]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - kernel/workqueue.c
cfg80211: mitigate A-MSDU aggregation attacks
[mirror_ubuntu-hirsute-kernel.git] / kernel / workqueue.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * kernel/workqueue.c - generic async execution with shared worker pool
4 *
5 * Copyright (C) 2002 Ingo Molnar
6 *
7 * Derived from the taskqueue/keventd code by:
8 * David Woodhouse <dwmw2@infradead.org>
9 * Andrew Morton
10 * Kai Petzke <wpp@marie.physik.tu-berlin.de>
11 * Theodore Ts'o <tytso@mit.edu>
12 *
13 * Made to use alloc_percpu by Christoph Lameter.
14 *
15 * Copyright (C) 2010 SUSE Linux Products GmbH
16 * Copyright (C) 2010 Tejun Heo <tj@kernel.org>
17 *
18 * This is the generic async execution mechanism. Work items as are
19 * executed in process context. The worker pool is shared and
20 * automatically managed. There are two worker pools for each CPU (one for
21 * normal work items and the other for high priority ones) and some extra
22 * pools for workqueues which are not bound to any specific CPU - the
23 * number of these backing pools is dynamic.
24 *
25 * Please read Documentation/core-api/workqueue.rst for details.
26 */
27
28 #include <linux/export.h>
29 #include <linux/kernel.h>
30 #include <linux/sched.h>
31 #include <linux/init.h>
32 #include <linux/signal.h>
33 #include <linux/completion.h>
34 #include <linux/workqueue.h>
35 #include <linux/slab.h>
36 #include <linux/cpu.h>
37 #include <linux/notifier.h>
38 #include <linux/kthread.h>
39 #include <linux/hardirq.h>
40 #include <linux/mempolicy.h>
41 #include <linux/freezer.h>
42 #include <linux/debug_locks.h>
43 #include <linux/lockdep.h>
44 #include <linux/idr.h>
45 #include <linux/jhash.h>
46 #include <linux/hashtable.h>
47 #include <linux/rculist.h>
48 #include <linux/nodemask.h>
49 #include <linux/moduleparam.h>
50 #include <linux/uaccess.h>
51 #include <linux/sched/isolation.h>
52 #include <linux/nmi.h>
53
54 #include "workqueue_internal.h"
55
56 enum {
57 /*
58 * worker_pool flags
59 *
60 * A bound pool is either associated or disassociated with its CPU.
61 * While associated (!DISASSOCIATED), all workers are bound to the
62 * CPU and none has %WORKER_UNBOUND set and concurrency management
63 * is in effect.
64 *
65 * While DISASSOCIATED, the cpu may be offline and all workers have
66 * %WORKER_UNBOUND set and concurrency management disabled, and may
67 * be executing on any CPU. The pool behaves as an unbound one.
68 *
69 * Note that DISASSOCIATED should be flipped only while holding
70 * wq_pool_attach_mutex to avoid changing binding state while
71 * worker_attach_to_pool() is in progress.
72 */
73 POOL_MANAGER_ACTIVE = 1 << 0, /* being managed */
74 POOL_DISASSOCIATED = 1 << 2, /* cpu can't serve workers */
75
76 /* worker flags */
77 WORKER_DIE = 1 << 1, /* die die die */
78 WORKER_IDLE = 1 << 2, /* is idle */
79 WORKER_PREP = 1 << 3, /* preparing to run works */
80 WORKER_CPU_INTENSIVE = 1 << 6, /* cpu intensive */
81 WORKER_UNBOUND = 1 << 7, /* worker is unbound */
82 WORKER_REBOUND = 1 << 8, /* worker was rebound */
83
84 WORKER_NOT_RUNNING = WORKER_PREP | WORKER_CPU_INTENSIVE |
85 WORKER_UNBOUND | WORKER_REBOUND,
86
87 NR_STD_WORKER_POOLS = 2, /* # standard pools per cpu */
88
89 UNBOUND_POOL_HASH_ORDER = 6, /* hashed by pool->attrs */
90 BUSY_WORKER_HASH_ORDER = 6, /* 64 pointers */
91
92 MAX_IDLE_WORKERS_RATIO = 4, /* 1/4 of busy can be idle */
93 IDLE_WORKER_TIMEOUT = 300 * HZ, /* keep idle ones for 5 mins */
94
95 MAYDAY_INITIAL_TIMEOUT = HZ / 100 >= 2 ? HZ / 100 : 2,
96 /* call for help after 10ms
97 (min two ticks) */
98 MAYDAY_INTERVAL = HZ / 10, /* and then every 100ms */
99 CREATE_COOLDOWN = HZ, /* time to breath after fail */
100
101 /*
102 * Rescue workers are used only on emergencies and shared by
103 * all cpus. Give MIN_NICE.
104 */
105 RESCUER_NICE_LEVEL = MIN_NICE,
106 HIGHPRI_NICE_LEVEL = MIN_NICE,
107
108 WQ_NAME_LEN = 24,
109 };
110
111 /*
112 * Structure fields follow one of the following exclusion rules.
113 *
114 * I: Modifiable by initialization/destruction paths and read-only for
115 * everyone else.
116 *
117 * P: Preemption protected. Disabling preemption is enough and should
118 * only be modified and accessed from the local cpu.
119 *
120 * L: pool->lock protected. Access with pool->lock held.
121 *
122 * X: During normal operation, modification requires pool->lock and should
123 * be done only from local cpu. Either disabling preemption on local
124 * cpu or grabbing pool->lock is enough for read access. If
125 * POOL_DISASSOCIATED is set, it's identical to L.
126 *
127 * A: wq_pool_attach_mutex protected.
128 *
129 * PL: wq_pool_mutex protected.
130 *
131 * PR: wq_pool_mutex protected for writes. RCU protected for reads.
132 *
133 * PW: wq_pool_mutex and wq->mutex protected for writes. Either for reads.
134 *
135 * PWR: wq_pool_mutex and wq->mutex protected for writes. Either or
136 * RCU for reads.
137 *
138 * WQ: wq->mutex protected.
139 *
140 * WR: wq->mutex protected for writes. RCU protected for reads.
141 *
142 * MD: wq_mayday_lock protected.
143 */
144
145 /* struct worker is defined in workqueue_internal.h */
146
147 struct worker_pool {
148 raw_spinlock_t lock; /* the pool lock */
149 int cpu; /* I: the associated cpu */
150 int node; /* I: the associated node ID */
151 int id; /* I: pool ID */
152 unsigned int flags; /* X: flags */
153
154 unsigned long watchdog_ts; /* L: watchdog timestamp */
155
156 struct list_head worklist; /* L: list of pending works */
157
158 int nr_workers; /* L: total number of workers */
159 int nr_idle; /* L: currently idle workers */
160
161 struct list_head idle_list; /* X: list of idle workers */
162 struct timer_list idle_timer; /* L: worker idle timeout */
163 struct timer_list mayday_timer; /* L: SOS timer for workers */
164
165 /* a workers is either on busy_hash or idle_list, or the manager */
166 DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
167 /* L: hash of busy workers */
168
169 struct worker *manager; /* L: purely informational */
170 struct list_head workers; /* A: attached workers */
171 struct completion *detach_completion; /* all workers detached */
172
173 struct ida worker_ida; /* worker IDs for task name */
174
175 struct workqueue_attrs *attrs; /* I: worker attributes */
176 struct hlist_node hash_node; /* PL: unbound_pool_hash node */
177 int refcnt; /* PL: refcnt for unbound pools */
178
179 /*
180 * The current concurrency level. As it's likely to be accessed
181 * from other CPUs during try_to_wake_up(), put it in a separate
182 * cacheline.
183 */
184 atomic_t nr_running ____cacheline_aligned_in_smp;
185
186 /*
187 * Destruction of pool is RCU protected to allow dereferences
188 * from get_work_pool().
189 */
190 struct rcu_head rcu;
191 } ____cacheline_aligned_in_smp;
192
193 /*
194 * The per-pool workqueue. While queued, the lower WORK_STRUCT_FLAG_BITS
195 * of work_struct->data are used for flags and the remaining high bits
196 * point to the pwq; thus, pwqs need to be aligned at two's power of the
197 * number of flag bits.
198 */
199 struct pool_workqueue {
200 struct worker_pool *pool; /* I: the associated pool */
201 struct workqueue_struct *wq; /* I: the owning workqueue */
202 int work_color; /* L: current color */
203 int flush_color; /* L: flushing color */
204 int refcnt; /* L: reference count */
205 int nr_in_flight[WORK_NR_COLORS];
206 /* L: nr of in_flight works */
207 int nr_active; /* L: nr of active works */
208 int max_active; /* L: max active works */
209 struct list_head delayed_works; /* L: delayed works */
210 struct list_head pwqs_node; /* WR: node on wq->pwqs */
211 struct list_head mayday_node; /* MD: node on wq->maydays */
212
213 /*
214 * Release of unbound pwq is punted to system_wq. See put_pwq()
215 * and pwq_unbound_release_workfn() for details. pool_workqueue
216 * itself is also RCU protected so that the first pwq can be
217 * determined without grabbing wq->mutex.
218 */
219 struct work_struct unbound_release_work;
220 struct rcu_head rcu;
221 } __aligned(1 << WORK_STRUCT_FLAG_BITS);
222
223 /*
224 * Structure used to wait for workqueue flush.
225 */
226 struct wq_flusher {
227 struct list_head list; /* WQ: list of flushers */
228 int flush_color; /* WQ: flush color waiting for */
229 struct completion done; /* flush completion */
230 };
231
232 struct wq_device;
233
234 /*
235 * The externally visible workqueue. It relays the issued work items to
236 * the appropriate worker_pool through its pool_workqueues.
237 */
238 struct workqueue_struct {
239 struct list_head pwqs; /* WR: all pwqs of this wq */
240 struct list_head list; /* PR: list of all workqueues */
241
242 struct mutex mutex; /* protects this wq */
243 int work_color; /* WQ: current work color */
244 int flush_color; /* WQ: current flush color */
245 atomic_t nr_pwqs_to_flush; /* flush in progress */
246 struct wq_flusher *first_flusher; /* WQ: first flusher */
247 struct list_head flusher_queue; /* WQ: flush waiters */
248 struct list_head flusher_overflow; /* WQ: flush overflow list */
249
250 struct list_head maydays; /* MD: pwqs requesting rescue */
251 struct worker *rescuer; /* MD: rescue worker */
252
253 int nr_drainers; /* WQ: drain in progress */
254 int saved_max_active; /* WQ: saved pwq max_active */
255
256 struct workqueue_attrs *unbound_attrs; /* PW: only for unbound wqs */
257 struct pool_workqueue *dfl_pwq; /* PW: only for unbound wqs */
258
259 #ifdef CONFIG_SYSFS
260 struct wq_device *wq_dev; /* I: for sysfs interface */
261 #endif
262 #ifdef CONFIG_LOCKDEP
263 char *lock_name;
264 struct lock_class_key key;
265 struct lockdep_map lockdep_map;
266 #endif
267 char name[WQ_NAME_LEN]; /* I: workqueue name */
268
269 /*
270 * Destruction of workqueue_struct is RCU protected to allow walking
271 * the workqueues list without grabbing wq_pool_mutex.
272 * This is used to dump all workqueues from sysrq.
273 */
274 struct rcu_head rcu;
275
276 /* hot fields used during command issue, aligned to cacheline */
277 unsigned int flags ____cacheline_aligned; /* WQ: WQ_* flags */
278 struct pool_workqueue __percpu *cpu_pwqs; /* I: per-cpu pwqs */
279 struct pool_workqueue __rcu *numa_pwq_tbl[]; /* PWR: unbound pwqs indexed by node */
280 };
281
282 static struct kmem_cache *pwq_cache;
283
284 static cpumask_var_t *wq_numa_possible_cpumask;
285 /* possible CPUs of each node */
286
287 static bool wq_disable_numa;
288 module_param_named(disable_numa, wq_disable_numa, bool, 0444);
289
290 /* see the comment above the definition of WQ_POWER_EFFICIENT */
291 static bool wq_power_efficient = IS_ENABLED(CONFIG_WQ_POWER_EFFICIENT_DEFAULT);
292 module_param_named(power_efficient, wq_power_efficient, bool, 0444);
293
294 static bool wq_online; /* can kworkers be created yet? */
295
296 static bool wq_numa_enabled; /* unbound NUMA affinity enabled */
297
298 /* buf for wq_update_unbound_numa_attrs(), protected by CPU hotplug exclusion */
299 static struct workqueue_attrs *wq_update_unbound_numa_attrs_buf;
300
301 static DEFINE_MUTEX(wq_pool_mutex); /* protects pools and workqueues list */
302 static DEFINE_MUTEX(wq_pool_attach_mutex); /* protects worker attach/detach */
303 static DEFINE_RAW_SPINLOCK(wq_mayday_lock); /* protects wq->maydays list */
304 /* wait for manager to go away */
305 static struct rcuwait manager_wait = __RCUWAIT_INITIALIZER(manager_wait);
306
307 static LIST_HEAD(workqueues); /* PR: list of all workqueues */
308 static bool workqueue_freezing; /* PL: have wqs started freezing? */
309
310 /* PL: allowable cpus for unbound wqs and work items */
311 static cpumask_var_t wq_unbound_cpumask;
312
313 /* CPU where unbound work was last round robin scheduled from this CPU */
314 static DEFINE_PER_CPU(int, wq_rr_cpu_last);
315
316 /*
317 * Local execution of unbound work items is no longer guaranteed. The
318 * following always forces round-robin CPU selection on unbound work items
319 * to uncover usages which depend on it.
320 */
321 #ifdef CONFIG_DEBUG_WQ_FORCE_RR_CPU
322 static bool wq_debug_force_rr_cpu = true;
323 #else
324 static bool wq_debug_force_rr_cpu = false;
325 #endif
326 module_param_named(debug_force_rr_cpu, wq_debug_force_rr_cpu, bool, 0644);
327
328 /* the per-cpu worker pools */
329 static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS], cpu_worker_pools);
330
331 static DEFINE_IDR(worker_pool_idr); /* PR: idr of all pools */
332
333 /* PL: hash of all unbound pools keyed by pool->attrs */
334 static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER);
335
336 /* I: attributes used when instantiating standard unbound pools on demand */
337 static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS];
338
339 /* I: attributes used when instantiating ordered pools on demand */
340 static struct workqueue_attrs *ordered_wq_attrs[NR_STD_WORKER_POOLS];
341
342 struct workqueue_struct *system_wq __read_mostly;
343 EXPORT_SYMBOL(system_wq);
344 struct workqueue_struct *system_highpri_wq __read_mostly;
345 EXPORT_SYMBOL_GPL(system_highpri_wq);
346 struct workqueue_struct *system_long_wq __read_mostly;
347 EXPORT_SYMBOL_GPL(system_long_wq);
348 struct workqueue_struct *system_unbound_wq __read_mostly;
349 EXPORT_SYMBOL_GPL(system_unbound_wq);
350 struct workqueue_struct *system_freezable_wq __read_mostly;
351 EXPORT_SYMBOL_GPL(system_freezable_wq);
352 struct workqueue_struct *system_power_efficient_wq __read_mostly;
353 EXPORT_SYMBOL_GPL(system_power_efficient_wq);
354 struct workqueue_struct *system_freezable_power_efficient_wq __read_mostly;
355 EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq);
356
357 static int worker_thread(void *__worker);
358 static void workqueue_sysfs_unregister(struct workqueue_struct *wq);
359 static void show_pwq(struct pool_workqueue *pwq);
360
361 #define CREATE_TRACE_POINTS
362 #include <trace/events/workqueue.h>
363
364 #define assert_rcu_or_pool_mutex() \
365 RCU_LOCKDEP_WARN(!rcu_read_lock_held() && \
366 !lockdep_is_held(&wq_pool_mutex), \
367 "RCU or wq_pool_mutex should be held")
368
369 #define assert_rcu_or_wq_mutex_or_pool_mutex(wq) \
370 RCU_LOCKDEP_WARN(!rcu_read_lock_held() && \
371 !lockdep_is_held(&wq->mutex) && \
372 !lockdep_is_held(&wq_pool_mutex), \
373 "RCU, wq->mutex or wq_pool_mutex should be held")
374
375 #define for_each_cpu_worker_pool(pool, cpu) \
376 for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0]; \
377 (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
378 (pool)++)
379
380 /**
381 * for_each_pool - iterate through all worker_pools in the system
382 * @pool: iteration cursor
383 * @pi: integer used for iteration
384 *
385 * This must be called either with wq_pool_mutex held or RCU read
386 * locked. If the pool needs to be used beyond the locking in effect, the
387 * caller is responsible for guaranteeing that the pool stays online.
388 *
389 * The if/else clause exists only for the lockdep assertion and can be
390 * ignored.
391 */
392 #define for_each_pool(pool, pi) \
393 idr_for_each_entry(&worker_pool_idr, pool, pi) \
394 if (({ assert_rcu_or_pool_mutex(); false; })) { } \
395 else
396
397 /**
398 * for_each_pool_worker - iterate through all workers of a worker_pool
399 * @worker: iteration cursor
400 * @pool: worker_pool to iterate workers of
401 *
402 * This must be called with wq_pool_attach_mutex.
403 *
404 * The if/else clause exists only for the lockdep assertion and can be
405 * ignored.
406 */
407 #define for_each_pool_worker(worker, pool) \
408 list_for_each_entry((worker), &(pool)->workers, node) \
409 if (({ lockdep_assert_held(&wq_pool_attach_mutex); false; })) { } \
410 else
411
412 /**
413 * for_each_pwq - iterate through all pool_workqueues of the specified workqueue
414 * @pwq: iteration cursor
415 * @wq: the target workqueue
416 *
417 * This must be called either with wq->mutex held or RCU read locked.
418 * If the pwq needs to be used beyond the locking in effect, the caller is
419 * responsible for guaranteeing that the pwq stays online.
420 *
421 * The if/else clause exists only for the lockdep assertion and can be
422 * ignored.
423 */
424 #define for_each_pwq(pwq, wq) \
425 list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node, \
426 lockdep_is_held(&(wq->mutex)))
427
428 #ifdef CONFIG_DEBUG_OBJECTS_WORK
429
430 static const struct debug_obj_descr work_debug_descr;
431
432 static void *work_debug_hint(void *addr)
433 {
434 return ((struct work_struct *) addr)->func;
435 }
436
437 static bool work_is_static_object(void *addr)
438 {
439 struct work_struct *work = addr;
440
441 return test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work));
442 }
443
444 /*
445 * fixup_init is called when:
446 * - an active object is initialized
447 */
448 static bool work_fixup_init(void *addr, enum debug_obj_state state)
449 {
450 struct work_struct *work = addr;
451
452 switch (state) {
453 case ODEBUG_STATE_ACTIVE:
454 cancel_work_sync(work);
455 debug_object_init(work, &work_debug_descr);
456 return true;
457 default:
458 return false;
459 }
460 }
461
462 /*
463 * fixup_free is called when:
464 * - an active object is freed
465 */
466 static bool work_fixup_free(void *addr, enum debug_obj_state state)
467 {
468 struct work_struct *work = addr;
469
470 switch (state) {
471 case ODEBUG_STATE_ACTIVE:
472 cancel_work_sync(work);
473 debug_object_free(work, &work_debug_descr);
474 return true;
475 default:
476 return false;
477 }
478 }
479
480 static const struct debug_obj_descr work_debug_descr = {
481 .name = "work_struct",
482 .debug_hint = work_debug_hint,
483 .is_static_object = work_is_static_object,
484 .fixup_init = work_fixup_init,
485 .fixup_free = work_fixup_free,
486 };
487
488 static inline void debug_work_activate(struct work_struct *work)
489 {
490 debug_object_activate(work, &work_debug_descr);
491 }
492
493 static inline void debug_work_deactivate(struct work_struct *work)
494 {
495 debug_object_deactivate(work, &work_debug_descr);
496 }
497
498 void __init_work(struct work_struct *work, int onstack)
499 {
500 if (onstack)
501 debug_object_init_on_stack(work, &work_debug_descr);
502 else
503 debug_object_init(work, &work_debug_descr);
504 }
505 EXPORT_SYMBOL_GPL(__init_work);
506
507 void destroy_work_on_stack(struct work_struct *work)
508 {
509 debug_object_free(work, &work_debug_descr);
510 }
511 EXPORT_SYMBOL_GPL(destroy_work_on_stack);
512
513 void destroy_delayed_work_on_stack(struct delayed_work *work)
514 {
515 destroy_timer_on_stack(&work->timer);
516 debug_object_free(&work->work, &work_debug_descr);
517 }
518 EXPORT_SYMBOL_GPL(destroy_delayed_work_on_stack);
519
520 #else
521 static inline void debug_work_activate(struct work_struct *work) { }
522 static inline void debug_work_deactivate(struct work_struct *work) { }
523 #endif
524
525 /**
526 * worker_pool_assign_id - allocate ID and assing it to @pool
527 * @pool: the pool pointer of interest
528 *
529 * Returns 0 if ID in [0, WORK_OFFQ_POOL_NONE) is allocated and assigned
530 * successfully, -errno on failure.
531 */
532 static int worker_pool_assign_id(struct worker_pool *pool)
533 {
534 int ret;
535
536 lockdep_assert_held(&wq_pool_mutex);
537
538 ret = idr_alloc(&worker_pool_idr, pool, 0, WORK_OFFQ_POOL_NONE,
539 GFP_KERNEL);
540 if (ret >= 0) {
541 pool->id = ret;
542 return 0;
543 }
544 return ret;
545 }
546
547 /**
548 * unbound_pwq_by_node - return the unbound pool_workqueue for the given node
549 * @wq: the target workqueue
550 * @node: the node ID
551 *
552 * This must be called with any of wq_pool_mutex, wq->mutex or RCU
553 * read locked.
554 * If the pwq needs to be used beyond the locking in effect, the caller is
555 * responsible for guaranteeing that the pwq stays online.
556 *
557 * Return: The unbound pool_workqueue for @node.
558 */
559 static struct pool_workqueue *unbound_pwq_by_node(struct workqueue_struct *wq,
560 int node)
561 {
562 assert_rcu_or_wq_mutex_or_pool_mutex(wq);
563
564 /*
565 * XXX: @node can be NUMA_NO_NODE if CPU goes offline while a
566 * delayed item is pending. The plan is to keep CPU -> NODE
567 * mapping valid and stable across CPU on/offlines. Once that
568 * happens, this workaround can be removed.
569 */
570 if (unlikely(node == NUMA_NO_NODE))
571 return wq->dfl_pwq;
572
573 return rcu_dereference_raw(wq->numa_pwq_tbl[node]);
574 }
575
576 static unsigned int work_color_to_flags(int color)
577 {
578 return color << WORK_STRUCT_COLOR_SHIFT;
579 }
580
581 static int get_work_color(struct work_struct *work)
582 {
583 return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
584 ((1 << WORK_STRUCT_COLOR_BITS) - 1);
585 }
586
587 static int work_next_color(int color)
588 {
589 return (color + 1) % WORK_NR_COLORS;
590 }
591
592 /*
593 * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
594 * contain the pointer to the queued pwq. Once execution starts, the flag
595 * is cleared and the high bits contain OFFQ flags and pool ID.
596 *
597 * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling()
598 * and clear_work_data() can be used to set the pwq, pool or clear
599 * work->data. These functions should only be called while the work is
600 * owned - ie. while the PENDING bit is set.
601 *
602 * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
603 * corresponding to a work. Pool is available once the work has been
604 * queued anywhere after initialization until it is sync canceled. pwq is
605 * available only while the work item is queued.
606 *
607 * %WORK_OFFQ_CANCELING is used to mark a work item which is being
608 * canceled. While being canceled, a work item may have its PENDING set
609 * but stay off timer and worklist for arbitrarily long and nobody should
610 * try to steal the PENDING bit.
611 */
612 static inline void set_work_data(struct work_struct *work, unsigned long data,
613 unsigned long flags)
614 {
615 WARN_ON_ONCE(!work_pending(work));
616 atomic_long_set(&work->data, data | flags | work_static(work));
617 }
618
619 static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq,
620 unsigned long extra_flags)
621 {
622 set_work_data(work, (unsigned long)pwq,
623 WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags);
624 }
625
626 static void set_work_pool_and_keep_pending(struct work_struct *work,
627 int pool_id)
628 {
629 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT,
630 WORK_STRUCT_PENDING);
631 }
632
633 static void set_work_pool_and_clear_pending(struct work_struct *work,
634 int pool_id)
635 {
636 /*
637 * The following wmb is paired with the implied mb in
638 * test_and_set_bit(PENDING) and ensures all updates to @work made
639 * here are visible to and precede any updates by the next PENDING
640 * owner.
641 */
642 smp_wmb();
643 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0);
644 /*
645 * The following mb guarantees that previous clear of a PENDING bit
646 * will not be reordered with any speculative LOADS or STORES from
647 * work->current_func, which is executed afterwards. This possible
648 * reordering can lead to a missed execution on attempt to queue
649 * the same @work. E.g. consider this case:
650 *
651 * CPU#0 CPU#1
652 * ---------------------------- --------------------------------
653 *
654 * 1 STORE event_indicated
655 * 2 queue_work_on() {
656 * 3 test_and_set_bit(PENDING)
657 * 4 } set_..._and_clear_pending() {
658 * 5 set_work_data() # clear bit
659 * 6 smp_mb()
660 * 7 work->current_func() {
661 * 8 LOAD event_indicated
662 * }
663 *
664 * Without an explicit full barrier speculative LOAD on line 8 can
665 * be executed before CPU#0 does STORE on line 1. If that happens,
666 * CPU#0 observes the PENDING bit is still set and new execution of
667 * a @work is not queued in a hope, that CPU#1 will eventually
668 * finish the queued @work. Meanwhile CPU#1 does not see
669 * event_indicated is set, because speculative LOAD was executed
670 * before actual STORE.
671 */
672 smp_mb();
673 }
674
675 static void clear_work_data(struct work_struct *work)
676 {
677 smp_wmb(); /* see set_work_pool_and_clear_pending() */
678 set_work_data(work, WORK_STRUCT_NO_POOL, 0);
679 }
680
681 static struct pool_workqueue *get_work_pwq(struct work_struct *work)
682 {
683 unsigned long data = atomic_long_read(&work->data);
684
685 if (data & WORK_STRUCT_PWQ)
686 return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
687 else
688 return NULL;
689 }
690
691 /**
692 * get_work_pool - return the worker_pool a given work was associated with
693 * @work: the work item of interest
694 *
695 * Pools are created and destroyed under wq_pool_mutex, and allows read
696 * access under RCU read lock. As such, this function should be
697 * called under wq_pool_mutex or inside of a rcu_read_lock() region.
698 *
699 * All fields of the returned pool are accessible as long as the above
700 * mentioned locking is in effect. If the returned pool needs to be used
701 * beyond the critical section, the caller is responsible for ensuring the
702 * returned pool is and stays online.
703 *
704 * Return: The worker_pool @work was last associated with. %NULL if none.
705 */
706 static struct worker_pool *get_work_pool(struct work_struct *work)
707 {
708 unsigned long data = atomic_long_read(&work->data);
709 int pool_id;
710
711 assert_rcu_or_pool_mutex();
712
713 if (data & WORK_STRUCT_PWQ)
714 return ((struct pool_workqueue *)
715 (data & WORK_STRUCT_WQ_DATA_MASK))->pool;
716
717 pool_id = data >> WORK_OFFQ_POOL_SHIFT;
718 if (pool_id == WORK_OFFQ_POOL_NONE)
719 return NULL;
720
721 return idr_find(&worker_pool_idr, pool_id);
722 }
723
724 /**
725 * get_work_pool_id - return the worker pool ID a given work is associated with
726 * @work: the work item of interest
727 *
728 * Return: The worker_pool ID @work was last associated with.
729 * %WORK_OFFQ_POOL_NONE if none.
730 */
731 static int get_work_pool_id(struct work_struct *work)
732 {
733 unsigned long data = atomic_long_read(&work->data);
734
735 if (data & WORK_STRUCT_PWQ)
736 return ((struct pool_workqueue *)
737 (data & WORK_STRUCT_WQ_DATA_MASK))->pool->id;
738
739 return data >> WORK_OFFQ_POOL_SHIFT;
740 }
741
742 static void mark_work_canceling(struct work_struct *work)
743 {
744 unsigned long pool_id = get_work_pool_id(work);
745
746 pool_id <<= WORK_OFFQ_POOL_SHIFT;
747 set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING);
748 }
749
750 static bool work_is_canceling(struct work_struct *work)
751 {
752 unsigned long data = atomic_long_read(&work->data);
753
754 return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING);
755 }
756
757 /*
758 * Policy functions. These define the policies on how the global worker
759 * pools are managed. Unless noted otherwise, these functions assume that
760 * they're being called with pool->lock held.
761 */
762
763 static bool __need_more_worker(struct worker_pool *pool)
764 {
765 return !atomic_read(&pool->nr_running);
766 }
767
768 /*
769 * Need to wake up a worker? Called from anything but currently
770 * running workers.
771 *
772 * Note that, because unbound workers never contribute to nr_running, this
773 * function will always return %true for unbound pools as long as the
774 * worklist isn't empty.
775 */
776 static bool need_more_worker(struct worker_pool *pool)
777 {
778 return !list_empty(&pool->worklist) && __need_more_worker(pool);
779 }
780
781 /* Can I start working? Called from busy but !running workers. */
782 static bool may_start_working(struct worker_pool *pool)
783 {
784 return pool->nr_idle;
785 }
786
787 /* Do I need to keep working? Called from currently running workers. */
788 static bool keep_working(struct worker_pool *pool)
789 {
790 return !list_empty(&pool->worklist) &&
791 atomic_read(&pool->nr_running) <= 1;
792 }
793
794 /* Do we need a new worker? Called from manager. */
795 static bool need_to_create_worker(struct worker_pool *pool)
796 {
797 return need_more_worker(pool) && !may_start_working(pool);
798 }
799
800 /* Do we have too many workers and should some go away? */
801 static bool too_many_workers(struct worker_pool *pool)
802 {
803 bool managing = pool->flags & POOL_MANAGER_ACTIVE;
804 int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
805 int nr_busy = pool->nr_workers - nr_idle;
806
807 return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
808 }
809
810 /*
811 * Wake up functions.
812 */
813
814 /* Return the first idle worker. Safe with preemption disabled */
815 static struct worker *first_idle_worker(struct worker_pool *pool)
816 {
817 if (unlikely(list_empty(&pool->idle_list)))
818 return NULL;
819
820 return list_first_entry(&pool->idle_list, struct worker, entry);
821 }
822
823 /**
824 * wake_up_worker - wake up an idle worker
825 * @pool: worker pool to wake worker from
826 *
827 * Wake up the first idle worker of @pool.
828 *
829 * CONTEXT:
830 * raw_spin_lock_irq(pool->lock).
831 */
832 static void wake_up_worker(struct worker_pool *pool)
833 {
834 struct worker *worker = first_idle_worker(pool);
835
836 if (likely(worker))
837 wake_up_process(worker->task);
838 }
839
840 /**
841 * wq_worker_running - a worker is running again
842 * @task: task waking up
843 *
844 * This function is called when a worker returns from schedule()
845 */
846 void wq_worker_running(struct task_struct *task)
847 {
848 struct worker *worker = kthread_data(task);
849
850 if (!worker->sleeping)
851 return;
852 if (!(worker->flags & WORKER_NOT_RUNNING))
853 atomic_inc(&worker->pool->nr_running);
854 worker->sleeping = 0;
855 }
856
857 /**
858 * wq_worker_sleeping - a worker is going to sleep
859 * @task: task going to sleep
860 *
861 * This function is called from schedule() when a busy worker is
862 * going to sleep. Preemption needs to be disabled to protect ->sleeping
863 * assignment.
864 */
865 void wq_worker_sleeping(struct task_struct *task)
866 {
867 struct worker *next, *worker = kthread_data(task);
868 struct worker_pool *pool;
869
870 /*
871 * Rescuers, which may not have all the fields set up like normal
872 * workers, also reach here, let's not access anything before
873 * checking NOT_RUNNING.
874 */
875 if (worker->flags & WORKER_NOT_RUNNING)
876 return;
877
878 pool = worker->pool;
879
880 /* Return if preempted before wq_worker_running() was reached */
881 if (worker->sleeping)
882 return;
883
884 worker->sleeping = 1;
885 raw_spin_lock_irq(&pool->lock);
886
887 /*
888 * The counterpart of the following dec_and_test, implied mb,
889 * worklist not empty test sequence is in insert_work().
890 * Please read comment there.
891 *
892 * NOT_RUNNING is clear. This means that we're bound to and
893 * running on the local cpu w/ rq lock held and preemption
894 * disabled, which in turn means that none else could be
895 * manipulating idle_list, so dereferencing idle_list without pool
896 * lock is safe.
897 */
898 if (atomic_dec_and_test(&pool->nr_running) &&
899 !list_empty(&pool->worklist)) {
900 next = first_idle_worker(pool);
901 if (next)
902 wake_up_process(next->task);
903 }
904 raw_spin_unlock_irq(&pool->lock);
905 }
906
907 /**
908 * wq_worker_last_func - retrieve worker's last work function
909 * @task: Task to retrieve last work function of.
910 *
911 * Determine the last function a worker executed. This is called from
912 * the scheduler to get a worker's last known identity.
913 *
914 * CONTEXT:
915 * raw_spin_lock_irq(rq->lock)
916 *
917 * This function is called during schedule() when a kworker is going
918 * to sleep. It's used by psi to identify aggregation workers during
919 * dequeuing, to allow periodic aggregation to shut-off when that
920 * worker is the last task in the system or cgroup to go to sleep.
921 *
922 * As this function doesn't involve any workqueue-related locking, it
923 * only returns stable values when called from inside the scheduler's
924 * queuing and dequeuing paths, when @task, which must be a kworker,
925 * is guaranteed to not be processing any works.
926 *
927 * Return:
928 * The last work function %current executed as a worker, NULL if it
929 * hasn't executed any work yet.
930 */
931 work_func_t wq_worker_last_func(struct task_struct *task)
932 {
933 struct worker *worker = kthread_data(task);
934
935 return worker->last_func;
936 }
937
938 /**
939 * worker_set_flags - set worker flags and adjust nr_running accordingly
940 * @worker: self
941 * @flags: flags to set
942 *
943 * Set @flags in @worker->flags and adjust nr_running accordingly.
944 *
945 * CONTEXT:
946 * raw_spin_lock_irq(pool->lock)
947 */
948 static inline void worker_set_flags(struct worker *worker, unsigned int flags)
949 {
950 struct worker_pool *pool = worker->pool;
951
952 WARN_ON_ONCE(worker->task != current);
953
954 /* If transitioning into NOT_RUNNING, adjust nr_running. */
955 if ((flags & WORKER_NOT_RUNNING) &&
956 !(worker->flags & WORKER_NOT_RUNNING)) {
957 atomic_dec(&pool->nr_running);
958 }
959
960 worker->flags |= flags;
961 }
962
963 /**
964 * worker_clr_flags - clear worker flags and adjust nr_running accordingly
965 * @worker: self
966 * @flags: flags to clear
967 *
968 * Clear @flags in @worker->flags and adjust nr_running accordingly.
969 *
970 * CONTEXT:
971 * raw_spin_lock_irq(pool->lock)
972 */
973 static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
974 {
975 struct worker_pool *pool = worker->pool;
976 unsigned int oflags = worker->flags;
977
978 WARN_ON_ONCE(worker->task != current);
979
980 worker->flags &= ~flags;
981
982 /*
983 * If transitioning out of NOT_RUNNING, increment nr_running. Note
984 * that the nested NOT_RUNNING is not a noop. NOT_RUNNING is mask
985 * of multiple flags, not a single flag.
986 */
987 if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
988 if (!(worker->flags & WORKER_NOT_RUNNING))
989 atomic_inc(&pool->nr_running);
990 }
991
992 /**
993 * find_worker_executing_work - find worker which is executing a work
994 * @pool: pool of interest
995 * @work: work to find worker for
996 *
997 * Find a worker which is executing @work on @pool by searching
998 * @pool->busy_hash which is keyed by the address of @work. For a worker
999 * to match, its current execution should match the address of @work and
1000 * its work function. This is to avoid unwanted dependency between
1001 * unrelated work executions through a work item being recycled while still
1002 * being executed.
1003 *
1004 * This is a bit tricky. A work item may be freed once its execution
1005 * starts and nothing prevents the freed area from being recycled for
1006 * another work item. If the same work item address ends up being reused
1007 * before the original execution finishes, workqueue will identify the
1008 * recycled work item as currently executing and make it wait until the
1009 * current execution finishes, introducing an unwanted dependency.
1010 *
1011 * This function checks the work item address and work function to avoid
1012 * false positives. Note that this isn't complete as one may construct a
1013 * work function which can introduce dependency onto itself through a
1014 * recycled work item. Well, if somebody wants to shoot oneself in the
1015 * foot that badly, there's only so much we can do, and if such deadlock
1016 * actually occurs, it should be easy to locate the culprit work function.
1017 *
1018 * CONTEXT:
1019 * raw_spin_lock_irq(pool->lock).
1020 *
1021 * Return:
1022 * Pointer to worker which is executing @work if found, %NULL
1023 * otherwise.
1024 */
1025 static struct worker *find_worker_executing_work(struct worker_pool *pool,
1026 struct work_struct *work)
1027 {
1028 struct worker *worker;
1029
1030 hash_for_each_possible(pool->busy_hash, worker, hentry,
1031 (unsigned long)work)
1032 if (worker->current_work == work &&
1033 worker->current_func == work->func)
1034 return worker;
1035
1036 return NULL;
1037 }
1038
1039 /**
1040 * move_linked_works - move linked works to a list
1041 * @work: start of series of works to be scheduled
1042 * @head: target list to append @work to
1043 * @nextp: out parameter for nested worklist walking
1044 *
1045 * Schedule linked works starting from @work to @head. Work series to
1046 * be scheduled starts at @work and includes any consecutive work with
1047 * WORK_STRUCT_LINKED set in its predecessor.
1048 *
1049 * If @nextp is not NULL, it's updated to point to the next work of
1050 * the last scheduled work. This allows move_linked_works() to be
1051 * nested inside outer list_for_each_entry_safe().
1052 *
1053 * CONTEXT:
1054 * raw_spin_lock_irq(pool->lock).
1055 */
1056 static void move_linked_works(struct work_struct *work, struct list_head *head,
1057 struct work_struct **nextp)
1058 {
1059 struct work_struct *n;
1060
1061 /*
1062 * Linked worklist will always end before the end of the list,
1063 * use NULL for list head.
1064 */
1065 list_for_each_entry_safe_from(work, n, NULL, entry) {
1066 list_move_tail(&work->entry, head);
1067 if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
1068 break;
1069 }
1070
1071 /*
1072 * If we're already inside safe list traversal and have moved
1073 * multiple works to the scheduled queue, the next position
1074 * needs to be updated.
1075 */
1076 if (nextp)
1077 *nextp = n;
1078 }
1079
1080 /**
1081 * get_pwq - get an extra reference on the specified pool_workqueue
1082 * @pwq: pool_workqueue to get
1083 *
1084 * Obtain an extra reference on @pwq. The caller should guarantee that
1085 * @pwq has positive refcnt and be holding the matching pool->lock.
1086 */
1087 static void get_pwq(struct pool_workqueue *pwq)
1088 {
1089 lockdep_assert_held(&pwq->pool->lock);
1090 WARN_ON_ONCE(pwq->refcnt <= 0);
1091 pwq->refcnt++;
1092 }
1093
1094 /**
1095 * put_pwq - put a pool_workqueue reference
1096 * @pwq: pool_workqueue to put
1097 *
1098 * Drop a reference of @pwq. If its refcnt reaches zero, schedule its
1099 * destruction. The caller should be holding the matching pool->lock.
1100 */
1101 static void put_pwq(struct pool_workqueue *pwq)
1102 {
1103 lockdep_assert_held(&pwq->pool->lock);
1104 if (likely(--pwq->refcnt))
1105 return;
1106 if (WARN_ON_ONCE(!(pwq->wq->flags & WQ_UNBOUND)))
1107 return;
1108 /*
1109 * @pwq can't be released under pool->lock, bounce to
1110 * pwq_unbound_release_workfn(). This never recurses on the same
1111 * pool->lock as this path is taken only for unbound workqueues and
1112 * the release work item is scheduled on a per-cpu workqueue. To
1113 * avoid lockdep warning, unbound pool->locks are given lockdep
1114 * subclass of 1 in get_unbound_pool().
1115 */
1116 schedule_work(&pwq->unbound_release_work);
1117 }
1118
1119 /**
1120 * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock
1121 * @pwq: pool_workqueue to put (can be %NULL)
1122 *
1123 * put_pwq() with locking. This function also allows %NULL @pwq.
1124 */
1125 static void put_pwq_unlocked(struct pool_workqueue *pwq)
1126 {
1127 if (pwq) {
1128 /*
1129 * As both pwqs and pools are RCU protected, the
1130 * following lock operations are safe.
1131 */
1132 raw_spin_lock_irq(&pwq->pool->lock);
1133 put_pwq(pwq);
1134 raw_spin_unlock_irq(&pwq->pool->lock);
1135 }
1136 }
1137
1138 static void pwq_activate_delayed_work(struct work_struct *work)
1139 {
1140 struct pool_workqueue *pwq = get_work_pwq(work);
1141
1142 trace_workqueue_activate_work(work);
1143 if (list_empty(&pwq->pool->worklist))
1144 pwq->pool->watchdog_ts = jiffies;
1145 move_linked_works(work, &pwq->pool->worklist, NULL);
1146 __clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
1147 pwq->nr_active++;
1148 }
1149
1150 static void pwq_activate_first_delayed(struct pool_workqueue *pwq)
1151 {
1152 struct work_struct *work = list_first_entry(&pwq->delayed_works,
1153 struct work_struct, entry);
1154
1155 pwq_activate_delayed_work(work);
1156 }
1157
1158 /**
1159 * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
1160 * @pwq: pwq of interest
1161 * @color: color of work which left the queue
1162 *
1163 * A work either has completed or is removed from pending queue,
1164 * decrement nr_in_flight of its pwq and handle workqueue flushing.
1165 *
1166 * CONTEXT:
1167 * raw_spin_lock_irq(pool->lock).
1168 */
1169 static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, int color)
1170 {
1171 /* uncolored work items don't participate in flushing or nr_active */
1172 if (color == WORK_NO_COLOR)
1173 goto out_put;
1174
1175 pwq->nr_in_flight[color]--;
1176
1177 pwq->nr_active--;
1178 if (!list_empty(&pwq->delayed_works)) {
1179 /* one down, submit a delayed one */
1180 if (pwq->nr_active < pwq->max_active)
1181 pwq_activate_first_delayed(pwq);
1182 }
1183
1184 /* is flush in progress and are we at the flushing tip? */
1185 if (likely(pwq->flush_color != color))
1186 goto out_put;
1187
1188 /* are there still in-flight works? */
1189 if (pwq->nr_in_flight[color])
1190 goto out_put;
1191
1192 /* this pwq is done, clear flush_color */
1193 pwq->flush_color = -1;
1194
1195 /*
1196 * If this was the last pwq, wake up the first flusher. It
1197 * will handle the rest.
1198 */
1199 if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush))
1200 complete(&pwq->wq->first_flusher->done);
1201 out_put:
1202 put_pwq(pwq);
1203 }
1204
1205 /**
1206 * try_to_grab_pending - steal work item from worklist and disable irq
1207 * @work: work item to steal
1208 * @is_dwork: @work is a delayed_work
1209 * @flags: place to store irq state
1210 *
1211 * Try to grab PENDING bit of @work. This function can handle @work in any
1212 * stable state - idle, on timer or on worklist.
1213 *
1214 * Return:
1215 *
1216 * ======== ================================================================
1217 * 1 if @work was pending and we successfully stole PENDING
1218 * 0 if @work was idle and we claimed PENDING
1219 * -EAGAIN if PENDING couldn't be grabbed at the moment, safe to busy-retry
1220 * -ENOENT if someone else is canceling @work, this state may persist
1221 * for arbitrarily long
1222 * ======== ================================================================
1223 *
1224 * Note:
1225 * On >= 0 return, the caller owns @work's PENDING bit. To avoid getting
1226 * interrupted while holding PENDING and @work off queue, irq must be
1227 * disabled on entry. This, combined with delayed_work->timer being
1228 * irqsafe, ensures that we return -EAGAIN for finite short period of time.
1229 *
1230 * On successful return, >= 0, irq is disabled and the caller is
1231 * responsible for releasing it using local_irq_restore(*@flags).
1232 *
1233 * This function is safe to call from any context including IRQ handler.
1234 */
1235 static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
1236 unsigned long *flags)
1237 {
1238 struct worker_pool *pool;
1239 struct pool_workqueue *pwq;
1240
1241 local_irq_save(*flags);
1242
1243 /* try to steal the timer if it exists */
1244 if (is_dwork) {
1245 struct delayed_work *dwork = to_delayed_work(work);
1246
1247 /*
1248 * dwork->timer is irqsafe. If del_timer() fails, it's
1249 * guaranteed that the timer is not queued anywhere and not
1250 * running on the local CPU.
1251 */
1252 if (likely(del_timer(&dwork->timer)))
1253 return 1;
1254 }
1255
1256 /* try to claim PENDING the normal way */
1257 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
1258 return 0;
1259
1260 rcu_read_lock();
1261 /*
1262 * The queueing is in progress, or it is already queued. Try to
1263 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
1264 */
1265 pool = get_work_pool(work);
1266 if (!pool)
1267 goto fail;
1268
1269 raw_spin_lock(&pool->lock);
1270 /*
1271 * work->data is guaranteed to point to pwq only while the work
1272 * item is queued on pwq->wq, and both updating work->data to point
1273 * to pwq on queueing and to pool on dequeueing are done under
1274 * pwq->pool->lock. This in turn guarantees that, if work->data
1275 * points to pwq which is associated with a locked pool, the work
1276 * item is currently queued on that pool.
1277 */
1278 pwq = get_work_pwq(work);
1279 if (pwq && pwq->pool == pool) {
1280 debug_work_deactivate(work);
1281
1282 /*
1283 * A delayed work item cannot be grabbed directly because
1284 * it might have linked NO_COLOR work items which, if left
1285 * on the delayed_list, will confuse pwq->nr_active
1286 * management later on and cause stall. Make sure the work
1287 * item is activated before grabbing.
1288 */
1289 if (*work_data_bits(work) & WORK_STRUCT_DELAYED)
1290 pwq_activate_delayed_work(work);
1291
1292 list_del_init(&work->entry);
1293 pwq_dec_nr_in_flight(pwq, get_work_color(work));
1294
1295 /* work->data points to pwq iff queued, point to pool */
1296 set_work_pool_and_keep_pending(work, pool->id);
1297
1298 raw_spin_unlock(&pool->lock);
1299 rcu_read_unlock();
1300 return 1;
1301 }
1302 raw_spin_unlock(&pool->lock);
1303 fail:
1304 rcu_read_unlock();
1305 local_irq_restore(*flags);
1306 if (work_is_canceling(work))
1307 return -ENOENT;
1308 cpu_relax();
1309 return -EAGAIN;
1310 }
1311
1312 /**
1313 * insert_work - insert a work into a pool
1314 * @pwq: pwq @work belongs to
1315 * @work: work to insert
1316 * @head: insertion point
1317 * @extra_flags: extra WORK_STRUCT_* flags to set
1318 *
1319 * Insert @work which belongs to @pwq after @head. @extra_flags is or'd to
1320 * work_struct flags.
1321 *
1322 * CONTEXT:
1323 * raw_spin_lock_irq(pool->lock).
1324 */
1325 static void insert_work(struct pool_workqueue *pwq, struct work_struct *work,
1326 struct list_head *head, unsigned int extra_flags)
1327 {
1328 struct worker_pool *pool = pwq->pool;
1329
1330 /* record the work call stack in order to print it in KASAN reports */
1331 kasan_record_aux_stack(work);
1332
1333 /* we own @work, set data and link */
1334 set_work_pwq(work, pwq, extra_flags);
1335 list_add_tail(&work->entry, head);
1336 get_pwq(pwq);
1337
1338 /*
1339 * Ensure either wq_worker_sleeping() sees the above
1340 * list_add_tail() or we see zero nr_running to avoid workers lying
1341 * around lazily while there are works to be processed.
1342 */
1343 smp_mb();
1344
1345 if (__need_more_worker(pool))
1346 wake_up_worker(pool);
1347 }
1348
1349 /*
1350 * Test whether @work is being queued from another work executing on the
1351 * same workqueue.
1352 */
1353 static bool is_chained_work(struct workqueue_struct *wq)
1354 {
1355 struct worker *worker;
1356
1357 worker = current_wq_worker();
1358 /*
1359 * Return %true iff I'm a worker executing a work item on @wq. If
1360 * I'm @worker, it's safe to dereference it without locking.
1361 */
1362 return worker && worker->current_pwq->wq == wq;
1363 }
1364
1365 /*
1366 * When queueing an unbound work item to a wq, prefer local CPU if allowed
1367 * by wq_unbound_cpumask. Otherwise, round robin among the allowed ones to
1368 * avoid perturbing sensitive tasks.
1369 */
1370 static int wq_select_unbound_cpu(int cpu)
1371 {
1372 static bool printed_dbg_warning;
1373 int new_cpu;
1374
1375 if (likely(!wq_debug_force_rr_cpu)) {
1376 if (cpumask_test_cpu(cpu, wq_unbound_cpumask))
1377 return cpu;
1378 } else if (!printed_dbg_warning) {
1379 pr_warn("workqueue: round-robin CPU selection forced, expect performance impact\n");
1380 printed_dbg_warning = true;
1381 }
1382
1383 if (cpumask_empty(wq_unbound_cpumask))
1384 return cpu;
1385
1386 new_cpu = __this_cpu_read(wq_rr_cpu_last);
1387 new_cpu = cpumask_next_and(new_cpu, wq_unbound_cpumask, cpu_online_mask);
1388 if (unlikely(new_cpu >= nr_cpu_ids)) {
1389 new_cpu = cpumask_first_and(wq_unbound_cpumask, cpu_online_mask);
1390 if (unlikely(new_cpu >= nr_cpu_ids))
1391 return cpu;
1392 }
1393 __this_cpu_write(wq_rr_cpu_last, new_cpu);
1394
1395 return new_cpu;
1396 }
1397
1398 static void __queue_work(int cpu, struct workqueue_struct *wq,
1399 struct work_struct *work)
1400 {
1401 struct pool_workqueue *pwq;
1402 struct worker_pool *last_pool;
1403 struct list_head *worklist;
1404 unsigned int work_flags;
1405 unsigned int req_cpu = cpu;
1406
1407 /*
1408 * While a work item is PENDING && off queue, a task trying to
1409 * steal the PENDING will busy-loop waiting for it to either get
1410 * queued or lose PENDING. Grabbing PENDING and queueing should
1411 * happen with IRQ disabled.
1412 */
1413 lockdep_assert_irqs_disabled();
1414
1415
1416 /* if draining, only works from the same workqueue are allowed */
1417 if (unlikely(wq->flags & __WQ_DRAINING) &&
1418 WARN_ON_ONCE(!is_chained_work(wq)))
1419 return;
1420 rcu_read_lock();
1421 retry:
1422 /* pwq which will be used unless @work is executing elsewhere */
1423 if (wq->flags & WQ_UNBOUND) {
1424 if (req_cpu == WORK_CPU_UNBOUND)
1425 cpu = wq_select_unbound_cpu(raw_smp_processor_id());
1426 pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
1427 } else {
1428 if (req_cpu == WORK_CPU_UNBOUND)
1429 cpu = raw_smp_processor_id();
1430 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
1431 }
1432
1433 /*
1434 * If @work was previously on a different pool, it might still be
1435 * running there, in which case the work needs to be queued on that
1436 * pool to guarantee non-reentrancy.
1437 */
1438 last_pool = get_work_pool(work);
1439 if (last_pool && last_pool != pwq->pool) {
1440 struct worker *worker;
1441
1442 raw_spin_lock(&last_pool->lock);
1443
1444 worker = find_worker_executing_work(last_pool, work);
1445
1446 if (worker && worker->current_pwq->wq == wq) {
1447 pwq = worker->current_pwq;
1448 } else {
1449 /* meh... not running there, queue here */
1450 raw_spin_unlock(&last_pool->lock);
1451 raw_spin_lock(&pwq->pool->lock);
1452 }
1453 } else {
1454 raw_spin_lock(&pwq->pool->lock);
1455 }
1456
1457 /*
1458 * pwq is determined and locked. For unbound pools, we could have
1459 * raced with pwq release and it could already be dead. If its
1460 * refcnt is zero, repeat pwq selection. Note that pwqs never die
1461 * without another pwq replacing it in the numa_pwq_tbl or while
1462 * work items are executing on it, so the retrying is guaranteed to
1463 * make forward-progress.
1464 */
1465 if (unlikely(!pwq->refcnt)) {
1466 if (wq->flags & WQ_UNBOUND) {
1467 raw_spin_unlock(&pwq->pool->lock);
1468 cpu_relax();
1469 goto retry;
1470 }
1471 /* oops */
1472 WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt",
1473 wq->name, cpu);
1474 }
1475
1476 /* pwq determined, queue */
1477 trace_workqueue_queue_work(req_cpu, pwq, work);
1478
1479 if (WARN_ON(!list_empty(&work->entry)))
1480 goto out;
1481
1482 pwq->nr_in_flight[pwq->work_color]++;
1483 work_flags = work_color_to_flags(pwq->work_color);
1484
1485 if (likely(pwq->nr_active < pwq->max_active)) {
1486 trace_workqueue_activate_work(work);
1487 pwq->nr_active++;
1488 worklist = &pwq->pool->worklist;
1489 if (list_empty(worklist))
1490 pwq->pool->watchdog_ts = jiffies;
1491 } else {
1492 work_flags |= WORK_STRUCT_DELAYED;
1493 worklist = &pwq->delayed_works;
1494 }
1495
1496 debug_work_activate(work);
1497 insert_work(pwq, work, worklist, work_flags);
1498
1499 out:
1500 raw_spin_unlock(&pwq->pool->lock);
1501 rcu_read_unlock();
1502 }
1503
1504 /**
1505 * queue_work_on - queue work on specific cpu
1506 * @cpu: CPU number to execute work on
1507 * @wq: workqueue to use
1508 * @work: work to queue
1509 *
1510 * We queue the work to a specific CPU, the caller must ensure it
1511 * can't go away.
1512 *
1513 * Return: %false if @work was already on a queue, %true otherwise.
1514 */
1515 bool queue_work_on(int cpu, struct workqueue_struct *wq,
1516 struct work_struct *work)
1517 {
1518 bool ret = false;
1519 unsigned long flags;
1520
1521 local_irq_save(flags);
1522
1523 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1524 __queue_work(cpu, wq, work);
1525 ret = true;
1526 }
1527
1528 local_irq_restore(flags);
1529 return ret;
1530 }
1531 EXPORT_SYMBOL(queue_work_on);
1532
1533 /**
1534 * workqueue_select_cpu_near - Select a CPU based on NUMA node
1535 * @node: NUMA node ID that we want to select a CPU from
1536 *
1537 * This function will attempt to find a "random" cpu available on a given
1538 * node. If there are no CPUs available on the given node it will return
1539 * WORK_CPU_UNBOUND indicating that we should just schedule to any
1540 * available CPU if we need to schedule this work.
1541 */
1542 static int workqueue_select_cpu_near(int node)
1543 {
1544 int cpu;
1545
1546 /* No point in doing this if NUMA isn't enabled for workqueues */
1547 if (!wq_numa_enabled)
1548 return WORK_CPU_UNBOUND;
1549
1550 /* Delay binding to CPU if node is not valid or online */
1551 if (node < 0 || node >= MAX_NUMNODES || !node_online(node))
1552 return WORK_CPU_UNBOUND;
1553
1554 /* Use local node/cpu if we are already there */
1555 cpu = raw_smp_processor_id();
1556 if (node == cpu_to_node(cpu))
1557 return cpu;
1558
1559 /* Use "random" otherwise know as "first" online CPU of node */
1560 cpu = cpumask_any_and(cpumask_of_node(node), cpu_online_mask);
1561
1562 /* If CPU is valid return that, otherwise just defer */
1563 return cpu < nr_cpu_ids ? cpu : WORK_CPU_UNBOUND;
1564 }
1565
1566 /**
1567 * queue_work_node - queue work on a "random" cpu for a given NUMA node
1568 * @node: NUMA node that we are targeting the work for
1569 * @wq: workqueue to use
1570 * @work: work to queue
1571 *
1572 * We queue the work to a "random" CPU within a given NUMA node. The basic
1573 * idea here is to provide a way to somehow associate work with a given
1574 * NUMA node.
1575 *
1576 * This function will only make a best effort attempt at getting this onto
1577 * the right NUMA node. If no node is requested or the requested node is
1578 * offline then we just fall back to standard queue_work behavior.
1579 *
1580 * Currently the "random" CPU ends up being the first available CPU in the
1581 * intersection of cpu_online_mask and the cpumask of the node, unless we
1582 * are running on the node. In that case we just use the current CPU.
1583 *
1584 * Return: %false if @work was already on a queue, %true otherwise.
1585 */
1586 bool queue_work_node(int node, struct workqueue_struct *wq,
1587 struct work_struct *work)
1588 {
1589 unsigned long flags;
1590 bool ret = false;
1591
1592 /*
1593 * This current implementation is specific to unbound workqueues.
1594 * Specifically we only return the first available CPU for a given
1595 * node instead of cycling through individual CPUs within the node.
1596 *
1597 * If this is used with a per-cpu workqueue then the logic in
1598 * workqueue_select_cpu_near would need to be updated to allow for
1599 * some round robin type logic.
1600 */
1601 WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND));
1602
1603 local_irq_save(flags);
1604
1605 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1606 int cpu = workqueue_select_cpu_near(node);
1607
1608 __queue_work(cpu, wq, work);
1609 ret = true;
1610 }
1611
1612 local_irq_restore(flags);
1613 return ret;
1614 }
1615 EXPORT_SYMBOL_GPL(queue_work_node);
1616
1617 void delayed_work_timer_fn(struct timer_list *t)
1618 {
1619 struct delayed_work *dwork = from_timer(dwork, t, timer);
1620
1621 /* should have been called from irqsafe timer with irq already off */
1622 __queue_work(dwork->cpu, dwork->wq, &dwork->work);
1623 }
1624 EXPORT_SYMBOL(delayed_work_timer_fn);
1625
1626 static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
1627 struct delayed_work *dwork, unsigned long delay)
1628 {
1629 struct timer_list *timer = &dwork->timer;
1630 struct work_struct *work = &dwork->work;
1631
1632 WARN_ON_ONCE(!wq);
1633 WARN_ON_ONCE(timer->function != delayed_work_timer_fn);
1634 WARN_ON_ONCE(timer_pending(timer));
1635 WARN_ON_ONCE(!list_empty(&work->entry));
1636
1637 /*
1638 * If @delay is 0, queue @dwork->work immediately. This is for
1639 * both optimization and correctness. The earliest @timer can
1640 * expire is on the closest next tick and delayed_work users depend
1641 * on that there's no such delay when @delay is 0.
1642 */
1643 if (!delay) {
1644 __queue_work(cpu, wq, &dwork->work);
1645 return;
1646 }
1647
1648 dwork->wq = wq;
1649 dwork->cpu = cpu;
1650 timer->expires = jiffies + delay;
1651
1652 if (unlikely(cpu != WORK_CPU_UNBOUND))
1653 add_timer_on(timer, cpu);
1654 else
1655 add_timer(timer);
1656 }
1657
1658 /**
1659 * queue_delayed_work_on - queue work on specific CPU after delay
1660 * @cpu: CPU number to execute work on
1661 * @wq: workqueue to use
1662 * @dwork: work to queue
1663 * @delay: number of jiffies to wait before queueing
1664 *
1665 * Return: %false if @work was already on a queue, %true otherwise. If
1666 * @delay is zero and @dwork is idle, it will be scheduled for immediate
1667 * execution.
1668 */
1669 bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
1670 struct delayed_work *dwork, unsigned long delay)
1671 {
1672 struct work_struct *work = &dwork->work;
1673 bool ret = false;
1674 unsigned long flags;
1675
1676 /* read the comment in __queue_work() */
1677 local_irq_save(flags);
1678
1679 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1680 __queue_delayed_work(cpu, wq, dwork, delay);
1681 ret = true;
1682 }
1683
1684 local_irq_restore(flags);
1685 return ret;
1686 }
1687 EXPORT_SYMBOL(queue_delayed_work_on);
1688
1689 /**
1690 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
1691 * @cpu: CPU number to execute work on
1692 * @wq: workqueue to use
1693 * @dwork: work to queue
1694 * @delay: number of jiffies to wait before queueing
1695 *
1696 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
1697 * modify @dwork's timer so that it expires after @delay. If @delay is
1698 * zero, @work is guaranteed to be scheduled immediately regardless of its
1699 * current state.
1700 *
1701 * Return: %false if @dwork was idle and queued, %true if @dwork was
1702 * pending and its timer was modified.
1703 *
1704 * This function is safe to call from any context including IRQ handler.
1705 * See try_to_grab_pending() for details.
1706 */
1707 bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
1708 struct delayed_work *dwork, unsigned long delay)
1709 {
1710 unsigned long flags;
1711 int ret;
1712
1713 do {
1714 ret = try_to_grab_pending(&dwork->work, true, &flags);
1715 } while (unlikely(ret == -EAGAIN));
1716
1717 if (likely(ret >= 0)) {
1718 __queue_delayed_work(cpu, wq, dwork, delay);
1719 local_irq_restore(flags);
1720 }
1721
1722 /* -ENOENT from try_to_grab_pending() becomes %true */
1723 return ret;
1724 }
1725 EXPORT_SYMBOL_GPL(mod_delayed_work_on);
1726
1727 static void rcu_work_rcufn(struct rcu_head *rcu)
1728 {
1729 struct rcu_work *rwork = container_of(rcu, struct rcu_work, rcu);
1730
1731 /* read the comment in __queue_work() */
1732 local_irq_disable();
1733 __queue_work(WORK_CPU_UNBOUND, rwork->wq, &rwork->work);
1734 local_irq_enable();
1735 }
1736
1737 /**
1738 * queue_rcu_work - queue work after a RCU grace period
1739 * @wq: workqueue to use
1740 * @rwork: work to queue
1741 *
1742 * Return: %false if @rwork was already pending, %true otherwise. Note
1743 * that a full RCU grace period is guaranteed only after a %true return.
1744 * While @rwork is guaranteed to be executed after a %false return, the
1745 * execution may happen before a full RCU grace period has passed.
1746 */
1747 bool queue_rcu_work(struct workqueue_struct *wq, struct rcu_work *rwork)
1748 {
1749 struct work_struct *work = &rwork->work;
1750
1751 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1752 rwork->wq = wq;
1753 call_rcu(&rwork->rcu, rcu_work_rcufn);
1754 return true;
1755 }
1756
1757 return false;
1758 }
1759 EXPORT_SYMBOL(queue_rcu_work);
1760
1761 /**
1762 * worker_enter_idle - enter idle state
1763 * @worker: worker which is entering idle state
1764 *
1765 * @worker is entering idle state. Update stats and idle timer if
1766 * necessary.
1767 *
1768 * LOCKING:
1769 * raw_spin_lock_irq(pool->lock).
1770 */
1771 static void worker_enter_idle(struct worker *worker)
1772 {
1773 struct worker_pool *pool = worker->pool;
1774
1775 if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) ||
1776 WARN_ON_ONCE(!list_empty(&worker->entry) &&
1777 (worker->hentry.next || worker->hentry.pprev)))
1778 return;
1779
1780 /* can't use worker_set_flags(), also called from create_worker() */
1781 worker->flags |= WORKER_IDLE;
1782 pool->nr_idle++;
1783 worker->last_active = jiffies;
1784
1785 /* idle_list is LIFO */
1786 list_add(&worker->entry, &pool->idle_list);
1787
1788 if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
1789 mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
1790
1791 /*
1792 * Sanity check nr_running. Because unbind_workers() releases
1793 * pool->lock between setting %WORKER_UNBOUND and zapping
1794 * nr_running, the warning may trigger spuriously. Check iff
1795 * unbind is not in progress.
1796 */
1797 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
1798 pool->nr_workers == pool->nr_idle &&
1799 atomic_read(&pool->nr_running));
1800 }
1801
1802 /**
1803 * worker_leave_idle - leave idle state
1804 * @worker: worker which is leaving idle state
1805 *
1806 * @worker is leaving idle state. Update stats.
1807 *
1808 * LOCKING:
1809 * raw_spin_lock_irq(pool->lock).
1810 */
1811 static void worker_leave_idle(struct worker *worker)
1812 {
1813 struct worker_pool *pool = worker->pool;
1814
1815 if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE)))
1816 return;
1817 worker_clr_flags(worker, WORKER_IDLE);
1818 pool->nr_idle--;
1819 list_del_init(&worker->entry);
1820 }
1821
1822 static struct worker *alloc_worker(int node)
1823 {
1824 struct worker *worker;
1825
1826 worker = kzalloc_node(sizeof(*worker), GFP_KERNEL, node);
1827 if (worker) {
1828 INIT_LIST_HEAD(&worker->entry);
1829 INIT_LIST_HEAD(&worker->scheduled);
1830 INIT_LIST_HEAD(&worker->node);
1831 /* on creation a worker is in !idle && prep state */
1832 worker->flags = WORKER_PREP;
1833 }
1834 return worker;
1835 }
1836
1837 /**
1838 * worker_attach_to_pool() - attach a worker to a pool
1839 * @worker: worker to be attached
1840 * @pool: the target pool
1841 *
1842 * Attach @worker to @pool. Once attached, the %WORKER_UNBOUND flag and
1843 * cpu-binding of @worker are kept coordinated with the pool across
1844 * cpu-[un]hotplugs.
1845 */
1846 static void worker_attach_to_pool(struct worker *worker,
1847 struct worker_pool *pool)
1848 {
1849 mutex_lock(&wq_pool_attach_mutex);
1850
1851 /*
1852 * The wq_pool_attach_mutex ensures %POOL_DISASSOCIATED remains
1853 * stable across this function. See the comments above the flag
1854 * definition for details.
1855 */
1856 if (pool->flags & POOL_DISASSOCIATED)
1857 worker->flags |= WORKER_UNBOUND;
1858 else
1859 kthread_set_per_cpu(worker->task, pool->cpu);
1860
1861 if (worker->rescue_wq)
1862 set_cpus_allowed_ptr(worker->task, pool->attrs->cpumask);
1863
1864 list_add_tail(&worker->node, &pool->workers);
1865 worker->pool = pool;
1866
1867 mutex_unlock(&wq_pool_attach_mutex);
1868 }
1869
1870 /**
1871 * worker_detach_from_pool() - detach a worker from its pool
1872 * @worker: worker which is attached to its pool
1873 *
1874 * Undo the attaching which had been done in worker_attach_to_pool(). The
1875 * caller worker shouldn't access to the pool after detached except it has
1876 * other reference to the pool.
1877 */
1878 static void worker_detach_from_pool(struct worker *worker)
1879 {
1880 struct worker_pool *pool = worker->pool;
1881 struct completion *detach_completion = NULL;
1882
1883 mutex_lock(&wq_pool_attach_mutex);
1884
1885 kthread_set_per_cpu(worker->task, -1);
1886 list_del(&worker->node);
1887 worker->pool = NULL;
1888
1889 if (list_empty(&pool->workers))
1890 detach_completion = pool->detach_completion;
1891 mutex_unlock(&wq_pool_attach_mutex);
1892
1893 /* clear leftover flags without pool->lock after it is detached */
1894 worker->flags &= ~(WORKER_UNBOUND | WORKER_REBOUND);
1895
1896 if (detach_completion)
1897 complete(detach_completion);
1898 }
1899
1900 /**
1901 * create_worker - create a new workqueue worker
1902 * @pool: pool the new worker will belong to
1903 *
1904 * Create and start a new worker which is attached to @pool.
1905 *
1906 * CONTEXT:
1907 * Might sleep. Does GFP_KERNEL allocations.
1908 *
1909 * Return:
1910 * Pointer to the newly created worker.
1911 */
1912 static struct worker *create_worker(struct worker_pool *pool)
1913 {
1914 struct worker *worker = NULL;
1915 int id = -1;
1916 char id_buf[16];
1917
1918 /* ID is needed to determine kthread name */
1919 id = ida_simple_get(&pool->worker_ida, 0, 0, GFP_KERNEL);
1920 if (id < 0)
1921 goto fail;
1922
1923 worker = alloc_worker(pool->node);
1924 if (!worker)
1925 goto fail;
1926
1927 worker->id = id;
1928
1929 if (pool->cpu >= 0)
1930 snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id,
1931 pool->attrs->nice < 0 ? "H" : "");
1932 else
1933 snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id);
1934
1935 worker->task = kthread_create_on_node(worker_thread, worker, pool->node,
1936 "kworker/%s", id_buf);
1937 if (IS_ERR(worker->task))
1938 goto fail;
1939
1940 set_user_nice(worker->task, pool->attrs->nice);
1941 kthread_bind_mask(worker->task, pool->attrs->cpumask);
1942
1943 /* successful, attach the worker to the pool */
1944 worker_attach_to_pool(worker, pool);
1945
1946 /* start the newly created worker */
1947 raw_spin_lock_irq(&pool->lock);
1948 worker->pool->nr_workers++;
1949 worker_enter_idle(worker);
1950 wake_up_process(worker->task);
1951 raw_spin_unlock_irq(&pool->lock);
1952
1953 return worker;
1954
1955 fail:
1956 if (id >= 0)
1957 ida_simple_remove(&pool->worker_ida, id);
1958 kfree(worker);
1959 return NULL;
1960 }
1961
1962 /**
1963 * destroy_worker - destroy a workqueue worker
1964 * @worker: worker to be destroyed
1965 *
1966 * Destroy @worker and adjust @pool stats accordingly. The worker should
1967 * be idle.
1968 *
1969 * CONTEXT:
1970 * raw_spin_lock_irq(pool->lock).
1971 */
1972 static void destroy_worker(struct worker *worker)
1973 {
1974 struct worker_pool *pool = worker->pool;
1975
1976 lockdep_assert_held(&pool->lock);
1977
1978 /* sanity check frenzy */
1979 if (WARN_ON(worker->current_work) ||
1980 WARN_ON(!list_empty(&worker->scheduled)) ||
1981 WARN_ON(!(worker->flags & WORKER_IDLE)))
1982 return;
1983
1984 pool->nr_workers--;
1985 pool->nr_idle--;
1986
1987 list_del_init(&worker->entry);
1988 worker->flags |= WORKER_DIE;
1989 wake_up_process(worker->task);
1990 }
1991
1992 static void idle_worker_timeout(struct timer_list *t)
1993 {
1994 struct worker_pool *pool = from_timer(pool, t, idle_timer);
1995
1996 raw_spin_lock_irq(&pool->lock);
1997
1998 while (too_many_workers(pool)) {
1999 struct worker *worker;
2000 unsigned long expires;
2001
2002 /* idle_list is kept in LIFO order, check the last one */
2003 worker = list_entry(pool->idle_list.prev, struct worker, entry);
2004 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
2005
2006 if (time_before(jiffies, expires)) {
2007 mod_timer(&pool->idle_timer, expires);
2008 break;
2009 }
2010
2011 destroy_worker(worker);
2012 }
2013
2014 raw_spin_unlock_irq(&pool->lock);
2015 }
2016
2017 static void send_mayday(struct work_struct *work)
2018 {
2019 struct pool_workqueue *pwq = get_work_pwq(work);
2020 struct workqueue_struct *wq = pwq->wq;
2021
2022 lockdep_assert_held(&wq_mayday_lock);
2023
2024 if (!wq->rescuer)
2025 return;
2026
2027 /* mayday mayday mayday */
2028 if (list_empty(&pwq->mayday_node)) {
2029 /*
2030 * If @pwq is for an unbound wq, its base ref may be put at
2031 * any time due to an attribute change. Pin @pwq until the
2032 * rescuer is done with it.
2033 */
2034 get_pwq(pwq);
2035 list_add_tail(&pwq->mayday_node, &wq->maydays);
2036 wake_up_process(wq->rescuer->task);
2037 }
2038 }
2039
2040 static void pool_mayday_timeout(struct timer_list *t)
2041 {
2042 struct worker_pool *pool = from_timer(pool, t, mayday_timer);
2043 struct work_struct *work;
2044
2045 raw_spin_lock_irq(&pool->lock);
2046 raw_spin_lock(&wq_mayday_lock); /* for wq->maydays */
2047
2048 if (need_to_create_worker(pool)) {
2049 /*
2050 * We've been trying to create a new worker but
2051 * haven't been successful. We might be hitting an
2052 * allocation deadlock. Send distress signals to
2053 * rescuers.
2054 */
2055 list_for_each_entry(work, &pool->worklist, entry)
2056 send_mayday(work);
2057 }
2058
2059 raw_spin_unlock(&wq_mayday_lock);
2060 raw_spin_unlock_irq(&pool->lock);
2061
2062 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
2063 }
2064
2065 /**
2066 * maybe_create_worker - create a new worker if necessary
2067 * @pool: pool to create a new worker for
2068 *
2069 * Create a new worker for @pool if necessary. @pool is guaranteed to
2070 * have at least one idle worker on return from this function. If
2071 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
2072 * sent to all rescuers with works scheduled on @pool to resolve
2073 * possible allocation deadlock.
2074 *
2075 * On return, need_to_create_worker() is guaranteed to be %false and
2076 * may_start_working() %true.
2077 *
2078 * LOCKING:
2079 * raw_spin_lock_irq(pool->lock) which may be released and regrabbed
2080 * multiple times. Does GFP_KERNEL allocations. Called only from
2081 * manager.
2082 */
2083 static void maybe_create_worker(struct worker_pool *pool)
2084 __releases(&pool->lock)
2085 __acquires(&pool->lock)
2086 {
2087 restart:
2088 raw_spin_unlock_irq(&pool->lock);
2089
2090 /* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
2091 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
2092
2093 while (true) {
2094 if (create_worker(pool) || !need_to_create_worker(pool))
2095 break;
2096
2097 schedule_timeout_interruptible(CREATE_COOLDOWN);
2098
2099 if (!need_to_create_worker(pool))
2100 break;
2101 }
2102
2103 del_timer_sync(&pool->mayday_timer);
2104 raw_spin_lock_irq(&pool->lock);
2105 /*
2106 * This is necessary even after a new worker was just successfully
2107 * created as @pool->lock was dropped and the new worker might have
2108 * already become busy.
2109 */
2110 if (need_to_create_worker(pool))
2111 goto restart;
2112 }
2113
2114 /**
2115 * manage_workers - manage worker pool
2116 * @worker: self
2117 *
2118 * Assume the manager role and manage the worker pool @worker belongs
2119 * to. At any given time, there can be only zero or one manager per
2120 * pool. The exclusion is handled automatically by this function.
2121 *
2122 * The caller can safely start processing works on false return. On
2123 * true return, it's guaranteed that need_to_create_worker() is false
2124 * and may_start_working() is true.
2125 *
2126 * CONTEXT:
2127 * raw_spin_lock_irq(pool->lock) which may be released and regrabbed
2128 * multiple times. Does GFP_KERNEL allocations.
2129 *
2130 * Return:
2131 * %false if the pool doesn't need management and the caller can safely
2132 * start processing works, %true if management function was performed and
2133 * the conditions that the caller verified before calling the function may
2134 * no longer be true.
2135 */
2136 static bool manage_workers(struct worker *worker)
2137 {
2138 struct worker_pool *pool = worker->pool;
2139
2140 if (pool->flags & POOL_MANAGER_ACTIVE)
2141 return false;
2142
2143 pool->flags |= POOL_MANAGER_ACTIVE;
2144 pool->manager = worker;
2145
2146 maybe_create_worker(pool);
2147
2148 pool->manager = NULL;
2149 pool->flags &= ~POOL_MANAGER_ACTIVE;
2150 rcuwait_wake_up(&manager_wait);
2151 return true;
2152 }
2153
2154 /**
2155 * process_one_work - process single work
2156 * @worker: self
2157 * @work: work to process
2158 *
2159 * Process @work. This function contains all the logics necessary to
2160 * process a single work including synchronization against and
2161 * interaction with other workers on the same cpu, queueing and
2162 * flushing. As long as context requirement is met, any worker can
2163 * call this function to process a work.
2164 *
2165 * CONTEXT:
2166 * raw_spin_lock_irq(pool->lock) which is released and regrabbed.
2167 */
2168 static void process_one_work(struct worker *worker, struct work_struct *work)
2169 __releases(&pool->lock)
2170 __acquires(&pool->lock)
2171 {
2172 struct pool_workqueue *pwq = get_work_pwq(work);
2173 struct worker_pool *pool = worker->pool;
2174 bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE;
2175 int work_color;
2176 struct worker *collision;
2177 #ifdef CONFIG_LOCKDEP
2178 /*
2179 * It is permissible to free the struct work_struct from
2180 * inside the function that is called from it, this we need to
2181 * take into account for lockdep too. To avoid bogus "held
2182 * lock freed" warnings as well as problems when looking into
2183 * work->lockdep_map, make a copy and use that here.
2184 */
2185 struct lockdep_map lockdep_map;
2186
2187 lockdep_copy_map(&lockdep_map, &work->lockdep_map);
2188 #endif
2189 /* ensure we're on the correct CPU */
2190 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
2191 raw_smp_processor_id() != pool->cpu);
2192
2193 /*
2194 * A single work shouldn't be executed concurrently by
2195 * multiple workers on a single cpu. Check whether anyone is
2196 * already processing the work. If so, defer the work to the
2197 * currently executing one.
2198 */
2199 collision = find_worker_executing_work(pool, work);
2200 if (unlikely(collision)) {
2201 move_linked_works(work, &collision->scheduled, NULL);
2202 return;
2203 }
2204
2205 /* claim and dequeue */
2206 debug_work_deactivate(work);
2207 hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
2208 worker->current_work = work;
2209 worker->current_func = work->func;
2210 worker->current_pwq = pwq;
2211 work_color = get_work_color(work);
2212
2213 /*
2214 * Record wq name for cmdline and debug reporting, may get
2215 * overridden through set_worker_desc().
2216 */
2217 strscpy(worker->desc, pwq->wq->name, WORKER_DESC_LEN);
2218
2219 list_del_init(&work->entry);
2220
2221 /*
2222 * CPU intensive works don't participate in concurrency management.
2223 * They're the scheduler's responsibility. This takes @worker out
2224 * of concurrency management and the next code block will chain
2225 * execution of the pending work items.
2226 */
2227 if (unlikely(cpu_intensive))
2228 worker_set_flags(worker, WORKER_CPU_INTENSIVE);
2229
2230 /*
2231 * Wake up another worker if necessary. The condition is always
2232 * false for normal per-cpu workers since nr_running would always
2233 * be >= 1 at this point. This is used to chain execution of the
2234 * pending work items for WORKER_NOT_RUNNING workers such as the
2235 * UNBOUND and CPU_INTENSIVE ones.
2236 */
2237 if (need_more_worker(pool))
2238 wake_up_worker(pool);
2239
2240 /*
2241 * Record the last pool and clear PENDING which should be the last
2242 * update to @work. Also, do this inside @pool->lock so that
2243 * PENDING and queued state changes happen together while IRQ is
2244 * disabled.
2245 */
2246 set_work_pool_and_clear_pending(work, pool->id);
2247
2248 raw_spin_unlock_irq(&pool->lock);
2249
2250 lock_map_acquire(&pwq->wq->lockdep_map);
2251 lock_map_acquire(&lockdep_map);
2252 /*
2253 * Strictly speaking we should mark the invariant state without holding
2254 * any locks, that is, before these two lock_map_acquire()'s.
2255 *
2256 * However, that would result in:
2257 *
2258 * A(W1)
2259 * WFC(C)
2260 * A(W1)
2261 * C(C)
2262 *
2263 * Which would create W1->C->W1 dependencies, even though there is no
2264 * actual deadlock possible. There are two solutions, using a
2265 * read-recursive acquire on the work(queue) 'locks', but this will then
2266 * hit the lockdep limitation on recursive locks, or simply discard
2267 * these locks.
2268 *
2269 * AFAICT there is no possible deadlock scenario between the
2270 * flush_work() and complete() primitives (except for single-threaded
2271 * workqueues), so hiding them isn't a problem.
2272 */
2273 lockdep_invariant_state(true);
2274 trace_workqueue_execute_start(work);
2275 worker->current_func(work);
2276 /*
2277 * While we must be careful to not use "work" after this, the trace
2278 * point will only record its address.
2279 */
2280 trace_workqueue_execute_end(work, worker->current_func);
2281 lock_map_release(&lockdep_map);
2282 lock_map_release(&pwq->wq->lockdep_map);
2283
2284 if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
2285 pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
2286 " last function: %ps\n",
2287 current->comm, preempt_count(), task_pid_nr(current),
2288 worker->current_func);
2289 debug_show_held_locks(current);
2290 dump_stack();
2291 }
2292
2293 /*
2294 * The following prevents a kworker from hogging CPU on !PREEMPTION
2295 * kernels, where a requeueing work item waiting for something to
2296 * happen could deadlock with stop_machine as such work item could
2297 * indefinitely requeue itself while all other CPUs are trapped in
2298 * stop_machine. At the same time, report a quiescent RCU state so
2299 * the same condition doesn't freeze RCU.
2300 */
2301 cond_resched();
2302
2303 raw_spin_lock_irq(&pool->lock);
2304
2305 /* clear cpu intensive status */
2306 if (unlikely(cpu_intensive))
2307 worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
2308
2309 /* tag the worker for identification in schedule() */
2310 worker->last_func = worker->current_func;
2311
2312 /* we're done with it, release */
2313 hash_del(&worker->hentry);
2314 worker->current_work = NULL;
2315 worker->current_func = NULL;
2316 worker->current_pwq = NULL;
2317 pwq_dec_nr_in_flight(pwq, work_color);
2318 }
2319
2320 /**
2321 * process_scheduled_works - process scheduled works
2322 * @worker: self
2323 *
2324 * Process all scheduled works. Please note that the scheduled list
2325 * may change while processing a work, so this function repeatedly
2326 * fetches a work from the top and executes it.
2327 *
2328 * CONTEXT:
2329 * raw_spin_lock_irq(pool->lock) which may be released and regrabbed
2330 * multiple times.
2331 */
2332 static void process_scheduled_works(struct worker *worker)
2333 {
2334 while (!list_empty(&worker->scheduled)) {
2335 struct work_struct *work = list_first_entry(&worker->scheduled,
2336 struct work_struct, entry);
2337 process_one_work(worker, work);
2338 }
2339 }
2340
2341 static void set_pf_worker(bool val)
2342 {
2343 mutex_lock(&wq_pool_attach_mutex);
2344 if (val)
2345 current->flags |= PF_WQ_WORKER;
2346 else
2347 current->flags &= ~PF_WQ_WORKER;
2348 mutex_unlock(&wq_pool_attach_mutex);
2349 }
2350
2351 /**
2352 * worker_thread - the worker thread function
2353 * @__worker: self
2354 *
2355 * The worker thread function. All workers belong to a worker_pool -
2356 * either a per-cpu one or dynamic unbound one. These workers process all
2357 * work items regardless of their specific target workqueue. The only
2358 * exception is work items which belong to workqueues with a rescuer which
2359 * will be explained in rescuer_thread().
2360 *
2361 * Return: 0
2362 */
2363 static int worker_thread(void *__worker)
2364 {
2365 struct worker *worker = __worker;
2366 struct worker_pool *pool = worker->pool;
2367
2368 /* tell the scheduler that this is a workqueue worker */
2369 set_pf_worker(true);
2370 woke_up:
2371 raw_spin_lock_irq(&pool->lock);
2372
2373 /* am I supposed to die? */
2374 if (unlikely(worker->flags & WORKER_DIE)) {
2375 raw_spin_unlock_irq(&pool->lock);
2376 WARN_ON_ONCE(!list_empty(&worker->entry));
2377 set_pf_worker(false);
2378
2379 set_task_comm(worker->task, "kworker/dying");
2380 ida_simple_remove(&pool->worker_ida, worker->id);
2381 worker_detach_from_pool(worker);
2382 kfree(worker);
2383 return 0;
2384 }
2385
2386 worker_leave_idle(worker);
2387 recheck:
2388 /* no more worker necessary? */
2389 if (!need_more_worker(pool))
2390 goto sleep;
2391
2392 /* do we need to manage? */
2393 if (unlikely(!may_start_working(pool)) && manage_workers(worker))
2394 goto recheck;
2395
2396 /*
2397 * ->scheduled list can only be filled while a worker is
2398 * preparing to process a work or actually processing it.
2399 * Make sure nobody diddled with it while I was sleeping.
2400 */
2401 WARN_ON_ONCE(!list_empty(&worker->scheduled));
2402
2403 /*
2404 * Finish PREP stage. We're guaranteed to have at least one idle
2405 * worker or that someone else has already assumed the manager
2406 * role. This is where @worker starts participating in concurrency
2407 * management if applicable and concurrency management is restored
2408 * after being rebound. See rebind_workers() for details.
2409 */
2410 worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND);
2411
2412 do {
2413 struct work_struct *work =
2414 list_first_entry(&pool->worklist,
2415 struct work_struct, entry);
2416
2417 pool->watchdog_ts = jiffies;
2418
2419 if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
2420 /* optimization path, not strictly necessary */
2421 process_one_work(worker, work);
2422 if (unlikely(!list_empty(&worker->scheduled)))
2423 process_scheduled_works(worker);
2424 } else {
2425 move_linked_works(work, &worker->scheduled, NULL);
2426 process_scheduled_works(worker);
2427 }
2428 } while (keep_working(pool));
2429
2430 worker_set_flags(worker, WORKER_PREP);
2431 sleep:
2432 /*
2433 * pool->lock is held and there's no work to process and no need to
2434 * manage, sleep. Workers are woken up only while holding
2435 * pool->lock or from local cpu, so setting the current state
2436 * before releasing pool->lock is enough to prevent losing any
2437 * event.
2438 */
2439 worker_enter_idle(worker);
2440 __set_current_state(TASK_IDLE);
2441 raw_spin_unlock_irq(&pool->lock);
2442 schedule();
2443 goto woke_up;
2444 }
2445
2446 /**
2447 * rescuer_thread - the rescuer thread function
2448 * @__rescuer: self
2449 *
2450 * Workqueue rescuer thread function. There's one rescuer for each
2451 * workqueue which has WQ_MEM_RECLAIM set.
2452 *
2453 * Regular work processing on a pool may block trying to create a new
2454 * worker which uses GFP_KERNEL allocation which has slight chance of
2455 * developing into deadlock if some works currently on the same queue
2456 * need to be processed to satisfy the GFP_KERNEL allocation. This is
2457 * the problem rescuer solves.
2458 *
2459 * When such condition is possible, the pool summons rescuers of all
2460 * workqueues which have works queued on the pool and let them process
2461 * those works so that forward progress can be guaranteed.
2462 *
2463 * This should happen rarely.
2464 *
2465 * Return: 0
2466 */
2467 static int rescuer_thread(void *__rescuer)
2468 {
2469 struct worker *rescuer = __rescuer;
2470 struct workqueue_struct *wq = rescuer->rescue_wq;
2471 struct list_head *scheduled = &rescuer->scheduled;
2472 bool should_stop;
2473
2474 set_user_nice(current, RESCUER_NICE_LEVEL);
2475
2476 /*
2477 * Mark rescuer as worker too. As WORKER_PREP is never cleared, it
2478 * doesn't participate in concurrency management.
2479 */
2480 set_pf_worker(true);
2481 repeat:
2482 set_current_state(TASK_IDLE);
2483
2484 /*
2485 * By the time the rescuer is requested to stop, the workqueue
2486 * shouldn't have any work pending, but @wq->maydays may still have
2487 * pwq(s) queued. This can happen by non-rescuer workers consuming
2488 * all the work items before the rescuer got to them. Go through
2489 * @wq->maydays processing before acting on should_stop so that the
2490 * list is always empty on exit.
2491 */
2492 should_stop = kthread_should_stop();
2493
2494 /* see whether any pwq is asking for help */
2495 raw_spin_lock_irq(&wq_mayday_lock);
2496
2497 while (!list_empty(&wq->maydays)) {
2498 struct pool_workqueue *pwq = list_first_entry(&wq->maydays,
2499 struct pool_workqueue, mayday_node);
2500 struct worker_pool *pool = pwq->pool;
2501 struct work_struct *work, *n;
2502 bool first = true;
2503
2504 __set_current_state(TASK_RUNNING);
2505 list_del_init(&pwq->mayday_node);
2506
2507 raw_spin_unlock_irq(&wq_mayday_lock);
2508
2509 worker_attach_to_pool(rescuer, pool);
2510
2511 raw_spin_lock_irq(&pool->lock);
2512
2513 /*
2514 * Slurp in all works issued via this workqueue and
2515 * process'em.
2516 */
2517 WARN_ON_ONCE(!list_empty(scheduled));
2518 list_for_each_entry_safe(work, n, &pool->worklist, entry) {
2519 if (get_work_pwq(work) == pwq) {
2520 if (first)
2521 pool->watchdog_ts = jiffies;
2522 move_linked_works(work, scheduled, &n);
2523 }
2524 first = false;
2525 }
2526
2527 if (!list_empty(scheduled)) {
2528 process_scheduled_works(rescuer);
2529
2530 /*
2531 * The above execution of rescued work items could
2532 * have created more to rescue through
2533 * pwq_activate_first_delayed() or chained
2534 * queueing. Let's put @pwq back on mayday list so
2535 * that such back-to-back work items, which may be
2536 * being used to relieve memory pressure, don't
2537 * incur MAYDAY_INTERVAL delay inbetween.
2538 */
2539 if (pwq->nr_active && need_to_create_worker(pool)) {
2540 raw_spin_lock(&wq_mayday_lock);
2541 /*
2542 * Queue iff we aren't racing destruction
2543 * and somebody else hasn't queued it already.
2544 */
2545 if (wq->rescuer && list_empty(&pwq->mayday_node)) {
2546 get_pwq(pwq);
2547 list_add_tail(&pwq->mayday_node, &wq->maydays);
2548 }
2549 raw_spin_unlock(&wq_mayday_lock);
2550 }
2551 }
2552
2553 /*
2554 * Put the reference grabbed by send_mayday(). @pool won't
2555 * go away while we're still attached to it.
2556 */
2557 put_pwq(pwq);
2558
2559 /*
2560 * Leave this pool. If need_more_worker() is %true, notify a
2561 * regular worker; otherwise, we end up with 0 concurrency
2562 * and stalling the execution.
2563 */
2564 if (need_more_worker(pool))
2565 wake_up_worker(pool);
2566
2567 raw_spin_unlock_irq(&pool->lock);
2568
2569 worker_detach_from_pool(rescuer);
2570
2571 raw_spin_lock_irq(&wq_mayday_lock);
2572 }
2573
2574 raw_spin_unlock_irq(&wq_mayday_lock);
2575
2576 if (should_stop) {
2577 __set_current_state(TASK_RUNNING);
2578 set_pf_worker(false);
2579 return 0;
2580 }
2581
2582 /* rescuers should never participate in concurrency management */
2583 WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
2584 schedule();
2585 goto repeat;
2586 }
2587
2588 /**
2589 * check_flush_dependency - check for flush dependency sanity
2590 * @target_wq: workqueue being flushed
2591 * @target_work: work item being flushed (NULL for workqueue flushes)
2592 *
2593 * %current is trying to flush the whole @target_wq or @target_work on it.
2594 * If @target_wq doesn't have %WQ_MEM_RECLAIM, verify that %current is not
2595 * reclaiming memory or running on a workqueue which doesn't have
2596 * %WQ_MEM_RECLAIM as that can break forward-progress guarantee leading to
2597 * a deadlock.
2598 */
2599 static void check_flush_dependency(struct workqueue_struct *target_wq,
2600 struct work_struct *target_work)
2601 {
2602 work_func_t target_func = target_work ? target_work->func : NULL;
2603 struct worker *worker;
2604
2605 if (target_wq->flags & WQ_MEM_RECLAIM)
2606 return;
2607
2608 worker = current_wq_worker();
2609
2610 WARN_ONCE(current->flags & PF_MEMALLOC,
2611 "workqueue: PF_MEMALLOC task %d(%s) is flushing !WQ_MEM_RECLAIM %s:%ps",
2612 current->pid, current->comm, target_wq->name, target_func);
2613 WARN_ONCE(worker && ((worker->current_pwq->wq->flags &
2614 (WQ_MEM_RECLAIM | __WQ_LEGACY)) == WQ_MEM_RECLAIM),
2615 "workqueue: WQ_MEM_RECLAIM %s:%ps is flushing !WQ_MEM_RECLAIM %s:%ps",
2616 worker->current_pwq->wq->name, worker->current_func,
2617 target_wq->name, target_func);
2618 }
2619
2620 struct wq_barrier {
2621 struct work_struct work;
2622 struct completion done;
2623 struct task_struct *task; /* purely informational */
2624 };
2625
2626 static void wq_barrier_func(struct work_struct *work)
2627 {
2628 struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
2629 complete(&barr->done);
2630 }
2631
2632 /**
2633 * insert_wq_barrier - insert a barrier work
2634 * @pwq: pwq to insert barrier into
2635 * @barr: wq_barrier to insert
2636 * @target: target work to attach @barr to
2637 * @worker: worker currently executing @target, NULL if @target is not executing
2638 *
2639 * @barr is linked to @target such that @barr is completed only after
2640 * @target finishes execution. Please note that the ordering
2641 * guarantee is observed only with respect to @target and on the local
2642 * cpu.
2643 *
2644 * Currently, a queued barrier can't be canceled. This is because
2645 * try_to_grab_pending() can't determine whether the work to be
2646 * grabbed is at the head of the queue and thus can't clear LINKED
2647 * flag of the previous work while there must be a valid next work
2648 * after a work with LINKED flag set.
2649 *
2650 * Note that when @worker is non-NULL, @target may be modified
2651 * underneath us, so we can't reliably determine pwq from @target.
2652 *
2653 * CONTEXT:
2654 * raw_spin_lock_irq(pool->lock).
2655 */
2656 static void insert_wq_barrier(struct pool_workqueue *pwq,
2657 struct wq_barrier *barr,
2658 struct work_struct *target, struct worker *worker)
2659 {
2660 struct list_head *head;
2661 unsigned int linked = 0;
2662
2663 /*
2664 * debugobject calls are safe here even with pool->lock locked
2665 * as we know for sure that this will not trigger any of the
2666 * checks and call back into the fixup functions where we
2667 * might deadlock.
2668 */
2669 INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
2670 __set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
2671
2672 init_completion_map(&barr->done, &target->lockdep_map);
2673
2674 barr->task = current;
2675
2676 /*
2677 * If @target is currently being executed, schedule the
2678 * barrier to the worker; otherwise, put it after @target.
2679 */
2680 if (worker)
2681 head = worker->scheduled.next;
2682 else {
2683 unsigned long *bits = work_data_bits(target);
2684
2685 head = target->entry.next;
2686 /* there can already be other linked works, inherit and set */
2687 linked = *bits & WORK_STRUCT_LINKED;
2688 __set_bit(WORK_STRUCT_LINKED_BIT, bits);
2689 }
2690
2691 debug_work_activate(&barr->work);
2692 insert_work(pwq, &barr->work, head,
2693 work_color_to_flags(WORK_NO_COLOR) | linked);
2694 }
2695
2696 /**
2697 * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing
2698 * @wq: workqueue being flushed
2699 * @flush_color: new flush color, < 0 for no-op
2700 * @work_color: new work color, < 0 for no-op
2701 *
2702 * Prepare pwqs for workqueue flushing.
2703 *
2704 * If @flush_color is non-negative, flush_color on all pwqs should be
2705 * -1. If no pwq has in-flight commands at the specified color, all
2706 * pwq->flush_color's stay at -1 and %false is returned. If any pwq
2707 * has in flight commands, its pwq->flush_color is set to
2708 * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq
2709 * wakeup logic is armed and %true is returned.
2710 *
2711 * The caller should have initialized @wq->first_flusher prior to
2712 * calling this function with non-negative @flush_color. If
2713 * @flush_color is negative, no flush color update is done and %false
2714 * is returned.
2715 *
2716 * If @work_color is non-negative, all pwqs should have the same
2717 * work_color which is previous to @work_color and all will be
2718 * advanced to @work_color.
2719 *
2720 * CONTEXT:
2721 * mutex_lock(wq->mutex).
2722 *
2723 * Return:
2724 * %true if @flush_color >= 0 and there's something to flush. %false
2725 * otherwise.
2726 */
2727 static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq,
2728 int flush_color, int work_color)
2729 {
2730 bool wait = false;
2731 struct pool_workqueue *pwq;
2732
2733 if (flush_color >= 0) {
2734 WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush));
2735 atomic_set(&wq->nr_pwqs_to_flush, 1);
2736 }
2737
2738 for_each_pwq(pwq, wq) {
2739 struct worker_pool *pool = pwq->pool;
2740
2741 raw_spin_lock_irq(&pool->lock);
2742
2743 if (flush_color >= 0) {
2744 WARN_ON_ONCE(pwq->flush_color != -1);
2745
2746 if (pwq->nr_in_flight[flush_color]) {
2747 pwq->flush_color = flush_color;
2748 atomic_inc(&wq->nr_pwqs_to_flush);
2749 wait = true;
2750 }
2751 }
2752
2753 if (work_color >= 0) {
2754 WARN_ON_ONCE(work_color != work_next_color(pwq->work_color));
2755 pwq->work_color = work_color;
2756 }
2757
2758 raw_spin_unlock_irq(&pool->lock);
2759 }
2760
2761 if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush))
2762 complete(&wq->first_flusher->done);
2763
2764 return wait;
2765 }
2766
2767 /**
2768 * flush_workqueue - ensure that any scheduled work has run to completion.
2769 * @wq: workqueue to flush
2770 *
2771 * This function sleeps until all work items which were queued on entry
2772 * have finished execution, but it is not livelocked by new incoming ones.
2773 */
2774 void flush_workqueue(struct workqueue_struct *wq)
2775 {
2776 struct wq_flusher this_flusher = {
2777 .list = LIST_HEAD_INIT(this_flusher.list),
2778 .flush_color = -1,
2779 .done = COMPLETION_INITIALIZER_ONSTACK_MAP(this_flusher.done, wq->lockdep_map),
2780 };
2781 int next_color;
2782
2783 if (WARN_ON(!wq_online))
2784 return;
2785
2786 lock_map_acquire(&wq->lockdep_map);
2787 lock_map_release(&wq->lockdep_map);
2788
2789 mutex_lock(&wq->mutex);
2790
2791 /*
2792 * Start-to-wait phase
2793 */
2794 next_color = work_next_color(wq->work_color);
2795
2796 if (next_color != wq->flush_color) {
2797 /*
2798 * Color space is not full. The current work_color
2799 * becomes our flush_color and work_color is advanced
2800 * by one.
2801 */
2802 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow));
2803 this_flusher.flush_color = wq->work_color;
2804 wq->work_color = next_color;
2805
2806 if (!wq->first_flusher) {
2807 /* no flush in progress, become the first flusher */
2808 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2809
2810 wq->first_flusher = &this_flusher;
2811
2812 if (!flush_workqueue_prep_pwqs(wq, wq->flush_color,
2813 wq->work_color)) {
2814 /* nothing to flush, done */
2815 wq->flush_color = next_color;
2816 wq->first_flusher = NULL;
2817 goto out_unlock;
2818 }
2819 } else {
2820 /* wait in queue */
2821 WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color);
2822 list_add_tail(&this_flusher.list, &wq->flusher_queue);
2823 flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2824 }
2825 } else {
2826 /*
2827 * Oops, color space is full, wait on overflow queue.
2828 * The next flush completion will assign us
2829 * flush_color and transfer to flusher_queue.
2830 */
2831 list_add_tail(&this_flusher.list, &wq->flusher_overflow);
2832 }
2833
2834 check_flush_dependency(wq, NULL);
2835
2836 mutex_unlock(&wq->mutex);
2837
2838 wait_for_completion(&this_flusher.done);
2839
2840 /*
2841 * Wake-up-and-cascade phase
2842 *
2843 * First flushers are responsible for cascading flushes and
2844 * handling overflow. Non-first flushers can simply return.
2845 */
2846 if (READ_ONCE(wq->first_flusher) != &this_flusher)
2847 return;
2848
2849 mutex_lock(&wq->mutex);
2850
2851 /* we might have raced, check again with mutex held */
2852 if (wq->first_flusher != &this_flusher)
2853 goto out_unlock;
2854
2855 WRITE_ONCE(wq->first_flusher, NULL);
2856
2857 WARN_ON_ONCE(!list_empty(&this_flusher.list));
2858 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2859
2860 while (true) {
2861 struct wq_flusher *next, *tmp;
2862
2863 /* complete all the flushers sharing the current flush color */
2864 list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
2865 if (next->flush_color != wq->flush_color)
2866 break;
2867 list_del_init(&next->list);
2868 complete(&next->done);
2869 }
2870
2871 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) &&
2872 wq->flush_color != work_next_color(wq->work_color));
2873
2874 /* this flush_color is finished, advance by one */
2875 wq->flush_color = work_next_color(wq->flush_color);
2876
2877 /* one color has been freed, handle overflow queue */
2878 if (!list_empty(&wq->flusher_overflow)) {
2879 /*
2880 * Assign the same color to all overflowed
2881 * flushers, advance work_color and append to
2882 * flusher_queue. This is the start-to-wait
2883 * phase for these overflowed flushers.
2884 */
2885 list_for_each_entry(tmp, &wq->flusher_overflow, list)
2886 tmp->flush_color = wq->work_color;
2887
2888 wq->work_color = work_next_color(wq->work_color);
2889
2890 list_splice_tail_init(&wq->flusher_overflow,
2891 &wq->flusher_queue);
2892 flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2893 }
2894
2895 if (list_empty(&wq->flusher_queue)) {
2896 WARN_ON_ONCE(wq->flush_color != wq->work_color);
2897 break;
2898 }
2899
2900 /*
2901 * Need to flush more colors. Make the next flusher
2902 * the new first flusher and arm pwqs.
2903 */
2904 WARN_ON_ONCE(wq->flush_color == wq->work_color);
2905 WARN_ON_ONCE(wq->flush_color != next->flush_color);
2906
2907 list_del_init(&next->list);
2908 wq->first_flusher = next;
2909
2910 if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1))
2911 break;
2912
2913 /*
2914 * Meh... this color is already done, clear first
2915 * flusher and repeat cascading.
2916 */
2917 wq->first_flusher = NULL;
2918 }
2919
2920 out_unlock:
2921 mutex_unlock(&wq->mutex);
2922 }
2923 EXPORT_SYMBOL(flush_workqueue);
2924
2925 /**
2926 * drain_workqueue - drain a workqueue
2927 * @wq: workqueue to drain
2928 *
2929 * Wait until the workqueue becomes empty. While draining is in progress,
2930 * only chain queueing is allowed. IOW, only currently pending or running
2931 * work items on @wq can queue further work items on it. @wq is flushed
2932 * repeatedly until it becomes empty. The number of flushing is determined
2933 * by the depth of chaining and should be relatively short. Whine if it
2934 * takes too long.
2935 */
2936 void drain_workqueue(struct workqueue_struct *wq)
2937 {
2938 unsigned int flush_cnt = 0;
2939 struct pool_workqueue *pwq;
2940
2941 /*
2942 * __queue_work() needs to test whether there are drainers, is much
2943 * hotter than drain_workqueue() and already looks at @wq->flags.
2944 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers.
2945 */
2946 mutex_lock(&wq->mutex);
2947 if (!wq->nr_drainers++)
2948 wq->flags |= __WQ_DRAINING;
2949 mutex_unlock(&wq->mutex);
2950 reflush:
2951 flush_workqueue(wq);
2952
2953 mutex_lock(&wq->mutex);
2954
2955 for_each_pwq(pwq, wq) {
2956 bool drained;
2957
2958 raw_spin_lock_irq(&pwq->pool->lock);
2959 drained = !pwq->nr_active && list_empty(&pwq->delayed_works);
2960 raw_spin_unlock_irq(&pwq->pool->lock);
2961
2962 if (drained)
2963 continue;
2964
2965 if (++flush_cnt == 10 ||
2966 (flush_cnt % 100 == 0 && flush_cnt <= 1000))
2967 pr_warn("workqueue %s: drain_workqueue() isn't complete after %u tries\n",
2968 wq->name, flush_cnt);
2969
2970 mutex_unlock(&wq->mutex);
2971 goto reflush;
2972 }
2973
2974 if (!--wq->nr_drainers)
2975 wq->flags &= ~__WQ_DRAINING;
2976 mutex_unlock(&wq->mutex);
2977 }
2978 EXPORT_SYMBOL_GPL(drain_workqueue);
2979
2980 static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr,
2981 bool from_cancel)
2982 {
2983 struct worker *worker = NULL;
2984 struct worker_pool *pool;
2985 struct pool_workqueue *pwq;
2986
2987 might_sleep();
2988
2989 rcu_read_lock();
2990 pool = get_work_pool(work);
2991 if (!pool) {
2992 rcu_read_unlock();
2993 return false;
2994 }
2995
2996 raw_spin_lock_irq(&pool->lock);
2997 /* see the comment in try_to_grab_pending() with the same code */
2998 pwq = get_work_pwq(work);
2999 if (pwq) {
3000 if (unlikely(pwq->pool != pool))
3001 goto already_gone;
3002 } else {
3003 worker = find_worker_executing_work(pool, work);
3004 if (!worker)
3005 goto already_gone;
3006 pwq = worker->current_pwq;
3007 }
3008
3009 check_flush_dependency(pwq->wq, work);
3010
3011 insert_wq_barrier(pwq, barr, work, worker);
3012 raw_spin_unlock_irq(&pool->lock);
3013
3014 /*
3015 * Force a lock recursion deadlock when using flush_work() inside a
3016 * single-threaded or rescuer equipped workqueue.
3017 *
3018 * For single threaded workqueues the deadlock happens when the work
3019 * is after the work issuing the flush_work(). For rescuer equipped
3020 * workqueues the deadlock happens when the rescuer stalls, blocking
3021 * forward progress.
3022 */
3023 if (!from_cancel &&
3024 (pwq->wq->saved_max_active == 1 || pwq->wq->rescuer)) {
3025 lock_map_acquire(&pwq->wq->lockdep_map);
3026 lock_map_release(&pwq->wq->lockdep_map);
3027 }
3028 rcu_read_unlock();
3029 return true;
3030 already_gone:
3031 raw_spin_unlock_irq(&pool->lock);
3032 rcu_read_unlock();
3033 return false;
3034 }
3035
3036 static bool __flush_work(struct work_struct *work, bool from_cancel)
3037 {
3038 struct wq_barrier barr;
3039
3040 if (WARN_ON(!wq_online))
3041 return false;
3042
3043 if (WARN_ON(!work->func))
3044 return false;
3045
3046 if (!from_cancel) {
3047 lock_map_acquire(&work->lockdep_map);
3048 lock_map_release(&work->lockdep_map);
3049 }
3050
3051 if (start_flush_work(work, &barr, from_cancel)) {
3052 wait_for_completion(&barr.done);
3053 destroy_work_on_stack(&barr.work);
3054 return true;
3055 } else {
3056 return false;
3057 }
3058 }
3059
3060 /**
3061 * flush_work - wait for a work to finish executing the last queueing instance
3062 * @work: the work to flush
3063 *
3064 * Wait until @work has finished execution. @work is guaranteed to be idle
3065 * on return if it hasn't been requeued since flush started.
3066 *
3067 * Return:
3068 * %true if flush_work() waited for the work to finish execution,
3069 * %false if it was already idle.
3070 */
3071 bool flush_work(struct work_struct *work)
3072 {
3073 return __flush_work(work, false);
3074 }
3075 EXPORT_SYMBOL_GPL(flush_work);
3076
3077 struct cwt_wait {
3078 wait_queue_entry_t wait;
3079 struct work_struct *work;
3080 };
3081
3082 static int cwt_wakefn(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
3083 {
3084 struct cwt_wait *cwait = container_of(wait, struct cwt_wait, wait);
3085
3086 if (cwait->work != key)
3087 return 0;
3088 return autoremove_wake_function(wait, mode, sync, key);
3089 }
3090
3091 static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
3092 {
3093 static DECLARE_WAIT_QUEUE_HEAD(cancel_waitq);
3094 unsigned long flags;
3095 int ret;
3096
3097 do {
3098 ret = try_to_grab_pending(work, is_dwork, &flags);
3099 /*
3100 * If someone else is already canceling, wait for it to
3101 * finish. flush_work() doesn't work for PREEMPT_NONE
3102 * because we may get scheduled between @work's completion
3103 * and the other canceling task resuming and clearing
3104 * CANCELING - flush_work() will return false immediately
3105 * as @work is no longer busy, try_to_grab_pending() will
3106 * return -ENOENT as @work is still being canceled and the
3107 * other canceling task won't be able to clear CANCELING as
3108 * we're hogging the CPU.
3109 *
3110 * Let's wait for completion using a waitqueue. As this
3111 * may lead to the thundering herd problem, use a custom
3112 * wake function which matches @work along with exclusive
3113 * wait and wakeup.
3114 */
3115 if (unlikely(ret == -ENOENT)) {
3116 struct cwt_wait cwait;
3117
3118 init_wait(&cwait.wait);
3119 cwait.wait.func = cwt_wakefn;
3120 cwait.work = work;
3121
3122 prepare_to_wait_exclusive(&cancel_waitq, &cwait.wait,
3123 TASK_UNINTERRUPTIBLE);
3124 if (work_is_canceling(work))
3125 schedule();
3126 finish_wait(&cancel_waitq, &cwait.wait);
3127 }
3128 } while (unlikely(ret < 0));
3129
3130 /* tell other tasks trying to grab @work to back off */
3131 mark_work_canceling(work);
3132 local_irq_restore(flags);
3133
3134 /*
3135 * This allows canceling during early boot. We know that @work
3136 * isn't executing.
3137 */
3138 if (wq_online)
3139 __flush_work(work, true);
3140
3141 clear_work_data(work);
3142
3143 /*
3144 * Paired with prepare_to_wait() above so that either
3145 * waitqueue_active() is visible here or !work_is_canceling() is
3146 * visible there.
3147 */
3148 smp_mb();
3149 if (waitqueue_active(&cancel_waitq))
3150 __wake_up(&cancel_waitq, TASK_NORMAL, 1, work);
3151
3152 return ret;
3153 }
3154
3155 /**
3156 * cancel_work_sync - cancel a work and wait for it to finish
3157 * @work: the work to cancel
3158 *
3159 * Cancel @work and wait for its execution to finish. This function
3160 * can be used even if the work re-queues itself or migrates to
3161 * another workqueue. On return from this function, @work is
3162 * guaranteed to be not pending or executing on any CPU.
3163 *
3164 * cancel_work_sync(&delayed_work->work) must not be used for
3165 * delayed_work's. Use cancel_delayed_work_sync() instead.
3166 *
3167 * The caller must ensure that the workqueue on which @work was last
3168 * queued can't be destroyed before this function returns.
3169 *
3170 * Return:
3171 * %true if @work was pending, %false otherwise.
3172 */
3173 bool cancel_work_sync(struct work_struct *work)
3174 {
3175 return __cancel_work_timer(work, false);
3176 }
3177 EXPORT_SYMBOL_GPL(cancel_work_sync);
3178
3179 /**
3180 * flush_delayed_work - wait for a dwork to finish executing the last queueing
3181 * @dwork: the delayed work to flush
3182 *
3183 * Delayed timer is cancelled and the pending work is queued for
3184 * immediate execution. Like flush_work(), this function only
3185 * considers the last queueing instance of @dwork.
3186 *
3187 * Return:
3188 * %true if flush_work() waited for the work to finish execution,
3189 * %false if it was already idle.
3190 */
3191 bool flush_delayed_work(struct delayed_work *dwork)
3192 {
3193 local_irq_disable();
3194 if (del_timer_sync(&dwork->timer))
3195 __queue_work(dwork->cpu, dwork->wq, &dwork->work);
3196 local_irq_enable();
3197 return flush_work(&dwork->work);
3198 }
3199 EXPORT_SYMBOL(flush_delayed_work);
3200
3201 /**
3202 * flush_rcu_work - wait for a rwork to finish executing the last queueing
3203 * @rwork: the rcu work to flush
3204 *
3205 * Return:
3206 * %true if flush_rcu_work() waited for the work to finish execution,
3207 * %false if it was already idle.
3208 */
3209 bool flush_rcu_work(struct rcu_work *rwork)
3210 {
3211 if (test_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&rwork->work))) {
3212 rcu_barrier();
3213 flush_work(&rwork->work);
3214 return true;
3215 } else {
3216 return flush_work(&rwork->work);
3217 }
3218 }
3219 EXPORT_SYMBOL(flush_rcu_work);
3220
3221 static bool __cancel_work(struct work_struct *work, bool is_dwork)
3222 {
3223 unsigned long flags;
3224 int ret;
3225
3226 do {
3227 ret = try_to_grab_pending(work, is_dwork, &flags);
3228 } while (unlikely(ret == -EAGAIN));
3229
3230 if (unlikely(ret < 0))
3231 return false;
3232
3233 set_work_pool_and_clear_pending(work, get_work_pool_id(work));
3234 local_irq_restore(flags);
3235 return ret;
3236 }
3237
3238 /**
3239 * cancel_delayed_work - cancel a delayed work
3240 * @dwork: delayed_work to cancel
3241 *
3242 * Kill off a pending delayed_work.
3243 *
3244 * Return: %true if @dwork was pending and canceled; %false if it wasn't
3245 * pending.
3246 *
3247 * Note:
3248 * The work callback function may still be running on return, unless
3249 * it returns %true and the work doesn't re-arm itself. Explicitly flush or
3250 * use cancel_delayed_work_sync() to wait on it.
3251 *
3252 * This function is safe to call from any context including IRQ handler.
3253 */
3254 bool cancel_delayed_work(struct delayed_work *dwork)
3255 {
3256 return __cancel_work(&dwork->work, true);
3257 }
3258 EXPORT_SYMBOL(cancel_delayed_work);
3259
3260 /**
3261 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
3262 * @dwork: the delayed work cancel
3263 *
3264 * This is cancel_work_sync() for delayed works.
3265 *
3266 * Return:
3267 * %true if @dwork was pending, %false otherwise.
3268 */
3269 bool cancel_delayed_work_sync(struct delayed_work *dwork)
3270 {
3271 return __cancel_work_timer(&dwork->work, true);
3272 }
3273 EXPORT_SYMBOL(cancel_delayed_work_sync);
3274
3275 /**
3276 * schedule_on_each_cpu - execute a function synchronously on each online CPU
3277 * @func: the function to call
3278 *
3279 * schedule_on_each_cpu() executes @func on each online CPU using the
3280 * system workqueue and blocks until all CPUs have completed.
3281 * schedule_on_each_cpu() is very slow.
3282 *
3283 * Return:
3284 * 0 on success, -errno on failure.
3285 */
3286 int schedule_on_each_cpu(work_func_t func)
3287 {
3288 int cpu;
3289 struct work_struct __percpu *works;
3290
3291 works = alloc_percpu(struct work_struct);
3292 if (!works)
3293 return -ENOMEM;
3294
3295 get_online_cpus();
3296
3297 for_each_online_cpu(cpu) {
3298 struct work_struct *work = per_cpu_ptr(works, cpu);
3299
3300 INIT_WORK(work, func);
3301 schedule_work_on(cpu, work);
3302 }
3303
3304 for_each_online_cpu(cpu)
3305 flush_work(per_cpu_ptr(works, cpu));
3306
3307 put_online_cpus();
3308 free_percpu(works);
3309 return 0;
3310 }
3311
3312 /**
3313 * execute_in_process_context - reliably execute the routine with user context
3314 * @fn: the function to execute
3315 * @ew: guaranteed storage for the execute work structure (must
3316 * be available when the work executes)
3317 *
3318 * Executes the function immediately if process context is available,
3319 * otherwise schedules the function for delayed execution.
3320 *
3321 * Return: 0 - function was executed
3322 * 1 - function was scheduled for execution
3323 */
3324 int execute_in_process_context(work_func_t fn, struct execute_work *ew)
3325 {
3326 if (!in_interrupt()) {
3327 fn(&ew->work);
3328 return 0;
3329 }
3330
3331 INIT_WORK(&ew->work, fn);
3332 schedule_work(&ew->work);
3333
3334 return 1;
3335 }
3336 EXPORT_SYMBOL_GPL(execute_in_process_context);
3337
3338 /**
3339 * free_workqueue_attrs - free a workqueue_attrs
3340 * @attrs: workqueue_attrs to free
3341 *
3342 * Undo alloc_workqueue_attrs().
3343 */
3344 void free_workqueue_attrs(struct workqueue_attrs *attrs)
3345 {
3346 if (attrs) {
3347 free_cpumask_var(attrs->cpumask);
3348 kfree(attrs);
3349 }
3350 }
3351
3352 /**
3353 * alloc_workqueue_attrs - allocate a workqueue_attrs
3354 *
3355 * Allocate a new workqueue_attrs, initialize with default settings and
3356 * return it.
3357 *
3358 * Return: The allocated new workqueue_attr on success. %NULL on failure.
3359 */
3360 struct workqueue_attrs *alloc_workqueue_attrs(void)
3361 {
3362 struct workqueue_attrs *attrs;
3363
3364 attrs = kzalloc(sizeof(*attrs), GFP_KERNEL);
3365 if (!attrs)
3366 goto fail;
3367 if (!alloc_cpumask_var(&attrs->cpumask, GFP_KERNEL))
3368 goto fail;
3369
3370 cpumask_copy(attrs->cpumask, cpu_possible_mask);
3371 return attrs;
3372 fail:
3373 free_workqueue_attrs(attrs);
3374 return NULL;
3375 }
3376
3377 static void copy_workqueue_attrs(struct workqueue_attrs *to,
3378 const struct workqueue_attrs *from)
3379 {
3380 to->nice = from->nice;
3381 cpumask_copy(to->cpumask, from->cpumask);
3382 /*
3383 * Unlike hash and equality test, this function doesn't ignore
3384 * ->no_numa as it is used for both pool and wq attrs. Instead,
3385 * get_unbound_pool() explicitly clears ->no_numa after copying.
3386 */
3387 to->no_numa = from->no_numa;
3388 }
3389
3390 /* hash value of the content of @attr */
3391 static u32 wqattrs_hash(const struct workqueue_attrs *attrs)
3392 {
3393 u32 hash = 0;
3394
3395 hash = jhash_1word(attrs->nice, hash);
3396 hash = jhash(cpumask_bits(attrs->cpumask),
3397 BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash);
3398 return hash;
3399 }
3400
3401 /* content equality test */
3402 static bool wqattrs_equal(const struct workqueue_attrs *a,
3403 const struct workqueue_attrs *b)
3404 {
3405 if (a->nice != b->nice)
3406 return false;
3407 if (!cpumask_equal(a->cpumask, b->cpumask))
3408 return false;
3409 return true;
3410 }
3411
3412 /**
3413 * init_worker_pool - initialize a newly zalloc'd worker_pool
3414 * @pool: worker_pool to initialize
3415 *
3416 * Initialize a newly zalloc'd @pool. It also allocates @pool->attrs.
3417 *
3418 * Return: 0 on success, -errno on failure. Even on failure, all fields
3419 * inside @pool proper are initialized and put_unbound_pool() can be called
3420 * on @pool safely to release it.
3421 */
3422 static int init_worker_pool(struct worker_pool *pool)
3423 {
3424 raw_spin_lock_init(&pool->lock);
3425 pool->id = -1;
3426 pool->cpu = -1;
3427 pool->node = NUMA_NO_NODE;
3428 pool->flags |= POOL_DISASSOCIATED;
3429 pool->watchdog_ts = jiffies;
3430 INIT_LIST_HEAD(&pool->worklist);
3431 INIT_LIST_HEAD(&pool->idle_list);
3432 hash_init(pool->busy_hash);
3433
3434 timer_setup(&pool->idle_timer, idle_worker_timeout, TIMER_DEFERRABLE);
3435
3436 timer_setup(&pool->mayday_timer, pool_mayday_timeout, 0);
3437
3438 INIT_LIST_HEAD(&pool->workers);
3439
3440 ida_init(&pool->worker_ida);
3441 INIT_HLIST_NODE(&pool->hash_node);
3442 pool->refcnt = 1;
3443
3444 /* shouldn't fail above this point */
3445 pool->attrs = alloc_workqueue_attrs();
3446 if (!pool->attrs)
3447 return -ENOMEM;
3448 return 0;
3449 }
3450
3451 #ifdef CONFIG_LOCKDEP
3452 static void wq_init_lockdep(struct workqueue_struct *wq)
3453 {
3454 char *lock_name;
3455
3456 lockdep_register_key(&wq->key);
3457 lock_name = kasprintf(GFP_KERNEL, "%s%s", "(wq_completion)", wq->name);
3458 if (!lock_name)
3459 lock_name = wq->name;
3460
3461 wq->lock_name = lock_name;
3462 lockdep_init_map(&wq->lockdep_map, lock_name, &wq->key, 0);
3463 }
3464
3465 static void wq_unregister_lockdep(struct workqueue_struct *wq)
3466 {
3467 lockdep_unregister_key(&wq->key);
3468 }
3469
3470 static void wq_free_lockdep(struct workqueue_struct *wq)
3471 {
3472 if (wq->lock_name != wq->name)
3473 kfree(wq->lock_name);
3474 }
3475 #else
3476 static void wq_init_lockdep(struct workqueue_struct *wq)
3477 {
3478 }
3479
3480 static void wq_unregister_lockdep(struct workqueue_struct *wq)
3481 {
3482 }
3483
3484 static void wq_free_lockdep(struct workqueue_struct *wq)
3485 {
3486 }
3487 #endif
3488
3489 static void rcu_free_wq(struct rcu_head *rcu)
3490 {
3491 struct workqueue_struct *wq =
3492 container_of(rcu, struct workqueue_struct, rcu);
3493
3494 wq_free_lockdep(wq);
3495
3496 if (!(wq->flags & WQ_UNBOUND))
3497 free_percpu(wq->cpu_pwqs);
3498 else
3499 free_workqueue_attrs(wq->unbound_attrs);
3500
3501 kfree(wq);
3502 }
3503
3504 static void rcu_free_pool(struct rcu_head *rcu)
3505 {
3506 struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu);
3507
3508 ida_destroy(&pool->worker_ida);
3509 free_workqueue_attrs(pool->attrs);
3510 kfree(pool);
3511 }
3512
3513 /* This returns with the lock held on success (pool manager is inactive). */
3514 static bool wq_manager_inactive(struct worker_pool *pool)
3515 {
3516 raw_spin_lock_irq(&pool->lock);
3517
3518 if (pool->flags & POOL_MANAGER_ACTIVE) {
3519 raw_spin_unlock_irq(&pool->lock);
3520 return false;
3521 }
3522 return true;
3523 }
3524
3525 /**
3526 * put_unbound_pool - put a worker_pool
3527 * @pool: worker_pool to put
3528 *
3529 * Put @pool. If its refcnt reaches zero, it gets destroyed in RCU
3530 * safe manner. get_unbound_pool() calls this function on its failure path
3531 * and this function should be able to release pools which went through,
3532 * successfully or not, init_worker_pool().
3533 *
3534 * Should be called with wq_pool_mutex held.
3535 */
3536 static void put_unbound_pool(struct worker_pool *pool)
3537 {
3538 DECLARE_COMPLETION_ONSTACK(detach_completion);
3539 struct worker *worker;
3540
3541 lockdep_assert_held(&wq_pool_mutex);
3542
3543 if (--pool->refcnt)
3544 return;
3545
3546 /* sanity checks */
3547 if (WARN_ON(!(pool->cpu < 0)) ||
3548 WARN_ON(!list_empty(&pool->worklist)))
3549 return;
3550
3551 /* release id and unhash */
3552 if (pool->id >= 0)
3553 idr_remove(&worker_pool_idr, pool->id);
3554 hash_del(&pool->hash_node);
3555
3556 /*
3557 * Become the manager and destroy all workers. This prevents
3558 * @pool's workers from blocking on attach_mutex. We're the last
3559 * manager and @pool gets freed with the flag set.
3560 * Because of how wq_manager_inactive() works, we will hold the
3561 * spinlock after a successful wait.
3562 */
3563 rcuwait_wait_event(&manager_wait, wq_manager_inactive(pool),
3564 TASK_UNINTERRUPTIBLE);
3565 pool->flags |= POOL_MANAGER_ACTIVE;
3566
3567 while ((worker = first_idle_worker(pool)))
3568 destroy_worker(worker);
3569 WARN_ON(pool->nr_workers || pool->nr_idle);
3570 raw_spin_unlock_irq(&pool->lock);
3571
3572 mutex_lock(&wq_pool_attach_mutex);
3573 if (!list_empty(&pool->workers))
3574 pool->detach_completion = &detach_completion;
3575 mutex_unlock(&wq_pool_attach_mutex);
3576
3577 if (pool->detach_completion)
3578 wait_for_completion(pool->detach_completion);
3579
3580 /* shut down the timers */
3581 del_timer_sync(&pool->idle_timer);
3582 del_timer_sync(&pool->mayday_timer);
3583
3584 /* RCU protected to allow dereferences from get_work_pool() */
3585 call_rcu(&pool->rcu, rcu_free_pool);
3586 }
3587
3588 /**
3589 * get_unbound_pool - get a worker_pool with the specified attributes
3590 * @attrs: the attributes of the worker_pool to get
3591 *
3592 * Obtain a worker_pool which has the same attributes as @attrs, bump the
3593 * reference count and return it. If there already is a matching
3594 * worker_pool, it will be used; otherwise, this function attempts to
3595 * create a new one.
3596 *
3597 * Should be called with wq_pool_mutex held.
3598 *
3599 * Return: On success, a worker_pool with the same attributes as @attrs.
3600 * On failure, %NULL.
3601 */
3602 static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs)
3603 {
3604 u32 hash = wqattrs_hash(attrs);
3605 struct worker_pool *pool;
3606 int node;
3607 int target_node = NUMA_NO_NODE;
3608
3609 lockdep_assert_held(&wq_pool_mutex);
3610
3611 /* do we already have a matching pool? */
3612 hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) {
3613 if (wqattrs_equal(pool->attrs, attrs)) {
3614 pool->refcnt++;
3615 return pool;
3616 }
3617 }
3618
3619 /* if cpumask is contained inside a NUMA node, we belong to that node */
3620 if (wq_numa_enabled) {
3621 for_each_node(node) {
3622 if (cpumask_subset(attrs->cpumask,
3623 wq_numa_possible_cpumask[node])) {
3624 target_node = node;
3625 break;
3626 }
3627 }
3628 }
3629
3630 /* nope, create a new one */
3631 pool = kzalloc_node(sizeof(*pool), GFP_KERNEL, target_node);
3632 if (!pool || init_worker_pool(pool) < 0)
3633 goto fail;
3634
3635 lockdep_set_subclass(&pool->lock, 1); /* see put_pwq() */
3636 copy_workqueue_attrs(pool->attrs, attrs);
3637 pool->node = target_node;
3638
3639 /*
3640 * no_numa isn't a worker_pool attribute, always clear it. See
3641 * 'struct workqueue_attrs' comments for detail.
3642 */
3643 pool->attrs->no_numa = false;
3644
3645 if (worker_pool_assign_id(pool) < 0)
3646 goto fail;
3647
3648 /* create and start the initial worker */
3649 if (wq_online && !create_worker(pool))
3650 goto fail;
3651
3652 /* install */
3653 hash_add(unbound_pool_hash, &pool->hash_node, hash);
3654
3655 return pool;
3656 fail:
3657 if (pool)
3658 put_unbound_pool(pool);
3659 return NULL;
3660 }
3661
3662 static void rcu_free_pwq(struct rcu_head *rcu)
3663 {
3664 kmem_cache_free(pwq_cache,
3665 container_of(rcu, struct pool_workqueue, rcu));
3666 }
3667
3668 /*
3669 * Scheduled on system_wq by put_pwq() when an unbound pwq hits zero refcnt
3670 * and needs to be destroyed.
3671 */
3672 static void pwq_unbound_release_workfn(struct work_struct *work)
3673 {
3674 struct pool_workqueue *pwq = container_of(work, struct pool_workqueue,
3675 unbound_release_work);
3676 struct workqueue_struct *wq = pwq->wq;
3677 struct worker_pool *pool = pwq->pool;
3678 bool is_last;
3679
3680 if (WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND)))
3681 return;
3682
3683 mutex_lock(&wq->mutex);
3684 list_del_rcu(&pwq->pwqs_node);
3685 is_last = list_empty(&wq->pwqs);
3686 mutex_unlock(&wq->mutex);
3687
3688 mutex_lock(&wq_pool_mutex);
3689 put_unbound_pool(pool);
3690 mutex_unlock(&wq_pool_mutex);
3691
3692 call_rcu(&pwq->rcu, rcu_free_pwq);
3693
3694 /*
3695 * If we're the last pwq going away, @wq is already dead and no one
3696 * is gonna access it anymore. Schedule RCU free.
3697 */
3698 if (is_last) {
3699 wq_unregister_lockdep(wq);
3700 call_rcu(&wq->rcu, rcu_free_wq);
3701 }
3702 }
3703
3704 /**
3705 * pwq_adjust_max_active - update a pwq's max_active to the current setting
3706 * @pwq: target pool_workqueue
3707 *
3708 * If @pwq isn't freezing, set @pwq->max_active to the associated
3709 * workqueue's saved_max_active and activate delayed work items
3710 * accordingly. If @pwq is freezing, clear @pwq->max_active to zero.
3711 */
3712 static void pwq_adjust_max_active(struct pool_workqueue *pwq)
3713 {
3714 struct workqueue_struct *wq = pwq->wq;
3715 bool freezable = wq->flags & WQ_FREEZABLE;
3716 unsigned long flags;
3717
3718 /* for @wq->saved_max_active */
3719 lockdep_assert_held(&wq->mutex);
3720
3721 /* fast exit for non-freezable wqs */
3722 if (!freezable && pwq->max_active == wq->saved_max_active)
3723 return;
3724
3725 /* this function can be called during early boot w/ irq disabled */
3726 raw_spin_lock_irqsave(&pwq->pool->lock, flags);
3727
3728 /*
3729 * During [un]freezing, the caller is responsible for ensuring that
3730 * this function is called at least once after @workqueue_freezing
3731 * is updated and visible.
3732 */
3733 if (!freezable || !workqueue_freezing) {
3734 bool kick = false;
3735
3736 pwq->max_active = wq->saved_max_active;
3737
3738 while (!list_empty(&pwq->delayed_works) &&
3739 pwq->nr_active < pwq->max_active) {
3740 pwq_activate_first_delayed(pwq);
3741 kick = true;
3742 }
3743
3744 /*
3745 * Need to kick a worker after thawed or an unbound wq's
3746 * max_active is bumped. In realtime scenarios, always kicking a
3747 * worker will cause interference on the isolated cpu cores, so
3748 * let's kick iff work items were activated.
3749 */
3750 if (kick)
3751 wake_up_worker(pwq->pool);
3752 } else {
3753 pwq->max_active = 0;
3754 }
3755
3756 raw_spin_unlock_irqrestore(&pwq->pool->lock, flags);
3757 }
3758
3759 /* initialize newly alloced @pwq which is associated with @wq and @pool */
3760 static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq,
3761 struct worker_pool *pool)
3762 {
3763 BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK);
3764
3765 memset(pwq, 0, sizeof(*pwq));
3766
3767 pwq->pool = pool;
3768 pwq->wq = wq;
3769 pwq->flush_color = -1;
3770 pwq->refcnt = 1;
3771 INIT_LIST_HEAD(&pwq->delayed_works);
3772 INIT_LIST_HEAD(&pwq->pwqs_node);
3773 INIT_LIST_HEAD(&pwq->mayday_node);
3774 INIT_WORK(&pwq->unbound_release_work, pwq_unbound_release_workfn);
3775 }
3776
3777 /* sync @pwq with the current state of its associated wq and link it */
3778 static void link_pwq(struct pool_workqueue *pwq)
3779 {
3780 struct workqueue_struct *wq = pwq->wq;
3781
3782 lockdep_assert_held(&wq->mutex);
3783
3784 /* may be called multiple times, ignore if already linked */
3785 if (!list_empty(&pwq->pwqs_node))
3786 return;
3787
3788 /* set the matching work_color */
3789 pwq->work_color = wq->work_color;
3790
3791 /* sync max_active to the current setting */
3792 pwq_adjust_max_active(pwq);
3793
3794 /* link in @pwq */
3795 list_add_rcu(&pwq->pwqs_node, &wq->pwqs);
3796 }
3797
3798 /* obtain a pool matching @attr and create a pwq associating the pool and @wq */
3799 static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq,
3800 const struct workqueue_attrs *attrs)
3801 {
3802 struct worker_pool *pool;
3803 struct pool_workqueue *pwq;
3804
3805 lockdep_assert_held(&wq_pool_mutex);
3806
3807 pool = get_unbound_pool(attrs);
3808 if (!pool)
3809 return NULL;
3810
3811 pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node);
3812 if (!pwq) {
3813 put_unbound_pool(pool);
3814 return NULL;
3815 }
3816
3817 init_pwq(pwq, wq, pool);
3818 return pwq;
3819 }
3820
3821 /**
3822 * wq_calc_node_cpumask - calculate a wq_attrs' cpumask for the specified node
3823 * @attrs: the wq_attrs of the default pwq of the target workqueue
3824 * @node: the target NUMA node
3825 * @cpu_going_down: if >= 0, the CPU to consider as offline
3826 * @cpumask: outarg, the resulting cpumask
3827 *
3828 * Calculate the cpumask a workqueue with @attrs should use on @node. If
3829 * @cpu_going_down is >= 0, that cpu is considered offline during
3830 * calculation. The result is stored in @cpumask.
3831 *
3832 * If NUMA affinity is not enabled, @attrs->cpumask is always used. If
3833 * enabled and @node has online CPUs requested by @attrs, the returned
3834 * cpumask is the intersection of the possible CPUs of @node and
3835 * @attrs->cpumask.
3836 *
3837 * The caller is responsible for ensuring that the cpumask of @node stays
3838 * stable.
3839 *
3840 * Return: %true if the resulting @cpumask is different from @attrs->cpumask,
3841 * %false if equal.
3842 */
3843 static bool wq_calc_node_cpumask(const struct workqueue_attrs *attrs, int node,
3844 int cpu_going_down, cpumask_t *cpumask)
3845 {
3846 if (!wq_numa_enabled || attrs->no_numa)
3847 goto use_dfl;
3848
3849 /* does @node have any online CPUs @attrs wants? */
3850 cpumask_and(cpumask, cpumask_of_node(node), attrs->cpumask);
3851 if (cpu_going_down >= 0)
3852 cpumask_clear_cpu(cpu_going_down, cpumask);
3853
3854 if (cpumask_empty(cpumask))
3855 goto use_dfl;
3856
3857 /* yeap, return possible CPUs in @node that @attrs wants */
3858 cpumask_and(cpumask, attrs->cpumask, wq_numa_possible_cpumask[node]);
3859
3860 if (cpumask_empty(cpumask)) {
3861 pr_warn_once("WARNING: workqueue cpumask: online intersect > "
3862 "possible intersect\n");
3863 return false;
3864 }
3865
3866 return !cpumask_equal(cpumask, attrs->cpumask);
3867
3868 use_dfl:
3869 cpumask_copy(cpumask, attrs->cpumask);
3870 return false;
3871 }
3872
3873 /* install @pwq into @wq's numa_pwq_tbl[] for @node and return the old pwq */
3874 static struct pool_workqueue *numa_pwq_tbl_install(struct workqueue_struct *wq,
3875 int node,
3876 struct pool_workqueue *pwq)
3877 {
3878 struct pool_workqueue *old_pwq;
3879
3880 lockdep_assert_held(&wq_pool_mutex);
3881 lockdep_assert_held(&wq->mutex);
3882
3883 /* link_pwq() can handle duplicate calls */
3884 link_pwq(pwq);
3885
3886 old_pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
3887 rcu_assign_pointer(wq->numa_pwq_tbl[node], pwq);
3888 return old_pwq;
3889 }
3890
3891 /* context to store the prepared attrs & pwqs before applying */
3892 struct apply_wqattrs_ctx {
3893 struct workqueue_struct *wq; /* target workqueue */
3894 struct workqueue_attrs *attrs; /* attrs to apply */
3895 struct list_head list; /* queued for batching commit */
3896 struct pool_workqueue *dfl_pwq;
3897 struct pool_workqueue *pwq_tbl[];
3898 };
3899
3900 /* free the resources after success or abort */
3901 static void apply_wqattrs_cleanup(struct apply_wqattrs_ctx *ctx)
3902 {
3903 if (ctx) {
3904 int node;
3905
3906 for_each_node(node)
3907 put_pwq_unlocked(ctx->pwq_tbl[node]);
3908 put_pwq_unlocked(ctx->dfl_pwq);
3909
3910 free_workqueue_attrs(ctx->attrs);
3911
3912 kfree(ctx);
3913 }
3914 }
3915
3916 /* allocate the attrs and pwqs for later installation */
3917 static struct apply_wqattrs_ctx *
3918 apply_wqattrs_prepare(struct workqueue_struct *wq,
3919 const struct workqueue_attrs *attrs)
3920 {
3921 struct apply_wqattrs_ctx *ctx;
3922 struct workqueue_attrs *new_attrs, *tmp_attrs;
3923 int node;
3924
3925 lockdep_assert_held(&wq_pool_mutex);
3926
3927 ctx = kzalloc(struct_size(ctx, pwq_tbl, nr_node_ids), GFP_KERNEL);
3928
3929 new_attrs = alloc_workqueue_attrs();
3930 tmp_attrs = alloc_workqueue_attrs();
3931 if (!ctx || !new_attrs || !tmp_attrs)
3932 goto out_free;
3933
3934 /*
3935 * Calculate the attrs of the default pwq.
3936 * If the user configured cpumask doesn't overlap with the
3937 * wq_unbound_cpumask, we fallback to the wq_unbound_cpumask.
3938 */
3939 copy_workqueue_attrs(new_attrs, attrs);
3940 cpumask_and(new_attrs->cpumask, new_attrs->cpumask, wq_unbound_cpumask);
3941 if (unlikely(cpumask_empty(new_attrs->cpumask)))
3942 cpumask_copy(new_attrs->cpumask, wq_unbound_cpumask);
3943
3944 /*
3945 * We may create multiple pwqs with differing cpumasks. Make a
3946 * copy of @new_attrs which will be modified and used to obtain
3947 * pools.
3948 */
3949 copy_workqueue_attrs(tmp_attrs, new_attrs);
3950
3951 /*
3952 * If something goes wrong during CPU up/down, we'll fall back to
3953 * the default pwq covering whole @attrs->cpumask. Always create
3954 * it even if we don't use it immediately.
3955 */
3956 ctx->dfl_pwq = alloc_unbound_pwq(wq, new_attrs);
3957 if (!ctx->dfl_pwq)
3958 goto out_free;
3959
3960 for_each_node(node) {
3961 if (wq_calc_node_cpumask(new_attrs, node, -1, tmp_attrs->cpumask)) {
3962 ctx->pwq_tbl[node] = alloc_unbound_pwq(wq, tmp_attrs);
3963 if (!ctx->pwq_tbl[node])
3964 goto out_free;
3965 } else {
3966 ctx->dfl_pwq->refcnt++;
3967 ctx->pwq_tbl[node] = ctx->dfl_pwq;
3968 }
3969 }
3970
3971 /* save the user configured attrs and sanitize it. */
3972 copy_workqueue_attrs(new_attrs, attrs);
3973 cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask);
3974 ctx->attrs = new_attrs;
3975
3976 ctx->wq = wq;
3977 free_workqueue_attrs(tmp_attrs);
3978 return ctx;
3979
3980 out_free:
3981 free_workqueue_attrs(tmp_attrs);
3982 free_workqueue_attrs(new_attrs);
3983 apply_wqattrs_cleanup(ctx);
3984 return NULL;
3985 }
3986
3987 /* set attrs and install prepared pwqs, @ctx points to old pwqs on return */
3988 static void apply_wqattrs_commit(struct apply_wqattrs_ctx *ctx)
3989 {
3990 int node;
3991
3992 /* all pwqs have been created successfully, let's install'em */
3993 mutex_lock(&ctx->wq->mutex);
3994
3995 copy_workqueue_attrs(ctx->wq->unbound_attrs, ctx->attrs);
3996
3997 /* save the previous pwq and install the new one */
3998 for_each_node(node)
3999 ctx->pwq_tbl[node] = numa_pwq_tbl_install(ctx->wq, node,
4000 ctx->pwq_tbl[node]);
4001
4002 /* @dfl_pwq might not have been used, ensure it's linked */
4003 link_pwq(ctx->dfl_pwq);
4004 swap(ctx->wq->dfl_pwq, ctx->dfl_pwq);
4005
4006 mutex_unlock(&ctx->wq->mutex);
4007 }
4008
4009 static void apply_wqattrs_lock(void)
4010 {
4011 /* CPUs should stay stable across pwq creations and installations */
4012 get_online_cpus();
4013 mutex_lock(&wq_pool_mutex);
4014 }
4015
4016 static void apply_wqattrs_unlock(void)
4017 {
4018 mutex_unlock(&wq_pool_mutex);
4019 put_online_cpus();
4020 }
4021
4022 static int apply_workqueue_attrs_locked(struct workqueue_struct *wq,
4023 const struct workqueue_attrs *attrs)
4024 {
4025 struct apply_wqattrs_ctx *ctx;
4026
4027 /* only unbound workqueues can change attributes */
4028 if (WARN_ON(!(wq->flags & WQ_UNBOUND)))
4029 return -EINVAL;
4030
4031 /* creating multiple pwqs breaks ordering guarantee */
4032 if (!list_empty(&wq->pwqs)) {
4033 if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
4034 return -EINVAL;
4035
4036 wq->flags &= ~__WQ_ORDERED;
4037 }
4038
4039 ctx = apply_wqattrs_prepare(wq, attrs);
4040 if (!ctx)
4041 return -ENOMEM;
4042
4043 /* the ctx has been prepared successfully, let's commit it */
4044 apply_wqattrs_commit(ctx);
4045 apply_wqattrs_cleanup(ctx);
4046
4047 return 0;
4048 }
4049
4050 /**
4051 * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue
4052 * @wq: the target workqueue
4053 * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs()
4054 *
4055 * Apply @attrs to an unbound workqueue @wq. Unless disabled, on NUMA
4056 * machines, this function maps a separate pwq to each NUMA node with
4057 * possibles CPUs in @attrs->cpumask so that work items are affine to the
4058 * NUMA node it was issued on. Older pwqs are released as in-flight work
4059 * items finish. Note that a work item which repeatedly requeues itself
4060 * back-to-back will stay on its current pwq.
4061 *
4062 * Performs GFP_KERNEL allocations.
4063 *
4064 * Assumes caller has CPU hotplug read exclusion, i.e. get_online_cpus().
4065 *
4066 * Return: 0 on success and -errno on failure.
4067 */
4068 int apply_workqueue_attrs(struct workqueue_struct *wq,
4069 const struct workqueue_attrs *attrs)
4070 {
4071 int ret;
4072
4073 lockdep_assert_cpus_held();
4074
4075 mutex_lock(&wq_pool_mutex);
4076 ret = apply_workqueue_attrs_locked(wq, attrs);
4077 mutex_unlock(&wq_pool_mutex);
4078
4079 return ret;
4080 }
4081
4082 /**
4083 * wq_update_unbound_numa - update NUMA affinity of a wq for CPU hot[un]plug
4084 * @wq: the target workqueue
4085 * @cpu: the CPU coming up or going down
4086 * @online: whether @cpu is coming up or going down
4087 *
4088 * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and
4089 * %CPU_DOWN_FAILED. @cpu is being hot[un]plugged, update NUMA affinity of
4090 * @wq accordingly.
4091 *
4092 * If NUMA affinity can't be adjusted due to memory allocation failure, it
4093 * falls back to @wq->dfl_pwq which may not be optimal but is always
4094 * correct.
4095 *
4096 * Note that when the last allowed CPU of a NUMA node goes offline for a
4097 * workqueue with a cpumask spanning multiple nodes, the workers which were
4098 * already executing the work items for the workqueue will lose their CPU
4099 * affinity and may execute on any CPU. This is similar to how per-cpu
4100 * workqueues behave on CPU_DOWN. If a workqueue user wants strict
4101 * affinity, it's the user's responsibility to flush the work item from
4102 * CPU_DOWN_PREPARE.
4103 */
4104 static void wq_update_unbound_numa(struct workqueue_struct *wq, int cpu,
4105 bool online)
4106 {
4107 int node = cpu_to_node(cpu);
4108 int cpu_off = online ? -1 : cpu;
4109 struct pool_workqueue *old_pwq = NULL, *pwq;
4110 struct workqueue_attrs *target_attrs;
4111 cpumask_t *cpumask;
4112
4113 lockdep_assert_held(&wq_pool_mutex);
4114
4115 if (!wq_numa_enabled || !(wq->flags & WQ_UNBOUND) ||
4116 wq->unbound_attrs->no_numa)
4117 return;
4118
4119 /*
4120 * We don't wanna alloc/free wq_attrs for each wq for each CPU.
4121 * Let's use a preallocated one. The following buf is protected by
4122 * CPU hotplug exclusion.
4123 */
4124 target_attrs = wq_update_unbound_numa_attrs_buf;
4125 cpumask = target_attrs->cpumask;
4126
4127 copy_workqueue_attrs(target_attrs, wq->unbound_attrs);
4128 pwq = unbound_pwq_by_node(wq, node);
4129
4130 /*
4131 * Let's determine what needs to be done. If the target cpumask is
4132 * different from the default pwq's, we need to compare it to @pwq's
4133 * and create a new one if they don't match. If the target cpumask
4134 * equals the default pwq's, the default pwq should be used.
4135 */
4136 if (wq_calc_node_cpumask(wq->dfl_pwq->pool->attrs, node, cpu_off, cpumask)) {
4137 if (cpumask_equal(cpumask, pwq->pool->attrs->cpumask))
4138 return;
4139 } else {
4140 goto use_dfl_pwq;
4141 }
4142
4143 /* create a new pwq */
4144 pwq = alloc_unbound_pwq(wq, target_attrs);
4145 if (!pwq) {
4146 pr_warn("workqueue: allocation failed while updating NUMA affinity of \"%s\"\n",
4147 wq->name);
4148 goto use_dfl_pwq;
4149 }
4150
4151 /* Install the new pwq. */
4152 mutex_lock(&wq->mutex);
4153 old_pwq = numa_pwq_tbl_install(wq, node, pwq);
4154 goto out_unlock;
4155
4156 use_dfl_pwq:
4157 mutex_lock(&wq->mutex);
4158 raw_spin_lock_irq(&wq->dfl_pwq->pool->lock);
4159 get_pwq(wq->dfl_pwq);
4160 raw_spin_unlock_irq(&wq->dfl_pwq->pool->lock);
4161 old_pwq = numa_pwq_tbl_install(wq, node, wq->dfl_pwq);
4162 out_unlock:
4163 mutex_unlock(&wq->mutex);
4164 put_pwq_unlocked(old_pwq);
4165 }
4166
4167 static int alloc_and_link_pwqs(struct workqueue_struct *wq)
4168 {
4169 bool highpri = wq->flags & WQ_HIGHPRI;
4170 int cpu, ret;
4171
4172 if (!(wq->flags & WQ_UNBOUND)) {
4173 wq->cpu_pwqs = alloc_percpu(struct pool_workqueue);
4174 if (!wq->cpu_pwqs)
4175 return -ENOMEM;
4176
4177 for_each_possible_cpu(cpu) {
4178 struct pool_workqueue *pwq =
4179 per_cpu_ptr(wq->cpu_pwqs, cpu);
4180 struct worker_pool *cpu_pools =
4181 per_cpu(cpu_worker_pools, cpu);
4182
4183 init_pwq(pwq, wq, &cpu_pools[highpri]);
4184
4185 mutex_lock(&wq->mutex);
4186 link_pwq(pwq);
4187 mutex_unlock(&wq->mutex);
4188 }
4189 return 0;
4190 }
4191
4192 get_online_cpus();
4193 if (wq->flags & __WQ_ORDERED) {
4194 ret = apply_workqueue_attrs(wq, ordered_wq_attrs[highpri]);
4195 /* there should only be single pwq for ordering guarantee */
4196 WARN(!ret && (wq->pwqs.next != &wq->dfl_pwq->pwqs_node ||
4197 wq->pwqs.prev != &wq->dfl_pwq->pwqs_node),
4198 "ordering guarantee broken for workqueue %s\n", wq->name);
4199 } else {
4200 ret = apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]);
4201 }
4202 put_online_cpus();
4203
4204 return ret;
4205 }
4206
4207 static int wq_clamp_max_active(int max_active, unsigned int flags,
4208 const char *name)
4209 {
4210 int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;
4211
4212 if (max_active < 1 || max_active > lim)
4213 pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
4214 max_active, name, 1, lim);
4215
4216 return clamp_val(max_active, 1, lim);
4217 }
4218
4219 /*
4220 * Workqueues which may be used during memory reclaim should have a rescuer
4221 * to guarantee forward progress.
4222 */
4223 static int init_rescuer(struct workqueue_struct *wq)
4224 {
4225 struct worker *rescuer;
4226 int ret;
4227
4228 if (!(wq->flags & WQ_MEM_RECLAIM))
4229 return 0;
4230
4231 rescuer = alloc_worker(NUMA_NO_NODE);
4232 if (!rescuer)
4233 return -ENOMEM;
4234
4235 rescuer->rescue_wq = wq;
4236 rescuer->task = kthread_create(rescuer_thread, rescuer, "%s", wq->name);
4237 if (IS_ERR(rescuer->task)) {
4238 ret = PTR_ERR(rescuer->task);
4239 kfree(rescuer);
4240 return ret;
4241 }
4242
4243 wq->rescuer = rescuer;
4244 kthread_bind_mask(rescuer->task, cpu_possible_mask);
4245 wake_up_process(rescuer->task);
4246
4247 return 0;
4248 }
4249
4250 __printf(1, 4)
4251 struct workqueue_struct *alloc_workqueue(const char *fmt,
4252 unsigned int flags,
4253 int max_active, ...)
4254 {
4255 size_t tbl_size = 0;
4256 va_list args;
4257 struct workqueue_struct *wq;
4258 struct pool_workqueue *pwq;
4259
4260 /*
4261 * Unbound && max_active == 1 used to imply ordered, which is no
4262 * longer the case on NUMA machines due to per-node pools. While
4263 * alloc_ordered_workqueue() is the right way to create an ordered
4264 * workqueue, keep the previous behavior to avoid subtle breakages
4265 * on NUMA.
4266 */
4267 if ((flags & WQ_UNBOUND) && max_active == 1)
4268 flags |= __WQ_ORDERED;
4269
4270 /* see the comment above the definition of WQ_POWER_EFFICIENT */
4271 if ((flags & WQ_POWER_EFFICIENT) && wq_power_efficient)
4272 flags |= WQ_UNBOUND;
4273
4274 /* allocate wq and format name */
4275 if (flags & WQ_UNBOUND)
4276 tbl_size = nr_node_ids * sizeof(wq->numa_pwq_tbl[0]);
4277
4278 wq = kzalloc(sizeof(*wq) + tbl_size, GFP_KERNEL);
4279 if (!wq)
4280 return NULL;
4281
4282 if (flags & WQ_UNBOUND) {
4283 wq->unbound_attrs = alloc_workqueue_attrs();
4284 if (!wq->unbound_attrs)
4285 goto err_free_wq;
4286 }
4287
4288 va_start(args, max_active);
4289 vsnprintf(wq->name, sizeof(wq->name), fmt, args);
4290 va_end(args);
4291
4292 max_active = max_active ?: WQ_DFL_ACTIVE;
4293 max_active = wq_clamp_max_active(max_active, flags, wq->name);
4294
4295 /* init wq */
4296 wq->flags = flags;
4297 wq->saved_max_active = max_active;
4298 mutex_init(&wq->mutex);
4299 atomic_set(&wq->nr_pwqs_to_flush, 0);
4300 INIT_LIST_HEAD(&wq->pwqs);
4301 INIT_LIST_HEAD(&wq->flusher_queue);
4302 INIT_LIST_HEAD(&wq->flusher_overflow);
4303 INIT_LIST_HEAD(&wq->maydays);
4304
4305 wq_init_lockdep(wq);
4306 INIT_LIST_HEAD(&wq->list);
4307
4308 if (alloc_and_link_pwqs(wq) < 0)
4309 goto err_unreg_lockdep;
4310
4311 if (wq_online && init_rescuer(wq) < 0)
4312 goto err_destroy;
4313
4314 if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq))
4315 goto err_destroy;
4316
4317 /*
4318 * wq_pool_mutex protects global freeze state and workqueues list.
4319 * Grab it, adjust max_active and add the new @wq to workqueues
4320 * list.
4321 */
4322 mutex_lock(&wq_pool_mutex);
4323
4324 mutex_lock(&wq->mutex);
4325 for_each_pwq(pwq, wq)
4326 pwq_adjust_max_active(pwq);
4327 mutex_unlock(&wq->mutex);
4328
4329 list_add_tail_rcu(&wq->list, &workqueues);
4330
4331 mutex_unlock(&wq_pool_mutex);
4332
4333 return wq;
4334
4335 err_unreg_lockdep:
4336 wq_unregister_lockdep(wq);
4337 wq_free_lockdep(wq);
4338 err_free_wq:
4339 free_workqueue_attrs(wq->unbound_attrs);
4340 kfree(wq);
4341 return NULL;
4342 err_destroy:
4343 destroy_workqueue(wq);
4344 return NULL;
4345 }
4346 EXPORT_SYMBOL_GPL(alloc_workqueue);
4347
4348 static bool pwq_busy(struct pool_workqueue *pwq)
4349 {
4350 int i;
4351
4352 for (i = 0; i < WORK_NR_COLORS; i++)
4353 if (pwq->nr_in_flight[i])
4354 return true;
4355
4356 if ((pwq != pwq->wq->dfl_pwq) && (pwq->refcnt > 1))
4357 return true;
4358 if (pwq->nr_active || !list_empty(&pwq->delayed_works))
4359 return true;
4360
4361 return false;
4362 }
4363
4364 /**
4365 * destroy_workqueue - safely terminate a workqueue
4366 * @wq: target workqueue
4367 *
4368 * Safely destroy a workqueue. All work currently pending will be done first.
4369 */
4370 void destroy_workqueue(struct workqueue_struct *wq)
4371 {
4372 struct pool_workqueue *pwq;
4373 int node;
4374
4375 /*
4376 * Remove it from sysfs first so that sanity check failure doesn't
4377 * lead to sysfs name conflicts.
4378 */
4379 workqueue_sysfs_unregister(wq);
4380
4381 /* drain it before proceeding with destruction */
4382 drain_workqueue(wq);
4383
4384 /* kill rescuer, if sanity checks fail, leave it w/o rescuer */
4385 if (wq->rescuer) {
4386 struct worker *rescuer = wq->rescuer;
4387
4388 /* this prevents new queueing */
4389 raw_spin_lock_irq(&wq_mayday_lock);
4390 wq->rescuer = NULL;
4391 raw_spin_unlock_irq(&wq_mayday_lock);
4392
4393 /* rescuer will empty maydays list before exiting */
4394 kthread_stop(rescuer->task);
4395 kfree(rescuer);
4396 }
4397
4398 /*
4399 * Sanity checks - grab all the locks so that we wait for all
4400 * in-flight operations which may do put_pwq().
4401 */
4402 mutex_lock(&wq_pool_mutex);
4403 mutex_lock(&wq->mutex);
4404 for_each_pwq(pwq, wq) {
4405 raw_spin_lock_irq(&pwq->pool->lock);
4406 if (WARN_ON(pwq_busy(pwq))) {
4407 pr_warn("%s: %s has the following busy pwq\n",
4408 __func__, wq->name);
4409 show_pwq(pwq);
4410 raw_spin_unlock_irq(&pwq->pool->lock);
4411 mutex_unlock(&wq->mutex);
4412 mutex_unlock(&wq_pool_mutex);
4413 show_workqueue_state();
4414 return;
4415 }
4416 raw_spin_unlock_irq(&pwq->pool->lock);
4417 }
4418 mutex_unlock(&wq->mutex);
4419
4420 /*
4421 * wq list is used to freeze wq, remove from list after
4422 * flushing is complete in case freeze races us.
4423 */
4424 list_del_rcu(&wq->list);
4425 mutex_unlock(&wq_pool_mutex);
4426
4427 if (!(wq->flags & WQ_UNBOUND)) {
4428 wq_unregister_lockdep(wq);
4429 /*
4430 * The base ref is never dropped on per-cpu pwqs. Directly
4431 * schedule RCU free.
4432 */
4433 call_rcu(&wq->rcu, rcu_free_wq);
4434 } else {
4435 /*
4436 * We're the sole accessor of @wq at this point. Directly
4437 * access numa_pwq_tbl[] and dfl_pwq to put the base refs.
4438 * @wq will be freed when the last pwq is released.
4439 */
4440 for_each_node(node) {
4441 pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
4442 RCU_INIT_POINTER(wq->numa_pwq_tbl[node], NULL);
4443 put_pwq_unlocked(pwq);
4444 }
4445
4446 /*
4447 * Put dfl_pwq. @wq may be freed any time after dfl_pwq is
4448 * put. Don't access it afterwards.
4449 */
4450 pwq = wq->dfl_pwq;
4451 wq->dfl_pwq = NULL;
4452 put_pwq_unlocked(pwq);
4453 }
4454 }
4455 EXPORT_SYMBOL_GPL(destroy_workqueue);
4456
4457 /**
4458 * workqueue_set_max_active - adjust max_active of a workqueue
4459 * @wq: target workqueue
4460 * @max_active: new max_active value.
4461 *
4462 * Set max_active of @wq to @max_active.
4463 *
4464 * CONTEXT:
4465 * Don't call from IRQ context.
4466 */
4467 void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
4468 {
4469 struct pool_workqueue *pwq;
4470
4471 /* disallow meddling with max_active for ordered workqueues */
4472 if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
4473 return;
4474
4475 max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
4476
4477 mutex_lock(&wq->mutex);
4478
4479 wq->flags &= ~__WQ_ORDERED;
4480 wq->saved_max_active = max_active;
4481
4482 for_each_pwq(pwq, wq)
4483 pwq_adjust_max_active(pwq);
4484
4485 mutex_unlock(&wq->mutex);
4486 }
4487 EXPORT_SYMBOL_GPL(workqueue_set_max_active);
4488
4489 /**
4490 * current_work - retrieve %current task's work struct
4491 *
4492 * Determine if %current task is a workqueue worker and what it's working on.
4493 * Useful to find out the context that the %current task is running in.
4494 *
4495 * Return: work struct if %current task is a workqueue worker, %NULL otherwise.
4496 */
4497 struct work_struct *current_work(void)
4498 {
4499 struct worker *worker = current_wq_worker();
4500
4501 return worker ? worker->current_work : NULL;
4502 }
4503 EXPORT_SYMBOL(current_work);
4504
4505 /**
4506 * current_is_workqueue_rescuer - is %current workqueue rescuer?
4507 *
4508 * Determine whether %current is a workqueue rescuer. Can be used from
4509 * work functions to determine whether it's being run off the rescuer task.
4510 *
4511 * Return: %true if %current is a workqueue rescuer. %false otherwise.
4512 */
4513 bool current_is_workqueue_rescuer(void)
4514 {
4515 struct worker *worker = current_wq_worker();
4516
4517 return worker && worker->rescue_wq;
4518 }
4519
4520 /**
4521 * workqueue_congested - test whether a workqueue is congested
4522 * @cpu: CPU in question
4523 * @wq: target workqueue
4524 *
4525 * Test whether @wq's cpu workqueue for @cpu is congested. There is
4526 * no synchronization around this function and the test result is
4527 * unreliable and only useful as advisory hints or for debugging.
4528 *
4529 * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU.
4530 * Note that both per-cpu and unbound workqueues may be associated with
4531 * multiple pool_workqueues which have separate congested states. A
4532 * workqueue being congested on one CPU doesn't mean the workqueue is also
4533 * contested on other CPUs / NUMA nodes.
4534 *
4535 * Return:
4536 * %true if congested, %false otherwise.
4537 */
4538 bool workqueue_congested(int cpu, struct workqueue_struct *wq)
4539 {
4540 struct pool_workqueue *pwq;
4541 bool ret;
4542
4543 rcu_read_lock();
4544 preempt_disable();
4545
4546 if (cpu == WORK_CPU_UNBOUND)
4547 cpu = smp_processor_id();
4548
4549 if (!(wq->flags & WQ_UNBOUND))
4550 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
4551 else
4552 pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
4553
4554 ret = !list_empty(&pwq->delayed_works);
4555 preempt_enable();
4556 rcu_read_unlock();
4557
4558 return ret;
4559 }
4560 EXPORT_SYMBOL_GPL(workqueue_congested);
4561
4562 /**
4563 * work_busy - test whether a work is currently pending or running
4564 * @work: the work to be tested
4565 *
4566 * Test whether @work is currently pending or running. There is no
4567 * synchronization around this function and the test result is
4568 * unreliable and only useful as advisory hints or for debugging.
4569 *
4570 * Return:
4571 * OR'd bitmask of WORK_BUSY_* bits.
4572 */
4573 unsigned int work_busy(struct work_struct *work)
4574 {
4575 struct worker_pool *pool;
4576 unsigned long flags;
4577 unsigned int ret = 0;
4578
4579 if (work_pending(work))
4580 ret |= WORK_BUSY_PENDING;
4581
4582 rcu_read_lock();
4583 pool = get_work_pool(work);
4584 if (pool) {
4585 raw_spin_lock_irqsave(&pool->lock, flags);
4586 if (find_worker_executing_work(pool, work))
4587 ret |= WORK_BUSY_RUNNING;
4588 raw_spin_unlock_irqrestore(&pool->lock, flags);
4589 }
4590 rcu_read_unlock();
4591
4592 return ret;
4593 }
4594 EXPORT_SYMBOL_GPL(work_busy);
4595
4596 /**
4597 * set_worker_desc - set description for the current work item
4598 * @fmt: printf-style format string
4599 * @...: arguments for the format string
4600 *
4601 * This function can be called by a running work function to describe what
4602 * the work item is about. If the worker task gets dumped, this
4603 * information will be printed out together to help debugging. The
4604 * description can be at most WORKER_DESC_LEN including the trailing '\0'.
4605 */
4606 void set_worker_desc(const char *fmt, ...)
4607 {
4608 struct worker *worker = current_wq_worker();
4609 va_list args;
4610
4611 if (worker) {
4612 va_start(args, fmt);
4613 vsnprintf(worker->desc, sizeof(worker->desc), fmt, args);
4614 va_end(args);
4615 }
4616 }
4617 EXPORT_SYMBOL_GPL(set_worker_desc);
4618
4619 /**
4620 * print_worker_info - print out worker information and description
4621 * @log_lvl: the log level to use when printing
4622 * @task: target task
4623 *
4624 * If @task is a worker and currently executing a work item, print out the
4625 * name of the workqueue being serviced and worker description set with
4626 * set_worker_desc() by the currently executing work item.
4627 *
4628 * This function can be safely called on any task as long as the
4629 * task_struct itself is accessible. While safe, this function isn't
4630 * synchronized and may print out mixups or garbages of limited length.
4631 */
4632 void print_worker_info(const char *log_lvl, struct task_struct *task)
4633 {
4634 work_func_t *fn = NULL;
4635 char name[WQ_NAME_LEN] = { };
4636 char desc[WORKER_DESC_LEN] = { };
4637 struct pool_workqueue *pwq = NULL;
4638 struct workqueue_struct *wq = NULL;
4639 struct worker *worker;
4640
4641 if (!(task->flags & PF_WQ_WORKER))
4642 return;
4643
4644 /*
4645 * This function is called without any synchronization and @task
4646 * could be in any state. Be careful with dereferences.
4647 */
4648 worker = kthread_probe_data(task);
4649
4650 /*
4651 * Carefully copy the associated workqueue's workfn, name and desc.
4652 * Keep the original last '\0' in case the original is garbage.
4653 */
4654 copy_from_kernel_nofault(&fn, &worker->current_func, sizeof(fn));
4655 copy_from_kernel_nofault(&pwq, &worker->current_pwq, sizeof(pwq));
4656 copy_from_kernel_nofault(&wq, &pwq->wq, sizeof(wq));
4657 copy_from_kernel_nofault(name, wq->name, sizeof(name) - 1);
4658 copy_from_kernel_nofault(desc, worker->desc, sizeof(desc) - 1);
4659
4660 if (fn || name[0] || desc[0]) {
4661 printk("%sWorkqueue: %s %ps", log_lvl, name, fn);
4662 if (strcmp(name, desc))
4663 pr_cont(" (%s)", desc);
4664 pr_cont("\n");
4665 }
4666 }
4667
4668 static void pr_cont_pool_info(struct worker_pool *pool)
4669 {
4670 pr_cont(" cpus=%*pbl", nr_cpumask_bits, pool->attrs->cpumask);
4671 if (pool->node != NUMA_NO_NODE)
4672 pr_cont(" node=%d", pool->node);
4673 pr_cont(" flags=0x%x nice=%d", pool->flags, pool->attrs->nice);
4674 }
4675
4676 static void pr_cont_work(bool comma, struct work_struct *work)
4677 {
4678 if (work->func == wq_barrier_func) {
4679 struct wq_barrier *barr;
4680
4681 barr = container_of(work, struct wq_barrier, work);
4682
4683 pr_cont("%s BAR(%d)", comma ? "," : "",
4684 task_pid_nr(barr->task));
4685 } else {
4686 pr_cont("%s %ps", comma ? "," : "", work->func);
4687 }
4688 }
4689
4690 static void show_pwq(struct pool_workqueue *pwq)
4691 {
4692 struct worker_pool *pool = pwq->pool;
4693 struct work_struct *work;
4694 struct worker *worker;
4695 bool has_in_flight = false, has_pending = false;
4696 int bkt;
4697
4698 pr_info(" pwq %d:", pool->id);
4699 pr_cont_pool_info(pool);
4700
4701 pr_cont(" active=%d/%d refcnt=%d%s\n",
4702 pwq->nr_active, pwq->max_active, pwq->refcnt,
4703 !list_empty(&pwq->mayday_node) ? " MAYDAY" : "");
4704
4705 hash_for_each(pool->busy_hash, bkt, worker, hentry) {
4706 if (worker->current_pwq == pwq) {
4707 has_in_flight = true;
4708 break;
4709 }
4710 }
4711 if (has_in_flight) {
4712 bool comma = false;
4713
4714 pr_info(" in-flight:");
4715 hash_for_each(pool->busy_hash, bkt, worker, hentry) {
4716 if (worker->current_pwq != pwq)
4717 continue;
4718
4719 pr_cont("%s %d%s:%ps", comma ? "," : "",
4720 task_pid_nr(worker->task),
4721 worker->rescue_wq ? "(RESCUER)" : "",
4722 worker->current_func);
4723 list_for_each_entry(work, &worker->scheduled, entry)
4724 pr_cont_work(false, work);
4725 comma = true;
4726 }
4727 pr_cont("\n");
4728 }
4729
4730 list_for_each_entry(work, &pool->worklist, entry) {
4731 if (get_work_pwq(work) == pwq) {
4732 has_pending = true;
4733 break;
4734 }
4735 }
4736 if (has_pending) {
4737 bool comma = false;
4738
4739 pr_info(" pending:");
4740 list_for_each_entry(work, &pool->worklist, entry) {
4741 if (get_work_pwq(work) != pwq)
4742 continue;
4743
4744 pr_cont_work(comma, work);
4745 comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
4746 }
4747 pr_cont("\n");
4748 }
4749
4750 if (!list_empty(&pwq->delayed_works)) {
4751 bool comma = false;
4752
4753 pr_info(" delayed:");
4754 list_for_each_entry(work, &pwq->delayed_works, entry) {
4755 pr_cont_work(comma, work);
4756 comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
4757 }
4758 pr_cont("\n");
4759 }
4760 }
4761
4762 /**
4763 * show_workqueue_state - dump workqueue state
4764 *
4765 * Called from a sysrq handler or try_to_freeze_tasks() and prints out
4766 * all busy workqueues and pools.
4767 */
4768 void show_workqueue_state(void)
4769 {
4770 struct workqueue_struct *wq;
4771 struct worker_pool *pool;
4772 unsigned long flags;
4773 int pi;
4774
4775 rcu_read_lock();
4776
4777 pr_info("Showing busy workqueues and worker pools:\n");
4778
4779 list_for_each_entry_rcu(wq, &workqueues, list) {
4780 struct pool_workqueue *pwq;
4781 bool idle = true;
4782
4783 for_each_pwq(pwq, wq) {
4784 if (pwq->nr_active || !list_empty(&pwq->delayed_works)) {
4785 idle = false;
4786 break;
4787 }
4788 }
4789 if (idle)
4790 continue;
4791
4792 pr_info("workqueue %s: flags=0x%x\n", wq->name, wq->flags);
4793
4794 for_each_pwq(pwq, wq) {
4795 raw_spin_lock_irqsave(&pwq->pool->lock, flags);
4796 if (pwq->nr_active || !list_empty(&pwq->delayed_works))
4797 show_pwq(pwq);
4798 raw_spin_unlock_irqrestore(&pwq->pool->lock, flags);
4799 /*
4800 * We could be printing a lot from atomic context, e.g.
4801 * sysrq-t -> show_workqueue_state(). Avoid triggering
4802 * hard lockup.
4803 */
4804 touch_nmi_watchdog();
4805 }
4806 }
4807
4808 for_each_pool(pool, pi) {
4809 struct worker *worker;
4810 bool first = true;
4811
4812 raw_spin_lock_irqsave(&pool->lock, flags);
4813 if (pool->nr_workers == pool->nr_idle)
4814 goto next_pool;
4815
4816 pr_info("pool %d:", pool->id);
4817 pr_cont_pool_info(pool);
4818 pr_cont(" hung=%us workers=%d",
4819 jiffies_to_msecs(jiffies - pool->watchdog_ts) / 1000,
4820 pool->nr_workers);
4821 if (pool->manager)
4822 pr_cont(" manager: %d",
4823 task_pid_nr(pool->manager->task));
4824 list_for_each_entry(worker, &pool->idle_list, entry) {
4825 pr_cont(" %s%d", first ? "idle: " : "",
4826 task_pid_nr(worker->task));
4827 first = false;
4828 }
4829 pr_cont("\n");
4830 next_pool:
4831 raw_spin_unlock_irqrestore(&pool->lock, flags);
4832 /*
4833 * We could be printing a lot from atomic context, e.g.
4834 * sysrq-t -> show_workqueue_state(). Avoid triggering
4835 * hard lockup.
4836 */
4837 touch_nmi_watchdog();
4838 }
4839
4840 rcu_read_unlock();
4841 }
4842
4843 /* used to show worker information through /proc/PID/{comm,stat,status} */
4844 void wq_worker_comm(char *buf, size_t size, struct task_struct *task)
4845 {
4846 int off;
4847
4848 /* always show the actual comm */
4849 off = strscpy(buf, task->comm, size);
4850 if (off < 0)
4851 return;
4852
4853 /* stabilize PF_WQ_WORKER and worker pool association */
4854 mutex_lock(&wq_pool_attach_mutex);
4855
4856 if (task->flags & PF_WQ_WORKER) {
4857 struct worker *worker = kthread_data(task);
4858 struct worker_pool *pool = worker->pool;
4859
4860 if (pool) {
4861 raw_spin_lock_irq(&pool->lock);
4862 /*
4863 * ->desc tracks information (wq name or
4864 * set_worker_desc()) for the latest execution. If
4865 * current, prepend '+', otherwise '-'.
4866 */
4867 if (worker->desc[0] != '\0') {
4868 if (worker->current_work)
4869 scnprintf(buf + off, size - off, "+%s",
4870 worker->desc);
4871 else
4872 scnprintf(buf + off, size - off, "-%s",
4873 worker->desc);
4874 }
4875 raw_spin_unlock_irq(&pool->lock);
4876 }
4877 }
4878
4879 mutex_unlock(&wq_pool_attach_mutex);
4880 }
4881
4882 #ifdef CONFIG_SMP
4883
4884 /*
4885 * CPU hotplug.
4886 *
4887 * There are two challenges in supporting CPU hotplug. Firstly, there
4888 * are a lot of assumptions on strong associations among work, pwq and
4889 * pool which make migrating pending and scheduled works very
4890 * difficult to implement without impacting hot paths. Secondly,
4891 * worker pools serve mix of short, long and very long running works making
4892 * blocked draining impractical.
4893 *
4894 * This is solved by allowing the pools to be disassociated from the CPU
4895 * running as an unbound one and allowing it to be reattached later if the
4896 * cpu comes back online.
4897 */
4898
4899 static void unbind_workers(int cpu)
4900 {
4901 struct worker_pool *pool;
4902 struct worker *worker;
4903
4904 for_each_cpu_worker_pool(pool, cpu) {
4905 mutex_lock(&wq_pool_attach_mutex);
4906 raw_spin_lock_irq(&pool->lock);
4907
4908 /*
4909 * We've blocked all attach/detach operations. Make all workers
4910 * unbound and set DISASSOCIATED. Before this, all workers
4911 * except for the ones which are still executing works from
4912 * before the last CPU down must be on the cpu. After
4913 * this, they may become diasporas.
4914 */
4915 for_each_pool_worker(worker, pool)
4916 worker->flags |= WORKER_UNBOUND;
4917
4918 pool->flags |= POOL_DISASSOCIATED;
4919
4920 raw_spin_unlock_irq(&pool->lock);
4921
4922 for_each_pool_worker(worker, pool) {
4923 kthread_set_per_cpu(worker->task, -1);
4924 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, cpu_possible_mask) < 0);
4925 }
4926
4927 mutex_unlock(&wq_pool_attach_mutex);
4928
4929 /*
4930 * Call schedule() so that we cross rq->lock and thus can
4931 * guarantee sched callbacks see the %WORKER_UNBOUND flag.
4932 * This is necessary as scheduler callbacks may be invoked
4933 * from other cpus.
4934 */
4935 schedule();
4936
4937 /*
4938 * Sched callbacks are disabled now. Zap nr_running.
4939 * After this, nr_running stays zero and need_more_worker()
4940 * and keep_working() are always true as long as the
4941 * worklist is not empty. This pool now behaves as an
4942 * unbound (in terms of concurrency management) pool which
4943 * are served by workers tied to the pool.
4944 */
4945 atomic_set(&pool->nr_running, 0);
4946
4947 /*
4948 * With concurrency management just turned off, a busy
4949 * worker blocking could lead to lengthy stalls. Kick off
4950 * unbound chain execution of currently pending work items.
4951 */
4952 raw_spin_lock_irq(&pool->lock);
4953 wake_up_worker(pool);
4954 raw_spin_unlock_irq(&pool->lock);
4955 }
4956 }
4957
4958 /**
4959 * rebind_workers - rebind all workers of a pool to the associated CPU
4960 * @pool: pool of interest
4961 *
4962 * @pool->cpu is coming online. Rebind all workers to the CPU.
4963 */
4964 static void rebind_workers(struct worker_pool *pool)
4965 {
4966 struct worker *worker;
4967
4968 lockdep_assert_held(&wq_pool_attach_mutex);
4969
4970 /*
4971 * Restore CPU affinity of all workers. As all idle workers should
4972 * be on the run-queue of the associated CPU before any local
4973 * wake-ups for concurrency management happen, restore CPU affinity
4974 * of all workers first and then clear UNBOUND. As we're called
4975 * from CPU_ONLINE, the following shouldn't fail.
4976 */
4977 for_each_pool_worker(worker, pool) {
4978 kthread_set_per_cpu(worker->task, pool->cpu);
4979 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
4980 pool->attrs->cpumask) < 0);
4981 }
4982
4983 raw_spin_lock_irq(&pool->lock);
4984
4985 pool->flags &= ~POOL_DISASSOCIATED;
4986
4987 for_each_pool_worker(worker, pool) {
4988 unsigned int worker_flags = worker->flags;
4989
4990 /*
4991 * A bound idle worker should actually be on the runqueue
4992 * of the associated CPU for local wake-ups targeting it to
4993 * work. Kick all idle workers so that they migrate to the
4994 * associated CPU. Doing this in the same loop as
4995 * replacing UNBOUND with REBOUND is safe as no worker will
4996 * be bound before @pool->lock is released.
4997 */
4998 if (worker_flags & WORKER_IDLE)
4999 wake_up_process(worker->task);
5000
5001 /*
5002 * We want to clear UNBOUND but can't directly call
5003 * worker_clr_flags() or adjust nr_running. Atomically
5004 * replace UNBOUND with another NOT_RUNNING flag REBOUND.
5005 * @worker will clear REBOUND using worker_clr_flags() when
5006 * it initiates the next execution cycle thus restoring
5007 * concurrency management. Note that when or whether
5008 * @worker clears REBOUND doesn't affect correctness.
5009 *
5010 * WRITE_ONCE() is necessary because @worker->flags may be
5011 * tested without holding any lock in
5012 * wq_worker_running(). Without it, NOT_RUNNING test may
5013 * fail incorrectly leading to premature concurrency
5014 * management operations.
5015 */
5016 WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND));
5017 worker_flags |= WORKER_REBOUND;
5018 worker_flags &= ~WORKER_UNBOUND;
5019 WRITE_ONCE(worker->flags, worker_flags);
5020 }
5021
5022 raw_spin_unlock_irq(&pool->lock);
5023 }
5024
5025 /**
5026 * restore_unbound_workers_cpumask - restore cpumask of unbound workers
5027 * @pool: unbound pool of interest
5028 * @cpu: the CPU which is coming up
5029 *
5030 * An unbound pool may end up with a cpumask which doesn't have any online
5031 * CPUs. When a worker of such pool get scheduled, the scheduler resets
5032 * its cpus_allowed. If @cpu is in @pool's cpumask which didn't have any
5033 * online CPU before, cpus_allowed of all its workers should be restored.
5034 */
5035 static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu)
5036 {
5037 static cpumask_t cpumask;
5038 struct worker *worker;
5039
5040 lockdep_assert_held(&wq_pool_attach_mutex);
5041
5042 /* is @cpu allowed for @pool? */
5043 if (!cpumask_test_cpu(cpu, pool->attrs->cpumask))
5044 return;
5045
5046 cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask);
5047
5048 /* as we're called from CPU_ONLINE, the following shouldn't fail */
5049 for_each_pool_worker(worker, pool)
5050 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, &cpumask) < 0);
5051 }
5052
5053 int workqueue_prepare_cpu(unsigned int cpu)
5054 {
5055 struct worker_pool *pool;
5056
5057 for_each_cpu_worker_pool(pool, cpu) {
5058 if (pool->nr_workers)
5059 continue;
5060 if (!create_worker(pool))
5061 return -ENOMEM;
5062 }
5063 return 0;
5064 }
5065
5066 int workqueue_online_cpu(unsigned int cpu)
5067 {
5068 struct worker_pool *pool;
5069 struct workqueue_struct *wq;
5070 int pi;
5071
5072 mutex_lock(&wq_pool_mutex);
5073
5074 for_each_pool(pool, pi) {
5075 mutex_lock(&wq_pool_attach_mutex);
5076
5077 if (pool->cpu == cpu)
5078 rebind_workers(pool);
5079 else if (pool->cpu < 0)
5080 restore_unbound_workers_cpumask(pool, cpu);
5081
5082 mutex_unlock(&wq_pool_attach_mutex);
5083 }
5084
5085 /* update NUMA affinity of unbound workqueues */
5086 list_for_each_entry(wq, &workqueues, list)
5087 wq_update_unbound_numa(wq, cpu, true);
5088
5089 mutex_unlock(&wq_pool_mutex);
5090 return 0;
5091 }
5092
5093 int workqueue_offline_cpu(unsigned int cpu)
5094 {
5095 struct workqueue_struct *wq;
5096
5097 /* unbinding per-cpu workers should happen on the local CPU */
5098 if (WARN_ON(cpu != smp_processor_id()))
5099 return -1;
5100
5101 unbind_workers(cpu);
5102
5103 /* update NUMA affinity of unbound workqueues */
5104 mutex_lock(&wq_pool_mutex);
5105 list_for_each_entry(wq, &workqueues, list)
5106 wq_update_unbound_numa(wq, cpu, false);
5107 mutex_unlock(&wq_pool_mutex);
5108
5109 return 0;
5110 }
5111
5112 struct work_for_cpu {
5113 struct work_struct work;
5114 long (*fn)(void *);
5115 void *arg;
5116 long ret;
5117 };
5118
5119 static void work_for_cpu_fn(struct work_struct *work)
5120 {
5121 struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);
5122
5123 wfc->ret = wfc->fn(wfc->arg);
5124 }
5125
5126 /**
5127 * work_on_cpu - run a function in thread context on a particular cpu
5128 * @cpu: the cpu to run on
5129 * @fn: the function to run
5130 * @arg: the function arg
5131 *
5132 * It is up to the caller to ensure that the cpu doesn't go offline.
5133 * The caller must not hold any locks which would prevent @fn from completing.
5134 *
5135 * Return: The value @fn returns.
5136 */
5137 long work_on_cpu(int cpu, long (*fn)(void *), void *arg)
5138 {
5139 struct work_for_cpu wfc = { .fn = fn, .arg = arg };
5140
5141 INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn);
5142 schedule_work_on(cpu, &wfc.work);
5143 flush_work(&wfc.work);
5144 destroy_work_on_stack(&wfc.work);
5145 return wfc.ret;
5146 }
5147 EXPORT_SYMBOL_GPL(work_on_cpu);
5148
5149 /**
5150 * work_on_cpu_safe - run a function in thread context on a particular cpu
5151 * @cpu: the cpu to run on
5152 * @fn: the function to run
5153 * @arg: the function argument
5154 *
5155 * Disables CPU hotplug and calls work_on_cpu(). The caller must not hold
5156 * any locks which would prevent @fn from completing.
5157 *
5158 * Return: The value @fn returns.
5159 */
5160 long work_on_cpu_safe(int cpu, long (*fn)(void *), void *arg)
5161 {
5162 long ret = -ENODEV;
5163
5164 get_online_cpus();
5165 if (cpu_online(cpu))
5166 ret = work_on_cpu(cpu, fn, arg);
5167 put_online_cpus();
5168 return ret;
5169 }
5170 EXPORT_SYMBOL_GPL(work_on_cpu_safe);
5171 #endif /* CONFIG_SMP */
5172
5173 #ifdef CONFIG_FREEZER
5174
5175 /**
5176 * freeze_workqueues_begin - begin freezing workqueues
5177 *
5178 * Start freezing workqueues. After this function returns, all freezable
5179 * workqueues will queue new works to their delayed_works list instead of
5180 * pool->worklist.
5181 *
5182 * CONTEXT:
5183 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
5184 */
5185 void freeze_workqueues_begin(void)
5186 {
5187 struct workqueue_struct *wq;
5188 struct pool_workqueue *pwq;
5189
5190 mutex_lock(&wq_pool_mutex);
5191
5192 WARN_ON_ONCE(workqueue_freezing);
5193 workqueue_freezing = true;
5194
5195 list_for_each_entry(wq, &workqueues, list) {
5196 mutex_lock(&wq->mutex);
5197 for_each_pwq(pwq, wq)
5198 pwq_adjust_max_active(pwq);
5199 mutex_unlock(&wq->mutex);
5200 }
5201
5202 mutex_unlock(&wq_pool_mutex);
5203 }
5204
5205 /**
5206 * freeze_workqueues_busy - are freezable workqueues still busy?
5207 *
5208 * Check whether freezing is complete. This function must be called
5209 * between freeze_workqueues_begin() and thaw_workqueues().
5210 *
5211 * CONTEXT:
5212 * Grabs and releases wq_pool_mutex.
5213 *
5214 * Return:
5215 * %true if some freezable workqueues are still busy. %false if freezing
5216 * is complete.
5217 */
5218 bool freeze_workqueues_busy(void)
5219 {
5220 bool busy = false;
5221 struct workqueue_struct *wq;
5222 struct pool_workqueue *pwq;
5223
5224 mutex_lock(&wq_pool_mutex);
5225
5226 WARN_ON_ONCE(!workqueue_freezing);
5227
5228 list_for_each_entry(wq, &workqueues, list) {
5229 if (!(wq->flags & WQ_FREEZABLE))
5230 continue;
5231 /*
5232 * nr_active is monotonically decreasing. It's safe
5233 * to peek without lock.
5234 */
5235 rcu_read_lock();
5236 for_each_pwq(pwq, wq) {
5237 WARN_ON_ONCE(pwq->nr_active < 0);
5238 if (pwq->nr_active) {
5239 busy = true;
5240 rcu_read_unlock();
5241 goto out_unlock;
5242 }
5243 }
5244 rcu_read_unlock();
5245 }
5246 out_unlock:
5247 mutex_unlock(&wq_pool_mutex);
5248 return busy;
5249 }
5250
5251 /**
5252 * thaw_workqueues - thaw workqueues
5253 *
5254 * Thaw workqueues. Normal queueing is restored and all collected
5255 * frozen works are transferred to their respective pool worklists.
5256 *
5257 * CONTEXT:
5258 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
5259 */
5260 void thaw_workqueues(void)
5261 {
5262 struct workqueue_struct *wq;
5263 struct pool_workqueue *pwq;
5264
5265 mutex_lock(&wq_pool_mutex);
5266
5267 if (!workqueue_freezing)
5268 goto out_unlock;
5269
5270 workqueue_freezing = false;
5271
5272 /* restore max_active and repopulate worklist */
5273 list_for_each_entry(wq, &workqueues, list) {
5274 mutex_lock(&wq->mutex);
5275 for_each_pwq(pwq, wq)
5276 pwq_adjust_max_active(pwq);
5277 mutex_unlock(&wq->mutex);
5278 }
5279
5280 out_unlock:
5281 mutex_unlock(&wq_pool_mutex);
5282 }
5283 #endif /* CONFIG_FREEZER */
5284
5285 static int workqueue_apply_unbound_cpumask(void)
5286 {
5287 LIST_HEAD(ctxs);
5288 int ret = 0;
5289 struct workqueue_struct *wq;
5290 struct apply_wqattrs_ctx *ctx, *n;
5291
5292 lockdep_assert_held(&wq_pool_mutex);
5293
5294 list_for_each_entry(wq, &workqueues, list) {
5295 if (!(wq->flags & WQ_UNBOUND))
5296 continue;
5297 /* creating multiple pwqs breaks ordering guarantee */
5298 if (wq->flags & __WQ_ORDERED)
5299 continue;
5300
5301 ctx = apply_wqattrs_prepare(wq, wq->unbound_attrs);
5302 if (!ctx) {
5303 ret = -ENOMEM;
5304 break;
5305 }
5306
5307 list_add_tail(&ctx->list, &ctxs);
5308 }
5309
5310 list_for_each_entry_safe(ctx, n, &ctxs, list) {
5311 if (!ret)
5312 apply_wqattrs_commit(ctx);
5313 apply_wqattrs_cleanup(ctx);
5314 }
5315
5316 return ret;
5317 }
5318
5319 /**
5320 * workqueue_set_unbound_cpumask - Set the low-level unbound cpumask
5321 * @cpumask: the cpumask to set
5322 *
5323 * The low-level workqueues cpumask is a global cpumask that limits
5324 * the affinity of all unbound workqueues. This function check the @cpumask
5325 * and apply it to all unbound workqueues and updates all pwqs of them.
5326 *
5327 * Retun: 0 - Success
5328 * -EINVAL - Invalid @cpumask
5329 * -ENOMEM - Failed to allocate memory for attrs or pwqs.
5330 */
5331 int workqueue_set_unbound_cpumask(cpumask_var_t cpumask)
5332 {
5333 int ret = -EINVAL;
5334 cpumask_var_t saved_cpumask;
5335
5336 if (!zalloc_cpumask_var(&saved_cpumask, GFP_KERNEL))
5337 return -ENOMEM;
5338
5339 /*
5340 * Not excluding isolated cpus on purpose.
5341 * If the user wishes to include them, we allow that.
5342 */
5343 cpumask_and(cpumask, cpumask, cpu_possible_mask);
5344 if (!cpumask_empty(cpumask)) {
5345 apply_wqattrs_lock();
5346
5347 /* save the old wq_unbound_cpumask. */
5348 cpumask_copy(saved_cpumask, wq_unbound_cpumask);
5349
5350 /* update wq_unbound_cpumask at first and apply it to wqs. */
5351 cpumask_copy(wq_unbound_cpumask, cpumask);
5352 ret = workqueue_apply_unbound_cpumask();
5353
5354 /* restore the wq_unbound_cpumask when failed. */
5355 if (ret < 0)
5356 cpumask_copy(wq_unbound_cpumask, saved_cpumask);
5357
5358 apply_wqattrs_unlock();
5359 }
5360
5361 free_cpumask_var(saved_cpumask);
5362 return ret;
5363 }
5364
5365 #ifdef CONFIG_SYSFS
5366 /*
5367 * Workqueues with WQ_SYSFS flag set is visible to userland via
5368 * /sys/bus/workqueue/devices/WQ_NAME. All visible workqueues have the
5369 * following attributes.
5370 *
5371 * per_cpu RO bool : whether the workqueue is per-cpu or unbound
5372 * max_active RW int : maximum number of in-flight work items
5373 *
5374 * Unbound workqueues have the following extra attributes.
5375 *
5376 * pool_ids RO int : the associated pool IDs for each node
5377 * nice RW int : nice value of the workers
5378 * cpumask RW mask : bitmask of allowed CPUs for the workers
5379 * numa RW bool : whether enable NUMA affinity
5380 */
5381 struct wq_device {
5382 struct workqueue_struct *wq;
5383 struct device dev;
5384 };
5385
5386 static struct workqueue_struct *dev_to_wq(struct device *dev)
5387 {
5388 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
5389
5390 return wq_dev->wq;
5391 }
5392
5393 static ssize_t per_cpu_show(struct device *dev, struct device_attribute *attr,
5394 char *buf)
5395 {
5396 struct workqueue_struct *wq = dev_to_wq(dev);
5397
5398 return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND));
5399 }
5400 static DEVICE_ATTR_RO(per_cpu);
5401
5402 static ssize_t max_active_show(struct device *dev,
5403 struct device_attribute *attr, char *buf)
5404 {
5405 struct workqueue_struct *wq = dev_to_wq(dev);
5406
5407 return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active);
5408 }
5409
5410 static ssize_t max_active_store(struct device *dev,
5411 struct device_attribute *attr, const char *buf,
5412 size_t count)
5413 {
5414 struct workqueue_struct *wq = dev_to_wq(dev);
5415 int val;
5416
5417 if (sscanf(buf, "%d", &val) != 1 || val <= 0)
5418 return -EINVAL;
5419
5420 workqueue_set_max_active(wq, val);
5421 return count;
5422 }
5423 static DEVICE_ATTR_RW(max_active);
5424
5425 static struct attribute *wq_sysfs_attrs[] = {
5426 &dev_attr_per_cpu.attr,
5427 &dev_attr_max_active.attr,
5428 NULL,
5429 };
5430 ATTRIBUTE_GROUPS(wq_sysfs);
5431
5432 static ssize_t wq_pool_ids_show(struct device *dev,
5433 struct device_attribute *attr, char *buf)
5434 {
5435 struct workqueue_struct *wq = dev_to_wq(dev);
5436 const char *delim = "";
5437 int node, written = 0;
5438
5439 get_online_cpus();
5440 rcu_read_lock();
5441 for_each_node(node) {
5442 written += scnprintf(buf + written, PAGE_SIZE - written,
5443 "%s%d:%d", delim, node,
5444 unbound_pwq_by_node(wq, node)->pool->id);
5445 delim = " ";
5446 }
5447 written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
5448 rcu_read_unlock();
5449 put_online_cpus();
5450
5451 return written;
5452 }
5453
5454 static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr,
5455 char *buf)
5456 {
5457 struct workqueue_struct *wq = dev_to_wq(dev);
5458 int written;
5459
5460 mutex_lock(&wq->mutex);
5461 written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice);
5462 mutex_unlock(&wq->mutex);
5463
5464 return written;
5465 }
5466
5467 /* prepare workqueue_attrs for sysfs store operations */
5468 static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq)
5469 {
5470 struct workqueue_attrs *attrs;
5471
5472 lockdep_assert_held(&wq_pool_mutex);
5473
5474 attrs = alloc_workqueue_attrs();
5475 if (!attrs)
5476 return NULL;
5477
5478 copy_workqueue_attrs(attrs, wq->unbound_attrs);
5479 return attrs;
5480 }
5481
5482 static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr,
5483 const char *buf, size_t count)
5484 {
5485 struct workqueue_struct *wq = dev_to_wq(dev);
5486 struct workqueue_attrs *attrs;
5487 int ret = -ENOMEM;
5488
5489 apply_wqattrs_lock();
5490
5491 attrs = wq_sysfs_prep_attrs(wq);
5492 if (!attrs)
5493 goto out_unlock;
5494
5495 if (sscanf(buf, "%d", &attrs->nice) == 1 &&
5496 attrs->nice >= MIN_NICE && attrs->nice <= MAX_NICE)
5497 ret = apply_workqueue_attrs_locked(wq, attrs);
5498 else
5499 ret = -EINVAL;
5500
5501 out_unlock:
5502 apply_wqattrs_unlock();
5503 free_workqueue_attrs(attrs);
5504 return ret ?: count;
5505 }
5506
5507 static ssize_t wq_cpumask_show(struct device *dev,
5508 struct device_attribute *attr, char *buf)
5509 {
5510 struct workqueue_struct *wq = dev_to_wq(dev);
5511 int written;
5512
5513 mutex_lock(&wq->mutex);
5514 written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
5515 cpumask_pr_args(wq->unbound_attrs->cpumask));
5516 mutex_unlock(&wq->mutex);
5517 return written;
5518 }
5519
5520 static ssize_t wq_cpumask_store(struct device *dev,
5521 struct device_attribute *attr,
5522 const char *buf, size_t count)
5523 {
5524 struct workqueue_struct *wq = dev_to_wq(dev);
5525 struct workqueue_attrs *attrs;
5526 int ret = -ENOMEM;
5527
5528 apply_wqattrs_lock();
5529
5530 attrs = wq_sysfs_prep_attrs(wq);
5531 if (!attrs)
5532 goto out_unlock;
5533
5534 ret = cpumask_parse(buf, attrs->cpumask);
5535 if (!ret)
5536 ret = apply_workqueue_attrs_locked(wq, attrs);
5537
5538 out_unlock:
5539 apply_wqattrs_unlock();
5540 free_workqueue_attrs(attrs);
5541 return ret ?: count;
5542 }
5543
5544 static ssize_t wq_numa_show(struct device *dev, struct device_attribute *attr,
5545 char *buf)
5546 {
5547 struct workqueue_struct *wq = dev_to_wq(dev);
5548 int written;
5549
5550 mutex_lock(&wq->mutex);
5551 written = scnprintf(buf, PAGE_SIZE, "%d\n",
5552 !wq->unbound_attrs->no_numa);
5553 mutex_unlock(&wq->mutex);
5554
5555 return written;
5556 }
5557
5558 static ssize_t wq_numa_store(struct device *dev, struct device_attribute *attr,
5559 const char *buf, size_t count)
5560 {
5561 struct workqueue_struct *wq = dev_to_wq(dev);
5562 struct workqueue_attrs *attrs;
5563 int v, ret = -ENOMEM;
5564
5565 apply_wqattrs_lock();
5566
5567 attrs = wq_sysfs_prep_attrs(wq);
5568 if (!attrs)
5569 goto out_unlock;
5570
5571 ret = -EINVAL;
5572 if (sscanf(buf, "%d", &v) == 1) {
5573 attrs->no_numa = !v;
5574 ret = apply_workqueue_attrs_locked(wq, attrs);
5575 }
5576
5577 out_unlock:
5578 apply_wqattrs_unlock();
5579 free_workqueue_attrs(attrs);
5580 return ret ?: count;
5581 }
5582
5583 static struct device_attribute wq_sysfs_unbound_attrs[] = {
5584 __ATTR(pool_ids, 0444, wq_pool_ids_show, NULL),
5585 __ATTR(nice, 0644, wq_nice_show, wq_nice_store),
5586 __ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store),
5587 __ATTR(numa, 0644, wq_numa_show, wq_numa_store),
5588 __ATTR_NULL,
5589 };
5590
5591 static struct bus_type wq_subsys = {
5592 .name = "workqueue",
5593 .dev_groups = wq_sysfs_groups,
5594 };
5595
5596 static ssize_t wq_unbound_cpumask_show(struct device *dev,
5597 struct device_attribute *attr, char *buf)
5598 {
5599 int written;
5600
5601 mutex_lock(&wq_pool_mutex);
5602 written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
5603 cpumask_pr_args(wq_unbound_cpumask));
5604 mutex_unlock(&wq_pool_mutex);
5605
5606 return written;
5607 }
5608
5609 static ssize_t wq_unbound_cpumask_store(struct device *dev,
5610 struct device_attribute *attr, const char *buf, size_t count)
5611 {
5612 cpumask_var_t cpumask;
5613 int ret;
5614
5615 if (!zalloc_cpumask_var(&cpumask, GFP_KERNEL))
5616 return -ENOMEM;
5617
5618 ret = cpumask_parse(buf, cpumask);
5619 if (!ret)
5620 ret = workqueue_set_unbound_cpumask(cpumask);
5621
5622 free_cpumask_var(cpumask);
5623 return ret ? ret : count;
5624 }
5625
5626 static struct device_attribute wq_sysfs_cpumask_attr =
5627 __ATTR(cpumask, 0644, wq_unbound_cpumask_show,
5628 wq_unbound_cpumask_store);
5629
5630 static int __init wq_sysfs_init(void)
5631 {
5632 int err;
5633
5634 err = subsys_virtual_register(&wq_subsys, NULL);
5635 if (err)
5636 return err;
5637
5638 return device_create_file(wq_subsys.dev_root, &wq_sysfs_cpumask_attr);
5639 }
5640 core_initcall(wq_sysfs_init);
5641
5642 static void wq_device_release(struct device *dev)
5643 {
5644 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
5645
5646 kfree(wq_dev);
5647 }
5648
5649 /**
5650 * workqueue_sysfs_register - make a workqueue visible in sysfs
5651 * @wq: the workqueue to register
5652 *
5653 * Expose @wq in sysfs under /sys/bus/workqueue/devices.
5654 * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set
5655 * which is the preferred method.
5656 *
5657 * Workqueue user should use this function directly iff it wants to apply
5658 * workqueue_attrs before making the workqueue visible in sysfs; otherwise,
5659 * apply_workqueue_attrs() may race against userland updating the
5660 * attributes.
5661 *
5662 * Return: 0 on success, -errno on failure.
5663 */
5664 int workqueue_sysfs_register(struct workqueue_struct *wq)
5665 {
5666 struct wq_device *wq_dev;
5667 int ret;
5668
5669 /*
5670 * Adjusting max_active or creating new pwqs by applying
5671 * attributes breaks ordering guarantee. Disallow exposing ordered
5672 * workqueues.
5673 */
5674 if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
5675 return -EINVAL;
5676
5677 wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL);
5678 if (!wq_dev)
5679 return -ENOMEM;
5680
5681 wq_dev->wq = wq;
5682 wq_dev->dev.bus = &wq_subsys;
5683 wq_dev->dev.release = wq_device_release;
5684 dev_set_name(&wq_dev->dev, "%s", wq->name);
5685
5686 /*
5687 * unbound_attrs are created separately. Suppress uevent until
5688 * everything is ready.
5689 */
5690 dev_set_uevent_suppress(&wq_dev->dev, true);
5691
5692 ret = device_register(&wq_dev->dev);
5693 if (ret) {
5694 put_device(&wq_dev->dev);
5695 wq->wq_dev = NULL;
5696 return ret;
5697 }
5698
5699 if (wq->flags & WQ_UNBOUND) {
5700 struct device_attribute *attr;
5701
5702 for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) {
5703 ret = device_create_file(&wq_dev->dev, attr);
5704 if (ret) {
5705 device_unregister(&wq_dev->dev);
5706 wq->wq_dev = NULL;
5707 return ret;
5708 }
5709 }
5710 }
5711
5712 dev_set_uevent_suppress(&wq_dev->dev, false);
5713 kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD);
5714 return 0;
5715 }
5716
5717 /**
5718 * workqueue_sysfs_unregister - undo workqueue_sysfs_register()
5719 * @wq: the workqueue to unregister
5720 *
5721 * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister.
5722 */
5723 static void workqueue_sysfs_unregister(struct workqueue_struct *wq)
5724 {
5725 struct wq_device *wq_dev = wq->wq_dev;
5726
5727 if (!wq->wq_dev)
5728 return;
5729
5730 wq->wq_dev = NULL;
5731 device_unregister(&wq_dev->dev);
5732 }
5733 #else /* CONFIG_SYSFS */
5734 static void workqueue_sysfs_unregister(struct workqueue_struct *wq) { }
5735 #endif /* CONFIG_SYSFS */
5736
5737 /*
5738 * Workqueue watchdog.
5739 *
5740 * Stall may be caused by various bugs - missing WQ_MEM_RECLAIM, illegal
5741 * flush dependency, a concurrency managed work item which stays RUNNING
5742 * indefinitely. Workqueue stalls can be very difficult to debug as the
5743 * usual warning mechanisms don't trigger and internal workqueue state is
5744 * largely opaque.
5745 *
5746 * Workqueue watchdog monitors all worker pools periodically and dumps
5747 * state if some pools failed to make forward progress for a while where
5748 * forward progress is defined as the first item on ->worklist changing.
5749 *
5750 * This mechanism is controlled through the kernel parameter
5751 * "workqueue.watchdog_thresh" which can be updated at runtime through the
5752 * corresponding sysfs parameter file.
5753 */
5754 #ifdef CONFIG_WQ_WATCHDOG
5755
5756 static unsigned long wq_watchdog_thresh = 30;
5757 static struct timer_list wq_watchdog_timer;
5758
5759 static unsigned long wq_watchdog_touched = INITIAL_JIFFIES;
5760 static DEFINE_PER_CPU(unsigned long, wq_watchdog_touched_cpu) = INITIAL_JIFFIES;
5761
5762 static void wq_watchdog_reset_touched(void)
5763 {
5764 int cpu;
5765
5766 wq_watchdog_touched = jiffies;
5767 for_each_possible_cpu(cpu)
5768 per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
5769 }
5770
5771 static void wq_watchdog_timer_fn(struct timer_list *unused)
5772 {
5773 unsigned long thresh = READ_ONCE(wq_watchdog_thresh) * HZ;
5774 bool lockup_detected = false;
5775 struct worker_pool *pool;
5776 int pi;
5777
5778 if (!thresh)
5779 return;
5780
5781 rcu_read_lock();
5782
5783 for_each_pool(pool, pi) {
5784 unsigned long pool_ts, touched, ts;
5785
5786 if (list_empty(&pool->worklist))
5787 continue;
5788
5789 /* get the latest of pool and touched timestamps */
5790 pool_ts = READ_ONCE(pool->watchdog_ts);
5791 touched = READ_ONCE(wq_watchdog_touched);
5792
5793 if (time_after(pool_ts, touched))
5794 ts = pool_ts;
5795 else
5796 ts = touched;
5797
5798 if (pool->cpu >= 0) {
5799 unsigned long cpu_touched =
5800 READ_ONCE(per_cpu(wq_watchdog_touched_cpu,
5801 pool->cpu));
5802 if (time_after(cpu_touched, ts))
5803 ts = cpu_touched;
5804 }
5805
5806 /* did we stall? */
5807 if (time_after(jiffies, ts + thresh)) {
5808 lockup_detected = true;
5809 pr_emerg("BUG: workqueue lockup - pool");
5810 pr_cont_pool_info(pool);
5811 pr_cont(" stuck for %us!\n",
5812 jiffies_to_msecs(jiffies - pool_ts) / 1000);
5813 }
5814 }
5815
5816 rcu_read_unlock();
5817
5818 if (lockup_detected)
5819 show_workqueue_state();
5820
5821 wq_watchdog_reset_touched();
5822 mod_timer(&wq_watchdog_timer, jiffies + thresh);
5823 }
5824
5825 notrace void wq_watchdog_touch(int cpu)
5826 {
5827 if (cpu >= 0)
5828 per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
5829 else
5830 wq_watchdog_touched = jiffies;
5831 }
5832
5833 static void wq_watchdog_set_thresh(unsigned long thresh)
5834 {
5835 wq_watchdog_thresh = 0;
5836 del_timer_sync(&wq_watchdog_timer);
5837
5838 if (thresh) {
5839 wq_watchdog_thresh = thresh;
5840 wq_watchdog_reset_touched();
5841 mod_timer(&wq_watchdog_timer, jiffies + thresh * HZ);
5842 }
5843 }
5844
5845 static int wq_watchdog_param_set_thresh(const char *val,
5846 const struct kernel_param *kp)
5847 {
5848 unsigned long thresh;
5849 int ret;
5850
5851 ret = kstrtoul(val, 0, &thresh);
5852 if (ret)
5853 return ret;
5854
5855 if (system_wq)
5856 wq_watchdog_set_thresh(thresh);
5857 else
5858 wq_watchdog_thresh = thresh;
5859
5860 return 0;
5861 }
5862
5863 static const struct kernel_param_ops wq_watchdog_thresh_ops = {
5864 .set = wq_watchdog_param_set_thresh,
5865 .get = param_get_ulong,
5866 };
5867
5868 module_param_cb(watchdog_thresh, &wq_watchdog_thresh_ops, &wq_watchdog_thresh,
5869 0644);
5870
5871 static void wq_watchdog_init(void)
5872 {
5873 timer_setup(&wq_watchdog_timer, wq_watchdog_timer_fn, TIMER_DEFERRABLE);
5874 wq_watchdog_set_thresh(wq_watchdog_thresh);
5875 }
5876
5877 #else /* CONFIG_WQ_WATCHDOG */
5878
5879 static inline void wq_watchdog_init(void) { }
5880
5881 #endif /* CONFIG_WQ_WATCHDOG */
5882
5883 static void __init wq_numa_init(void)
5884 {
5885 cpumask_var_t *tbl;
5886 int node, cpu;
5887
5888 if (num_possible_nodes() <= 1)
5889 return;
5890
5891 if (wq_disable_numa) {
5892 pr_info("workqueue: NUMA affinity support disabled\n");
5893 return;
5894 }
5895
5896 wq_update_unbound_numa_attrs_buf = alloc_workqueue_attrs();
5897 BUG_ON(!wq_update_unbound_numa_attrs_buf);
5898
5899 /*
5900 * We want masks of possible CPUs of each node which isn't readily
5901 * available. Build one from cpu_to_node() which should have been
5902 * fully initialized by now.
5903 */
5904 tbl = kcalloc(nr_node_ids, sizeof(tbl[0]), GFP_KERNEL);
5905 BUG_ON(!tbl);
5906
5907 for_each_node(node)
5908 BUG_ON(!zalloc_cpumask_var_node(&tbl[node], GFP_KERNEL,
5909 node_online(node) ? node : NUMA_NO_NODE));
5910
5911 for_each_possible_cpu(cpu) {
5912 node = cpu_to_node(cpu);
5913 if (WARN_ON(node == NUMA_NO_NODE)) {
5914 pr_warn("workqueue: NUMA node mapping not available for cpu%d, disabling NUMA support\n", cpu);
5915 /* happens iff arch is bonkers, let's just proceed */
5916 return;
5917 }
5918 cpumask_set_cpu(cpu, tbl[node]);
5919 }
5920
5921 wq_numa_possible_cpumask = tbl;
5922 wq_numa_enabled = true;
5923 }
5924
5925 /**
5926 * workqueue_init_early - early init for workqueue subsystem
5927 *
5928 * This is the first half of two-staged workqueue subsystem initialization
5929 * and invoked as soon as the bare basics - memory allocation, cpumasks and
5930 * idr are up. It sets up all the data structures and system workqueues
5931 * and allows early boot code to create workqueues and queue/cancel work
5932 * items. Actual work item execution starts only after kthreads can be
5933 * created and scheduled right before early initcalls.
5934 */
5935 void __init workqueue_init_early(void)
5936 {
5937 int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL };
5938 int hk_flags = HK_FLAG_DOMAIN | HK_FLAG_WQ;
5939 int i, cpu;
5940
5941 BUILD_BUG_ON(__alignof__(struct pool_workqueue) < __alignof__(long long));
5942
5943 BUG_ON(!alloc_cpumask_var(&wq_unbound_cpumask, GFP_KERNEL));
5944 cpumask_copy(wq_unbound_cpumask, housekeeping_cpumask(hk_flags));
5945
5946 pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC);
5947
5948 /* initialize CPU pools */
5949 for_each_possible_cpu(cpu) {
5950 struct worker_pool *pool;
5951
5952 i = 0;
5953 for_each_cpu_worker_pool(pool, cpu) {
5954 BUG_ON(init_worker_pool(pool));
5955 pool->cpu = cpu;
5956 cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu));
5957 pool->attrs->nice = std_nice[i++];
5958 pool->node = cpu_to_node(cpu);
5959
5960 /* alloc pool ID */
5961 mutex_lock(&wq_pool_mutex);
5962 BUG_ON(worker_pool_assign_id(pool));
5963 mutex_unlock(&wq_pool_mutex);
5964 }
5965 }
5966
5967 /* create default unbound and ordered wq attrs */
5968 for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
5969 struct workqueue_attrs *attrs;
5970
5971 BUG_ON(!(attrs = alloc_workqueue_attrs()));
5972 attrs->nice = std_nice[i];
5973 unbound_std_wq_attrs[i] = attrs;
5974
5975 /*
5976 * An ordered wq should have only one pwq as ordering is
5977 * guaranteed by max_active which is enforced by pwqs.
5978 * Turn off NUMA so that dfl_pwq is used for all nodes.
5979 */
5980 BUG_ON(!(attrs = alloc_workqueue_attrs()));
5981 attrs->nice = std_nice[i];
5982 attrs->no_numa = true;
5983 ordered_wq_attrs[i] = attrs;
5984 }
5985
5986 system_wq = alloc_workqueue("events", 0, 0);
5987 system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
5988 system_long_wq = alloc_workqueue("events_long", 0, 0);
5989 system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
5990 WQ_UNBOUND_MAX_ACTIVE);
5991 system_freezable_wq = alloc_workqueue("events_freezable",
5992 WQ_FREEZABLE, 0);
5993 system_power_efficient_wq = alloc_workqueue("events_power_efficient",
5994 WQ_POWER_EFFICIENT, 0);
5995 system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_power_efficient",
5996 WQ_FREEZABLE | WQ_POWER_EFFICIENT,
5997 0);
5998 BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
5999 !system_unbound_wq || !system_freezable_wq ||
6000 !system_power_efficient_wq ||
6001 !system_freezable_power_efficient_wq);
6002 }
6003
6004 /**
6005 * workqueue_init - bring workqueue subsystem fully online
6006 *
6007 * This is the latter half of two-staged workqueue subsystem initialization
6008 * and invoked as soon as kthreads can be created and scheduled.
6009 * Workqueues have been created and work items queued on them, but there
6010 * are no kworkers executing the work items yet. Populate the worker pools
6011 * with the initial workers and enable future kworker creations.
6012 */
6013 void __init workqueue_init(void)
6014 {
6015 struct workqueue_struct *wq;
6016 struct worker_pool *pool;
6017 int cpu, bkt;
6018
6019 /*
6020 * It'd be simpler to initialize NUMA in workqueue_init_early() but
6021 * CPU to node mapping may not be available that early on some
6022 * archs such as power and arm64. As per-cpu pools created
6023 * previously could be missing node hint and unbound pools NUMA
6024 * affinity, fix them up.
6025 *
6026 * Also, while iterating workqueues, create rescuers if requested.
6027 */
6028 wq_numa_init();
6029
6030 mutex_lock(&wq_pool_mutex);
6031
6032 for_each_possible_cpu(cpu) {
6033 for_each_cpu_worker_pool(pool, cpu) {
6034 pool->node = cpu_to_node(cpu);
6035 }
6036 }
6037
6038 list_for_each_entry(wq, &workqueues, list) {
6039 wq_update_unbound_numa(wq, smp_processor_id(), true);
6040 WARN(init_rescuer(wq),
6041 "workqueue: failed to create early rescuer for %s",
6042 wq->name);
6043 }
6044
6045 mutex_unlock(&wq_pool_mutex);
6046
6047 /* create the initial workers */
6048 for_each_online_cpu(cpu) {
6049 for_each_cpu_worker_pool(pool, cpu) {
6050 pool->flags &= ~POOL_DISASSOCIATED;
6051 BUG_ON(!create_worker(pool));
6052 }
6053 }
6054
6055 hash_for_each(unbound_pool_hash, bkt, pool, hash_node)
6056 BUG_ON(!create_worker(pool));
6057
6058 wq_online = true;
6059 wq_watchdog_init();
6060 }