]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - kernel/workqueue.c
regulator: st-pwm: Convert to get_voltage_sel
[mirror_ubuntu-artful-kernel.git] / kernel / workqueue.c
1 /*
2 * kernel/workqueue.c - generic async execution with shared worker pool
3 *
4 * Copyright (C) 2002 Ingo Molnar
5 *
6 * Derived from the taskqueue/keventd code by:
7 * David Woodhouse <dwmw2@infradead.org>
8 * Andrew Morton
9 * Kai Petzke <wpp@marie.physik.tu-berlin.de>
10 * Theodore Ts'o <tytso@mit.edu>
11 *
12 * Made to use alloc_percpu by Christoph Lameter.
13 *
14 * Copyright (C) 2010 SUSE Linux Products GmbH
15 * Copyright (C) 2010 Tejun Heo <tj@kernel.org>
16 *
17 * This is the generic async execution mechanism. Work items as are
18 * executed in process context. The worker pool is shared and
19 * automatically managed. There are two worker pools for each CPU (one for
20 * normal work items and the other for high priority ones) and some extra
21 * pools for workqueues which are not bound to any specific CPU - the
22 * number of these backing pools is dynamic.
23 *
24 * Please read Documentation/workqueue.txt for details.
25 */
26
27 #include <linux/export.h>
28 #include <linux/kernel.h>
29 #include <linux/sched.h>
30 #include <linux/init.h>
31 #include <linux/signal.h>
32 #include <linux/completion.h>
33 #include <linux/workqueue.h>
34 #include <linux/slab.h>
35 #include <linux/cpu.h>
36 #include <linux/notifier.h>
37 #include <linux/kthread.h>
38 #include <linux/hardirq.h>
39 #include <linux/mempolicy.h>
40 #include <linux/freezer.h>
41 #include <linux/kallsyms.h>
42 #include <linux/debug_locks.h>
43 #include <linux/lockdep.h>
44 #include <linux/idr.h>
45 #include <linux/jhash.h>
46 #include <linux/hashtable.h>
47 #include <linux/rculist.h>
48 #include <linux/nodemask.h>
49 #include <linux/moduleparam.h>
50 #include <linux/uaccess.h>
51
52 #include "workqueue_internal.h"
53
54 enum {
55 /*
56 * worker_pool flags
57 *
58 * A bound pool is either associated or disassociated with its CPU.
59 * While associated (!DISASSOCIATED), all workers are bound to the
60 * CPU and none has %WORKER_UNBOUND set and concurrency management
61 * is in effect.
62 *
63 * While DISASSOCIATED, the cpu may be offline and all workers have
64 * %WORKER_UNBOUND set and concurrency management disabled, and may
65 * be executing on any CPU. The pool behaves as an unbound one.
66 *
67 * Note that DISASSOCIATED should be flipped only while holding
68 * manager_mutex to avoid changing binding state while
69 * create_worker() is in progress.
70 */
71 POOL_MANAGE_WORKERS = 1 << 0, /* need to manage workers */
72 POOL_DISASSOCIATED = 1 << 2, /* cpu can't serve workers */
73 POOL_FREEZING = 1 << 3, /* freeze in progress */
74
75 /* worker flags */
76 WORKER_STARTED = 1 << 0, /* started */
77 WORKER_DIE = 1 << 1, /* die die die */
78 WORKER_IDLE = 1 << 2, /* is idle */
79 WORKER_PREP = 1 << 3, /* preparing to run works */
80 WORKER_CPU_INTENSIVE = 1 << 6, /* cpu intensive */
81 WORKER_UNBOUND = 1 << 7, /* worker is unbound */
82 WORKER_REBOUND = 1 << 8, /* worker was rebound */
83
84 WORKER_NOT_RUNNING = WORKER_PREP | WORKER_CPU_INTENSIVE |
85 WORKER_UNBOUND | WORKER_REBOUND,
86
87 NR_STD_WORKER_POOLS = 2, /* # standard pools per cpu */
88
89 UNBOUND_POOL_HASH_ORDER = 6, /* hashed by pool->attrs */
90 BUSY_WORKER_HASH_ORDER = 6, /* 64 pointers */
91
92 MAX_IDLE_WORKERS_RATIO = 4, /* 1/4 of busy can be idle */
93 IDLE_WORKER_TIMEOUT = 300 * HZ, /* keep idle ones for 5 mins */
94
95 MAYDAY_INITIAL_TIMEOUT = HZ / 100 >= 2 ? HZ / 100 : 2,
96 /* call for help after 10ms
97 (min two ticks) */
98 MAYDAY_INTERVAL = HZ / 10, /* and then every 100ms */
99 CREATE_COOLDOWN = HZ, /* time to breath after fail */
100
101 /*
102 * Rescue workers are used only on emergencies and shared by
103 * all cpus. Give -20.
104 */
105 RESCUER_NICE_LEVEL = -20,
106 HIGHPRI_NICE_LEVEL = -20,
107
108 WQ_NAME_LEN = 24,
109 };
110
111 /*
112 * Structure fields follow one of the following exclusion rules.
113 *
114 * I: Modifiable by initialization/destruction paths and read-only for
115 * everyone else.
116 *
117 * P: Preemption protected. Disabling preemption is enough and should
118 * only be modified and accessed from the local cpu.
119 *
120 * L: pool->lock protected. Access with pool->lock held.
121 *
122 * X: During normal operation, modification requires pool->lock and should
123 * be done only from local cpu. Either disabling preemption on local
124 * cpu or grabbing pool->lock is enough for read access. If
125 * POOL_DISASSOCIATED is set, it's identical to L.
126 *
127 * MG: pool->manager_mutex and pool->lock protected. Writes require both
128 * locks. Reads can happen under either lock.
129 *
130 * PL: wq_pool_mutex protected.
131 *
132 * PR: wq_pool_mutex protected for writes. Sched-RCU protected for reads.
133 *
134 * WQ: wq->mutex protected.
135 *
136 * WR: wq->mutex protected for writes. Sched-RCU protected for reads.
137 *
138 * MD: wq_mayday_lock protected.
139 */
140
141 /* struct worker is defined in workqueue_internal.h */
142
143 struct worker_pool {
144 spinlock_t lock; /* the pool lock */
145 int cpu; /* I: the associated cpu */
146 int node; /* I: the associated node ID */
147 int id; /* I: pool ID */
148 unsigned int flags; /* X: flags */
149
150 struct list_head worklist; /* L: list of pending works */
151 int nr_workers; /* L: total number of workers */
152
153 /* nr_idle includes the ones off idle_list for rebinding */
154 int nr_idle; /* L: currently idle ones */
155
156 struct list_head idle_list; /* X: list of idle workers */
157 struct timer_list idle_timer; /* L: worker idle timeout */
158 struct timer_list mayday_timer; /* L: SOS timer for workers */
159
160 /* a workers is either on busy_hash or idle_list, or the manager */
161 DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
162 /* L: hash of busy workers */
163
164 /* see manage_workers() for details on the two manager mutexes */
165 struct mutex manager_arb; /* manager arbitration */
166 struct mutex manager_mutex; /* manager exclusion */
167 struct idr worker_idr; /* MG: worker IDs and iteration */
168
169 struct workqueue_attrs *attrs; /* I: worker attributes */
170 struct hlist_node hash_node; /* PL: unbound_pool_hash node */
171 int refcnt; /* PL: refcnt for unbound pools */
172
173 /*
174 * The current concurrency level. As it's likely to be accessed
175 * from other CPUs during try_to_wake_up(), put it in a separate
176 * cacheline.
177 */
178 atomic_t nr_running ____cacheline_aligned_in_smp;
179
180 /*
181 * Destruction of pool is sched-RCU protected to allow dereferences
182 * from get_work_pool().
183 */
184 struct rcu_head rcu;
185 } ____cacheline_aligned_in_smp;
186
187 /*
188 * The per-pool workqueue. While queued, the lower WORK_STRUCT_FLAG_BITS
189 * of work_struct->data are used for flags and the remaining high bits
190 * point to the pwq; thus, pwqs need to be aligned at two's power of the
191 * number of flag bits.
192 */
193 struct pool_workqueue {
194 struct worker_pool *pool; /* I: the associated pool */
195 struct workqueue_struct *wq; /* I: the owning workqueue */
196 int work_color; /* L: current color */
197 int flush_color; /* L: flushing color */
198 int refcnt; /* L: reference count */
199 int nr_in_flight[WORK_NR_COLORS];
200 /* L: nr of in_flight works */
201 int nr_active; /* L: nr of active works */
202 int max_active; /* L: max active works */
203 struct list_head delayed_works; /* L: delayed works */
204 struct list_head pwqs_node; /* WR: node on wq->pwqs */
205 struct list_head mayday_node; /* MD: node on wq->maydays */
206
207 /*
208 * Release of unbound pwq is punted to system_wq. See put_pwq()
209 * and pwq_unbound_release_workfn() for details. pool_workqueue
210 * itself is also sched-RCU protected so that the first pwq can be
211 * determined without grabbing wq->mutex.
212 */
213 struct work_struct unbound_release_work;
214 struct rcu_head rcu;
215 } __aligned(1 << WORK_STRUCT_FLAG_BITS);
216
217 /*
218 * Structure used to wait for workqueue flush.
219 */
220 struct wq_flusher {
221 struct list_head list; /* WQ: list of flushers */
222 int flush_color; /* WQ: flush color waiting for */
223 struct completion done; /* flush completion */
224 };
225
226 struct wq_device;
227
228 /*
229 * The externally visible workqueue. It relays the issued work items to
230 * the appropriate worker_pool through its pool_workqueues.
231 */
232 struct workqueue_struct {
233 struct list_head pwqs; /* WR: all pwqs of this wq */
234 struct list_head list; /* PL: list of all workqueues */
235
236 struct mutex mutex; /* protects this wq */
237 int work_color; /* WQ: current work color */
238 int flush_color; /* WQ: current flush color */
239 atomic_t nr_pwqs_to_flush; /* flush in progress */
240 struct wq_flusher *first_flusher; /* WQ: first flusher */
241 struct list_head flusher_queue; /* WQ: flush waiters */
242 struct list_head flusher_overflow; /* WQ: flush overflow list */
243
244 struct list_head maydays; /* MD: pwqs requesting rescue */
245 struct worker *rescuer; /* I: rescue worker */
246
247 int nr_drainers; /* WQ: drain in progress */
248 int saved_max_active; /* WQ: saved pwq max_active */
249
250 struct workqueue_attrs *unbound_attrs; /* WQ: only for unbound wqs */
251 struct pool_workqueue *dfl_pwq; /* WQ: only for unbound wqs */
252
253 #ifdef CONFIG_SYSFS
254 struct wq_device *wq_dev; /* I: for sysfs interface */
255 #endif
256 #ifdef CONFIG_LOCKDEP
257 struct lockdep_map lockdep_map;
258 #endif
259 char name[WQ_NAME_LEN]; /* I: workqueue name */
260
261 /* hot fields used during command issue, aligned to cacheline */
262 unsigned int flags ____cacheline_aligned; /* WQ: WQ_* flags */
263 struct pool_workqueue __percpu *cpu_pwqs; /* I: per-cpu pwqs */
264 struct pool_workqueue __rcu *numa_pwq_tbl[]; /* FR: unbound pwqs indexed by node */
265 };
266
267 static struct kmem_cache *pwq_cache;
268
269 static int wq_numa_tbl_len; /* highest possible NUMA node id + 1 */
270 static cpumask_var_t *wq_numa_possible_cpumask;
271 /* possible CPUs of each node */
272
273 static bool wq_disable_numa;
274 module_param_named(disable_numa, wq_disable_numa, bool, 0444);
275
276 /* see the comment above the definition of WQ_POWER_EFFICIENT */
277 #ifdef CONFIG_WQ_POWER_EFFICIENT_DEFAULT
278 static bool wq_power_efficient = true;
279 #else
280 static bool wq_power_efficient;
281 #endif
282
283 module_param_named(power_efficient, wq_power_efficient, bool, 0444);
284
285 static bool wq_numa_enabled; /* unbound NUMA affinity enabled */
286
287 /* buf for wq_update_unbound_numa_attrs(), protected by CPU hotplug exclusion */
288 static struct workqueue_attrs *wq_update_unbound_numa_attrs_buf;
289
290 static DEFINE_MUTEX(wq_pool_mutex); /* protects pools and workqueues list */
291 static DEFINE_SPINLOCK(wq_mayday_lock); /* protects wq->maydays list */
292
293 static LIST_HEAD(workqueues); /* PL: list of all workqueues */
294 static bool workqueue_freezing; /* PL: have wqs started freezing? */
295
296 /* the per-cpu worker pools */
297 static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS],
298 cpu_worker_pools);
299
300 static DEFINE_IDR(worker_pool_idr); /* PR: idr of all pools */
301
302 /* PL: hash of all unbound pools keyed by pool->attrs */
303 static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER);
304
305 /* I: attributes used when instantiating standard unbound pools on demand */
306 static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS];
307
308 /* I: attributes used when instantiating ordered pools on demand */
309 static struct workqueue_attrs *ordered_wq_attrs[NR_STD_WORKER_POOLS];
310
311 struct workqueue_struct *system_wq __read_mostly;
312 EXPORT_SYMBOL(system_wq);
313 struct workqueue_struct *system_highpri_wq __read_mostly;
314 EXPORT_SYMBOL_GPL(system_highpri_wq);
315 struct workqueue_struct *system_long_wq __read_mostly;
316 EXPORT_SYMBOL_GPL(system_long_wq);
317 struct workqueue_struct *system_unbound_wq __read_mostly;
318 EXPORT_SYMBOL_GPL(system_unbound_wq);
319 struct workqueue_struct *system_freezable_wq __read_mostly;
320 EXPORT_SYMBOL_GPL(system_freezable_wq);
321 struct workqueue_struct *system_power_efficient_wq __read_mostly;
322 EXPORT_SYMBOL_GPL(system_power_efficient_wq);
323 struct workqueue_struct *system_freezable_power_efficient_wq __read_mostly;
324 EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq);
325
326 static int worker_thread(void *__worker);
327 static void copy_workqueue_attrs(struct workqueue_attrs *to,
328 const struct workqueue_attrs *from);
329
330 #define CREATE_TRACE_POINTS
331 #include <trace/events/workqueue.h>
332
333 #define assert_rcu_or_pool_mutex() \
334 rcu_lockdep_assert(rcu_read_lock_sched_held() || \
335 lockdep_is_held(&wq_pool_mutex), \
336 "sched RCU or wq_pool_mutex should be held")
337
338 #define assert_rcu_or_wq_mutex(wq) \
339 rcu_lockdep_assert(rcu_read_lock_sched_held() || \
340 lockdep_is_held(&wq->mutex), \
341 "sched RCU or wq->mutex should be held")
342
343 #ifdef CONFIG_LOCKDEP
344 #define assert_manager_or_pool_lock(pool) \
345 WARN_ONCE(debug_locks && \
346 !lockdep_is_held(&(pool)->manager_mutex) && \
347 !lockdep_is_held(&(pool)->lock), \
348 "pool->manager_mutex or ->lock should be held")
349 #else
350 #define assert_manager_or_pool_lock(pool) do { } while (0)
351 #endif
352
353 #define for_each_cpu_worker_pool(pool, cpu) \
354 for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0]; \
355 (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
356 (pool)++)
357
358 /**
359 * for_each_pool - iterate through all worker_pools in the system
360 * @pool: iteration cursor
361 * @pi: integer used for iteration
362 *
363 * This must be called either with wq_pool_mutex held or sched RCU read
364 * locked. If the pool needs to be used beyond the locking in effect, the
365 * caller is responsible for guaranteeing that the pool stays online.
366 *
367 * The if/else clause exists only for the lockdep assertion and can be
368 * ignored.
369 */
370 #define for_each_pool(pool, pi) \
371 idr_for_each_entry(&worker_pool_idr, pool, pi) \
372 if (({ assert_rcu_or_pool_mutex(); false; })) { } \
373 else
374
375 /**
376 * for_each_pool_worker - iterate through all workers of a worker_pool
377 * @worker: iteration cursor
378 * @wi: integer used for iteration
379 * @pool: worker_pool to iterate workers of
380 *
381 * This must be called with either @pool->manager_mutex or ->lock held.
382 *
383 * The if/else clause exists only for the lockdep assertion and can be
384 * ignored.
385 */
386 #define for_each_pool_worker(worker, wi, pool) \
387 idr_for_each_entry(&(pool)->worker_idr, (worker), (wi)) \
388 if (({ assert_manager_or_pool_lock((pool)); false; })) { } \
389 else
390
391 /**
392 * for_each_pwq - iterate through all pool_workqueues of the specified workqueue
393 * @pwq: iteration cursor
394 * @wq: the target workqueue
395 *
396 * This must be called either with wq->mutex held or sched RCU read locked.
397 * If the pwq needs to be used beyond the locking in effect, the caller is
398 * responsible for guaranteeing that the pwq stays online.
399 *
400 * The if/else clause exists only for the lockdep assertion and can be
401 * ignored.
402 */
403 #define for_each_pwq(pwq, wq) \
404 list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node) \
405 if (({ assert_rcu_or_wq_mutex(wq); false; })) { } \
406 else
407
408 #ifdef CONFIG_DEBUG_OBJECTS_WORK
409
410 static struct debug_obj_descr work_debug_descr;
411
412 static void *work_debug_hint(void *addr)
413 {
414 return ((struct work_struct *) addr)->func;
415 }
416
417 /*
418 * fixup_init is called when:
419 * - an active object is initialized
420 */
421 static int work_fixup_init(void *addr, enum debug_obj_state state)
422 {
423 struct work_struct *work = addr;
424
425 switch (state) {
426 case ODEBUG_STATE_ACTIVE:
427 cancel_work_sync(work);
428 debug_object_init(work, &work_debug_descr);
429 return 1;
430 default:
431 return 0;
432 }
433 }
434
435 /*
436 * fixup_activate is called when:
437 * - an active object is activated
438 * - an unknown object is activated (might be a statically initialized object)
439 */
440 static int work_fixup_activate(void *addr, enum debug_obj_state state)
441 {
442 struct work_struct *work = addr;
443
444 switch (state) {
445
446 case ODEBUG_STATE_NOTAVAILABLE:
447 /*
448 * This is not really a fixup. The work struct was
449 * statically initialized. We just make sure that it
450 * is tracked in the object tracker.
451 */
452 if (test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work))) {
453 debug_object_init(work, &work_debug_descr);
454 debug_object_activate(work, &work_debug_descr);
455 return 0;
456 }
457 WARN_ON_ONCE(1);
458 return 0;
459
460 case ODEBUG_STATE_ACTIVE:
461 WARN_ON(1);
462
463 default:
464 return 0;
465 }
466 }
467
468 /*
469 * fixup_free is called when:
470 * - an active object is freed
471 */
472 static int work_fixup_free(void *addr, enum debug_obj_state state)
473 {
474 struct work_struct *work = addr;
475
476 switch (state) {
477 case ODEBUG_STATE_ACTIVE:
478 cancel_work_sync(work);
479 debug_object_free(work, &work_debug_descr);
480 return 1;
481 default:
482 return 0;
483 }
484 }
485
486 static struct debug_obj_descr work_debug_descr = {
487 .name = "work_struct",
488 .debug_hint = work_debug_hint,
489 .fixup_init = work_fixup_init,
490 .fixup_activate = work_fixup_activate,
491 .fixup_free = work_fixup_free,
492 };
493
494 static inline void debug_work_activate(struct work_struct *work)
495 {
496 debug_object_activate(work, &work_debug_descr);
497 }
498
499 static inline void debug_work_deactivate(struct work_struct *work)
500 {
501 debug_object_deactivate(work, &work_debug_descr);
502 }
503
504 void __init_work(struct work_struct *work, int onstack)
505 {
506 if (onstack)
507 debug_object_init_on_stack(work, &work_debug_descr);
508 else
509 debug_object_init(work, &work_debug_descr);
510 }
511 EXPORT_SYMBOL_GPL(__init_work);
512
513 void destroy_work_on_stack(struct work_struct *work)
514 {
515 debug_object_free(work, &work_debug_descr);
516 }
517 EXPORT_SYMBOL_GPL(destroy_work_on_stack);
518
519 #else
520 static inline void debug_work_activate(struct work_struct *work) { }
521 static inline void debug_work_deactivate(struct work_struct *work) { }
522 #endif
523
524 /**
525 * worker_pool_assign_id - allocate ID and assing it to @pool
526 * @pool: the pool pointer of interest
527 *
528 * Returns 0 if ID in [0, WORK_OFFQ_POOL_NONE) is allocated and assigned
529 * successfully, -errno on failure.
530 */
531 static int worker_pool_assign_id(struct worker_pool *pool)
532 {
533 int ret;
534
535 lockdep_assert_held(&wq_pool_mutex);
536
537 ret = idr_alloc(&worker_pool_idr, pool, 0, WORK_OFFQ_POOL_NONE,
538 GFP_KERNEL);
539 if (ret >= 0) {
540 pool->id = ret;
541 return 0;
542 }
543 return ret;
544 }
545
546 /**
547 * unbound_pwq_by_node - return the unbound pool_workqueue for the given node
548 * @wq: the target workqueue
549 * @node: the node ID
550 *
551 * This must be called either with pwq_lock held or sched RCU read locked.
552 * If the pwq needs to be used beyond the locking in effect, the caller is
553 * responsible for guaranteeing that the pwq stays online.
554 *
555 * Return: The unbound pool_workqueue for @node.
556 */
557 static struct pool_workqueue *unbound_pwq_by_node(struct workqueue_struct *wq,
558 int node)
559 {
560 assert_rcu_or_wq_mutex(wq);
561 return rcu_dereference_raw(wq->numa_pwq_tbl[node]);
562 }
563
564 static unsigned int work_color_to_flags(int color)
565 {
566 return color << WORK_STRUCT_COLOR_SHIFT;
567 }
568
569 static int get_work_color(struct work_struct *work)
570 {
571 return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
572 ((1 << WORK_STRUCT_COLOR_BITS) - 1);
573 }
574
575 static int work_next_color(int color)
576 {
577 return (color + 1) % WORK_NR_COLORS;
578 }
579
580 /*
581 * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
582 * contain the pointer to the queued pwq. Once execution starts, the flag
583 * is cleared and the high bits contain OFFQ flags and pool ID.
584 *
585 * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling()
586 * and clear_work_data() can be used to set the pwq, pool or clear
587 * work->data. These functions should only be called while the work is
588 * owned - ie. while the PENDING bit is set.
589 *
590 * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
591 * corresponding to a work. Pool is available once the work has been
592 * queued anywhere after initialization until it is sync canceled. pwq is
593 * available only while the work item is queued.
594 *
595 * %WORK_OFFQ_CANCELING is used to mark a work item which is being
596 * canceled. While being canceled, a work item may have its PENDING set
597 * but stay off timer and worklist for arbitrarily long and nobody should
598 * try to steal the PENDING bit.
599 */
600 static inline void set_work_data(struct work_struct *work, unsigned long data,
601 unsigned long flags)
602 {
603 WARN_ON_ONCE(!work_pending(work));
604 atomic_long_set(&work->data, data | flags | work_static(work));
605 }
606
607 static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq,
608 unsigned long extra_flags)
609 {
610 set_work_data(work, (unsigned long)pwq,
611 WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags);
612 }
613
614 static void set_work_pool_and_keep_pending(struct work_struct *work,
615 int pool_id)
616 {
617 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT,
618 WORK_STRUCT_PENDING);
619 }
620
621 static void set_work_pool_and_clear_pending(struct work_struct *work,
622 int pool_id)
623 {
624 /*
625 * The following wmb is paired with the implied mb in
626 * test_and_set_bit(PENDING) and ensures all updates to @work made
627 * here are visible to and precede any updates by the next PENDING
628 * owner.
629 */
630 smp_wmb();
631 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0);
632 }
633
634 static void clear_work_data(struct work_struct *work)
635 {
636 smp_wmb(); /* see set_work_pool_and_clear_pending() */
637 set_work_data(work, WORK_STRUCT_NO_POOL, 0);
638 }
639
640 static struct pool_workqueue *get_work_pwq(struct work_struct *work)
641 {
642 unsigned long data = atomic_long_read(&work->data);
643
644 if (data & WORK_STRUCT_PWQ)
645 return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
646 else
647 return NULL;
648 }
649
650 /**
651 * get_work_pool - return the worker_pool a given work was associated with
652 * @work: the work item of interest
653 *
654 * Pools are created and destroyed under wq_pool_mutex, and allows read
655 * access under sched-RCU read lock. As such, this function should be
656 * called under wq_pool_mutex or with preemption disabled.
657 *
658 * All fields of the returned pool are accessible as long as the above
659 * mentioned locking is in effect. If the returned pool needs to be used
660 * beyond the critical section, the caller is responsible for ensuring the
661 * returned pool is and stays online.
662 *
663 * Return: The worker_pool @work was last associated with. %NULL if none.
664 */
665 static struct worker_pool *get_work_pool(struct work_struct *work)
666 {
667 unsigned long data = atomic_long_read(&work->data);
668 int pool_id;
669
670 assert_rcu_or_pool_mutex();
671
672 if (data & WORK_STRUCT_PWQ)
673 return ((struct pool_workqueue *)
674 (data & WORK_STRUCT_WQ_DATA_MASK))->pool;
675
676 pool_id = data >> WORK_OFFQ_POOL_SHIFT;
677 if (pool_id == WORK_OFFQ_POOL_NONE)
678 return NULL;
679
680 return idr_find(&worker_pool_idr, pool_id);
681 }
682
683 /**
684 * get_work_pool_id - return the worker pool ID a given work is associated with
685 * @work: the work item of interest
686 *
687 * Return: The worker_pool ID @work was last associated with.
688 * %WORK_OFFQ_POOL_NONE if none.
689 */
690 static int get_work_pool_id(struct work_struct *work)
691 {
692 unsigned long data = atomic_long_read(&work->data);
693
694 if (data & WORK_STRUCT_PWQ)
695 return ((struct pool_workqueue *)
696 (data & WORK_STRUCT_WQ_DATA_MASK))->pool->id;
697
698 return data >> WORK_OFFQ_POOL_SHIFT;
699 }
700
701 static void mark_work_canceling(struct work_struct *work)
702 {
703 unsigned long pool_id = get_work_pool_id(work);
704
705 pool_id <<= WORK_OFFQ_POOL_SHIFT;
706 set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING);
707 }
708
709 static bool work_is_canceling(struct work_struct *work)
710 {
711 unsigned long data = atomic_long_read(&work->data);
712
713 return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING);
714 }
715
716 /*
717 * Policy functions. These define the policies on how the global worker
718 * pools are managed. Unless noted otherwise, these functions assume that
719 * they're being called with pool->lock held.
720 */
721
722 static bool __need_more_worker(struct worker_pool *pool)
723 {
724 return !atomic_read(&pool->nr_running);
725 }
726
727 /*
728 * Need to wake up a worker? Called from anything but currently
729 * running workers.
730 *
731 * Note that, because unbound workers never contribute to nr_running, this
732 * function will always return %true for unbound pools as long as the
733 * worklist isn't empty.
734 */
735 static bool need_more_worker(struct worker_pool *pool)
736 {
737 return !list_empty(&pool->worklist) && __need_more_worker(pool);
738 }
739
740 /* Can I start working? Called from busy but !running workers. */
741 static bool may_start_working(struct worker_pool *pool)
742 {
743 return pool->nr_idle;
744 }
745
746 /* Do I need to keep working? Called from currently running workers. */
747 static bool keep_working(struct worker_pool *pool)
748 {
749 return !list_empty(&pool->worklist) &&
750 atomic_read(&pool->nr_running) <= 1;
751 }
752
753 /* Do we need a new worker? Called from manager. */
754 static bool need_to_create_worker(struct worker_pool *pool)
755 {
756 return need_more_worker(pool) && !may_start_working(pool);
757 }
758
759 /* Do I need to be the manager? */
760 static bool need_to_manage_workers(struct worker_pool *pool)
761 {
762 return need_to_create_worker(pool) ||
763 (pool->flags & POOL_MANAGE_WORKERS);
764 }
765
766 /* Do we have too many workers and should some go away? */
767 static bool too_many_workers(struct worker_pool *pool)
768 {
769 bool managing = mutex_is_locked(&pool->manager_arb);
770 int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
771 int nr_busy = pool->nr_workers - nr_idle;
772
773 /*
774 * nr_idle and idle_list may disagree if idle rebinding is in
775 * progress. Never return %true if idle_list is empty.
776 */
777 if (list_empty(&pool->idle_list))
778 return false;
779
780 return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
781 }
782
783 /*
784 * Wake up functions.
785 */
786
787 /* Return the first worker. Safe with preemption disabled */
788 static struct worker *first_worker(struct worker_pool *pool)
789 {
790 if (unlikely(list_empty(&pool->idle_list)))
791 return NULL;
792
793 return list_first_entry(&pool->idle_list, struct worker, entry);
794 }
795
796 /**
797 * wake_up_worker - wake up an idle worker
798 * @pool: worker pool to wake worker from
799 *
800 * Wake up the first idle worker of @pool.
801 *
802 * CONTEXT:
803 * spin_lock_irq(pool->lock).
804 */
805 static void wake_up_worker(struct worker_pool *pool)
806 {
807 struct worker *worker = first_worker(pool);
808
809 if (likely(worker))
810 wake_up_process(worker->task);
811 }
812
813 /**
814 * wq_worker_waking_up - a worker is waking up
815 * @task: task waking up
816 * @cpu: CPU @task is waking up to
817 *
818 * This function is called during try_to_wake_up() when a worker is
819 * being awoken.
820 *
821 * CONTEXT:
822 * spin_lock_irq(rq->lock)
823 */
824 void wq_worker_waking_up(struct task_struct *task, int cpu)
825 {
826 struct worker *worker = kthread_data(task);
827
828 if (!(worker->flags & WORKER_NOT_RUNNING)) {
829 WARN_ON_ONCE(worker->pool->cpu != cpu);
830 atomic_inc(&worker->pool->nr_running);
831 }
832 }
833
834 /**
835 * wq_worker_sleeping - a worker is going to sleep
836 * @task: task going to sleep
837 * @cpu: CPU in question, must be the current CPU number
838 *
839 * This function is called during schedule() when a busy worker is
840 * going to sleep. Worker on the same cpu can be woken up by
841 * returning pointer to its task.
842 *
843 * CONTEXT:
844 * spin_lock_irq(rq->lock)
845 *
846 * Return:
847 * Worker task on @cpu to wake up, %NULL if none.
848 */
849 struct task_struct *wq_worker_sleeping(struct task_struct *task, int cpu)
850 {
851 struct worker *worker = kthread_data(task), *to_wakeup = NULL;
852 struct worker_pool *pool;
853
854 /*
855 * Rescuers, which may not have all the fields set up like normal
856 * workers, also reach here, let's not access anything before
857 * checking NOT_RUNNING.
858 */
859 if (worker->flags & WORKER_NOT_RUNNING)
860 return NULL;
861
862 pool = worker->pool;
863
864 /* this can only happen on the local cpu */
865 if (WARN_ON_ONCE(cpu != raw_smp_processor_id()))
866 return NULL;
867
868 /*
869 * The counterpart of the following dec_and_test, implied mb,
870 * worklist not empty test sequence is in insert_work().
871 * Please read comment there.
872 *
873 * NOT_RUNNING is clear. This means that we're bound to and
874 * running on the local cpu w/ rq lock held and preemption
875 * disabled, which in turn means that none else could be
876 * manipulating idle_list, so dereferencing idle_list without pool
877 * lock is safe.
878 */
879 if (atomic_dec_and_test(&pool->nr_running) &&
880 !list_empty(&pool->worklist))
881 to_wakeup = first_worker(pool);
882 return to_wakeup ? to_wakeup->task : NULL;
883 }
884
885 /**
886 * worker_set_flags - set worker flags and adjust nr_running accordingly
887 * @worker: self
888 * @flags: flags to set
889 * @wakeup: wakeup an idle worker if necessary
890 *
891 * Set @flags in @worker->flags and adjust nr_running accordingly. If
892 * nr_running becomes zero and @wakeup is %true, an idle worker is
893 * woken up.
894 *
895 * CONTEXT:
896 * spin_lock_irq(pool->lock)
897 */
898 static inline void worker_set_flags(struct worker *worker, unsigned int flags,
899 bool wakeup)
900 {
901 struct worker_pool *pool = worker->pool;
902
903 WARN_ON_ONCE(worker->task != current);
904
905 /*
906 * If transitioning into NOT_RUNNING, adjust nr_running and
907 * wake up an idle worker as necessary if requested by
908 * @wakeup.
909 */
910 if ((flags & WORKER_NOT_RUNNING) &&
911 !(worker->flags & WORKER_NOT_RUNNING)) {
912 if (wakeup) {
913 if (atomic_dec_and_test(&pool->nr_running) &&
914 !list_empty(&pool->worklist))
915 wake_up_worker(pool);
916 } else
917 atomic_dec(&pool->nr_running);
918 }
919
920 worker->flags |= flags;
921 }
922
923 /**
924 * worker_clr_flags - clear worker flags and adjust nr_running accordingly
925 * @worker: self
926 * @flags: flags to clear
927 *
928 * Clear @flags in @worker->flags and adjust nr_running accordingly.
929 *
930 * CONTEXT:
931 * spin_lock_irq(pool->lock)
932 */
933 static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
934 {
935 struct worker_pool *pool = worker->pool;
936 unsigned int oflags = worker->flags;
937
938 WARN_ON_ONCE(worker->task != current);
939
940 worker->flags &= ~flags;
941
942 /*
943 * If transitioning out of NOT_RUNNING, increment nr_running. Note
944 * that the nested NOT_RUNNING is not a noop. NOT_RUNNING is mask
945 * of multiple flags, not a single flag.
946 */
947 if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
948 if (!(worker->flags & WORKER_NOT_RUNNING))
949 atomic_inc(&pool->nr_running);
950 }
951
952 /**
953 * find_worker_executing_work - find worker which is executing a work
954 * @pool: pool of interest
955 * @work: work to find worker for
956 *
957 * Find a worker which is executing @work on @pool by searching
958 * @pool->busy_hash which is keyed by the address of @work. For a worker
959 * to match, its current execution should match the address of @work and
960 * its work function. This is to avoid unwanted dependency between
961 * unrelated work executions through a work item being recycled while still
962 * being executed.
963 *
964 * This is a bit tricky. A work item may be freed once its execution
965 * starts and nothing prevents the freed area from being recycled for
966 * another work item. If the same work item address ends up being reused
967 * before the original execution finishes, workqueue will identify the
968 * recycled work item as currently executing and make it wait until the
969 * current execution finishes, introducing an unwanted dependency.
970 *
971 * This function checks the work item address and work function to avoid
972 * false positives. Note that this isn't complete as one may construct a
973 * work function which can introduce dependency onto itself through a
974 * recycled work item. Well, if somebody wants to shoot oneself in the
975 * foot that badly, there's only so much we can do, and if such deadlock
976 * actually occurs, it should be easy to locate the culprit work function.
977 *
978 * CONTEXT:
979 * spin_lock_irq(pool->lock).
980 *
981 * Return:
982 * Pointer to worker which is executing @work if found, %NULL
983 * otherwise.
984 */
985 static struct worker *find_worker_executing_work(struct worker_pool *pool,
986 struct work_struct *work)
987 {
988 struct worker *worker;
989
990 hash_for_each_possible(pool->busy_hash, worker, hentry,
991 (unsigned long)work)
992 if (worker->current_work == work &&
993 worker->current_func == work->func)
994 return worker;
995
996 return NULL;
997 }
998
999 /**
1000 * move_linked_works - move linked works to a list
1001 * @work: start of series of works to be scheduled
1002 * @head: target list to append @work to
1003 * @nextp: out paramter for nested worklist walking
1004 *
1005 * Schedule linked works starting from @work to @head. Work series to
1006 * be scheduled starts at @work and includes any consecutive work with
1007 * WORK_STRUCT_LINKED set in its predecessor.
1008 *
1009 * If @nextp is not NULL, it's updated to point to the next work of
1010 * the last scheduled work. This allows move_linked_works() to be
1011 * nested inside outer list_for_each_entry_safe().
1012 *
1013 * CONTEXT:
1014 * spin_lock_irq(pool->lock).
1015 */
1016 static void move_linked_works(struct work_struct *work, struct list_head *head,
1017 struct work_struct **nextp)
1018 {
1019 struct work_struct *n;
1020
1021 /*
1022 * Linked worklist will always end before the end of the list,
1023 * use NULL for list head.
1024 */
1025 list_for_each_entry_safe_from(work, n, NULL, entry) {
1026 list_move_tail(&work->entry, head);
1027 if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
1028 break;
1029 }
1030
1031 /*
1032 * If we're already inside safe list traversal and have moved
1033 * multiple works to the scheduled queue, the next position
1034 * needs to be updated.
1035 */
1036 if (nextp)
1037 *nextp = n;
1038 }
1039
1040 /**
1041 * get_pwq - get an extra reference on the specified pool_workqueue
1042 * @pwq: pool_workqueue to get
1043 *
1044 * Obtain an extra reference on @pwq. The caller should guarantee that
1045 * @pwq has positive refcnt and be holding the matching pool->lock.
1046 */
1047 static void get_pwq(struct pool_workqueue *pwq)
1048 {
1049 lockdep_assert_held(&pwq->pool->lock);
1050 WARN_ON_ONCE(pwq->refcnt <= 0);
1051 pwq->refcnt++;
1052 }
1053
1054 /**
1055 * put_pwq - put a pool_workqueue reference
1056 * @pwq: pool_workqueue to put
1057 *
1058 * Drop a reference of @pwq. If its refcnt reaches zero, schedule its
1059 * destruction. The caller should be holding the matching pool->lock.
1060 */
1061 static void put_pwq(struct pool_workqueue *pwq)
1062 {
1063 lockdep_assert_held(&pwq->pool->lock);
1064 if (likely(--pwq->refcnt))
1065 return;
1066 if (WARN_ON_ONCE(!(pwq->wq->flags & WQ_UNBOUND)))
1067 return;
1068 /*
1069 * @pwq can't be released under pool->lock, bounce to
1070 * pwq_unbound_release_workfn(). This never recurses on the same
1071 * pool->lock as this path is taken only for unbound workqueues and
1072 * the release work item is scheduled on a per-cpu workqueue. To
1073 * avoid lockdep warning, unbound pool->locks are given lockdep
1074 * subclass of 1 in get_unbound_pool().
1075 */
1076 schedule_work(&pwq->unbound_release_work);
1077 }
1078
1079 /**
1080 * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock
1081 * @pwq: pool_workqueue to put (can be %NULL)
1082 *
1083 * put_pwq() with locking. This function also allows %NULL @pwq.
1084 */
1085 static void put_pwq_unlocked(struct pool_workqueue *pwq)
1086 {
1087 if (pwq) {
1088 /*
1089 * As both pwqs and pools are sched-RCU protected, the
1090 * following lock operations are safe.
1091 */
1092 spin_lock_irq(&pwq->pool->lock);
1093 put_pwq(pwq);
1094 spin_unlock_irq(&pwq->pool->lock);
1095 }
1096 }
1097
1098 static void pwq_activate_delayed_work(struct work_struct *work)
1099 {
1100 struct pool_workqueue *pwq = get_work_pwq(work);
1101
1102 trace_workqueue_activate_work(work);
1103 move_linked_works(work, &pwq->pool->worklist, NULL);
1104 __clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
1105 pwq->nr_active++;
1106 }
1107
1108 static void pwq_activate_first_delayed(struct pool_workqueue *pwq)
1109 {
1110 struct work_struct *work = list_first_entry(&pwq->delayed_works,
1111 struct work_struct, entry);
1112
1113 pwq_activate_delayed_work(work);
1114 }
1115
1116 /**
1117 * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
1118 * @pwq: pwq of interest
1119 * @color: color of work which left the queue
1120 *
1121 * A work either has completed or is removed from pending queue,
1122 * decrement nr_in_flight of its pwq and handle workqueue flushing.
1123 *
1124 * CONTEXT:
1125 * spin_lock_irq(pool->lock).
1126 */
1127 static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, int color)
1128 {
1129 /* uncolored work items don't participate in flushing or nr_active */
1130 if (color == WORK_NO_COLOR)
1131 goto out_put;
1132
1133 pwq->nr_in_flight[color]--;
1134
1135 pwq->nr_active--;
1136 if (!list_empty(&pwq->delayed_works)) {
1137 /* one down, submit a delayed one */
1138 if (pwq->nr_active < pwq->max_active)
1139 pwq_activate_first_delayed(pwq);
1140 }
1141
1142 /* is flush in progress and are we at the flushing tip? */
1143 if (likely(pwq->flush_color != color))
1144 goto out_put;
1145
1146 /* are there still in-flight works? */
1147 if (pwq->nr_in_flight[color])
1148 goto out_put;
1149
1150 /* this pwq is done, clear flush_color */
1151 pwq->flush_color = -1;
1152
1153 /*
1154 * If this was the last pwq, wake up the first flusher. It
1155 * will handle the rest.
1156 */
1157 if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush))
1158 complete(&pwq->wq->first_flusher->done);
1159 out_put:
1160 put_pwq(pwq);
1161 }
1162
1163 /**
1164 * try_to_grab_pending - steal work item from worklist and disable irq
1165 * @work: work item to steal
1166 * @is_dwork: @work is a delayed_work
1167 * @flags: place to store irq state
1168 *
1169 * Try to grab PENDING bit of @work. This function can handle @work in any
1170 * stable state - idle, on timer or on worklist.
1171 *
1172 * Return:
1173 * 1 if @work was pending and we successfully stole PENDING
1174 * 0 if @work was idle and we claimed PENDING
1175 * -EAGAIN if PENDING couldn't be grabbed at the moment, safe to busy-retry
1176 * -ENOENT if someone else is canceling @work, this state may persist
1177 * for arbitrarily long
1178 *
1179 * Note:
1180 * On >= 0 return, the caller owns @work's PENDING bit. To avoid getting
1181 * interrupted while holding PENDING and @work off queue, irq must be
1182 * disabled on entry. This, combined with delayed_work->timer being
1183 * irqsafe, ensures that we return -EAGAIN for finite short period of time.
1184 *
1185 * On successful return, >= 0, irq is disabled and the caller is
1186 * responsible for releasing it using local_irq_restore(*@flags).
1187 *
1188 * This function is safe to call from any context including IRQ handler.
1189 */
1190 static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
1191 unsigned long *flags)
1192 {
1193 struct worker_pool *pool;
1194 struct pool_workqueue *pwq;
1195
1196 local_irq_save(*flags);
1197
1198 /* try to steal the timer if it exists */
1199 if (is_dwork) {
1200 struct delayed_work *dwork = to_delayed_work(work);
1201
1202 /*
1203 * dwork->timer is irqsafe. If del_timer() fails, it's
1204 * guaranteed that the timer is not queued anywhere and not
1205 * running on the local CPU.
1206 */
1207 if (likely(del_timer(&dwork->timer)))
1208 return 1;
1209 }
1210
1211 /* try to claim PENDING the normal way */
1212 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
1213 return 0;
1214
1215 /*
1216 * The queueing is in progress, or it is already queued. Try to
1217 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
1218 */
1219 pool = get_work_pool(work);
1220 if (!pool)
1221 goto fail;
1222
1223 spin_lock(&pool->lock);
1224 /*
1225 * work->data is guaranteed to point to pwq only while the work
1226 * item is queued on pwq->wq, and both updating work->data to point
1227 * to pwq on queueing and to pool on dequeueing are done under
1228 * pwq->pool->lock. This in turn guarantees that, if work->data
1229 * points to pwq which is associated with a locked pool, the work
1230 * item is currently queued on that pool.
1231 */
1232 pwq = get_work_pwq(work);
1233 if (pwq && pwq->pool == pool) {
1234 debug_work_deactivate(work);
1235
1236 /*
1237 * A delayed work item cannot be grabbed directly because
1238 * it might have linked NO_COLOR work items which, if left
1239 * on the delayed_list, will confuse pwq->nr_active
1240 * management later on and cause stall. Make sure the work
1241 * item is activated before grabbing.
1242 */
1243 if (*work_data_bits(work) & WORK_STRUCT_DELAYED)
1244 pwq_activate_delayed_work(work);
1245
1246 list_del_init(&work->entry);
1247 pwq_dec_nr_in_flight(get_work_pwq(work), get_work_color(work));
1248
1249 /* work->data points to pwq iff queued, point to pool */
1250 set_work_pool_and_keep_pending(work, pool->id);
1251
1252 spin_unlock(&pool->lock);
1253 return 1;
1254 }
1255 spin_unlock(&pool->lock);
1256 fail:
1257 local_irq_restore(*flags);
1258 if (work_is_canceling(work))
1259 return -ENOENT;
1260 cpu_relax();
1261 return -EAGAIN;
1262 }
1263
1264 /**
1265 * insert_work - insert a work into a pool
1266 * @pwq: pwq @work belongs to
1267 * @work: work to insert
1268 * @head: insertion point
1269 * @extra_flags: extra WORK_STRUCT_* flags to set
1270 *
1271 * Insert @work which belongs to @pwq after @head. @extra_flags is or'd to
1272 * work_struct flags.
1273 *
1274 * CONTEXT:
1275 * spin_lock_irq(pool->lock).
1276 */
1277 static void insert_work(struct pool_workqueue *pwq, struct work_struct *work,
1278 struct list_head *head, unsigned int extra_flags)
1279 {
1280 struct worker_pool *pool = pwq->pool;
1281
1282 /* we own @work, set data and link */
1283 set_work_pwq(work, pwq, extra_flags);
1284 list_add_tail(&work->entry, head);
1285 get_pwq(pwq);
1286
1287 /*
1288 * Ensure either wq_worker_sleeping() sees the above
1289 * list_add_tail() or we see zero nr_running to avoid workers lying
1290 * around lazily while there are works to be processed.
1291 */
1292 smp_mb();
1293
1294 if (__need_more_worker(pool))
1295 wake_up_worker(pool);
1296 }
1297
1298 /*
1299 * Test whether @work is being queued from another work executing on the
1300 * same workqueue.
1301 */
1302 static bool is_chained_work(struct workqueue_struct *wq)
1303 {
1304 struct worker *worker;
1305
1306 worker = current_wq_worker();
1307 /*
1308 * Return %true iff I'm a worker execuing a work item on @wq. If
1309 * I'm @worker, it's safe to dereference it without locking.
1310 */
1311 return worker && worker->current_pwq->wq == wq;
1312 }
1313
1314 static void __queue_work(int cpu, struct workqueue_struct *wq,
1315 struct work_struct *work)
1316 {
1317 struct pool_workqueue *pwq;
1318 struct worker_pool *last_pool;
1319 struct list_head *worklist;
1320 unsigned int work_flags;
1321 unsigned int req_cpu = cpu;
1322
1323 /*
1324 * While a work item is PENDING && off queue, a task trying to
1325 * steal the PENDING will busy-loop waiting for it to either get
1326 * queued or lose PENDING. Grabbing PENDING and queueing should
1327 * happen with IRQ disabled.
1328 */
1329 WARN_ON_ONCE(!irqs_disabled());
1330
1331 debug_work_activate(work);
1332
1333 /* if draining, only works from the same workqueue are allowed */
1334 if (unlikely(wq->flags & __WQ_DRAINING) &&
1335 WARN_ON_ONCE(!is_chained_work(wq)))
1336 return;
1337 retry:
1338 if (req_cpu == WORK_CPU_UNBOUND)
1339 cpu = raw_smp_processor_id();
1340
1341 /* pwq which will be used unless @work is executing elsewhere */
1342 if (!(wq->flags & WQ_UNBOUND))
1343 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
1344 else
1345 pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
1346
1347 /*
1348 * If @work was previously on a different pool, it might still be
1349 * running there, in which case the work needs to be queued on that
1350 * pool to guarantee non-reentrancy.
1351 */
1352 last_pool = get_work_pool(work);
1353 if (last_pool && last_pool != pwq->pool) {
1354 struct worker *worker;
1355
1356 spin_lock(&last_pool->lock);
1357
1358 worker = find_worker_executing_work(last_pool, work);
1359
1360 if (worker && worker->current_pwq->wq == wq) {
1361 pwq = worker->current_pwq;
1362 } else {
1363 /* meh... not running there, queue here */
1364 spin_unlock(&last_pool->lock);
1365 spin_lock(&pwq->pool->lock);
1366 }
1367 } else {
1368 spin_lock(&pwq->pool->lock);
1369 }
1370
1371 /*
1372 * pwq is determined and locked. For unbound pools, we could have
1373 * raced with pwq release and it could already be dead. If its
1374 * refcnt is zero, repeat pwq selection. Note that pwqs never die
1375 * without another pwq replacing it in the numa_pwq_tbl or while
1376 * work items are executing on it, so the retrying is guaranteed to
1377 * make forward-progress.
1378 */
1379 if (unlikely(!pwq->refcnt)) {
1380 if (wq->flags & WQ_UNBOUND) {
1381 spin_unlock(&pwq->pool->lock);
1382 cpu_relax();
1383 goto retry;
1384 }
1385 /* oops */
1386 WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt",
1387 wq->name, cpu);
1388 }
1389
1390 /* pwq determined, queue */
1391 trace_workqueue_queue_work(req_cpu, pwq, work);
1392
1393 if (WARN_ON(!list_empty(&work->entry))) {
1394 spin_unlock(&pwq->pool->lock);
1395 return;
1396 }
1397
1398 pwq->nr_in_flight[pwq->work_color]++;
1399 work_flags = work_color_to_flags(pwq->work_color);
1400
1401 if (likely(pwq->nr_active < pwq->max_active)) {
1402 trace_workqueue_activate_work(work);
1403 pwq->nr_active++;
1404 worklist = &pwq->pool->worklist;
1405 } else {
1406 work_flags |= WORK_STRUCT_DELAYED;
1407 worklist = &pwq->delayed_works;
1408 }
1409
1410 insert_work(pwq, work, worklist, work_flags);
1411
1412 spin_unlock(&pwq->pool->lock);
1413 }
1414
1415 /**
1416 * queue_work_on - queue work on specific cpu
1417 * @cpu: CPU number to execute work on
1418 * @wq: workqueue to use
1419 * @work: work to queue
1420 *
1421 * We queue the work to a specific CPU, the caller must ensure it
1422 * can't go away.
1423 *
1424 * Return: %false if @work was already on a queue, %true otherwise.
1425 */
1426 bool queue_work_on(int cpu, struct workqueue_struct *wq,
1427 struct work_struct *work)
1428 {
1429 bool ret = false;
1430 unsigned long flags;
1431
1432 local_irq_save(flags);
1433
1434 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1435 __queue_work(cpu, wq, work);
1436 ret = true;
1437 }
1438
1439 local_irq_restore(flags);
1440 return ret;
1441 }
1442 EXPORT_SYMBOL(queue_work_on);
1443
1444 void delayed_work_timer_fn(unsigned long __data)
1445 {
1446 struct delayed_work *dwork = (struct delayed_work *)__data;
1447
1448 /* should have been called from irqsafe timer with irq already off */
1449 __queue_work(dwork->cpu, dwork->wq, &dwork->work);
1450 }
1451 EXPORT_SYMBOL(delayed_work_timer_fn);
1452
1453 static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
1454 struct delayed_work *dwork, unsigned long delay)
1455 {
1456 struct timer_list *timer = &dwork->timer;
1457 struct work_struct *work = &dwork->work;
1458
1459 WARN_ON_ONCE(timer->function != delayed_work_timer_fn ||
1460 timer->data != (unsigned long)dwork);
1461 WARN_ON_ONCE(timer_pending(timer));
1462 WARN_ON_ONCE(!list_empty(&work->entry));
1463
1464 /*
1465 * If @delay is 0, queue @dwork->work immediately. This is for
1466 * both optimization and correctness. The earliest @timer can
1467 * expire is on the closest next tick and delayed_work users depend
1468 * on that there's no such delay when @delay is 0.
1469 */
1470 if (!delay) {
1471 __queue_work(cpu, wq, &dwork->work);
1472 return;
1473 }
1474
1475 timer_stats_timer_set_start_info(&dwork->timer);
1476
1477 dwork->wq = wq;
1478 dwork->cpu = cpu;
1479 timer->expires = jiffies + delay;
1480
1481 if (unlikely(cpu != WORK_CPU_UNBOUND))
1482 add_timer_on(timer, cpu);
1483 else
1484 add_timer(timer);
1485 }
1486
1487 /**
1488 * queue_delayed_work_on - queue work on specific CPU after delay
1489 * @cpu: CPU number to execute work on
1490 * @wq: workqueue to use
1491 * @dwork: work to queue
1492 * @delay: number of jiffies to wait before queueing
1493 *
1494 * Return: %false if @work was already on a queue, %true otherwise. If
1495 * @delay is zero and @dwork is idle, it will be scheduled for immediate
1496 * execution.
1497 */
1498 bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
1499 struct delayed_work *dwork, unsigned long delay)
1500 {
1501 struct work_struct *work = &dwork->work;
1502 bool ret = false;
1503 unsigned long flags;
1504
1505 /* read the comment in __queue_work() */
1506 local_irq_save(flags);
1507
1508 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1509 __queue_delayed_work(cpu, wq, dwork, delay);
1510 ret = true;
1511 }
1512
1513 local_irq_restore(flags);
1514 return ret;
1515 }
1516 EXPORT_SYMBOL(queue_delayed_work_on);
1517
1518 /**
1519 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
1520 * @cpu: CPU number to execute work on
1521 * @wq: workqueue to use
1522 * @dwork: work to queue
1523 * @delay: number of jiffies to wait before queueing
1524 *
1525 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
1526 * modify @dwork's timer so that it expires after @delay. If @delay is
1527 * zero, @work is guaranteed to be scheduled immediately regardless of its
1528 * current state.
1529 *
1530 * Return: %false if @dwork was idle and queued, %true if @dwork was
1531 * pending and its timer was modified.
1532 *
1533 * This function is safe to call from any context including IRQ handler.
1534 * See try_to_grab_pending() for details.
1535 */
1536 bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
1537 struct delayed_work *dwork, unsigned long delay)
1538 {
1539 unsigned long flags;
1540 int ret;
1541
1542 do {
1543 ret = try_to_grab_pending(&dwork->work, true, &flags);
1544 } while (unlikely(ret == -EAGAIN));
1545
1546 if (likely(ret >= 0)) {
1547 __queue_delayed_work(cpu, wq, dwork, delay);
1548 local_irq_restore(flags);
1549 }
1550
1551 /* -ENOENT from try_to_grab_pending() becomes %true */
1552 return ret;
1553 }
1554 EXPORT_SYMBOL_GPL(mod_delayed_work_on);
1555
1556 /**
1557 * worker_enter_idle - enter idle state
1558 * @worker: worker which is entering idle state
1559 *
1560 * @worker is entering idle state. Update stats and idle timer if
1561 * necessary.
1562 *
1563 * LOCKING:
1564 * spin_lock_irq(pool->lock).
1565 */
1566 static void worker_enter_idle(struct worker *worker)
1567 {
1568 struct worker_pool *pool = worker->pool;
1569
1570 if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) ||
1571 WARN_ON_ONCE(!list_empty(&worker->entry) &&
1572 (worker->hentry.next || worker->hentry.pprev)))
1573 return;
1574
1575 /* can't use worker_set_flags(), also called from start_worker() */
1576 worker->flags |= WORKER_IDLE;
1577 pool->nr_idle++;
1578 worker->last_active = jiffies;
1579
1580 /* idle_list is LIFO */
1581 list_add(&worker->entry, &pool->idle_list);
1582
1583 if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
1584 mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
1585
1586 /*
1587 * Sanity check nr_running. Because wq_unbind_fn() releases
1588 * pool->lock between setting %WORKER_UNBOUND and zapping
1589 * nr_running, the warning may trigger spuriously. Check iff
1590 * unbind is not in progress.
1591 */
1592 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
1593 pool->nr_workers == pool->nr_idle &&
1594 atomic_read(&pool->nr_running));
1595 }
1596
1597 /**
1598 * worker_leave_idle - leave idle state
1599 * @worker: worker which is leaving idle state
1600 *
1601 * @worker is leaving idle state. Update stats.
1602 *
1603 * LOCKING:
1604 * spin_lock_irq(pool->lock).
1605 */
1606 static void worker_leave_idle(struct worker *worker)
1607 {
1608 struct worker_pool *pool = worker->pool;
1609
1610 if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE)))
1611 return;
1612 worker_clr_flags(worker, WORKER_IDLE);
1613 pool->nr_idle--;
1614 list_del_init(&worker->entry);
1615 }
1616
1617 /**
1618 * worker_maybe_bind_and_lock - try to bind %current to worker_pool and lock it
1619 * @pool: target worker_pool
1620 *
1621 * Bind %current to the cpu of @pool if it is associated and lock @pool.
1622 *
1623 * Works which are scheduled while the cpu is online must at least be
1624 * scheduled to a worker which is bound to the cpu so that if they are
1625 * flushed from cpu callbacks while cpu is going down, they are
1626 * guaranteed to execute on the cpu.
1627 *
1628 * This function is to be used by unbound workers and rescuers to bind
1629 * themselves to the target cpu and may race with cpu going down or
1630 * coming online. kthread_bind() can't be used because it may put the
1631 * worker to already dead cpu and set_cpus_allowed_ptr() can't be used
1632 * verbatim as it's best effort and blocking and pool may be
1633 * [dis]associated in the meantime.
1634 *
1635 * This function tries set_cpus_allowed() and locks pool and verifies the
1636 * binding against %POOL_DISASSOCIATED which is set during
1637 * %CPU_DOWN_PREPARE and cleared during %CPU_ONLINE, so if the worker
1638 * enters idle state or fetches works without dropping lock, it can
1639 * guarantee the scheduling requirement described in the first paragraph.
1640 *
1641 * CONTEXT:
1642 * Might sleep. Called without any lock but returns with pool->lock
1643 * held.
1644 *
1645 * Return:
1646 * %true if the associated pool is online (@worker is successfully
1647 * bound), %false if offline.
1648 */
1649 static bool worker_maybe_bind_and_lock(struct worker_pool *pool)
1650 __acquires(&pool->lock)
1651 {
1652 while (true) {
1653 /*
1654 * The following call may fail, succeed or succeed
1655 * without actually migrating the task to the cpu if
1656 * it races with cpu hotunplug operation. Verify
1657 * against POOL_DISASSOCIATED.
1658 */
1659 if (!(pool->flags & POOL_DISASSOCIATED))
1660 set_cpus_allowed_ptr(current, pool->attrs->cpumask);
1661
1662 spin_lock_irq(&pool->lock);
1663 if (pool->flags & POOL_DISASSOCIATED)
1664 return false;
1665 if (task_cpu(current) == pool->cpu &&
1666 cpumask_equal(&current->cpus_allowed, pool->attrs->cpumask))
1667 return true;
1668 spin_unlock_irq(&pool->lock);
1669
1670 /*
1671 * We've raced with CPU hot[un]plug. Give it a breather
1672 * and retry migration. cond_resched() is required here;
1673 * otherwise, we might deadlock against cpu_stop trying to
1674 * bring down the CPU on non-preemptive kernel.
1675 */
1676 cpu_relax();
1677 cond_resched();
1678 }
1679 }
1680
1681 static struct worker *alloc_worker(void)
1682 {
1683 struct worker *worker;
1684
1685 worker = kzalloc(sizeof(*worker), GFP_KERNEL);
1686 if (worker) {
1687 INIT_LIST_HEAD(&worker->entry);
1688 INIT_LIST_HEAD(&worker->scheduled);
1689 /* on creation a worker is in !idle && prep state */
1690 worker->flags = WORKER_PREP;
1691 }
1692 return worker;
1693 }
1694
1695 /**
1696 * create_worker - create a new workqueue worker
1697 * @pool: pool the new worker will belong to
1698 *
1699 * Create a new worker which is bound to @pool. The returned worker
1700 * can be started by calling start_worker() or destroyed using
1701 * destroy_worker().
1702 *
1703 * CONTEXT:
1704 * Might sleep. Does GFP_KERNEL allocations.
1705 *
1706 * Return:
1707 * Pointer to the newly created worker.
1708 */
1709 static struct worker *create_worker(struct worker_pool *pool)
1710 {
1711 struct worker *worker = NULL;
1712 int id = -1;
1713 char id_buf[16];
1714
1715 lockdep_assert_held(&pool->manager_mutex);
1716
1717 /*
1718 * ID is needed to determine kthread name. Allocate ID first
1719 * without installing the pointer.
1720 */
1721 idr_preload(GFP_KERNEL);
1722 spin_lock_irq(&pool->lock);
1723
1724 id = idr_alloc(&pool->worker_idr, NULL, 0, 0, GFP_NOWAIT);
1725
1726 spin_unlock_irq(&pool->lock);
1727 idr_preload_end();
1728 if (id < 0)
1729 goto fail;
1730
1731 worker = alloc_worker();
1732 if (!worker)
1733 goto fail;
1734
1735 worker->pool = pool;
1736 worker->id = id;
1737
1738 if (pool->cpu >= 0)
1739 snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id,
1740 pool->attrs->nice < 0 ? "H" : "");
1741 else
1742 snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id);
1743
1744 worker->task = kthread_create_on_node(worker_thread, worker, pool->node,
1745 "kworker/%s", id_buf);
1746 if (IS_ERR(worker->task))
1747 goto fail;
1748
1749 set_user_nice(worker->task, pool->attrs->nice);
1750
1751 /* prevent userland from meddling with cpumask of workqueue workers */
1752 worker->task->flags |= PF_NO_SETAFFINITY;
1753
1754 /*
1755 * set_cpus_allowed_ptr() will fail if the cpumask doesn't have any
1756 * online CPUs. It'll be re-applied when any of the CPUs come up.
1757 */
1758 set_cpus_allowed_ptr(worker->task, pool->attrs->cpumask);
1759
1760 /*
1761 * The caller is responsible for ensuring %POOL_DISASSOCIATED
1762 * remains stable across this function. See the comments above the
1763 * flag definition for details.
1764 */
1765 if (pool->flags & POOL_DISASSOCIATED)
1766 worker->flags |= WORKER_UNBOUND;
1767
1768 /* successful, commit the pointer to idr */
1769 spin_lock_irq(&pool->lock);
1770 idr_replace(&pool->worker_idr, worker, worker->id);
1771 spin_unlock_irq(&pool->lock);
1772
1773 return worker;
1774
1775 fail:
1776 if (id >= 0) {
1777 spin_lock_irq(&pool->lock);
1778 idr_remove(&pool->worker_idr, id);
1779 spin_unlock_irq(&pool->lock);
1780 }
1781 kfree(worker);
1782 return NULL;
1783 }
1784
1785 /**
1786 * start_worker - start a newly created worker
1787 * @worker: worker to start
1788 *
1789 * Make the pool aware of @worker and start it.
1790 *
1791 * CONTEXT:
1792 * spin_lock_irq(pool->lock).
1793 */
1794 static void start_worker(struct worker *worker)
1795 {
1796 worker->flags |= WORKER_STARTED;
1797 worker->pool->nr_workers++;
1798 worker_enter_idle(worker);
1799 wake_up_process(worker->task);
1800 }
1801
1802 /**
1803 * create_and_start_worker - create and start a worker for a pool
1804 * @pool: the target pool
1805 *
1806 * Grab the managership of @pool and create and start a new worker for it.
1807 *
1808 * Return: 0 on success. A negative error code otherwise.
1809 */
1810 static int create_and_start_worker(struct worker_pool *pool)
1811 {
1812 struct worker *worker;
1813
1814 mutex_lock(&pool->manager_mutex);
1815
1816 worker = create_worker(pool);
1817 if (worker) {
1818 spin_lock_irq(&pool->lock);
1819 start_worker(worker);
1820 spin_unlock_irq(&pool->lock);
1821 }
1822
1823 mutex_unlock(&pool->manager_mutex);
1824
1825 return worker ? 0 : -ENOMEM;
1826 }
1827
1828 /**
1829 * destroy_worker - destroy a workqueue worker
1830 * @worker: worker to be destroyed
1831 *
1832 * Destroy @worker and adjust @pool stats accordingly.
1833 *
1834 * CONTEXT:
1835 * spin_lock_irq(pool->lock) which is released and regrabbed.
1836 */
1837 static void destroy_worker(struct worker *worker)
1838 {
1839 struct worker_pool *pool = worker->pool;
1840
1841 lockdep_assert_held(&pool->manager_mutex);
1842 lockdep_assert_held(&pool->lock);
1843
1844 /* sanity check frenzy */
1845 if (WARN_ON(worker->current_work) ||
1846 WARN_ON(!list_empty(&worker->scheduled)))
1847 return;
1848
1849 if (worker->flags & WORKER_STARTED)
1850 pool->nr_workers--;
1851 if (worker->flags & WORKER_IDLE)
1852 pool->nr_idle--;
1853
1854 list_del_init(&worker->entry);
1855 worker->flags |= WORKER_DIE;
1856
1857 idr_remove(&pool->worker_idr, worker->id);
1858
1859 spin_unlock_irq(&pool->lock);
1860
1861 kthread_stop(worker->task);
1862 kfree(worker);
1863
1864 spin_lock_irq(&pool->lock);
1865 }
1866
1867 static void idle_worker_timeout(unsigned long __pool)
1868 {
1869 struct worker_pool *pool = (void *)__pool;
1870
1871 spin_lock_irq(&pool->lock);
1872
1873 if (too_many_workers(pool)) {
1874 struct worker *worker;
1875 unsigned long expires;
1876
1877 /* idle_list is kept in LIFO order, check the last one */
1878 worker = list_entry(pool->idle_list.prev, struct worker, entry);
1879 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
1880
1881 if (time_before(jiffies, expires))
1882 mod_timer(&pool->idle_timer, expires);
1883 else {
1884 /* it's been idle for too long, wake up manager */
1885 pool->flags |= POOL_MANAGE_WORKERS;
1886 wake_up_worker(pool);
1887 }
1888 }
1889
1890 spin_unlock_irq(&pool->lock);
1891 }
1892
1893 static void send_mayday(struct work_struct *work)
1894 {
1895 struct pool_workqueue *pwq = get_work_pwq(work);
1896 struct workqueue_struct *wq = pwq->wq;
1897
1898 lockdep_assert_held(&wq_mayday_lock);
1899
1900 if (!wq->rescuer)
1901 return;
1902
1903 /* mayday mayday mayday */
1904 if (list_empty(&pwq->mayday_node)) {
1905 list_add_tail(&pwq->mayday_node, &wq->maydays);
1906 wake_up_process(wq->rescuer->task);
1907 }
1908 }
1909
1910 static void pool_mayday_timeout(unsigned long __pool)
1911 {
1912 struct worker_pool *pool = (void *)__pool;
1913 struct work_struct *work;
1914
1915 spin_lock_irq(&wq_mayday_lock); /* for wq->maydays */
1916 spin_lock(&pool->lock);
1917
1918 if (need_to_create_worker(pool)) {
1919 /*
1920 * We've been trying to create a new worker but
1921 * haven't been successful. We might be hitting an
1922 * allocation deadlock. Send distress signals to
1923 * rescuers.
1924 */
1925 list_for_each_entry(work, &pool->worklist, entry)
1926 send_mayday(work);
1927 }
1928
1929 spin_unlock(&pool->lock);
1930 spin_unlock_irq(&wq_mayday_lock);
1931
1932 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
1933 }
1934
1935 /**
1936 * maybe_create_worker - create a new worker if necessary
1937 * @pool: pool to create a new worker for
1938 *
1939 * Create a new worker for @pool if necessary. @pool is guaranteed to
1940 * have at least one idle worker on return from this function. If
1941 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
1942 * sent to all rescuers with works scheduled on @pool to resolve
1943 * possible allocation deadlock.
1944 *
1945 * On return, need_to_create_worker() is guaranteed to be %false and
1946 * may_start_working() %true.
1947 *
1948 * LOCKING:
1949 * spin_lock_irq(pool->lock) which may be released and regrabbed
1950 * multiple times. Does GFP_KERNEL allocations. Called only from
1951 * manager.
1952 *
1953 * Return:
1954 * %false if no action was taken and pool->lock stayed locked, %true
1955 * otherwise.
1956 */
1957 static bool maybe_create_worker(struct worker_pool *pool)
1958 __releases(&pool->lock)
1959 __acquires(&pool->lock)
1960 {
1961 if (!need_to_create_worker(pool))
1962 return false;
1963 restart:
1964 spin_unlock_irq(&pool->lock);
1965
1966 /* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
1967 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
1968
1969 while (true) {
1970 struct worker *worker;
1971
1972 worker = create_worker(pool);
1973 if (worker) {
1974 del_timer_sync(&pool->mayday_timer);
1975 spin_lock_irq(&pool->lock);
1976 start_worker(worker);
1977 if (WARN_ON_ONCE(need_to_create_worker(pool)))
1978 goto restart;
1979 return true;
1980 }
1981
1982 if (!need_to_create_worker(pool))
1983 break;
1984
1985 __set_current_state(TASK_INTERRUPTIBLE);
1986 schedule_timeout(CREATE_COOLDOWN);
1987
1988 if (!need_to_create_worker(pool))
1989 break;
1990 }
1991
1992 del_timer_sync(&pool->mayday_timer);
1993 spin_lock_irq(&pool->lock);
1994 if (need_to_create_worker(pool))
1995 goto restart;
1996 return true;
1997 }
1998
1999 /**
2000 * maybe_destroy_worker - destroy workers which have been idle for a while
2001 * @pool: pool to destroy workers for
2002 *
2003 * Destroy @pool workers which have been idle for longer than
2004 * IDLE_WORKER_TIMEOUT.
2005 *
2006 * LOCKING:
2007 * spin_lock_irq(pool->lock) which may be released and regrabbed
2008 * multiple times. Called only from manager.
2009 *
2010 * Return:
2011 * %false if no action was taken and pool->lock stayed locked, %true
2012 * otherwise.
2013 */
2014 static bool maybe_destroy_workers(struct worker_pool *pool)
2015 {
2016 bool ret = false;
2017
2018 while (too_many_workers(pool)) {
2019 struct worker *worker;
2020 unsigned long expires;
2021
2022 worker = list_entry(pool->idle_list.prev, struct worker, entry);
2023 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
2024
2025 if (time_before(jiffies, expires)) {
2026 mod_timer(&pool->idle_timer, expires);
2027 break;
2028 }
2029
2030 destroy_worker(worker);
2031 ret = true;
2032 }
2033
2034 return ret;
2035 }
2036
2037 /**
2038 * manage_workers - manage worker pool
2039 * @worker: self
2040 *
2041 * Assume the manager role and manage the worker pool @worker belongs
2042 * to. At any given time, there can be only zero or one manager per
2043 * pool. The exclusion is handled automatically by this function.
2044 *
2045 * The caller can safely start processing works on false return. On
2046 * true return, it's guaranteed that need_to_create_worker() is false
2047 * and may_start_working() is true.
2048 *
2049 * CONTEXT:
2050 * spin_lock_irq(pool->lock) which may be released and regrabbed
2051 * multiple times. Does GFP_KERNEL allocations.
2052 *
2053 * Return:
2054 * %false if the pool don't need management and the caller can safely start
2055 * processing works, %true indicates that the function released pool->lock
2056 * and reacquired it to perform some management function and that the
2057 * conditions that the caller verified while holding the lock before
2058 * calling the function might no longer be true.
2059 */
2060 static bool manage_workers(struct worker *worker)
2061 {
2062 struct worker_pool *pool = worker->pool;
2063 bool ret = false;
2064
2065 /*
2066 * Managership is governed by two mutexes - manager_arb and
2067 * manager_mutex. manager_arb handles arbitration of manager role.
2068 * Anyone who successfully grabs manager_arb wins the arbitration
2069 * and becomes the manager. mutex_trylock() on pool->manager_arb
2070 * failure while holding pool->lock reliably indicates that someone
2071 * else is managing the pool and the worker which failed trylock
2072 * can proceed to executing work items. This means that anyone
2073 * grabbing manager_arb is responsible for actually performing
2074 * manager duties. If manager_arb is grabbed and released without
2075 * actual management, the pool may stall indefinitely.
2076 *
2077 * manager_mutex is used for exclusion of actual management
2078 * operations. The holder of manager_mutex can be sure that none
2079 * of management operations, including creation and destruction of
2080 * workers, won't take place until the mutex is released. Because
2081 * manager_mutex doesn't interfere with manager role arbitration,
2082 * it is guaranteed that the pool's management, while may be
2083 * delayed, won't be disturbed by someone else grabbing
2084 * manager_mutex.
2085 */
2086 if (!mutex_trylock(&pool->manager_arb))
2087 return ret;
2088
2089 /*
2090 * With manager arbitration won, manager_mutex would be free in
2091 * most cases. trylock first without dropping @pool->lock.
2092 */
2093 if (unlikely(!mutex_trylock(&pool->manager_mutex))) {
2094 spin_unlock_irq(&pool->lock);
2095 mutex_lock(&pool->manager_mutex);
2096 spin_lock_irq(&pool->lock);
2097 ret = true;
2098 }
2099
2100 pool->flags &= ~POOL_MANAGE_WORKERS;
2101
2102 /*
2103 * Destroy and then create so that may_start_working() is true
2104 * on return.
2105 */
2106 ret |= maybe_destroy_workers(pool);
2107 ret |= maybe_create_worker(pool);
2108
2109 mutex_unlock(&pool->manager_mutex);
2110 mutex_unlock(&pool->manager_arb);
2111 return ret;
2112 }
2113
2114 /**
2115 * process_one_work - process single work
2116 * @worker: self
2117 * @work: work to process
2118 *
2119 * Process @work. This function contains all the logics necessary to
2120 * process a single work including synchronization against and
2121 * interaction with other workers on the same cpu, queueing and
2122 * flushing. As long as context requirement is met, any worker can
2123 * call this function to process a work.
2124 *
2125 * CONTEXT:
2126 * spin_lock_irq(pool->lock) which is released and regrabbed.
2127 */
2128 static void process_one_work(struct worker *worker, struct work_struct *work)
2129 __releases(&pool->lock)
2130 __acquires(&pool->lock)
2131 {
2132 struct pool_workqueue *pwq = get_work_pwq(work);
2133 struct worker_pool *pool = worker->pool;
2134 bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE;
2135 int work_color;
2136 struct worker *collision;
2137 #ifdef CONFIG_LOCKDEP
2138 /*
2139 * It is permissible to free the struct work_struct from
2140 * inside the function that is called from it, this we need to
2141 * take into account for lockdep too. To avoid bogus "held
2142 * lock freed" warnings as well as problems when looking into
2143 * work->lockdep_map, make a copy and use that here.
2144 */
2145 struct lockdep_map lockdep_map;
2146
2147 lockdep_copy_map(&lockdep_map, &work->lockdep_map);
2148 #endif
2149 /*
2150 * Ensure we're on the correct CPU. DISASSOCIATED test is
2151 * necessary to avoid spurious warnings from rescuers servicing the
2152 * unbound or a disassociated pool.
2153 */
2154 WARN_ON_ONCE(!(worker->flags & WORKER_UNBOUND) &&
2155 !(pool->flags & POOL_DISASSOCIATED) &&
2156 raw_smp_processor_id() != pool->cpu);
2157
2158 /*
2159 * A single work shouldn't be executed concurrently by
2160 * multiple workers on a single cpu. Check whether anyone is
2161 * already processing the work. If so, defer the work to the
2162 * currently executing one.
2163 */
2164 collision = find_worker_executing_work(pool, work);
2165 if (unlikely(collision)) {
2166 move_linked_works(work, &collision->scheduled, NULL);
2167 return;
2168 }
2169
2170 /* claim and dequeue */
2171 debug_work_deactivate(work);
2172 hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
2173 worker->current_work = work;
2174 worker->current_func = work->func;
2175 worker->current_pwq = pwq;
2176 work_color = get_work_color(work);
2177
2178 list_del_init(&work->entry);
2179
2180 /*
2181 * CPU intensive works don't participate in concurrency
2182 * management. They're the scheduler's responsibility.
2183 */
2184 if (unlikely(cpu_intensive))
2185 worker_set_flags(worker, WORKER_CPU_INTENSIVE, true);
2186
2187 /*
2188 * Unbound pool isn't concurrency managed and work items should be
2189 * executed ASAP. Wake up another worker if necessary.
2190 */
2191 if ((worker->flags & WORKER_UNBOUND) && need_more_worker(pool))
2192 wake_up_worker(pool);
2193
2194 /*
2195 * Record the last pool and clear PENDING which should be the last
2196 * update to @work. Also, do this inside @pool->lock so that
2197 * PENDING and queued state changes happen together while IRQ is
2198 * disabled.
2199 */
2200 set_work_pool_and_clear_pending(work, pool->id);
2201
2202 spin_unlock_irq(&pool->lock);
2203
2204 lock_map_acquire_read(&pwq->wq->lockdep_map);
2205 lock_map_acquire(&lockdep_map);
2206 trace_workqueue_execute_start(work);
2207 worker->current_func(work);
2208 /*
2209 * While we must be careful to not use "work" after this, the trace
2210 * point will only record its address.
2211 */
2212 trace_workqueue_execute_end(work);
2213 lock_map_release(&lockdep_map);
2214 lock_map_release(&pwq->wq->lockdep_map);
2215
2216 if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
2217 pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
2218 " last function: %pf\n",
2219 current->comm, preempt_count(), task_pid_nr(current),
2220 worker->current_func);
2221 debug_show_held_locks(current);
2222 dump_stack();
2223 }
2224
2225 /*
2226 * The following prevents a kworker from hogging CPU on !PREEMPT
2227 * kernels, where a requeueing work item waiting for something to
2228 * happen could deadlock with stop_machine as such work item could
2229 * indefinitely requeue itself while all other CPUs are trapped in
2230 * stop_machine.
2231 */
2232 cond_resched();
2233
2234 spin_lock_irq(&pool->lock);
2235
2236 /* clear cpu intensive status */
2237 if (unlikely(cpu_intensive))
2238 worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
2239
2240 /* we're done with it, release */
2241 hash_del(&worker->hentry);
2242 worker->current_work = NULL;
2243 worker->current_func = NULL;
2244 worker->current_pwq = NULL;
2245 worker->desc_valid = false;
2246 pwq_dec_nr_in_flight(pwq, work_color);
2247 }
2248
2249 /**
2250 * process_scheduled_works - process scheduled works
2251 * @worker: self
2252 *
2253 * Process all scheduled works. Please note that the scheduled list
2254 * may change while processing a work, so this function repeatedly
2255 * fetches a work from the top and executes it.
2256 *
2257 * CONTEXT:
2258 * spin_lock_irq(pool->lock) which may be released and regrabbed
2259 * multiple times.
2260 */
2261 static void process_scheduled_works(struct worker *worker)
2262 {
2263 while (!list_empty(&worker->scheduled)) {
2264 struct work_struct *work = list_first_entry(&worker->scheduled,
2265 struct work_struct, entry);
2266 process_one_work(worker, work);
2267 }
2268 }
2269
2270 /**
2271 * worker_thread - the worker thread function
2272 * @__worker: self
2273 *
2274 * The worker thread function. All workers belong to a worker_pool -
2275 * either a per-cpu one or dynamic unbound one. These workers process all
2276 * work items regardless of their specific target workqueue. The only
2277 * exception is work items which belong to workqueues with a rescuer which
2278 * will be explained in rescuer_thread().
2279 *
2280 * Return: 0
2281 */
2282 static int worker_thread(void *__worker)
2283 {
2284 struct worker *worker = __worker;
2285 struct worker_pool *pool = worker->pool;
2286
2287 /* tell the scheduler that this is a workqueue worker */
2288 worker->task->flags |= PF_WQ_WORKER;
2289 woke_up:
2290 spin_lock_irq(&pool->lock);
2291
2292 /* am I supposed to die? */
2293 if (unlikely(worker->flags & WORKER_DIE)) {
2294 spin_unlock_irq(&pool->lock);
2295 WARN_ON_ONCE(!list_empty(&worker->entry));
2296 worker->task->flags &= ~PF_WQ_WORKER;
2297 return 0;
2298 }
2299
2300 worker_leave_idle(worker);
2301 recheck:
2302 /* no more worker necessary? */
2303 if (!need_more_worker(pool))
2304 goto sleep;
2305
2306 /* do we need to manage? */
2307 if (unlikely(!may_start_working(pool)) && manage_workers(worker))
2308 goto recheck;
2309
2310 /*
2311 * ->scheduled list can only be filled while a worker is
2312 * preparing to process a work or actually processing it.
2313 * Make sure nobody diddled with it while I was sleeping.
2314 */
2315 WARN_ON_ONCE(!list_empty(&worker->scheduled));
2316
2317 /*
2318 * Finish PREP stage. We're guaranteed to have at least one idle
2319 * worker or that someone else has already assumed the manager
2320 * role. This is where @worker starts participating in concurrency
2321 * management if applicable and concurrency management is restored
2322 * after being rebound. See rebind_workers() for details.
2323 */
2324 worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND);
2325
2326 do {
2327 struct work_struct *work =
2328 list_first_entry(&pool->worklist,
2329 struct work_struct, entry);
2330
2331 if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
2332 /* optimization path, not strictly necessary */
2333 process_one_work(worker, work);
2334 if (unlikely(!list_empty(&worker->scheduled)))
2335 process_scheduled_works(worker);
2336 } else {
2337 move_linked_works(work, &worker->scheduled, NULL);
2338 process_scheduled_works(worker);
2339 }
2340 } while (keep_working(pool));
2341
2342 worker_set_flags(worker, WORKER_PREP, false);
2343 sleep:
2344 if (unlikely(need_to_manage_workers(pool)) && manage_workers(worker))
2345 goto recheck;
2346
2347 /*
2348 * pool->lock is held and there's no work to process and no need to
2349 * manage, sleep. Workers are woken up only while holding
2350 * pool->lock or from local cpu, so setting the current state
2351 * before releasing pool->lock is enough to prevent losing any
2352 * event.
2353 */
2354 worker_enter_idle(worker);
2355 __set_current_state(TASK_INTERRUPTIBLE);
2356 spin_unlock_irq(&pool->lock);
2357 schedule();
2358 goto woke_up;
2359 }
2360
2361 /**
2362 * rescuer_thread - the rescuer thread function
2363 * @__rescuer: self
2364 *
2365 * Workqueue rescuer thread function. There's one rescuer for each
2366 * workqueue which has WQ_MEM_RECLAIM set.
2367 *
2368 * Regular work processing on a pool may block trying to create a new
2369 * worker which uses GFP_KERNEL allocation which has slight chance of
2370 * developing into deadlock if some works currently on the same queue
2371 * need to be processed to satisfy the GFP_KERNEL allocation. This is
2372 * the problem rescuer solves.
2373 *
2374 * When such condition is possible, the pool summons rescuers of all
2375 * workqueues which have works queued on the pool and let them process
2376 * those works so that forward progress can be guaranteed.
2377 *
2378 * This should happen rarely.
2379 *
2380 * Return: 0
2381 */
2382 static int rescuer_thread(void *__rescuer)
2383 {
2384 struct worker *rescuer = __rescuer;
2385 struct workqueue_struct *wq = rescuer->rescue_wq;
2386 struct list_head *scheduled = &rescuer->scheduled;
2387
2388 set_user_nice(current, RESCUER_NICE_LEVEL);
2389
2390 /*
2391 * Mark rescuer as worker too. As WORKER_PREP is never cleared, it
2392 * doesn't participate in concurrency management.
2393 */
2394 rescuer->task->flags |= PF_WQ_WORKER;
2395 repeat:
2396 set_current_state(TASK_INTERRUPTIBLE);
2397
2398 if (kthread_should_stop()) {
2399 __set_current_state(TASK_RUNNING);
2400 rescuer->task->flags &= ~PF_WQ_WORKER;
2401 return 0;
2402 }
2403
2404 /* see whether any pwq is asking for help */
2405 spin_lock_irq(&wq_mayday_lock);
2406
2407 while (!list_empty(&wq->maydays)) {
2408 struct pool_workqueue *pwq = list_first_entry(&wq->maydays,
2409 struct pool_workqueue, mayday_node);
2410 struct worker_pool *pool = pwq->pool;
2411 struct work_struct *work, *n;
2412
2413 __set_current_state(TASK_RUNNING);
2414 list_del_init(&pwq->mayday_node);
2415
2416 spin_unlock_irq(&wq_mayday_lock);
2417
2418 /* migrate to the target cpu if possible */
2419 worker_maybe_bind_and_lock(pool);
2420 rescuer->pool = pool;
2421
2422 /*
2423 * Slurp in all works issued via this workqueue and
2424 * process'em.
2425 */
2426 WARN_ON_ONCE(!list_empty(&rescuer->scheduled));
2427 list_for_each_entry_safe(work, n, &pool->worklist, entry)
2428 if (get_work_pwq(work) == pwq)
2429 move_linked_works(work, scheduled, &n);
2430
2431 process_scheduled_works(rescuer);
2432
2433 /*
2434 * Leave this pool. If keep_working() is %true, notify a
2435 * regular worker; otherwise, we end up with 0 concurrency
2436 * and stalling the execution.
2437 */
2438 if (keep_working(pool))
2439 wake_up_worker(pool);
2440
2441 rescuer->pool = NULL;
2442 spin_unlock(&pool->lock);
2443 spin_lock(&wq_mayday_lock);
2444 }
2445
2446 spin_unlock_irq(&wq_mayday_lock);
2447
2448 /* rescuers should never participate in concurrency management */
2449 WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
2450 schedule();
2451 goto repeat;
2452 }
2453
2454 struct wq_barrier {
2455 struct work_struct work;
2456 struct completion done;
2457 };
2458
2459 static void wq_barrier_func(struct work_struct *work)
2460 {
2461 struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
2462 complete(&barr->done);
2463 }
2464
2465 /**
2466 * insert_wq_barrier - insert a barrier work
2467 * @pwq: pwq to insert barrier into
2468 * @barr: wq_barrier to insert
2469 * @target: target work to attach @barr to
2470 * @worker: worker currently executing @target, NULL if @target is not executing
2471 *
2472 * @barr is linked to @target such that @barr is completed only after
2473 * @target finishes execution. Please note that the ordering
2474 * guarantee is observed only with respect to @target and on the local
2475 * cpu.
2476 *
2477 * Currently, a queued barrier can't be canceled. This is because
2478 * try_to_grab_pending() can't determine whether the work to be
2479 * grabbed is at the head of the queue and thus can't clear LINKED
2480 * flag of the previous work while there must be a valid next work
2481 * after a work with LINKED flag set.
2482 *
2483 * Note that when @worker is non-NULL, @target may be modified
2484 * underneath us, so we can't reliably determine pwq from @target.
2485 *
2486 * CONTEXT:
2487 * spin_lock_irq(pool->lock).
2488 */
2489 static void insert_wq_barrier(struct pool_workqueue *pwq,
2490 struct wq_barrier *barr,
2491 struct work_struct *target, struct worker *worker)
2492 {
2493 struct list_head *head;
2494 unsigned int linked = 0;
2495
2496 /*
2497 * debugobject calls are safe here even with pool->lock locked
2498 * as we know for sure that this will not trigger any of the
2499 * checks and call back into the fixup functions where we
2500 * might deadlock.
2501 */
2502 INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
2503 __set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
2504 init_completion(&barr->done);
2505
2506 /*
2507 * If @target is currently being executed, schedule the
2508 * barrier to the worker; otherwise, put it after @target.
2509 */
2510 if (worker)
2511 head = worker->scheduled.next;
2512 else {
2513 unsigned long *bits = work_data_bits(target);
2514
2515 head = target->entry.next;
2516 /* there can already be other linked works, inherit and set */
2517 linked = *bits & WORK_STRUCT_LINKED;
2518 __set_bit(WORK_STRUCT_LINKED_BIT, bits);
2519 }
2520
2521 debug_work_activate(&barr->work);
2522 insert_work(pwq, &barr->work, head,
2523 work_color_to_flags(WORK_NO_COLOR) | linked);
2524 }
2525
2526 /**
2527 * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing
2528 * @wq: workqueue being flushed
2529 * @flush_color: new flush color, < 0 for no-op
2530 * @work_color: new work color, < 0 for no-op
2531 *
2532 * Prepare pwqs for workqueue flushing.
2533 *
2534 * If @flush_color is non-negative, flush_color on all pwqs should be
2535 * -1. If no pwq has in-flight commands at the specified color, all
2536 * pwq->flush_color's stay at -1 and %false is returned. If any pwq
2537 * has in flight commands, its pwq->flush_color is set to
2538 * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq
2539 * wakeup logic is armed and %true is returned.
2540 *
2541 * The caller should have initialized @wq->first_flusher prior to
2542 * calling this function with non-negative @flush_color. If
2543 * @flush_color is negative, no flush color update is done and %false
2544 * is returned.
2545 *
2546 * If @work_color is non-negative, all pwqs should have the same
2547 * work_color which is previous to @work_color and all will be
2548 * advanced to @work_color.
2549 *
2550 * CONTEXT:
2551 * mutex_lock(wq->mutex).
2552 *
2553 * Return:
2554 * %true if @flush_color >= 0 and there's something to flush. %false
2555 * otherwise.
2556 */
2557 static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq,
2558 int flush_color, int work_color)
2559 {
2560 bool wait = false;
2561 struct pool_workqueue *pwq;
2562
2563 if (flush_color >= 0) {
2564 WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush));
2565 atomic_set(&wq->nr_pwqs_to_flush, 1);
2566 }
2567
2568 for_each_pwq(pwq, wq) {
2569 struct worker_pool *pool = pwq->pool;
2570
2571 spin_lock_irq(&pool->lock);
2572
2573 if (flush_color >= 0) {
2574 WARN_ON_ONCE(pwq->flush_color != -1);
2575
2576 if (pwq->nr_in_flight[flush_color]) {
2577 pwq->flush_color = flush_color;
2578 atomic_inc(&wq->nr_pwqs_to_flush);
2579 wait = true;
2580 }
2581 }
2582
2583 if (work_color >= 0) {
2584 WARN_ON_ONCE(work_color != work_next_color(pwq->work_color));
2585 pwq->work_color = work_color;
2586 }
2587
2588 spin_unlock_irq(&pool->lock);
2589 }
2590
2591 if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush))
2592 complete(&wq->first_flusher->done);
2593
2594 return wait;
2595 }
2596
2597 /**
2598 * flush_workqueue - ensure that any scheduled work has run to completion.
2599 * @wq: workqueue to flush
2600 *
2601 * This function sleeps until all work items which were queued on entry
2602 * have finished execution, but it is not livelocked by new incoming ones.
2603 */
2604 void flush_workqueue(struct workqueue_struct *wq)
2605 {
2606 struct wq_flusher this_flusher = {
2607 .list = LIST_HEAD_INIT(this_flusher.list),
2608 .flush_color = -1,
2609 .done = COMPLETION_INITIALIZER_ONSTACK(this_flusher.done),
2610 };
2611 int next_color;
2612
2613 lock_map_acquire(&wq->lockdep_map);
2614 lock_map_release(&wq->lockdep_map);
2615
2616 mutex_lock(&wq->mutex);
2617
2618 /*
2619 * Start-to-wait phase
2620 */
2621 next_color = work_next_color(wq->work_color);
2622
2623 if (next_color != wq->flush_color) {
2624 /*
2625 * Color space is not full. The current work_color
2626 * becomes our flush_color and work_color is advanced
2627 * by one.
2628 */
2629 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow));
2630 this_flusher.flush_color = wq->work_color;
2631 wq->work_color = next_color;
2632
2633 if (!wq->first_flusher) {
2634 /* no flush in progress, become the first flusher */
2635 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2636
2637 wq->first_flusher = &this_flusher;
2638
2639 if (!flush_workqueue_prep_pwqs(wq, wq->flush_color,
2640 wq->work_color)) {
2641 /* nothing to flush, done */
2642 wq->flush_color = next_color;
2643 wq->first_flusher = NULL;
2644 goto out_unlock;
2645 }
2646 } else {
2647 /* wait in queue */
2648 WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color);
2649 list_add_tail(&this_flusher.list, &wq->flusher_queue);
2650 flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2651 }
2652 } else {
2653 /*
2654 * Oops, color space is full, wait on overflow queue.
2655 * The next flush completion will assign us
2656 * flush_color and transfer to flusher_queue.
2657 */
2658 list_add_tail(&this_flusher.list, &wq->flusher_overflow);
2659 }
2660
2661 mutex_unlock(&wq->mutex);
2662
2663 wait_for_completion(&this_flusher.done);
2664
2665 /*
2666 * Wake-up-and-cascade phase
2667 *
2668 * First flushers are responsible for cascading flushes and
2669 * handling overflow. Non-first flushers can simply return.
2670 */
2671 if (wq->first_flusher != &this_flusher)
2672 return;
2673
2674 mutex_lock(&wq->mutex);
2675
2676 /* we might have raced, check again with mutex held */
2677 if (wq->first_flusher != &this_flusher)
2678 goto out_unlock;
2679
2680 wq->first_flusher = NULL;
2681
2682 WARN_ON_ONCE(!list_empty(&this_flusher.list));
2683 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2684
2685 while (true) {
2686 struct wq_flusher *next, *tmp;
2687
2688 /* complete all the flushers sharing the current flush color */
2689 list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
2690 if (next->flush_color != wq->flush_color)
2691 break;
2692 list_del_init(&next->list);
2693 complete(&next->done);
2694 }
2695
2696 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) &&
2697 wq->flush_color != work_next_color(wq->work_color));
2698
2699 /* this flush_color is finished, advance by one */
2700 wq->flush_color = work_next_color(wq->flush_color);
2701
2702 /* one color has been freed, handle overflow queue */
2703 if (!list_empty(&wq->flusher_overflow)) {
2704 /*
2705 * Assign the same color to all overflowed
2706 * flushers, advance work_color and append to
2707 * flusher_queue. This is the start-to-wait
2708 * phase for these overflowed flushers.
2709 */
2710 list_for_each_entry(tmp, &wq->flusher_overflow, list)
2711 tmp->flush_color = wq->work_color;
2712
2713 wq->work_color = work_next_color(wq->work_color);
2714
2715 list_splice_tail_init(&wq->flusher_overflow,
2716 &wq->flusher_queue);
2717 flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2718 }
2719
2720 if (list_empty(&wq->flusher_queue)) {
2721 WARN_ON_ONCE(wq->flush_color != wq->work_color);
2722 break;
2723 }
2724
2725 /*
2726 * Need to flush more colors. Make the next flusher
2727 * the new first flusher and arm pwqs.
2728 */
2729 WARN_ON_ONCE(wq->flush_color == wq->work_color);
2730 WARN_ON_ONCE(wq->flush_color != next->flush_color);
2731
2732 list_del_init(&next->list);
2733 wq->first_flusher = next;
2734
2735 if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1))
2736 break;
2737
2738 /*
2739 * Meh... this color is already done, clear first
2740 * flusher and repeat cascading.
2741 */
2742 wq->first_flusher = NULL;
2743 }
2744
2745 out_unlock:
2746 mutex_unlock(&wq->mutex);
2747 }
2748 EXPORT_SYMBOL_GPL(flush_workqueue);
2749
2750 /**
2751 * drain_workqueue - drain a workqueue
2752 * @wq: workqueue to drain
2753 *
2754 * Wait until the workqueue becomes empty. While draining is in progress,
2755 * only chain queueing is allowed. IOW, only currently pending or running
2756 * work items on @wq can queue further work items on it. @wq is flushed
2757 * repeatedly until it becomes empty. The number of flushing is detemined
2758 * by the depth of chaining and should be relatively short. Whine if it
2759 * takes too long.
2760 */
2761 void drain_workqueue(struct workqueue_struct *wq)
2762 {
2763 unsigned int flush_cnt = 0;
2764 struct pool_workqueue *pwq;
2765
2766 /*
2767 * __queue_work() needs to test whether there are drainers, is much
2768 * hotter than drain_workqueue() and already looks at @wq->flags.
2769 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers.
2770 */
2771 mutex_lock(&wq->mutex);
2772 if (!wq->nr_drainers++)
2773 wq->flags |= __WQ_DRAINING;
2774 mutex_unlock(&wq->mutex);
2775 reflush:
2776 flush_workqueue(wq);
2777
2778 mutex_lock(&wq->mutex);
2779
2780 for_each_pwq(pwq, wq) {
2781 bool drained;
2782
2783 spin_lock_irq(&pwq->pool->lock);
2784 drained = !pwq->nr_active && list_empty(&pwq->delayed_works);
2785 spin_unlock_irq(&pwq->pool->lock);
2786
2787 if (drained)
2788 continue;
2789
2790 if (++flush_cnt == 10 ||
2791 (flush_cnt % 100 == 0 && flush_cnt <= 1000))
2792 pr_warn("workqueue %s: drain_workqueue() isn't complete after %u tries\n",
2793 wq->name, flush_cnt);
2794
2795 mutex_unlock(&wq->mutex);
2796 goto reflush;
2797 }
2798
2799 if (!--wq->nr_drainers)
2800 wq->flags &= ~__WQ_DRAINING;
2801 mutex_unlock(&wq->mutex);
2802 }
2803 EXPORT_SYMBOL_GPL(drain_workqueue);
2804
2805 static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr)
2806 {
2807 struct worker *worker = NULL;
2808 struct worker_pool *pool;
2809 struct pool_workqueue *pwq;
2810
2811 might_sleep();
2812
2813 local_irq_disable();
2814 pool = get_work_pool(work);
2815 if (!pool) {
2816 local_irq_enable();
2817 return false;
2818 }
2819
2820 spin_lock(&pool->lock);
2821 /* see the comment in try_to_grab_pending() with the same code */
2822 pwq = get_work_pwq(work);
2823 if (pwq) {
2824 if (unlikely(pwq->pool != pool))
2825 goto already_gone;
2826 } else {
2827 worker = find_worker_executing_work(pool, work);
2828 if (!worker)
2829 goto already_gone;
2830 pwq = worker->current_pwq;
2831 }
2832
2833 insert_wq_barrier(pwq, barr, work, worker);
2834 spin_unlock_irq(&pool->lock);
2835
2836 /*
2837 * If @max_active is 1 or rescuer is in use, flushing another work
2838 * item on the same workqueue may lead to deadlock. Make sure the
2839 * flusher is not running on the same workqueue by verifying write
2840 * access.
2841 */
2842 if (pwq->wq->saved_max_active == 1 || pwq->wq->rescuer)
2843 lock_map_acquire(&pwq->wq->lockdep_map);
2844 else
2845 lock_map_acquire_read(&pwq->wq->lockdep_map);
2846 lock_map_release(&pwq->wq->lockdep_map);
2847
2848 return true;
2849 already_gone:
2850 spin_unlock_irq(&pool->lock);
2851 return false;
2852 }
2853
2854 /**
2855 * flush_work - wait for a work to finish executing the last queueing instance
2856 * @work: the work to flush
2857 *
2858 * Wait until @work has finished execution. @work is guaranteed to be idle
2859 * on return if it hasn't been requeued since flush started.
2860 *
2861 * Return:
2862 * %true if flush_work() waited for the work to finish execution,
2863 * %false if it was already idle.
2864 */
2865 bool flush_work(struct work_struct *work)
2866 {
2867 struct wq_barrier barr;
2868
2869 lock_map_acquire(&work->lockdep_map);
2870 lock_map_release(&work->lockdep_map);
2871
2872 if (start_flush_work(work, &barr)) {
2873 wait_for_completion(&barr.done);
2874 destroy_work_on_stack(&barr.work);
2875 return true;
2876 } else {
2877 return false;
2878 }
2879 }
2880 EXPORT_SYMBOL_GPL(flush_work);
2881
2882 static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
2883 {
2884 unsigned long flags;
2885 int ret;
2886
2887 do {
2888 ret = try_to_grab_pending(work, is_dwork, &flags);
2889 /*
2890 * If someone else is canceling, wait for the same event it
2891 * would be waiting for before retrying.
2892 */
2893 if (unlikely(ret == -ENOENT))
2894 flush_work(work);
2895 } while (unlikely(ret < 0));
2896
2897 /* tell other tasks trying to grab @work to back off */
2898 mark_work_canceling(work);
2899 local_irq_restore(flags);
2900
2901 flush_work(work);
2902 clear_work_data(work);
2903 return ret;
2904 }
2905
2906 /**
2907 * cancel_work_sync - cancel a work and wait for it to finish
2908 * @work: the work to cancel
2909 *
2910 * Cancel @work and wait for its execution to finish. This function
2911 * can be used even if the work re-queues itself or migrates to
2912 * another workqueue. On return from this function, @work is
2913 * guaranteed to be not pending or executing on any CPU.
2914 *
2915 * cancel_work_sync(&delayed_work->work) must not be used for
2916 * delayed_work's. Use cancel_delayed_work_sync() instead.
2917 *
2918 * The caller must ensure that the workqueue on which @work was last
2919 * queued can't be destroyed before this function returns.
2920 *
2921 * Return:
2922 * %true if @work was pending, %false otherwise.
2923 */
2924 bool cancel_work_sync(struct work_struct *work)
2925 {
2926 return __cancel_work_timer(work, false);
2927 }
2928 EXPORT_SYMBOL_GPL(cancel_work_sync);
2929
2930 /**
2931 * flush_delayed_work - wait for a dwork to finish executing the last queueing
2932 * @dwork: the delayed work to flush
2933 *
2934 * Delayed timer is cancelled and the pending work is queued for
2935 * immediate execution. Like flush_work(), this function only
2936 * considers the last queueing instance of @dwork.
2937 *
2938 * Return:
2939 * %true if flush_work() waited for the work to finish execution,
2940 * %false if it was already idle.
2941 */
2942 bool flush_delayed_work(struct delayed_work *dwork)
2943 {
2944 local_irq_disable();
2945 if (del_timer_sync(&dwork->timer))
2946 __queue_work(dwork->cpu, dwork->wq, &dwork->work);
2947 local_irq_enable();
2948 return flush_work(&dwork->work);
2949 }
2950 EXPORT_SYMBOL(flush_delayed_work);
2951
2952 /**
2953 * cancel_delayed_work - cancel a delayed work
2954 * @dwork: delayed_work to cancel
2955 *
2956 * Kill off a pending delayed_work.
2957 *
2958 * Return: %true if @dwork was pending and canceled; %false if it wasn't
2959 * pending.
2960 *
2961 * Note:
2962 * The work callback function may still be running on return, unless
2963 * it returns %true and the work doesn't re-arm itself. Explicitly flush or
2964 * use cancel_delayed_work_sync() to wait on it.
2965 *
2966 * This function is safe to call from any context including IRQ handler.
2967 */
2968 bool cancel_delayed_work(struct delayed_work *dwork)
2969 {
2970 unsigned long flags;
2971 int ret;
2972
2973 do {
2974 ret = try_to_grab_pending(&dwork->work, true, &flags);
2975 } while (unlikely(ret == -EAGAIN));
2976
2977 if (unlikely(ret < 0))
2978 return false;
2979
2980 set_work_pool_and_clear_pending(&dwork->work,
2981 get_work_pool_id(&dwork->work));
2982 local_irq_restore(flags);
2983 return ret;
2984 }
2985 EXPORT_SYMBOL(cancel_delayed_work);
2986
2987 /**
2988 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
2989 * @dwork: the delayed work cancel
2990 *
2991 * This is cancel_work_sync() for delayed works.
2992 *
2993 * Return:
2994 * %true if @dwork was pending, %false otherwise.
2995 */
2996 bool cancel_delayed_work_sync(struct delayed_work *dwork)
2997 {
2998 return __cancel_work_timer(&dwork->work, true);
2999 }
3000 EXPORT_SYMBOL(cancel_delayed_work_sync);
3001
3002 /**
3003 * schedule_on_each_cpu - execute a function synchronously on each online CPU
3004 * @func: the function to call
3005 *
3006 * schedule_on_each_cpu() executes @func on each online CPU using the
3007 * system workqueue and blocks until all CPUs have completed.
3008 * schedule_on_each_cpu() is very slow.
3009 *
3010 * Return:
3011 * 0 on success, -errno on failure.
3012 */
3013 int schedule_on_each_cpu(work_func_t func)
3014 {
3015 int cpu;
3016 struct work_struct __percpu *works;
3017
3018 works = alloc_percpu(struct work_struct);
3019 if (!works)
3020 return -ENOMEM;
3021
3022 get_online_cpus();
3023
3024 for_each_online_cpu(cpu) {
3025 struct work_struct *work = per_cpu_ptr(works, cpu);
3026
3027 INIT_WORK(work, func);
3028 schedule_work_on(cpu, work);
3029 }
3030
3031 for_each_online_cpu(cpu)
3032 flush_work(per_cpu_ptr(works, cpu));
3033
3034 put_online_cpus();
3035 free_percpu(works);
3036 return 0;
3037 }
3038
3039 /**
3040 * flush_scheduled_work - ensure that any scheduled work has run to completion.
3041 *
3042 * Forces execution of the kernel-global workqueue and blocks until its
3043 * completion.
3044 *
3045 * Think twice before calling this function! It's very easy to get into
3046 * trouble if you don't take great care. Either of the following situations
3047 * will lead to deadlock:
3048 *
3049 * One of the work items currently on the workqueue needs to acquire
3050 * a lock held by your code or its caller.
3051 *
3052 * Your code is running in the context of a work routine.
3053 *
3054 * They will be detected by lockdep when they occur, but the first might not
3055 * occur very often. It depends on what work items are on the workqueue and
3056 * what locks they need, which you have no control over.
3057 *
3058 * In most situations flushing the entire workqueue is overkill; you merely
3059 * need to know that a particular work item isn't queued and isn't running.
3060 * In such cases you should use cancel_delayed_work_sync() or
3061 * cancel_work_sync() instead.
3062 */
3063 void flush_scheduled_work(void)
3064 {
3065 flush_workqueue(system_wq);
3066 }
3067 EXPORT_SYMBOL(flush_scheduled_work);
3068
3069 /**
3070 * execute_in_process_context - reliably execute the routine with user context
3071 * @fn: the function to execute
3072 * @ew: guaranteed storage for the execute work structure (must
3073 * be available when the work executes)
3074 *
3075 * Executes the function immediately if process context is available,
3076 * otherwise schedules the function for delayed execution.
3077 *
3078 * Return: 0 - function was executed
3079 * 1 - function was scheduled for execution
3080 */
3081 int execute_in_process_context(work_func_t fn, struct execute_work *ew)
3082 {
3083 if (!in_interrupt()) {
3084 fn(&ew->work);
3085 return 0;
3086 }
3087
3088 INIT_WORK(&ew->work, fn);
3089 schedule_work(&ew->work);
3090
3091 return 1;
3092 }
3093 EXPORT_SYMBOL_GPL(execute_in_process_context);
3094
3095 #ifdef CONFIG_SYSFS
3096 /*
3097 * Workqueues with WQ_SYSFS flag set is visible to userland via
3098 * /sys/bus/workqueue/devices/WQ_NAME. All visible workqueues have the
3099 * following attributes.
3100 *
3101 * per_cpu RO bool : whether the workqueue is per-cpu or unbound
3102 * max_active RW int : maximum number of in-flight work items
3103 *
3104 * Unbound workqueues have the following extra attributes.
3105 *
3106 * id RO int : the associated pool ID
3107 * nice RW int : nice value of the workers
3108 * cpumask RW mask : bitmask of allowed CPUs for the workers
3109 */
3110 struct wq_device {
3111 struct workqueue_struct *wq;
3112 struct device dev;
3113 };
3114
3115 static struct workqueue_struct *dev_to_wq(struct device *dev)
3116 {
3117 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
3118
3119 return wq_dev->wq;
3120 }
3121
3122 static ssize_t per_cpu_show(struct device *dev, struct device_attribute *attr,
3123 char *buf)
3124 {
3125 struct workqueue_struct *wq = dev_to_wq(dev);
3126
3127 return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND));
3128 }
3129 static DEVICE_ATTR_RO(per_cpu);
3130
3131 static ssize_t max_active_show(struct device *dev,
3132 struct device_attribute *attr, char *buf)
3133 {
3134 struct workqueue_struct *wq = dev_to_wq(dev);
3135
3136 return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active);
3137 }
3138
3139 static ssize_t max_active_store(struct device *dev,
3140 struct device_attribute *attr, const char *buf,
3141 size_t count)
3142 {
3143 struct workqueue_struct *wq = dev_to_wq(dev);
3144 int val;
3145
3146 if (sscanf(buf, "%d", &val) != 1 || val <= 0)
3147 return -EINVAL;
3148
3149 workqueue_set_max_active(wq, val);
3150 return count;
3151 }
3152 static DEVICE_ATTR_RW(max_active);
3153
3154 static struct attribute *wq_sysfs_attrs[] = {
3155 &dev_attr_per_cpu.attr,
3156 &dev_attr_max_active.attr,
3157 NULL,
3158 };
3159 ATTRIBUTE_GROUPS(wq_sysfs);
3160
3161 static ssize_t wq_pool_ids_show(struct device *dev,
3162 struct device_attribute *attr, char *buf)
3163 {
3164 struct workqueue_struct *wq = dev_to_wq(dev);
3165 const char *delim = "";
3166 int node, written = 0;
3167
3168 rcu_read_lock_sched();
3169 for_each_node(node) {
3170 written += scnprintf(buf + written, PAGE_SIZE - written,
3171 "%s%d:%d", delim, node,
3172 unbound_pwq_by_node(wq, node)->pool->id);
3173 delim = " ";
3174 }
3175 written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
3176 rcu_read_unlock_sched();
3177
3178 return written;
3179 }
3180
3181 static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr,
3182 char *buf)
3183 {
3184 struct workqueue_struct *wq = dev_to_wq(dev);
3185 int written;
3186
3187 mutex_lock(&wq->mutex);
3188 written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice);
3189 mutex_unlock(&wq->mutex);
3190
3191 return written;
3192 }
3193
3194 /* prepare workqueue_attrs for sysfs store operations */
3195 static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq)
3196 {
3197 struct workqueue_attrs *attrs;
3198
3199 attrs = alloc_workqueue_attrs(GFP_KERNEL);
3200 if (!attrs)
3201 return NULL;
3202
3203 mutex_lock(&wq->mutex);
3204 copy_workqueue_attrs(attrs, wq->unbound_attrs);
3205 mutex_unlock(&wq->mutex);
3206 return attrs;
3207 }
3208
3209 static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr,
3210 const char *buf, size_t count)
3211 {
3212 struct workqueue_struct *wq = dev_to_wq(dev);
3213 struct workqueue_attrs *attrs;
3214 int ret;
3215
3216 attrs = wq_sysfs_prep_attrs(wq);
3217 if (!attrs)
3218 return -ENOMEM;
3219
3220 if (sscanf(buf, "%d", &attrs->nice) == 1 &&
3221 attrs->nice >= -20 && attrs->nice <= 19)
3222 ret = apply_workqueue_attrs(wq, attrs);
3223 else
3224 ret = -EINVAL;
3225
3226 free_workqueue_attrs(attrs);
3227 return ret ?: count;
3228 }
3229
3230 static ssize_t wq_cpumask_show(struct device *dev,
3231 struct device_attribute *attr, char *buf)
3232 {
3233 struct workqueue_struct *wq = dev_to_wq(dev);
3234 int written;
3235
3236 mutex_lock(&wq->mutex);
3237 written = cpumask_scnprintf(buf, PAGE_SIZE, wq->unbound_attrs->cpumask);
3238 mutex_unlock(&wq->mutex);
3239
3240 written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
3241 return written;
3242 }
3243
3244 static ssize_t wq_cpumask_store(struct device *dev,
3245 struct device_attribute *attr,
3246 const char *buf, size_t count)
3247 {
3248 struct workqueue_struct *wq = dev_to_wq(dev);
3249 struct workqueue_attrs *attrs;
3250 int ret;
3251
3252 attrs = wq_sysfs_prep_attrs(wq);
3253 if (!attrs)
3254 return -ENOMEM;
3255
3256 ret = cpumask_parse(buf, attrs->cpumask);
3257 if (!ret)
3258 ret = apply_workqueue_attrs(wq, attrs);
3259
3260 free_workqueue_attrs(attrs);
3261 return ret ?: count;
3262 }
3263
3264 static ssize_t wq_numa_show(struct device *dev, struct device_attribute *attr,
3265 char *buf)
3266 {
3267 struct workqueue_struct *wq = dev_to_wq(dev);
3268 int written;
3269
3270 mutex_lock(&wq->mutex);
3271 written = scnprintf(buf, PAGE_SIZE, "%d\n",
3272 !wq->unbound_attrs->no_numa);
3273 mutex_unlock(&wq->mutex);
3274
3275 return written;
3276 }
3277
3278 static ssize_t wq_numa_store(struct device *dev, struct device_attribute *attr,
3279 const char *buf, size_t count)
3280 {
3281 struct workqueue_struct *wq = dev_to_wq(dev);
3282 struct workqueue_attrs *attrs;
3283 int v, ret;
3284
3285 attrs = wq_sysfs_prep_attrs(wq);
3286 if (!attrs)
3287 return -ENOMEM;
3288
3289 ret = -EINVAL;
3290 if (sscanf(buf, "%d", &v) == 1) {
3291 attrs->no_numa = !v;
3292 ret = apply_workqueue_attrs(wq, attrs);
3293 }
3294
3295 free_workqueue_attrs(attrs);
3296 return ret ?: count;
3297 }
3298
3299 static struct device_attribute wq_sysfs_unbound_attrs[] = {
3300 __ATTR(pool_ids, 0444, wq_pool_ids_show, NULL),
3301 __ATTR(nice, 0644, wq_nice_show, wq_nice_store),
3302 __ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store),
3303 __ATTR(numa, 0644, wq_numa_show, wq_numa_store),
3304 __ATTR_NULL,
3305 };
3306
3307 static struct bus_type wq_subsys = {
3308 .name = "workqueue",
3309 .dev_groups = wq_sysfs_groups,
3310 };
3311
3312 static int __init wq_sysfs_init(void)
3313 {
3314 return subsys_virtual_register(&wq_subsys, NULL);
3315 }
3316 core_initcall(wq_sysfs_init);
3317
3318 static void wq_device_release(struct device *dev)
3319 {
3320 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
3321
3322 kfree(wq_dev);
3323 }
3324
3325 /**
3326 * workqueue_sysfs_register - make a workqueue visible in sysfs
3327 * @wq: the workqueue to register
3328 *
3329 * Expose @wq in sysfs under /sys/bus/workqueue/devices.
3330 * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set
3331 * which is the preferred method.
3332 *
3333 * Workqueue user should use this function directly iff it wants to apply
3334 * workqueue_attrs before making the workqueue visible in sysfs; otherwise,
3335 * apply_workqueue_attrs() may race against userland updating the
3336 * attributes.
3337 *
3338 * Return: 0 on success, -errno on failure.
3339 */
3340 int workqueue_sysfs_register(struct workqueue_struct *wq)
3341 {
3342 struct wq_device *wq_dev;
3343 int ret;
3344
3345 /*
3346 * Adjusting max_active or creating new pwqs by applyting
3347 * attributes breaks ordering guarantee. Disallow exposing ordered
3348 * workqueues.
3349 */
3350 if (WARN_ON(wq->flags & __WQ_ORDERED))
3351 return -EINVAL;
3352
3353 wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL);
3354 if (!wq_dev)
3355 return -ENOMEM;
3356
3357 wq_dev->wq = wq;
3358 wq_dev->dev.bus = &wq_subsys;
3359 wq_dev->dev.init_name = wq->name;
3360 wq_dev->dev.release = wq_device_release;
3361
3362 /*
3363 * unbound_attrs are created separately. Suppress uevent until
3364 * everything is ready.
3365 */
3366 dev_set_uevent_suppress(&wq_dev->dev, true);
3367
3368 ret = device_register(&wq_dev->dev);
3369 if (ret) {
3370 kfree(wq_dev);
3371 wq->wq_dev = NULL;
3372 return ret;
3373 }
3374
3375 if (wq->flags & WQ_UNBOUND) {
3376 struct device_attribute *attr;
3377
3378 for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) {
3379 ret = device_create_file(&wq_dev->dev, attr);
3380 if (ret) {
3381 device_unregister(&wq_dev->dev);
3382 wq->wq_dev = NULL;
3383 return ret;
3384 }
3385 }
3386 }
3387
3388 kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD);
3389 return 0;
3390 }
3391
3392 /**
3393 * workqueue_sysfs_unregister - undo workqueue_sysfs_register()
3394 * @wq: the workqueue to unregister
3395 *
3396 * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister.
3397 */
3398 static void workqueue_sysfs_unregister(struct workqueue_struct *wq)
3399 {
3400 struct wq_device *wq_dev = wq->wq_dev;
3401
3402 if (!wq->wq_dev)
3403 return;
3404
3405 wq->wq_dev = NULL;
3406 device_unregister(&wq_dev->dev);
3407 }
3408 #else /* CONFIG_SYSFS */
3409 static void workqueue_sysfs_unregister(struct workqueue_struct *wq) { }
3410 #endif /* CONFIG_SYSFS */
3411
3412 /**
3413 * free_workqueue_attrs - free a workqueue_attrs
3414 * @attrs: workqueue_attrs to free
3415 *
3416 * Undo alloc_workqueue_attrs().
3417 */
3418 void free_workqueue_attrs(struct workqueue_attrs *attrs)
3419 {
3420 if (attrs) {
3421 free_cpumask_var(attrs->cpumask);
3422 kfree(attrs);
3423 }
3424 }
3425
3426 /**
3427 * alloc_workqueue_attrs - allocate a workqueue_attrs
3428 * @gfp_mask: allocation mask to use
3429 *
3430 * Allocate a new workqueue_attrs, initialize with default settings and
3431 * return it.
3432 *
3433 * Return: The allocated new workqueue_attr on success. %NULL on failure.
3434 */
3435 struct workqueue_attrs *alloc_workqueue_attrs(gfp_t gfp_mask)
3436 {
3437 struct workqueue_attrs *attrs;
3438
3439 attrs = kzalloc(sizeof(*attrs), gfp_mask);
3440 if (!attrs)
3441 goto fail;
3442 if (!alloc_cpumask_var(&attrs->cpumask, gfp_mask))
3443 goto fail;
3444
3445 cpumask_copy(attrs->cpumask, cpu_possible_mask);
3446 return attrs;
3447 fail:
3448 free_workqueue_attrs(attrs);
3449 return NULL;
3450 }
3451
3452 static void copy_workqueue_attrs(struct workqueue_attrs *to,
3453 const struct workqueue_attrs *from)
3454 {
3455 to->nice = from->nice;
3456 cpumask_copy(to->cpumask, from->cpumask);
3457 /*
3458 * Unlike hash and equality test, this function doesn't ignore
3459 * ->no_numa as it is used for both pool and wq attrs. Instead,
3460 * get_unbound_pool() explicitly clears ->no_numa after copying.
3461 */
3462 to->no_numa = from->no_numa;
3463 }
3464
3465 /* hash value of the content of @attr */
3466 static u32 wqattrs_hash(const struct workqueue_attrs *attrs)
3467 {
3468 u32 hash = 0;
3469
3470 hash = jhash_1word(attrs->nice, hash);
3471 hash = jhash(cpumask_bits(attrs->cpumask),
3472 BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash);
3473 return hash;
3474 }
3475
3476 /* content equality test */
3477 static bool wqattrs_equal(const struct workqueue_attrs *a,
3478 const struct workqueue_attrs *b)
3479 {
3480 if (a->nice != b->nice)
3481 return false;
3482 if (!cpumask_equal(a->cpumask, b->cpumask))
3483 return false;
3484 return true;
3485 }
3486
3487 /**
3488 * init_worker_pool - initialize a newly zalloc'd worker_pool
3489 * @pool: worker_pool to initialize
3490 *
3491 * Initiailize a newly zalloc'd @pool. It also allocates @pool->attrs.
3492 *
3493 * Return: 0 on success, -errno on failure. Even on failure, all fields
3494 * inside @pool proper are initialized and put_unbound_pool() can be called
3495 * on @pool safely to release it.
3496 */
3497 static int init_worker_pool(struct worker_pool *pool)
3498 {
3499 spin_lock_init(&pool->lock);
3500 pool->id = -1;
3501 pool->cpu = -1;
3502 pool->node = NUMA_NO_NODE;
3503 pool->flags |= POOL_DISASSOCIATED;
3504 INIT_LIST_HEAD(&pool->worklist);
3505 INIT_LIST_HEAD(&pool->idle_list);
3506 hash_init(pool->busy_hash);
3507
3508 init_timer_deferrable(&pool->idle_timer);
3509 pool->idle_timer.function = idle_worker_timeout;
3510 pool->idle_timer.data = (unsigned long)pool;
3511
3512 setup_timer(&pool->mayday_timer, pool_mayday_timeout,
3513 (unsigned long)pool);
3514
3515 mutex_init(&pool->manager_arb);
3516 mutex_init(&pool->manager_mutex);
3517 idr_init(&pool->worker_idr);
3518
3519 INIT_HLIST_NODE(&pool->hash_node);
3520 pool->refcnt = 1;
3521
3522 /* shouldn't fail above this point */
3523 pool->attrs = alloc_workqueue_attrs(GFP_KERNEL);
3524 if (!pool->attrs)
3525 return -ENOMEM;
3526 return 0;
3527 }
3528
3529 static void rcu_free_pool(struct rcu_head *rcu)
3530 {
3531 struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu);
3532
3533 idr_destroy(&pool->worker_idr);
3534 free_workqueue_attrs(pool->attrs);
3535 kfree(pool);
3536 }
3537
3538 /**
3539 * put_unbound_pool - put a worker_pool
3540 * @pool: worker_pool to put
3541 *
3542 * Put @pool. If its refcnt reaches zero, it gets destroyed in sched-RCU
3543 * safe manner. get_unbound_pool() calls this function on its failure path
3544 * and this function should be able to release pools which went through,
3545 * successfully or not, init_worker_pool().
3546 *
3547 * Should be called with wq_pool_mutex held.
3548 */
3549 static void put_unbound_pool(struct worker_pool *pool)
3550 {
3551 struct worker *worker;
3552
3553 lockdep_assert_held(&wq_pool_mutex);
3554
3555 if (--pool->refcnt)
3556 return;
3557
3558 /* sanity checks */
3559 if (WARN_ON(!(pool->flags & POOL_DISASSOCIATED)) ||
3560 WARN_ON(!list_empty(&pool->worklist)))
3561 return;
3562
3563 /* release id and unhash */
3564 if (pool->id >= 0)
3565 idr_remove(&worker_pool_idr, pool->id);
3566 hash_del(&pool->hash_node);
3567
3568 /*
3569 * Become the manager and destroy all workers. Grabbing
3570 * manager_arb prevents @pool's workers from blocking on
3571 * manager_mutex.
3572 */
3573 mutex_lock(&pool->manager_arb);
3574 mutex_lock(&pool->manager_mutex);
3575 spin_lock_irq(&pool->lock);
3576
3577 while ((worker = first_worker(pool)))
3578 destroy_worker(worker);
3579 WARN_ON(pool->nr_workers || pool->nr_idle);
3580
3581 spin_unlock_irq(&pool->lock);
3582 mutex_unlock(&pool->manager_mutex);
3583 mutex_unlock(&pool->manager_arb);
3584
3585 /* shut down the timers */
3586 del_timer_sync(&pool->idle_timer);
3587 del_timer_sync(&pool->mayday_timer);
3588
3589 /* sched-RCU protected to allow dereferences from get_work_pool() */
3590 call_rcu_sched(&pool->rcu, rcu_free_pool);
3591 }
3592
3593 /**
3594 * get_unbound_pool - get a worker_pool with the specified attributes
3595 * @attrs: the attributes of the worker_pool to get
3596 *
3597 * Obtain a worker_pool which has the same attributes as @attrs, bump the
3598 * reference count and return it. If there already is a matching
3599 * worker_pool, it will be used; otherwise, this function attempts to
3600 * create a new one.
3601 *
3602 * Should be called with wq_pool_mutex held.
3603 *
3604 * Return: On success, a worker_pool with the same attributes as @attrs.
3605 * On failure, %NULL.
3606 */
3607 static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs)
3608 {
3609 u32 hash = wqattrs_hash(attrs);
3610 struct worker_pool *pool;
3611 int node;
3612
3613 lockdep_assert_held(&wq_pool_mutex);
3614
3615 /* do we already have a matching pool? */
3616 hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) {
3617 if (wqattrs_equal(pool->attrs, attrs)) {
3618 pool->refcnt++;
3619 goto out_unlock;
3620 }
3621 }
3622
3623 /* nope, create a new one */
3624 pool = kzalloc(sizeof(*pool), GFP_KERNEL);
3625 if (!pool || init_worker_pool(pool) < 0)
3626 goto fail;
3627
3628 if (workqueue_freezing)
3629 pool->flags |= POOL_FREEZING;
3630
3631 lockdep_set_subclass(&pool->lock, 1); /* see put_pwq() */
3632 copy_workqueue_attrs(pool->attrs, attrs);
3633
3634 /*
3635 * no_numa isn't a worker_pool attribute, always clear it. See
3636 * 'struct workqueue_attrs' comments for detail.
3637 */
3638 pool->attrs->no_numa = false;
3639
3640 /* if cpumask is contained inside a NUMA node, we belong to that node */
3641 if (wq_numa_enabled) {
3642 for_each_node(node) {
3643 if (cpumask_subset(pool->attrs->cpumask,
3644 wq_numa_possible_cpumask[node])) {
3645 pool->node = node;
3646 break;
3647 }
3648 }
3649 }
3650
3651 if (worker_pool_assign_id(pool) < 0)
3652 goto fail;
3653
3654 /* create and start the initial worker */
3655 if (create_and_start_worker(pool) < 0)
3656 goto fail;
3657
3658 /* install */
3659 hash_add(unbound_pool_hash, &pool->hash_node, hash);
3660 out_unlock:
3661 return pool;
3662 fail:
3663 if (pool)
3664 put_unbound_pool(pool);
3665 return NULL;
3666 }
3667
3668 static void rcu_free_pwq(struct rcu_head *rcu)
3669 {
3670 kmem_cache_free(pwq_cache,
3671 container_of(rcu, struct pool_workqueue, rcu));
3672 }
3673
3674 /*
3675 * Scheduled on system_wq by put_pwq() when an unbound pwq hits zero refcnt
3676 * and needs to be destroyed.
3677 */
3678 static void pwq_unbound_release_workfn(struct work_struct *work)
3679 {
3680 struct pool_workqueue *pwq = container_of(work, struct pool_workqueue,
3681 unbound_release_work);
3682 struct workqueue_struct *wq = pwq->wq;
3683 struct worker_pool *pool = pwq->pool;
3684 bool is_last;
3685
3686 if (WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND)))
3687 return;
3688
3689 /*
3690 * Unlink @pwq. Synchronization against wq->mutex isn't strictly
3691 * necessary on release but do it anyway. It's easier to verify
3692 * and consistent with the linking path.
3693 */
3694 mutex_lock(&wq->mutex);
3695 list_del_rcu(&pwq->pwqs_node);
3696 is_last = list_empty(&wq->pwqs);
3697 mutex_unlock(&wq->mutex);
3698
3699 mutex_lock(&wq_pool_mutex);
3700 put_unbound_pool(pool);
3701 mutex_unlock(&wq_pool_mutex);
3702
3703 call_rcu_sched(&pwq->rcu, rcu_free_pwq);
3704
3705 /*
3706 * If we're the last pwq going away, @wq is already dead and no one
3707 * is gonna access it anymore. Free it.
3708 */
3709 if (is_last) {
3710 free_workqueue_attrs(wq->unbound_attrs);
3711 kfree(wq);
3712 }
3713 }
3714
3715 /**
3716 * pwq_adjust_max_active - update a pwq's max_active to the current setting
3717 * @pwq: target pool_workqueue
3718 *
3719 * If @pwq isn't freezing, set @pwq->max_active to the associated
3720 * workqueue's saved_max_active and activate delayed work items
3721 * accordingly. If @pwq is freezing, clear @pwq->max_active to zero.
3722 */
3723 static void pwq_adjust_max_active(struct pool_workqueue *pwq)
3724 {
3725 struct workqueue_struct *wq = pwq->wq;
3726 bool freezable = wq->flags & WQ_FREEZABLE;
3727
3728 /* for @wq->saved_max_active */
3729 lockdep_assert_held(&wq->mutex);
3730
3731 /* fast exit for non-freezable wqs */
3732 if (!freezable && pwq->max_active == wq->saved_max_active)
3733 return;
3734
3735 spin_lock_irq(&pwq->pool->lock);
3736
3737 if (!freezable || !(pwq->pool->flags & POOL_FREEZING)) {
3738 pwq->max_active = wq->saved_max_active;
3739
3740 while (!list_empty(&pwq->delayed_works) &&
3741 pwq->nr_active < pwq->max_active)
3742 pwq_activate_first_delayed(pwq);
3743
3744 /*
3745 * Need to kick a worker after thawed or an unbound wq's
3746 * max_active is bumped. It's a slow path. Do it always.
3747 */
3748 wake_up_worker(pwq->pool);
3749 } else {
3750 pwq->max_active = 0;
3751 }
3752
3753 spin_unlock_irq(&pwq->pool->lock);
3754 }
3755
3756 /* initialize newly alloced @pwq which is associated with @wq and @pool */
3757 static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq,
3758 struct worker_pool *pool)
3759 {
3760 BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK);
3761
3762 memset(pwq, 0, sizeof(*pwq));
3763
3764 pwq->pool = pool;
3765 pwq->wq = wq;
3766 pwq->flush_color = -1;
3767 pwq->refcnt = 1;
3768 INIT_LIST_HEAD(&pwq->delayed_works);
3769 INIT_LIST_HEAD(&pwq->pwqs_node);
3770 INIT_LIST_HEAD(&pwq->mayday_node);
3771 INIT_WORK(&pwq->unbound_release_work, pwq_unbound_release_workfn);
3772 }
3773
3774 /* sync @pwq with the current state of its associated wq and link it */
3775 static void link_pwq(struct pool_workqueue *pwq)
3776 {
3777 struct workqueue_struct *wq = pwq->wq;
3778
3779 lockdep_assert_held(&wq->mutex);
3780
3781 /* may be called multiple times, ignore if already linked */
3782 if (!list_empty(&pwq->pwqs_node))
3783 return;
3784
3785 /*
3786 * Set the matching work_color. This is synchronized with
3787 * wq->mutex to avoid confusing flush_workqueue().
3788 */
3789 pwq->work_color = wq->work_color;
3790
3791 /* sync max_active to the current setting */
3792 pwq_adjust_max_active(pwq);
3793
3794 /* link in @pwq */
3795 list_add_rcu(&pwq->pwqs_node, &wq->pwqs);
3796 }
3797
3798 /* obtain a pool matching @attr and create a pwq associating the pool and @wq */
3799 static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq,
3800 const struct workqueue_attrs *attrs)
3801 {
3802 struct worker_pool *pool;
3803 struct pool_workqueue *pwq;
3804
3805 lockdep_assert_held(&wq_pool_mutex);
3806
3807 pool = get_unbound_pool(attrs);
3808 if (!pool)
3809 return NULL;
3810
3811 pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node);
3812 if (!pwq) {
3813 put_unbound_pool(pool);
3814 return NULL;
3815 }
3816
3817 init_pwq(pwq, wq, pool);
3818 return pwq;
3819 }
3820
3821 /* undo alloc_unbound_pwq(), used only in the error path */
3822 static void free_unbound_pwq(struct pool_workqueue *pwq)
3823 {
3824 lockdep_assert_held(&wq_pool_mutex);
3825
3826 if (pwq) {
3827 put_unbound_pool(pwq->pool);
3828 kmem_cache_free(pwq_cache, pwq);
3829 }
3830 }
3831
3832 /**
3833 * wq_calc_node_mask - calculate a wq_attrs' cpumask for the specified node
3834 * @attrs: the wq_attrs of interest
3835 * @node: the target NUMA node
3836 * @cpu_going_down: if >= 0, the CPU to consider as offline
3837 * @cpumask: outarg, the resulting cpumask
3838 *
3839 * Calculate the cpumask a workqueue with @attrs should use on @node. If
3840 * @cpu_going_down is >= 0, that cpu is considered offline during
3841 * calculation. The result is stored in @cpumask.
3842 *
3843 * If NUMA affinity is not enabled, @attrs->cpumask is always used. If
3844 * enabled and @node has online CPUs requested by @attrs, the returned
3845 * cpumask is the intersection of the possible CPUs of @node and
3846 * @attrs->cpumask.
3847 *
3848 * The caller is responsible for ensuring that the cpumask of @node stays
3849 * stable.
3850 *
3851 * Return: %true if the resulting @cpumask is different from @attrs->cpumask,
3852 * %false if equal.
3853 */
3854 static bool wq_calc_node_cpumask(const struct workqueue_attrs *attrs, int node,
3855 int cpu_going_down, cpumask_t *cpumask)
3856 {
3857 if (!wq_numa_enabled || attrs->no_numa)
3858 goto use_dfl;
3859
3860 /* does @node have any online CPUs @attrs wants? */
3861 cpumask_and(cpumask, cpumask_of_node(node), attrs->cpumask);
3862 if (cpu_going_down >= 0)
3863 cpumask_clear_cpu(cpu_going_down, cpumask);
3864
3865 if (cpumask_empty(cpumask))
3866 goto use_dfl;
3867
3868 /* yeap, return possible CPUs in @node that @attrs wants */
3869 cpumask_and(cpumask, attrs->cpumask, wq_numa_possible_cpumask[node]);
3870 return !cpumask_equal(cpumask, attrs->cpumask);
3871
3872 use_dfl:
3873 cpumask_copy(cpumask, attrs->cpumask);
3874 return false;
3875 }
3876
3877 /* install @pwq into @wq's numa_pwq_tbl[] for @node and return the old pwq */
3878 static struct pool_workqueue *numa_pwq_tbl_install(struct workqueue_struct *wq,
3879 int node,
3880 struct pool_workqueue *pwq)
3881 {
3882 struct pool_workqueue *old_pwq;
3883
3884 lockdep_assert_held(&wq->mutex);
3885
3886 /* link_pwq() can handle duplicate calls */
3887 link_pwq(pwq);
3888
3889 old_pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
3890 rcu_assign_pointer(wq->numa_pwq_tbl[node], pwq);
3891 return old_pwq;
3892 }
3893
3894 /**
3895 * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue
3896 * @wq: the target workqueue
3897 * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs()
3898 *
3899 * Apply @attrs to an unbound workqueue @wq. Unless disabled, on NUMA
3900 * machines, this function maps a separate pwq to each NUMA node with
3901 * possibles CPUs in @attrs->cpumask so that work items are affine to the
3902 * NUMA node it was issued on. Older pwqs are released as in-flight work
3903 * items finish. Note that a work item which repeatedly requeues itself
3904 * back-to-back will stay on its current pwq.
3905 *
3906 * Performs GFP_KERNEL allocations.
3907 *
3908 * Return: 0 on success and -errno on failure.
3909 */
3910 int apply_workqueue_attrs(struct workqueue_struct *wq,
3911 const struct workqueue_attrs *attrs)
3912 {
3913 struct workqueue_attrs *new_attrs, *tmp_attrs;
3914 struct pool_workqueue **pwq_tbl, *dfl_pwq;
3915 int node, ret;
3916
3917 /* only unbound workqueues can change attributes */
3918 if (WARN_ON(!(wq->flags & WQ_UNBOUND)))
3919 return -EINVAL;
3920
3921 /* creating multiple pwqs breaks ordering guarantee */
3922 if (WARN_ON((wq->flags & __WQ_ORDERED) && !list_empty(&wq->pwqs)))
3923 return -EINVAL;
3924
3925 pwq_tbl = kzalloc(wq_numa_tbl_len * sizeof(pwq_tbl[0]), GFP_KERNEL);
3926 new_attrs = alloc_workqueue_attrs(GFP_KERNEL);
3927 tmp_attrs = alloc_workqueue_attrs(GFP_KERNEL);
3928 if (!pwq_tbl || !new_attrs || !tmp_attrs)
3929 goto enomem;
3930
3931 /* make a copy of @attrs and sanitize it */
3932 copy_workqueue_attrs(new_attrs, attrs);
3933 cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask);
3934
3935 /*
3936 * We may create multiple pwqs with differing cpumasks. Make a
3937 * copy of @new_attrs which will be modified and used to obtain
3938 * pools.
3939 */
3940 copy_workqueue_attrs(tmp_attrs, new_attrs);
3941
3942 /*
3943 * CPUs should stay stable across pwq creations and installations.
3944 * Pin CPUs, determine the target cpumask for each node and create
3945 * pwqs accordingly.
3946 */
3947 get_online_cpus();
3948
3949 mutex_lock(&wq_pool_mutex);
3950
3951 /*
3952 * If something goes wrong during CPU up/down, we'll fall back to
3953 * the default pwq covering whole @attrs->cpumask. Always create
3954 * it even if we don't use it immediately.
3955 */
3956 dfl_pwq = alloc_unbound_pwq(wq, new_attrs);
3957 if (!dfl_pwq)
3958 goto enomem_pwq;
3959
3960 for_each_node(node) {
3961 if (wq_calc_node_cpumask(attrs, node, -1, tmp_attrs->cpumask)) {
3962 pwq_tbl[node] = alloc_unbound_pwq(wq, tmp_attrs);
3963 if (!pwq_tbl[node])
3964 goto enomem_pwq;
3965 } else {
3966 dfl_pwq->refcnt++;
3967 pwq_tbl[node] = dfl_pwq;
3968 }
3969 }
3970
3971 mutex_unlock(&wq_pool_mutex);
3972
3973 /* all pwqs have been created successfully, let's install'em */
3974 mutex_lock(&wq->mutex);
3975
3976 copy_workqueue_attrs(wq->unbound_attrs, new_attrs);
3977
3978 /* save the previous pwq and install the new one */
3979 for_each_node(node)
3980 pwq_tbl[node] = numa_pwq_tbl_install(wq, node, pwq_tbl[node]);
3981
3982 /* @dfl_pwq might not have been used, ensure it's linked */
3983 link_pwq(dfl_pwq);
3984 swap(wq->dfl_pwq, dfl_pwq);
3985
3986 mutex_unlock(&wq->mutex);
3987
3988 /* put the old pwqs */
3989 for_each_node(node)
3990 put_pwq_unlocked(pwq_tbl[node]);
3991 put_pwq_unlocked(dfl_pwq);
3992
3993 put_online_cpus();
3994 ret = 0;
3995 /* fall through */
3996 out_free:
3997 free_workqueue_attrs(tmp_attrs);
3998 free_workqueue_attrs(new_attrs);
3999 kfree(pwq_tbl);
4000 return ret;
4001
4002 enomem_pwq:
4003 free_unbound_pwq(dfl_pwq);
4004 for_each_node(node)
4005 if (pwq_tbl && pwq_tbl[node] != dfl_pwq)
4006 free_unbound_pwq(pwq_tbl[node]);
4007 mutex_unlock(&wq_pool_mutex);
4008 put_online_cpus();
4009 enomem:
4010 ret = -ENOMEM;
4011 goto out_free;
4012 }
4013
4014 /**
4015 * wq_update_unbound_numa - update NUMA affinity of a wq for CPU hot[un]plug
4016 * @wq: the target workqueue
4017 * @cpu: the CPU coming up or going down
4018 * @online: whether @cpu is coming up or going down
4019 *
4020 * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and
4021 * %CPU_DOWN_FAILED. @cpu is being hot[un]plugged, update NUMA affinity of
4022 * @wq accordingly.
4023 *
4024 * If NUMA affinity can't be adjusted due to memory allocation failure, it
4025 * falls back to @wq->dfl_pwq which may not be optimal but is always
4026 * correct.
4027 *
4028 * Note that when the last allowed CPU of a NUMA node goes offline for a
4029 * workqueue with a cpumask spanning multiple nodes, the workers which were
4030 * already executing the work items for the workqueue will lose their CPU
4031 * affinity and may execute on any CPU. This is similar to how per-cpu
4032 * workqueues behave on CPU_DOWN. If a workqueue user wants strict
4033 * affinity, it's the user's responsibility to flush the work item from
4034 * CPU_DOWN_PREPARE.
4035 */
4036 static void wq_update_unbound_numa(struct workqueue_struct *wq, int cpu,
4037 bool online)
4038 {
4039 int node = cpu_to_node(cpu);
4040 int cpu_off = online ? -1 : cpu;
4041 struct pool_workqueue *old_pwq = NULL, *pwq;
4042 struct workqueue_attrs *target_attrs;
4043 cpumask_t *cpumask;
4044
4045 lockdep_assert_held(&wq_pool_mutex);
4046
4047 if (!wq_numa_enabled || !(wq->flags & WQ_UNBOUND))
4048 return;
4049
4050 /*
4051 * We don't wanna alloc/free wq_attrs for each wq for each CPU.
4052 * Let's use a preallocated one. The following buf is protected by
4053 * CPU hotplug exclusion.
4054 */
4055 target_attrs = wq_update_unbound_numa_attrs_buf;
4056 cpumask = target_attrs->cpumask;
4057
4058 mutex_lock(&wq->mutex);
4059 if (wq->unbound_attrs->no_numa)
4060 goto out_unlock;
4061
4062 copy_workqueue_attrs(target_attrs, wq->unbound_attrs);
4063 pwq = unbound_pwq_by_node(wq, node);
4064
4065 /*
4066 * Let's determine what needs to be done. If the target cpumask is
4067 * different from wq's, we need to compare it to @pwq's and create
4068 * a new one if they don't match. If the target cpumask equals
4069 * wq's, the default pwq should be used. If @pwq is already the
4070 * default one, nothing to do; otherwise, install the default one.
4071 */
4072 if (wq_calc_node_cpumask(wq->unbound_attrs, node, cpu_off, cpumask)) {
4073 if (cpumask_equal(cpumask, pwq->pool->attrs->cpumask))
4074 goto out_unlock;
4075 } else {
4076 if (pwq == wq->dfl_pwq)
4077 goto out_unlock;
4078 else
4079 goto use_dfl_pwq;
4080 }
4081
4082 mutex_unlock(&wq->mutex);
4083
4084 /* create a new pwq */
4085 pwq = alloc_unbound_pwq(wq, target_attrs);
4086 if (!pwq) {
4087 pr_warning("workqueue: allocation failed while updating NUMA affinity of \"%s\"\n",
4088 wq->name);
4089 goto out_unlock;
4090 }
4091
4092 /*
4093 * Install the new pwq. As this function is called only from CPU
4094 * hotplug callbacks and applying a new attrs is wrapped with
4095 * get/put_online_cpus(), @wq->unbound_attrs couldn't have changed
4096 * inbetween.
4097 */
4098 mutex_lock(&wq->mutex);
4099 old_pwq = numa_pwq_tbl_install(wq, node, pwq);
4100 goto out_unlock;
4101
4102 use_dfl_pwq:
4103 spin_lock_irq(&wq->dfl_pwq->pool->lock);
4104 get_pwq(wq->dfl_pwq);
4105 spin_unlock_irq(&wq->dfl_pwq->pool->lock);
4106 old_pwq = numa_pwq_tbl_install(wq, node, wq->dfl_pwq);
4107 out_unlock:
4108 mutex_unlock(&wq->mutex);
4109 put_pwq_unlocked(old_pwq);
4110 }
4111
4112 static int alloc_and_link_pwqs(struct workqueue_struct *wq)
4113 {
4114 bool highpri = wq->flags & WQ_HIGHPRI;
4115 int cpu, ret;
4116
4117 if (!(wq->flags & WQ_UNBOUND)) {
4118 wq->cpu_pwqs = alloc_percpu(struct pool_workqueue);
4119 if (!wq->cpu_pwqs)
4120 return -ENOMEM;
4121
4122 for_each_possible_cpu(cpu) {
4123 struct pool_workqueue *pwq =
4124 per_cpu_ptr(wq->cpu_pwqs, cpu);
4125 struct worker_pool *cpu_pools =
4126 per_cpu(cpu_worker_pools, cpu);
4127
4128 init_pwq(pwq, wq, &cpu_pools[highpri]);
4129
4130 mutex_lock(&wq->mutex);
4131 link_pwq(pwq);
4132 mutex_unlock(&wq->mutex);
4133 }
4134 return 0;
4135 } else if (wq->flags & __WQ_ORDERED) {
4136 ret = apply_workqueue_attrs(wq, ordered_wq_attrs[highpri]);
4137 /* there should only be single pwq for ordering guarantee */
4138 WARN(!ret && (wq->pwqs.next != &wq->dfl_pwq->pwqs_node ||
4139 wq->pwqs.prev != &wq->dfl_pwq->pwqs_node),
4140 "ordering guarantee broken for workqueue %s\n", wq->name);
4141 return ret;
4142 } else {
4143 return apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]);
4144 }
4145 }
4146
4147 static int wq_clamp_max_active(int max_active, unsigned int flags,
4148 const char *name)
4149 {
4150 int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;
4151
4152 if (max_active < 1 || max_active > lim)
4153 pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
4154 max_active, name, 1, lim);
4155
4156 return clamp_val(max_active, 1, lim);
4157 }
4158
4159 struct workqueue_struct *__alloc_workqueue_key(const char *fmt,
4160 unsigned int flags,
4161 int max_active,
4162 struct lock_class_key *key,
4163 const char *lock_name, ...)
4164 {
4165 size_t tbl_size = 0;
4166 va_list args;
4167 struct workqueue_struct *wq;
4168 struct pool_workqueue *pwq;
4169
4170 /* see the comment above the definition of WQ_POWER_EFFICIENT */
4171 if ((flags & WQ_POWER_EFFICIENT) && wq_power_efficient)
4172 flags |= WQ_UNBOUND;
4173
4174 /* allocate wq and format name */
4175 if (flags & WQ_UNBOUND)
4176 tbl_size = wq_numa_tbl_len * sizeof(wq->numa_pwq_tbl[0]);
4177
4178 wq = kzalloc(sizeof(*wq) + tbl_size, GFP_KERNEL);
4179 if (!wq)
4180 return NULL;
4181
4182 if (flags & WQ_UNBOUND) {
4183 wq->unbound_attrs = alloc_workqueue_attrs(GFP_KERNEL);
4184 if (!wq->unbound_attrs)
4185 goto err_free_wq;
4186 }
4187
4188 va_start(args, lock_name);
4189 vsnprintf(wq->name, sizeof(wq->name), fmt, args);
4190 va_end(args);
4191
4192 max_active = max_active ?: WQ_DFL_ACTIVE;
4193 max_active = wq_clamp_max_active(max_active, flags, wq->name);
4194
4195 /* init wq */
4196 wq->flags = flags;
4197 wq->saved_max_active = max_active;
4198 mutex_init(&wq->mutex);
4199 atomic_set(&wq->nr_pwqs_to_flush, 0);
4200 INIT_LIST_HEAD(&wq->pwqs);
4201 INIT_LIST_HEAD(&wq->flusher_queue);
4202 INIT_LIST_HEAD(&wq->flusher_overflow);
4203 INIT_LIST_HEAD(&wq->maydays);
4204
4205 lockdep_init_map(&wq->lockdep_map, lock_name, key, 0);
4206 INIT_LIST_HEAD(&wq->list);
4207
4208 if (alloc_and_link_pwqs(wq) < 0)
4209 goto err_free_wq;
4210
4211 /*
4212 * Workqueues which may be used during memory reclaim should
4213 * have a rescuer to guarantee forward progress.
4214 */
4215 if (flags & WQ_MEM_RECLAIM) {
4216 struct worker *rescuer;
4217
4218 rescuer = alloc_worker();
4219 if (!rescuer)
4220 goto err_destroy;
4221
4222 rescuer->rescue_wq = wq;
4223 rescuer->task = kthread_create(rescuer_thread, rescuer, "%s",
4224 wq->name);
4225 if (IS_ERR(rescuer->task)) {
4226 kfree(rescuer);
4227 goto err_destroy;
4228 }
4229
4230 wq->rescuer = rescuer;
4231 rescuer->task->flags |= PF_NO_SETAFFINITY;
4232 wake_up_process(rescuer->task);
4233 }
4234
4235 if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq))
4236 goto err_destroy;
4237
4238 /*
4239 * wq_pool_mutex protects global freeze state and workqueues list.
4240 * Grab it, adjust max_active and add the new @wq to workqueues
4241 * list.
4242 */
4243 mutex_lock(&wq_pool_mutex);
4244
4245 mutex_lock(&wq->mutex);
4246 for_each_pwq(pwq, wq)
4247 pwq_adjust_max_active(pwq);
4248 mutex_unlock(&wq->mutex);
4249
4250 list_add(&wq->list, &workqueues);
4251
4252 mutex_unlock(&wq_pool_mutex);
4253
4254 return wq;
4255
4256 err_free_wq:
4257 free_workqueue_attrs(wq->unbound_attrs);
4258 kfree(wq);
4259 return NULL;
4260 err_destroy:
4261 destroy_workqueue(wq);
4262 return NULL;
4263 }
4264 EXPORT_SYMBOL_GPL(__alloc_workqueue_key);
4265
4266 /**
4267 * destroy_workqueue - safely terminate a workqueue
4268 * @wq: target workqueue
4269 *
4270 * Safely destroy a workqueue. All work currently pending will be done first.
4271 */
4272 void destroy_workqueue(struct workqueue_struct *wq)
4273 {
4274 struct pool_workqueue *pwq;
4275 int node;
4276
4277 /* drain it before proceeding with destruction */
4278 drain_workqueue(wq);
4279
4280 /* sanity checks */
4281 mutex_lock(&wq->mutex);
4282 for_each_pwq(pwq, wq) {
4283 int i;
4284
4285 for (i = 0; i < WORK_NR_COLORS; i++) {
4286 if (WARN_ON(pwq->nr_in_flight[i])) {
4287 mutex_unlock(&wq->mutex);
4288 return;
4289 }
4290 }
4291
4292 if (WARN_ON((pwq != wq->dfl_pwq) && (pwq->refcnt > 1)) ||
4293 WARN_ON(pwq->nr_active) ||
4294 WARN_ON(!list_empty(&pwq->delayed_works))) {
4295 mutex_unlock(&wq->mutex);
4296 return;
4297 }
4298 }
4299 mutex_unlock(&wq->mutex);
4300
4301 /*
4302 * wq list is used to freeze wq, remove from list after
4303 * flushing is complete in case freeze races us.
4304 */
4305 mutex_lock(&wq_pool_mutex);
4306 list_del_init(&wq->list);
4307 mutex_unlock(&wq_pool_mutex);
4308
4309 workqueue_sysfs_unregister(wq);
4310
4311 if (wq->rescuer) {
4312 kthread_stop(wq->rescuer->task);
4313 kfree(wq->rescuer);
4314 wq->rescuer = NULL;
4315 }
4316
4317 if (!(wq->flags & WQ_UNBOUND)) {
4318 /*
4319 * The base ref is never dropped on per-cpu pwqs. Directly
4320 * free the pwqs and wq.
4321 */
4322 free_percpu(wq->cpu_pwqs);
4323 kfree(wq);
4324 } else {
4325 /*
4326 * We're the sole accessor of @wq at this point. Directly
4327 * access numa_pwq_tbl[] and dfl_pwq to put the base refs.
4328 * @wq will be freed when the last pwq is released.
4329 */
4330 for_each_node(node) {
4331 pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
4332 RCU_INIT_POINTER(wq->numa_pwq_tbl[node], NULL);
4333 put_pwq_unlocked(pwq);
4334 }
4335
4336 /*
4337 * Put dfl_pwq. @wq may be freed any time after dfl_pwq is
4338 * put. Don't access it afterwards.
4339 */
4340 pwq = wq->dfl_pwq;
4341 wq->dfl_pwq = NULL;
4342 put_pwq_unlocked(pwq);
4343 }
4344 }
4345 EXPORT_SYMBOL_GPL(destroy_workqueue);
4346
4347 /**
4348 * workqueue_set_max_active - adjust max_active of a workqueue
4349 * @wq: target workqueue
4350 * @max_active: new max_active value.
4351 *
4352 * Set max_active of @wq to @max_active.
4353 *
4354 * CONTEXT:
4355 * Don't call from IRQ context.
4356 */
4357 void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
4358 {
4359 struct pool_workqueue *pwq;
4360
4361 /* disallow meddling with max_active for ordered workqueues */
4362 if (WARN_ON(wq->flags & __WQ_ORDERED))
4363 return;
4364
4365 max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
4366
4367 mutex_lock(&wq->mutex);
4368
4369 wq->saved_max_active = max_active;
4370
4371 for_each_pwq(pwq, wq)
4372 pwq_adjust_max_active(pwq);
4373
4374 mutex_unlock(&wq->mutex);
4375 }
4376 EXPORT_SYMBOL_GPL(workqueue_set_max_active);
4377
4378 /**
4379 * current_is_workqueue_rescuer - is %current workqueue rescuer?
4380 *
4381 * Determine whether %current is a workqueue rescuer. Can be used from
4382 * work functions to determine whether it's being run off the rescuer task.
4383 *
4384 * Return: %true if %current is a workqueue rescuer. %false otherwise.
4385 */
4386 bool current_is_workqueue_rescuer(void)
4387 {
4388 struct worker *worker = current_wq_worker();
4389
4390 return worker && worker->rescue_wq;
4391 }
4392
4393 /**
4394 * workqueue_congested - test whether a workqueue is congested
4395 * @cpu: CPU in question
4396 * @wq: target workqueue
4397 *
4398 * Test whether @wq's cpu workqueue for @cpu is congested. There is
4399 * no synchronization around this function and the test result is
4400 * unreliable and only useful as advisory hints or for debugging.
4401 *
4402 * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU.
4403 * Note that both per-cpu and unbound workqueues may be associated with
4404 * multiple pool_workqueues which have separate congested states. A
4405 * workqueue being congested on one CPU doesn't mean the workqueue is also
4406 * contested on other CPUs / NUMA nodes.
4407 *
4408 * Return:
4409 * %true if congested, %false otherwise.
4410 */
4411 bool workqueue_congested(int cpu, struct workqueue_struct *wq)
4412 {
4413 struct pool_workqueue *pwq;
4414 bool ret;
4415
4416 rcu_read_lock_sched();
4417
4418 if (cpu == WORK_CPU_UNBOUND)
4419 cpu = smp_processor_id();
4420
4421 if (!(wq->flags & WQ_UNBOUND))
4422 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
4423 else
4424 pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
4425
4426 ret = !list_empty(&pwq->delayed_works);
4427 rcu_read_unlock_sched();
4428
4429 return ret;
4430 }
4431 EXPORT_SYMBOL_GPL(workqueue_congested);
4432
4433 /**
4434 * work_busy - test whether a work is currently pending or running
4435 * @work: the work to be tested
4436 *
4437 * Test whether @work is currently pending or running. There is no
4438 * synchronization around this function and the test result is
4439 * unreliable and only useful as advisory hints or for debugging.
4440 *
4441 * Return:
4442 * OR'd bitmask of WORK_BUSY_* bits.
4443 */
4444 unsigned int work_busy(struct work_struct *work)
4445 {
4446 struct worker_pool *pool;
4447 unsigned long flags;
4448 unsigned int ret = 0;
4449
4450 if (work_pending(work))
4451 ret |= WORK_BUSY_PENDING;
4452
4453 local_irq_save(flags);
4454 pool = get_work_pool(work);
4455 if (pool) {
4456 spin_lock(&pool->lock);
4457 if (find_worker_executing_work(pool, work))
4458 ret |= WORK_BUSY_RUNNING;
4459 spin_unlock(&pool->lock);
4460 }
4461 local_irq_restore(flags);
4462
4463 return ret;
4464 }
4465 EXPORT_SYMBOL_GPL(work_busy);
4466
4467 /**
4468 * set_worker_desc - set description for the current work item
4469 * @fmt: printf-style format string
4470 * @...: arguments for the format string
4471 *
4472 * This function can be called by a running work function to describe what
4473 * the work item is about. If the worker task gets dumped, this
4474 * information will be printed out together to help debugging. The
4475 * description can be at most WORKER_DESC_LEN including the trailing '\0'.
4476 */
4477 void set_worker_desc(const char *fmt, ...)
4478 {
4479 struct worker *worker = current_wq_worker();
4480 va_list args;
4481
4482 if (worker) {
4483 va_start(args, fmt);
4484 vsnprintf(worker->desc, sizeof(worker->desc), fmt, args);
4485 va_end(args);
4486 worker->desc_valid = true;
4487 }
4488 }
4489
4490 /**
4491 * print_worker_info - print out worker information and description
4492 * @log_lvl: the log level to use when printing
4493 * @task: target task
4494 *
4495 * If @task is a worker and currently executing a work item, print out the
4496 * name of the workqueue being serviced and worker description set with
4497 * set_worker_desc() by the currently executing work item.
4498 *
4499 * This function can be safely called on any task as long as the
4500 * task_struct itself is accessible. While safe, this function isn't
4501 * synchronized and may print out mixups or garbages of limited length.
4502 */
4503 void print_worker_info(const char *log_lvl, struct task_struct *task)
4504 {
4505 work_func_t *fn = NULL;
4506 char name[WQ_NAME_LEN] = { };
4507 char desc[WORKER_DESC_LEN] = { };
4508 struct pool_workqueue *pwq = NULL;
4509 struct workqueue_struct *wq = NULL;
4510 bool desc_valid = false;
4511 struct worker *worker;
4512
4513 if (!(task->flags & PF_WQ_WORKER))
4514 return;
4515
4516 /*
4517 * This function is called without any synchronization and @task
4518 * could be in any state. Be careful with dereferences.
4519 */
4520 worker = probe_kthread_data(task);
4521
4522 /*
4523 * Carefully copy the associated workqueue's workfn and name. Keep
4524 * the original last '\0' in case the original contains garbage.
4525 */
4526 probe_kernel_read(&fn, &worker->current_func, sizeof(fn));
4527 probe_kernel_read(&pwq, &worker->current_pwq, sizeof(pwq));
4528 probe_kernel_read(&wq, &pwq->wq, sizeof(wq));
4529 probe_kernel_read(name, wq->name, sizeof(name) - 1);
4530
4531 /* copy worker description */
4532 probe_kernel_read(&desc_valid, &worker->desc_valid, sizeof(desc_valid));
4533 if (desc_valid)
4534 probe_kernel_read(desc, worker->desc, sizeof(desc) - 1);
4535
4536 if (fn || name[0] || desc[0]) {
4537 printk("%sWorkqueue: %s %pf", log_lvl, name, fn);
4538 if (desc[0])
4539 pr_cont(" (%s)", desc);
4540 pr_cont("\n");
4541 }
4542 }
4543
4544 /*
4545 * CPU hotplug.
4546 *
4547 * There are two challenges in supporting CPU hotplug. Firstly, there
4548 * are a lot of assumptions on strong associations among work, pwq and
4549 * pool which make migrating pending and scheduled works very
4550 * difficult to implement without impacting hot paths. Secondly,
4551 * worker pools serve mix of short, long and very long running works making
4552 * blocked draining impractical.
4553 *
4554 * This is solved by allowing the pools to be disassociated from the CPU
4555 * running as an unbound one and allowing it to be reattached later if the
4556 * cpu comes back online.
4557 */
4558
4559 static void wq_unbind_fn(struct work_struct *work)
4560 {
4561 int cpu = smp_processor_id();
4562 struct worker_pool *pool;
4563 struct worker *worker;
4564 int wi;
4565
4566 for_each_cpu_worker_pool(pool, cpu) {
4567 WARN_ON_ONCE(cpu != smp_processor_id());
4568
4569 mutex_lock(&pool->manager_mutex);
4570 spin_lock_irq(&pool->lock);
4571
4572 /*
4573 * We've blocked all manager operations. Make all workers
4574 * unbound and set DISASSOCIATED. Before this, all workers
4575 * except for the ones which are still executing works from
4576 * before the last CPU down must be on the cpu. After
4577 * this, they may become diasporas.
4578 */
4579 for_each_pool_worker(worker, wi, pool)
4580 worker->flags |= WORKER_UNBOUND;
4581
4582 pool->flags |= POOL_DISASSOCIATED;
4583
4584 spin_unlock_irq(&pool->lock);
4585 mutex_unlock(&pool->manager_mutex);
4586
4587 /*
4588 * Call schedule() so that we cross rq->lock and thus can
4589 * guarantee sched callbacks see the %WORKER_UNBOUND flag.
4590 * This is necessary as scheduler callbacks may be invoked
4591 * from other cpus.
4592 */
4593 schedule();
4594
4595 /*
4596 * Sched callbacks are disabled now. Zap nr_running.
4597 * After this, nr_running stays zero and need_more_worker()
4598 * and keep_working() are always true as long as the
4599 * worklist is not empty. This pool now behaves as an
4600 * unbound (in terms of concurrency management) pool which
4601 * are served by workers tied to the pool.
4602 */
4603 atomic_set(&pool->nr_running, 0);
4604
4605 /*
4606 * With concurrency management just turned off, a busy
4607 * worker blocking could lead to lengthy stalls. Kick off
4608 * unbound chain execution of currently pending work items.
4609 */
4610 spin_lock_irq(&pool->lock);
4611 wake_up_worker(pool);
4612 spin_unlock_irq(&pool->lock);
4613 }
4614 }
4615
4616 /**
4617 * rebind_workers - rebind all workers of a pool to the associated CPU
4618 * @pool: pool of interest
4619 *
4620 * @pool->cpu is coming online. Rebind all workers to the CPU.
4621 */
4622 static void rebind_workers(struct worker_pool *pool)
4623 {
4624 struct worker *worker;
4625 int wi;
4626
4627 lockdep_assert_held(&pool->manager_mutex);
4628
4629 /*
4630 * Restore CPU affinity of all workers. As all idle workers should
4631 * be on the run-queue of the associated CPU before any local
4632 * wake-ups for concurrency management happen, restore CPU affinty
4633 * of all workers first and then clear UNBOUND. As we're called
4634 * from CPU_ONLINE, the following shouldn't fail.
4635 */
4636 for_each_pool_worker(worker, wi, pool)
4637 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
4638 pool->attrs->cpumask) < 0);
4639
4640 spin_lock_irq(&pool->lock);
4641
4642 for_each_pool_worker(worker, wi, pool) {
4643 unsigned int worker_flags = worker->flags;
4644
4645 /*
4646 * A bound idle worker should actually be on the runqueue
4647 * of the associated CPU for local wake-ups targeting it to
4648 * work. Kick all idle workers so that they migrate to the
4649 * associated CPU. Doing this in the same loop as
4650 * replacing UNBOUND with REBOUND is safe as no worker will
4651 * be bound before @pool->lock is released.
4652 */
4653 if (worker_flags & WORKER_IDLE)
4654 wake_up_process(worker->task);
4655
4656 /*
4657 * We want to clear UNBOUND but can't directly call
4658 * worker_clr_flags() or adjust nr_running. Atomically
4659 * replace UNBOUND with another NOT_RUNNING flag REBOUND.
4660 * @worker will clear REBOUND using worker_clr_flags() when
4661 * it initiates the next execution cycle thus restoring
4662 * concurrency management. Note that when or whether
4663 * @worker clears REBOUND doesn't affect correctness.
4664 *
4665 * ACCESS_ONCE() is necessary because @worker->flags may be
4666 * tested without holding any lock in
4667 * wq_worker_waking_up(). Without it, NOT_RUNNING test may
4668 * fail incorrectly leading to premature concurrency
4669 * management operations.
4670 */
4671 WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND));
4672 worker_flags |= WORKER_REBOUND;
4673 worker_flags &= ~WORKER_UNBOUND;
4674 ACCESS_ONCE(worker->flags) = worker_flags;
4675 }
4676
4677 spin_unlock_irq(&pool->lock);
4678 }
4679
4680 /**
4681 * restore_unbound_workers_cpumask - restore cpumask of unbound workers
4682 * @pool: unbound pool of interest
4683 * @cpu: the CPU which is coming up
4684 *
4685 * An unbound pool may end up with a cpumask which doesn't have any online
4686 * CPUs. When a worker of such pool get scheduled, the scheduler resets
4687 * its cpus_allowed. If @cpu is in @pool's cpumask which didn't have any
4688 * online CPU before, cpus_allowed of all its workers should be restored.
4689 */
4690 static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu)
4691 {
4692 static cpumask_t cpumask;
4693 struct worker *worker;
4694 int wi;
4695
4696 lockdep_assert_held(&pool->manager_mutex);
4697
4698 /* is @cpu allowed for @pool? */
4699 if (!cpumask_test_cpu(cpu, pool->attrs->cpumask))
4700 return;
4701
4702 /* is @cpu the only online CPU? */
4703 cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask);
4704 if (cpumask_weight(&cpumask) != 1)
4705 return;
4706
4707 /* as we're called from CPU_ONLINE, the following shouldn't fail */
4708 for_each_pool_worker(worker, wi, pool)
4709 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
4710 pool->attrs->cpumask) < 0);
4711 }
4712
4713 /*
4714 * Workqueues should be brought up before normal priority CPU notifiers.
4715 * This will be registered high priority CPU notifier.
4716 */
4717 static int workqueue_cpu_up_callback(struct notifier_block *nfb,
4718 unsigned long action,
4719 void *hcpu)
4720 {
4721 int cpu = (unsigned long)hcpu;
4722 struct worker_pool *pool;
4723 struct workqueue_struct *wq;
4724 int pi;
4725
4726 switch (action & ~CPU_TASKS_FROZEN) {
4727 case CPU_UP_PREPARE:
4728 for_each_cpu_worker_pool(pool, cpu) {
4729 if (pool->nr_workers)
4730 continue;
4731 if (create_and_start_worker(pool) < 0)
4732 return NOTIFY_BAD;
4733 }
4734 break;
4735
4736 case CPU_DOWN_FAILED:
4737 case CPU_ONLINE:
4738 mutex_lock(&wq_pool_mutex);
4739
4740 for_each_pool(pool, pi) {
4741 mutex_lock(&pool->manager_mutex);
4742
4743 if (pool->cpu == cpu) {
4744 spin_lock_irq(&pool->lock);
4745 pool->flags &= ~POOL_DISASSOCIATED;
4746 spin_unlock_irq(&pool->lock);
4747
4748 rebind_workers(pool);
4749 } else if (pool->cpu < 0) {
4750 restore_unbound_workers_cpumask(pool, cpu);
4751 }
4752
4753 mutex_unlock(&pool->manager_mutex);
4754 }
4755
4756 /* update NUMA affinity of unbound workqueues */
4757 list_for_each_entry(wq, &workqueues, list)
4758 wq_update_unbound_numa(wq, cpu, true);
4759
4760 mutex_unlock(&wq_pool_mutex);
4761 break;
4762 }
4763 return NOTIFY_OK;
4764 }
4765
4766 /*
4767 * Workqueues should be brought down after normal priority CPU notifiers.
4768 * This will be registered as low priority CPU notifier.
4769 */
4770 static int workqueue_cpu_down_callback(struct notifier_block *nfb,
4771 unsigned long action,
4772 void *hcpu)
4773 {
4774 int cpu = (unsigned long)hcpu;
4775 struct work_struct unbind_work;
4776 struct workqueue_struct *wq;
4777
4778 switch (action & ~CPU_TASKS_FROZEN) {
4779 case CPU_DOWN_PREPARE:
4780 /* unbinding per-cpu workers should happen on the local CPU */
4781 INIT_WORK_ONSTACK(&unbind_work, wq_unbind_fn);
4782 queue_work_on(cpu, system_highpri_wq, &unbind_work);
4783
4784 /* update NUMA affinity of unbound workqueues */
4785 mutex_lock(&wq_pool_mutex);
4786 list_for_each_entry(wq, &workqueues, list)
4787 wq_update_unbound_numa(wq, cpu, false);
4788 mutex_unlock(&wq_pool_mutex);
4789
4790 /* wait for per-cpu unbinding to finish */
4791 flush_work(&unbind_work);
4792 destroy_work_on_stack(&unbind_work);
4793 break;
4794 }
4795 return NOTIFY_OK;
4796 }
4797
4798 #ifdef CONFIG_SMP
4799
4800 struct work_for_cpu {
4801 struct work_struct work;
4802 long (*fn)(void *);
4803 void *arg;
4804 long ret;
4805 };
4806
4807 static void work_for_cpu_fn(struct work_struct *work)
4808 {
4809 struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);
4810
4811 wfc->ret = wfc->fn(wfc->arg);
4812 }
4813
4814 /**
4815 * work_on_cpu - run a function in user context on a particular cpu
4816 * @cpu: the cpu to run on
4817 * @fn: the function to run
4818 * @arg: the function arg
4819 *
4820 * It is up to the caller to ensure that the cpu doesn't go offline.
4821 * The caller must not hold any locks which would prevent @fn from completing.
4822 *
4823 * Return: The value @fn returns.
4824 */
4825 long work_on_cpu(int cpu, long (*fn)(void *), void *arg)
4826 {
4827 struct work_for_cpu wfc = { .fn = fn, .arg = arg };
4828
4829 INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn);
4830 schedule_work_on(cpu, &wfc.work);
4831 flush_work(&wfc.work);
4832 destroy_work_on_stack(&wfc.work);
4833 return wfc.ret;
4834 }
4835 EXPORT_SYMBOL_GPL(work_on_cpu);
4836 #endif /* CONFIG_SMP */
4837
4838 #ifdef CONFIG_FREEZER
4839
4840 /**
4841 * freeze_workqueues_begin - begin freezing workqueues
4842 *
4843 * Start freezing workqueues. After this function returns, all freezable
4844 * workqueues will queue new works to their delayed_works list instead of
4845 * pool->worklist.
4846 *
4847 * CONTEXT:
4848 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
4849 */
4850 void freeze_workqueues_begin(void)
4851 {
4852 struct worker_pool *pool;
4853 struct workqueue_struct *wq;
4854 struct pool_workqueue *pwq;
4855 int pi;
4856
4857 mutex_lock(&wq_pool_mutex);
4858
4859 WARN_ON_ONCE(workqueue_freezing);
4860 workqueue_freezing = true;
4861
4862 /* set FREEZING */
4863 for_each_pool(pool, pi) {
4864 spin_lock_irq(&pool->lock);
4865 WARN_ON_ONCE(pool->flags & POOL_FREEZING);
4866 pool->flags |= POOL_FREEZING;
4867 spin_unlock_irq(&pool->lock);
4868 }
4869
4870 list_for_each_entry(wq, &workqueues, list) {
4871 mutex_lock(&wq->mutex);
4872 for_each_pwq(pwq, wq)
4873 pwq_adjust_max_active(pwq);
4874 mutex_unlock(&wq->mutex);
4875 }
4876
4877 mutex_unlock(&wq_pool_mutex);
4878 }
4879
4880 /**
4881 * freeze_workqueues_busy - are freezable workqueues still busy?
4882 *
4883 * Check whether freezing is complete. This function must be called
4884 * between freeze_workqueues_begin() and thaw_workqueues().
4885 *
4886 * CONTEXT:
4887 * Grabs and releases wq_pool_mutex.
4888 *
4889 * Return:
4890 * %true if some freezable workqueues are still busy. %false if freezing
4891 * is complete.
4892 */
4893 bool freeze_workqueues_busy(void)
4894 {
4895 bool busy = false;
4896 struct workqueue_struct *wq;
4897 struct pool_workqueue *pwq;
4898
4899 mutex_lock(&wq_pool_mutex);
4900
4901 WARN_ON_ONCE(!workqueue_freezing);
4902
4903 list_for_each_entry(wq, &workqueues, list) {
4904 if (!(wq->flags & WQ_FREEZABLE))
4905 continue;
4906 /*
4907 * nr_active is monotonically decreasing. It's safe
4908 * to peek without lock.
4909 */
4910 rcu_read_lock_sched();
4911 for_each_pwq(pwq, wq) {
4912 WARN_ON_ONCE(pwq->nr_active < 0);
4913 if (pwq->nr_active) {
4914 busy = true;
4915 rcu_read_unlock_sched();
4916 goto out_unlock;
4917 }
4918 }
4919 rcu_read_unlock_sched();
4920 }
4921 out_unlock:
4922 mutex_unlock(&wq_pool_mutex);
4923 return busy;
4924 }
4925
4926 /**
4927 * thaw_workqueues - thaw workqueues
4928 *
4929 * Thaw workqueues. Normal queueing is restored and all collected
4930 * frozen works are transferred to their respective pool worklists.
4931 *
4932 * CONTEXT:
4933 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
4934 */
4935 void thaw_workqueues(void)
4936 {
4937 struct workqueue_struct *wq;
4938 struct pool_workqueue *pwq;
4939 struct worker_pool *pool;
4940 int pi;
4941
4942 mutex_lock(&wq_pool_mutex);
4943
4944 if (!workqueue_freezing)
4945 goto out_unlock;
4946
4947 /* clear FREEZING */
4948 for_each_pool(pool, pi) {
4949 spin_lock_irq(&pool->lock);
4950 WARN_ON_ONCE(!(pool->flags & POOL_FREEZING));
4951 pool->flags &= ~POOL_FREEZING;
4952 spin_unlock_irq(&pool->lock);
4953 }
4954
4955 /* restore max_active and repopulate worklist */
4956 list_for_each_entry(wq, &workqueues, list) {
4957 mutex_lock(&wq->mutex);
4958 for_each_pwq(pwq, wq)
4959 pwq_adjust_max_active(pwq);
4960 mutex_unlock(&wq->mutex);
4961 }
4962
4963 workqueue_freezing = false;
4964 out_unlock:
4965 mutex_unlock(&wq_pool_mutex);
4966 }
4967 #endif /* CONFIG_FREEZER */
4968
4969 static void __init wq_numa_init(void)
4970 {
4971 cpumask_var_t *tbl;
4972 int node, cpu;
4973
4974 /* determine NUMA pwq table len - highest node id + 1 */
4975 for_each_node(node)
4976 wq_numa_tbl_len = max(wq_numa_tbl_len, node + 1);
4977
4978 if (num_possible_nodes() <= 1)
4979 return;
4980
4981 if (wq_disable_numa) {
4982 pr_info("workqueue: NUMA affinity support disabled\n");
4983 return;
4984 }
4985
4986 wq_update_unbound_numa_attrs_buf = alloc_workqueue_attrs(GFP_KERNEL);
4987 BUG_ON(!wq_update_unbound_numa_attrs_buf);
4988
4989 /*
4990 * We want masks of possible CPUs of each node which isn't readily
4991 * available. Build one from cpu_to_node() which should have been
4992 * fully initialized by now.
4993 */
4994 tbl = kzalloc(wq_numa_tbl_len * sizeof(tbl[0]), GFP_KERNEL);
4995 BUG_ON(!tbl);
4996
4997 for_each_node(node)
4998 BUG_ON(!alloc_cpumask_var_node(&tbl[node], GFP_KERNEL,
4999 node_online(node) ? node : NUMA_NO_NODE));
5000
5001 for_each_possible_cpu(cpu) {
5002 node = cpu_to_node(cpu);
5003 if (WARN_ON(node == NUMA_NO_NODE)) {
5004 pr_warn("workqueue: NUMA node mapping not available for cpu%d, disabling NUMA support\n", cpu);
5005 /* happens iff arch is bonkers, let's just proceed */
5006 return;
5007 }
5008 cpumask_set_cpu(cpu, tbl[node]);
5009 }
5010
5011 wq_numa_possible_cpumask = tbl;
5012 wq_numa_enabled = true;
5013 }
5014
5015 static int __init init_workqueues(void)
5016 {
5017 int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL };
5018 int i, cpu;
5019
5020 WARN_ON(__alignof__(struct pool_workqueue) < __alignof__(long long));
5021
5022 pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC);
5023
5024 cpu_notifier(workqueue_cpu_up_callback, CPU_PRI_WORKQUEUE_UP);
5025 hotcpu_notifier(workqueue_cpu_down_callback, CPU_PRI_WORKQUEUE_DOWN);
5026
5027 wq_numa_init();
5028
5029 /* initialize CPU pools */
5030 for_each_possible_cpu(cpu) {
5031 struct worker_pool *pool;
5032
5033 i = 0;
5034 for_each_cpu_worker_pool(pool, cpu) {
5035 BUG_ON(init_worker_pool(pool));
5036 pool->cpu = cpu;
5037 cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu));
5038 pool->attrs->nice = std_nice[i++];
5039 pool->node = cpu_to_node(cpu);
5040
5041 /* alloc pool ID */
5042 mutex_lock(&wq_pool_mutex);
5043 BUG_ON(worker_pool_assign_id(pool));
5044 mutex_unlock(&wq_pool_mutex);
5045 }
5046 }
5047
5048 /* create the initial worker */
5049 for_each_online_cpu(cpu) {
5050 struct worker_pool *pool;
5051
5052 for_each_cpu_worker_pool(pool, cpu) {
5053 pool->flags &= ~POOL_DISASSOCIATED;
5054 BUG_ON(create_and_start_worker(pool) < 0);
5055 }
5056 }
5057
5058 /* create default unbound and ordered wq attrs */
5059 for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
5060 struct workqueue_attrs *attrs;
5061
5062 BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
5063 attrs->nice = std_nice[i];
5064 unbound_std_wq_attrs[i] = attrs;
5065
5066 /*
5067 * An ordered wq should have only one pwq as ordering is
5068 * guaranteed by max_active which is enforced by pwqs.
5069 * Turn off NUMA so that dfl_pwq is used for all nodes.
5070 */
5071 BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
5072 attrs->nice = std_nice[i];
5073 attrs->no_numa = true;
5074 ordered_wq_attrs[i] = attrs;
5075 }
5076
5077 system_wq = alloc_workqueue("events", 0, 0);
5078 system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
5079 system_long_wq = alloc_workqueue("events_long", 0, 0);
5080 system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
5081 WQ_UNBOUND_MAX_ACTIVE);
5082 system_freezable_wq = alloc_workqueue("events_freezable",
5083 WQ_FREEZABLE, 0);
5084 system_power_efficient_wq = alloc_workqueue("events_power_efficient",
5085 WQ_POWER_EFFICIENT, 0);
5086 system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_power_efficient",
5087 WQ_FREEZABLE | WQ_POWER_EFFICIENT,
5088 0);
5089 BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
5090 !system_unbound_wq || !system_freezable_wq ||
5091 !system_power_efficient_wq ||
5092 !system_freezable_power_efficient_wq);
5093 return 0;
5094 }
5095 early_initcall(init_workqueues);