_attach_mutex);
5040
5041 /*
5042 * Restore CPU affinity of all workers. As all idle workers should
5043 * be on the run-queue of the associated CPU before any local
5044 * wake-ups for concurrency management happen, restore CPU affinity
5045 * of all workers first and then clear UNBOUND. As we're called
5046 * from CPU_ONLINE, the following shouldn't fail.
5047 */
5048 for_each_pool_worker(worker, pool) {
5049 kthread_set_per_cpu(worker->task, pool->cpu);
5050 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
5051 pool->attrs->cpumask) < 0);
5052 }
5053
5054 raw_spin_lock_irq(&pool->lock);
5055
5056 pool->flags &= ~POOL_DISASSOCIATED;
5057
5058 for_each_pool_worker(worker, pool) {
5059 unsigned int worker_flags = worker->flags;
5060
5061 /*
5062 * A bound idle worker should actually be on the runqueue
5063 * of the associated CPU for local wake-ups targeting it to
5064 * work. Kick all idle workers so that they migrate to the
5065 * associated CPU. Doing this in the same loop as
5066 * replacing UNBOUND with REBOUND is safe as no worker will
5067 * be bound before @pool->lock is released.
5068 */
5069 if (worker_flags & WORKER_IDLE)
5070 wake_up_process(worker->task);
5071
5072 /*
5073 * We want to clear UNBOUND but can't directly call
5074 * worker_clr_flags() or adjust nr_running. Atomically
5075 * replace UNBOUND with another NOT_RUNNING flag REBOUND.
5076 * @worker will clear REBOUND using worker_clr_flags() when
5077 * it initiates the next execution cycle thus restoring
5078 * concurrency management. Note that when or whether
5079 * @worker clears REBOUND doesn't affect correctness.
5080 *
5081 * WRITE_ONCE() is necessary because @worker->flags may be
5082 * tested without holding any lock in
5083 * wq_worker_running(). Without it, NOT_RUNNING test may
5084 * fail incorrectly leading to premature concurrency
5085 * management operations.
5086 */
5087 WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND));
5088 worker_flags |= WORKER_REBOUND;
5089 worker_flags &= ~WORKER_UNBOUND;
5090 WRITE_ONCE(worker->flags, worker_flags);
5091 }
5092
5093 raw_spin_unlock_irq(&pool->lock);
5094 }
5095
5096 /**
5097 * restore_unbound_workers_cpumask - restore cpumask of unbound workers
5098 * @pool: unbound pool of interest
5099 * @cpu: the CPU which is coming up
5100 *
5101 * An unbound pool may end up with a cpumask which doesn't have any online
5102 * CPUs. When a worker of such pool get scheduled, the scheduler resets
5103 * its cpus_allowed. If @cpu is in @pool's cpumask which didn't have any
5104 * online CPU before, cpus_allowed of all its workers should be restored.
5105 */
5106 static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu)
5107 {
5108 static cpumask_t cpumask;
5109 struct worker *worker;
5110
5111 lockdep_assert_held(&wq_pool_attach_mutex);
5112
5113 /* is @cpu allowed for @pool? */
5114 if (!cpumask_test_cpu(cpu, pool->attrs->cpumask))
5115 return;
5116
5117 cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask);
5118
5119 /* as we're called from CPU_ONLINE, the following shouldn't fail */
5120 for_each_pool_worker(worker, pool)
5121 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, &cpumask) < 0);
5122 }
5123
5124 int workqueue_prepare_cpu(unsigned int cpu)
5125 {
5126 struct worker_pool *pool;
5127
5128 for_each_cpu_worker_pool(pool, cpu) {
5129 if (pool->nr_workers)
5130 continue;
5131 if (!create_worker(pool))
5132 return -ENOMEM;
5133 }
5134 return 0;
5135 }
5136
5137 int workqueue_online_cpu(unsigned int cpu)
5138 {
5139 struct worker_pool *pool;
5140 struct workqueue_struct *wq;
5141 int pi;
5142
5143 mutex_lock(&wq_pool_mutex);
5144
5145 for_each_pool(pool, pi) {
5146 mutex_lock(&wq_pool_attach_mutex);
5147
5148 if (pool->cpu == cpu)
5149 rebind_workers(pool);
5150 else if (pool->cpu < 0)
5151 restore_unbound_workers_cpumask(pool, cpu);
5152
5153 mutex_unlock(&wq_pool_attach_mutex);
5154 }
5155
5156 /* update NUMA affinity of unbound workqueues */
5157 list_for_each_entry(wq, &workqueues, list)
5158 wq_update_unbound_numa(wq, cpu, true);
5159
5160 mutex_unlock(&wq_pool_mutex);
5161 return 0;
5162 }
5163
5164 int workqueue_offline_cpu(unsigned int cpu)
5165 {
5166 struct workqueue_struct *wq;
5167
5168 /* unbinding per-cpu workers should happen on the local CPU */
5169 if (WARN_ON(cpu != smp_processor_id()))
5170 return -1;
5171
5172 unbind_workers(cpu);
5173
5174 /* update NUMA affinity of unbound workqueues */
5175 mutex_lock(&wq_pool_mutex);
5176 list_for_each_entry(wq, &workqueues, list)
5177 wq_update_unbound_numa(wq, cpu, false);
5178 mutex_unlock(&wq_pool_mutex);
5179
5180 return 0;
5181 }
5182
5183 struct work_for_cpu {
5184 struct work_struct work;
5185 long (*fn)(void *);
5186 void *arg;
5187 long ret;
5188 };
5189
5190 static void work_for_cpu_fn(struct work_struct *work)
5191 {
5192 struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);
5193
5194 wfc->ret = wfc->fn(wfc->arg);
5195 }
5196
5197 /**
5198 * work_on_cpu - run a function in thread context on a particular cpu
5199 * @cpu: the cpu to run on
5200 * @fn: the function to run
5201 * @arg: the function arg
5202 *
5203 * It is up to the caller to ensure that the cpu doesn't go offline.
5204 * The caller must not hold any locks which would prevent @fn from completing.
5205 *
5206 * Return: The value @fn returns.
5207 */
5208 long work_on_cpu(int cpu, long (*fn)(void *), void *arg)
5209 {
5210 struct work_for_cpu wfc = { .fn = fn, .arg = arg };
5211
5212 INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn);
5213 schedule_work_on(cpu, &wfc.work);
5214 flush_work(&wfc.work);
5215 destroy_work_on_stack(&wfc.work);
5216 return wfc.ret;
5217 }
5218 EXPORT_SYMBOL_GPL(work_on_cpu);
5219
5220 /**
5221 * work_on_cpu_safe - run a function in thread context on a particular cpu
5222 * @cpu: the cpu to run on
5223 * @fn: the function to run
5224 * @arg: the function argument
5225 *
5226 * Disables CPU hotplug and calls work_on_cpu(). The caller must not hold
5227 * any locks which would prevent @fn from completing.
5228 *
5229 * Return: The value @fn returns.
5230 */
5231 long work_on_cpu_safe(int cpu, long (*fn)(void *), void *arg)
5232 {
5233 long ret = -ENODEV;
5234
5235 cpus_read_lock();
5236 if (cpu_online(cpu))
5237 ret = work_on_cpu(cpu, fn, arg);
5238 cpus_read_unlock();
5239 return ret;
5240 }
5241 EXPORT_SYMBOL_GPL(work_on_cpu_safe);
5242 #endif /* CONFIG_SMP */
5243
5244 #ifdef CONFIG_FREEZER
5245
5246 /**
5247 * freeze_workqueues_begin - begin freezing workqueues
5248 *
5249 * Start freezing workqueues. After this function returns, all freezable
5250 * workqueues will queue new works to their inactive_works list instead of
5251 * pool->worklist.
5252 *
5253 * CONTEXT:
5254 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
5255 */
5256 void freeze_workqueues_begin(void)
5257 {
5258 struct workqueue_struct *wq;
5259 struct pool_workqueue *pwq;
5260
5261 mutex_lock(&wq_pool_mutex);
5262
5263 WARN_ON_ONCE(workqueue_freezing);
5264 workqueue_freezing = true;
5265
5266 list_for_each_entry(wq, &workqueues, list) {
5267 mutex_lock(&wq->mutex);
5268 for_each_pwq(pwq, wq)
5269 pwq_adjust_max_active(pwq);
5270 mutex_unlock(&wq->mutex);
5271 }
5272
5273 mutex_unlock(&wq_pool_mutex);
5274 }
5275
5276 /**
5277 * freeze_workqueues_busy - are freezable workqueues still busy?
5278 *
5279 * Check whether freezing is complete. This function must be called
5280 * between freeze_workqueues_begin() and thaw_workqueues().
5281 *
5282 * CONTEXT:
5283 * Grabs and releases wq_pool_mutex.
5284 *
5285 * Return:
5286 * %true if some freezable workqueues are still busy. %false if freezing
5287 * is complete.
5288 */
5289 bool freeze_workqueues_busy(void)
5290 {
5291 bool busy = false;
5292 struct workqueue_struct *wq;
5293 struct pool_workqueue *pwq;
5294
5295 mutex_lock(&wq_pool_mutex);
5296
5297 WARN_ON_ONCE(!workqueue_freezing);
5298
5299 list_for_each_entry(wq, &workqueues, list) {
5300 if (!(wq->flags & WQ_FREEZABLE))
5301 continue;
5302 /*
5303 * nr_active is monotonically decreasing. It's safe
5304 * to peek without lock.
5305 */
5306 rcu_read_lock();
5307 for_each_pwq(pwq, wq) {
5308 WARN_ON_ONCE(pwq->nr_active < 0);
5309 if (pwq->nr_active) {
5310 busy = true;
5311 rcu_read_unlock();
5312 goto out_unlock;
5313 }
5314 }
5315 rcu_read_unlock();
5316 }
5317 out_unlock:
5318 mutex_unlock(&wq_pool_mutex);
5319 return busy;
5320 }
5321
5322 /**
5323 * thaw_workqueues - thaw workqueues
5324 *
5325 * Thaw workqueues. Normal queueing is restored and all collected
5326 * frozen works are transferred to their respective pool worklists.
5327 *
5328 * CONTEXT:
5329 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
5330 */
5331 void thaw_workqueues(void)
5332 {
5333 struct workqueue_struct *wq;
5334 struct pool_workqueue *pwq;
5335
5336 mutex_lock(&wq_pool_mutex);
5337
5338 if (!workqueue_freezing)
5339 goto out_unlock;
5340
5341 workqueue_freezing = false;
5342
5343 /* restore max_active and repopulate worklist */
5344 list_for_each_entry(wq, &workqueues, list) {
5345 mutex_lock(&wq->mutex);
5346 for_each_pwq(pwq, wq)
5347 pwq_adjust_max_active(pwq);
5348 mutex_unlock(&wq->mutex);
5349 }
5350
5351 out_unlock:
5352 mutex_unlock(&wq_pool_mutex);
5353 }
5354 #endif /* CONFIG_FREEZER */
5355
5356 static int workqueue_apply_unbound_cpumask(void)
5357 {
5358 LIST_HEAD(ctxs);
5359 int ret = 0;
5360 struct workqueue_struct *wq;
5361 struct apply_wqattrs_ctx *ctx, *n;
5362
5363 lockdep_assert_held(&wq_pool_mutex);
5364
5365 list_for_each_entry(wq, &workqueues, list) {
5366 if (!(wq->flags & WQ_UNBOUND))
5367 continue;
5368 /* creating multiple pwqs breaks ordering guarantee */
5369 if (wq->flags & __WQ_ORDERED)
5370 continue;
5371
5372 ctx = apply_wqattrs_prepare(wq, wq->unbound_attrs);
5373 if (!ctx) {
5374 ret = -ENOMEM;
5375 break;
5376 }
5377
5378 list_add_tail(&ctx->list, &ctxs);
5379 }
5380
5381 list_for_each_entry_safe(ctx, n, &ctxs, list) {
5382 if (!ret)
5383 apply_wqattrs_commit(ctx);
5384 apply_wqattrs_cleanup(ctx);
5385 }
5386
5387 return ret;
5388 }
5389
5390 /**
5391 * workqueue_set_unbound_cpumask - Set the low-level unbound cpumask
5392 * @cpumask: the cpumask to set
5393 *
5394 * The low-level workqueues cpumask is a global cpumask that limits
5395 * the affinity of all unbound workqueues. This function check the @cpumask
5396 * and apply it to all unbound workqueues and updates all pwqs of them.
5397 *
5398 * Return: 0 - Success
5399 * -EINVAL - Invalid @cpumask
5400 * -ENOMEM - Failed to allocate memory for attrs or pwqs.
5401 */
5402 int workqueue_set_unbound_cpumask(cpumask_var_t cpumask)
5403 {
5404 int ret = -EINVAL;
5405 cpumask_var_t saved_cpumask;
5406
5407 /*
5408 * Not excluding isolated cpus on purpose.
5409 * If the user wishes to include them, we allow that.
5410 */
5411 cpumask_and(cpumask, cpumask, cpu_possible_mask);
5412 if (!cpumask_empty(cpumask)) {
5413 apply_wqattrs_lock();
5414 if (cpumask_equal(cpumask, wq_unbound_cpumask)) {
5415 ret = 0;
5416 goto out_unlock;
5417 }
5418
5419 if (!zalloc_cpumask_var(&saved_cpumask, GFP_KERNEL)) {
5420 ret = -ENOMEM;
5421 goto out_unlock;
5422 }
5423
5424 /* save the old wq_unbound_cpumask. */
5425 cpumask_copy(saved_cpumask, wq_unbound_cpumask);
5426
5427 /* update wq_unbound_cpumask at first and apply it to wqs. */
5428 cpumask_copy(wq_unbound_cpumask, cpumask);
5429 ret = workqueue_apply_unbound_cpumask();
5430
5431 /* restore the wq_unbound_cpumask when failed. */
5432 if (ret < 0)
5433 cpumask_copy(wq_unbound_cpumask, saved_cpumask);
5434
5435 free_cpumask_var(saved_cpumask);
5436 out_unlock:
5437 apply_wqattrs_unlock();
5438 }
5439
5440 return ret;
5441 }
5442
5443 #ifdef CONFIG_SYSFS
5444 /*
5445 * Workqueues with WQ_SYSFS flag set is visible to userland via
5446 * /sys/bus/workqueue/devices/WQ_NAME. All visible workqueues have the
5447 * following attributes.
5448 *
5449 * per_cpu RO bool : whether the workqueue is per-cpu or unbound
5450 * max_active RW int : maximum number of in-flight work items
5451 *
5452 * Unbound workqueues have the following extra attributes.
5453 *
5454 * pool_ids RO int : the associated pool IDs for each node
5455 * nice RW int : nice value of the workers
5456 * cpumask RW mask : bitmask of allowed CPUs for the workers
5457 * numa RW bool : whether enable NUMA affinity
5458 */
5459 struct wq_device {
5460 struct workqueue_struct *wq;
5461 struct device dev;
5462 };
5463
5464 static struct workqueue_struct *dev_to_wq(struct device *dev)
5465 {
5466 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
5467
5468 return wq_dev->wq;
5469 }
5470
5471 static ssize_t per_cpu_show(struct device *dev, struct device_attribute *attr,
5472 char *buf)
5473 {
5474 struct workqueue_struct *wq = dev_to_wq(dev);
5475
5476 return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND));
5477 }
5478 static DEVICE_ATTR_RO(per_cpu);
5479
5480 static ssize_t max_active_show(struct device *dev,
5481 struct device_attribute *attr, char *buf)
5482 {
5483 struct workqueue_struct *wq = dev_to_wq(dev);
5484
5485 return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active);
5486 }
5487
5488 static ssize_t max_active_store(struct device *dev,
5489 struct device_attribute *attr, const char *buf,
5490 size_t count)
5491 {
5492 struct workqueue_struct *wq = dev_to_wq(dev);
5493 int val;
5494
5495 if (sscanf(buf, "%d", &val) != 1 || val <= 0)
5496 return -EINVAL;
5497
5498 workqueue_set_max_active(wq, val);
5499 return count;
5500 }
5501 static DEVICE_ATTR_RW(max_active);
5502
5503 static struct attribute *wq_sysfs_attrs[] = {
5504 &dev_attr_per_cpu.attr,
5505 &dev_attr_max_active.attr,
5506 NULL,
5507 };
5508 ATTRIBUTE_GROUPS(wq_sysfs);
5509
5510 static ssize_t wq_pool_ids_show(struct device *dev,
5511 struct device_attribute *attr, char *buf)
5512 {
5513 struct workqueue_struct *wq = dev_to_wq(dev);
5514 const char *delim = "";
5515 int node, written = 0;
5516
5517 cpus_read_lock();
5518 rcu_read_lock();
5519 for_each_node(node) {
5520 written += scnprintf(buf + written, PAGE_SIZE - written,
5521 "%s%d:%d", delim, node,
5522 unbound_pwq_by_node(wq, node)->pool->id);
5523 delim = " ";
5524 }
5525 written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
5526 rcu_read_unlock();
5527 cpus_read_unlock();
5528
5529 return written;
5530 }
5531
5532 static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr,
5533 char *buf)
5534 {
5535 struct workqueue_struct *wq = dev_to_wq(dev);
5536 int written;
5537
5538 mutex_lock(&wq->mutex);
5539 written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice);
5540 mutex_unlock(&wq->mutex);
5541
5542 return written;
5543 }
5544
5545 /* prepare workqueue_attrs for sysfs store operations */
5546 static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq)
5547 {
5548 struct workqueue_attrs *attrs;
5549
5550 lockdep_assert_held(&wq_pool_mutex);
5551
5552 attrs = alloc_workqueue_attrs();
5553 if (!attrs)
5554 return NULL;
5555
5556 copy_workqueue_attrs(attrs, wq->unbound_attrs);
5557 return attrs;
5558 }
5559
5560 static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr,
5561 const char *buf, size_t count)
5562 {
5563 struct workqueue_struct *wq = dev_to_wq(dev);
5564 struct workqueue_attrs *attrs;
5565 int ret = -ENOMEM;
5566
5567 apply_wqattrs_lock();
5568
5569 attrs = wq_sysfs_prep_attrs(wq);
5570 if (!attrs)
5571 goto out_unlock;
5572
5573 if (sscanf(buf, "%d", &attrs->nice) == 1 &&
5574 attrs->nice >= MIN_NICE && attrs->nice <= MAX_NICE)
5575 ret = apply_workqueue_attrs_locked(wq, attrs);
5576 else
5577 ret = -EINVAL;
5578
5579 out_unlock:
5580 apply_wqattrs_unlock();
5581 free_workqueue_attrs(attrs);
5582 return ret ?: count;
5583 }
5584
5585 static ssize_t wq_cpumask_show(struct device *dev,
5586 struct device_attribute *attr, char *buf)
5587 {
5588 struct workqueue_struct *wq = dev_to_wq(dev);
5589 int written;
5590
5591 mutex_lock(&wq->mutex);
5592 written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
5593 cpumask_pr_args(wq->unbound_attrs->cpumask));
5594 mutex_unlock(&wq->mutex);
5595 return written;
5596 }
5597
5598 static ssize_t wq_cpumask_store(struct device *dev,
5599 struct device_attribute *attr,
5600 const char *buf, size_t count)
5601 {
5602 struct workqueue_struct *wq = dev_to_wq(dev);
5603 struct workqueue_attrs *attrs;
5604 int ret = -ENOMEM;
5605
5606 apply_wqattrs_lock();
5607
5608 attrs = wq_sysfs_prep_attrs(wq);
5609 if (!attrs)
5610 goto out_unlock;
5611
5612 ret = cpumask_parse(buf, attrs->cpumask);
5613 if (!ret)
5614 ret = apply_workqueue_attrs_locked(wq, attrs);
5615
5616 out_unlock:
5617 apply_wqattrs_unlock();
5618 free_workqueue_attrs(attrs);
5619 return ret ?: count;
5620 }
5621
5622 static ssize_t wq_numa_show(struct device *dev, struct device_attribute *attr,
5623 char *buf)
5624 {
5625 struct workqueue_struct *wq = dev_to_wq(dev);
5626 int written;
5627
5628 mutex_lock(&wq->mutex);
5629 written = scnprintf(buf, PAGE_SIZE, "%d\n",
5630 !wq->unbound_attrs->no_numa);
5631 mutex_unlock(&wq->mutex);
5632
5633 return written;
5634 }
5635
5636 static ssize_t wq_numa_store(struct device *dev, struct device_attribute *attr,
5637 const char *buf, size_t count)
5638 {
5639 struct workqueue_struct *wq = dev_to_wq(dev);
5640 struct workqueue_attrs *attrs;
5641 int v, ret = -ENOMEM;
5642
5643 apply_wqattrs_lock();
5644
5645 attrs = wq_sysfs_prep_attrs(wq);
5646 if (!attrs)
5647 goto out_unlock;
5648
5649 ret = -EINVAL;
5650 if (sscanf(buf, "%d", &v) == 1) {
5651 attrs->no_numa = !v;
5652 ret = apply_workqueue_attrs_locked(wq, attrs);
5653 }
5654
5655 out_unlock:
5656 apply_wqattrs_unlock();
5657 free_workqueue_attrs(attrs);
5658 return ret ?: count;
5659 }
5660
5661 static struct device_attribute wq_sysfs_unbound_attrs[] = {
5662 __ATTR(pool_ids, 0444, wq_pool_ids_show, NULL),
5663 __ATTR(nice, 0644, wq_nice_show, wq_nice_store),
5664 __ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store),
5665 __ATTR(numa, 0644, wq_numa_show, wq_numa_store),
5666 __ATTR_NULL,
5667 };
5668
5669 static struct bus_type wq_subsys = {
5670 .name = "workqueue",
5671 .dev_groups = wq_sysfs_groups,
5672 };
5673
5674 static ssize_t wq_unbound_cpumask_show(struct device *dev,
5675 struct device_attribute *attr, char *buf)
5676 {
5677 int written;
5678
5679 mutex_lock(&wq_pool_mutex);
5680 written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
5681 cpumask_pr_args(wq_unbound_cpumask));
5682 mutex_unlock(&wq_pool_mutex);
5683
5684 return written;
5685 }
5686
5687 static ssize_t wq_unbound_cpumask_store(struct device *dev,
5688 struct device_attribute *attr, const char *buf, size_t count)
5689 {
5690 cpumask_var_t cpumask;
5691 int ret;
5692
5693 if (!zalloc_cpumask_var(&cpumask, GFP_KERNEL))
5694 return -ENOMEM;
5695
5696 ret = cpumask_parse(buf, cpumask);
5697 if (!ret)
5698 ret = workqueue_set_unbound_cpumask(cpumask);
5699
5700 free_cpumask_var(cpumask);
5701 return ret ? ret : count;
5702 }
5703
5704 static struct device_attribute wq_sysfs_cpumask_attr =
5705 __ATTR(cpumask, 0644, wq_unbound_cpumask_show,
5706 wq_unbound_cpumask_store);
5707
5708 static int __init wq_sysfs_init(void)
5709 {
5710 int err;
5711
5712 err = subsys_virtual_register(&wq_subsys, NULL);
5713 if (err)
5714 return err;
5715
5716 return device_create_file(wq_subsys.dev_root, &wq_sysfs_cpumask_attr);
5717 }
5718 core_initcall(wq_sysfs_init);
5719
5720 static void wq_device_release(struct device *dev)
5721 {
5722 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
5723
5724 kfree(wq_dev);
5725 }
5726
5727 /**
5728 * workqueue_sysfs_register - make a workqueue visible in sysfs
5729 * @wq: the workqueue to register
5730 *
5731 * Expose @wq in sysfs under /sys/bus/workqueue/devices.
5732 * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set
5733 * which is the preferred method.
5734 *
5735 * Workqueue user should use this function directly iff it wants to apply
5736 * workqueue_attrs before making the workqueue visible in sysfs; otherwise,
5737 * apply_workqueue_attrs() may race against userland updating the
5738 * attributes.
5739 *
5740 * Return: 0 on success, -errno on failure.
5741 */
5742 int workqueue_sysfs_register(struct workqueue_struct *wq)
5743 {
5744 struct wq_device *wq_dev;
5745 int ret;
5746
5747 /*
5748 * Adjusting max_active or creating new pwqs by applying
5749 * attributes breaks ordering guarantee. Disallow exposing ordered
5750 * workqueues.
5751 */
5752 if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
5753 return -EINVAL;
5754
5755 wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL);
5756 if (!wq_dev)
5757 return -ENOMEM;
5758
5759 wq_dev->wq = wq;
5760 wq_dev->dev.bus = &wq_subsys;
5761 wq_dev->dev.release = wq_device_release;
5762 dev_set_name(&wq_dev->dev, "%s", wq->name);
5763
5764 /*
5765 * unbound_attrs are created separately. Suppress uevent until
5766 * everything is ready.
5767 */
5768 dev_set_uevent_suppress(&wq_dev->dev, true);
5769
5770 ret = device_register(&wq_dev->dev);
5771 if (ret) {
5772 put_device(&wq_dev->dev);
5773 wq->wq_dev = NULL;
5774 return ret;
5775 }
5776
5777 if (wq->flags & WQ_UNBOUND) {
5778 struct device_attribute *attr;
5779
5780 for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) {
5781 ret = device_create_file(&wq_dev->dev, attr);
5782 if (ret) {
5783 device_unregister(&wq_dev->dev);
5784 wq->wq_dev = NULL;
5785 return ret;
5786 }
5787 }
5788 }
5789
5790 dev_set_uevent_suppress(&wq_dev->dev, false);
5791 kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD);
5792 return 0;
5793 }
5794
5795 /**
5796 * workqueue_sysfs_unregister - undo workqueue_sysfs_register()
5797 * @wq: the workqueue to unregister
5798 *
5799 * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister.
5800 */
5801 static void workqueue_sysfs_unregister(struct workqueue_struct *wq)
5802 {
5803 struct wq_device *wq_dev = wq->wq_dev;
5804
5805 if (!wq->wq_dev)
5806 return;
5807
5808 wq->wq_dev = NULL;
5809 device_unregister(&wq_dev->dev);
5810 }
5811 #else /* CONFIG_SYSFS */
5812 static void workqueue_sysfs_unregister(struct workqueue_struct *wq) { }
5813 #endif /* CONFIG_SYSFS */
5814
5815 /*
5816 * Workqueue watchdog.
5817 *
5818 * Stall may be caused by various bugs - missing WQ_MEM_RECLAIM, illegal
5819 * flush dependency, a concurrency managed work item which stays RUNNING
5820 * indefinitely. Workqueue stalls can be very difficult to debug as the
5821 * usual warning mechanisms don't trigger and internal workqueue state is
5822 * largely opaque.
5823 *
5824 * Workqueue watchdog monitors all worker pools periodically and dumps
5825 * state if some pools failed to make forward progress for a while where
5826 * forward progress is defined as the first item on ->worklist changing.
5827 *
5828 * This mechanism is controlled through the kernel parameter
5829 * "workqueue.watchdog_thresh" which can be updated at runtime through the
5830 * corresponding sysfs parameter file.
5831 */
5832 #ifdef CONFIG_WQ_WATCHDOG
5833
5834 static unsigned long wq_watchdog_thresh = 30;
5835 static struct timer_list wq_watchdog_timer;
5836
5837 static unsigned long wq_watchdog_touched = INITIAL_JIFFIES;
5838 static DEFINE_PER_CPU(unsigned long, wq_watchdog_touched_cpu) = INITIAL_JIFFIES;
5839
5840 static void wq_watchdog_reset_touched(void)
5841 {
5842 int cpu;
5843
5844 wq_watchdog_touched = jiffies;
5845 for_each_possible_cpu(cpu)
5846 per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
5847 }
5848
5849 static void wq_watchdog_timer_fn(struct timer_list *unused)
5850 {
5851 unsigned long thresh = READ_ONCE(wq_watchdog_thresh) * HZ;
5852 bool lockup_detected = false;
5853 unsigned long now = jiffies;
5854 struct worker_pool *pool;
5855 int pi;
5856
5857 if (!thresh)
5858 return;
5859
5860 rcu_read_lock();
5861
5862 for_each_pool(pool, pi) {
5863 unsigned long pool_ts, touched, ts;
5864
5865 if (list_empty(&pool->worklist))
5866 continue;
5867
5868 /*
5869 * If a virtual machine is stopped by the host it can look to
5870 * the watchdog like a stall.
5871 */
5872 kvm_check_and_clear_guest_paused();
5873
5874 /* get the latest of pool and touched timestamps */
5875 if (pool->cpu >= 0)
5876 touched = READ_ONCE(per_cpu(wq_watchdog_touched_cpu, pool->cpu));
5877 else
5878 touched = READ_ONCE(wq_watchdog_touched);
5879 pool_ts = READ_ONCE(pool->watchdog_ts);
5880
5881 if (time_after(pool_ts, touched))
5882 ts = pool_ts;
5883 else
5884 ts = touched;
5885
5886 /* did we stall? */
5887 if (time_after(now, ts + thresh)) {
5888 lockup_detected = true;
5889 pr_emerg("BUG: workqueue lockup - pool");
5890 pr_cont_pool_info(pool);
5891 pr_cont(" stuck for %us!\n",
5892 jiffies_to_msecs(now - pool_ts) / 1000);
5893 }
5894 }
5895
5896 rcu_read_unlock();
5897
5898 if (lockup_detected)
5899 show_all_workqueues();
5900
5901 wq_watchdog_reset_touched();
5902 mod_timer(&wq_watchdog_timer, jiffies + thresh);
5903 }
5904
5905 notrace void wq_watchdog_touch(int cpu)
5906 {
5907 if (cpu >= 0)
5908 per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
5909
5910 wq_watchdog_touched = jiffies;
5911 }
5912
5913 static void wq_watchdog_set_thresh(unsigned long thresh)
5914 {
5915 wq_watchdog_thresh = 0;
5916 del_timer_sync(&wq_watchdog_timer);
5917
5918 if (thresh) {
5919 wq_watchdog_thresh = thresh;
5920 wq_watchdog_reset_touched();
5921 mod_timer(&wq_watchdog_timer, jiffies + thresh * HZ);
5922 }
5923 }
5924
5925 static int wq_watchdog_param_set_thresh(const char *val,
5926 const struct kernel_param *kp)
5927 {
5928 unsigned long thresh;
5929 int ret;
5930
5931 ret = kstrtoul(val, 0, &thresh);
5932 if (ret)
5933 return ret;
5934
5935 if (system_wq)
5936 wq_watchdog_set_thresh(thresh);
5937 else
5938 wq_watchdog_thresh = thresh;
5939
5940 return 0;
5941 }
5942
5943 static const struct kernel_param_ops wq_watchdog_thresh_ops = {
5944 .set = wq_watchdog_param_set_thresh,
5945 .get = param_get_ulong,
5946 };
5947
5948 module_param_cb(watchdog_thresh, &wq_watchdog_thresh_ops, &wq_watchdog_thresh,
5949 0644);
5950
5951 static void wq_watchdog_init(void)
5952 {
5953 timer_setup(&wq_watchdog_timer, wq_watchdog_timer_fn, TIMER_DEFERRABLE);
5954 wq_watchdog_set_thresh(wq_watchdog_thresh);
5955 }
5956
5957 #else /* CONFIG_WQ_WATCHDOG */
5958
5959 static inline void wq_watchdog_init(void) { }
5960
5961 #endif /* CONFIG_WQ_WATCHDOG */
5962
5963 static void __init wq_numa_init(void)
5964 {
5965 cpumask_var_t *tbl;
5966 int node, cpu;
5967
5968 if (num_possible_nodes() <= 1)
5969 return;
5970
5971 if (wq_disable_numa) {
5972 pr_info("workqueue: NUMA affinity support disabled\n");
5973 return;
5974 }
5975
5976 for_each_possible_cpu(cpu) {
5977 if (WARN_ON(cpu_to_node(cpu) == NUMA_NO_NODE)) {
5978 pr_warn("workqueue: NUMA node mapping not available for cpu%d, disabling NUMA support\n", cpu);
5979 return;
5980 }
5981 }
5982
5983 wq_update_unbound_numa_attrs_buf = alloc_workqueue_attrs();
5984 BUG_ON(!wq_update_unbound_numa_attrs_buf);
5985
5986 /*
5987 * We want masks of possible CPUs of each node which isn't readily
5988 * available. Build one from cpu_to_node() which should have been
5989 * fully initialized by now.
5990 */
5991 tbl = kcalloc(nr_node_ids, sizeof(tbl[0]), GFP_KERNEL);
5992 BUG_ON(!tbl);
5993
5994 for_each_node(node)
5995 BUG_ON(!zalloc_cpumask_var_node(&tbl[node], GFP_KERNEL,
5996 node_online(node) ? node : NUMA_NO_NODE));
5997
5998 for_each_possible_cpu(cpu) {
5999 node = cpu_to_node(cpu);
6000 cpumask_set_cpu(cpu, tbl[node]);
6001 }
6002
6003 wq_numa_possible_cpumask = tbl;
6004 wq_numa_enabled = true;
6005 }
6006
6007 /**
6008 * workqueue_init_early - early init for workqueue subsystem
6009 *
6010 * This is the first half of two-staged workqueue subsystem initialization
6011 * and invoked as soon as the bare basics - memory allocation, cpumasks and
6012 * idr are up. It sets up all the data structures and system workqueues
6013 * and allows early boot code to create workqueues and queue/cancel work
6014 * items. Actual work item execution starts only after kthreads can be
6015 * created and scheduled right before early initcalls.
6016 */
6017 void __init workqueue_init_early(void)
6018 {
6019 int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL };
6020 int hk_flags = HK_FLAG_DOMAIN | HK_FLAG_WQ;
6021 int i, cpu;
6022
6023 BUILD_BUG_ON(__alignof__(struct pool_workqueue) < __alignof__(long long));
6024
6025 BUG_ON(!alloc_cpumask_var(&wq_unbound_cpumask, GFP_KERNEL));
6026 cpumask_copy(wq_unbound_cpumask, housekeeping_cpumask(hk_flags));
6027
6028 pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC);
6029
6030 /* initialize CPU pools */
6031 for_each_possible_cpu(cpu) {
6032 struct worker_pool *pool;
6033
6034 i = 0;
6035 for_each_cpu_worker_pool(pool, cpu) {
6036 BUG_ON(init_worker_pool(pool));
6037 pool->cpu = cpu;
6038 cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu));
6039 pool->attrs->nice = std_nice[i++];
6040 pool->node = cpu_to_node(cpu);
6041
6042 /* alloc pool ID */
6043 mutex_lock(&wq_pool_mutex);
6044 BUG_ON(worker_pool_assign_id(pool));
6045 mutex_unlock(&wq_pool_mutex);
6046 }
6047 }
6048
6049 /* create default unbound and ordered wq attrs */
6050 for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
6051 struct workqueue_attrs *attrs;
6052
6053 BUG_ON(!(attrs = alloc_workqueue_attrs()));
6054 attrs->nice = std_nice[i];
6055 unbound_std_wq_attrs[i] = attrs;
6056
6057 /*
6058 * An ordered wq should have only one pwq as ordering is
6059 * guaranteed by max_active which is enforced by pwqs.
6060 * Turn off NUMA so that dfl_pwq is used for all nodes.
6061 */
6062 BUG_ON(!(attrs = alloc_workqueue_attrs()));
6063 attrs->nice = std_nice[i];
6064 attrs->no_numa = true;
6065 ordered_wq_attrs[i] = attrs;
6066 }
6067
6068 system_wq = alloc_workqueue("events", 0, 0);
6069 system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
6070 system_long_wq = alloc_workqueue("events_long", 0, 0);
6071 system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
6072 WQ_UNBOUND_MAX_ACTIVE);
6073 system_freezable_wq = alloc_workqueue("events_freezable",
6074 WQ_FREEZABLE, 0);
6075 system_power_efficient_wq = alloc_workqueue("events_power_efficient",
6076 WQ_POWER_EFFICIENT, 0);
6077 system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_power_efficient",
6078 WQ_FREEZABLE | WQ_POWER_EFFICIENT,
6079 0);
6080 BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
6081 !system_unbound_wq || !system_freezable_wq ||
6082 !system_power_efficient_wq ||
6083 !system_freezable_power_efficient_wq);
6084 }
6085
6086 /**
6087 * workqueue_init - bring workqueue subsystem fully online
6088 *
6089 * This is the latter half of two-staged workqueue subsystem initialization
6090 * and invoked as soon as kthreads can be created and scheduled.
6091 * Workqueues have been created and work items queued on them, but there
6092 * are no kworkers executing the work items yet. Populate the worker pools
6093 * with the initial workers and enable future kworker creations.
6094 */
6095 void __init workqueue_init(void)
6096 {
6097 struct workqueue_struct *wq;
6098 struct worker_pool *pool;
6099 int cpu, bkt;
6100
6101 /*
6102 * It'd be simpler to initialize NUMA in workqueue_init_early() but
6103 * CPU to node mapping may not be available that early on some
6104 * archs such as power and arm64. As per-cpu pools created
6105 * previously could be missing node hint and unbound pools NUMA
6106 * affinity, fix them up.
6107 *
6108 * Also, while iterating workqueues, create rescuers if requested.
6109 */
6110 wq_numa_init();
6111
6112 mutex_lock(&wq_pool_mutex);
6113
6114 for_each_possible_cpu(cpu) {
6115 for_each_cpu_worker_pool(pool, cpu) {
6116 pool->node = cpu_to_node(cpu);
6117 }
6118 }
6119
6120 list_for_each_entry(wq, &workqueues, list) {
6121 wq_update_unbound_numa(wq, smp_processor_id(), true);
6122 WARN(init_rescuer(wq),
6123 "workqueue: failed to create early rescuer for %s",
6124 wq->name);
6125 }
6126
6127 mutex_unlock(&wq_pool_mutex);
6128
6129 /* create the initial workers */
6130 for_each_online_cpu(cpu) {
6131 for_each_cpu_worker_pool(pool, cpu) {
6132 pool->flags &= ~POOL_DISASSOCIATED;
6133 BUG_ON(!create_worker(pool));
6134 }
6135 }
6136
6137 hash_for_each(unbound_pool_hash, bkt, pool, hash_node)
6138 BUG_ON(!create_worker(pool));
6139
6140 wq_online = true;
6141 wq_watchdog_init();
6142 }