]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - kernel/workqueue.c
Merge tag 'nfs-for-3.16-1' of git://git.linux-nfs.org/projects/trondmy/linux-nfs
[mirror_ubuntu-zesty-kernel.git] / kernel / workqueue.c
1 /*
2 * kernel/workqueue.c - generic async execution with shared worker pool
3 *
4 * Copyright (C) 2002 Ingo Molnar
5 *
6 * Derived from the taskqueue/keventd code by:
7 * David Woodhouse <dwmw2@infradead.org>
8 * Andrew Morton
9 * Kai Petzke <wpp@marie.physik.tu-berlin.de>
10 * Theodore Ts'o <tytso@mit.edu>
11 *
12 * Made to use alloc_percpu by Christoph Lameter.
13 *
14 * Copyright (C) 2010 SUSE Linux Products GmbH
15 * Copyright (C) 2010 Tejun Heo <tj@kernel.org>
16 *
17 * This is the generic async execution mechanism. Work items as are
18 * executed in process context. The worker pool is shared and
19 * automatically managed. There are two worker pools for each CPU (one for
20 * normal work items and the other for high priority ones) and some extra
21 * pools for workqueues which are not bound to any specific CPU - the
22 * number of these backing pools is dynamic.
23 *
24 * Please read Documentation/workqueue.txt for details.
25 */
26
27 #include <linux/export.h>
28 #include <linux/kernel.h>
29 #include <linux/sched.h>
30 #include <linux/init.h>
31 #include <linux/signal.h>
32 #include <linux/completion.h>
33 #include <linux/workqueue.h>
34 #include <linux/slab.h>
35 #include <linux/cpu.h>
36 #include <linux/notifier.h>
37 #include <linux/kthread.h>
38 #include <linux/hardirq.h>
39 #include <linux/mempolicy.h>
40 #include <linux/freezer.h>
41 #include <linux/kallsyms.h>
42 #include <linux/debug_locks.h>
43 #include <linux/lockdep.h>
44 #include <linux/idr.h>
45 #include <linux/jhash.h>
46 #include <linux/hashtable.h>
47 #include <linux/rculist.h>
48 #include <linux/nodemask.h>
49 #include <linux/moduleparam.h>
50 #include <linux/uaccess.h>
51
52 #include "workqueue_internal.h"
53
54 enum {
55 /*
56 * worker_pool flags
57 *
58 * A bound pool is either associated or disassociated with its CPU.
59 * While associated (!DISASSOCIATED), all workers are bound to the
60 * CPU and none has %WORKER_UNBOUND set and concurrency management
61 * is in effect.
62 *
63 * While DISASSOCIATED, the cpu may be offline and all workers have
64 * %WORKER_UNBOUND set and concurrency management disabled, and may
65 * be executing on any CPU. The pool behaves as an unbound one.
66 *
67 * Note that DISASSOCIATED should be flipped only while holding
68 * attach_mutex to avoid changing binding state while
69 * worker_attach_to_pool() is in progress.
70 */
71 POOL_DISASSOCIATED = 1 << 2, /* cpu can't serve workers */
72
73 /* worker flags */
74 WORKER_DIE = 1 << 1, /* die die die */
75 WORKER_IDLE = 1 << 2, /* is idle */
76 WORKER_PREP = 1 << 3, /* preparing to run works */
77 WORKER_CPU_INTENSIVE = 1 << 6, /* cpu intensive */
78 WORKER_UNBOUND = 1 << 7, /* worker is unbound */
79 WORKER_REBOUND = 1 << 8, /* worker was rebound */
80
81 WORKER_NOT_RUNNING = WORKER_PREP | WORKER_CPU_INTENSIVE |
82 WORKER_UNBOUND | WORKER_REBOUND,
83
84 NR_STD_WORKER_POOLS = 2, /* # standard pools per cpu */
85
86 UNBOUND_POOL_HASH_ORDER = 6, /* hashed by pool->attrs */
87 BUSY_WORKER_HASH_ORDER = 6, /* 64 pointers */
88
89 MAX_IDLE_WORKERS_RATIO = 4, /* 1/4 of busy can be idle */
90 IDLE_WORKER_TIMEOUT = 300 * HZ, /* keep idle ones for 5 mins */
91
92 MAYDAY_INITIAL_TIMEOUT = HZ / 100 >= 2 ? HZ / 100 : 2,
93 /* call for help after 10ms
94 (min two ticks) */
95 MAYDAY_INTERVAL = HZ / 10, /* and then every 100ms */
96 CREATE_COOLDOWN = HZ, /* time to breath after fail */
97
98 /*
99 * Rescue workers are used only on emergencies and shared by
100 * all cpus. Give MIN_NICE.
101 */
102 RESCUER_NICE_LEVEL = MIN_NICE,
103 HIGHPRI_NICE_LEVEL = MIN_NICE,
104
105 WQ_NAME_LEN = 24,
106 };
107
108 /*
109 * Structure fields follow one of the following exclusion rules.
110 *
111 * I: Modifiable by initialization/destruction paths and read-only for
112 * everyone else.
113 *
114 * P: Preemption protected. Disabling preemption is enough and should
115 * only be modified and accessed from the local cpu.
116 *
117 * L: pool->lock protected. Access with pool->lock held.
118 *
119 * X: During normal operation, modification requires pool->lock and should
120 * be done only from local cpu. Either disabling preemption on local
121 * cpu or grabbing pool->lock is enough for read access. If
122 * POOL_DISASSOCIATED is set, it's identical to L.
123 *
124 * A: pool->attach_mutex protected.
125 *
126 * PL: wq_pool_mutex protected.
127 *
128 * PR: wq_pool_mutex protected for writes. Sched-RCU protected for reads.
129 *
130 * WQ: wq->mutex protected.
131 *
132 * WR: wq->mutex protected for writes. Sched-RCU protected for reads.
133 *
134 * MD: wq_mayday_lock protected.
135 */
136
137 /* struct worker is defined in workqueue_internal.h */
138
139 struct worker_pool {
140 spinlock_t lock; /* the pool lock */
141 int cpu; /* I: the associated cpu */
142 int node; /* I: the associated node ID */
143 int id; /* I: pool ID */
144 unsigned int flags; /* X: flags */
145
146 struct list_head worklist; /* L: list of pending works */
147 int nr_workers; /* L: total number of workers */
148
149 /* nr_idle includes the ones off idle_list for rebinding */
150 int nr_idle; /* L: currently idle ones */
151
152 struct list_head idle_list; /* X: list of idle workers */
153 struct timer_list idle_timer; /* L: worker idle timeout */
154 struct timer_list mayday_timer; /* L: SOS timer for workers */
155
156 /* a workers is either on busy_hash or idle_list, or the manager */
157 DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
158 /* L: hash of busy workers */
159
160 /* see manage_workers() for details on the two manager mutexes */
161 struct mutex manager_arb; /* manager arbitration */
162 struct mutex attach_mutex; /* attach/detach exclusion */
163 struct list_head workers; /* A: attached workers */
164 struct completion *detach_completion; /* all workers detached */
165
166 struct ida worker_ida; /* worker IDs for task name */
167
168 struct workqueue_attrs *attrs; /* I: worker attributes */
169 struct hlist_node hash_node; /* PL: unbound_pool_hash node */
170 int refcnt; /* PL: refcnt for unbound pools */
171
172 /*
173 * The current concurrency level. As it's likely to be accessed
174 * from other CPUs during try_to_wake_up(), put it in a separate
175 * cacheline.
176 */
177 atomic_t nr_running ____cacheline_aligned_in_smp;
178
179 /*
180 * Destruction of pool is sched-RCU protected to allow dereferences
181 * from get_work_pool().
182 */
183 struct rcu_head rcu;
184 } ____cacheline_aligned_in_smp;
185
186 /*
187 * The per-pool workqueue. While queued, the lower WORK_STRUCT_FLAG_BITS
188 * of work_struct->data are used for flags and the remaining high bits
189 * point to the pwq; thus, pwqs need to be aligned at two's power of the
190 * number of flag bits.
191 */
192 struct pool_workqueue {
193 struct worker_pool *pool; /* I: the associated pool */
194 struct workqueue_struct *wq; /* I: the owning workqueue */
195 int work_color; /* L: current color */
196 int flush_color; /* L: flushing color */
197 int refcnt; /* L: reference count */
198 int nr_in_flight[WORK_NR_COLORS];
199 /* L: nr of in_flight works */
200 int nr_active; /* L: nr of active works */
201 int max_active; /* L: max active works */
202 struct list_head delayed_works; /* L: delayed works */
203 struct list_head pwqs_node; /* WR: node on wq->pwqs */
204 struct list_head mayday_node; /* MD: node on wq->maydays */
205
206 /*
207 * Release of unbound pwq is punted to system_wq. See put_pwq()
208 * and pwq_unbound_release_workfn() for details. pool_workqueue
209 * itself is also sched-RCU protected so that the first pwq can be
210 * determined without grabbing wq->mutex.
211 */
212 struct work_struct unbound_release_work;
213 struct rcu_head rcu;
214 } __aligned(1 << WORK_STRUCT_FLAG_BITS);
215
216 /*
217 * Structure used to wait for workqueue flush.
218 */
219 struct wq_flusher {
220 struct list_head list; /* WQ: list of flushers */
221 int flush_color; /* WQ: flush color waiting for */
222 struct completion done; /* flush completion */
223 };
224
225 struct wq_device;
226
227 /*
228 * The externally visible workqueue. It relays the issued work items to
229 * the appropriate worker_pool through its pool_workqueues.
230 */
231 struct workqueue_struct {
232 struct list_head pwqs; /* WR: all pwqs of this wq */
233 struct list_head list; /* PL: list of all workqueues */
234
235 struct mutex mutex; /* protects this wq */
236 int work_color; /* WQ: current work color */
237 int flush_color; /* WQ: current flush color */
238 atomic_t nr_pwqs_to_flush; /* flush in progress */
239 struct wq_flusher *first_flusher; /* WQ: first flusher */
240 struct list_head flusher_queue; /* WQ: flush waiters */
241 struct list_head flusher_overflow; /* WQ: flush overflow list */
242
243 struct list_head maydays; /* MD: pwqs requesting rescue */
244 struct worker *rescuer; /* I: rescue worker */
245
246 int nr_drainers; /* WQ: drain in progress */
247 int saved_max_active; /* WQ: saved pwq max_active */
248
249 struct workqueue_attrs *unbound_attrs; /* WQ: only for unbound wqs */
250 struct pool_workqueue *dfl_pwq; /* WQ: only for unbound wqs */
251
252 #ifdef CONFIG_SYSFS
253 struct wq_device *wq_dev; /* I: for sysfs interface */
254 #endif
255 #ifdef CONFIG_LOCKDEP
256 struct lockdep_map lockdep_map;
257 #endif
258 char name[WQ_NAME_LEN]; /* I: workqueue name */
259
260 /* hot fields used during command issue, aligned to cacheline */
261 unsigned int flags ____cacheline_aligned; /* WQ: WQ_* flags */
262 struct pool_workqueue __percpu *cpu_pwqs; /* I: per-cpu pwqs */
263 struct pool_workqueue __rcu *numa_pwq_tbl[]; /* FR: unbound pwqs indexed by node */
264 };
265
266 static struct kmem_cache *pwq_cache;
267
268 static int wq_numa_tbl_len; /* highest possible NUMA node id + 1 */
269 static cpumask_var_t *wq_numa_possible_cpumask;
270 /* possible CPUs of each node */
271
272 static bool wq_disable_numa;
273 module_param_named(disable_numa, wq_disable_numa, bool, 0444);
274
275 /* see the comment above the definition of WQ_POWER_EFFICIENT */
276 #ifdef CONFIG_WQ_POWER_EFFICIENT_DEFAULT
277 static bool wq_power_efficient = true;
278 #else
279 static bool wq_power_efficient;
280 #endif
281
282 module_param_named(power_efficient, wq_power_efficient, bool, 0444);
283
284 static bool wq_numa_enabled; /* unbound NUMA affinity enabled */
285
286 /* buf for wq_update_unbound_numa_attrs(), protected by CPU hotplug exclusion */
287 static struct workqueue_attrs *wq_update_unbound_numa_attrs_buf;
288
289 static DEFINE_MUTEX(wq_pool_mutex); /* protects pools and workqueues list */
290 static DEFINE_SPINLOCK(wq_mayday_lock); /* protects wq->maydays list */
291
292 static LIST_HEAD(workqueues); /* PL: list of all workqueues */
293 static bool workqueue_freezing; /* PL: have wqs started freezing? */
294
295 /* the per-cpu worker pools */
296 static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS],
297 cpu_worker_pools);
298
299 static DEFINE_IDR(worker_pool_idr); /* PR: idr of all pools */
300
301 /* PL: hash of all unbound pools keyed by pool->attrs */
302 static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER);
303
304 /* I: attributes used when instantiating standard unbound pools on demand */
305 static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS];
306
307 /* I: attributes used when instantiating ordered pools on demand */
308 static struct workqueue_attrs *ordered_wq_attrs[NR_STD_WORKER_POOLS];
309
310 struct workqueue_struct *system_wq __read_mostly;
311 EXPORT_SYMBOL(system_wq);
312 struct workqueue_struct *system_highpri_wq __read_mostly;
313 EXPORT_SYMBOL_GPL(system_highpri_wq);
314 struct workqueue_struct *system_long_wq __read_mostly;
315 EXPORT_SYMBOL_GPL(system_long_wq);
316 struct workqueue_struct *system_unbound_wq __read_mostly;
317 EXPORT_SYMBOL_GPL(system_unbound_wq);
318 struct workqueue_struct *system_freezable_wq __read_mostly;
319 EXPORT_SYMBOL_GPL(system_freezable_wq);
320 struct workqueue_struct *system_power_efficient_wq __read_mostly;
321 EXPORT_SYMBOL_GPL(system_power_efficient_wq);
322 struct workqueue_struct *system_freezable_power_efficient_wq __read_mostly;
323 EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq);
324
325 static int worker_thread(void *__worker);
326 static void copy_workqueue_attrs(struct workqueue_attrs *to,
327 const struct workqueue_attrs *from);
328
329 #define CREATE_TRACE_POINTS
330 #include <trace/events/workqueue.h>
331
332 #define assert_rcu_or_pool_mutex() \
333 rcu_lockdep_assert(rcu_read_lock_sched_held() || \
334 lockdep_is_held(&wq_pool_mutex), \
335 "sched RCU or wq_pool_mutex should be held")
336
337 #define assert_rcu_or_wq_mutex(wq) \
338 rcu_lockdep_assert(rcu_read_lock_sched_held() || \
339 lockdep_is_held(&wq->mutex), \
340 "sched RCU or wq->mutex should be held")
341
342 #define for_each_cpu_worker_pool(pool, cpu) \
343 for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0]; \
344 (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
345 (pool)++)
346
347 /**
348 * for_each_pool - iterate through all worker_pools in the system
349 * @pool: iteration cursor
350 * @pi: integer used for iteration
351 *
352 * This must be called either with wq_pool_mutex held or sched RCU read
353 * locked. If the pool needs to be used beyond the locking in effect, the
354 * caller is responsible for guaranteeing that the pool stays online.
355 *
356 * The if/else clause exists only for the lockdep assertion and can be
357 * ignored.
358 */
359 #define for_each_pool(pool, pi) \
360 idr_for_each_entry(&worker_pool_idr, pool, pi) \
361 if (({ assert_rcu_or_pool_mutex(); false; })) { } \
362 else
363
364 /**
365 * for_each_pool_worker - iterate through all workers of a worker_pool
366 * @worker: iteration cursor
367 * @pool: worker_pool to iterate workers of
368 *
369 * This must be called with @pool->attach_mutex.
370 *
371 * The if/else clause exists only for the lockdep assertion and can be
372 * ignored.
373 */
374 #define for_each_pool_worker(worker, pool) \
375 list_for_each_entry((worker), &(pool)->workers, node) \
376 if (({ lockdep_assert_held(&pool->attach_mutex); false; })) { } \
377 else
378
379 /**
380 * for_each_pwq - iterate through all pool_workqueues of the specified workqueue
381 * @pwq: iteration cursor
382 * @wq: the target workqueue
383 *
384 * This must be called either with wq->mutex held or sched RCU read locked.
385 * If the pwq needs to be used beyond the locking in effect, the caller is
386 * responsible for guaranteeing that the pwq stays online.
387 *
388 * The if/else clause exists only for the lockdep assertion and can be
389 * ignored.
390 */
391 #define for_each_pwq(pwq, wq) \
392 list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node) \
393 if (({ assert_rcu_or_wq_mutex(wq); false; })) { } \
394 else
395
396 #ifdef CONFIG_DEBUG_OBJECTS_WORK
397
398 static struct debug_obj_descr work_debug_descr;
399
400 static void *work_debug_hint(void *addr)
401 {
402 return ((struct work_struct *) addr)->func;
403 }
404
405 /*
406 * fixup_init is called when:
407 * - an active object is initialized
408 */
409 static int work_fixup_init(void *addr, enum debug_obj_state state)
410 {
411 struct work_struct *work = addr;
412
413 switch (state) {
414 case ODEBUG_STATE_ACTIVE:
415 cancel_work_sync(work);
416 debug_object_init(work, &work_debug_descr);
417 return 1;
418 default:
419 return 0;
420 }
421 }
422
423 /*
424 * fixup_activate is called when:
425 * - an active object is activated
426 * - an unknown object is activated (might be a statically initialized object)
427 */
428 static int work_fixup_activate(void *addr, enum debug_obj_state state)
429 {
430 struct work_struct *work = addr;
431
432 switch (state) {
433
434 case ODEBUG_STATE_NOTAVAILABLE:
435 /*
436 * This is not really a fixup. The work struct was
437 * statically initialized. We just make sure that it
438 * is tracked in the object tracker.
439 */
440 if (test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work))) {
441 debug_object_init(work, &work_debug_descr);
442 debug_object_activate(work, &work_debug_descr);
443 return 0;
444 }
445 WARN_ON_ONCE(1);
446 return 0;
447
448 case ODEBUG_STATE_ACTIVE:
449 WARN_ON(1);
450
451 default:
452 return 0;
453 }
454 }
455
456 /*
457 * fixup_free is called when:
458 * - an active object is freed
459 */
460 static int work_fixup_free(void *addr, enum debug_obj_state state)
461 {
462 struct work_struct *work = addr;
463
464 switch (state) {
465 case ODEBUG_STATE_ACTIVE:
466 cancel_work_sync(work);
467 debug_object_free(work, &work_debug_descr);
468 return 1;
469 default:
470 return 0;
471 }
472 }
473
474 static struct debug_obj_descr work_debug_descr = {
475 .name = "work_struct",
476 .debug_hint = work_debug_hint,
477 .fixup_init = work_fixup_init,
478 .fixup_activate = work_fixup_activate,
479 .fixup_free = work_fixup_free,
480 };
481
482 static inline void debug_work_activate(struct work_struct *work)
483 {
484 debug_object_activate(work, &work_debug_descr);
485 }
486
487 static inline void debug_work_deactivate(struct work_struct *work)
488 {
489 debug_object_deactivate(work, &work_debug_descr);
490 }
491
492 void __init_work(struct work_struct *work, int onstack)
493 {
494 if (onstack)
495 debug_object_init_on_stack(work, &work_debug_descr);
496 else
497 debug_object_init(work, &work_debug_descr);
498 }
499 EXPORT_SYMBOL_GPL(__init_work);
500
501 void destroy_work_on_stack(struct work_struct *work)
502 {
503 debug_object_free(work, &work_debug_descr);
504 }
505 EXPORT_SYMBOL_GPL(destroy_work_on_stack);
506
507 void destroy_delayed_work_on_stack(struct delayed_work *work)
508 {
509 destroy_timer_on_stack(&work->timer);
510 debug_object_free(&work->work, &work_debug_descr);
511 }
512 EXPORT_SYMBOL_GPL(destroy_delayed_work_on_stack);
513
514 #else
515 static inline void debug_work_activate(struct work_struct *work) { }
516 static inline void debug_work_deactivate(struct work_struct *work) { }
517 #endif
518
519 /**
520 * worker_pool_assign_id - allocate ID and assing it to @pool
521 * @pool: the pool pointer of interest
522 *
523 * Returns 0 if ID in [0, WORK_OFFQ_POOL_NONE) is allocated and assigned
524 * successfully, -errno on failure.
525 */
526 static int worker_pool_assign_id(struct worker_pool *pool)
527 {
528 int ret;
529
530 lockdep_assert_held(&wq_pool_mutex);
531
532 ret = idr_alloc(&worker_pool_idr, pool, 0, WORK_OFFQ_POOL_NONE,
533 GFP_KERNEL);
534 if (ret >= 0) {
535 pool->id = ret;
536 return 0;
537 }
538 return ret;
539 }
540
541 /**
542 * unbound_pwq_by_node - return the unbound pool_workqueue for the given node
543 * @wq: the target workqueue
544 * @node: the node ID
545 *
546 * This must be called either with pwq_lock held or sched RCU read locked.
547 * If the pwq needs to be used beyond the locking in effect, the caller is
548 * responsible for guaranteeing that the pwq stays online.
549 *
550 * Return: The unbound pool_workqueue for @node.
551 */
552 static struct pool_workqueue *unbound_pwq_by_node(struct workqueue_struct *wq,
553 int node)
554 {
555 assert_rcu_or_wq_mutex(wq);
556 return rcu_dereference_raw(wq->numa_pwq_tbl[node]);
557 }
558
559 static unsigned int work_color_to_flags(int color)
560 {
561 return color << WORK_STRUCT_COLOR_SHIFT;
562 }
563
564 static int get_work_color(struct work_struct *work)
565 {
566 return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
567 ((1 << WORK_STRUCT_COLOR_BITS) - 1);
568 }
569
570 static int work_next_color(int color)
571 {
572 return (color + 1) % WORK_NR_COLORS;
573 }
574
575 /*
576 * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
577 * contain the pointer to the queued pwq. Once execution starts, the flag
578 * is cleared and the high bits contain OFFQ flags and pool ID.
579 *
580 * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling()
581 * and clear_work_data() can be used to set the pwq, pool or clear
582 * work->data. These functions should only be called while the work is
583 * owned - ie. while the PENDING bit is set.
584 *
585 * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
586 * corresponding to a work. Pool is available once the work has been
587 * queued anywhere after initialization until it is sync canceled. pwq is
588 * available only while the work item is queued.
589 *
590 * %WORK_OFFQ_CANCELING is used to mark a work item which is being
591 * canceled. While being canceled, a work item may have its PENDING set
592 * but stay off timer and worklist for arbitrarily long and nobody should
593 * try to steal the PENDING bit.
594 */
595 static inline void set_work_data(struct work_struct *work, unsigned long data,
596 unsigned long flags)
597 {
598 WARN_ON_ONCE(!work_pending(work));
599 atomic_long_set(&work->data, data | flags | work_static(work));
600 }
601
602 static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq,
603 unsigned long extra_flags)
604 {
605 set_work_data(work, (unsigned long)pwq,
606 WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags);
607 }
608
609 static void set_work_pool_and_keep_pending(struct work_struct *work,
610 int pool_id)
611 {
612 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT,
613 WORK_STRUCT_PENDING);
614 }
615
616 static void set_work_pool_and_clear_pending(struct work_struct *work,
617 int pool_id)
618 {
619 /*
620 * The following wmb is paired with the implied mb in
621 * test_and_set_bit(PENDING) and ensures all updates to @work made
622 * here are visible to and precede any updates by the next PENDING
623 * owner.
624 */
625 smp_wmb();
626 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0);
627 }
628
629 static void clear_work_data(struct work_struct *work)
630 {
631 smp_wmb(); /* see set_work_pool_and_clear_pending() */
632 set_work_data(work, WORK_STRUCT_NO_POOL, 0);
633 }
634
635 static struct pool_workqueue *get_work_pwq(struct work_struct *work)
636 {
637 unsigned long data = atomic_long_read(&work->data);
638
639 if (data & WORK_STRUCT_PWQ)
640 return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
641 else
642 return NULL;
643 }
644
645 /**
646 * get_work_pool - return the worker_pool a given work was associated with
647 * @work: the work item of interest
648 *
649 * Pools are created and destroyed under wq_pool_mutex, and allows read
650 * access under sched-RCU read lock. As such, this function should be
651 * called under wq_pool_mutex or with preemption disabled.
652 *
653 * All fields of the returned pool are accessible as long as the above
654 * mentioned locking is in effect. If the returned pool needs to be used
655 * beyond the critical section, the caller is responsible for ensuring the
656 * returned pool is and stays online.
657 *
658 * Return: The worker_pool @work was last associated with. %NULL if none.
659 */
660 static struct worker_pool *get_work_pool(struct work_struct *work)
661 {
662 unsigned long data = atomic_long_read(&work->data);
663 int pool_id;
664
665 assert_rcu_or_pool_mutex();
666
667 if (data & WORK_STRUCT_PWQ)
668 return ((struct pool_workqueue *)
669 (data & WORK_STRUCT_WQ_DATA_MASK))->pool;
670
671 pool_id = data >> WORK_OFFQ_POOL_SHIFT;
672 if (pool_id == WORK_OFFQ_POOL_NONE)
673 return NULL;
674
675 return idr_find(&worker_pool_idr, pool_id);
676 }
677
678 /**
679 * get_work_pool_id - return the worker pool ID a given work is associated with
680 * @work: the work item of interest
681 *
682 * Return: The worker_pool ID @work was last associated with.
683 * %WORK_OFFQ_POOL_NONE if none.
684 */
685 static int get_work_pool_id(struct work_struct *work)
686 {
687 unsigned long data = atomic_long_read(&work->data);
688
689 if (data & WORK_STRUCT_PWQ)
690 return ((struct pool_workqueue *)
691 (data & WORK_STRUCT_WQ_DATA_MASK))->pool->id;
692
693 return data >> WORK_OFFQ_POOL_SHIFT;
694 }
695
696 static void mark_work_canceling(struct work_struct *work)
697 {
698 unsigned long pool_id = get_work_pool_id(work);
699
700 pool_id <<= WORK_OFFQ_POOL_SHIFT;
701 set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING);
702 }
703
704 static bool work_is_canceling(struct work_struct *work)
705 {
706 unsigned long data = atomic_long_read(&work->data);
707
708 return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING);
709 }
710
711 /*
712 * Policy functions. These define the policies on how the global worker
713 * pools are managed. Unless noted otherwise, these functions assume that
714 * they're being called with pool->lock held.
715 */
716
717 static bool __need_more_worker(struct worker_pool *pool)
718 {
719 return !atomic_read(&pool->nr_running);
720 }
721
722 /*
723 * Need to wake up a worker? Called from anything but currently
724 * running workers.
725 *
726 * Note that, because unbound workers never contribute to nr_running, this
727 * function will always return %true for unbound pools as long as the
728 * worklist isn't empty.
729 */
730 static bool need_more_worker(struct worker_pool *pool)
731 {
732 return !list_empty(&pool->worklist) && __need_more_worker(pool);
733 }
734
735 /* Can I start working? Called from busy but !running workers. */
736 static bool may_start_working(struct worker_pool *pool)
737 {
738 return pool->nr_idle;
739 }
740
741 /* Do I need to keep working? Called from currently running workers. */
742 static bool keep_working(struct worker_pool *pool)
743 {
744 return !list_empty(&pool->worklist) &&
745 atomic_read(&pool->nr_running) <= 1;
746 }
747
748 /* Do we need a new worker? Called from manager. */
749 static bool need_to_create_worker(struct worker_pool *pool)
750 {
751 return need_more_worker(pool) && !may_start_working(pool);
752 }
753
754 /* Do we have too many workers and should some go away? */
755 static bool too_many_workers(struct worker_pool *pool)
756 {
757 bool managing = mutex_is_locked(&pool->manager_arb);
758 int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
759 int nr_busy = pool->nr_workers - nr_idle;
760
761 /*
762 * nr_idle and idle_list may disagree if idle rebinding is in
763 * progress. Never return %true if idle_list is empty.
764 */
765 if (list_empty(&pool->idle_list))
766 return false;
767
768 return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
769 }
770
771 /*
772 * Wake up functions.
773 */
774
775 /* Return the first idle worker. Safe with preemption disabled */
776 static struct worker *first_idle_worker(struct worker_pool *pool)
777 {
778 if (unlikely(list_empty(&pool->idle_list)))
779 return NULL;
780
781 return list_first_entry(&pool->idle_list, struct worker, entry);
782 }
783
784 /**
785 * wake_up_worker - wake up an idle worker
786 * @pool: worker pool to wake worker from
787 *
788 * Wake up the first idle worker of @pool.
789 *
790 * CONTEXT:
791 * spin_lock_irq(pool->lock).
792 */
793 static void wake_up_worker(struct worker_pool *pool)
794 {
795 struct worker *worker = first_idle_worker(pool);
796
797 if (likely(worker))
798 wake_up_process(worker->task);
799 }
800
801 /**
802 * wq_worker_waking_up - a worker is waking up
803 * @task: task waking up
804 * @cpu: CPU @task is waking up to
805 *
806 * This function is called during try_to_wake_up() when a worker is
807 * being awoken.
808 *
809 * CONTEXT:
810 * spin_lock_irq(rq->lock)
811 */
812 void wq_worker_waking_up(struct task_struct *task, int cpu)
813 {
814 struct worker *worker = kthread_data(task);
815
816 if (!(worker->flags & WORKER_NOT_RUNNING)) {
817 WARN_ON_ONCE(worker->pool->cpu != cpu);
818 atomic_inc(&worker->pool->nr_running);
819 }
820 }
821
822 /**
823 * wq_worker_sleeping - a worker is going to sleep
824 * @task: task going to sleep
825 * @cpu: CPU in question, must be the current CPU number
826 *
827 * This function is called during schedule() when a busy worker is
828 * going to sleep. Worker on the same cpu can be woken up by
829 * returning pointer to its task.
830 *
831 * CONTEXT:
832 * spin_lock_irq(rq->lock)
833 *
834 * Return:
835 * Worker task on @cpu to wake up, %NULL if none.
836 */
837 struct task_struct *wq_worker_sleeping(struct task_struct *task, int cpu)
838 {
839 struct worker *worker = kthread_data(task), *to_wakeup = NULL;
840 struct worker_pool *pool;
841
842 /*
843 * Rescuers, which may not have all the fields set up like normal
844 * workers, also reach here, let's not access anything before
845 * checking NOT_RUNNING.
846 */
847 if (worker->flags & WORKER_NOT_RUNNING)
848 return NULL;
849
850 pool = worker->pool;
851
852 /* this can only happen on the local cpu */
853 if (WARN_ON_ONCE(cpu != raw_smp_processor_id()))
854 return NULL;
855
856 /*
857 * The counterpart of the following dec_and_test, implied mb,
858 * worklist not empty test sequence is in insert_work().
859 * Please read comment there.
860 *
861 * NOT_RUNNING is clear. This means that we're bound to and
862 * running on the local cpu w/ rq lock held and preemption
863 * disabled, which in turn means that none else could be
864 * manipulating idle_list, so dereferencing idle_list without pool
865 * lock is safe.
866 */
867 if (atomic_dec_and_test(&pool->nr_running) &&
868 !list_empty(&pool->worklist))
869 to_wakeup = first_idle_worker(pool);
870 return to_wakeup ? to_wakeup->task : NULL;
871 }
872
873 /**
874 * worker_set_flags - set worker flags and adjust nr_running accordingly
875 * @worker: self
876 * @flags: flags to set
877 * @wakeup: wakeup an idle worker if necessary
878 *
879 * Set @flags in @worker->flags and adjust nr_running accordingly. If
880 * nr_running becomes zero and @wakeup is %true, an idle worker is
881 * woken up.
882 *
883 * CONTEXT:
884 * spin_lock_irq(pool->lock)
885 */
886 static inline void worker_set_flags(struct worker *worker, unsigned int flags,
887 bool wakeup)
888 {
889 struct worker_pool *pool = worker->pool;
890
891 WARN_ON_ONCE(worker->task != current);
892
893 /*
894 * If transitioning into NOT_RUNNING, adjust nr_running and
895 * wake up an idle worker as necessary if requested by
896 * @wakeup.
897 */
898 if ((flags & WORKER_NOT_RUNNING) &&
899 !(worker->flags & WORKER_NOT_RUNNING)) {
900 if (wakeup) {
901 if (atomic_dec_and_test(&pool->nr_running) &&
902 !list_empty(&pool->worklist))
903 wake_up_worker(pool);
904 } else
905 atomic_dec(&pool->nr_running);
906 }
907
908 worker->flags |= flags;
909 }
910
911 /**
912 * worker_clr_flags - clear worker flags and adjust nr_running accordingly
913 * @worker: self
914 * @flags: flags to clear
915 *
916 * Clear @flags in @worker->flags and adjust nr_running accordingly.
917 *
918 * CONTEXT:
919 * spin_lock_irq(pool->lock)
920 */
921 static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
922 {
923 struct worker_pool *pool = worker->pool;
924 unsigned int oflags = worker->flags;
925
926 WARN_ON_ONCE(worker->task != current);
927
928 worker->flags &= ~flags;
929
930 /*
931 * If transitioning out of NOT_RUNNING, increment nr_running. Note
932 * that the nested NOT_RUNNING is not a noop. NOT_RUNNING is mask
933 * of multiple flags, not a single flag.
934 */
935 if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
936 if (!(worker->flags & WORKER_NOT_RUNNING))
937 atomic_inc(&pool->nr_running);
938 }
939
940 /**
941 * find_worker_executing_work - find worker which is executing a work
942 * @pool: pool of interest
943 * @work: work to find worker for
944 *
945 * Find a worker which is executing @work on @pool by searching
946 * @pool->busy_hash which is keyed by the address of @work. For a worker
947 * to match, its current execution should match the address of @work and
948 * its work function. This is to avoid unwanted dependency between
949 * unrelated work executions through a work item being recycled while still
950 * being executed.
951 *
952 * This is a bit tricky. A work item may be freed once its execution
953 * starts and nothing prevents the freed area from being recycled for
954 * another work item. If the same work item address ends up being reused
955 * before the original execution finishes, workqueue will identify the
956 * recycled work item as currently executing and make it wait until the
957 * current execution finishes, introducing an unwanted dependency.
958 *
959 * This function checks the work item address and work function to avoid
960 * false positives. Note that this isn't complete as one may construct a
961 * work function which can introduce dependency onto itself through a
962 * recycled work item. Well, if somebody wants to shoot oneself in the
963 * foot that badly, there's only so much we can do, and if such deadlock
964 * actually occurs, it should be easy to locate the culprit work function.
965 *
966 * CONTEXT:
967 * spin_lock_irq(pool->lock).
968 *
969 * Return:
970 * Pointer to worker which is executing @work if found, %NULL
971 * otherwise.
972 */
973 static struct worker *find_worker_executing_work(struct worker_pool *pool,
974 struct work_struct *work)
975 {
976 struct worker *worker;
977
978 hash_for_each_possible(pool->busy_hash, worker, hentry,
979 (unsigned long)work)
980 if (worker->current_work == work &&
981 worker->current_func == work->func)
982 return worker;
983
984 return NULL;
985 }
986
987 /**
988 * move_linked_works - move linked works to a list
989 * @work: start of series of works to be scheduled
990 * @head: target list to append @work to
991 * @nextp: out paramter for nested worklist walking
992 *
993 * Schedule linked works starting from @work to @head. Work series to
994 * be scheduled starts at @work and includes any consecutive work with
995 * WORK_STRUCT_LINKED set in its predecessor.
996 *
997 * If @nextp is not NULL, it's updated to point to the next work of
998 * the last scheduled work. This allows move_linked_works() to be
999 * nested inside outer list_for_each_entry_safe().
1000 *
1001 * CONTEXT:
1002 * spin_lock_irq(pool->lock).
1003 */
1004 static void move_linked_works(struct work_struct *work, struct list_head *head,
1005 struct work_struct **nextp)
1006 {
1007 struct work_struct *n;
1008
1009 /*
1010 * Linked worklist will always end before the end of the list,
1011 * use NULL for list head.
1012 */
1013 list_for_each_entry_safe_from(work, n, NULL, entry) {
1014 list_move_tail(&work->entry, head);
1015 if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
1016 break;
1017 }
1018
1019 /*
1020 * If we're already inside safe list traversal and have moved
1021 * multiple works to the scheduled queue, the next position
1022 * needs to be updated.
1023 */
1024 if (nextp)
1025 *nextp = n;
1026 }
1027
1028 /**
1029 * get_pwq - get an extra reference on the specified pool_workqueue
1030 * @pwq: pool_workqueue to get
1031 *
1032 * Obtain an extra reference on @pwq. The caller should guarantee that
1033 * @pwq has positive refcnt and be holding the matching pool->lock.
1034 */
1035 static void get_pwq(struct pool_workqueue *pwq)
1036 {
1037 lockdep_assert_held(&pwq->pool->lock);
1038 WARN_ON_ONCE(pwq->refcnt <= 0);
1039 pwq->refcnt++;
1040 }
1041
1042 /**
1043 * put_pwq - put a pool_workqueue reference
1044 * @pwq: pool_workqueue to put
1045 *
1046 * Drop a reference of @pwq. If its refcnt reaches zero, schedule its
1047 * destruction. The caller should be holding the matching pool->lock.
1048 */
1049 static void put_pwq(struct pool_workqueue *pwq)
1050 {
1051 lockdep_assert_held(&pwq->pool->lock);
1052 if (likely(--pwq->refcnt))
1053 return;
1054 if (WARN_ON_ONCE(!(pwq->wq->flags & WQ_UNBOUND)))
1055 return;
1056 /*
1057 * @pwq can't be released under pool->lock, bounce to
1058 * pwq_unbound_release_workfn(). This never recurses on the same
1059 * pool->lock as this path is taken only for unbound workqueues and
1060 * the release work item is scheduled on a per-cpu workqueue. To
1061 * avoid lockdep warning, unbound pool->locks are given lockdep
1062 * subclass of 1 in get_unbound_pool().
1063 */
1064 schedule_work(&pwq->unbound_release_work);
1065 }
1066
1067 /**
1068 * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock
1069 * @pwq: pool_workqueue to put (can be %NULL)
1070 *
1071 * put_pwq() with locking. This function also allows %NULL @pwq.
1072 */
1073 static void put_pwq_unlocked(struct pool_workqueue *pwq)
1074 {
1075 if (pwq) {
1076 /*
1077 * As both pwqs and pools are sched-RCU protected, the
1078 * following lock operations are safe.
1079 */
1080 spin_lock_irq(&pwq->pool->lock);
1081 put_pwq(pwq);
1082 spin_unlock_irq(&pwq->pool->lock);
1083 }
1084 }
1085
1086 static void pwq_activate_delayed_work(struct work_struct *work)
1087 {
1088 struct pool_workqueue *pwq = get_work_pwq(work);
1089
1090 trace_workqueue_activate_work(work);
1091 move_linked_works(work, &pwq->pool->worklist, NULL);
1092 __clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
1093 pwq->nr_active++;
1094 }
1095
1096 static void pwq_activate_first_delayed(struct pool_workqueue *pwq)
1097 {
1098 struct work_struct *work = list_first_entry(&pwq->delayed_works,
1099 struct work_struct, entry);
1100
1101 pwq_activate_delayed_work(work);
1102 }
1103
1104 /**
1105 * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
1106 * @pwq: pwq of interest
1107 * @color: color of work which left the queue
1108 *
1109 * A work either has completed or is removed from pending queue,
1110 * decrement nr_in_flight of its pwq and handle workqueue flushing.
1111 *
1112 * CONTEXT:
1113 * spin_lock_irq(pool->lock).
1114 */
1115 static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, int color)
1116 {
1117 /* uncolored work items don't participate in flushing or nr_active */
1118 if (color == WORK_NO_COLOR)
1119 goto out_put;
1120
1121 pwq->nr_in_flight[color]--;
1122
1123 pwq->nr_active--;
1124 if (!list_empty(&pwq->delayed_works)) {
1125 /* one down, submit a delayed one */
1126 if (pwq->nr_active < pwq->max_active)
1127 pwq_activate_first_delayed(pwq);
1128 }
1129
1130 /* is flush in progress and are we at the flushing tip? */
1131 if (likely(pwq->flush_color != color))
1132 goto out_put;
1133
1134 /* are there still in-flight works? */
1135 if (pwq->nr_in_flight[color])
1136 goto out_put;
1137
1138 /* this pwq is done, clear flush_color */
1139 pwq->flush_color = -1;
1140
1141 /*
1142 * If this was the last pwq, wake up the first flusher. It
1143 * will handle the rest.
1144 */
1145 if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush))
1146 complete(&pwq->wq->first_flusher->done);
1147 out_put:
1148 put_pwq(pwq);
1149 }
1150
1151 /**
1152 * try_to_grab_pending - steal work item from worklist and disable irq
1153 * @work: work item to steal
1154 * @is_dwork: @work is a delayed_work
1155 * @flags: place to store irq state
1156 *
1157 * Try to grab PENDING bit of @work. This function can handle @work in any
1158 * stable state - idle, on timer or on worklist.
1159 *
1160 * Return:
1161 * 1 if @work was pending and we successfully stole PENDING
1162 * 0 if @work was idle and we claimed PENDING
1163 * -EAGAIN if PENDING couldn't be grabbed at the moment, safe to busy-retry
1164 * -ENOENT if someone else is canceling @work, this state may persist
1165 * for arbitrarily long
1166 *
1167 * Note:
1168 * On >= 0 return, the caller owns @work's PENDING bit. To avoid getting
1169 * interrupted while holding PENDING and @work off queue, irq must be
1170 * disabled on entry. This, combined with delayed_work->timer being
1171 * irqsafe, ensures that we return -EAGAIN for finite short period of time.
1172 *
1173 * On successful return, >= 0, irq is disabled and the caller is
1174 * responsible for releasing it using local_irq_restore(*@flags).
1175 *
1176 * This function is safe to call from any context including IRQ handler.
1177 */
1178 static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
1179 unsigned long *flags)
1180 {
1181 struct worker_pool *pool;
1182 struct pool_workqueue *pwq;
1183
1184 local_irq_save(*flags);
1185
1186 /* try to steal the timer if it exists */
1187 if (is_dwork) {
1188 struct delayed_work *dwork = to_delayed_work(work);
1189
1190 /*
1191 * dwork->timer is irqsafe. If del_timer() fails, it's
1192 * guaranteed that the timer is not queued anywhere and not
1193 * running on the local CPU.
1194 */
1195 if (likely(del_timer(&dwork->timer)))
1196 return 1;
1197 }
1198
1199 /* try to claim PENDING the normal way */
1200 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
1201 return 0;
1202
1203 /*
1204 * The queueing is in progress, or it is already queued. Try to
1205 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
1206 */
1207 pool = get_work_pool(work);
1208 if (!pool)
1209 goto fail;
1210
1211 spin_lock(&pool->lock);
1212 /*
1213 * work->data is guaranteed to point to pwq only while the work
1214 * item is queued on pwq->wq, and both updating work->data to point
1215 * to pwq on queueing and to pool on dequeueing are done under
1216 * pwq->pool->lock. This in turn guarantees that, if work->data
1217 * points to pwq which is associated with a locked pool, the work
1218 * item is currently queued on that pool.
1219 */
1220 pwq = get_work_pwq(work);
1221 if (pwq && pwq->pool == pool) {
1222 debug_work_deactivate(work);
1223
1224 /*
1225 * A delayed work item cannot be grabbed directly because
1226 * it might have linked NO_COLOR work items which, if left
1227 * on the delayed_list, will confuse pwq->nr_active
1228 * management later on and cause stall. Make sure the work
1229 * item is activated before grabbing.
1230 */
1231 if (*work_data_bits(work) & WORK_STRUCT_DELAYED)
1232 pwq_activate_delayed_work(work);
1233
1234 list_del_init(&work->entry);
1235 pwq_dec_nr_in_flight(get_work_pwq(work), get_work_color(work));
1236
1237 /* work->data points to pwq iff queued, point to pool */
1238 set_work_pool_and_keep_pending(work, pool->id);
1239
1240 spin_unlock(&pool->lock);
1241 return 1;
1242 }
1243 spin_unlock(&pool->lock);
1244 fail:
1245 local_irq_restore(*flags);
1246 if (work_is_canceling(work))
1247 return -ENOENT;
1248 cpu_relax();
1249 return -EAGAIN;
1250 }
1251
1252 /**
1253 * insert_work - insert a work into a pool
1254 * @pwq: pwq @work belongs to
1255 * @work: work to insert
1256 * @head: insertion point
1257 * @extra_flags: extra WORK_STRUCT_* flags to set
1258 *
1259 * Insert @work which belongs to @pwq after @head. @extra_flags is or'd to
1260 * work_struct flags.
1261 *
1262 * CONTEXT:
1263 * spin_lock_irq(pool->lock).
1264 */
1265 static void insert_work(struct pool_workqueue *pwq, struct work_struct *work,
1266 struct list_head *head, unsigned int extra_flags)
1267 {
1268 struct worker_pool *pool = pwq->pool;
1269
1270 /* we own @work, set data and link */
1271 set_work_pwq(work, pwq, extra_flags);
1272 list_add_tail(&work->entry, head);
1273 get_pwq(pwq);
1274
1275 /*
1276 * Ensure either wq_worker_sleeping() sees the above
1277 * list_add_tail() or we see zero nr_running to avoid workers lying
1278 * around lazily while there are works to be processed.
1279 */
1280 smp_mb();
1281
1282 if (__need_more_worker(pool))
1283 wake_up_worker(pool);
1284 }
1285
1286 /*
1287 * Test whether @work is being queued from another work executing on the
1288 * same workqueue.
1289 */
1290 static bool is_chained_work(struct workqueue_struct *wq)
1291 {
1292 struct worker *worker;
1293
1294 worker = current_wq_worker();
1295 /*
1296 * Return %true iff I'm a worker execuing a work item on @wq. If
1297 * I'm @worker, it's safe to dereference it without locking.
1298 */
1299 return worker && worker->current_pwq->wq == wq;
1300 }
1301
1302 static void __queue_work(int cpu, struct workqueue_struct *wq,
1303 struct work_struct *work)
1304 {
1305 struct pool_workqueue *pwq;
1306 struct worker_pool *last_pool;
1307 struct list_head *worklist;
1308 unsigned int work_flags;
1309 unsigned int req_cpu = cpu;
1310
1311 /*
1312 * While a work item is PENDING && off queue, a task trying to
1313 * steal the PENDING will busy-loop waiting for it to either get
1314 * queued or lose PENDING. Grabbing PENDING and queueing should
1315 * happen with IRQ disabled.
1316 */
1317 WARN_ON_ONCE(!irqs_disabled());
1318
1319 debug_work_activate(work);
1320
1321 /* if draining, only works from the same workqueue are allowed */
1322 if (unlikely(wq->flags & __WQ_DRAINING) &&
1323 WARN_ON_ONCE(!is_chained_work(wq)))
1324 return;
1325 retry:
1326 if (req_cpu == WORK_CPU_UNBOUND)
1327 cpu = raw_smp_processor_id();
1328
1329 /* pwq which will be used unless @work is executing elsewhere */
1330 if (!(wq->flags & WQ_UNBOUND))
1331 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
1332 else
1333 pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
1334
1335 /*
1336 * If @work was previously on a different pool, it might still be
1337 * running there, in which case the work needs to be queued on that
1338 * pool to guarantee non-reentrancy.
1339 */
1340 last_pool = get_work_pool(work);
1341 if (last_pool && last_pool != pwq->pool) {
1342 struct worker *worker;
1343
1344 spin_lock(&last_pool->lock);
1345
1346 worker = find_worker_executing_work(last_pool, work);
1347
1348 if (worker && worker->current_pwq->wq == wq) {
1349 pwq = worker->current_pwq;
1350 } else {
1351 /* meh... not running there, queue here */
1352 spin_unlock(&last_pool->lock);
1353 spin_lock(&pwq->pool->lock);
1354 }
1355 } else {
1356 spin_lock(&pwq->pool->lock);
1357 }
1358
1359 /*
1360 * pwq is determined and locked. For unbound pools, we could have
1361 * raced with pwq release and it could already be dead. If its
1362 * refcnt is zero, repeat pwq selection. Note that pwqs never die
1363 * without another pwq replacing it in the numa_pwq_tbl or while
1364 * work items are executing on it, so the retrying is guaranteed to
1365 * make forward-progress.
1366 */
1367 if (unlikely(!pwq->refcnt)) {
1368 if (wq->flags & WQ_UNBOUND) {
1369 spin_unlock(&pwq->pool->lock);
1370 cpu_relax();
1371 goto retry;
1372 }
1373 /* oops */
1374 WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt",
1375 wq->name, cpu);
1376 }
1377
1378 /* pwq determined, queue */
1379 trace_workqueue_queue_work(req_cpu, pwq, work);
1380
1381 if (WARN_ON(!list_empty(&work->entry))) {
1382 spin_unlock(&pwq->pool->lock);
1383 return;
1384 }
1385
1386 pwq->nr_in_flight[pwq->work_color]++;
1387 work_flags = work_color_to_flags(pwq->work_color);
1388
1389 if (likely(pwq->nr_active < pwq->max_active)) {
1390 trace_workqueue_activate_work(work);
1391 pwq->nr_active++;
1392 worklist = &pwq->pool->worklist;
1393 } else {
1394 work_flags |= WORK_STRUCT_DELAYED;
1395 worklist = &pwq->delayed_works;
1396 }
1397
1398 insert_work(pwq, work, worklist, work_flags);
1399
1400 spin_unlock(&pwq->pool->lock);
1401 }
1402
1403 /**
1404 * queue_work_on - queue work on specific cpu
1405 * @cpu: CPU number to execute work on
1406 * @wq: workqueue to use
1407 * @work: work to queue
1408 *
1409 * We queue the work to a specific CPU, the caller must ensure it
1410 * can't go away.
1411 *
1412 * Return: %false if @work was already on a queue, %true otherwise.
1413 */
1414 bool queue_work_on(int cpu, struct workqueue_struct *wq,
1415 struct work_struct *work)
1416 {
1417 bool ret = false;
1418 unsigned long flags;
1419
1420 local_irq_save(flags);
1421
1422 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1423 __queue_work(cpu, wq, work);
1424 ret = true;
1425 }
1426
1427 local_irq_restore(flags);
1428 return ret;
1429 }
1430 EXPORT_SYMBOL(queue_work_on);
1431
1432 void delayed_work_timer_fn(unsigned long __data)
1433 {
1434 struct delayed_work *dwork = (struct delayed_work *)__data;
1435
1436 /* should have been called from irqsafe timer with irq already off */
1437 __queue_work(dwork->cpu, dwork->wq, &dwork->work);
1438 }
1439 EXPORT_SYMBOL(delayed_work_timer_fn);
1440
1441 static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
1442 struct delayed_work *dwork, unsigned long delay)
1443 {
1444 struct timer_list *timer = &dwork->timer;
1445 struct work_struct *work = &dwork->work;
1446
1447 WARN_ON_ONCE(timer->function != delayed_work_timer_fn ||
1448 timer->data != (unsigned long)dwork);
1449 WARN_ON_ONCE(timer_pending(timer));
1450 WARN_ON_ONCE(!list_empty(&work->entry));
1451
1452 /*
1453 * If @delay is 0, queue @dwork->work immediately. This is for
1454 * both optimization and correctness. The earliest @timer can
1455 * expire is on the closest next tick and delayed_work users depend
1456 * on that there's no such delay when @delay is 0.
1457 */
1458 if (!delay) {
1459 __queue_work(cpu, wq, &dwork->work);
1460 return;
1461 }
1462
1463 timer_stats_timer_set_start_info(&dwork->timer);
1464
1465 dwork->wq = wq;
1466 dwork->cpu = cpu;
1467 timer->expires = jiffies + delay;
1468
1469 if (unlikely(cpu != WORK_CPU_UNBOUND))
1470 add_timer_on(timer, cpu);
1471 else
1472 add_timer(timer);
1473 }
1474
1475 /**
1476 * queue_delayed_work_on - queue work on specific CPU after delay
1477 * @cpu: CPU number to execute work on
1478 * @wq: workqueue to use
1479 * @dwork: work to queue
1480 * @delay: number of jiffies to wait before queueing
1481 *
1482 * Return: %false if @work was already on a queue, %true otherwise. If
1483 * @delay is zero and @dwork is idle, it will be scheduled for immediate
1484 * execution.
1485 */
1486 bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
1487 struct delayed_work *dwork, unsigned long delay)
1488 {
1489 struct work_struct *work = &dwork->work;
1490 bool ret = false;
1491 unsigned long flags;
1492
1493 /* read the comment in __queue_work() */
1494 local_irq_save(flags);
1495
1496 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1497 __queue_delayed_work(cpu, wq, dwork, delay);
1498 ret = true;
1499 }
1500
1501 local_irq_restore(flags);
1502 return ret;
1503 }
1504 EXPORT_SYMBOL(queue_delayed_work_on);
1505
1506 /**
1507 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
1508 * @cpu: CPU number to execute work on
1509 * @wq: workqueue to use
1510 * @dwork: work to queue
1511 * @delay: number of jiffies to wait before queueing
1512 *
1513 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
1514 * modify @dwork's timer so that it expires after @delay. If @delay is
1515 * zero, @work is guaranteed to be scheduled immediately regardless of its
1516 * current state.
1517 *
1518 * Return: %false if @dwork was idle and queued, %true if @dwork was
1519 * pending and its timer was modified.
1520 *
1521 * This function is safe to call from any context including IRQ handler.
1522 * See try_to_grab_pending() for details.
1523 */
1524 bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
1525 struct delayed_work *dwork, unsigned long delay)
1526 {
1527 unsigned long flags;
1528 int ret;
1529
1530 do {
1531 ret = try_to_grab_pending(&dwork->work, true, &flags);
1532 } while (unlikely(ret == -EAGAIN));
1533
1534 if (likely(ret >= 0)) {
1535 __queue_delayed_work(cpu, wq, dwork, delay);
1536 local_irq_restore(flags);
1537 }
1538
1539 /* -ENOENT from try_to_grab_pending() becomes %true */
1540 return ret;
1541 }
1542 EXPORT_SYMBOL_GPL(mod_delayed_work_on);
1543
1544 /**
1545 * worker_enter_idle - enter idle state
1546 * @worker: worker which is entering idle state
1547 *
1548 * @worker is entering idle state. Update stats and idle timer if
1549 * necessary.
1550 *
1551 * LOCKING:
1552 * spin_lock_irq(pool->lock).
1553 */
1554 static void worker_enter_idle(struct worker *worker)
1555 {
1556 struct worker_pool *pool = worker->pool;
1557
1558 if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) ||
1559 WARN_ON_ONCE(!list_empty(&worker->entry) &&
1560 (worker->hentry.next || worker->hentry.pprev)))
1561 return;
1562
1563 /* can't use worker_set_flags(), also called from start_worker() */
1564 worker->flags |= WORKER_IDLE;
1565 pool->nr_idle++;
1566 worker->last_active = jiffies;
1567
1568 /* idle_list is LIFO */
1569 list_add(&worker->entry, &pool->idle_list);
1570
1571 if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
1572 mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
1573
1574 /*
1575 * Sanity check nr_running. Because wq_unbind_fn() releases
1576 * pool->lock between setting %WORKER_UNBOUND and zapping
1577 * nr_running, the warning may trigger spuriously. Check iff
1578 * unbind is not in progress.
1579 */
1580 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
1581 pool->nr_workers == pool->nr_idle &&
1582 atomic_read(&pool->nr_running));
1583 }
1584
1585 /**
1586 * worker_leave_idle - leave idle state
1587 * @worker: worker which is leaving idle state
1588 *
1589 * @worker is leaving idle state. Update stats.
1590 *
1591 * LOCKING:
1592 * spin_lock_irq(pool->lock).
1593 */
1594 static void worker_leave_idle(struct worker *worker)
1595 {
1596 struct worker_pool *pool = worker->pool;
1597
1598 if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE)))
1599 return;
1600 worker_clr_flags(worker, WORKER_IDLE);
1601 pool->nr_idle--;
1602 list_del_init(&worker->entry);
1603 }
1604
1605 static struct worker *alloc_worker(void)
1606 {
1607 struct worker *worker;
1608
1609 worker = kzalloc(sizeof(*worker), GFP_KERNEL);
1610 if (worker) {
1611 INIT_LIST_HEAD(&worker->entry);
1612 INIT_LIST_HEAD(&worker->scheduled);
1613 INIT_LIST_HEAD(&worker->node);
1614 /* on creation a worker is in !idle && prep state */
1615 worker->flags = WORKER_PREP;
1616 }
1617 return worker;
1618 }
1619
1620 /**
1621 * worker_attach_to_pool() - attach a worker to a pool
1622 * @worker: worker to be attached
1623 * @pool: the target pool
1624 *
1625 * Attach @worker to @pool. Once attached, the %WORKER_UNBOUND flag and
1626 * cpu-binding of @worker are kept coordinated with the pool across
1627 * cpu-[un]hotplugs.
1628 */
1629 static void worker_attach_to_pool(struct worker *worker,
1630 struct worker_pool *pool)
1631 {
1632 mutex_lock(&pool->attach_mutex);
1633
1634 /*
1635 * set_cpus_allowed_ptr() will fail if the cpumask doesn't have any
1636 * online CPUs. It'll be re-applied when any of the CPUs come up.
1637 */
1638 set_cpus_allowed_ptr(worker->task, pool->attrs->cpumask);
1639
1640 /*
1641 * The pool->attach_mutex ensures %POOL_DISASSOCIATED remains
1642 * stable across this function. See the comments above the
1643 * flag definition for details.
1644 */
1645 if (pool->flags & POOL_DISASSOCIATED)
1646 worker->flags |= WORKER_UNBOUND;
1647
1648 list_add_tail(&worker->node, &pool->workers);
1649
1650 mutex_unlock(&pool->attach_mutex);
1651 }
1652
1653 /**
1654 * worker_detach_from_pool() - detach a worker from its pool
1655 * @worker: worker which is attached to its pool
1656 * @pool: the pool @worker is attached to
1657 *
1658 * Undo the attaching which had been done in worker_attach_to_pool(). The
1659 * caller worker shouldn't access to the pool after detached except it has
1660 * other reference to the pool.
1661 */
1662 static void worker_detach_from_pool(struct worker *worker,
1663 struct worker_pool *pool)
1664 {
1665 struct completion *detach_completion = NULL;
1666
1667 mutex_lock(&pool->attach_mutex);
1668 list_del(&worker->node);
1669 if (list_empty(&pool->workers))
1670 detach_completion = pool->detach_completion;
1671 mutex_unlock(&pool->attach_mutex);
1672
1673 if (detach_completion)
1674 complete(detach_completion);
1675 }
1676
1677 /**
1678 * create_worker - create a new workqueue worker
1679 * @pool: pool the new worker will belong to
1680 *
1681 * Create a new worker which is attached to @pool. The new worker must be
1682 * started by start_worker().
1683 *
1684 * CONTEXT:
1685 * Might sleep. Does GFP_KERNEL allocations.
1686 *
1687 * Return:
1688 * Pointer to the newly created worker.
1689 */
1690 static struct worker *create_worker(struct worker_pool *pool)
1691 {
1692 struct worker *worker = NULL;
1693 int id = -1;
1694 char id_buf[16];
1695
1696 /* ID is needed to determine kthread name */
1697 id = ida_simple_get(&pool->worker_ida, 0, 0, GFP_KERNEL);
1698 if (id < 0)
1699 goto fail;
1700
1701 worker = alloc_worker();
1702 if (!worker)
1703 goto fail;
1704
1705 worker->pool = pool;
1706 worker->id = id;
1707
1708 if (pool->cpu >= 0)
1709 snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id,
1710 pool->attrs->nice < 0 ? "H" : "");
1711 else
1712 snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id);
1713
1714 worker->task = kthread_create_on_node(worker_thread, worker, pool->node,
1715 "kworker/%s", id_buf);
1716 if (IS_ERR(worker->task))
1717 goto fail;
1718
1719 set_user_nice(worker->task, pool->attrs->nice);
1720
1721 /* prevent userland from meddling with cpumask of workqueue workers */
1722 worker->task->flags |= PF_NO_SETAFFINITY;
1723
1724 /* successful, attach the worker to the pool */
1725 worker_attach_to_pool(worker, pool);
1726
1727 return worker;
1728
1729 fail:
1730 if (id >= 0)
1731 ida_simple_remove(&pool->worker_ida, id);
1732 kfree(worker);
1733 return NULL;
1734 }
1735
1736 /**
1737 * start_worker - start a newly created worker
1738 * @worker: worker to start
1739 *
1740 * Make the pool aware of @worker and start it.
1741 *
1742 * CONTEXT:
1743 * spin_lock_irq(pool->lock).
1744 */
1745 static void start_worker(struct worker *worker)
1746 {
1747 worker->pool->nr_workers++;
1748 worker_enter_idle(worker);
1749 wake_up_process(worker->task);
1750 }
1751
1752 /**
1753 * create_and_start_worker - create and start a worker for a pool
1754 * @pool: the target pool
1755 *
1756 * Grab the managership of @pool and create and start a new worker for it.
1757 *
1758 * Return: 0 on success. A negative error code otherwise.
1759 */
1760 static int create_and_start_worker(struct worker_pool *pool)
1761 {
1762 struct worker *worker;
1763
1764 worker = create_worker(pool);
1765 if (worker) {
1766 spin_lock_irq(&pool->lock);
1767 start_worker(worker);
1768 spin_unlock_irq(&pool->lock);
1769 }
1770
1771 return worker ? 0 : -ENOMEM;
1772 }
1773
1774 /**
1775 * destroy_worker - destroy a workqueue worker
1776 * @worker: worker to be destroyed
1777 *
1778 * Destroy @worker and adjust @pool stats accordingly. The worker should
1779 * be idle.
1780 *
1781 * CONTEXT:
1782 * spin_lock_irq(pool->lock).
1783 */
1784 static void destroy_worker(struct worker *worker)
1785 {
1786 struct worker_pool *pool = worker->pool;
1787
1788 lockdep_assert_held(&pool->lock);
1789
1790 /* sanity check frenzy */
1791 if (WARN_ON(worker->current_work) ||
1792 WARN_ON(!list_empty(&worker->scheduled)) ||
1793 WARN_ON(!(worker->flags & WORKER_IDLE)))
1794 return;
1795
1796 pool->nr_workers--;
1797 pool->nr_idle--;
1798
1799 list_del_init(&worker->entry);
1800 worker->flags |= WORKER_DIE;
1801 wake_up_process(worker->task);
1802 }
1803
1804 static void idle_worker_timeout(unsigned long __pool)
1805 {
1806 struct worker_pool *pool = (void *)__pool;
1807
1808 spin_lock_irq(&pool->lock);
1809
1810 while (too_many_workers(pool)) {
1811 struct worker *worker;
1812 unsigned long expires;
1813
1814 /* idle_list is kept in LIFO order, check the last one */
1815 worker = list_entry(pool->idle_list.prev, struct worker, entry);
1816 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
1817
1818 if (time_before(jiffies, expires)) {
1819 mod_timer(&pool->idle_timer, expires);
1820 break;
1821 }
1822
1823 destroy_worker(worker);
1824 }
1825
1826 spin_unlock_irq(&pool->lock);
1827 }
1828
1829 static void send_mayday(struct work_struct *work)
1830 {
1831 struct pool_workqueue *pwq = get_work_pwq(work);
1832 struct workqueue_struct *wq = pwq->wq;
1833
1834 lockdep_assert_held(&wq_mayday_lock);
1835
1836 if (!wq->rescuer)
1837 return;
1838
1839 /* mayday mayday mayday */
1840 if (list_empty(&pwq->mayday_node)) {
1841 /*
1842 * If @pwq is for an unbound wq, its base ref may be put at
1843 * any time due to an attribute change. Pin @pwq until the
1844 * rescuer is done with it.
1845 */
1846 get_pwq(pwq);
1847 list_add_tail(&pwq->mayday_node, &wq->maydays);
1848 wake_up_process(wq->rescuer->task);
1849 }
1850 }
1851
1852 static void pool_mayday_timeout(unsigned long __pool)
1853 {
1854 struct worker_pool *pool = (void *)__pool;
1855 struct work_struct *work;
1856
1857 spin_lock_irq(&wq_mayday_lock); /* for wq->maydays */
1858 spin_lock(&pool->lock);
1859
1860 if (need_to_create_worker(pool)) {
1861 /*
1862 * We've been trying to create a new worker but
1863 * haven't been successful. We might be hitting an
1864 * allocation deadlock. Send distress signals to
1865 * rescuers.
1866 */
1867 list_for_each_entry(work, &pool->worklist, entry)
1868 send_mayday(work);
1869 }
1870
1871 spin_unlock(&pool->lock);
1872 spin_unlock_irq(&wq_mayday_lock);
1873
1874 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
1875 }
1876
1877 /**
1878 * maybe_create_worker - create a new worker if necessary
1879 * @pool: pool to create a new worker for
1880 *
1881 * Create a new worker for @pool if necessary. @pool is guaranteed to
1882 * have at least one idle worker on return from this function. If
1883 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
1884 * sent to all rescuers with works scheduled on @pool to resolve
1885 * possible allocation deadlock.
1886 *
1887 * On return, need_to_create_worker() is guaranteed to be %false and
1888 * may_start_working() %true.
1889 *
1890 * LOCKING:
1891 * spin_lock_irq(pool->lock) which may be released and regrabbed
1892 * multiple times. Does GFP_KERNEL allocations. Called only from
1893 * manager.
1894 *
1895 * Return:
1896 * %false if no action was taken and pool->lock stayed locked, %true
1897 * otherwise.
1898 */
1899 static bool maybe_create_worker(struct worker_pool *pool)
1900 __releases(&pool->lock)
1901 __acquires(&pool->lock)
1902 {
1903 if (!need_to_create_worker(pool))
1904 return false;
1905 restart:
1906 spin_unlock_irq(&pool->lock);
1907
1908 /* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
1909 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
1910
1911 while (true) {
1912 struct worker *worker;
1913
1914 worker = create_worker(pool);
1915 if (worker) {
1916 del_timer_sync(&pool->mayday_timer);
1917 spin_lock_irq(&pool->lock);
1918 start_worker(worker);
1919 if (WARN_ON_ONCE(need_to_create_worker(pool)))
1920 goto restart;
1921 return true;
1922 }
1923
1924 if (!need_to_create_worker(pool))
1925 break;
1926
1927 __set_current_state(TASK_INTERRUPTIBLE);
1928 schedule_timeout(CREATE_COOLDOWN);
1929
1930 if (!need_to_create_worker(pool))
1931 break;
1932 }
1933
1934 del_timer_sync(&pool->mayday_timer);
1935 spin_lock_irq(&pool->lock);
1936 if (need_to_create_worker(pool))
1937 goto restart;
1938 return true;
1939 }
1940
1941 /**
1942 * manage_workers - manage worker pool
1943 * @worker: self
1944 *
1945 * Assume the manager role and manage the worker pool @worker belongs
1946 * to. At any given time, there can be only zero or one manager per
1947 * pool. The exclusion is handled automatically by this function.
1948 *
1949 * The caller can safely start processing works on false return. On
1950 * true return, it's guaranteed that need_to_create_worker() is false
1951 * and may_start_working() is true.
1952 *
1953 * CONTEXT:
1954 * spin_lock_irq(pool->lock) which may be released and regrabbed
1955 * multiple times. Does GFP_KERNEL allocations.
1956 *
1957 * Return:
1958 * %false if the pool don't need management and the caller can safely start
1959 * processing works, %true indicates that the function released pool->lock
1960 * and reacquired it to perform some management function and that the
1961 * conditions that the caller verified while holding the lock before
1962 * calling the function might no longer be true.
1963 */
1964 static bool manage_workers(struct worker *worker)
1965 {
1966 struct worker_pool *pool = worker->pool;
1967 bool ret = false;
1968
1969 /*
1970 * Anyone who successfully grabs manager_arb wins the arbitration
1971 * and becomes the manager. mutex_trylock() on pool->manager_arb
1972 * failure while holding pool->lock reliably indicates that someone
1973 * else is managing the pool and the worker which failed trylock
1974 * can proceed to executing work items. This means that anyone
1975 * grabbing manager_arb is responsible for actually performing
1976 * manager duties. If manager_arb is grabbed and released without
1977 * actual management, the pool may stall indefinitely.
1978 */
1979 if (!mutex_trylock(&pool->manager_arb))
1980 return ret;
1981
1982 ret |= maybe_create_worker(pool);
1983
1984 mutex_unlock(&pool->manager_arb);
1985 return ret;
1986 }
1987
1988 /**
1989 * process_one_work - process single work
1990 * @worker: self
1991 * @work: work to process
1992 *
1993 * Process @work. This function contains all the logics necessary to
1994 * process a single work including synchronization against and
1995 * interaction with other workers on the same cpu, queueing and
1996 * flushing. As long as context requirement is met, any worker can
1997 * call this function to process a work.
1998 *
1999 * CONTEXT:
2000 * spin_lock_irq(pool->lock) which is released and regrabbed.
2001 */
2002 static void process_one_work(struct worker *worker, struct work_struct *work)
2003 __releases(&pool->lock)
2004 __acquires(&pool->lock)
2005 {
2006 struct pool_workqueue *pwq = get_work_pwq(work);
2007 struct worker_pool *pool = worker->pool;
2008 bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE;
2009 int work_color;
2010 struct worker *collision;
2011 #ifdef CONFIG_LOCKDEP
2012 /*
2013 * It is permissible to free the struct work_struct from
2014 * inside the function that is called from it, this we need to
2015 * take into account for lockdep too. To avoid bogus "held
2016 * lock freed" warnings as well as problems when looking into
2017 * work->lockdep_map, make a copy and use that here.
2018 */
2019 struct lockdep_map lockdep_map;
2020
2021 lockdep_copy_map(&lockdep_map, &work->lockdep_map);
2022 #endif
2023 /*
2024 * Ensure we're on the correct CPU. DISASSOCIATED test is
2025 * necessary to avoid spurious warnings from rescuers servicing the
2026 * unbound or a disassociated pool.
2027 */
2028 WARN_ON_ONCE(!(worker->flags & WORKER_UNBOUND) &&
2029 !(pool->flags & POOL_DISASSOCIATED) &&
2030 raw_smp_processor_id() != pool->cpu);
2031
2032 /*
2033 * A single work shouldn't be executed concurrently by
2034 * multiple workers on a single cpu. Check whether anyone is
2035 * already processing the work. If so, defer the work to the
2036 * currently executing one.
2037 */
2038 collision = find_worker_executing_work(pool, work);
2039 if (unlikely(collision)) {
2040 move_linked_works(work, &collision->scheduled, NULL);
2041 return;
2042 }
2043
2044 /* claim and dequeue */
2045 debug_work_deactivate(work);
2046 hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
2047 worker->current_work = work;
2048 worker->current_func = work->func;
2049 worker->current_pwq = pwq;
2050 work_color = get_work_color(work);
2051
2052 list_del_init(&work->entry);
2053
2054 /*
2055 * CPU intensive works don't participate in concurrency
2056 * management. They're the scheduler's responsibility.
2057 */
2058 if (unlikely(cpu_intensive))
2059 worker_set_flags(worker, WORKER_CPU_INTENSIVE, true);
2060
2061 /*
2062 * Unbound pool isn't concurrency managed and work items should be
2063 * executed ASAP. Wake up another worker if necessary.
2064 */
2065 if ((worker->flags & WORKER_UNBOUND) && need_more_worker(pool))
2066 wake_up_worker(pool);
2067
2068 /*
2069 * Record the last pool and clear PENDING which should be the last
2070 * update to @work. Also, do this inside @pool->lock so that
2071 * PENDING and queued state changes happen together while IRQ is
2072 * disabled.
2073 */
2074 set_work_pool_and_clear_pending(work, pool->id);
2075
2076 spin_unlock_irq(&pool->lock);
2077
2078 lock_map_acquire_read(&pwq->wq->lockdep_map);
2079 lock_map_acquire(&lockdep_map);
2080 trace_workqueue_execute_start(work);
2081 worker->current_func(work);
2082 /*
2083 * While we must be careful to not use "work" after this, the trace
2084 * point will only record its address.
2085 */
2086 trace_workqueue_execute_end(work);
2087 lock_map_release(&lockdep_map);
2088 lock_map_release(&pwq->wq->lockdep_map);
2089
2090 if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
2091 pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
2092 " last function: %pf\n",
2093 current->comm, preempt_count(), task_pid_nr(current),
2094 worker->current_func);
2095 debug_show_held_locks(current);
2096 dump_stack();
2097 }
2098
2099 /*
2100 * The following prevents a kworker from hogging CPU on !PREEMPT
2101 * kernels, where a requeueing work item waiting for something to
2102 * happen could deadlock with stop_machine as such work item could
2103 * indefinitely requeue itself while all other CPUs are trapped in
2104 * stop_machine.
2105 */
2106 cond_resched();
2107
2108 spin_lock_irq(&pool->lock);
2109
2110 /* clear cpu intensive status */
2111 if (unlikely(cpu_intensive))
2112 worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
2113
2114 /* we're done with it, release */
2115 hash_del(&worker->hentry);
2116 worker->current_work = NULL;
2117 worker->current_func = NULL;
2118 worker->current_pwq = NULL;
2119 worker->desc_valid = false;
2120 pwq_dec_nr_in_flight(pwq, work_color);
2121 }
2122
2123 /**
2124 * process_scheduled_works - process scheduled works
2125 * @worker: self
2126 *
2127 * Process all scheduled works. Please note that the scheduled list
2128 * may change while processing a work, so this function repeatedly
2129 * fetches a work from the top and executes it.
2130 *
2131 * CONTEXT:
2132 * spin_lock_irq(pool->lock) which may be released and regrabbed
2133 * multiple times.
2134 */
2135 static void process_scheduled_works(struct worker *worker)
2136 {
2137 while (!list_empty(&worker->scheduled)) {
2138 struct work_struct *work = list_first_entry(&worker->scheduled,
2139 struct work_struct, entry);
2140 process_one_work(worker, work);
2141 }
2142 }
2143
2144 /**
2145 * worker_thread - the worker thread function
2146 * @__worker: self
2147 *
2148 * The worker thread function. All workers belong to a worker_pool -
2149 * either a per-cpu one or dynamic unbound one. These workers process all
2150 * work items regardless of their specific target workqueue. The only
2151 * exception is work items which belong to workqueues with a rescuer which
2152 * will be explained in rescuer_thread().
2153 *
2154 * Return: 0
2155 */
2156 static int worker_thread(void *__worker)
2157 {
2158 struct worker *worker = __worker;
2159 struct worker_pool *pool = worker->pool;
2160
2161 /* tell the scheduler that this is a workqueue worker */
2162 worker->task->flags |= PF_WQ_WORKER;
2163 woke_up:
2164 spin_lock_irq(&pool->lock);
2165
2166 /* am I supposed to die? */
2167 if (unlikely(worker->flags & WORKER_DIE)) {
2168 spin_unlock_irq(&pool->lock);
2169 WARN_ON_ONCE(!list_empty(&worker->entry));
2170 worker->task->flags &= ~PF_WQ_WORKER;
2171
2172 set_task_comm(worker->task, "kworker/dying");
2173 ida_simple_remove(&pool->worker_ida, worker->id);
2174 worker_detach_from_pool(worker, pool);
2175 kfree(worker);
2176 return 0;
2177 }
2178
2179 worker_leave_idle(worker);
2180 recheck:
2181 /* no more worker necessary? */
2182 if (!need_more_worker(pool))
2183 goto sleep;
2184
2185 /* do we need to manage? */
2186 if (unlikely(!may_start_working(pool)) && manage_workers(worker))
2187 goto recheck;
2188
2189 /*
2190 * ->scheduled list can only be filled while a worker is
2191 * preparing to process a work or actually processing it.
2192 * Make sure nobody diddled with it while I was sleeping.
2193 */
2194 WARN_ON_ONCE(!list_empty(&worker->scheduled));
2195
2196 /*
2197 * Finish PREP stage. We're guaranteed to have at least one idle
2198 * worker or that someone else has already assumed the manager
2199 * role. This is where @worker starts participating in concurrency
2200 * management if applicable and concurrency management is restored
2201 * after being rebound. See rebind_workers() for details.
2202 */
2203 worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND);
2204
2205 do {
2206 struct work_struct *work =
2207 list_first_entry(&pool->worklist,
2208 struct work_struct, entry);
2209
2210 if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
2211 /* optimization path, not strictly necessary */
2212 process_one_work(worker, work);
2213 if (unlikely(!list_empty(&worker->scheduled)))
2214 process_scheduled_works(worker);
2215 } else {
2216 move_linked_works(work, &worker->scheduled, NULL);
2217 process_scheduled_works(worker);
2218 }
2219 } while (keep_working(pool));
2220
2221 worker_set_flags(worker, WORKER_PREP, false);
2222 sleep:
2223 /*
2224 * pool->lock is held and there's no work to process and no need to
2225 * manage, sleep. Workers are woken up only while holding
2226 * pool->lock or from local cpu, so setting the current state
2227 * before releasing pool->lock is enough to prevent losing any
2228 * event.
2229 */
2230 worker_enter_idle(worker);
2231 __set_current_state(TASK_INTERRUPTIBLE);
2232 spin_unlock_irq(&pool->lock);
2233 schedule();
2234 goto woke_up;
2235 }
2236
2237 /**
2238 * rescuer_thread - the rescuer thread function
2239 * @__rescuer: self
2240 *
2241 * Workqueue rescuer thread function. There's one rescuer for each
2242 * workqueue which has WQ_MEM_RECLAIM set.
2243 *
2244 * Regular work processing on a pool may block trying to create a new
2245 * worker which uses GFP_KERNEL allocation which has slight chance of
2246 * developing into deadlock if some works currently on the same queue
2247 * need to be processed to satisfy the GFP_KERNEL allocation. This is
2248 * the problem rescuer solves.
2249 *
2250 * When such condition is possible, the pool summons rescuers of all
2251 * workqueues which have works queued on the pool and let them process
2252 * those works so that forward progress can be guaranteed.
2253 *
2254 * This should happen rarely.
2255 *
2256 * Return: 0
2257 */
2258 static int rescuer_thread(void *__rescuer)
2259 {
2260 struct worker *rescuer = __rescuer;
2261 struct workqueue_struct *wq = rescuer->rescue_wq;
2262 struct list_head *scheduled = &rescuer->scheduled;
2263 bool should_stop;
2264
2265 set_user_nice(current, RESCUER_NICE_LEVEL);
2266
2267 /*
2268 * Mark rescuer as worker too. As WORKER_PREP is never cleared, it
2269 * doesn't participate in concurrency management.
2270 */
2271 rescuer->task->flags |= PF_WQ_WORKER;
2272 repeat:
2273 set_current_state(TASK_INTERRUPTIBLE);
2274
2275 /*
2276 * By the time the rescuer is requested to stop, the workqueue
2277 * shouldn't have any work pending, but @wq->maydays may still have
2278 * pwq(s) queued. This can happen by non-rescuer workers consuming
2279 * all the work items before the rescuer got to them. Go through
2280 * @wq->maydays processing before acting on should_stop so that the
2281 * list is always empty on exit.
2282 */
2283 should_stop = kthread_should_stop();
2284
2285 /* see whether any pwq is asking for help */
2286 spin_lock_irq(&wq_mayday_lock);
2287
2288 while (!list_empty(&wq->maydays)) {
2289 struct pool_workqueue *pwq = list_first_entry(&wq->maydays,
2290 struct pool_workqueue, mayday_node);
2291 struct worker_pool *pool = pwq->pool;
2292 struct work_struct *work, *n;
2293
2294 __set_current_state(TASK_RUNNING);
2295 list_del_init(&pwq->mayday_node);
2296
2297 spin_unlock_irq(&wq_mayday_lock);
2298
2299 worker_attach_to_pool(rescuer, pool);
2300
2301 spin_lock_irq(&pool->lock);
2302 rescuer->pool = pool;
2303
2304 /*
2305 * Slurp in all works issued via this workqueue and
2306 * process'em.
2307 */
2308 WARN_ON_ONCE(!list_empty(&rescuer->scheduled));
2309 list_for_each_entry_safe(work, n, &pool->worklist, entry)
2310 if (get_work_pwq(work) == pwq)
2311 move_linked_works(work, scheduled, &n);
2312
2313 process_scheduled_works(rescuer);
2314 spin_unlock_irq(&pool->lock);
2315
2316 worker_detach_from_pool(rescuer, pool);
2317
2318 spin_lock_irq(&pool->lock);
2319
2320 /*
2321 * Put the reference grabbed by send_mayday(). @pool won't
2322 * go away while we're holding its lock.
2323 */
2324 put_pwq(pwq);
2325
2326 /*
2327 * Leave this pool. If keep_working() is %true, notify a
2328 * regular worker; otherwise, we end up with 0 concurrency
2329 * and stalling the execution.
2330 */
2331 if (keep_working(pool))
2332 wake_up_worker(pool);
2333
2334 rescuer->pool = NULL;
2335 spin_unlock(&pool->lock);
2336 spin_lock(&wq_mayday_lock);
2337 }
2338
2339 spin_unlock_irq(&wq_mayday_lock);
2340
2341 if (should_stop) {
2342 __set_current_state(TASK_RUNNING);
2343 rescuer->task->flags &= ~PF_WQ_WORKER;
2344 return 0;
2345 }
2346
2347 /* rescuers should never participate in concurrency management */
2348 WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
2349 schedule();
2350 goto repeat;
2351 }
2352
2353 struct wq_barrier {
2354 struct work_struct work;
2355 struct completion done;
2356 };
2357
2358 static void wq_barrier_func(struct work_struct *work)
2359 {
2360 struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
2361 complete(&barr->done);
2362 }
2363
2364 /**
2365 * insert_wq_barrier - insert a barrier work
2366 * @pwq: pwq to insert barrier into
2367 * @barr: wq_barrier to insert
2368 * @target: target work to attach @barr to
2369 * @worker: worker currently executing @target, NULL if @target is not executing
2370 *
2371 * @barr is linked to @target such that @barr is completed only after
2372 * @target finishes execution. Please note that the ordering
2373 * guarantee is observed only with respect to @target and on the local
2374 * cpu.
2375 *
2376 * Currently, a queued barrier can't be canceled. This is because
2377 * try_to_grab_pending() can't determine whether the work to be
2378 * grabbed is at the head of the queue and thus can't clear LINKED
2379 * flag of the previous work while there must be a valid next work
2380 * after a work with LINKED flag set.
2381 *
2382 * Note that when @worker is non-NULL, @target may be modified
2383 * underneath us, so we can't reliably determine pwq from @target.
2384 *
2385 * CONTEXT:
2386 * spin_lock_irq(pool->lock).
2387 */
2388 static void insert_wq_barrier(struct pool_workqueue *pwq,
2389 struct wq_barrier *barr,
2390 struct work_struct *target, struct worker *worker)
2391 {
2392 struct list_head *head;
2393 unsigned int linked = 0;
2394
2395 /*
2396 * debugobject calls are safe here even with pool->lock locked
2397 * as we know for sure that this will not trigger any of the
2398 * checks and call back into the fixup functions where we
2399 * might deadlock.
2400 */
2401 INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
2402 __set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
2403 init_completion(&barr->done);
2404
2405 /*
2406 * If @target is currently being executed, schedule the
2407 * barrier to the worker; otherwise, put it after @target.
2408 */
2409 if (worker)
2410 head = worker->scheduled.next;
2411 else {
2412 unsigned long *bits = work_data_bits(target);
2413
2414 head = target->entry.next;
2415 /* there can already be other linked works, inherit and set */
2416 linked = *bits & WORK_STRUCT_LINKED;
2417 __set_bit(WORK_STRUCT_LINKED_BIT, bits);
2418 }
2419
2420 debug_work_activate(&barr->work);
2421 insert_work(pwq, &barr->work, head,
2422 work_color_to_flags(WORK_NO_COLOR) | linked);
2423 }
2424
2425 /**
2426 * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing
2427 * @wq: workqueue being flushed
2428 * @flush_color: new flush color, < 0 for no-op
2429 * @work_color: new work color, < 0 for no-op
2430 *
2431 * Prepare pwqs for workqueue flushing.
2432 *
2433 * If @flush_color is non-negative, flush_color on all pwqs should be
2434 * -1. If no pwq has in-flight commands at the specified color, all
2435 * pwq->flush_color's stay at -1 and %false is returned. If any pwq
2436 * has in flight commands, its pwq->flush_color is set to
2437 * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq
2438 * wakeup logic is armed and %true is returned.
2439 *
2440 * The caller should have initialized @wq->first_flusher prior to
2441 * calling this function with non-negative @flush_color. If
2442 * @flush_color is negative, no flush color update is done and %false
2443 * is returned.
2444 *
2445 * If @work_color is non-negative, all pwqs should have the same
2446 * work_color which is previous to @work_color and all will be
2447 * advanced to @work_color.
2448 *
2449 * CONTEXT:
2450 * mutex_lock(wq->mutex).
2451 *
2452 * Return:
2453 * %true if @flush_color >= 0 and there's something to flush. %false
2454 * otherwise.
2455 */
2456 static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq,
2457 int flush_color, int work_color)
2458 {
2459 bool wait = false;
2460 struct pool_workqueue *pwq;
2461
2462 if (flush_color >= 0) {
2463 WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush));
2464 atomic_set(&wq->nr_pwqs_to_flush, 1);
2465 }
2466
2467 for_each_pwq(pwq, wq) {
2468 struct worker_pool *pool = pwq->pool;
2469
2470 spin_lock_irq(&pool->lock);
2471
2472 if (flush_color >= 0) {
2473 WARN_ON_ONCE(pwq->flush_color != -1);
2474
2475 if (pwq->nr_in_flight[flush_color]) {
2476 pwq->flush_color = flush_color;
2477 atomic_inc(&wq->nr_pwqs_to_flush);
2478 wait = true;
2479 }
2480 }
2481
2482 if (work_color >= 0) {
2483 WARN_ON_ONCE(work_color != work_next_color(pwq->work_color));
2484 pwq->work_color = work_color;
2485 }
2486
2487 spin_unlock_irq(&pool->lock);
2488 }
2489
2490 if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush))
2491 complete(&wq->first_flusher->done);
2492
2493 return wait;
2494 }
2495
2496 /**
2497 * flush_workqueue - ensure that any scheduled work has run to completion.
2498 * @wq: workqueue to flush
2499 *
2500 * This function sleeps until all work items which were queued on entry
2501 * have finished execution, but it is not livelocked by new incoming ones.
2502 */
2503 void flush_workqueue(struct workqueue_struct *wq)
2504 {
2505 struct wq_flusher this_flusher = {
2506 .list = LIST_HEAD_INIT(this_flusher.list),
2507 .flush_color = -1,
2508 .done = COMPLETION_INITIALIZER_ONSTACK(this_flusher.done),
2509 };
2510 int next_color;
2511
2512 lock_map_acquire(&wq->lockdep_map);
2513 lock_map_release(&wq->lockdep_map);
2514
2515 mutex_lock(&wq->mutex);
2516
2517 /*
2518 * Start-to-wait phase
2519 */
2520 next_color = work_next_color(wq->work_color);
2521
2522 if (next_color != wq->flush_color) {
2523 /*
2524 * Color space is not full. The current work_color
2525 * becomes our flush_color and work_color is advanced
2526 * by one.
2527 */
2528 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow));
2529 this_flusher.flush_color = wq->work_color;
2530 wq->work_color = next_color;
2531
2532 if (!wq->first_flusher) {
2533 /* no flush in progress, become the first flusher */
2534 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2535
2536 wq->first_flusher = &this_flusher;
2537
2538 if (!flush_workqueue_prep_pwqs(wq, wq->flush_color,
2539 wq->work_color)) {
2540 /* nothing to flush, done */
2541 wq->flush_color = next_color;
2542 wq->first_flusher = NULL;
2543 goto out_unlock;
2544 }
2545 } else {
2546 /* wait in queue */
2547 WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color);
2548 list_add_tail(&this_flusher.list, &wq->flusher_queue);
2549 flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2550 }
2551 } else {
2552 /*
2553 * Oops, color space is full, wait on overflow queue.
2554 * The next flush completion will assign us
2555 * flush_color and transfer to flusher_queue.
2556 */
2557 list_add_tail(&this_flusher.list, &wq->flusher_overflow);
2558 }
2559
2560 mutex_unlock(&wq->mutex);
2561
2562 wait_for_completion(&this_flusher.done);
2563
2564 /*
2565 * Wake-up-and-cascade phase
2566 *
2567 * First flushers are responsible for cascading flushes and
2568 * handling overflow. Non-first flushers can simply return.
2569 */
2570 if (wq->first_flusher != &this_flusher)
2571 return;
2572
2573 mutex_lock(&wq->mutex);
2574
2575 /* we might have raced, check again with mutex held */
2576 if (wq->first_flusher != &this_flusher)
2577 goto out_unlock;
2578
2579 wq->first_flusher = NULL;
2580
2581 WARN_ON_ONCE(!list_empty(&this_flusher.list));
2582 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2583
2584 while (true) {
2585 struct wq_flusher *next, *tmp;
2586
2587 /* complete all the flushers sharing the current flush color */
2588 list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
2589 if (next->flush_color != wq->flush_color)
2590 break;
2591 list_del_init(&next->list);
2592 complete(&next->done);
2593 }
2594
2595 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) &&
2596 wq->flush_color != work_next_color(wq->work_color));
2597
2598 /* this flush_color is finished, advance by one */
2599 wq->flush_color = work_next_color(wq->flush_color);
2600
2601 /* one color has been freed, handle overflow queue */
2602 if (!list_empty(&wq->flusher_overflow)) {
2603 /*
2604 * Assign the same color to all overflowed
2605 * flushers, advance work_color and append to
2606 * flusher_queue. This is the start-to-wait
2607 * phase for these overflowed flushers.
2608 */
2609 list_for_each_entry(tmp, &wq->flusher_overflow, list)
2610 tmp->flush_color = wq->work_color;
2611
2612 wq->work_color = work_next_color(wq->work_color);
2613
2614 list_splice_tail_init(&wq->flusher_overflow,
2615 &wq->flusher_queue);
2616 flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2617 }
2618
2619 if (list_empty(&wq->flusher_queue)) {
2620 WARN_ON_ONCE(wq->flush_color != wq->work_color);
2621 break;
2622 }
2623
2624 /*
2625 * Need to flush more colors. Make the next flusher
2626 * the new first flusher and arm pwqs.
2627 */
2628 WARN_ON_ONCE(wq->flush_color == wq->work_color);
2629 WARN_ON_ONCE(wq->flush_color != next->flush_color);
2630
2631 list_del_init(&next->list);
2632 wq->first_flusher = next;
2633
2634 if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1))
2635 break;
2636
2637 /*
2638 * Meh... this color is already done, clear first
2639 * flusher and repeat cascading.
2640 */
2641 wq->first_flusher = NULL;
2642 }
2643
2644 out_unlock:
2645 mutex_unlock(&wq->mutex);
2646 }
2647 EXPORT_SYMBOL_GPL(flush_workqueue);
2648
2649 /**
2650 * drain_workqueue - drain a workqueue
2651 * @wq: workqueue to drain
2652 *
2653 * Wait until the workqueue becomes empty. While draining is in progress,
2654 * only chain queueing is allowed. IOW, only currently pending or running
2655 * work items on @wq can queue further work items on it. @wq is flushed
2656 * repeatedly until it becomes empty. The number of flushing is detemined
2657 * by the depth of chaining and should be relatively short. Whine if it
2658 * takes too long.
2659 */
2660 void drain_workqueue(struct workqueue_struct *wq)
2661 {
2662 unsigned int flush_cnt = 0;
2663 struct pool_workqueue *pwq;
2664
2665 /*
2666 * __queue_work() needs to test whether there are drainers, is much
2667 * hotter than drain_workqueue() and already looks at @wq->flags.
2668 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers.
2669 */
2670 mutex_lock(&wq->mutex);
2671 if (!wq->nr_drainers++)
2672 wq->flags |= __WQ_DRAINING;
2673 mutex_unlock(&wq->mutex);
2674 reflush:
2675 flush_workqueue(wq);
2676
2677 mutex_lock(&wq->mutex);
2678
2679 for_each_pwq(pwq, wq) {
2680 bool drained;
2681
2682 spin_lock_irq(&pwq->pool->lock);
2683 drained = !pwq->nr_active && list_empty(&pwq->delayed_works);
2684 spin_unlock_irq(&pwq->pool->lock);
2685
2686 if (drained)
2687 continue;
2688
2689 if (++flush_cnt == 10 ||
2690 (flush_cnt % 100 == 0 && flush_cnt <= 1000))
2691 pr_warn("workqueue %s: drain_workqueue() isn't complete after %u tries\n",
2692 wq->name, flush_cnt);
2693
2694 mutex_unlock(&wq->mutex);
2695 goto reflush;
2696 }
2697
2698 if (!--wq->nr_drainers)
2699 wq->flags &= ~__WQ_DRAINING;
2700 mutex_unlock(&wq->mutex);
2701 }
2702 EXPORT_SYMBOL_GPL(drain_workqueue);
2703
2704 static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr)
2705 {
2706 struct worker *worker = NULL;
2707 struct worker_pool *pool;
2708 struct pool_workqueue *pwq;
2709
2710 might_sleep();
2711
2712 local_irq_disable();
2713 pool = get_work_pool(work);
2714 if (!pool) {
2715 local_irq_enable();
2716 return false;
2717 }
2718
2719 spin_lock(&pool->lock);
2720 /* see the comment in try_to_grab_pending() with the same code */
2721 pwq = get_work_pwq(work);
2722 if (pwq) {
2723 if (unlikely(pwq->pool != pool))
2724 goto already_gone;
2725 } else {
2726 worker = find_worker_executing_work(pool, work);
2727 if (!worker)
2728 goto already_gone;
2729 pwq = worker->current_pwq;
2730 }
2731
2732 insert_wq_barrier(pwq, barr, work, worker);
2733 spin_unlock_irq(&pool->lock);
2734
2735 /*
2736 * If @max_active is 1 or rescuer is in use, flushing another work
2737 * item on the same workqueue may lead to deadlock. Make sure the
2738 * flusher is not running on the same workqueue by verifying write
2739 * access.
2740 */
2741 if (pwq->wq->saved_max_active == 1 || pwq->wq->rescuer)
2742 lock_map_acquire(&pwq->wq->lockdep_map);
2743 else
2744 lock_map_acquire_read(&pwq->wq->lockdep_map);
2745 lock_map_release(&pwq->wq->lockdep_map);
2746
2747 return true;
2748 already_gone:
2749 spin_unlock_irq(&pool->lock);
2750 return false;
2751 }
2752
2753 /**
2754 * flush_work - wait for a work to finish executing the last queueing instance
2755 * @work: the work to flush
2756 *
2757 * Wait until @work has finished execution. @work is guaranteed to be idle
2758 * on return if it hasn't been requeued since flush started.
2759 *
2760 * Return:
2761 * %true if flush_work() waited for the work to finish execution,
2762 * %false if it was already idle.
2763 */
2764 bool flush_work(struct work_struct *work)
2765 {
2766 struct wq_barrier barr;
2767
2768 lock_map_acquire(&work->lockdep_map);
2769 lock_map_release(&work->lockdep_map);
2770
2771 if (start_flush_work(work, &barr)) {
2772 wait_for_completion(&barr.done);
2773 destroy_work_on_stack(&barr.work);
2774 return true;
2775 } else {
2776 return false;
2777 }
2778 }
2779 EXPORT_SYMBOL_GPL(flush_work);
2780
2781 static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
2782 {
2783 unsigned long flags;
2784 int ret;
2785
2786 do {
2787 ret = try_to_grab_pending(work, is_dwork, &flags);
2788 /*
2789 * If someone else is canceling, wait for the same event it
2790 * would be waiting for before retrying.
2791 */
2792 if (unlikely(ret == -ENOENT))
2793 flush_work(work);
2794 } while (unlikely(ret < 0));
2795
2796 /* tell other tasks trying to grab @work to back off */
2797 mark_work_canceling(work);
2798 local_irq_restore(flags);
2799
2800 flush_work(work);
2801 clear_work_data(work);
2802 return ret;
2803 }
2804
2805 /**
2806 * cancel_work_sync - cancel a work and wait for it to finish
2807 * @work: the work to cancel
2808 *
2809 * Cancel @work and wait for its execution to finish. This function
2810 * can be used even if the work re-queues itself or migrates to
2811 * another workqueue. On return from this function, @work is
2812 * guaranteed to be not pending or executing on any CPU.
2813 *
2814 * cancel_work_sync(&delayed_work->work) must not be used for
2815 * delayed_work's. Use cancel_delayed_work_sync() instead.
2816 *
2817 * The caller must ensure that the workqueue on which @work was last
2818 * queued can't be destroyed before this function returns.
2819 *
2820 * Return:
2821 * %true if @work was pending, %false otherwise.
2822 */
2823 bool cancel_work_sync(struct work_struct *work)
2824 {
2825 return __cancel_work_timer(work, false);
2826 }
2827 EXPORT_SYMBOL_GPL(cancel_work_sync);
2828
2829 /**
2830 * flush_delayed_work - wait for a dwork to finish executing the last queueing
2831 * @dwork: the delayed work to flush
2832 *
2833 * Delayed timer is cancelled and the pending work is queued for
2834 * immediate execution. Like flush_work(), this function only
2835 * considers the last queueing instance of @dwork.
2836 *
2837 * Return:
2838 * %true if flush_work() waited for the work to finish execution,
2839 * %false if it was already idle.
2840 */
2841 bool flush_delayed_work(struct delayed_work *dwork)
2842 {
2843 local_irq_disable();
2844 if (del_timer_sync(&dwork->timer))
2845 __queue_work(dwork->cpu, dwork->wq, &dwork->work);
2846 local_irq_enable();
2847 return flush_work(&dwork->work);
2848 }
2849 EXPORT_SYMBOL(flush_delayed_work);
2850
2851 /**
2852 * cancel_delayed_work - cancel a delayed work
2853 * @dwork: delayed_work to cancel
2854 *
2855 * Kill off a pending delayed_work.
2856 *
2857 * Return: %true if @dwork was pending and canceled; %false if it wasn't
2858 * pending.
2859 *
2860 * Note:
2861 * The work callback function may still be running on return, unless
2862 * it returns %true and the work doesn't re-arm itself. Explicitly flush or
2863 * use cancel_delayed_work_sync() to wait on it.
2864 *
2865 * This function is safe to call from any context including IRQ handler.
2866 */
2867 bool cancel_delayed_work(struct delayed_work *dwork)
2868 {
2869 unsigned long flags;
2870 int ret;
2871
2872 do {
2873 ret = try_to_grab_pending(&dwork->work, true, &flags);
2874 } while (unlikely(ret == -EAGAIN));
2875
2876 if (unlikely(ret < 0))
2877 return false;
2878
2879 set_work_pool_and_clear_pending(&dwork->work,
2880 get_work_pool_id(&dwork->work));
2881 local_irq_restore(flags);
2882 return ret;
2883 }
2884 EXPORT_SYMBOL(cancel_delayed_work);
2885
2886 /**
2887 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
2888 * @dwork: the delayed work cancel
2889 *
2890 * This is cancel_work_sync() for delayed works.
2891 *
2892 * Return:
2893 * %true if @dwork was pending, %false otherwise.
2894 */
2895 bool cancel_delayed_work_sync(struct delayed_work *dwork)
2896 {
2897 return __cancel_work_timer(&dwork->work, true);
2898 }
2899 EXPORT_SYMBOL(cancel_delayed_work_sync);
2900
2901 /**
2902 * schedule_on_each_cpu - execute a function synchronously on each online CPU
2903 * @func: the function to call
2904 *
2905 * schedule_on_each_cpu() executes @func on each online CPU using the
2906 * system workqueue and blocks until all CPUs have completed.
2907 * schedule_on_each_cpu() is very slow.
2908 *
2909 * Return:
2910 * 0 on success, -errno on failure.
2911 */
2912 int schedule_on_each_cpu(work_func_t func)
2913 {
2914 int cpu;
2915 struct work_struct __percpu *works;
2916
2917 works = alloc_percpu(struct work_struct);
2918 if (!works)
2919 return -ENOMEM;
2920
2921 get_online_cpus();
2922
2923 for_each_online_cpu(cpu) {
2924 struct work_struct *work = per_cpu_ptr(works, cpu);
2925
2926 INIT_WORK(work, func);
2927 schedule_work_on(cpu, work);
2928 }
2929
2930 for_each_online_cpu(cpu)
2931 flush_work(per_cpu_ptr(works, cpu));
2932
2933 put_online_cpus();
2934 free_percpu(works);
2935 return 0;
2936 }
2937
2938 /**
2939 * flush_scheduled_work - ensure that any scheduled work has run to completion.
2940 *
2941 * Forces execution of the kernel-global workqueue and blocks until its
2942 * completion.
2943 *
2944 * Think twice before calling this function! It's very easy to get into
2945 * trouble if you don't take great care. Either of the following situations
2946 * will lead to deadlock:
2947 *
2948 * One of the work items currently on the workqueue needs to acquire
2949 * a lock held by your code or its caller.
2950 *
2951 * Your code is running in the context of a work routine.
2952 *
2953 * They will be detected by lockdep when they occur, but the first might not
2954 * occur very often. It depends on what work items are on the workqueue and
2955 * what locks they need, which you have no control over.
2956 *
2957 * In most situations flushing the entire workqueue is overkill; you merely
2958 * need to know that a particular work item isn't queued and isn't running.
2959 * In such cases you should use cancel_delayed_work_sync() or
2960 * cancel_work_sync() instead.
2961 */
2962 void flush_scheduled_work(void)
2963 {
2964 flush_workqueue(system_wq);
2965 }
2966 EXPORT_SYMBOL(flush_scheduled_work);
2967
2968 /**
2969 * execute_in_process_context - reliably execute the routine with user context
2970 * @fn: the function to execute
2971 * @ew: guaranteed storage for the execute work structure (must
2972 * be available when the work executes)
2973 *
2974 * Executes the function immediately if process context is available,
2975 * otherwise schedules the function for delayed execution.
2976 *
2977 * Return: 0 - function was executed
2978 * 1 - function was scheduled for execution
2979 */
2980 int execute_in_process_context(work_func_t fn, struct execute_work *ew)
2981 {
2982 if (!in_interrupt()) {
2983 fn(&ew->work);
2984 return 0;
2985 }
2986
2987 INIT_WORK(&ew->work, fn);
2988 schedule_work(&ew->work);
2989
2990 return 1;
2991 }
2992 EXPORT_SYMBOL_GPL(execute_in_process_context);
2993
2994 #ifdef CONFIG_SYSFS
2995 /*
2996 * Workqueues with WQ_SYSFS flag set is visible to userland via
2997 * /sys/bus/workqueue/devices/WQ_NAME. All visible workqueues have the
2998 * following attributes.
2999 *
3000 * per_cpu RO bool : whether the workqueue is per-cpu or unbound
3001 * max_active RW int : maximum number of in-flight work items
3002 *
3003 * Unbound workqueues have the following extra attributes.
3004 *
3005 * id RO int : the associated pool ID
3006 * nice RW int : nice value of the workers
3007 * cpumask RW mask : bitmask of allowed CPUs for the workers
3008 */
3009 struct wq_device {
3010 struct workqueue_struct *wq;
3011 struct device dev;
3012 };
3013
3014 static struct workqueue_struct *dev_to_wq(struct device *dev)
3015 {
3016 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
3017
3018 return wq_dev->wq;
3019 }
3020
3021 static ssize_t per_cpu_show(struct device *dev, struct device_attribute *attr,
3022 char *buf)
3023 {
3024 struct workqueue_struct *wq = dev_to_wq(dev);
3025
3026 return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND));
3027 }
3028 static DEVICE_ATTR_RO(per_cpu);
3029
3030 static ssize_t max_active_show(struct device *dev,
3031 struct device_attribute *attr, char *buf)
3032 {
3033 struct workqueue_struct *wq = dev_to_wq(dev);
3034
3035 return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active);
3036 }
3037
3038 static ssize_t max_active_store(struct device *dev,
3039 struct device_attribute *attr, const char *buf,
3040 size_t count)
3041 {
3042 struct workqueue_struct *wq = dev_to_wq(dev);
3043 int val;
3044
3045 if (sscanf(buf, "%d", &val) != 1 || val <= 0)
3046 return -EINVAL;
3047
3048 workqueue_set_max_active(wq, val);
3049 return count;
3050 }
3051 static DEVICE_ATTR_RW(max_active);
3052
3053 static struct attribute *wq_sysfs_attrs[] = {
3054 &dev_attr_per_cpu.attr,
3055 &dev_attr_max_active.attr,
3056 NULL,
3057 };
3058 ATTRIBUTE_GROUPS(wq_sysfs);
3059
3060 static ssize_t wq_pool_ids_show(struct device *dev,
3061 struct device_attribute *attr, char *buf)
3062 {
3063 struct workqueue_struct *wq = dev_to_wq(dev);
3064 const char *delim = "";
3065 int node, written = 0;
3066
3067 rcu_read_lock_sched();
3068 for_each_node(node) {
3069 written += scnprintf(buf + written, PAGE_SIZE - written,
3070 "%s%d:%d", delim, node,
3071 unbound_pwq_by_node(wq, node)->pool->id);
3072 delim = " ";
3073 }
3074 written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
3075 rcu_read_unlock_sched();
3076
3077 return written;
3078 }
3079
3080 static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr,
3081 char *buf)
3082 {
3083 struct workqueue_struct *wq = dev_to_wq(dev);
3084 int written;
3085
3086 mutex_lock(&wq->mutex);
3087 written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice);
3088 mutex_unlock(&wq->mutex);
3089
3090 return written;
3091 }
3092
3093 /* prepare workqueue_attrs for sysfs store operations */
3094 static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq)
3095 {
3096 struct workqueue_attrs *attrs;
3097
3098 attrs = alloc_workqueue_attrs(GFP_KERNEL);
3099 if (!attrs)
3100 return NULL;
3101
3102 mutex_lock(&wq->mutex);
3103 copy_workqueue_attrs(attrs, wq->unbound_attrs);
3104 mutex_unlock(&wq->mutex);
3105 return attrs;
3106 }
3107
3108 static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr,
3109 const char *buf, size_t count)
3110 {
3111 struct workqueue_struct *wq = dev_to_wq(dev);
3112 struct workqueue_attrs *attrs;
3113 int ret;
3114
3115 attrs = wq_sysfs_prep_attrs(wq);
3116 if (!attrs)
3117 return -ENOMEM;
3118
3119 if (sscanf(buf, "%d", &attrs->nice) == 1 &&
3120 attrs->nice >= MIN_NICE && attrs->nice <= MAX_NICE)
3121 ret = apply_workqueue_attrs(wq, attrs);
3122 else
3123 ret = -EINVAL;
3124
3125 free_workqueue_attrs(attrs);
3126 return ret ?: count;
3127 }
3128
3129 static ssize_t wq_cpumask_show(struct device *dev,
3130 struct device_attribute *attr, char *buf)
3131 {
3132 struct workqueue_struct *wq = dev_to_wq(dev);
3133 int written;
3134
3135 mutex_lock(&wq->mutex);
3136 written = cpumask_scnprintf(buf, PAGE_SIZE, wq->unbound_attrs->cpumask);
3137 mutex_unlock(&wq->mutex);
3138
3139 written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
3140 return written;
3141 }
3142
3143 static ssize_t wq_cpumask_store(struct device *dev,
3144 struct device_attribute *attr,
3145 const char *buf, size_t count)
3146 {
3147 struct workqueue_struct *wq = dev_to_wq(dev);
3148 struct workqueue_attrs *attrs;
3149 int ret;
3150
3151 attrs = wq_sysfs_prep_attrs(wq);
3152 if (!attrs)
3153 return -ENOMEM;
3154
3155 ret = cpumask_parse(buf, attrs->cpumask);
3156 if (!ret)
3157 ret = apply_workqueue_attrs(wq, attrs);
3158
3159 free_workqueue_attrs(attrs);
3160 return ret ?: count;
3161 }
3162
3163 static ssize_t wq_numa_show(struct device *dev, struct device_attribute *attr,
3164 char *buf)
3165 {
3166 struct workqueue_struct *wq = dev_to_wq(dev);
3167 int written;
3168
3169 mutex_lock(&wq->mutex);
3170 written = scnprintf(buf, PAGE_SIZE, "%d\n",
3171 !wq->unbound_attrs->no_numa);
3172 mutex_unlock(&wq->mutex);
3173
3174 return written;
3175 }
3176
3177 static ssize_t wq_numa_store(struct device *dev, struct device_attribute *attr,
3178 const char *buf, size_t count)
3179 {
3180 struct workqueue_struct *wq = dev_to_wq(dev);
3181 struct workqueue_attrs *attrs;
3182 int v, ret;
3183
3184 attrs = wq_sysfs_prep_attrs(wq);
3185 if (!attrs)
3186 return -ENOMEM;
3187
3188 ret = -EINVAL;
3189 if (sscanf(buf, "%d", &v) == 1) {
3190 attrs->no_numa = !v;
3191 ret = apply_workqueue_attrs(wq, attrs);
3192 }
3193
3194 free_workqueue_attrs(attrs);
3195 return ret ?: count;
3196 }
3197
3198 static struct device_attribute wq_sysfs_unbound_attrs[] = {
3199 __ATTR(pool_ids, 0444, wq_pool_ids_show, NULL),
3200 __ATTR(nice, 0644, wq_nice_show, wq_nice_store),
3201 __ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store),
3202 __ATTR(numa, 0644, wq_numa_show, wq_numa_store),
3203 __ATTR_NULL,
3204 };
3205
3206 static struct bus_type wq_subsys = {
3207 .name = "workqueue",
3208 .dev_groups = wq_sysfs_groups,
3209 };
3210
3211 static int __init wq_sysfs_init(void)
3212 {
3213 return subsys_virtual_register(&wq_subsys, NULL);
3214 }
3215 core_initcall(wq_sysfs_init);
3216
3217 static void wq_device_release(struct device *dev)
3218 {
3219 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
3220
3221 kfree(wq_dev);
3222 }
3223
3224 /**
3225 * workqueue_sysfs_register - make a workqueue visible in sysfs
3226 * @wq: the workqueue to register
3227 *
3228 * Expose @wq in sysfs under /sys/bus/workqueue/devices.
3229 * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set
3230 * which is the preferred method.
3231 *
3232 * Workqueue user should use this function directly iff it wants to apply
3233 * workqueue_attrs before making the workqueue visible in sysfs; otherwise,
3234 * apply_workqueue_attrs() may race against userland updating the
3235 * attributes.
3236 *
3237 * Return: 0 on success, -errno on failure.
3238 */
3239 int workqueue_sysfs_register(struct workqueue_struct *wq)
3240 {
3241 struct wq_device *wq_dev;
3242 int ret;
3243
3244 /*
3245 * Adjusting max_active or creating new pwqs by applyting
3246 * attributes breaks ordering guarantee. Disallow exposing ordered
3247 * workqueues.
3248 */
3249 if (WARN_ON(wq->flags & __WQ_ORDERED))
3250 return -EINVAL;
3251
3252 wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL);
3253 if (!wq_dev)
3254 return -ENOMEM;
3255
3256 wq_dev->wq = wq;
3257 wq_dev->dev.bus = &wq_subsys;
3258 wq_dev->dev.init_name = wq->name;
3259 wq_dev->dev.release = wq_device_release;
3260
3261 /*
3262 * unbound_attrs are created separately. Suppress uevent until
3263 * everything is ready.
3264 */
3265 dev_set_uevent_suppress(&wq_dev->dev, true);
3266
3267 ret = device_register(&wq_dev->dev);
3268 if (ret) {
3269 kfree(wq_dev);
3270 wq->wq_dev = NULL;
3271 return ret;
3272 }
3273
3274 if (wq->flags & WQ_UNBOUND) {
3275 struct device_attribute *attr;
3276
3277 for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) {
3278 ret = device_create_file(&wq_dev->dev, attr);
3279 if (ret) {
3280 device_unregister(&wq_dev->dev);
3281 wq->wq_dev = NULL;
3282 return ret;
3283 }
3284 }
3285 }
3286
3287 kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD);
3288 return 0;
3289 }
3290
3291 /**
3292 * workqueue_sysfs_unregister - undo workqueue_sysfs_register()
3293 * @wq: the workqueue to unregister
3294 *
3295 * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister.
3296 */
3297 static void workqueue_sysfs_unregister(struct workqueue_struct *wq)
3298 {
3299 struct wq_device *wq_dev = wq->wq_dev;
3300
3301 if (!wq->wq_dev)
3302 return;
3303
3304 wq->wq_dev = NULL;
3305 device_unregister(&wq_dev->dev);
3306 }
3307 #else /* CONFIG_SYSFS */
3308 static void workqueue_sysfs_unregister(struct workqueue_struct *wq) { }
3309 #endif /* CONFIG_SYSFS */
3310
3311 /**
3312 * free_workqueue_attrs - free a workqueue_attrs
3313 * @attrs: workqueue_attrs to free
3314 *
3315 * Undo alloc_workqueue_attrs().
3316 */
3317 void free_workqueue_attrs(struct workqueue_attrs *attrs)
3318 {
3319 if (attrs) {
3320 free_cpumask_var(attrs->cpumask);
3321 kfree(attrs);
3322 }
3323 }
3324
3325 /**
3326 * alloc_workqueue_attrs - allocate a workqueue_attrs
3327 * @gfp_mask: allocation mask to use
3328 *
3329 * Allocate a new workqueue_attrs, initialize with default settings and
3330 * return it.
3331 *
3332 * Return: The allocated new workqueue_attr on success. %NULL on failure.
3333 */
3334 struct workqueue_attrs *alloc_workqueue_attrs(gfp_t gfp_mask)
3335 {
3336 struct workqueue_attrs *attrs;
3337
3338 attrs = kzalloc(sizeof(*attrs), gfp_mask);
3339 if (!attrs)
3340 goto fail;
3341 if (!alloc_cpumask_var(&attrs->cpumask, gfp_mask))
3342 goto fail;
3343
3344 cpumask_copy(attrs->cpumask, cpu_possible_mask);
3345 return attrs;
3346 fail:
3347 free_workqueue_attrs(attrs);
3348 return NULL;
3349 }
3350
3351 static void copy_workqueue_attrs(struct workqueue_attrs *to,
3352 const struct workqueue_attrs *from)
3353 {
3354 to->nice = from->nice;
3355 cpumask_copy(to->cpumask, from->cpumask);
3356 /*
3357 * Unlike hash and equality test, this function doesn't ignore
3358 * ->no_numa as it is used for both pool and wq attrs. Instead,
3359 * get_unbound_pool() explicitly clears ->no_numa after copying.
3360 */
3361 to->no_numa = from->no_numa;
3362 }
3363
3364 /* hash value of the content of @attr */
3365 static u32 wqattrs_hash(const struct workqueue_attrs *attrs)
3366 {
3367 u32 hash = 0;
3368
3369 hash = jhash_1word(attrs->nice, hash);
3370 hash = jhash(cpumask_bits(attrs->cpumask),
3371 BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash);
3372 return hash;
3373 }
3374
3375 /* content equality test */
3376 static bool wqattrs_equal(const struct workqueue_attrs *a,
3377 const struct workqueue_attrs *b)
3378 {
3379 if (a->nice != b->nice)
3380 return false;
3381 if (!cpumask_equal(a->cpumask, b->cpumask))
3382 return false;
3383 return true;
3384 }
3385
3386 /**
3387 * init_worker_pool - initialize a newly zalloc'd worker_pool
3388 * @pool: worker_pool to initialize
3389 *
3390 * Initiailize a newly zalloc'd @pool. It also allocates @pool->attrs.
3391 *
3392 * Return: 0 on success, -errno on failure. Even on failure, all fields
3393 * inside @pool proper are initialized and put_unbound_pool() can be called
3394 * on @pool safely to release it.
3395 */
3396 static int init_worker_pool(struct worker_pool *pool)
3397 {
3398 spin_lock_init(&pool->lock);
3399 pool->id = -1;
3400 pool->cpu = -1;
3401 pool->node = NUMA_NO_NODE;
3402 pool->flags |= POOL_DISASSOCIATED;
3403 INIT_LIST_HEAD(&pool->worklist);
3404 INIT_LIST_HEAD(&pool->idle_list);
3405 hash_init(pool->busy_hash);
3406
3407 init_timer_deferrable(&pool->idle_timer);
3408 pool->idle_timer.function = idle_worker_timeout;
3409 pool->idle_timer.data = (unsigned long)pool;
3410
3411 setup_timer(&pool->mayday_timer, pool_mayday_timeout,
3412 (unsigned long)pool);
3413
3414 mutex_init(&pool->manager_arb);
3415 mutex_init(&pool->attach_mutex);
3416 INIT_LIST_HEAD(&pool->workers);
3417
3418 ida_init(&pool->worker_ida);
3419 INIT_HLIST_NODE(&pool->hash_node);
3420 pool->refcnt = 1;
3421
3422 /* shouldn't fail above this point */
3423 pool->attrs = alloc_workqueue_attrs(GFP_KERNEL);
3424 if (!pool->attrs)
3425 return -ENOMEM;
3426 return 0;
3427 }
3428
3429 static void rcu_free_pool(struct rcu_head *rcu)
3430 {
3431 struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu);
3432
3433 ida_destroy(&pool->worker_ida);
3434 free_workqueue_attrs(pool->attrs);
3435 kfree(pool);
3436 }
3437
3438 /**
3439 * put_unbound_pool - put a worker_pool
3440 * @pool: worker_pool to put
3441 *
3442 * Put @pool. If its refcnt reaches zero, it gets destroyed in sched-RCU
3443 * safe manner. get_unbound_pool() calls this function on its failure path
3444 * and this function should be able to release pools which went through,
3445 * successfully or not, init_worker_pool().
3446 *
3447 * Should be called with wq_pool_mutex held.
3448 */
3449 static void put_unbound_pool(struct worker_pool *pool)
3450 {
3451 DECLARE_COMPLETION_ONSTACK(detach_completion);
3452 struct worker *worker;
3453
3454 lockdep_assert_held(&wq_pool_mutex);
3455
3456 if (--pool->refcnt)
3457 return;
3458
3459 /* sanity checks */
3460 if (WARN_ON(!(pool->flags & POOL_DISASSOCIATED)) ||
3461 WARN_ON(!list_empty(&pool->worklist)))
3462 return;
3463
3464 /* release id and unhash */
3465 if (pool->id >= 0)
3466 idr_remove(&worker_pool_idr, pool->id);
3467 hash_del(&pool->hash_node);
3468
3469 /*
3470 * Become the manager and destroy all workers. Grabbing
3471 * manager_arb prevents @pool's workers from blocking on
3472 * attach_mutex.
3473 */
3474 mutex_lock(&pool->manager_arb);
3475
3476 spin_lock_irq(&pool->lock);
3477 while ((worker = first_idle_worker(pool)))
3478 destroy_worker(worker);
3479 WARN_ON(pool->nr_workers || pool->nr_idle);
3480 spin_unlock_irq(&pool->lock);
3481
3482 mutex_lock(&pool->attach_mutex);
3483 if (!list_empty(&pool->workers))
3484 pool->detach_completion = &detach_completion;
3485 mutex_unlock(&pool->attach_mutex);
3486
3487 if (pool->detach_completion)
3488 wait_for_completion(pool->detach_completion);
3489
3490 mutex_unlock(&pool->manager_arb);
3491
3492 /* shut down the timers */
3493 del_timer_sync(&pool->idle_timer);
3494 del_timer_sync(&pool->mayday_timer);
3495
3496 /* sched-RCU protected to allow dereferences from get_work_pool() */
3497 call_rcu_sched(&pool->rcu, rcu_free_pool);
3498 }
3499
3500 /**
3501 * get_unbound_pool - get a worker_pool with the specified attributes
3502 * @attrs: the attributes of the worker_pool to get
3503 *
3504 * Obtain a worker_pool which has the same attributes as @attrs, bump the
3505 * reference count and return it. If there already is a matching
3506 * worker_pool, it will be used; otherwise, this function attempts to
3507 * create a new one.
3508 *
3509 * Should be called with wq_pool_mutex held.
3510 *
3511 * Return: On success, a worker_pool with the same attributes as @attrs.
3512 * On failure, %NULL.
3513 */
3514 static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs)
3515 {
3516 u32 hash = wqattrs_hash(attrs);
3517 struct worker_pool *pool;
3518 int node;
3519
3520 lockdep_assert_held(&wq_pool_mutex);
3521
3522 /* do we already have a matching pool? */
3523 hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) {
3524 if (wqattrs_equal(pool->attrs, attrs)) {
3525 pool->refcnt++;
3526 goto out_unlock;
3527 }
3528 }
3529
3530 /* nope, create a new one */
3531 pool = kzalloc(sizeof(*pool), GFP_KERNEL);
3532 if (!pool || init_worker_pool(pool) < 0)
3533 goto fail;
3534
3535 lockdep_set_subclass(&pool->lock, 1); /* see put_pwq() */
3536 copy_workqueue_attrs(pool->attrs, attrs);
3537
3538 /*
3539 * no_numa isn't a worker_pool attribute, always clear it. See
3540 * 'struct workqueue_attrs' comments for detail.
3541 */
3542 pool->attrs->no_numa = false;
3543
3544 /* if cpumask is contained inside a NUMA node, we belong to that node */
3545 if (wq_numa_enabled) {
3546 for_each_node(node) {
3547 if (cpumask_subset(pool->attrs->cpumask,
3548 wq_numa_possible_cpumask[node])) {
3549 pool->node = node;
3550 break;
3551 }
3552 }
3553 }
3554
3555 if (worker_pool_assign_id(pool) < 0)
3556 goto fail;
3557
3558 /* create and start the initial worker */
3559 if (create_and_start_worker(pool) < 0)
3560 goto fail;
3561
3562 /* install */
3563 hash_add(unbound_pool_hash, &pool->hash_node, hash);
3564 out_unlock:
3565 return pool;
3566 fail:
3567 if (pool)
3568 put_unbound_pool(pool);
3569 return NULL;
3570 }
3571
3572 static void rcu_free_pwq(struct rcu_head *rcu)
3573 {
3574 kmem_cache_free(pwq_cache,
3575 container_of(rcu, struct pool_workqueue, rcu));
3576 }
3577
3578 /*
3579 * Scheduled on system_wq by put_pwq() when an unbound pwq hits zero refcnt
3580 * and needs to be destroyed.
3581 */
3582 static void pwq_unbound_release_workfn(struct work_struct *work)
3583 {
3584 struct pool_workqueue *pwq = container_of(work, struct pool_workqueue,
3585 unbound_release_work);
3586 struct workqueue_struct *wq = pwq->wq;
3587 struct worker_pool *pool = pwq->pool;
3588 bool is_last;
3589
3590 if (WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND)))
3591 return;
3592
3593 /*
3594 * Unlink @pwq. Synchronization against wq->mutex isn't strictly
3595 * necessary on release but do it anyway. It's easier to verify
3596 * and consistent with the linking path.
3597 */
3598 mutex_lock(&wq->mutex);
3599 list_del_rcu(&pwq->pwqs_node);
3600 is_last = list_empty(&wq->pwqs);
3601 mutex_unlock(&wq->mutex);
3602
3603 mutex_lock(&wq_pool_mutex);
3604 put_unbound_pool(pool);
3605 mutex_unlock(&wq_pool_mutex);
3606
3607 call_rcu_sched(&pwq->rcu, rcu_free_pwq);
3608
3609 /*
3610 * If we're the last pwq going away, @wq is already dead and no one
3611 * is gonna access it anymore. Free it.
3612 */
3613 if (is_last) {
3614 free_workqueue_attrs(wq->unbound_attrs);
3615 kfree(wq);
3616 }
3617 }
3618
3619 /**
3620 * pwq_adjust_max_active - update a pwq's max_active to the current setting
3621 * @pwq: target pool_workqueue
3622 *
3623 * If @pwq isn't freezing, set @pwq->max_active to the associated
3624 * workqueue's saved_max_active and activate delayed work items
3625 * accordingly. If @pwq is freezing, clear @pwq->max_active to zero.
3626 */
3627 static void pwq_adjust_max_active(struct pool_workqueue *pwq)
3628 {
3629 struct workqueue_struct *wq = pwq->wq;
3630 bool freezable = wq->flags & WQ_FREEZABLE;
3631
3632 /* for @wq->saved_max_active */
3633 lockdep_assert_held(&wq->mutex);
3634
3635 /* fast exit for non-freezable wqs */
3636 if (!freezable && pwq->max_active == wq->saved_max_active)
3637 return;
3638
3639 spin_lock_irq(&pwq->pool->lock);
3640
3641 /*
3642 * During [un]freezing, the caller is responsible for ensuring that
3643 * this function is called at least once after @workqueue_freezing
3644 * is updated and visible.
3645 */
3646 if (!freezable || !workqueue_freezing) {
3647 pwq->max_active = wq->saved_max_active;
3648
3649 while (!list_empty(&pwq->delayed_works) &&
3650 pwq->nr_active < pwq->max_active)
3651 pwq_activate_first_delayed(pwq);
3652
3653 /*
3654 * Need to kick a worker after thawed or an unbound wq's
3655 * max_active is bumped. It's a slow path. Do it always.
3656 */
3657 wake_up_worker(pwq->pool);
3658 } else {
3659 pwq->max_active = 0;
3660 }
3661
3662 spin_unlock_irq(&pwq->pool->lock);
3663 }
3664
3665 /* initialize newly alloced @pwq which is associated with @wq and @pool */
3666 static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq,
3667 struct worker_pool *pool)
3668 {
3669 BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK);
3670
3671 memset(pwq, 0, sizeof(*pwq));
3672
3673 pwq->pool = pool;
3674 pwq->wq = wq;
3675 pwq->flush_color = -1;
3676 pwq->refcnt = 1;
3677 INIT_LIST_HEAD(&pwq->delayed_works);
3678 INIT_LIST_HEAD(&pwq->pwqs_node);
3679 INIT_LIST_HEAD(&pwq->mayday_node);
3680 INIT_WORK(&pwq->unbound_release_work, pwq_unbound_release_workfn);
3681 }
3682
3683 /* sync @pwq with the current state of its associated wq and link it */
3684 static void link_pwq(struct pool_workqueue *pwq)
3685 {
3686 struct workqueue_struct *wq = pwq->wq;
3687
3688 lockdep_assert_held(&wq->mutex);
3689
3690 /* may be called multiple times, ignore if already linked */
3691 if (!list_empty(&pwq->pwqs_node))
3692 return;
3693
3694 /*
3695 * Set the matching work_color. This is synchronized with
3696 * wq->mutex to avoid confusing flush_workqueue().
3697 */
3698 pwq->work_color = wq->work_color;
3699
3700 /* sync max_active to the current setting */
3701 pwq_adjust_max_active(pwq);
3702
3703 /* link in @pwq */
3704 list_add_rcu(&pwq->pwqs_node, &wq->pwqs);
3705 }
3706
3707 /* obtain a pool matching @attr and create a pwq associating the pool and @wq */
3708 static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq,
3709 const struct workqueue_attrs *attrs)
3710 {
3711 struct worker_pool *pool;
3712 struct pool_workqueue *pwq;
3713
3714 lockdep_assert_held(&wq_pool_mutex);
3715
3716 pool = get_unbound_pool(attrs);
3717 if (!pool)
3718 return NULL;
3719
3720 pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node);
3721 if (!pwq) {
3722 put_unbound_pool(pool);
3723 return NULL;
3724 }
3725
3726 init_pwq(pwq, wq, pool);
3727 return pwq;
3728 }
3729
3730 /* undo alloc_unbound_pwq(), used only in the error path */
3731 static void free_unbound_pwq(struct pool_workqueue *pwq)
3732 {
3733 lockdep_assert_held(&wq_pool_mutex);
3734
3735 if (pwq) {
3736 put_unbound_pool(pwq->pool);
3737 kmem_cache_free(pwq_cache, pwq);
3738 }
3739 }
3740
3741 /**
3742 * wq_calc_node_mask - calculate a wq_attrs' cpumask for the specified node
3743 * @attrs: the wq_attrs of interest
3744 * @node: the target NUMA node
3745 * @cpu_going_down: if >= 0, the CPU to consider as offline
3746 * @cpumask: outarg, the resulting cpumask
3747 *
3748 * Calculate the cpumask a workqueue with @attrs should use on @node. If
3749 * @cpu_going_down is >= 0, that cpu is considered offline during
3750 * calculation. The result is stored in @cpumask.
3751 *
3752 * If NUMA affinity is not enabled, @attrs->cpumask is always used. If
3753 * enabled and @node has online CPUs requested by @attrs, the returned
3754 * cpumask is the intersection of the possible CPUs of @node and
3755 * @attrs->cpumask.
3756 *
3757 * The caller is responsible for ensuring that the cpumask of @node stays
3758 * stable.
3759 *
3760 * Return: %true if the resulting @cpumask is different from @attrs->cpumask,
3761 * %false if equal.
3762 */
3763 static bool wq_calc_node_cpumask(const struct workqueue_attrs *attrs, int node,
3764 int cpu_going_down, cpumask_t *cpumask)
3765 {
3766 if (!wq_numa_enabled || attrs->no_numa)
3767 goto use_dfl;
3768
3769 /* does @node have any online CPUs @attrs wants? */
3770 cpumask_and(cpumask, cpumask_of_node(node), attrs->cpumask);
3771 if (cpu_going_down >= 0)
3772 cpumask_clear_cpu(cpu_going_down, cpumask);
3773
3774 if (cpumask_empty(cpumask))
3775 goto use_dfl;
3776
3777 /* yeap, return possible CPUs in @node that @attrs wants */
3778 cpumask_and(cpumask, attrs->cpumask, wq_numa_possible_cpumask[node]);
3779 return !cpumask_equal(cpumask, attrs->cpumask);
3780
3781 use_dfl:
3782 cpumask_copy(cpumask, attrs->cpumask);
3783 return false;
3784 }
3785
3786 /* install @pwq into @wq's numa_pwq_tbl[] for @node and return the old pwq */
3787 static struct pool_workqueue *numa_pwq_tbl_install(struct workqueue_struct *wq,
3788 int node,
3789 struct pool_workqueue *pwq)
3790 {
3791 struct pool_workqueue *old_pwq;
3792
3793 lockdep_assert_held(&wq->mutex);
3794
3795 /* link_pwq() can handle duplicate calls */
3796 link_pwq(pwq);
3797
3798 old_pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
3799 rcu_assign_pointer(wq->numa_pwq_tbl[node], pwq);
3800 return old_pwq;
3801 }
3802
3803 /**
3804 * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue
3805 * @wq: the target workqueue
3806 * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs()
3807 *
3808 * Apply @attrs to an unbound workqueue @wq. Unless disabled, on NUMA
3809 * machines, this function maps a separate pwq to each NUMA node with
3810 * possibles CPUs in @attrs->cpumask so that work items are affine to the
3811 * NUMA node it was issued on. Older pwqs are released as in-flight work
3812 * items finish. Note that a work item which repeatedly requeues itself
3813 * back-to-back will stay on its current pwq.
3814 *
3815 * Performs GFP_KERNEL allocations.
3816 *
3817 * Return: 0 on success and -errno on failure.
3818 */
3819 int apply_workqueue_attrs(struct workqueue_struct *wq,
3820 const struct workqueue_attrs *attrs)
3821 {
3822 struct workqueue_attrs *new_attrs, *tmp_attrs;
3823 struct pool_workqueue **pwq_tbl, *dfl_pwq;
3824 int node, ret;
3825
3826 /* only unbound workqueues can change attributes */
3827 if (WARN_ON(!(wq->flags & WQ_UNBOUND)))
3828 return -EINVAL;
3829
3830 /* creating multiple pwqs breaks ordering guarantee */
3831 if (WARN_ON((wq->flags & __WQ_ORDERED) && !list_empty(&wq->pwqs)))
3832 return -EINVAL;
3833
3834 pwq_tbl = kzalloc(wq_numa_tbl_len * sizeof(pwq_tbl[0]), GFP_KERNEL);
3835 new_attrs = alloc_workqueue_attrs(GFP_KERNEL);
3836 tmp_attrs = alloc_workqueue_attrs(GFP_KERNEL);
3837 if (!pwq_tbl || !new_attrs || !tmp_attrs)
3838 goto enomem;
3839
3840 /* make a copy of @attrs and sanitize it */
3841 copy_workqueue_attrs(new_attrs, attrs);
3842 cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask);
3843
3844 /*
3845 * We may create multiple pwqs with differing cpumasks. Make a
3846 * copy of @new_attrs which will be modified and used to obtain
3847 * pools.
3848 */
3849 copy_workqueue_attrs(tmp_attrs, new_attrs);
3850
3851 /*
3852 * CPUs should stay stable across pwq creations and installations.
3853 * Pin CPUs, determine the target cpumask for each node and create
3854 * pwqs accordingly.
3855 */
3856 get_online_cpus();
3857
3858 mutex_lock(&wq_pool_mutex);
3859
3860 /*
3861 * If something goes wrong during CPU up/down, we'll fall back to
3862 * the default pwq covering whole @attrs->cpumask. Always create
3863 * it even if we don't use it immediately.
3864 */
3865 dfl_pwq = alloc_unbound_pwq(wq, new_attrs);
3866 if (!dfl_pwq)
3867 goto enomem_pwq;
3868
3869 for_each_node(node) {
3870 if (wq_calc_node_cpumask(attrs, node, -1, tmp_attrs->cpumask)) {
3871 pwq_tbl[node] = alloc_unbound_pwq(wq, tmp_attrs);
3872 if (!pwq_tbl[node])
3873 goto enomem_pwq;
3874 } else {
3875 dfl_pwq->refcnt++;
3876 pwq_tbl[node] = dfl_pwq;
3877 }
3878 }
3879
3880 mutex_unlock(&wq_pool_mutex);
3881
3882 /* all pwqs have been created successfully, let's install'em */
3883 mutex_lock(&wq->mutex);
3884
3885 copy_workqueue_attrs(wq->unbound_attrs, new_attrs);
3886
3887 /* save the previous pwq and install the new one */
3888 for_each_node(node)
3889 pwq_tbl[node] = numa_pwq_tbl_install(wq, node, pwq_tbl[node]);
3890
3891 /* @dfl_pwq might not have been used, ensure it's linked */
3892 link_pwq(dfl_pwq);
3893 swap(wq->dfl_pwq, dfl_pwq);
3894
3895 mutex_unlock(&wq->mutex);
3896
3897 /* put the old pwqs */
3898 for_each_node(node)
3899 put_pwq_unlocked(pwq_tbl[node]);
3900 put_pwq_unlocked(dfl_pwq);
3901
3902 put_online_cpus();
3903 ret = 0;
3904 /* fall through */
3905 out_free:
3906 free_workqueue_attrs(tmp_attrs);
3907 free_workqueue_attrs(new_attrs);
3908 kfree(pwq_tbl);
3909 return ret;
3910
3911 enomem_pwq:
3912 free_unbound_pwq(dfl_pwq);
3913 for_each_node(node)
3914 if (pwq_tbl && pwq_tbl[node] != dfl_pwq)
3915 free_unbound_pwq(pwq_tbl[node]);
3916 mutex_unlock(&wq_pool_mutex);
3917 put_online_cpus();
3918 enomem:
3919 ret = -ENOMEM;
3920 goto out_free;
3921 }
3922
3923 /**
3924 * wq_update_unbound_numa - update NUMA affinity of a wq for CPU hot[un]plug
3925 * @wq: the target workqueue
3926 * @cpu: the CPU coming up or going down
3927 * @online: whether @cpu is coming up or going down
3928 *
3929 * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and
3930 * %CPU_DOWN_FAILED. @cpu is being hot[un]plugged, update NUMA affinity of
3931 * @wq accordingly.
3932 *
3933 * If NUMA affinity can't be adjusted due to memory allocation failure, it
3934 * falls back to @wq->dfl_pwq which may not be optimal but is always
3935 * correct.
3936 *
3937 * Note that when the last allowed CPU of a NUMA node goes offline for a
3938 * workqueue with a cpumask spanning multiple nodes, the workers which were
3939 * already executing the work items for the workqueue will lose their CPU
3940 * affinity and may execute on any CPU. This is similar to how per-cpu
3941 * workqueues behave on CPU_DOWN. If a workqueue user wants strict
3942 * affinity, it's the user's responsibility to flush the work item from
3943 * CPU_DOWN_PREPARE.
3944 */
3945 static void wq_update_unbound_numa(struct workqueue_struct *wq, int cpu,
3946 bool online)
3947 {
3948 int node = cpu_to_node(cpu);
3949 int cpu_off = online ? -1 : cpu;
3950 struct pool_workqueue *old_pwq = NULL, *pwq;
3951 struct workqueue_attrs *target_attrs;
3952 cpumask_t *cpumask;
3953
3954 lockdep_assert_held(&wq_pool_mutex);
3955
3956 if (!wq_numa_enabled || !(wq->flags & WQ_UNBOUND))
3957 return;
3958
3959 /*
3960 * We don't wanna alloc/free wq_attrs for each wq for each CPU.
3961 * Let's use a preallocated one. The following buf is protected by
3962 * CPU hotplug exclusion.
3963 */
3964 target_attrs = wq_update_unbound_numa_attrs_buf;
3965 cpumask = target_attrs->cpumask;
3966
3967 mutex_lock(&wq->mutex);
3968 if (wq->unbound_attrs->no_numa)
3969 goto out_unlock;
3970
3971 copy_workqueue_attrs(target_attrs, wq->unbound_attrs);
3972 pwq = unbound_pwq_by_node(wq, node);
3973
3974 /*
3975 * Let's determine what needs to be done. If the target cpumask is
3976 * different from wq's, we need to compare it to @pwq's and create
3977 * a new one if they don't match. If the target cpumask equals
3978 * wq's, the default pwq should be used.
3979 */
3980 if (wq_calc_node_cpumask(wq->unbound_attrs, node, cpu_off, cpumask)) {
3981 if (cpumask_equal(cpumask, pwq->pool->attrs->cpumask))
3982 goto out_unlock;
3983 } else {
3984 goto use_dfl_pwq;
3985 }
3986
3987 mutex_unlock(&wq->mutex);
3988
3989 /* create a new pwq */
3990 pwq = alloc_unbound_pwq(wq, target_attrs);
3991 if (!pwq) {
3992 pr_warn("workqueue: allocation failed while updating NUMA affinity of \"%s\"\n",
3993 wq->name);
3994 mutex_lock(&wq->mutex);
3995 goto use_dfl_pwq;
3996 }
3997
3998 /*
3999 * Install the new pwq. As this function is called only from CPU
4000 * hotplug callbacks and applying a new attrs is wrapped with
4001 * get/put_online_cpus(), @wq->unbound_attrs couldn't have changed
4002 * inbetween.
4003 */
4004 mutex_lock(&wq->mutex);
4005 old_pwq = numa_pwq_tbl_install(wq, node, pwq);
4006 goto out_unlock;
4007
4008 use_dfl_pwq:
4009 spin_lock_irq(&wq->dfl_pwq->pool->lock);
4010 get_pwq(wq->dfl_pwq);
4011 spin_unlock_irq(&wq->dfl_pwq->pool->lock);
4012 old_pwq = numa_pwq_tbl_install(wq, node, wq->dfl_pwq);
4013 out_unlock:
4014 mutex_unlock(&wq->mutex);
4015 put_pwq_unlocked(old_pwq);
4016 }
4017
4018 static int alloc_and_link_pwqs(struct workqueue_struct *wq)
4019 {
4020 bool highpri = wq->flags & WQ_HIGHPRI;
4021 int cpu, ret;
4022
4023 if (!(wq->flags & WQ_UNBOUND)) {
4024 wq->cpu_pwqs = alloc_percpu(struct pool_workqueue);
4025 if (!wq->cpu_pwqs)
4026 return -ENOMEM;
4027
4028 for_each_possible_cpu(cpu) {
4029 struct pool_workqueue *pwq =
4030 per_cpu_ptr(wq->cpu_pwqs, cpu);
4031 struct worker_pool *cpu_pools =
4032 per_cpu(cpu_worker_pools, cpu);
4033
4034 init_pwq(pwq, wq, &cpu_pools[highpri]);
4035
4036 mutex_lock(&wq->mutex);
4037 link_pwq(pwq);
4038 mutex_unlock(&wq->mutex);
4039 }
4040 return 0;
4041 } else if (wq->flags & __WQ_ORDERED) {
4042 ret = apply_workqueue_attrs(wq, ordered_wq_attrs[highpri]);
4043 /* there should only be single pwq for ordering guarantee */
4044 WARN(!ret && (wq->pwqs.next != &wq->dfl_pwq->pwqs_node ||
4045 wq->pwqs.prev != &wq->dfl_pwq->pwqs_node),
4046 "ordering guarantee broken for workqueue %s\n", wq->name);
4047 return ret;
4048 } else {
4049 return apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]);
4050 }
4051 }
4052
4053 static int wq_clamp_max_active(int max_active, unsigned int flags,
4054 const char *name)
4055 {
4056 int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;
4057
4058 if (max_active < 1 || max_active > lim)
4059 pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
4060 max_active, name, 1, lim);
4061
4062 return clamp_val(max_active, 1, lim);
4063 }
4064
4065 struct workqueue_struct *__alloc_workqueue_key(const char *fmt,
4066 unsigned int flags,
4067 int max_active,
4068 struct lock_class_key *key,
4069 const char *lock_name, ...)
4070 {
4071 size_t tbl_size = 0;
4072 va_list args;
4073 struct workqueue_struct *wq;
4074 struct pool_workqueue *pwq;
4075
4076 /* see the comment above the definition of WQ_POWER_EFFICIENT */
4077 if ((flags & WQ_POWER_EFFICIENT) && wq_power_efficient)
4078 flags |= WQ_UNBOUND;
4079
4080 /* allocate wq and format name */
4081 if (flags & WQ_UNBOUND)
4082 tbl_size = wq_numa_tbl_len * sizeof(wq->numa_pwq_tbl[0]);
4083
4084 wq = kzalloc(sizeof(*wq) + tbl_size, GFP_KERNEL);
4085 if (!wq)
4086 return NULL;
4087
4088 if (flags & WQ_UNBOUND) {
4089 wq->unbound_attrs = alloc_workqueue_attrs(GFP_KERNEL);
4090 if (!wq->unbound_attrs)
4091 goto err_free_wq;
4092 }
4093
4094 va_start(args, lock_name);
4095 vsnprintf(wq->name, sizeof(wq->name), fmt, args);
4096 va_end(args);
4097
4098 max_active = max_active ?: WQ_DFL_ACTIVE;
4099 max_active = wq_clamp_max_active(max_active, flags, wq->name);
4100
4101 /* init wq */
4102 wq->flags = flags;
4103 wq->saved_max_active = max_active;
4104 mutex_init(&wq->mutex);
4105 atomic_set(&wq->nr_pwqs_to_flush, 0);
4106 INIT_LIST_HEAD(&wq->pwqs);
4107 INIT_LIST_HEAD(&wq->flusher_queue);
4108 INIT_LIST_HEAD(&wq->flusher_overflow);
4109 INIT_LIST_HEAD(&wq->maydays);
4110
4111 lockdep_init_map(&wq->lockdep_map, lock_name, key, 0);
4112 INIT_LIST_HEAD(&wq->list);
4113
4114 if (alloc_and_link_pwqs(wq) < 0)
4115 goto err_free_wq;
4116
4117 /*
4118 * Workqueues which may be used during memory reclaim should
4119 * have a rescuer to guarantee forward progress.
4120 */
4121 if (flags & WQ_MEM_RECLAIM) {
4122 struct worker *rescuer;
4123
4124 rescuer = alloc_worker();
4125 if (!rescuer)
4126 goto err_destroy;
4127
4128 rescuer->rescue_wq = wq;
4129 rescuer->task = kthread_create(rescuer_thread, rescuer, "%s",
4130 wq->name);
4131 if (IS_ERR(rescuer->task)) {
4132 kfree(rescuer);
4133 goto err_destroy;
4134 }
4135
4136 wq->rescuer = rescuer;
4137 rescuer->task->flags |= PF_NO_SETAFFINITY;
4138 wake_up_process(rescuer->task);
4139 }
4140
4141 if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq))
4142 goto err_destroy;
4143
4144 /*
4145 * wq_pool_mutex protects global freeze state and workqueues list.
4146 * Grab it, adjust max_active and add the new @wq to workqueues
4147 * list.
4148 */
4149 mutex_lock(&wq_pool_mutex);
4150
4151 mutex_lock(&wq->mutex);
4152 for_each_pwq(pwq, wq)
4153 pwq_adjust_max_active(pwq);
4154 mutex_unlock(&wq->mutex);
4155
4156 list_add(&wq->list, &workqueues);
4157
4158 mutex_unlock(&wq_pool_mutex);
4159
4160 return wq;
4161
4162 err_free_wq:
4163 free_workqueue_attrs(wq->unbound_attrs);
4164 kfree(wq);
4165 return NULL;
4166 err_destroy:
4167 destroy_workqueue(wq);
4168 return NULL;
4169 }
4170 EXPORT_SYMBOL_GPL(__alloc_workqueue_key);
4171
4172 /**
4173 * destroy_workqueue - safely terminate a workqueue
4174 * @wq: target workqueue
4175 *
4176 * Safely destroy a workqueue. All work currently pending will be done first.
4177 */
4178 void destroy_workqueue(struct workqueue_struct *wq)
4179 {
4180 struct pool_workqueue *pwq;
4181 int node;
4182
4183 /* drain it before proceeding with destruction */
4184 drain_workqueue(wq);
4185
4186 /* sanity checks */
4187 mutex_lock(&wq->mutex);
4188 for_each_pwq(pwq, wq) {
4189 int i;
4190
4191 for (i = 0; i < WORK_NR_COLORS; i++) {
4192 if (WARN_ON(pwq->nr_in_flight[i])) {
4193 mutex_unlock(&wq->mutex);
4194 return;
4195 }
4196 }
4197
4198 if (WARN_ON((pwq != wq->dfl_pwq) && (pwq->refcnt > 1)) ||
4199 WARN_ON(pwq->nr_active) ||
4200 WARN_ON(!list_empty(&pwq->delayed_works))) {
4201 mutex_unlock(&wq->mutex);
4202 return;
4203 }
4204 }
4205 mutex_unlock(&wq->mutex);
4206
4207 /*
4208 * wq list is used to freeze wq, remove from list after
4209 * flushing is complete in case freeze races us.
4210 */
4211 mutex_lock(&wq_pool_mutex);
4212 list_del_init(&wq->list);
4213 mutex_unlock(&wq_pool_mutex);
4214
4215 workqueue_sysfs_unregister(wq);
4216
4217 if (wq->rescuer) {
4218 kthread_stop(wq->rescuer->task);
4219 kfree(wq->rescuer);
4220 wq->rescuer = NULL;
4221 }
4222
4223 if (!(wq->flags & WQ_UNBOUND)) {
4224 /*
4225 * The base ref is never dropped on per-cpu pwqs. Directly
4226 * free the pwqs and wq.
4227 */
4228 free_percpu(wq->cpu_pwqs);
4229 kfree(wq);
4230 } else {
4231 /*
4232 * We're the sole accessor of @wq at this point. Directly
4233 * access numa_pwq_tbl[] and dfl_pwq to put the base refs.
4234 * @wq will be freed when the last pwq is released.
4235 */
4236 for_each_node(node) {
4237 pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
4238 RCU_INIT_POINTER(wq->numa_pwq_tbl[node], NULL);
4239 put_pwq_unlocked(pwq);
4240 }
4241
4242 /*
4243 * Put dfl_pwq. @wq may be freed any time after dfl_pwq is
4244 * put. Don't access it afterwards.
4245 */
4246 pwq = wq->dfl_pwq;
4247 wq->dfl_pwq = NULL;
4248 put_pwq_unlocked(pwq);
4249 }
4250 }
4251 EXPORT_SYMBOL_GPL(destroy_workqueue);
4252
4253 /**
4254 * workqueue_set_max_active - adjust max_active of a workqueue
4255 * @wq: target workqueue
4256 * @max_active: new max_active value.
4257 *
4258 * Set max_active of @wq to @max_active.
4259 *
4260 * CONTEXT:
4261 * Don't call from IRQ context.
4262 */
4263 void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
4264 {
4265 struct pool_workqueue *pwq;
4266
4267 /* disallow meddling with max_active for ordered workqueues */
4268 if (WARN_ON(wq->flags & __WQ_ORDERED))
4269 return;
4270
4271 max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
4272
4273 mutex_lock(&wq->mutex);
4274
4275 wq->saved_max_active = max_active;
4276
4277 for_each_pwq(pwq, wq)
4278 pwq_adjust_max_active(pwq);
4279
4280 mutex_unlock(&wq->mutex);
4281 }
4282 EXPORT_SYMBOL_GPL(workqueue_set_max_active);
4283
4284 /**
4285 * current_is_workqueue_rescuer - is %current workqueue rescuer?
4286 *
4287 * Determine whether %current is a workqueue rescuer. Can be used from
4288 * work functions to determine whether it's being run off the rescuer task.
4289 *
4290 * Return: %true if %current is a workqueue rescuer. %false otherwise.
4291 */
4292 bool current_is_workqueue_rescuer(void)
4293 {
4294 struct worker *worker = current_wq_worker();
4295
4296 return worker && worker->rescue_wq;
4297 }
4298
4299 /**
4300 * workqueue_congested - test whether a workqueue is congested
4301 * @cpu: CPU in question
4302 * @wq: target workqueue
4303 *
4304 * Test whether @wq's cpu workqueue for @cpu is congested. There is
4305 * no synchronization around this function and the test result is
4306 * unreliable and only useful as advisory hints or for debugging.
4307 *
4308 * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU.
4309 * Note that both per-cpu and unbound workqueues may be associated with
4310 * multiple pool_workqueues which have separate congested states. A
4311 * workqueue being congested on one CPU doesn't mean the workqueue is also
4312 * contested on other CPUs / NUMA nodes.
4313 *
4314 * Return:
4315 * %true if congested, %false otherwise.
4316 */
4317 bool workqueue_congested(int cpu, struct workqueue_struct *wq)
4318 {
4319 struct pool_workqueue *pwq;
4320 bool ret;
4321
4322 rcu_read_lock_sched();
4323
4324 if (cpu == WORK_CPU_UNBOUND)
4325 cpu = smp_processor_id();
4326
4327 if (!(wq->flags & WQ_UNBOUND))
4328 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
4329 else
4330 pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
4331
4332 ret = !list_empty(&pwq->delayed_works);
4333 rcu_read_unlock_sched();
4334
4335 return ret;
4336 }
4337 EXPORT_SYMBOL_GPL(workqueue_congested);
4338
4339 /**
4340 * work_busy - test whether a work is currently pending or running
4341 * @work: the work to be tested
4342 *
4343 * Test whether @work is currently pending or running. There is no
4344 * synchronization around this function and the test result is
4345 * unreliable and only useful as advisory hints or for debugging.
4346 *
4347 * Return:
4348 * OR'd bitmask of WORK_BUSY_* bits.
4349 */
4350 unsigned int work_busy(struct work_struct *work)
4351 {
4352 struct worker_pool *pool;
4353 unsigned long flags;
4354 unsigned int ret = 0;
4355
4356 if (work_pending(work))
4357 ret |= WORK_BUSY_PENDING;
4358
4359 local_irq_save(flags);
4360 pool = get_work_pool(work);
4361 if (pool) {
4362 spin_lock(&pool->lock);
4363 if (find_worker_executing_work(pool, work))
4364 ret |= WORK_BUSY_RUNNING;
4365 spin_unlock(&pool->lock);
4366 }
4367 local_irq_restore(flags);
4368
4369 return ret;
4370 }
4371 EXPORT_SYMBOL_GPL(work_busy);
4372
4373 /**
4374 * set_worker_desc - set description for the current work item
4375 * @fmt: printf-style format string
4376 * @...: arguments for the format string
4377 *
4378 * This function can be called by a running work function to describe what
4379 * the work item is about. If the worker task gets dumped, this
4380 * information will be printed out together to help debugging. The
4381 * description can be at most WORKER_DESC_LEN including the trailing '\0'.
4382 */
4383 void set_worker_desc(const char *fmt, ...)
4384 {
4385 struct worker *worker = current_wq_worker();
4386 va_list args;
4387
4388 if (worker) {
4389 va_start(args, fmt);
4390 vsnprintf(worker->desc, sizeof(worker->desc), fmt, args);
4391 va_end(args);
4392 worker->desc_valid = true;
4393 }
4394 }
4395
4396 /**
4397 * print_worker_info - print out worker information and description
4398 * @log_lvl: the log level to use when printing
4399 * @task: target task
4400 *
4401 * If @task is a worker and currently executing a work item, print out the
4402 * name of the workqueue being serviced and worker description set with
4403 * set_worker_desc() by the currently executing work item.
4404 *
4405 * This function can be safely called on any task as long as the
4406 * task_struct itself is accessible. While safe, this function isn't
4407 * synchronized and may print out mixups or garbages of limited length.
4408 */
4409 void print_worker_info(const char *log_lvl, struct task_struct *task)
4410 {
4411 work_func_t *fn = NULL;
4412 char name[WQ_NAME_LEN] = { };
4413 char desc[WORKER_DESC_LEN] = { };
4414 struct pool_workqueue *pwq = NULL;
4415 struct workqueue_struct *wq = NULL;
4416 bool desc_valid = false;
4417 struct worker *worker;
4418
4419 if (!(task->flags & PF_WQ_WORKER))
4420 return;
4421
4422 /*
4423 * This function is called without any synchronization and @task
4424 * could be in any state. Be careful with dereferences.
4425 */
4426 worker = probe_kthread_data(task);
4427
4428 /*
4429 * Carefully copy the associated workqueue's workfn and name. Keep
4430 * the original last '\0' in case the original contains garbage.
4431 */
4432 probe_kernel_read(&fn, &worker->current_func, sizeof(fn));
4433 probe_kernel_read(&pwq, &worker->current_pwq, sizeof(pwq));
4434 probe_kernel_read(&wq, &pwq->wq, sizeof(wq));
4435 probe_kernel_read(name, wq->name, sizeof(name) - 1);
4436
4437 /* copy worker description */
4438 probe_kernel_read(&desc_valid, &worker->desc_valid, sizeof(desc_valid));
4439 if (desc_valid)
4440 probe_kernel_read(desc, worker->desc, sizeof(desc) - 1);
4441
4442 if (fn || name[0] || desc[0]) {
4443 printk("%sWorkqueue: %s %pf", log_lvl, name, fn);
4444 if (desc[0])
4445 pr_cont(" (%s)", desc);
4446 pr_cont("\n");
4447 }
4448 }
4449
4450 /*
4451 * CPU hotplug.
4452 *
4453 * There are two challenges in supporting CPU hotplug. Firstly, there
4454 * are a lot of assumptions on strong associations among work, pwq and
4455 * pool which make migrating pending and scheduled works very
4456 * difficult to implement without impacting hot paths. Secondly,
4457 * worker pools serve mix of short, long and very long running works making
4458 * blocked draining impractical.
4459 *
4460 * This is solved by allowing the pools to be disassociated from the CPU
4461 * running as an unbound one and allowing it to be reattached later if the
4462 * cpu comes back online.
4463 */
4464
4465 static void wq_unbind_fn(struct work_struct *work)
4466 {
4467 int cpu = smp_processor_id();
4468 struct worker_pool *pool;
4469 struct worker *worker;
4470
4471 for_each_cpu_worker_pool(pool, cpu) {
4472 WARN_ON_ONCE(cpu != smp_processor_id());
4473
4474 mutex_lock(&pool->attach_mutex);
4475 spin_lock_irq(&pool->lock);
4476
4477 /*
4478 * We've blocked all attach/detach operations. Make all workers
4479 * unbound and set DISASSOCIATED. Before this, all workers
4480 * except for the ones which are still executing works from
4481 * before the last CPU down must be on the cpu. After
4482 * this, they may become diasporas.
4483 */
4484 for_each_pool_worker(worker, pool)
4485 worker->flags |= WORKER_UNBOUND;
4486
4487 pool->flags |= POOL_DISASSOCIATED;
4488
4489 spin_unlock_irq(&pool->lock);
4490 mutex_unlock(&pool->attach_mutex);
4491
4492 /*
4493 * Call schedule() so that we cross rq->lock and thus can
4494 * guarantee sched callbacks see the %WORKER_UNBOUND flag.
4495 * This is necessary as scheduler callbacks may be invoked
4496 * from other cpus.
4497 */
4498 schedule();
4499
4500 /*
4501 * Sched callbacks are disabled now. Zap nr_running.
4502 * After this, nr_running stays zero and need_more_worker()
4503 * and keep_working() are always true as long as the
4504 * worklist is not empty. This pool now behaves as an
4505 * unbound (in terms of concurrency management) pool which
4506 * are served by workers tied to the pool.
4507 */
4508 atomic_set(&pool->nr_running, 0);
4509
4510 /*
4511 * With concurrency management just turned off, a busy
4512 * worker blocking could lead to lengthy stalls. Kick off
4513 * unbound chain execution of currently pending work items.
4514 */
4515 spin_lock_irq(&pool->lock);
4516 wake_up_worker(pool);
4517 spin_unlock_irq(&pool->lock);
4518 }
4519 }
4520
4521 /**
4522 * rebind_workers - rebind all workers of a pool to the associated CPU
4523 * @pool: pool of interest
4524 *
4525 * @pool->cpu is coming online. Rebind all workers to the CPU.
4526 */
4527 static void rebind_workers(struct worker_pool *pool)
4528 {
4529 struct worker *worker;
4530
4531 lockdep_assert_held(&pool->attach_mutex);
4532
4533 /*
4534 * Restore CPU affinity of all workers. As all idle workers should
4535 * be on the run-queue of the associated CPU before any local
4536 * wake-ups for concurrency management happen, restore CPU affinty
4537 * of all workers first and then clear UNBOUND. As we're called
4538 * from CPU_ONLINE, the following shouldn't fail.
4539 */
4540 for_each_pool_worker(worker, pool)
4541 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
4542 pool->attrs->cpumask) < 0);
4543
4544 spin_lock_irq(&pool->lock);
4545
4546 for_each_pool_worker(worker, pool) {
4547 unsigned int worker_flags = worker->flags;
4548
4549 /*
4550 * A bound idle worker should actually be on the runqueue
4551 * of the associated CPU for local wake-ups targeting it to
4552 * work. Kick all idle workers so that they migrate to the
4553 * associated CPU. Doing this in the same loop as
4554 * replacing UNBOUND with REBOUND is safe as no worker will
4555 * be bound before @pool->lock is released.
4556 */
4557 if (worker_flags & WORKER_IDLE)
4558 wake_up_process(worker->task);
4559
4560 /*
4561 * We want to clear UNBOUND but can't directly call
4562 * worker_clr_flags() or adjust nr_running. Atomically
4563 * replace UNBOUND with another NOT_RUNNING flag REBOUND.
4564 * @worker will clear REBOUND using worker_clr_flags() when
4565 * it initiates the next execution cycle thus restoring
4566 * concurrency management. Note that when or whether
4567 * @worker clears REBOUND doesn't affect correctness.
4568 *
4569 * ACCESS_ONCE() is necessary because @worker->flags may be
4570 * tested without holding any lock in
4571 * wq_worker_waking_up(). Without it, NOT_RUNNING test may
4572 * fail incorrectly leading to premature concurrency
4573 * management operations.
4574 */
4575 WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND));
4576 worker_flags |= WORKER_REBOUND;
4577 worker_flags &= ~WORKER_UNBOUND;
4578 ACCESS_ONCE(worker->flags) = worker_flags;
4579 }
4580
4581 spin_unlock_irq(&pool->lock);
4582 }
4583
4584 /**
4585 * restore_unbound_workers_cpumask - restore cpumask of unbound workers
4586 * @pool: unbound pool of interest
4587 * @cpu: the CPU which is coming up
4588 *
4589 * An unbound pool may end up with a cpumask which doesn't have any online
4590 * CPUs. When a worker of such pool get scheduled, the scheduler resets
4591 * its cpus_allowed. If @cpu is in @pool's cpumask which didn't have any
4592 * online CPU before, cpus_allowed of all its workers should be restored.
4593 */
4594 static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu)
4595 {
4596 static cpumask_t cpumask;
4597 struct worker *worker;
4598
4599 lockdep_assert_held(&pool->attach_mutex);
4600
4601 /* is @cpu allowed for @pool? */
4602 if (!cpumask_test_cpu(cpu, pool->attrs->cpumask))
4603 return;
4604
4605 /* is @cpu the only online CPU? */
4606 cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask);
4607 if (cpumask_weight(&cpumask) != 1)
4608 return;
4609
4610 /* as we're called from CPU_ONLINE, the following shouldn't fail */
4611 for_each_pool_worker(worker, pool)
4612 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
4613 pool->attrs->cpumask) < 0);
4614 }
4615
4616 /*
4617 * Workqueues should be brought up before normal priority CPU notifiers.
4618 * This will be registered high priority CPU notifier.
4619 */
4620 static int workqueue_cpu_up_callback(struct notifier_block *nfb,
4621 unsigned long action,
4622 void *hcpu)
4623 {
4624 int cpu = (unsigned long)hcpu;
4625 struct worker_pool *pool;
4626 struct workqueue_struct *wq;
4627 int pi;
4628
4629 switch (action & ~CPU_TASKS_FROZEN) {
4630 case CPU_UP_PREPARE:
4631 for_each_cpu_worker_pool(pool, cpu) {
4632 if (pool->nr_workers)
4633 continue;
4634 if (create_and_start_worker(pool) < 0)
4635 return NOTIFY_BAD;
4636 }
4637 break;
4638
4639 case CPU_DOWN_FAILED:
4640 case CPU_ONLINE:
4641 mutex_lock(&wq_pool_mutex);
4642
4643 for_each_pool(pool, pi) {
4644 mutex_lock(&pool->attach_mutex);
4645
4646 if (pool->cpu == cpu) {
4647 spin_lock_irq(&pool->lock);
4648 pool->flags &= ~POOL_DISASSOCIATED;
4649 spin_unlock_irq(&pool->lock);
4650
4651 rebind_workers(pool);
4652 } else if (pool->cpu < 0) {
4653 restore_unbound_workers_cpumask(pool, cpu);
4654 }
4655
4656 mutex_unlock(&pool->attach_mutex);
4657 }
4658
4659 /* update NUMA affinity of unbound workqueues */
4660 list_for_each_entry(wq, &workqueues, list)
4661 wq_update_unbound_numa(wq, cpu, true);
4662
4663 mutex_unlock(&wq_pool_mutex);
4664 break;
4665 }
4666 return NOTIFY_OK;
4667 }
4668
4669 /*
4670 * Workqueues should be brought down after normal priority CPU notifiers.
4671 * This will be registered as low priority CPU notifier.
4672 */
4673 static int workqueue_cpu_down_callback(struct notifier_block *nfb,
4674 unsigned long action,
4675 void *hcpu)
4676 {
4677 int cpu = (unsigned long)hcpu;
4678 struct work_struct unbind_work;
4679 struct workqueue_struct *wq;
4680
4681 switch (action & ~CPU_TASKS_FROZEN) {
4682 case CPU_DOWN_PREPARE:
4683 /* unbinding per-cpu workers should happen on the local CPU */
4684 INIT_WORK_ONSTACK(&unbind_work, wq_unbind_fn);
4685 queue_work_on(cpu, system_highpri_wq, &unbind_work);
4686
4687 /* update NUMA affinity of unbound workqueues */
4688 mutex_lock(&wq_pool_mutex);
4689 list_for_each_entry(wq, &workqueues, list)
4690 wq_update_unbound_numa(wq, cpu, false);
4691 mutex_unlock(&wq_pool_mutex);
4692
4693 /* wait for per-cpu unbinding to finish */
4694 flush_work(&unbind_work);
4695 destroy_work_on_stack(&unbind_work);
4696 break;
4697 }
4698 return NOTIFY_OK;
4699 }
4700
4701 #ifdef CONFIG_SMP
4702
4703 struct work_for_cpu {
4704 struct work_struct work;
4705 long (*fn)(void *);
4706 void *arg;
4707 long ret;
4708 };
4709
4710 static void work_for_cpu_fn(struct work_struct *work)
4711 {
4712 struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);
4713
4714 wfc->ret = wfc->fn(wfc->arg);
4715 }
4716
4717 /**
4718 * work_on_cpu - run a function in user context on a particular cpu
4719 * @cpu: the cpu to run on
4720 * @fn: the function to run
4721 * @arg: the function arg
4722 *
4723 * It is up to the caller to ensure that the cpu doesn't go offline.
4724 * The caller must not hold any locks which would prevent @fn from completing.
4725 *
4726 * Return: The value @fn returns.
4727 */
4728 long work_on_cpu(int cpu, long (*fn)(void *), void *arg)
4729 {
4730 struct work_for_cpu wfc = { .fn = fn, .arg = arg };
4731
4732 INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn);
4733 schedule_work_on(cpu, &wfc.work);
4734 flush_work(&wfc.work);
4735 destroy_work_on_stack(&wfc.work);
4736 return wfc.ret;
4737 }
4738 EXPORT_SYMBOL_GPL(work_on_cpu);
4739 #endif /* CONFIG_SMP */
4740
4741 #ifdef CONFIG_FREEZER
4742
4743 /**
4744 * freeze_workqueues_begin - begin freezing workqueues
4745 *
4746 * Start freezing workqueues. After this function returns, all freezable
4747 * workqueues will queue new works to their delayed_works list instead of
4748 * pool->worklist.
4749 *
4750 * CONTEXT:
4751 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
4752 */
4753 void freeze_workqueues_begin(void)
4754 {
4755 struct workqueue_struct *wq;
4756 struct pool_workqueue *pwq;
4757
4758 mutex_lock(&wq_pool_mutex);
4759
4760 WARN_ON_ONCE(workqueue_freezing);
4761 workqueue_freezing = true;
4762
4763 list_for_each_entry(wq, &workqueues, list) {
4764 mutex_lock(&wq->mutex);
4765 for_each_pwq(pwq, wq)
4766 pwq_adjust_max_active(pwq);
4767 mutex_unlock(&wq->mutex);
4768 }
4769
4770 mutex_unlock(&wq_pool_mutex);
4771 }
4772
4773 /**
4774 * freeze_workqueues_busy - are freezable workqueues still busy?
4775 *
4776 * Check whether freezing is complete. This function must be called
4777 * between freeze_workqueues_begin() and thaw_workqueues().
4778 *
4779 * CONTEXT:
4780 * Grabs and releases wq_pool_mutex.
4781 *
4782 * Return:
4783 * %true if some freezable workqueues are still busy. %false if freezing
4784 * is complete.
4785 */
4786 bool freeze_workqueues_busy(void)
4787 {
4788 bool busy = false;
4789 struct workqueue_struct *wq;
4790 struct pool_workqueue *pwq;
4791
4792 mutex_lock(&wq_pool_mutex);
4793
4794 WARN_ON_ONCE(!workqueue_freezing);
4795
4796 list_for_each_entry(wq, &workqueues, list) {
4797 if (!(wq->flags & WQ_FREEZABLE))
4798 continue;
4799 /*
4800 * nr_active is monotonically decreasing. It's safe
4801 * to peek without lock.
4802 */
4803 rcu_read_lock_sched();
4804 for_each_pwq(pwq, wq) {
4805 WARN_ON_ONCE(pwq->nr_active < 0);
4806 if (pwq->nr_active) {
4807 busy = true;
4808 rcu_read_unlock_sched();
4809 goto out_unlock;
4810 }
4811 }
4812 rcu_read_unlock_sched();
4813 }
4814 out_unlock:
4815 mutex_unlock(&wq_pool_mutex);
4816 return busy;
4817 }
4818
4819 /**
4820 * thaw_workqueues - thaw workqueues
4821 *
4822 * Thaw workqueues. Normal queueing is restored and all collected
4823 * frozen works are transferred to their respective pool worklists.
4824 *
4825 * CONTEXT:
4826 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
4827 */
4828 void thaw_workqueues(void)
4829 {
4830 struct workqueue_struct *wq;
4831 struct pool_workqueue *pwq;
4832
4833 mutex_lock(&wq_pool_mutex);
4834
4835 if (!workqueue_freezing)
4836 goto out_unlock;
4837
4838 workqueue_freezing = false;
4839
4840 /* restore max_active and repopulate worklist */
4841 list_for_each_entry(wq, &workqueues, list) {
4842 mutex_lock(&wq->mutex);
4843 for_each_pwq(pwq, wq)
4844 pwq_adjust_max_active(pwq);
4845 mutex_unlock(&wq->mutex);
4846 }
4847
4848 out_unlock:
4849 mutex_unlock(&wq_pool_mutex);
4850 }
4851 #endif /* CONFIG_FREEZER */
4852
4853 static void __init wq_numa_init(void)
4854 {
4855 cpumask_var_t *tbl;
4856 int node, cpu;
4857
4858 /* determine NUMA pwq table len - highest node id + 1 */
4859 for_each_node(node)
4860 wq_numa_tbl_len = max(wq_numa_tbl_len, node + 1);
4861
4862 if (num_possible_nodes() <= 1)
4863 return;
4864
4865 if (wq_disable_numa) {
4866 pr_info("workqueue: NUMA affinity support disabled\n");
4867 return;
4868 }
4869
4870 wq_update_unbound_numa_attrs_buf = alloc_workqueue_attrs(GFP_KERNEL);
4871 BUG_ON(!wq_update_unbound_numa_attrs_buf);
4872
4873 /*
4874 * We want masks of possible CPUs of each node which isn't readily
4875 * available. Build one from cpu_to_node() which should have been
4876 * fully initialized by now.
4877 */
4878 tbl = kzalloc(wq_numa_tbl_len * sizeof(tbl[0]), GFP_KERNEL);
4879 BUG_ON(!tbl);
4880
4881 for_each_node(node)
4882 BUG_ON(!alloc_cpumask_var_node(&tbl[node], GFP_KERNEL,
4883 node_online(node) ? node : NUMA_NO_NODE));
4884
4885 for_each_possible_cpu(cpu) {
4886 node = cpu_to_node(cpu);
4887 if (WARN_ON(node == NUMA_NO_NODE)) {
4888 pr_warn("workqueue: NUMA node mapping not available for cpu%d, disabling NUMA support\n", cpu);
4889 /* happens iff arch is bonkers, let's just proceed */
4890 return;
4891 }
4892 cpumask_set_cpu(cpu, tbl[node]);
4893 }
4894
4895 wq_numa_possible_cpumask = tbl;
4896 wq_numa_enabled = true;
4897 }
4898
4899 static int __init init_workqueues(void)
4900 {
4901 int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL };
4902 int i, cpu;
4903
4904 WARN_ON(__alignof__(struct pool_workqueue) < __alignof__(long long));
4905
4906 pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC);
4907
4908 cpu_notifier(workqueue_cpu_up_callback, CPU_PRI_WORKQUEUE_UP);
4909 hotcpu_notifier(workqueue_cpu_down_callback, CPU_PRI_WORKQUEUE_DOWN);
4910
4911 wq_numa_init();
4912
4913 /* initialize CPU pools */
4914 for_each_possible_cpu(cpu) {
4915 struct worker_pool *pool;
4916
4917 i = 0;
4918 for_each_cpu_worker_pool(pool, cpu) {
4919 BUG_ON(init_worker_pool(pool));
4920 pool->cpu = cpu;
4921 cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu));
4922 pool->attrs->nice = std_nice[i++];
4923 pool->node = cpu_to_node(cpu);
4924
4925 /* alloc pool ID */
4926 mutex_lock(&wq_pool_mutex);
4927 BUG_ON(worker_pool_assign_id(pool));
4928 mutex_unlock(&wq_pool_mutex);
4929 }
4930 }
4931
4932 /* create the initial worker */
4933 for_each_online_cpu(cpu) {
4934 struct worker_pool *pool;
4935
4936 for_each_cpu_worker_pool(pool, cpu) {
4937 pool->flags &= ~POOL_DISASSOCIATED;
4938 BUG_ON(create_and_start_worker(pool) < 0);
4939 }
4940 }
4941
4942 /* create default unbound and ordered wq attrs */
4943 for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
4944 struct workqueue_attrs *attrs;
4945
4946 BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
4947 attrs->nice = std_nice[i];
4948 unbound_std_wq_attrs[i] = attrs;
4949
4950 /*
4951 * An ordered wq should have only one pwq as ordering is
4952 * guaranteed by max_active which is enforced by pwqs.
4953 * Turn off NUMA so that dfl_pwq is used for all nodes.
4954 */
4955 BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
4956 attrs->nice = std_nice[i];
4957 attrs->no_numa = true;
4958 ordered_wq_attrs[i] = attrs;
4959 }
4960
4961 system_wq = alloc_workqueue("events", 0, 0);
4962 system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
4963 system_long_wq = alloc_workqueue("events_long", 0, 0);
4964 system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
4965 WQ_UNBOUND_MAX_ACTIVE);
4966 system_freezable_wq = alloc_workqueue("events_freezable",
4967 WQ_FREEZABLE, 0);
4968 system_power_efficient_wq = alloc_workqueue("events_power_efficient",
4969 WQ_POWER_EFFICIENT, 0);
4970 system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_power_efficient",
4971 WQ_FREEZABLE | WQ_POWER_EFFICIENT,
4972 0);
4973 BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
4974 !system_unbound_wq || !system_freezable_wq ||
4975 !system_power_efficient_wq ||
4976 !system_freezable_power_efficient_wq);
4977 return 0;
4978 }
4979 early_initcall(init_workqueues);