]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - kernel/workqueue.c
UBUNTU: Start new release
[mirror_ubuntu-artful-kernel.git] / kernel / workqueue.c
1 /*
2 * kernel/workqueue.c - generic async execution with shared worker pool
3 *
4 * Copyright (C) 2002 Ingo Molnar
5 *
6 * Derived from the taskqueue/keventd code by:
7 * David Woodhouse <dwmw2@infradead.org>
8 * Andrew Morton
9 * Kai Petzke <wpp@marie.physik.tu-berlin.de>
10 * Theodore Ts'o <tytso@mit.edu>
11 *
12 * Made to use alloc_percpu by Christoph Lameter.
13 *
14 * Copyright (C) 2010 SUSE Linux Products GmbH
15 * Copyright (C) 2010 Tejun Heo <tj@kernel.org>
16 *
17 * This is the generic async execution mechanism. Work items as are
18 * executed in process context. The worker pool is shared and
19 * automatically managed. There are two worker pools for each CPU (one for
20 * normal work items and the other for high priority ones) and some extra
21 * pools for workqueues which are not bound to any specific CPU - the
22 * number of these backing pools is dynamic.
23 *
24 * Please read Documentation/workqueue.txt for details.
25 */
26
27 #include <linux/export.h>
28 #include <linux/kernel.h>
29 #include <linux/sched.h>
30 #include <linux/init.h>
31 #include <linux/signal.h>
32 #include <linux/completion.h>
33 #include <linux/workqueue.h>
34 #include <linux/slab.h>
35 #include <linux/cpu.h>
36 #include <linux/notifier.h>
37 #include <linux/kthread.h>
38 #include <linux/hardirq.h>
39 #include <linux/mempolicy.h>
40 #include <linux/freezer.h>
41 #include <linux/kallsyms.h>
42 #include <linux/debug_locks.h>
43 #include <linux/lockdep.h>
44 #include <linux/idr.h>
45 #include <linux/jhash.h>
46 #include <linux/hashtable.h>
47 #include <linux/rculist.h>
48 #include <linux/nodemask.h>
49 #include <linux/moduleparam.h>
50 #include <linux/uaccess.h>
51
52 #include "workqueue_internal.h"
53
54 enum {
55 /*
56 * worker_pool flags
57 *
58 * A bound pool is either associated or disassociated with its CPU.
59 * While associated (!DISASSOCIATED), all workers are bound to the
60 * CPU and none has %WORKER_UNBOUND set and concurrency management
61 * is in effect.
62 *
63 * While DISASSOCIATED, the cpu may be offline and all workers have
64 * %WORKER_UNBOUND set and concurrency management disabled, and may
65 * be executing on any CPU. The pool behaves as an unbound one.
66 *
67 * Note that DISASSOCIATED should be flipped only while holding
68 * attach_mutex to avoid changing binding state while
69 * worker_attach_to_pool() is in progress.
70 */
71 POOL_MANAGER_ACTIVE = 1 << 0, /* being managed */
72 POOL_DISASSOCIATED = 1 << 2, /* cpu can't serve workers */
73
74 /* worker flags */
75 WORKER_DIE = 1 << 1, /* die die die */
76 WORKER_IDLE = 1 << 2, /* is idle */
77 WORKER_PREP = 1 << 3, /* preparing to run works */
78 WORKER_CPU_INTENSIVE = 1 << 6, /* cpu intensive */
79 WORKER_UNBOUND = 1 << 7, /* worker is unbound */
80 WORKER_REBOUND = 1 << 8, /* worker was rebound */
81
82 WORKER_NOT_RUNNING = WORKER_PREP | WORKER_CPU_INTENSIVE |
83 WORKER_UNBOUND | WORKER_REBOUND,
84
85 NR_STD_WORKER_POOLS = 2, /* # standard pools per cpu */
86
87 UNBOUND_POOL_HASH_ORDER = 6, /* hashed by pool->attrs */
88 BUSY_WORKER_HASH_ORDER = 6, /* 64 pointers */
89
90 MAX_IDLE_WORKERS_RATIO = 4, /* 1/4 of busy can be idle */
91 IDLE_WORKER_TIMEOUT = 300 * HZ, /* keep idle ones for 5 mins */
92
93 MAYDAY_INITIAL_TIMEOUT = HZ / 100 >= 2 ? HZ / 100 : 2,
94 /* call for help after 10ms
95 (min two ticks) */
96 MAYDAY_INTERVAL = HZ / 10, /* and then every 100ms */
97 CREATE_COOLDOWN = HZ, /* time to breath after fail */
98
99 /*
100 * Rescue workers are used only on emergencies and shared by
101 * all cpus. Give MIN_NICE.
102 */
103 RESCUER_NICE_LEVEL = MIN_NICE,
104 HIGHPRI_NICE_LEVEL = MIN_NICE,
105
106 WQ_NAME_LEN = 24,
107 };
108
109 /*
110 * Structure fields follow one of the following exclusion rules.
111 *
112 * I: Modifiable by initialization/destruction paths and read-only for
113 * everyone else.
114 *
115 * P: Preemption protected. Disabling preemption is enough and should
116 * only be modified and accessed from the local cpu.
117 *
118 * L: pool->lock protected. Access with pool->lock held.
119 *
120 * X: During normal operation, modification requires pool->lock and should
121 * be done only from local cpu. Either disabling preemption on local
122 * cpu or grabbing pool->lock is enough for read access. If
123 * POOL_DISASSOCIATED is set, it's identical to L.
124 *
125 * A: pool->attach_mutex protected.
126 *
127 * PL: wq_pool_mutex protected.
128 *
129 * PR: wq_pool_mutex protected for writes. Sched-RCU protected for reads.
130 *
131 * PW: wq_pool_mutex and wq->mutex protected for writes. Either for reads.
132 *
133 * PWR: wq_pool_mutex and wq->mutex protected for writes. Either or
134 * sched-RCU for reads.
135 *
136 * WQ: wq->mutex protected.
137 *
138 * WR: wq->mutex protected for writes. Sched-RCU protected for reads.
139 *
140 * MD: wq_mayday_lock protected.
141 */
142
143 /* struct worker is defined in workqueue_internal.h */
144
145 struct worker_pool {
146 spinlock_t lock; /* the pool lock */
147 int cpu; /* I: the associated cpu */
148 int node; /* I: the associated node ID */
149 int id; /* I: pool ID */
150 unsigned int flags; /* X: flags */
151
152 struct list_head worklist; /* L: list of pending works */
153 int nr_workers; /* L: total number of workers */
154
155 /* nr_idle includes the ones off idle_list for rebinding */
156 int nr_idle; /* L: currently idle ones */
157
158 struct list_head idle_list; /* X: list of idle workers */
159 struct timer_list idle_timer; /* L: worker idle timeout */
160 struct timer_list mayday_timer; /* L: SOS timer for workers */
161
162 /* a workers is either on busy_hash or idle_list, or the manager */
163 DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
164 /* L: hash of busy workers */
165
166 /* see manage_workers() for details on the two manager mutexes */
167 struct worker *manager; /* L: purely informational */
168 struct mutex attach_mutex; /* attach/detach exclusion */
169 struct list_head workers; /* A: attached workers */
170 struct completion *detach_completion; /* all workers detached */
171
172 struct ida worker_ida; /* worker IDs for task name */
173
174 struct workqueue_attrs *attrs; /* I: worker attributes */
175 struct hlist_node hash_node; /* PL: unbound_pool_hash node */
176 int refcnt; /* PL: refcnt for unbound pools */
177
178 /*
179 * The current concurrency level. As it's likely to be accessed
180 * from other CPUs during try_to_wake_up(), put it in a separate
181 * cacheline.
182 */
183 atomic_t nr_running ____cacheline_aligned_in_smp;
184
185 /*
186 * Destruction of pool is sched-RCU protected to allow dereferences
187 * from get_work_pool().
188 */
189 struct rcu_head rcu;
190 } ____cacheline_aligned_in_smp;
191
192 /*
193 * The per-pool workqueue. While queued, the lower WORK_STRUCT_FLAG_BITS
194 * of work_struct->data are used for flags and the remaining high bits
195 * point to the pwq; thus, pwqs need to be aligned at two's power of the
196 * number of flag bits.
197 */
198 struct pool_workqueue {
199 struct worker_pool *pool; /* I: the associated pool */
200 struct workqueue_struct *wq; /* I: the owning workqueue */
201 int work_color; /* L: current color */
202 int flush_color; /* L: flushing color */
203 int refcnt; /* L: reference count */
204 int nr_in_flight[WORK_NR_COLORS];
205 /* L: nr of in_flight works */
206 int nr_active; /* L: nr of active works */
207 int max_active; /* L: max active works */
208 struct list_head delayed_works; /* L: delayed works */
209 struct list_head pwqs_node; /* WR: node on wq->pwqs */
210 struct list_head mayday_node; /* MD: node on wq->maydays */
211
212 /*
213 * Release of unbound pwq is punted to system_wq. See put_pwq()
214 * and pwq_unbound_release_workfn() for details. pool_workqueue
215 * itself is also sched-RCU protected so that the first pwq can be
216 * determined without grabbing wq->mutex.
217 */
218 struct work_struct unbound_release_work;
219 struct rcu_head rcu;
220 } __aligned(1 << WORK_STRUCT_FLAG_BITS);
221
222 /*
223 * Structure used to wait for workqueue flush.
224 */
225 struct wq_flusher {
226 struct list_head list; /* WQ: list of flushers */
227 int flush_color; /* WQ: flush color waiting for */
228 struct completion done; /* flush completion */
229 };
230
231 struct wq_device;
232
233 /*
234 * The externally visible workqueue. It relays the issued work items to
235 * the appropriate worker_pool through its pool_workqueues.
236 */
237 struct workqueue_struct {
238 struct list_head pwqs; /* WR: all pwqs of this wq */
239 struct list_head list; /* PR: list of all workqueues */
240
241 struct mutex mutex; /* protects this wq */
242 int work_color; /* WQ: current work color */
243 int flush_color; /* WQ: current flush color */
244 atomic_t nr_pwqs_to_flush; /* flush in progress */
245 struct wq_flusher *first_flusher; /* WQ: first flusher */
246 struct list_head flusher_queue; /* WQ: flush waiters */
247 struct list_head flusher_overflow; /* WQ: flush overflow list */
248
249 struct list_head maydays; /* MD: pwqs requesting rescue */
250 struct worker *rescuer; /* I: rescue worker */
251
252 int nr_drainers; /* WQ: drain in progress */
253 int saved_max_active; /* WQ: saved pwq max_active */
254
255 struct workqueue_attrs *unbound_attrs; /* PW: only for unbound wqs */
256 struct pool_workqueue *dfl_pwq; /* PW: only for unbound wqs */
257
258 #ifdef CONFIG_SYSFS
259 struct wq_device *wq_dev; /* I: for sysfs interface */
260 #endif
261 #ifdef CONFIG_LOCKDEP
262 struct lockdep_map lockdep_map;
263 #endif
264 char name[WQ_NAME_LEN]; /* I: workqueue name */
265
266 /*
267 * Destruction of workqueue_struct is sched-RCU protected to allow
268 * walking the workqueues list without grabbing wq_pool_mutex.
269 * This is used to dump all workqueues from sysrq.
270 */
271 struct rcu_head rcu;
272
273 /* hot fields used during command issue, aligned to cacheline */
274 unsigned int flags ____cacheline_aligned; /* WQ: WQ_* flags */
275 struct pool_workqueue __percpu *cpu_pwqs; /* I: per-cpu pwqs */
276 struct pool_workqueue __rcu *numa_pwq_tbl[]; /* PWR: unbound pwqs indexed by node */
277 };
278
279 static struct kmem_cache *pwq_cache;
280
281 static cpumask_var_t *wq_numa_possible_cpumask;
282 /* possible CPUs of each node */
283
284 static bool wq_disable_numa;
285 module_param_named(disable_numa, wq_disable_numa, bool, 0444);
286
287 /* see the comment above the definition of WQ_POWER_EFFICIENT */
288 static bool wq_power_efficient = IS_ENABLED(CONFIG_WQ_POWER_EFFICIENT_DEFAULT);
289 module_param_named(power_efficient, wq_power_efficient, bool, 0444);
290
291 static bool wq_numa_enabled; /* unbound NUMA affinity enabled */
292
293 /* buf for wq_update_unbound_numa_attrs(), protected by CPU hotplug exclusion */
294 static struct workqueue_attrs *wq_update_unbound_numa_attrs_buf;
295
296 static DEFINE_MUTEX(wq_pool_mutex); /* protects pools and workqueues list */
297 static DEFINE_SPINLOCK(wq_mayday_lock); /* protects wq->maydays list */
298 static DECLARE_WAIT_QUEUE_HEAD(wq_manager_wait); /* wait for manager to go away */
299
300 static LIST_HEAD(workqueues); /* PR: list of all workqueues */
301 static bool workqueue_freezing; /* PL: have wqs started freezing? */
302
303 static cpumask_var_t wq_unbound_cpumask; /* PL: low level cpumask for all unbound wqs */
304
305 /* the per-cpu worker pools */
306 static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS],
307 cpu_worker_pools);
308
309 static DEFINE_IDR(worker_pool_idr); /* PR: idr of all pools */
310
311 /* PL: hash of all unbound pools keyed by pool->attrs */
312 static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER);
313
314 /* I: attributes used when instantiating standard unbound pools on demand */
315 static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS];
316
317 /* I: attributes used when instantiating ordered pools on demand */
318 static struct workqueue_attrs *ordered_wq_attrs[NR_STD_WORKER_POOLS];
319
320 struct workqueue_struct *system_wq __read_mostly;
321 EXPORT_SYMBOL(system_wq);
322 struct workqueue_struct *system_highpri_wq __read_mostly;
323 EXPORT_SYMBOL_GPL(system_highpri_wq);
324 struct workqueue_struct *system_long_wq __read_mostly;
325 EXPORT_SYMBOL_GPL(system_long_wq);
326 struct workqueue_struct *system_unbound_wq __read_mostly;
327 EXPORT_SYMBOL_GPL(system_unbound_wq);
328 struct workqueue_struct *system_freezable_wq __read_mostly;
329 EXPORT_SYMBOL_GPL(system_freezable_wq);
330 struct workqueue_struct *system_power_efficient_wq __read_mostly;
331 EXPORT_SYMBOL_GPL(system_power_efficient_wq);
332 struct workqueue_struct *system_freezable_power_efficient_wq __read_mostly;
333 EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq);
334
335 static int worker_thread(void *__worker);
336 static void workqueue_sysfs_unregister(struct workqueue_struct *wq);
337
338 #define CREATE_TRACE_POINTS
339 #include <trace/events/workqueue.h>
340
341 #define assert_rcu_or_pool_mutex() \
342 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held() && \
343 !lockdep_is_held(&wq_pool_mutex), \
344 "sched RCU or wq_pool_mutex should be held")
345
346 #define assert_rcu_or_wq_mutex(wq) \
347 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held() && \
348 !lockdep_is_held(&wq->mutex), \
349 "sched RCU or wq->mutex should be held")
350
351 #define assert_rcu_or_wq_mutex_or_pool_mutex(wq) \
352 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held() && \
353 !lockdep_is_held(&wq->mutex) && \
354 !lockdep_is_held(&wq_pool_mutex), \
355 "sched RCU, wq->mutex or wq_pool_mutex should be held")
356
357 #define for_each_cpu_worker_pool(pool, cpu) \
358 for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0]; \
359 (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
360 (pool)++)
361
362 /**
363 * for_each_pool - iterate through all worker_pools in the system
364 * @pool: iteration cursor
365 * @pi: integer used for iteration
366 *
367 * This must be called either with wq_pool_mutex held or sched RCU read
368 * locked. If the pool needs to be used beyond the locking in effect, the
369 * caller is responsible for guaranteeing that the pool stays online.
370 *
371 * The if/else clause exists only for the lockdep assertion and can be
372 * ignored.
373 */
374 #define for_each_pool(pool, pi) \
375 idr_for_each_entry(&worker_pool_idr, pool, pi) \
376 if (({ assert_rcu_or_pool_mutex(); false; })) { } \
377 else
378
379 /**
380 * for_each_pool_worker - iterate through all workers of a worker_pool
381 * @worker: iteration cursor
382 * @pool: worker_pool to iterate workers of
383 *
384 * This must be called with @pool->attach_mutex.
385 *
386 * The if/else clause exists only for the lockdep assertion and can be
387 * ignored.
388 */
389 #define for_each_pool_worker(worker, pool) \
390 list_for_each_entry((worker), &(pool)->workers, node) \
391 if (({ lockdep_assert_held(&pool->attach_mutex); false; })) { } \
392 else
393
394 /**
395 * for_each_pwq - iterate through all pool_workqueues of the specified workqueue
396 * @pwq: iteration cursor
397 * @wq: the target workqueue
398 *
399 * This must be called either with wq->mutex held or sched RCU read locked.
400 * If the pwq needs to be used beyond the locking in effect, the caller is
401 * responsible for guaranteeing that the pwq stays online.
402 *
403 * The if/else clause exists only for the lockdep assertion and can be
404 * ignored.
405 */
406 #define for_each_pwq(pwq, wq) \
407 list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node) \
408 if (({ assert_rcu_or_wq_mutex(wq); false; })) { } \
409 else
410
411 #ifdef CONFIG_DEBUG_OBJECTS_WORK
412
413 static struct debug_obj_descr work_debug_descr;
414
415 static void *work_debug_hint(void *addr)
416 {
417 return ((struct work_struct *) addr)->func;
418 }
419
420 /*
421 * fixup_init is called when:
422 * - an active object is initialized
423 */
424 static int work_fixup_init(void *addr, enum debug_obj_state state)
425 {
426 struct work_struct *work = addr;
427
428 switch (state) {
429 case ODEBUG_STATE_ACTIVE:
430 cancel_work_sync(work);
431 debug_object_init(work, &work_debug_descr);
432 return 1;
433 default:
434 return 0;
435 }
436 }
437
438 /*
439 * fixup_activate is called when:
440 * - an active object is activated
441 * - an unknown object is activated (might be a statically initialized object)
442 */
443 static int work_fixup_activate(void *addr, enum debug_obj_state state)
444 {
445 struct work_struct *work = addr;
446
447 switch (state) {
448
449 case ODEBUG_STATE_NOTAVAILABLE:
450 /*
451 * This is not really a fixup. The work struct was
452 * statically initialized. We just make sure that it
453 * is tracked in the object tracker.
454 */
455 if (test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work))) {
456 debug_object_init(work, &work_debug_descr);
457 debug_object_activate(work, &work_debug_descr);
458 return 0;
459 }
460 WARN_ON_ONCE(1);
461 return 0;
462
463 case ODEBUG_STATE_ACTIVE:
464 WARN_ON(1);
465
466 default:
467 return 0;
468 }
469 }
470
471 /*
472 * fixup_free is called when:
473 * - an active object is freed
474 */
475 static int work_fixup_free(void *addr, enum debug_obj_state state)
476 {
477 struct work_struct *work = addr;
478
479 switch (state) {
480 case ODEBUG_STATE_ACTIVE:
481 cancel_work_sync(work);
482 debug_object_free(work, &work_debug_descr);
483 return 1;
484 default:
485 return 0;
486 }
487 }
488
489 static struct debug_obj_descr work_debug_descr = {
490 .name = "work_struct",
491 .debug_hint = work_debug_hint,
492 .fixup_init = work_fixup_init,
493 .fixup_activate = work_fixup_activate,
494 .fixup_free = work_fixup_free,
495 };
496
497 static inline void debug_work_activate(struct work_struct *work)
498 {
499 debug_object_activate(work, &work_debug_descr);
500 }
501
502 static inline void debug_work_deactivate(struct work_struct *work)
503 {
504 debug_object_deactivate(work, &work_debug_descr);
505 }
506
507 void __init_work(struct work_struct *work, int onstack)
508 {
509 if (onstack)
510 debug_object_init_on_stack(work, &work_debug_descr);
511 else
512 debug_object_init(work, &work_debug_descr);
513 }
514 EXPORT_SYMBOL_GPL(__init_work);
515
516 void destroy_work_on_stack(struct work_struct *work)
517 {
518 debug_object_free(work, &work_debug_descr);
519 }
520 EXPORT_SYMBOL_GPL(destroy_work_on_stack);
521
522 void destroy_delayed_work_on_stack(struct delayed_work *work)
523 {
524 destroy_timer_on_stack(&work->timer);
525 debug_object_free(&work->work, &work_debug_descr);
526 }
527 EXPORT_SYMBOL_GPL(destroy_delayed_work_on_stack);
528
529 #else
530 static inline void debug_work_activate(struct work_struct *work) { }
531 static inline void debug_work_deactivate(struct work_struct *work) { }
532 #endif
533
534 /**
535 * worker_pool_assign_id - allocate ID and assing it to @pool
536 * @pool: the pool pointer of interest
537 *
538 * Returns 0 if ID in [0, WORK_OFFQ_POOL_NONE) is allocated and assigned
539 * successfully, -errno on failure.
540 */
541 static int worker_pool_assign_id(struct worker_pool *pool)
542 {
543 int ret;
544
545 lockdep_assert_held(&wq_pool_mutex);
546
547 ret = idr_alloc(&worker_pool_idr, pool, 0, WORK_OFFQ_POOL_NONE,
548 GFP_KERNEL);
549 if (ret >= 0) {
550 pool->id = ret;
551 return 0;
552 }
553 return ret;
554 }
555
556 /**
557 * unbound_pwq_by_node - return the unbound pool_workqueue for the given node
558 * @wq: the target workqueue
559 * @node: the node ID
560 *
561 * This must be called with any of wq_pool_mutex, wq->mutex or sched RCU
562 * read locked.
563 * If the pwq needs to be used beyond the locking in effect, the caller is
564 * responsible for guaranteeing that the pwq stays online.
565 *
566 * Return: The unbound pool_workqueue for @node.
567 */
568 static struct pool_workqueue *unbound_pwq_by_node(struct workqueue_struct *wq,
569 int node)
570 {
571 assert_rcu_or_wq_mutex_or_pool_mutex(wq);
572
573 /*
574 * XXX: @node can be NUMA_NO_NODE if CPU goes offline while a
575 * delayed item is pending. The plan is to keep CPU -> NODE
576 * mapping valid and stable across CPU on/offlines. Once that
577 * happens, this workaround can be removed.
578 */
579 if (unlikely(node == NUMA_NO_NODE))
580 return wq->dfl_pwq;
581
582 return rcu_dereference_raw(wq->numa_pwq_tbl[node]);
583 }
584
585 static unsigned int work_color_to_flags(int color)
586 {
587 return color << WORK_STRUCT_COLOR_SHIFT;
588 }
589
590 static int get_work_color(struct work_struct *work)
591 {
592 return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
593 ((1 << WORK_STRUCT_COLOR_BITS) - 1);
594 }
595
596 static int work_next_color(int color)
597 {
598 return (color + 1) % WORK_NR_COLORS;
599 }
600
601 /*
602 * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
603 * contain the pointer to the queued pwq. Once execution starts, the flag
604 * is cleared and the high bits contain OFFQ flags and pool ID.
605 *
606 * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling()
607 * and clear_work_data() can be used to set the pwq, pool or clear
608 * work->data. These functions should only be called while the work is
609 * owned - ie. while the PENDING bit is set.
610 *
611 * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
612 * corresponding to a work. Pool is available once the work has been
613 * queued anywhere after initialization until it is sync canceled. pwq is
614 * available only while the work item is queued.
615 *
616 * %WORK_OFFQ_CANCELING is used to mark a work item which is being
617 * canceled. While being canceled, a work item may have its PENDING set
618 * but stay off timer and worklist for arbitrarily long and nobody should
619 * try to steal the PENDING bit.
620 */
621 static inline void set_work_data(struct work_struct *work, unsigned long data,
622 unsigned long flags)
623 {
624 WARN_ON_ONCE(!work_pending(work));
625 atomic_long_set(&work->data, data | flags | work_static(work));
626 }
627
628 static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq,
629 unsigned long extra_flags)
630 {
631 set_work_data(work, (unsigned long)pwq,
632 WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags);
633 }
634
635 static void set_work_pool_and_keep_pending(struct work_struct *work,
636 int pool_id)
637 {
638 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT,
639 WORK_STRUCT_PENDING);
640 }
641
642 static void set_work_pool_and_clear_pending(struct work_struct *work,
643 int pool_id)
644 {
645 /*
646 * The following wmb is paired with the implied mb in
647 * test_and_set_bit(PENDING) and ensures all updates to @work made
648 * here are visible to and precede any updates by the next PENDING
649 * owner.
650 */
651 smp_wmb();
652 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0);
653 /*
654 * The following mb guarantees that previous clear of a PENDING bit
655 * will not be reordered with any speculative LOADS or STORES from
656 * work->current_func, which is executed afterwards. This possible
657 * reordering can lead to a missed execution on attempt to qeueue
658 * the same @work. E.g. consider this case:
659 *
660 * CPU#0 CPU#1
661 * ---------------------------- --------------------------------
662 *
663 * 1 STORE event_indicated
664 * 2 queue_work_on() {
665 * 3 test_and_set_bit(PENDING)
666 * 4 } set_..._and_clear_pending() {
667 * 5 set_work_data() # clear bit
668 * 6 smp_mb()
669 * 7 work->current_func() {
670 * 8 LOAD event_indicated
671 * }
672 *
673 * Without an explicit full barrier speculative LOAD on line 8 can
674 * be executed before CPU#0 does STORE on line 1. If that happens,
675 * CPU#0 observes the PENDING bit is still set and new execution of
676 * a @work is not queued in a hope, that CPU#1 will eventually
677 * finish the queued @work. Meanwhile CPU#1 does not see
678 * event_indicated is set, because speculative LOAD was executed
679 * before actual STORE.
680 */
681 smp_mb();
682 }
683
684 static void clear_work_data(struct work_struct *work)
685 {
686 smp_wmb(); /* see set_work_pool_and_clear_pending() */
687 set_work_data(work, WORK_STRUCT_NO_POOL, 0);
688 }
689
690 static struct pool_workqueue *get_work_pwq(struct work_struct *work)
691 {
692 unsigned long data = atomic_long_read(&work->data);
693
694 if (data & WORK_STRUCT_PWQ)
695 return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
696 else
697 return NULL;
698 }
699
700 /**
701 * get_work_pool - return the worker_pool a given work was associated with
702 * @work: the work item of interest
703 *
704 * Pools are created and destroyed under wq_pool_mutex, and allows read
705 * access under sched-RCU read lock. As such, this function should be
706 * called under wq_pool_mutex or with preemption disabled.
707 *
708 * All fields of the returned pool are accessible as long as the above
709 * mentioned locking is in effect. If the returned pool needs to be used
710 * beyond the critical section, the caller is responsible for ensuring the
711 * returned pool is and stays online.
712 *
713 * Return: The worker_pool @work was last associated with. %NULL if none.
714 */
715 static struct worker_pool *get_work_pool(struct work_struct *work)
716 {
717 unsigned long data = atomic_long_read(&work->data);
718 int pool_id;
719
720 assert_rcu_or_pool_mutex();
721
722 if (data & WORK_STRUCT_PWQ)
723 return ((struct pool_workqueue *)
724 (data & WORK_STRUCT_WQ_DATA_MASK))->pool;
725
726 pool_id = data >> WORK_OFFQ_POOL_SHIFT;
727 if (pool_id == WORK_OFFQ_POOL_NONE)
728 return NULL;
729
730 return idr_find(&worker_pool_idr, pool_id);
731 }
732
733 /**
734 * get_work_pool_id - return the worker pool ID a given work is associated with
735 * @work: the work item of interest
736 *
737 * Return: The worker_pool ID @work was last associated with.
738 * %WORK_OFFQ_POOL_NONE if none.
739 */
740 static int get_work_pool_id(struct work_struct *work)
741 {
742 unsigned long data = atomic_long_read(&work->data);
743
744 if (data & WORK_STRUCT_PWQ)
745 return ((struct pool_workqueue *)
746 (data & WORK_STRUCT_WQ_DATA_MASK))->pool->id;
747
748 return data >> WORK_OFFQ_POOL_SHIFT;
749 }
750
751 static void mark_work_canceling(struct work_struct *work)
752 {
753 unsigned long pool_id = get_work_pool_id(work);
754
755 pool_id <<= WORK_OFFQ_POOL_SHIFT;
756 set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING);
757 }
758
759 static bool work_is_canceling(struct work_struct *work)
760 {
761 unsigned long data = atomic_long_read(&work->data);
762
763 return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING);
764 }
765
766 /*
767 * Policy functions. These define the policies on how the global worker
768 * pools are managed. Unless noted otherwise, these functions assume that
769 * they're being called with pool->lock held.
770 */
771
772 static bool __need_more_worker(struct worker_pool *pool)
773 {
774 return !atomic_read(&pool->nr_running);
775 }
776
777 /*
778 * Need to wake up a worker? Called from anything but currently
779 * running workers.
780 *
781 * Note that, because unbound workers never contribute to nr_running, this
782 * function will always return %true for unbound pools as long as the
783 * worklist isn't empty.
784 */
785 static bool need_more_worker(struct worker_pool *pool)
786 {
787 return !list_empty(&pool->worklist) && __need_more_worker(pool);
788 }
789
790 /* Can I start working? Called from busy but !running workers. */
791 static bool may_start_working(struct worker_pool *pool)
792 {
793 return pool->nr_idle;
794 }
795
796 /* Do I need to keep working? Called from currently running workers. */
797 static bool keep_working(struct worker_pool *pool)
798 {
799 return !list_empty(&pool->worklist) &&
800 atomic_read(&pool->nr_running) <= 1;
801 }
802
803 /* Do we need a new worker? Called from manager. */
804 static bool need_to_create_worker(struct worker_pool *pool)
805 {
806 return need_more_worker(pool) && !may_start_working(pool);
807 }
808
809 /* Do we have too many workers and should some go away? */
810 static bool too_many_workers(struct worker_pool *pool)
811 {
812 bool managing = pool->flags & POOL_MANAGER_ACTIVE;
813 int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
814 int nr_busy = pool->nr_workers - nr_idle;
815
816 return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
817 }
818
819 /*
820 * Wake up functions.
821 */
822
823 /* Return the first idle worker. Safe with preemption disabled */
824 static struct worker *first_idle_worker(struct worker_pool *pool)
825 {
826 if (unlikely(list_empty(&pool->idle_list)))
827 return NULL;
828
829 return list_first_entry(&pool->idle_list, struct worker, entry);
830 }
831
832 /**
833 * wake_up_worker - wake up an idle worker
834 * @pool: worker pool to wake worker from
835 *
836 * Wake up the first idle worker of @pool.
837 *
838 * CONTEXT:
839 * spin_lock_irq(pool->lock).
840 */
841 static void wake_up_worker(struct worker_pool *pool)
842 {
843 struct worker *worker = first_idle_worker(pool);
844
845 if (likely(worker))
846 wake_up_process(worker->task);
847 }
848
849 /**
850 * wq_worker_waking_up - a worker is waking up
851 * @task: task waking up
852 * @cpu: CPU @task is waking up to
853 *
854 * This function is called during try_to_wake_up() when a worker is
855 * being awoken.
856 *
857 * CONTEXT:
858 * spin_lock_irq(rq->lock)
859 */
860 void wq_worker_waking_up(struct task_struct *task, int cpu)
861 {
862 struct worker *worker = kthread_data(task);
863
864 if (!(worker->flags & WORKER_NOT_RUNNING)) {
865 WARN_ON_ONCE(worker->pool->cpu != cpu);
866 atomic_inc(&worker->pool->nr_running);
867 }
868 }
869
870 /**
871 * wq_worker_sleeping - a worker is going to sleep
872 * @task: task going to sleep
873 * @cpu: CPU in question, must be the current CPU number
874 *
875 * This function is called during schedule() when a busy worker is
876 * going to sleep. Worker on the same cpu can be woken up by
877 * returning pointer to its task.
878 *
879 * CONTEXT:
880 * spin_lock_irq(rq->lock)
881 *
882 * Return:
883 * Worker task on @cpu to wake up, %NULL if none.
884 */
885 struct task_struct *wq_worker_sleeping(struct task_struct *task, int cpu)
886 {
887 struct worker *worker = kthread_data(task), *to_wakeup = NULL;
888 struct worker_pool *pool;
889
890 /*
891 * Rescuers, which may not have all the fields set up like normal
892 * workers, also reach here, let's not access anything before
893 * checking NOT_RUNNING.
894 */
895 if (worker->flags & WORKER_NOT_RUNNING)
896 return NULL;
897
898 pool = worker->pool;
899
900 /* this can only happen on the local cpu */
901 if (WARN_ON_ONCE(cpu != raw_smp_processor_id() || pool->cpu != cpu))
902 return NULL;
903
904 /*
905 * The counterpart of the following dec_and_test, implied mb,
906 * worklist not empty test sequence is in insert_work().
907 * Please read comment there.
908 *
909 * NOT_RUNNING is clear. This means that we're bound to and
910 * running on the local cpu w/ rq lock held and preemption
911 * disabled, which in turn means that none else could be
912 * manipulating idle_list, so dereferencing idle_list without pool
913 * lock is safe.
914 */
915 if (atomic_dec_and_test(&pool->nr_running) &&
916 !list_empty(&pool->worklist))
917 to_wakeup = first_idle_worker(pool);
918 return to_wakeup ? to_wakeup->task : NULL;
919 }
920
921 /**
922 * worker_set_flags - set worker flags and adjust nr_running accordingly
923 * @worker: self
924 * @flags: flags to set
925 *
926 * Set @flags in @worker->flags and adjust nr_running accordingly.
927 *
928 * CONTEXT:
929 * spin_lock_irq(pool->lock)
930 */
931 static inline void worker_set_flags(struct worker *worker, unsigned int flags)
932 {
933 struct worker_pool *pool = worker->pool;
934
935 WARN_ON_ONCE(worker->task != current);
936
937 /* If transitioning into NOT_RUNNING, adjust nr_running. */
938 if ((flags & WORKER_NOT_RUNNING) &&
939 !(worker->flags & WORKER_NOT_RUNNING)) {
940 atomic_dec(&pool->nr_running);
941 }
942
943 worker->flags |= flags;
944 }
945
946 /**
947 * worker_clr_flags - clear worker flags and adjust nr_running accordingly
948 * @worker: self
949 * @flags: flags to clear
950 *
951 * Clear @flags in @worker->flags and adjust nr_running accordingly.
952 *
953 * CONTEXT:
954 * spin_lock_irq(pool->lock)
955 */
956 static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
957 {
958 struct worker_pool *pool = worker->pool;
959 unsigned int oflags = worker->flags;
960
961 WARN_ON_ONCE(worker->task != current);
962
963 worker->flags &= ~flags;
964
965 /*
966 * If transitioning out of NOT_RUNNING, increment nr_running. Note
967 * that the nested NOT_RUNNING is not a noop. NOT_RUNNING is mask
968 * of multiple flags, not a single flag.
969 */
970 if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
971 if (!(worker->flags & WORKER_NOT_RUNNING))
972 atomic_inc(&pool->nr_running);
973 }
974
975 /**
976 * find_worker_executing_work - find worker which is executing a work
977 * @pool: pool of interest
978 * @work: work to find worker for
979 *
980 * Find a worker which is executing @work on @pool by searching
981 * @pool->busy_hash which is keyed by the address of @work. For a worker
982 * to match, its current execution should match the address of @work and
983 * its work function. This is to avoid unwanted dependency between
984 * unrelated work executions through a work item being recycled while still
985 * being executed.
986 *
987 * This is a bit tricky. A work item may be freed once its execution
988 * starts and nothing prevents the freed area from being recycled for
989 * another work item. If the same work item address ends up being reused
990 * before the original execution finishes, workqueue will identify the
991 * recycled work item as currently executing and make it wait until the
992 * current execution finishes, introducing an unwanted dependency.
993 *
994 * This function checks the work item address and work function to avoid
995 * false positives. Note that this isn't complete as one may construct a
996 * work function which can introduce dependency onto itself through a
997 * recycled work item. Well, if somebody wants to shoot oneself in the
998 * foot that badly, there's only so much we can do, and if such deadlock
999 * actually occurs, it should be easy to locate the culprit work function.
1000 *
1001 * CONTEXT:
1002 * spin_lock_irq(pool->lock).
1003 *
1004 * Return:
1005 * Pointer to worker which is executing @work if found, %NULL
1006 * otherwise.
1007 */
1008 static struct worker *find_worker_executing_work(struct worker_pool *pool,
1009 struct work_struct *work)
1010 {
1011 struct worker *worker;
1012
1013 hash_for_each_possible(pool->busy_hash, worker, hentry,
1014 (unsigned long)work)
1015 if (worker->current_work == work &&
1016 worker->current_func == work->func)
1017 return worker;
1018
1019 return NULL;
1020 }
1021
1022 /**
1023 * move_linked_works - move linked works to a list
1024 * @work: start of series of works to be scheduled
1025 * @head: target list to append @work to
1026 * @nextp: out parameter for nested worklist walking
1027 *
1028 * Schedule linked works starting from @work to @head. Work series to
1029 * be scheduled starts at @work and includes any consecutive work with
1030 * WORK_STRUCT_LINKED set in its predecessor.
1031 *
1032 * If @nextp is not NULL, it's updated to point to the next work of
1033 * the last scheduled work. This allows move_linked_works() to be
1034 * nested inside outer list_for_each_entry_safe().
1035 *
1036 * CONTEXT:
1037 * spin_lock_irq(pool->lock).
1038 */
1039 static void move_linked_works(struct work_struct *work, struct list_head *head,
1040 struct work_struct **nextp)
1041 {
1042 struct work_struct *n;
1043
1044 /*
1045 * Linked worklist will always end before the end of the list,
1046 * use NULL for list head.
1047 */
1048 list_for_each_entry_safe_from(work, n, NULL, entry) {
1049 list_move_tail(&work->entry, head);
1050 if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
1051 break;
1052 }
1053
1054 /*
1055 * If we're already inside safe list traversal and have moved
1056 * multiple works to the scheduled queue, the next position
1057 * needs to be updated.
1058 */
1059 if (nextp)
1060 *nextp = n;
1061 }
1062
1063 /**
1064 * get_pwq - get an extra reference on the specified pool_workqueue
1065 * @pwq: pool_workqueue to get
1066 *
1067 * Obtain an extra reference on @pwq. The caller should guarantee that
1068 * @pwq has positive refcnt and be holding the matching pool->lock.
1069 */
1070 static void get_pwq(struct pool_workqueue *pwq)
1071 {
1072 lockdep_assert_held(&pwq->pool->lock);
1073 WARN_ON_ONCE(pwq->refcnt <= 0);
1074 pwq->refcnt++;
1075 }
1076
1077 /**
1078 * put_pwq - put a pool_workqueue reference
1079 * @pwq: pool_workqueue to put
1080 *
1081 * Drop a reference of @pwq. If its refcnt reaches zero, schedule its
1082 * destruction. The caller should be holding the matching pool->lock.
1083 */
1084 static void put_pwq(struct pool_workqueue *pwq)
1085 {
1086 lockdep_assert_held(&pwq->pool->lock);
1087 if (likely(--pwq->refcnt))
1088 return;
1089 if (WARN_ON_ONCE(!(pwq->wq->flags & WQ_UNBOUND)))
1090 return;
1091 /*
1092 * @pwq can't be released under pool->lock, bounce to
1093 * pwq_unbound_release_workfn(). This never recurses on the same
1094 * pool->lock as this path is taken only for unbound workqueues and
1095 * the release work item is scheduled on a per-cpu workqueue. To
1096 * avoid lockdep warning, unbound pool->locks are given lockdep
1097 * subclass of 1 in get_unbound_pool().
1098 */
1099 schedule_work(&pwq->unbound_release_work);
1100 }
1101
1102 /**
1103 * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock
1104 * @pwq: pool_workqueue to put (can be %NULL)
1105 *
1106 * put_pwq() with locking. This function also allows %NULL @pwq.
1107 */
1108 static void put_pwq_unlocked(struct pool_workqueue *pwq)
1109 {
1110 if (pwq) {
1111 /*
1112 * As both pwqs and pools are sched-RCU protected, the
1113 * following lock operations are safe.
1114 */
1115 spin_lock_irq(&pwq->pool->lock);
1116 put_pwq(pwq);
1117 spin_unlock_irq(&pwq->pool->lock);
1118 }
1119 }
1120
1121 static void pwq_activate_delayed_work(struct work_struct *work)
1122 {
1123 struct pool_workqueue *pwq = get_work_pwq(work);
1124
1125 trace_workqueue_activate_work(work);
1126 move_linked_works(work, &pwq->pool->worklist, NULL);
1127 __clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
1128 pwq->nr_active++;
1129 }
1130
1131 static void pwq_activate_first_delayed(struct pool_workqueue *pwq)
1132 {
1133 struct work_struct *work = list_first_entry(&pwq->delayed_works,
1134 struct work_struct, entry);
1135
1136 pwq_activate_delayed_work(work);
1137 }
1138
1139 /**
1140 * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
1141 * @pwq: pwq of interest
1142 * @color: color of work which left the queue
1143 *
1144 * A work either has completed or is removed from pending queue,
1145 * decrement nr_in_flight of its pwq and handle workqueue flushing.
1146 *
1147 * CONTEXT:
1148 * spin_lock_irq(pool->lock).
1149 */
1150 static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, int color)
1151 {
1152 /* uncolored work items don't participate in flushing or nr_active */
1153 if (color == WORK_NO_COLOR)
1154 goto out_put;
1155
1156 pwq->nr_in_flight[color]--;
1157
1158 pwq->nr_active--;
1159 if (!list_empty(&pwq->delayed_works)) {
1160 /* one down, submit a delayed one */
1161 if (pwq->nr_active < pwq->max_active)
1162 pwq_activate_first_delayed(pwq);
1163 }
1164
1165 /* is flush in progress and are we at the flushing tip? */
1166 if (likely(pwq->flush_color != color))
1167 goto out_put;
1168
1169 /* are there still in-flight works? */
1170 if (pwq->nr_in_flight[color])
1171 goto out_put;
1172
1173 /* this pwq is done, clear flush_color */
1174 pwq->flush_color = -1;
1175
1176 /*
1177 * If this was the last pwq, wake up the first flusher. It
1178 * will handle the rest.
1179 */
1180 if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush))
1181 complete(&pwq->wq->first_flusher->done);
1182 out_put:
1183 put_pwq(pwq);
1184 }
1185
1186 /**
1187 * try_to_grab_pending - steal work item from worklist and disable irq
1188 * @work: work item to steal
1189 * @is_dwork: @work is a delayed_work
1190 * @flags: place to store irq state
1191 *
1192 * Try to grab PENDING bit of @work. This function can handle @work in any
1193 * stable state - idle, on timer or on worklist.
1194 *
1195 * Return:
1196 * 1 if @work was pending and we successfully stole PENDING
1197 * 0 if @work was idle and we claimed PENDING
1198 * -EAGAIN if PENDING couldn't be grabbed at the moment, safe to busy-retry
1199 * -ENOENT if someone else is canceling @work, this state may persist
1200 * for arbitrarily long
1201 *
1202 * Note:
1203 * On >= 0 return, the caller owns @work's PENDING bit. To avoid getting
1204 * interrupted while holding PENDING and @work off queue, irq must be
1205 * disabled on entry. This, combined with delayed_work->timer being
1206 * irqsafe, ensures that we return -EAGAIN for finite short period of time.
1207 *
1208 * On successful return, >= 0, irq is disabled and the caller is
1209 * responsible for releasing it using local_irq_restore(*@flags).
1210 *
1211 * This function is safe to call from any context including IRQ handler.
1212 */
1213 static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
1214 unsigned long *flags)
1215 {
1216 struct worker_pool *pool;
1217 struct pool_workqueue *pwq;
1218
1219 local_irq_save(*flags);
1220
1221 /* try to steal the timer if it exists */
1222 if (is_dwork) {
1223 struct delayed_work *dwork = to_delayed_work(work);
1224
1225 /*
1226 * dwork->timer is irqsafe. If del_timer() fails, it's
1227 * guaranteed that the timer is not queued anywhere and not
1228 * running on the local CPU.
1229 */
1230 if (likely(del_timer(&dwork->timer)))
1231 return 1;
1232 }
1233
1234 /* try to claim PENDING the normal way */
1235 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
1236 return 0;
1237
1238 /*
1239 * The queueing is in progress, or it is already queued. Try to
1240 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
1241 */
1242 pool = get_work_pool(work);
1243 if (!pool)
1244 goto fail;
1245
1246 spin_lock(&pool->lock);
1247 /*
1248 * work->data is guaranteed to point to pwq only while the work
1249 * item is queued on pwq->wq, and both updating work->data to point
1250 * to pwq on queueing and to pool on dequeueing are done under
1251 * pwq->pool->lock. This in turn guarantees that, if work->data
1252 * points to pwq which is associated with a locked pool, the work
1253 * item is currently queued on that pool.
1254 */
1255 pwq = get_work_pwq(work);
1256 if (pwq && pwq->pool == pool) {
1257 debug_work_deactivate(work);
1258
1259 /*
1260 * A delayed work item cannot be grabbed directly because
1261 * it might have linked NO_COLOR work items which, if left
1262 * on the delayed_list, will confuse pwq->nr_active
1263 * management later on and cause stall. Make sure the work
1264 * item is activated before grabbing.
1265 */
1266 if (*work_data_bits(work) & WORK_STRUCT_DELAYED)
1267 pwq_activate_delayed_work(work);
1268
1269 list_del_init(&work->entry);
1270 pwq_dec_nr_in_flight(pwq, get_work_color(work));
1271
1272 /* work->data points to pwq iff queued, point to pool */
1273 set_work_pool_and_keep_pending(work, pool->id);
1274
1275 spin_unlock(&pool->lock);
1276 return 1;
1277 }
1278 spin_unlock(&pool->lock);
1279 fail:
1280 local_irq_restore(*flags);
1281 if (work_is_canceling(work))
1282 return -ENOENT;
1283 cpu_relax();
1284 return -EAGAIN;
1285 }
1286
1287 /**
1288 * insert_work - insert a work into a pool
1289 * @pwq: pwq @work belongs to
1290 * @work: work to insert
1291 * @head: insertion point
1292 * @extra_flags: extra WORK_STRUCT_* flags to set
1293 *
1294 * Insert @work which belongs to @pwq after @head. @extra_flags is or'd to
1295 * work_struct flags.
1296 *
1297 * CONTEXT:
1298 * spin_lock_irq(pool->lock).
1299 */
1300 static void insert_work(struct pool_workqueue *pwq, struct work_struct *work,
1301 struct list_head *head, unsigned int extra_flags)
1302 {
1303 struct worker_pool *pool = pwq->pool;
1304
1305 /* we own @work, set data and link */
1306 set_work_pwq(work, pwq, extra_flags);
1307 list_add_tail(&work->entry, head);
1308 get_pwq(pwq);
1309
1310 /*
1311 * Ensure either wq_worker_sleeping() sees the above
1312 * list_add_tail() or we see zero nr_running to avoid workers lying
1313 * around lazily while there are works to be processed.
1314 */
1315 smp_mb();
1316
1317 if (__need_more_worker(pool))
1318 wake_up_worker(pool);
1319 }
1320
1321 /*
1322 * Test whether @work is being queued from another work executing on the
1323 * same workqueue.
1324 */
1325 static bool is_chained_work(struct workqueue_struct *wq)
1326 {
1327 struct worker *worker;
1328
1329 worker = current_wq_worker();
1330 /*
1331 * Return %true iff I'm a worker execuing a work item on @wq. If
1332 * I'm @worker, it's safe to dereference it without locking.
1333 */
1334 return worker && worker->current_pwq->wq == wq;
1335 }
1336
1337 static void __queue_work(int cpu, struct workqueue_struct *wq,
1338 struct work_struct *work)
1339 {
1340 struct pool_workqueue *pwq;
1341 struct worker_pool *last_pool;
1342 struct list_head *worklist;
1343 unsigned int work_flags;
1344 unsigned int req_cpu = cpu;
1345
1346 /*
1347 * While a work item is PENDING && off queue, a task trying to
1348 * steal the PENDING will busy-loop waiting for it to either get
1349 * queued or lose PENDING. Grabbing PENDING and queueing should
1350 * happen with IRQ disabled.
1351 */
1352 WARN_ON_ONCE(!irqs_disabled());
1353
1354 debug_work_activate(work);
1355
1356 /* if draining, only works from the same workqueue are allowed */
1357 if (unlikely(wq->flags & __WQ_DRAINING) &&
1358 WARN_ON_ONCE(!is_chained_work(wq)))
1359 return;
1360 retry:
1361 if (req_cpu == WORK_CPU_UNBOUND)
1362 cpu = raw_smp_processor_id();
1363
1364 /* pwq which will be used unless @work is executing elsewhere */
1365 if (!(wq->flags & WQ_UNBOUND))
1366 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
1367 else
1368 pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
1369
1370 /*
1371 * If @work was previously on a different pool, it might still be
1372 * running there, in which case the work needs to be queued on that
1373 * pool to guarantee non-reentrancy.
1374 */
1375 last_pool = get_work_pool(work);
1376 if (last_pool && last_pool != pwq->pool) {
1377 struct worker *worker;
1378
1379 spin_lock(&last_pool->lock);
1380
1381 worker = find_worker_executing_work(last_pool, work);
1382
1383 if (worker && worker->current_pwq->wq == wq) {
1384 pwq = worker->current_pwq;
1385 } else {
1386 /* meh... not running there, queue here */
1387 spin_unlock(&last_pool->lock);
1388 spin_lock(&pwq->pool->lock);
1389 }
1390 } else {
1391 spin_lock(&pwq->pool->lock);
1392 }
1393
1394 /*
1395 * pwq is determined and locked. For unbound pools, we could have
1396 * raced with pwq release and it could already be dead. If its
1397 * refcnt is zero, repeat pwq selection. Note that pwqs never die
1398 * without another pwq replacing it in the numa_pwq_tbl or while
1399 * work items are executing on it, so the retrying is guaranteed to
1400 * make forward-progress.
1401 */
1402 if (unlikely(!pwq->refcnt)) {
1403 if (wq->flags & WQ_UNBOUND) {
1404 spin_unlock(&pwq->pool->lock);
1405 cpu_relax();
1406 goto retry;
1407 }
1408 /* oops */
1409 WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt",
1410 wq->name, cpu);
1411 }
1412
1413 /* pwq determined, queue */
1414 trace_workqueue_queue_work(req_cpu, pwq, work);
1415
1416 if (WARN_ON(!list_empty(&work->entry))) {
1417 spin_unlock(&pwq->pool->lock);
1418 return;
1419 }
1420
1421 pwq->nr_in_flight[pwq->work_color]++;
1422 work_flags = work_color_to_flags(pwq->work_color);
1423
1424 if (likely(pwq->nr_active < pwq->max_active)) {
1425 trace_workqueue_activate_work(work);
1426 pwq->nr_active++;
1427 worklist = &pwq->pool->worklist;
1428 } else {
1429 work_flags |= WORK_STRUCT_DELAYED;
1430 worklist = &pwq->delayed_works;
1431 }
1432
1433 insert_work(pwq, work, worklist, work_flags);
1434
1435 spin_unlock(&pwq->pool->lock);
1436 }
1437
1438 /**
1439 * queue_work_on - queue work on specific cpu
1440 * @cpu: CPU number to execute work on
1441 * @wq: workqueue to use
1442 * @work: work to queue
1443 *
1444 * We queue the work to a specific CPU, the caller must ensure it
1445 * can't go away.
1446 *
1447 * Return: %false if @work was already on a queue, %true otherwise.
1448 */
1449 bool queue_work_on(int cpu, struct workqueue_struct *wq,
1450 struct work_struct *work)
1451 {
1452 bool ret = false;
1453 unsigned long flags;
1454
1455 local_irq_save(flags);
1456
1457 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1458 __queue_work(cpu, wq, work);
1459 ret = true;
1460 }
1461
1462 local_irq_restore(flags);
1463 return ret;
1464 }
1465 EXPORT_SYMBOL(queue_work_on);
1466
1467 void delayed_work_timer_fn(unsigned long __data)
1468 {
1469 struct delayed_work *dwork = (struct delayed_work *)__data;
1470
1471 /* should have been called from irqsafe timer with irq already off */
1472 __queue_work(dwork->cpu, dwork->wq, &dwork->work);
1473 }
1474 EXPORT_SYMBOL(delayed_work_timer_fn);
1475
1476 static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
1477 struct delayed_work *dwork, unsigned long delay)
1478 {
1479 struct timer_list *timer = &dwork->timer;
1480 struct work_struct *work = &dwork->work;
1481
1482 WARN_ON_ONCE(!wq);
1483 WARN_ON_ONCE(timer->function != delayed_work_timer_fn ||
1484 timer->data != (unsigned long)dwork);
1485 WARN_ON_ONCE(timer_pending(timer));
1486 WARN_ON_ONCE(!list_empty(&work->entry));
1487
1488 /*
1489 * If @delay is 0, queue @dwork->work immediately. This is for
1490 * both optimization and correctness. The earliest @timer can
1491 * expire is on the closest next tick and delayed_work users depend
1492 * on that there's no such delay when @delay is 0.
1493 */
1494 if (!delay) {
1495 __queue_work(cpu, wq, &dwork->work);
1496 return;
1497 }
1498
1499 timer_stats_timer_set_start_info(&dwork->timer);
1500
1501 dwork->wq = wq;
1502 dwork->cpu = cpu;
1503 timer->expires = jiffies + delay;
1504
1505 if (unlikely(cpu != WORK_CPU_UNBOUND))
1506 add_timer_on(timer, cpu);
1507 else
1508 add_timer(timer);
1509 }
1510
1511 /**
1512 * queue_delayed_work_on - queue work on specific CPU after delay
1513 * @cpu: CPU number to execute work on
1514 * @wq: workqueue to use
1515 * @dwork: work to queue
1516 * @delay: number of jiffies to wait before queueing
1517 *
1518 * Return: %false if @work was already on a queue, %true otherwise. If
1519 * @delay is zero and @dwork is idle, it will be scheduled for immediate
1520 * execution.
1521 */
1522 bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
1523 struct delayed_work *dwork, unsigned long delay)
1524 {
1525 struct work_struct *work = &dwork->work;
1526 bool ret = false;
1527 unsigned long flags;
1528
1529 /* read the comment in __queue_work() */
1530 local_irq_save(flags);
1531
1532 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1533 __queue_delayed_work(cpu, wq, dwork, delay);
1534 ret = true;
1535 }
1536
1537 local_irq_restore(flags);
1538 return ret;
1539 }
1540 EXPORT_SYMBOL(queue_delayed_work_on);
1541
1542 /**
1543 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
1544 * @cpu: CPU number to execute work on
1545 * @wq: workqueue to use
1546 * @dwork: work to queue
1547 * @delay: number of jiffies to wait before queueing
1548 *
1549 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
1550 * modify @dwork's timer so that it expires after @delay. If @delay is
1551 * zero, @work is guaranteed to be scheduled immediately regardless of its
1552 * current state.
1553 *
1554 * Return: %false if @dwork was idle and queued, %true if @dwork was
1555 * pending and its timer was modified.
1556 *
1557 * This function is safe to call from any context including IRQ handler.
1558 * See try_to_grab_pending() for details.
1559 */
1560 bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
1561 struct delayed_work *dwork, unsigned long delay)
1562 {
1563 unsigned long flags;
1564 int ret;
1565
1566 do {
1567 ret = try_to_grab_pending(&dwork->work, true, &flags);
1568 } while (unlikely(ret == -EAGAIN));
1569
1570 if (likely(ret >= 0)) {
1571 __queue_delayed_work(cpu, wq, dwork, delay);
1572 local_irq_restore(flags);
1573 }
1574
1575 /* -ENOENT from try_to_grab_pending() becomes %true */
1576 return ret;
1577 }
1578 EXPORT_SYMBOL_GPL(mod_delayed_work_on);
1579
1580 /**
1581 * worker_enter_idle - enter idle state
1582 * @worker: worker which is entering idle state
1583 *
1584 * @worker is entering idle state. Update stats and idle timer if
1585 * necessary.
1586 *
1587 * LOCKING:
1588 * spin_lock_irq(pool->lock).
1589 */
1590 static void worker_enter_idle(struct worker *worker)
1591 {
1592 struct worker_pool *pool = worker->pool;
1593
1594 if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) ||
1595 WARN_ON_ONCE(!list_empty(&worker->entry) &&
1596 (worker->hentry.next || worker->hentry.pprev)))
1597 return;
1598
1599 /* can't use worker_set_flags(), also called from create_worker() */
1600 worker->flags |= WORKER_IDLE;
1601 pool->nr_idle++;
1602 worker->last_active = jiffies;
1603
1604 /* idle_list is LIFO */
1605 list_add(&worker->entry, &pool->idle_list);
1606
1607 if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
1608 mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
1609
1610 /*
1611 * Sanity check nr_running. Because wq_unbind_fn() releases
1612 * pool->lock between setting %WORKER_UNBOUND and zapping
1613 * nr_running, the warning may trigger spuriously. Check iff
1614 * unbind is not in progress.
1615 */
1616 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
1617 pool->nr_workers == pool->nr_idle &&
1618 atomic_read(&pool->nr_running));
1619 }
1620
1621 /**
1622 * worker_leave_idle - leave idle state
1623 * @worker: worker which is leaving idle state
1624 *
1625 * @worker is leaving idle state. Update stats.
1626 *
1627 * LOCKING:
1628 * spin_lock_irq(pool->lock).
1629 */
1630 static void worker_leave_idle(struct worker *worker)
1631 {
1632 struct worker_pool *pool = worker->pool;
1633
1634 if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE)))
1635 return;
1636 worker_clr_flags(worker, WORKER_IDLE);
1637 pool->nr_idle--;
1638 list_del_init(&worker->entry);
1639 }
1640
1641 static struct worker *alloc_worker(int node)
1642 {
1643 struct worker *worker;
1644
1645 worker = kzalloc_node(sizeof(*worker), GFP_KERNEL, node);
1646 if (worker) {
1647 INIT_LIST_HEAD(&worker->entry);
1648 INIT_LIST_HEAD(&worker->scheduled);
1649 INIT_LIST_HEAD(&worker->node);
1650 /* on creation a worker is in !idle && prep state */
1651 worker->flags = WORKER_PREP;
1652 }
1653 return worker;
1654 }
1655
1656 /**
1657 * worker_attach_to_pool() - attach a worker to a pool
1658 * @worker: worker to be attached
1659 * @pool: the target pool
1660 *
1661 * Attach @worker to @pool. Once attached, the %WORKER_UNBOUND flag and
1662 * cpu-binding of @worker are kept coordinated with the pool across
1663 * cpu-[un]hotplugs.
1664 */
1665 static void worker_attach_to_pool(struct worker *worker,
1666 struct worker_pool *pool)
1667 {
1668 mutex_lock(&pool->attach_mutex);
1669
1670 /*
1671 * set_cpus_allowed_ptr() will fail if the cpumask doesn't have any
1672 * online CPUs. It'll be re-applied when any of the CPUs come up.
1673 */
1674 set_cpus_allowed_ptr(worker->task, pool->attrs->cpumask);
1675
1676 /*
1677 * The pool->attach_mutex ensures %POOL_DISASSOCIATED remains
1678 * stable across this function. See the comments above the
1679 * flag definition for details.
1680 */
1681 if (pool->flags & POOL_DISASSOCIATED)
1682 worker->flags |= WORKER_UNBOUND;
1683
1684 list_add_tail(&worker->node, &pool->workers);
1685
1686 mutex_unlock(&pool->attach_mutex);
1687 }
1688
1689 /**
1690 * worker_detach_from_pool() - detach a worker from its pool
1691 * @worker: worker which is attached to its pool
1692 * @pool: the pool @worker is attached to
1693 *
1694 * Undo the attaching which had been done in worker_attach_to_pool(). The
1695 * caller worker shouldn't access to the pool after detached except it has
1696 * other reference to the pool.
1697 */
1698 static void worker_detach_from_pool(struct worker *worker,
1699 struct worker_pool *pool)
1700 {
1701 struct completion *detach_completion = NULL;
1702
1703 mutex_lock(&pool->attach_mutex);
1704 list_del(&worker->node);
1705 if (list_empty(&pool->workers))
1706 detach_completion = pool->detach_completion;
1707 mutex_unlock(&pool->attach_mutex);
1708
1709 /* clear leftover flags without pool->lock after it is detached */
1710 worker->flags &= ~(WORKER_UNBOUND | WORKER_REBOUND);
1711
1712 if (detach_completion)
1713 complete(detach_completion);
1714 }
1715
1716 /**
1717 * create_worker - create a new workqueue worker
1718 * @pool: pool the new worker will belong to
1719 *
1720 * Create and start a new worker which is attached to @pool.
1721 *
1722 * CONTEXT:
1723 * Might sleep. Does GFP_KERNEL allocations.
1724 *
1725 * Return:
1726 * Pointer to the newly created worker.
1727 */
1728 static struct worker *create_worker(struct worker_pool *pool)
1729 {
1730 struct worker *worker = NULL;
1731 int id = -1;
1732 char id_buf[16];
1733
1734 /* ID is needed to determine kthread name */
1735 id = ida_simple_get(&pool->worker_ida, 0, 0, GFP_KERNEL);
1736 if (id < 0)
1737 goto fail;
1738
1739 worker = alloc_worker(pool->node);
1740 if (!worker)
1741 goto fail;
1742
1743 worker->pool = pool;
1744 worker->id = id;
1745
1746 if (pool->cpu >= 0)
1747 snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id,
1748 pool->attrs->nice < 0 ? "H" : "");
1749 else
1750 snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id);
1751
1752 worker->task = kthread_create_on_node(worker_thread, worker, pool->node,
1753 "kworker/%s", id_buf);
1754 if (IS_ERR(worker->task))
1755 goto fail;
1756
1757 set_user_nice(worker->task, pool->attrs->nice);
1758 kthread_bind_mask(worker->task, pool->attrs->cpumask);
1759
1760 /* successful, attach the worker to the pool */
1761 worker_attach_to_pool(worker, pool);
1762
1763 /* start the newly created worker */
1764 spin_lock_irq(&pool->lock);
1765 worker->pool->nr_workers++;
1766 worker_enter_idle(worker);
1767 wake_up_process(worker->task);
1768 spin_unlock_irq(&pool->lock);
1769
1770 return worker;
1771
1772 fail:
1773 if (id >= 0)
1774 ida_simple_remove(&pool->worker_ida, id);
1775 kfree(worker);
1776 return NULL;
1777 }
1778
1779 /**
1780 * destroy_worker - destroy a workqueue worker
1781 * @worker: worker to be destroyed
1782 *
1783 * Destroy @worker and adjust @pool stats accordingly. The worker should
1784 * be idle.
1785 *
1786 * CONTEXT:
1787 * spin_lock_irq(pool->lock).
1788 */
1789 static void destroy_worker(struct worker *worker)
1790 {
1791 struct worker_pool *pool = worker->pool;
1792
1793 lockdep_assert_held(&pool->lock);
1794
1795 /* sanity check frenzy */
1796 if (WARN_ON(worker->current_work) ||
1797 WARN_ON(!list_empty(&worker->scheduled)) ||
1798 WARN_ON(!(worker->flags & WORKER_IDLE)))
1799 return;
1800
1801 pool->nr_workers--;
1802 pool->nr_idle--;
1803
1804 list_del_init(&worker->entry);
1805 worker->flags |= WORKER_DIE;
1806 wake_up_process(worker->task);
1807 }
1808
1809 static void idle_worker_timeout(unsigned long __pool)
1810 {
1811 struct worker_pool *pool = (void *)__pool;
1812
1813 spin_lock_irq(&pool->lock);
1814
1815 while (too_many_workers(pool)) {
1816 struct worker *worker;
1817 unsigned long expires;
1818
1819 /* idle_list is kept in LIFO order, check the last one */
1820 worker = list_entry(pool->idle_list.prev, struct worker, entry);
1821 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
1822
1823 if (time_before(jiffies, expires)) {
1824 mod_timer(&pool->idle_timer, expires);
1825 break;
1826 }
1827
1828 destroy_worker(worker);
1829 }
1830
1831 spin_unlock_irq(&pool->lock);
1832 }
1833
1834 static void send_mayday(struct work_struct *work)
1835 {
1836 struct pool_workqueue *pwq = get_work_pwq(work);
1837 struct workqueue_struct *wq = pwq->wq;
1838
1839 lockdep_assert_held(&wq_mayday_lock);
1840
1841 if (!wq->rescuer)
1842 return;
1843
1844 /* mayday mayday mayday */
1845 if (list_empty(&pwq->mayday_node)) {
1846 /*
1847 * If @pwq is for an unbound wq, its base ref may be put at
1848 * any time due to an attribute change. Pin @pwq until the
1849 * rescuer is done with it.
1850 */
1851 get_pwq(pwq);
1852 list_add_tail(&pwq->mayday_node, &wq->maydays);
1853 wake_up_process(wq->rescuer->task);
1854 }
1855 }
1856
1857 static void pool_mayday_timeout(unsigned long __pool)
1858 {
1859 struct worker_pool *pool = (void *)__pool;
1860 struct work_struct *work;
1861
1862 spin_lock_irq(&pool->lock);
1863 spin_lock(&wq_mayday_lock); /* for wq->maydays */
1864
1865 if (need_to_create_worker(pool)) {
1866 /*
1867 * We've been trying to create a new worker but
1868 * haven't been successful. We might be hitting an
1869 * allocation deadlock. Send distress signals to
1870 * rescuers.
1871 */
1872 list_for_each_entry(work, &pool->worklist, entry)
1873 send_mayday(work);
1874 }
1875
1876 spin_unlock(&wq_mayday_lock);
1877 spin_unlock_irq(&pool->lock);
1878
1879 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
1880 }
1881
1882 /**
1883 * maybe_create_worker - create a new worker if necessary
1884 * @pool: pool to create a new worker for
1885 *
1886 * Create a new worker for @pool if necessary. @pool is guaranteed to
1887 * have at least one idle worker on return from this function. If
1888 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
1889 * sent to all rescuers with works scheduled on @pool to resolve
1890 * possible allocation deadlock.
1891 *
1892 * On return, need_to_create_worker() is guaranteed to be %false and
1893 * may_start_working() %true.
1894 *
1895 * LOCKING:
1896 * spin_lock_irq(pool->lock) which may be released and regrabbed
1897 * multiple times. Does GFP_KERNEL allocations. Called only from
1898 * manager.
1899 */
1900 static void maybe_create_worker(struct worker_pool *pool)
1901 __releases(&pool->lock)
1902 __acquires(&pool->lock)
1903 {
1904 restart:
1905 spin_unlock_irq(&pool->lock);
1906
1907 /* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
1908 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
1909
1910 while (true) {
1911 if (create_worker(pool) || !need_to_create_worker(pool))
1912 break;
1913
1914 schedule_timeout_interruptible(CREATE_COOLDOWN);
1915
1916 if (!need_to_create_worker(pool))
1917 break;
1918 }
1919
1920 del_timer_sync(&pool->mayday_timer);
1921 spin_lock_irq(&pool->lock);
1922 /*
1923 * This is necessary even after a new worker was just successfully
1924 * created as @pool->lock was dropped and the new worker might have
1925 * already become busy.
1926 */
1927 if (need_to_create_worker(pool))
1928 goto restart;
1929 }
1930
1931 /**
1932 * manage_workers - manage worker pool
1933 * @worker: self
1934 *
1935 * Assume the manager role and manage the worker pool @worker belongs
1936 * to. At any given time, there can be only zero or one manager per
1937 * pool. The exclusion is handled automatically by this function.
1938 *
1939 * The caller can safely start processing works on false return. On
1940 * true return, it's guaranteed that need_to_create_worker() is false
1941 * and may_start_working() is true.
1942 *
1943 * CONTEXT:
1944 * spin_lock_irq(pool->lock) which may be released and regrabbed
1945 * multiple times. Does GFP_KERNEL allocations.
1946 *
1947 * Return:
1948 * %false if the pool doesn't need management and the caller can safely
1949 * start processing works, %true if management function was performed and
1950 * the conditions that the caller verified before calling the function may
1951 * no longer be true.
1952 */
1953 static bool manage_workers(struct worker *worker)
1954 {
1955 struct worker_pool *pool = worker->pool;
1956
1957 if (pool->flags & POOL_MANAGER_ACTIVE)
1958 return false;
1959
1960 pool->flags |= POOL_MANAGER_ACTIVE;
1961 pool->manager = worker;
1962
1963 maybe_create_worker(pool);
1964
1965 pool->manager = NULL;
1966 pool->flags &= ~POOL_MANAGER_ACTIVE;
1967 wake_up(&wq_manager_wait);
1968 return true;
1969 }
1970
1971 /**
1972 * process_one_work - process single work
1973 * @worker: self
1974 * @work: work to process
1975 *
1976 * Process @work. This function contains all the logics necessary to
1977 * process a single work including synchronization against and
1978 * interaction with other workers on the same cpu, queueing and
1979 * flushing. As long as context requirement is met, any worker can
1980 * call this function to process a work.
1981 *
1982 * CONTEXT:
1983 * spin_lock_irq(pool->lock) which is released and regrabbed.
1984 */
1985 static void process_one_work(struct worker *worker, struct work_struct *work)
1986 __releases(&pool->lock)
1987 __acquires(&pool->lock)
1988 {
1989 struct pool_workqueue *pwq = get_work_pwq(work);
1990 struct worker_pool *pool = worker->pool;
1991 bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE;
1992 int work_color;
1993 struct worker *collision;
1994 #ifdef CONFIG_LOCKDEP
1995 /*
1996 * It is permissible to free the struct work_struct from
1997 * inside the function that is called from it, this we need to
1998 * take into account for lockdep too. To avoid bogus "held
1999 * lock freed" warnings as well as problems when looking into
2000 * work->lockdep_map, make a copy and use that here.
2001 */
2002 struct lockdep_map lockdep_map;
2003
2004 lockdep_copy_map(&lockdep_map, &work->lockdep_map);
2005 #endif
2006 /* ensure we're on the correct CPU */
2007 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
2008 raw_smp_processor_id() != pool->cpu);
2009
2010 /*
2011 * A single work shouldn't be executed concurrently by
2012 * multiple workers on a single cpu. Check whether anyone is
2013 * already processing the work. If so, defer the work to the
2014 * currently executing one.
2015 */
2016 collision = find_worker_executing_work(pool, work);
2017 if (unlikely(collision)) {
2018 move_linked_works(work, &collision->scheduled, NULL);
2019 return;
2020 }
2021
2022 /* claim and dequeue */
2023 debug_work_deactivate(work);
2024 hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
2025 worker->current_work = work;
2026 worker->current_func = work->func;
2027 worker->current_pwq = pwq;
2028 work_color = get_work_color(work);
2029
2030 list_del_init(&work->entry);
2031
2032 /*
2033 * CPU intensive works don't participate in concurrency management.
2034 * They're the scheduler's responsibility. This takes @worker out
2035 * of concurrency management and the next code block will chain
2036 * execution of the pending work items.
2037 */
2038 if (unlikely(cpu_intensive))
2039 worker_set_flags(worker, WORKER_CPU_INTENSIVE);
2040
2041 /*
2042 * Wake up another worker if necessary. The condition is always
2043 * false for normal per-cpu workers since nr_running would always
2044 * be >= 1 at this point. This is used to chain execution of the
2045 * pending work items for WORKER_NOT_RUNNING workers such as the
2046 * UNBOUND and CPU_INTENSIVE ones.
2047 */
2048 if (need_more_worker(pool))
2049 wake_up_worker(pool);
2050
2051 /*
2052 * Record the last pool and clear PENDING which should be the last
2053 * update to @work. Also, do this inside @pool->lock so that
2054 * PENDING and queued state changes happen together while IRQ is
2055 * disabled.
2056 */
2057 set_work_pool_and_clear_pending(work, pool->id);
2058
2059 spin_unlock_irq(&pool->lock);
2060
2061 lock_map_acquire_read(&pwq->wq->lockdep_map);
2062 lock_map_acquire(&lockdep_map);
2063 trace_workqueue_execute_start(work);
2064 worker->current_func(work);
2065 /*
2066 * While we must be careful to not use "work" after this, the trace
2067 * point will only record its address.
2068 */
2069 trace_workqueue_execute_end(work);
2070 lock_map_release(&lockdep_map);
2071 lock_map_release(&pwq->wq->lockdep_map);
2072
2073 if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
2074 pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
2075 " last function: %pf\n",
2076 current->comm, preempt_count(), task_pid_nr(current),
2077 worker->current_func);
2078 debug_show_held_locks(current);
2079 dump_stack();
2080 }
2081
2082 /*
2083 * The following prevents a kworker from hogging CPU on !PREEMPT
2084 * kernels, where a requeueing work item waiting for something to
2085 * happen could deadlock with stop_machine as such work item could
2086 * indefinitely requeue itself while all other CPUs are trapped in
2087 * stop_machine. At the same time, report a quiescent RCU state so
2088 * the same condition doesn't freeze RCU.
2089 */
2090 cond_resched_rcu_qs();
2091
2092 spin_lock_irq(&pool->lock);
2093
2094 /* clear cpu intensive status */
2095 if (unlikely(cpu_intensive))
2096 worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
2097
2098 /* we're done with it, release */
2099 hash_del(&worker->hentry);
2100 worker->current_work = NULL;
2101 worker->current_func = NULL;
2102 worker->current_pwq = NULL;
2103 worker->desc_valid = false;
2104 pwq_dec_nr_in_flight(pwq, work_color);
2105 }
2106
2107 /**
2108 * process_scheduled_works - process scheduled works
2109 * @worker: self
2110 *
2111 * Process all scheduled works. Please note that the scheduled list
2112 * may change while processing a work, so this function repeatedly
2113 * fetches a work from the top and executes it.
2114 *
2115 * CONTEXT:
2116 * spin_lock_irq(pool->lock) which may be released and regrabbed
2117 * multiple times.
2118 */
2119 static void process_scheduled_works(struct worker *worker)
2120 {
2121 while (!list_empty(&worker->scheduled)) {
2122 struct work_struct *work = list_first_entry(&worker->scheduled,
2123 struct work_struct, entry);
2124 process_one_work(worker, work);
2125 }
2126 }
2127
2128 /**
2129 * worker_thread - the worker thread function
2130 * @__worker: self
2131 *
2132 * The worker thread function. All workers belong to a worker_pool -
2133 * either a per-cpu one or dynamic unbound one. These workers process all
2134 * work items regardless of their specific target workqueue. The only
2135 * exception is work items which belong to workqueues with a rescuer which
2136 * will be explained in rescuer_thread().
2137 *
2138 * Return: 0
2139 */
2140 static int worker_thread(void *__worker)
2141 {
2142 struct worker *worker = __worker;
2143 struct worker_pool *pool = worker->pool;
2144
2145 /* tell the scheduler that this is a workqueue worker */
2146 worker->task->flags |= PF_WQ_WORKER;
2147 woke_up:
2148 spin_lock_irq(&pool->lock);
2149
2150 /* am I supposed to die? */
2151 if (unlikely(worker->flags & WORKER_DIE)) {
2152 spin_unlock_irq(&pool->lock);
2153 WARN_ON_ONCE(!list_empty(&worker->entry));
2154 worker->task->flags &= ~PF_WQ_WORKER;
2155
2156 set_task_comm(worker->task, "kworker/dying");
2157 ida_simple_remove(&pool->worker_ida, worker->id);
2158 worker_detach_from_pool(worker, pool);
2159 kfree(worker);
2160 return 0;
2161 }
2162
2163 worker_leave_idle(worker);
2164 recheck:
2165 /* no more worker necessary? */
2166 if (!need_more_worker(pool))
2167 goto sleep;
2168
2169 /* do we need to manage? */
2170 if (unlikely(!may_start_working(pool)) && manage_workers(worker))
2171 goto recheck;
2172
2173 /*
2174 * ->scheduled list can only be filled while a worker is
2175 * preparing to process a work or actually processing it.
2176 * Make sure nobody diddled with it while I was sleeping.
2177 */
2178 WARN_ON_ONCE(!list_empty(&worker->scheduled));
2179
2180 /*
2181 * Finish PREP stage. We're guaranteed to have at least one idle
2182 * worker or that someone else has already assumed the manager
2183 * role. This is where @worker starts participating in concurrency
2184 * management if applicable and concurrency management is restored
2185 * after being rebound. See rebind_workers() for details.
2186 */
2187 worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND);
2188
2189 do {
2190 struct work_struct *work =
2191 list_first_entry(&pool->worklist,
2192 struct work_struct, entry);
2193
2194 if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
2195 /* optimization path, not strictly necessary */
2196 process_one_work(worker, work);
2197 if (unlikely(!list_empty(&worker->scheduled)))
2198 process_scheduled_works(worker);
2199 } else {
2200 move_linked_works(work, &worker->scheduled, NULL);
2201 process_scheduled_works(worker);
2202 }
2203 } while (keep_working(pool));
2204
2205 worker_set_flags(worker, WORKER_PREP);
2206 sleep:
2207 /*
2208 * pool->lock is held and there's no work to process and no need to
2209 * manage, sleep. Workers are woken up only while holding
2210 * pool->lock or from local cpu, so setting the current state
2211 * before releasing pool->lock is enough to prevent losing any
2212 * event.
2213 */
2214 worker_enter_idle(worker);
2215 __set_current_state(TASK_INTERRUPTIBLE);
2216 spin_unlock_irq(&pool->lock);
2217 schedule();
2218 goto woke_up;
2219 }
2220
2221 /**
2222 * rescuer_thread - the rescuer thread function
2223 * @__rescuer: self
2224 *
2225 * Workqueue rescuer thread function. There's one rescuer for each
2226 * workqueue which has WQ_MEM_RECLAIM set.
2227 *
2228 * Regular work processing on a pool may block trying to create a new
2229 * worker which uses GFP_KERNEL allocation which has slight chance of
2230 * developing into deadlock if some works currently on the same queue
2231 * need to be processed to satisfy the GFP_KERNEL allocation. This is
2232 * the problem rescuer solves.
2233 *
2234 * When such condition is possible, the pool summons rescuers of all
2235 * workqueues which have works queued on the pool and let them process
2236 * those works so that forward progress can be guaranteed.
2237 *
2238 * This should happen rarely.
2239 *
2240 * Return: 0
2241 */
2242 static int rescuer_thread(void *__rescuer)
2243 {
2244 struct worker *rescuer = __rescuer;
2245 struct workqueue_struct *wq = rescuer->rescue_wq;
2246 struct list_head *scheduled = &rescuer->scheduled;
2247 bool should_stop;
2248
2249 set_user_nice(current, RESCUER_NICE_LEVEL);
2250
2251 /*
2252 * Mark rescuer as worker too. As WORKER_PREP is never cleared, it
2253 * doesn't participate in concurrency management.
2254 */
2255 rescuer->task->flags |= PF_WQ_WORKER;
2256 repeat:
2257 set_current_state(TASK_INTERRUPTIBLE);
2258
2259 /*
2260 * By the time the rescuer is requested to stop, the workqueue
2261 * shouldn't have any work pending, but @wq->maydays may still have
2262 * pwq(s) queued. This can happen by non-rescuer workers consuming
2263 * all the work items before the rescuer got to them. Go through
2264 * @wq->maydays processing before acting on should_stop so that the
2265 * list is always empty on exit.
2266 */
2267 should_stop = kthread_should_stop();
2268
2269 /* see whether any pwq is asking for help */
2270 spin_lock_irq(&wq_mayday_lock);
2271
2272 while (!list_empty(&wq->maydays)) {
2273 struct pool_workqueue *pwq = list_first_entry(&wq->maydays,
2274 struct pool_workqueue, mayday_node);
2275 struct worker_pool *pool = pwq->pool;
2276 struct work_struct *work, *n;
2277
2278 __set_current_state(TASK_RUNNING);
2279 list_del_init(&pwq->mayday_node);
2280
2281 spin_unlock_irq(&wq_mayday_lock);
2282
2283 worker_attach_to_pool(rescuer, pool);
2284
2285 spin_lock_irq(&pool->lock);
2286 rescuer->pool = pool;
2287
2288 /*
2289 * Slurp in all works issued via this workqueue and
2290 * process'em.
2291 */
2292 WARN_ON_ONCE(!list_empty(scheduled));
2293 list_for_each_entry_safe(work, n, &pool->worklist, entry)
2294 if (get_work_pwq(work) == pwq)
2295 move_linked_works(work, scheduled, &n);
2296
2297 if (!list_empty(scheduled)) {
2298 process_scheduled_works(rescuer);
2299
2300 /*
2301 * The above execution of rescued work items could
2302 * have created more to rescue through
2303 * pwq_activate_first_delayed() or chained
2304 * queueing. Let's put @pwq back on mayday list so
2305 * that such back-to-back work items, which may be
2306 * being used to relieve memory pressure, don't
2307 * incur MAYDAY_INTERVAL delay inbetween.
2308 */
2309 if (need_to_create_worker(pool)) {
2310 spin_lock(&wq_mayday_lock);
2311 get_pwq(pwq);
2312 list_move_tail(&pwq->mayday_node, &wq->maydays);
2313 spin_unlock(&wq_mayday_lock);
2314 }
2315 }
2316
2317 /*
2318 * Put the reference grabbed by send_mayday(). @pool won't
2319 * go away while we're still attached to it.
2320 */
2321 put_pwq(pwq);
2322
2323 /*
2324 * Leave this pool. If need_more_worker() is %true, notify a
2325 * regular worker; otherwise, we end up with 0 concurrency
2326 * and stalling the execution.
2327 */
2328 if (need_more_worker(pool))
2329 wake_up_worker(pool);
2330
2331 rescuer->pool = NULL;
2332 spin_unlock_irq(&pool->lock);
2333
2334 worker_detach_from_pool(rescuer, pool);
2335
2336 spin_lock_irq(&wq_mayday_lock);
2337 }
2338
2339 spin_unlock_irq(&wq_mayday_lock);
2340
2341 if (should_stop) {
2342 __set_current_state(TASK_RUNNING);
2343 rescuer->task->flags &= ~PF_WQ_WORKER;
2344 return 0;
2345 }
2346
2347 /* rescuers should never participate in concurrency management */
2348 WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
2349 schedule();
2350 goto repeat;
2351 }
2352
2353 struct wq_barrier {
2354 struct work_struct work;
2355 struct completion done;
2356 struct task_struct *task; /* purely informational */
2357 };
2358
2359 static void wq_barrier_func(struct work_struct *work)
2360 {
2361 struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
2362 complete(&barr->done);
2363 }
2364
2365 /**
2366 * insert_wq_barrier - insert a barrier work
2367 * @pwq: pwq to insert barrier into
2368 * @barr: wq_barrier to insert
2369 * @target: target work to attach @barr to
2370 * @worker: worker currently executing @target, NULL if @target is not executing
2371 *
2372 * @barr is linked to @target such that @barr is completed only after
2373 * @target finishes execution. Please note that the ordering
2374 * guarantee is observed only with respect to @target and on the local
2375 * cpu.
2376 *
2377 * Currently, a queued barrier can't be canceled. This is because
2378 * try_to_grab_pending() can't determine whether the work to be
2379 * grabbed is at the head of the queue and thus can't clear LINKED
2380 * flag of the previous work while there must be a valid next work
2381 * after a work with LINKED flag set.
2382 *
2383 * Note that when @worker is non-NULL, @target may be modified
2384 * underneath us, so we can't reliably determine pwq from @target.
2385 *
2386 * CONTEXT:
2387 * spin_lock_irq(pool->lock).
2388 */
2389 static void insert_wq_barrier(struct pool_workqueue *pwq,
2390 struct wq_barrier *barr,
2391 struct work_struct *target, struct worker *worker)
2392 {
2393 struct list_head *head;
2394 unsigned int linked = 0;
2395
2396 /*
2397 * debugobject calls are safe here even with pool->lock locked
2398 * as we know for sure that this will not trigger any of the
2399 * checks and call back into the fixup functions where we
2400 * might deadlock.
2401 */
2402 INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
2403 __set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
2404 init_completion(&barr->done);
2405 barr->task = current;
2406
2407 /*
2408 * If @target is currently being executed, schedule the
2409 * barrier to the worker; otherwise, put it after @target.
2410 */
2411 if (worker)
2412 head = worker->scheduled.next;
2413 else {
2414 unsigned long *bits = work_data_bits(target);
2415
2416 head = target->entry.next;
2417 /* there can already be other linked works, inherit and set */
2418 linked = *bits & WORK_STRUCT_LINKED;
2419 __set_bit(WORK_STRUCT_LINKED_BIT, bits);
2420 }
2421
2422 debug_work_activate(&barr->work);
2423 insert_work(pwq, &barr->work, head,
2424 work_color_to_flags(WORK_NO_COLOR) | linked);
2425 }
2426
2427 /**
2428 * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing
2429 * @wq: workqueue being flushed
2430 * @flush_color: new flush color, < 0 for no-op
2431 * @work_color: new work color, < 0 for no-op
2432 *
2433 * Prepare pwqs for workqueue flushing.
2434 *
2435 * If @flush_color is non-negative, flush_color on all pwqs should be
2436 * -1. If no pwq has in-flight commands at the specified color, all
2437 * pwq->flush_color's stay at -1 and %false is returned. If any pwq
2438 * has in flight commands, its pwq->flush_color is set to
2439 * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq
2440 * wakeup logic is armed and %true is returned.
2441 *
2442 * The caller should have initialized @wq->first_flusher prior to
2443 * calling this function with non-negative @flush_color. If
2444 * @flush_color is negative, no flush color update is done and %false
2445 * is returned.
2446 *
2447 * If @work_color is non-negative, all pwqs should have the same
2448 * work_color which is previous to @work_color and all will be
2449 * advanced to @work_color.
2450 *
2451 * CONTEXT:
2452 * mutex_lock(wq->mutex).
2453 *
2454 * Return:
2455 * %true if @flush_color >= 0 and there's something to flush. %false
2456 * otherwise.
2457 */
2458 static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq,
2459 int flush_color, int work_color)
2460 {
2461 bool wait = false;
2462 struct pool_workqueue *pwq;
2463
2464 if (flush_color >= 0) {
2465 WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush));
2466 atomic_set(&wq->nr_pwqs_to_flush, 1);
2467 }
2468
2469 for_each_pwq(pwq, wq) {
2470 struct worker_pool *pool = pwq->pool;
2471
2472 spin_lock_irq(&pool->lock);
2473
2474 if (flush_color >= 0) {
2475 WARN_ON_ONCE(pwq->flush_color != -1);
2476
2477 if (pwq->nr_in_flight[flush_color]) {
2478 pwq->flush_color = flush_color;
2479 atomic_inc(&wq->nr_pwqs_to_flush);
2480 wait = true;
2481 }
2482 }
2483
2484 if (work_color >= 0) {
2485 WARN_ON_ONCE(work_color != work_next_color(pwq->work_color));
2486 pwq->work_color = work_color;
2487 }
2488
2489 spin_unlock_irq(&pool->lock);
2490 }
2491
2492 if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush))
2493 complete(&wq->first_flusher->done);
2494
2495 return wait;
2496 }
2497
2498 /**
2499 * flush_workqueue - ensure that any scheduled work has run to completion.
2500 * @wq: workqueue to flush
2501 *
2502 * This function sleeps until all work items which were queued on entry
2503 * have finished execution, but it is not livelocked by new incoming ones.
2504 */
2505 void flush_workqueue(struct workqueue_struct *wq)
2506 {
2507 struct wq_flusher this_flusher = {
2508 .list = LIST_HEAD_INIT(this_flusher.list),
2509 .flush_color = -1,
2510 .done = COMPLETION_INITIALIZER_ONSTACK(this_flusher.done),
2511 };
2512 int next_color;
2513
2514 lock_map_acquire(&wq->lockdep_map);
2515 lock_map_release(&wq->lockdep_map);
2516
2517 mutex_lock(&wq->mutex);
2518
2519 /*
2520 * Start-to-wait phase
2521 */
2522 next_color = work_next_color(wq->work_color);
2523
2524 if (next_color != wq->flush_color) {
2525 /*
2526 * Color space is not full. The current work_color
2527 * becomes our flush_color and work_color is advanced
2528 * by one.
2529 */
2530 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow));
2531 this_flusher.flush_color = wq->work_color;
2532 wq->work_color = next_color;
2533
2534 if (!wq->first_flusher) {
2535 /* no flush in progress, become the first flusher */
2536 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2537
2538 wq->first_flusher = &this_flusher;
2539
2540 if (!flush_workqueue_prep_pwqs(wq, wq->flush_color,
2541 wq->work_color)) {
2542 /* nothing to flush, done */
2543 wq->flush_color = next_color;
2544 wq->first_flusher = NULL;
2545 goto out_unlock;
2546 }
2547 } else {
2548 /* wait in queue */
2549 WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color);
2550 list_add_tail(&this_flusher.list, &wq->flusher_queue);
2551 flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2552 }
2553 } else {
2554 /*
2555 * Oops, color space is full, wait on overflow queue.
2556 * The next flush completion will assign us
2557 * flush_color and transfer to flusher_queue.
2558 */
2559 list_add_tail(&this_flusher.list, &wq->flusher_overflow);
2560 }
2561
2562 mutex_unlock(&wq->mutex);
2563
2564 wait_for_completion(&this_flusher.done);
2565
2566 /*
2567 * Wake-up-and-cascade phase
2568 *
2569 * First flushers are responsible for cascading flushes and
2570 * handling overflow. Non-first flushers can simply return.
2571 */
2572 if (wq->first_flusher != &this_flusher)
2573 return;
2574
2575 mutex_lock(&wq->mutex);
2576
2577 /* we might have raced, check again with mutex held */
2578 if (wq->first_flusher != &this_flusher)
2579 goto out_unlock;
2580
2581 wq->first_flusher = NULL;
2582
2583 WARN_ON_ONCE(!list_empty(&this_flusher.list));
2584 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2585
2586 while (true) {
2587 struct wq_flusher *next, *tmp;
2588
2589 /* complete all the flushers sharing the current flush color */
2590 list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
2591 if (next->flush_color != wq->flush_color)
2592 break;
2593 list_del_init(&next->list);
2594 complete(&next->done);
2595 }
2596
2597 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) &&
2598 wq->flush_color != work_next_color(wq->work_color));
2599
2600 /* this flush_color is finished, advance by one */
2601 wq->flush_color = work_next_color(wq->flush_color);
2602
2603 /* one color has been freed, handle overflow queue */
2604 if (!list_empty(&wq->flusher_overflow)) {
2605 /*
2606 * Assign the same color to all overflowed
2607 * flushers, advance work_color and append to
2608 * flusher_queue. This is the start-to-wait
2609 * phase for these overflowed flushers.
2610 */
2611 list_for_each_entry(tmp, &wq->flusher_overflow, list)
2612 tmp->flush_color = wq->work_color;
2613
2614 wq->work_color = work_next_color(wq->work_color);
2615
2616 list_splice_tail_init(&wq->flusher_overflow,
2617 &wq->flusher_queue);
2618 flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2619 }
2620
2621 if (list_empty(&wq->flusher_queue)) {
2622 WARN_ON_ONCE(wq->flush_color != wq->work_color);
2623 break;
2624 }
2625
2626 /*
2627 * Need to flush more colors. Make the next flusher
2628 * the new first flusher and arm pwqs.
2629 */
2630 WARN_ON_ONCE(wq->flush_color == wq->work_color);
2631 WARN_ON_ONCE(wq->flush_color != next->flush_color);
2632
2633 list_del_init(&next->list);
2634 wq->first_flusher = next;
2635
2636 if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1))
2637 break;
2638
2639 /*
2640 * Meh... this color is already done, clear first
2641 * flusher and repeat cascading.
2642 */
2643 wq->first_flusher = NULL;
2644 }
2645
2646 out_unlock:
2647 mutex_unlock(&wq->mutex);
2648 }
2649 EXPORT_SYMBOL(flush_workqueue);
2650
2651 /**
2652 * drain_workqueue - drain a workqueue
2653 * @wq: workqueue to drain
2654 *
2655 * Wait until the workqueue becomes empty. While draining is in progress,
2656 * only chain queueing is allowed. IOW, only currently pending or running
2657 * work items on @wq can queue further work items on it. @wq is flushed
2658 * repeatedly until it becomes empty. The number of flushing is determined
2659 * by the depth of chaining and should be relatively short. Whine if it
2660 * takes too long.
2661 */
2662 void drain_workqueue(struct workqueue_struct *wq)
2663 {
2664 unsigned int flush_cnt = 0;
2665 struct pool_workqueue *pwq;
2666
2667 /*
2668 * __queue_work() needs to test whether there are drainers, is much
2669 * hotter than drain_workqueue() and already looks at @wq->flags.
2670 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers.
2671 */
2672 mutex_lock(&wq->mutex);
2673 if (!wq->nr_drainers++)
2674 wq->flags |= __WQ_DRAINING;
2675 mutex_unlock(&wq->mutex);
2676 reflush:
2677 flush_workqueue(wq);
2678
2679 mutex_lock(&wq->mutex);
2680
2681 for_each_pwq(pwq, wq) {
2682 bool drained;
2683
2684 spin_lock_irq(&pwq->pool->lock);
2685 drained = !pwq->nr_active && list_empty(&pwq->delayed_works);
2686 spin_unlock_irq(&pwq->pool->lock);
2687
2688 if (drained)
2689 continue;
2690
2691 if (++flush_cnt == 10 ||
2692 (flush_cnt % 100 == 0 && flush_cnt <= 1000))
2693 pr_warn("workqueue %s: drain_workqueue() isn't complete after %u tries\n",
2694 wq->name, flush_cnt);
2695
2696 mutex_unlock(&wq->mutex);
2697 goto reflush;
2698 }
2699
2700 if (!--wq->nr_drainers)
2701 wq->flags &= ~__WQ_DRAINING;
2702 mutex_unlock(&wq->mutex);
2703 }
2704 EXPORT_SYMBOL_GPL(drain_workqueue);
2705
2706 static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr)
2707 {
2708 struct worker *worker = NULL;
2709 struct worker_pool *pool;
2710 struct pool_workqueue *pwq;
2711
2712 might_sleep();
2713
2714 local_irq_disable();
2715 pool = get_work_pool(work);
2716 if (!pool) {
2717 local_irq_enable();
2718 return false;
2719 }
2720
2721 spin_lock(&pool->lock);
2722 /* see the comment in try_to_grab_pending() with the same code */
2723 pwq = get_work_pwq(work);
2724 if (pwq) {
2725 if (unlikely(pwq->pool != pool))
2726 goto already_gone;
2727 } else {
2728 worker = find_worker_executing_work(pool, work);
2729 if (!worker)
2730 goto already_gone;
2731 pwq = worker->current_pwq;
2732 }
2733
2734 insert_wq_barrier(pwq, barr, work, worker);
2735 spin_unlock_irq(&pool->lock);
2736
2737 /*
2738 * If @max_active is 1 or rescuer is in use, flushing another work
2739 * item on the same workqueue may lead to deadlock. Make sure the
2740 * flusher is not running on the same workqueue by verifying write
2741 * access.
2742 */
2743 if (pwq->wq->saved_max_active == 1 || pwq->wq->rescuer)
2744 lock_map_acquire(&pwq->wq->lockdep_map);
2745 else
2746 lock_map_acquire_read(&pwq->wq->lockdep_map);
2747 lock_map_release(&pwq->wq->lockdep_map);
2748
2749 return true;
2750 already_gone:
2751 spin_unlock_irq(&pool->lock);
2752 return false;
2753 }
2754
2755 /**
2756 * flush_work - wait for a work to finish executing the last queueing instance
2757 * @work: the work to flush
2758 *
2759 * Wait until @work has finished execution. @work is guaranteed to be idle
2760 * on return if it hasn't been requeued since flush started.
2761 *
2762 * Return:
2763 * %true if flush_work() waited for the work to finish execution,
2764 * %false if it was already idle.
2765 */
2766 bool flush_work(struct work_struct *work)
2767 {
2768 struct wq_barrier barr;
2769
2770 lock_map_acquire(&work->lockdep_map);
2771 lock_map_release(&work->lockdep_map);
2772
2773 if (start_flush_work(work, &barr)) {
2774 wait_for_completion(&barr.done);
2775 destroy_work_on_stack(&barr.work);
2776 return true;
2777 } else {
2778 return false;
2779 }
2780 }
2781 EXPORT_SYMBOL_GPL(flush_work);
2782
2783 struct cwt_wait {
2784 wait_queue_t wait;
2785 struct work_struct *work;
2786 };
2787
2788 static int cwt_wakefn(wait_queue_t *wait, unsigned mode, int sync, void *key)
2789 {
2790 struct cwt_wait *cwait = container_of(wait, struct cwt_wait, wait);
2791
2792 if (cwait->work != key)
2793 return 0;
2794 return autoremove_wake_function(wait, mode, sync, key);
2795 }
2796
2797 static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
2798 {
2799 static DECLARE_WAIT_QUEUE_HEAD(cancel_waitq);
2800 unsigned long flags;
2801 int ret;
2802
2803 do {
2804 ret = try_to_grab_pending(work, is_dwork, &flags);
2805 /*
2806 * If someone else is already canceling, wait for it to
2807 * finish. flush_work() doesn't work for PREEMPT_NONE
2808 * because we may get scheduled between @work's completion
2809 * and the other canceling task resuming and clearing
2810 * CANCELING - flush_work() will return false immediately
2811 * as @work is no longer busy, try_to_grab_pending() will
2812 * return -ENOENT as @work is still being canceled and the
2813 * other canceling task won't be able to clear CANCELING as
2814 * we're hogging the CPU.
2815 *
2816 * Let's wait for completion using a waitqueue. As this
2817 * may lead to the thundering herd problem, use a custom
2818 * wake function which matches @work along with exclusive
2819 * wait and wakeup.
2820 */
2821 if (unlikely(ret == -ENOENT)) {
2822 struct cwt_wait cwait;
2823
2824 init_wait(&cwait.wait);
2825 cwait.wait.func = cwt_wakefn;
2826 cwait.work = work;
2827
2828 prepare_to_wait_exclusive(&cancel_waitq, &cwait.wait,
2829 TASK_UNINTERRUPTIBLE);
2830 if (work_is_canceling(work))
2831 schedule();
2832 finish_wait(&cancel_waitq, &cwait.wait);
2833 }
2834 } while (unlikely(ret < 0));
2835
2836 /* tell other tasks trying to grab @work to back off */
2837 mark_work_canceling(work);
2838 local_irq_restore(flags);
2839
2840 flush_work(work);
2841 clear_work_data(work);
2842
2843 /*
2844 * Paired with prepare_to_wait() above so that either
2845 * waitqueue_active() is visible here or !work_is_canceling() is
2846 * visible there.
2847 */
2848 smp_mb();
2849 if (waitqueue_active(&cancel_waitq))
2850 __wake_up(&cancel_waitq, TASK_NORMAL, 1, work);
2851
2852 return ret;
2853 }
2854
2855 /**
2856 * cancel_work_sync - cancel a work and wait for it to finish
2857 * @work: the work to cancel
2858 *
2859 * Cancel @work and wait for its execution to finish. This function
2860 * can be used even if the work re-queues itself or migrates to
2861 * another workqueue. On return from this function, @work is
2862 * guaranteed to be not pending or executing on any CPU.
2863 *
2864 * cancel_work_sync(&delayed_work->work) must not be used for
2865 * delayed_work's. Use cancel_delayed_work_sync() instead.
2866 *
2867 * The caller must ensure that the workqueue on which @work was last
2868 * queued can't be destroyed before this function returns.
2869 *
2870 * Return:
2871 * %true if @work was pending, %false otherwise.
2872 */
2873 bool cancel_work_sync(struct work_struct *work)
2874 {
2875 return __cancel_work_timer(work, false);
2876 }
2877 EXPORT_SYMBOL_GPL(cancel_work_sync);
2878
2879 /**
2880 * flush_delayed_work - wait for a dwork to finish executing the last queueing
2881 * @dwork: the delayed work to flush
2882 *
2883 * Delayed timer is cancelled and the pending work is queued for
2884 * immediate execution. Like flush_work(), this function only
2885 * considers the last queueing instance of @dwork.
2886 *
2887 * Return:
2888 * %true if flush_work() waited for the work to finish execution,
2889 * %false if it was already idle.
2890 */
2891 bool flush_delayed_work(struct delayed_work *dwork)
2892 {
2893 local_irq_disable();
2894 if (del_timer_sync(&dwork->timer))
2895 __queue_work(dwork->cpu, dwork->wq, &dwork->work);
2896 local_irq_enable();
2897 return flush_work(&dwork->work);
2898 }
2899 EXPORT_SYMBOL(flush_delayed_work);
2900
2901 /**
2902 * cancel_delayed_work - cancel a delayed work
2903 * @dwork: delayed_work to cancel
2904 *
2905 * Kill off a pending delayed_work.
2906 *
2907 * Return: %true if @dwork was pending and canceled; %false if it wasn't
2908 * pending.
2909 *
2910 * Note:
2911 * The work callback function may still be running on return, unless
2912 * it returns %true and the work doesn't re-arm itself. Explicitly flush or
2913 * use cancel_delayed_work_sync() to wait on it.
2914 *
2915 * This function is safe to call from any context including IRQ handler.
2916 */
2917 bool cancel_delayed_work(struct delayed_work *dwork)
2918 {
2919 unsigned long flags;
2920 int ret;
2921
2922 do {
2923 ret = try_to_grab_pending(&dwork->work, true, &flags);
2924 } while (unlikely(ret == -EAGAIN));
2925
2926 if (unlikely(ret < 0))
2927 return false;
2928
2929 set_work_pool_and_clear_pending(&dwork->work,
2930 get_work_pool_id(&dwork->work));
2931 local_irq_restore(flags);
2932 return ret;
2933 }
2934 EXPORT_SYMBOL(cancel_delayed_work);
2935
2936 /**
2937 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
2938 * @dwork: the delayed work cancel
2939 *
2940 * This is cancel_work_sync() for delayed works.
2941 *
2942 * Return:
2943 * %true if @dwork was pending, %false otherwise.
2944 */
2945 bool cancel_delayed_work_sync(struct delayed_work *dwork)
2946 {
2947 return __cancel_work_timer(&dwork->work, true);
2948 }
2949 EXPORT_SYMBOL(cancel_delayed_work_sync);
2950
2951 /**
2952 * schedule_on_each_cpu - execute a function synchronously on each online CPU
2953 * @func: the function to call
2954 *
2955 * schedule_on_each_cpu() executes @func on each online CPU using the
2956 * system workqueue and blocks until all CPUs have completed.
2957 * schedule_on_each_cpu() is very slow.
2958 *
2959 * Return:
2960 * 0 on success, -errno on failure.
2961 */
2962 int schedule_on_each_cpu(work_func_t func)
2963 {
2964 int cpu;
2965 struct work_struct __percpu *works;
2966
2967 works = alloc_percpu(struct work_struct);
2968 if (!works)
2969 return -ENOMEM;
2970
2971 get_online_cpus();
2972
2973 for_each_online_cpu(cpu) {
2974 struct work_struct *work = per_cpu_ptr(works, cpu);
2975
2976 INIT_WORK(work, func);
2977 schedule_work_on(cpu, work);
2978 }
2979
2980 for_each_online_cpu(cpu)
2981 flush_work(per_cpu_ptr(works, cpu));
2982
2983 put_online_cpus();
2984 free_percpu(works);
2985 return 0;
2986 }
2987
2988 /**
2989 * execute_in_process_context - reliably execute the routine with user context
2990 * @fn: the function to execute
2991 * @ew: guaranteed storage for the execute work structure (must
2992 * be available when the work executes)
2993 *
2994 * Executes the function immediately if process context is available,
2995 * otherwise schedules the function for delayed execution.
2996 *
2997 * Return: 0 - function was executed
2998 * 1 - function was scheduled for execution
2999 */
3000 int execute_in_process_context(work_func_t fn, struct execute_work *ew)
3001 {
3002 if (!in_interrupt()) {
3003 fn(&ew->work);
3004 return 0;
3005 }
3006
3007 INIT_WORK(&ew->work, fn);
3008 schedule_work(&ew->work);
3009
3010 return 1;
3011 }
3012 EXPORT_SYMBOL_GPL(execute_in_process_context);
3013
3014 /**
3015 * free_workqueue_attrs - free a workqueue_attrs
3016 * @attrs: workqueue_attrs to free
3017 *
3018 * Undo alloc_workqueue_attrs().
3019 */
3020 void free_workqueue_attrs(struct workqueue_attrs *attrs)
3021 {
3022 if (attrs) {
3023 free_cpumask_var(attrs->cpumask);
3024 kfree(attrs);
3025 }
3026 }
3027
3028 /**
3029 * alloc_workqueue_attrs - allocate a workqueue_attrs
3030 * @gfp_mask: allocation mask to use
3031 *
3032 * Allocate a new workqueue_attrs, initialize with default settings and
3033 * return it.
3034 *
3035 * Return: The allocated new workqueue_attr on success. %NULL on failure.
3036 */
3037 struct workqueue_attrs *alloc_workqueue_attrs(gfp_t gfp_mask)
3038 {
3039 struct workqueue_attrs *attrs;
3040
3041 attrs = kzalloc(sizeof(*attrs), gfp_mask);
3042 if (!attrs)
3043 goto fail;
3044 if (!alloc_cpumask_var(&attrs->cpumask, gfp_mask))
3045 goto fail;
3046
3047 cpumask_copy(attrs->cpumask, cpu_possible_mask);
3048 return attrs;
3049 fail:
3050 free_workqueue_attrs(attrs);
3051 return NULL;
3052 }
3053
3054 static void copy_workqueue_attrs(struct workqueue_attrs *to,
3055 const struct workqueue_attrs *from)
3056 {
3057 to->nice = from->nice;
3058 cpumask_copy(to->cpumask, from->cpumask);
3059 /*
3060 * Unlike hash and equality test, this function doesn't ignore
3061 * ->no_numa as it is used for both pool and wq attrs. Instead,
3062 * get_unbound_pool() explicitly clears ->no_numa after copying.
3063 */
3064 to->no_numa = from->no_numa;
3065 }
3066
3067 /* hash value of the content of @attr */
3068 static u32 wqattrs_hash(const struct workqueue_attrs *attrs)
3069 {
3070 u32 hash = 0;
3071
3072 hash = jhash_1word(attrs->nice, hash);
3073 hash = jhash(cpumask_bits(attrs->cpumask),
3074 BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash);
3075 return hash;
3076 }
3077
3078 /* content equality test */
3079 static bool wqattrs_equal(const struct workqueue_attrs *a,
3080 const struct workqueue_attrs *b)
3081 {
3082 if (a->nice != b->nice)
3083 return false;
3084 if (!cpumask_equal(a->cpumask, b->cpumask))
3085 return false;
3086 return true;
3087 }
3088
3089 /**
3090 * init_worker_pool - initialize a newly zalloc'd worker_pool
3091 * @pool: worker_pool to initialize
3092 *
3093 * Initialize a newly zalloc'd @pool. It also allocates @pool->attrs.
3094 *
3095 * Return: 0 on success, -errno on failure. Even on failure, all fields
3096 * inside @pool proper are initialized and put_unbound_pool() can be called
3097 * on @pool safely to release it.
3098 */
3099 static int init_worker_pool(struct worker_pool *pool)
3100 {
3101 spin_lock_init(&pool->lock);
3102 pool->id = -1;
3103 pool->cpu = -1;
3104 pool->node = NUMA_NO_NODE;
3105 pool->flags |= POOL_DISASSOCIATED;
3106 INIT_LIST_HEAD(&pool->worklist);
3107 INIT_LIST_HEAD(&pool->idle_list);
3108 hash_init(pool->busy_hash);
3109
3110 init_timer_deferrable(&pool->idle_timer);
3111 pool->idle_timer.function = idle_worker_timeout;
3112 pool->idle_timer.data = (unsigned long)pool;
3113
3114 setup_timer(&pool->mayday_timer, pool_mayday_timeout,
3115 (unsigned long)pool);
3116
3117 mutex_init(&pool->attach_mutex);
3118 INIT_LIST_HEAD(&pool->workers);
3119
3120 ida_init(&pool->worker_ida);
3121 INIT_HLIST_NODE(&pool->hash_node);
3122 pool->refcnt = 1;
3123
3124 /* shouldn't fail above this point */
3125 pool->attrs = alloc_workqueue_attrs(GFP_KERNEL);
3126 if (!pool->attrs)
3127 return -ENOMEM;
3128 return 0;
3129 }
3130
3131 static void rcu_free_wq(struct rcu_head *rcu)
3132 {
3133 struct workqueue_struct *wq =
3134 container_of(rcu, struct workqueue_struct, rcu);
3135
3136 if (!(wq->flags & WQ_UNBOUND))
3137 free_percpu(wq->cpu_pwqs);
3138 else
3139 free_workqueue_attrs(wq->unbound_attrs);
3140
3141 kfree(wq->rescuer);
3142 kfree(wq);
3143 }
3144
3145 static void rcu_free_pool(struct rcu_head *rcu)
3146 {
3147 struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu);
3148
3149 ida_destroy(&pool->worker_ida);
3150 free_workqueue_attrs(pool->attrs);
3151 kfree(pool);
3152 }
3153
3154 /**
3155 * put_unbound_pool - put a worker_pool
3156 * @pool: worker_pool to put
3157 *
3158 * Put @pool. If its refcnt reaches zero, it gets destroyed in sched-RCU
3159 * safe manner. get_unbound_pool() calls this function on its failure path
3160 * and this function should be able to release pools which went through,
3161 * successfully or not, init_worker_pool().
3162 *
3163 * Should be called with wq_pool_mutex held.
3164 */
3165 static void put_unbound_pool(struct worker_pool *pool)
3166 {
3167 DECLARE_COMPLETION_ONSTACK(detach_completion);
3168 struct worker *worker;
3169
3170 lockdep_assert_held(&wq_pool_mutex);
3171
3172 if (--pool->refcnt)
3173 return;
3174
3175 /* sanity checks */
3176 if (WARN_ON(!(pool->cpu < 0)) ||
3177 WARN_ON(!list_empty(&pool->worklist)))
3178 return;
3179
3180 /* release id and unhash */
3181 if (pool->id >= 0)
3182 idr_remove(&worker_pool_idr, pool->id);
3183 hash_del(&pool->hash_node);
3184
3185 /*
3186 * Become the manager and destroy all workers. This prevents
3187 * @pool's workers from blocking on attach_mutex. We're the last
3188 * manager and @pool gets freed with the flag set.
3189 */
3190 spin_lock_irq(&pool->lock);
3191 wait_event_lock_irq(wq_manager_wait,
3192 !(pool->flags & POOL_MANAGER_ACTIVE), pool->lock);
3193 pool->flags |= POOL_MANAGER_ACTIVE;
3194
3195 while ((worker = first_idle_worker(pool)))
3196 destroy_worker(worker);
3197 WARN_ON(pool->nr_workers || pool->nr_idle);
3198 spin_unlock_irq(&pool->lock);
3199
3200 mutex_lock(&pool->attach_mutex);
3201 if (!list_empty(&pool->workers))
3202 pool->detach_completion = &detach_completion;
3203 mutex_unlock(&pool->attach_mutex);
3204
3205 if (pool->detach_completion)
3206 wait_for_completion(pool->detach_completion);
3207
3208 /* shut down the timers */
3209 del_timer_sync(&pool->idle_timer);
3210 del_timer_sync(&pool->mayday_timer);
3211
3212 /* sched-RCU protected to allow dereferences from get_work_pool() */
3213 call_rcu_sched(&pool->rcu, rcu_free_pool);
3214 }
3215
3216 /**
3217 * get_unbound_pool - get a worker_pool with the specified attributes
3218 * @attrs: the attributes of the worker_pool to get
3219 *
3220 * Obtain a worker_pool which has the same attributes as @attrs, bump the
3221 * reference count and return it. If there already is a matching
3222 * worker_pool, it will be used; otherwise, this function attempts to
3223 * create a new one.
3224 *
3225 * Should be called with wq_pool_mutex held.
3226 *
3227 * Return: On success, a worker_pool with the same attributes as @attrs.
3228 * On failure, %NULL.
3229 */
3230 static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs)
3231 {
3232 u32 hash = wqattrs_hash(attrs);
3233 struct worker_pool *pool;
3234 int node;
3235 int target_node = NUMA_NO_NODE;
3236
3237 lockdep_assert_held(&wq_pool_mutex);
3238
3239 /* do we already have a matching pool? */
3240 hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) {
3241 if (wqattrs_equal(pool->attrs, attrs)) {
3242 pool->refcnt++;
3243 return pool;
3244 }
3245 }
3246
3247 /* if cpumask is contained inside a NUMA node, we belong to that node */
3248 if (wq_numa_enabled) {
3249 for_each_node(node) {
3250 if (cpumask_subset(attrs->cpumask,
3251 wq_numa_possible_cpumask[node])) {
3252 target_node = node;
3253 break;
3254 }
3255 }
3256 }
3257
3258 /* nope, create a new one */
3259 pool = kzalloc_node(sizeof(*pool), GFP_KERNEL, target_node);
3260 if (!pool || init_worker_pool(pool) < 0)
3261 goto fail;
3262
3263 lockdep_set_subclass(&pool->lock, 1); /* see put_pwq() */
3264 copy_workqueue_attrs(pool->attrs, attrs);
3265 pool->node = target_node;
3266
3267 /*
3268 * no_numa isn't a worker_pool attribute, always clear it. See
3269 * 'struct workqueue_attrs' comments for detail.
3270 */
3271 pool->attrs->no_numa = false;
3272
3273 if (worker_pool_assign_id(pool) < 0)
3274 goto fail;
3275
3276 /* create and start the initial worker */
3277 if (!create_worker(pool))
3278 goto fail;
3279
3280 /* install */
3281 hash_add(unbound_pool_hash, &pool->hash_node, hash);
3282
3283 return pool;
3284 fail:
3285 if (pool)
3286 put_unbound_pool(pool);
3287 return NULL;
3288 }
3289
3290 static void rcu_free_pwq(struct rcu_head *rcu)
3291 {
3292 kmem_cache_free(pwq_cache,
3293 container_of(rcu, struct pool_workqueue, rcu));
3294 }
3295
3296 /*
3297 * Scheduled on system_wq by put_pwq() when an unbound pwq hits zero refcnt
3298 * and needs to be destroyed.
3299 */
3300 static void pwq_unbound_release_workfn(struct work_struct *work)
3301 {
3302 struct pool_workqueue *pwq = container_of(work, struct pool_workqueue,
3303 unbound_release_work);
3304 struct workqueue_struct *wq = pwq->wq;
3305 struct worker_pool *pool = pwq->pool;
3306 bool is_last;
3307
3308 if (WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND)))
3309 return;
3310
3311 mutex_lock(&wq->mutex);
3312 list_del_rcu(&pwq->pwqs_node);
3313 is_last = list_empty(&wq->pwqs);
3314 mutex_unlock(&wq->mutex);
3315
3316 mutex_lock(&wq_pool_mutex);
3317 put_unbound_pool(pool);
3318 mutex_unlock(&wq_pool_mutex);
3319
3320 call_rcu_sched(&pwq->rcu, rcu_free_pwq);
3321
3322 /*
3323 * If we're the last pwq going away, @wq is already dead and no one
3324 * is gonna access it anymore. Schedule RCU free.
3325 */
3326 if (is_last)
3327 call_rcu_sched(&wq->rcu, rcu_free_wq);
3328 }
3329
3330 /**
3331 * pwq_adjust_max_active - update a pwq's max_active to the current setting
3332 * @pwq: target pool_workqueue
3333 *
3334 * If @pwq isn't freezing, set @pwq->max_active to the associated
3335 * workqueue's saved_max_active and activate delayed work items
3336 * accordingly. If @pwq is freezing, clear @pwq->max_active to zero.
3337 */
3338 static void pwq_adjust_max_active(struct pool_workqueue *pwq)
3339 {
3340 struct workqueue_struct *wq = pwq->wq;
3341 bool freezable = wq->flags & WQ_FREEZABLE;
3342
3343 /* for @wq->saved_max_active */
3344 lockdep_assert_held(&wq->mutex);
3345
3346 /* fast exit for non-freezable wqs */
3347 if (!freezable && pwq->max_active == wq->saved_max_active)
3348 return;
3349
3350 spin_lock_irq(&pwq->pool->lock);
3351
3352 /*
3353 * During [un]freezing, the caller is responsible for ensuring that
3354 * this function is called at least once after @workqueue_freezing
3355 * is updated and visible.
3356 */
3357 if (!freezable || !workqueue_freezing) {
3358 pwq->max_active = wq->saved_max_active;
3359
3360 while (!list_empty(&pwq->delayed_works) &&
3361 pwq->nr_active < pwq->max_active)
3362 pwq_activate_first_delayed(pwq);
3363
3364 /*
3365 * Need to kick a worker after thawed or an unbound wq's
3366 * max_active is bumped. It's a slow path. Do it always.
3367 */
3368 wake_up_worker(pwq->pool);
3369 } else {
3370 pwq->max_active = 0;
3371 }
3372
3373 spin_unlock_irq(&pwq->pool->lock);
3374 }
3375
3376 /* initialize newly alloced @pwq which is associated with @wq and @pool */
3377 static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq,
3378 struct worker_pool *pool)
3379 {
3380 BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK);
3381
3382 memset(pwq, 0, sizeof(*pwq));
3383
3384 pwq->pool = pool;
3385 pwq->wq = wq;
3386 pwq->flush_color = -1;
3387 pwq->refcnt = 1;
3388 INIT_LIST_HEAD(&pwq->delayed_works);
3389 INIT_LIST_HEAD(&pwq->pwqs_node);
3390 INIT_LIST_HEAD(&pwq->mayday_node);
3391 INIT_WORK(&pwq->unbound_release_work, pwq_unbound_release_workfn);
3392 }
3393
3394 /* sync @pwq with the current state of its associated wq and link it */
3395 static void link_pwq(struct pool_workqueue *pwq)
3396 {
3397 struct workqueue_struct *wq = pwq->wq;
3398
3399 lockdep_assert_held(&wq->mutex);
3400
3401 /* may be called multiple times, ignore if already linked */
3402 if (!list_empty(&pwq->pwqs_node))
3403 return;
3404
3405 /* set the matching work_color */
3406 pwq->work_color = wq->work_color;
3407
3408 /* sync max_active to the current setting */
3409 pwq_adjust_max_active(pwq);
3410
3411 /* link in @pwq */
3412 list_add_rcu(&pwq->pwqs_node, &wq->pwqs);
3413 }
3414
3415 /* obtain a pool matching @attr and create a pwq associating the pool and @wq */
3416 static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq,
3417 const struct workqueue_attrs *attrs)
3418 {
3419 struct worker_pool *pool;
3420 struct pool_workqueue *pwq;
3421
3422 lockdep_assert_held(&wq_pool_mutex);
3423
3424 pool = get_unbound_pool(attrs);
3425 if (!pool)
3426 return NULL;
3427
3428 pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node);
3429 if (!pwq) {
3430 put_unbound_pool(pool);
3431 return NULL;
3432 }
3433
3434 init_pwq(pwq, wq, pool);
3435 return pwq;
3436 }
3437
3438 /**
3439 * wq_calc_node_cpumask - calculate a wq_attrs' cpumask for the specified node
3440 * @attrs: the wq_attrs of the default pwq of the target workqueue
3441 * @node: the target NUMA node
3442 * @cpu_going_down: if >= 0, the CPU to consider as offline
3443 * @cpumask: outarg, the resulting cpumask
3444 *
3445 * Calculate the cpumask a workqueue with @attrs should use on @node. If
3446 * @cpu_going_down is >= 0, that cpu is considered offline during
3447 * calculation. The result is stored in @cpumask.
3448 *
3449 * If NUMA affinity is not enabled, @attrs->cpumask is always used. If
3450 * enabled and @node has online CPUs requested by @attrs, the returned
3451 * cpumask is the intersection of the possible CPUs of @node and
3452 * @attrs->cpumask.
3453 *
3454 * The caller is responsible for ensuring that the cpumask of @node stays
3455 * stable.
3456 *
3457 * Return: %true if the resulting @cpumask is different from @attrs->cpumask,
3458 * %false if equal.
3459 */
3460 static bool wq_calc_node_cpumask(const struct workqueue_attrs *attrs, int node,
3461 int cpu_going_down, cpumask_t *cpumask)
3462 {
3463 if (!wq_numa_enabled || attrs->no_numa)
3464 goto use_dfl;
3465
3466 /* does @node have any online CPUs @attrs wants? */
3467 cpumask_and(cpumask, cpumask_of_node(node), attrs->cpumask);
3468 if (cpu_going_down >= 0)
3469 cpumask_clear_cpu(cpu_going_down, cpumask);
3470
3471 if (cpumask_empty(cpumask))
3472 goto use_dfl;
3473
3474 /* yeap, return possible CPUs in @node that @attrs wants */
3475 cpumask_and(cpumask, attrs->cpumask, wq_numa_possible_cpumask[node]);
3476 return !cpumask_equal(cpumask, attrs->cpumask);
3477
3478 use_dfl:
3479 cpumask_copy(cpumask, attrs->cpumask);
3480 return false;
3481 }
3482
3483 /* install @pwq into @wq's numa_pwq_tbl[] for @node and return the old pwq */
3484 static struct pool_workqueue *numa_pwq_tbl_install(struct workqueue_struct *wq,
3485 int node,
3486 struct pool_workqueue *pwq)
3487 {
3488 struct pool_workqueue *old_pwq;
3489
3490 lockdep_assert_held(&wq_pool_mutex);
3491 lockdep_assert_held(&wq->mutex);
3492
3493 /* link_pwq() can handle duplicate calls */
3494 link_pwq(pwq);
3495
3496 old_pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
3497 rcu_assign_pointer(wq->numa_pwq_tbl[node], pwq);
3498 return old_pwq;
3499 }
3500
3501 /* context to store the prepared attrs & pwqs before applying */
3502 struct apply_wqattrs_ctx {
3503 struct workqueue_struct *wq; /* target workqueue */
3504 struct workqueue_attrs *attrs; /* attrs to apply */
3505 struct list_head list; /* queued for batching commit */
3506 struct pool_workqueue *dfl_pwq;
3507 struct pool_workqueue *pwq_tbl[];
3508 };
3509
3510 /* free the resources after success or abort */
3511 static void apply_wqattrs_cleanup(struct apply_wqattrs_ctx *ctx)
3512 {
3513 if (ctx) {
3514 int node;
3515
3516 for_each_node(node)
3517 put_pwq_unlocked(ctx->pwq_tbl[node]);
3518 put_pwq_unlocked(ctx->dfl_pwq);
3519
3520 free_workqueue_attrs(ctx->attrs);
3521
3522 kfree(ctx);
3523 }
3524 }
3525
3526 /* allocate the attrs and pwqs for later installation */
3527 static struct apply_wqattrs_ctx *
3528 apply_wqattrs_prepare(struct workqueue_struct *wq,
3529 const struct workqueue_attrs *attrs)
3530 {
3531 struct apply_wqattrs_ctx *ctx;
3532 struct workqueue_attrs *new_attrs, *tmp_attrs;
3533 int node;
3534
3535 lockdep_assert_held(&wq_pool_mutex);
3536
3537 ctx = kzalloc(sizeof(*ctx) + nr_node_ids * sizeof(ctx->pwq_tbl[0]),
3538 GFP_KERNEL);
3539
3540 new_attrs = alloc_workqueue_attrs(GFP_KERNEL);
3541 tmp_attrs = alloc_workqueue_attrs(GFP_KERNEL);
3542 if (!ctx || !new_attrs || !tmp_attrs)
3543 goto out_free;
3544
3545 /*
3546 * Calculate the attrs of the default pwq.
3547 * If the user configured cpumask doesn't overlap with the
3548 * wq_unbound_cpumask, we fallback to the wq_unbound_cpumask.
3549 */
3550 copy_workqueue_attrs(new_attrs, attrs);
3551 cpumask_and(new_attrs->cpumask, new_attrs->cpumask, wq_unbound_cpumask);
3552 if (unlikely(cpumask_empty(new_attrs->cpumask)))
3553 cpumask_copy(new_attrs->cpumask, wq_unbound_cpumask);
3554
3555 /*
3556 * We may create multiple pwqs with differing cpumasks. Make a
3557 * copy of @new_attrs which will be modified and used to obtain
3558 * pools.
3559 */
3560 copy_workqueue_attrs(tmp_attrs, new_attrs);
3561
3562 /*
3563 * If something goes wrong during CPU up/down, we'll fall back to
3564 * the default pwq covering whole @attrs->cpumask. Always create
3565 * it even if we don't use it immediately.
3566 */
3567 ctx->dfl_pwq = alloc_unbound_pwq(wq, new_attrs);
3568 if (!ctx->dfl_pwq)
3569 goto out_free;
3570
3571 for_each_node(node) {
3572 if (wq_calc_node_cpumask(new_attrs, node, -1, tmp_attrs->cpumask)) {
3573 ctx->pwq_tbl[node] = alloc_unbound_pwq(wq, tmp_attrs);
3574 if (!ctx->pwq_tbl[node])
3575 goto out_free;
3576 } else {
3577 ctx->dfl_pwq->refcnt++;
3578 ctx->pwq_tbl[node] = ctx->dfl_pwq;
3579 }
3580 }
3581
3582 /* save the user configured attrs and sanitize it. */
3583 copy_workqueue_attrs(new_attrs, attrs);
3584 cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask);
3585 ctx->attrs = new_attrs;
3586
3587 ctx->wq = wq;
3588 free_workqueue_attrs(tmp_attrs);
3589 return ctx;
3590
3591 out_free:
3592 free_workqueue_attrs(tmp_attrs);
3593 free_workqueue_attrs(new_attrs);
3594 apply_wqattrs_cleanup(ctx);
3595 return NULL;
3596 }
3597
3598 /* set attrs and install prepared pwqs, @ctx points to old pwqs on return */
3599 static void apply_wqattrs_commit(struct apply_wqattrs_ctx *ctx)
3600 {
3601 int node;
3602
3603 /* all pwqs have been created successfully, let's install'em */
3604 mutex_lock(&ctx->wq->mutex);
3605
3606 copy_workqueue_attrs(ctx->wq->unbound_attrs, ctx->attrs);
3607
3608 /* save the previous pwq and install the new one */
3609 for_each_node(node)
3610 ctx->pwq_tbl[node] = numa_pwq_tbl_install(ctx->wq, node,
3611 ctx->pwq_tbl[node]);
3612
3613 /* @dfl_pwq might not have been used, ensure it's linked */
3614 link_pwq(ctx->dfl_pwq);
3615 swap(ctx->wq->dfl_pwq, ctx->dfl_pwq);
3616
3617 mutex_unlock(&ctx->wq->mutex);
3618 }
3619
3620 static void apply_wqattrs_lock(void)
3621 {
3622 /* CPUs should stay stable across pwq creations and installations */
3623 get_online_cpus();
3624 mutex_lock(&wq_pool_mutex);
3625 }
3626
3627 static void apply_wqattrs_unlock(void)
3628 {
3629 mutex_unlock(&wq_pool_mutex);
3630 put_online_cpus();
3631 }
3632
3633 static int apply_workqueue_attrs_locked(struct workqueue_struct *wq,
3634 const struct workqueue_attrs *attrs)
3635 {
3636 struct apply_wqattrs_ctx *ctx;
3637 int ret = -ENOMEM;
3638
3639 /* only unbound workqueues can change attributes */
3640 if (WARN_ON(!(wq->flags & WQ_UNBOUND)))
3641 return -EINVAL;
3642
3643 /* creating multiple pwqs breaks ordering guarantee */
3644 if (!list_empty(&wq->pwqs)) {
3645 if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
3646 return -EINVAL;
3647
3648 wq->flags &= ~__WQ_ORDERED;
3649 }
3650
3651 ctx = apply_wqattrs_prepare(wq, attrs);
3652
3653 /* the ctx has been prepared successfully, let's commit it */
3654 if (ctx) {
3655 apply_wqattrs_commit(ctx);
3656 ret = 0;
3657 }
3658
3659 apply_wqattrs_cleanup(ctx);
3660
3661 return ret;
3662 }
3663
3664 /**
3665 * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue
3666 * @wq: the target workqueue
3667 * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs()
3668 *
3669 * Apply @attrs to an unbound workqueue @wq. Unless disabled, on NUMA
3670 * machines, this function maps a separate pwq to each NUMA node with
3671 * possibles CPUs in @attrs->cpumask so that work items are affine to the
3672 * NUMA node it was issued on. Older pwqs are released as in-flight work
3673 * items finish. Note that a work item which repeatedly requeues itself
3674 * back-to-back will stay on its current pwq.
3675 *
3676 * Performs GFP_KERNEL allocations.
3677 *
3678 * Return: 0 on success and -errno on failure.
3679 */
3680 int apply_workqueue_attrs(struct workqueue_struct *wq,
3681 const struct workqueue_attrs *attrs)
3682 {
3683 int ret;
3684
3685 apply_wqattrs_lock();
3686 ret = apply_workqueue_attrs_locked(wq, attrs);
3687 apply_wqattrs_unlock();
3688
3689 return ret;
3690 }
3691
3692 /**
3693 * wq_update_unbound_numa - update NUMA affinity of a wq for CPU hot[un]plug
3694 * @wq: the target workqueue
3695 * @cpu: the CPU coming up or going down
3696 * @online: whether @cpu is coming up or going down
3697 *
3698 * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and
3699 * %CPU_DOWN_FAILED. @cpu is being hot[un]plugged, update NUMA affinity of
3700 * @wq accordingly.
3701 *
3702 * If NUMA affinity can't be adjusted due to memory allocation failure, it
3703 * falls back to @wq->dfl_pwq which may not be optimal but is always
3704 * correct.
3705 *
3706 * Note that when the last allowed CPU of a NUMA node goes offline for a
3707 * workqueue with a cpumask spanning multiple nodes, the workers which were
3708 * already executing the work items for the workqueue will lose their CPU
3709 * affinity and may execute on any CPU. This is similar to how per-cpu
3710 * workqueues behave on CPU_DOWN. If a workqueue user wants strict
3711 * affinity, it's the user's responsibility to flush the work item from
3712 * CPU_DOWN_PREPARE.
3713 */
3714 static void wq_update_unbound_numa(struct workqueue_struct *wq, int cpu,
3715 bool online)
3716 {
3717 int node = cpu_to_node(cpu);
3718 int cpu_off = online ? -1 : cpu;
3719 struct pool_workqueue *old_pwq = NULL, *pwq;
3720 struct workqueue_attrs *target_attrs;
3721 cpumask_t *cpumask;
3722
3723 lockdep_assert_held(&wq_pool_mutex);
3724
3725 if (!wq_numa_enabled || !(wq->flags & WQ_UNBOUND) ||
3726 wq->unbound_attrs->no_numa)
3727 return;
3728
3729 /*
3730 * We don't wanna alloc/free wq_attrs for each wq for each CPU.
3731 * Let's use a preallocated one. The following buf is protected by
3732 * CPU hotplug exclusion.
3733 */
3734 target_attrs = wq_update_unbound_numa_attrs_buf;
3735 cpumask = target_attrs->cpumask;
3736
3737 copy_workqueue_attrs(target_attrs, wq->unbound_attrs);
3738 pwq = unbound_pwq_by_node(wq, node);
3739
3740 /*
3741 * Let's determine what needs to be done. If the target cpumask is
3742 * different from the default pwq's, we need to compare it to @pwq's
3743 * and create a new one if they don't match. If the target cpumask
3744 * equals the default pwq's, the default pwq should be used.
3745 */
3746 if (wq_calc_node_cpumask(wq->dfl_pwq->pool->attrs, node, cpu_off, cpumask)) {
3747 if (cpumask_equal(cpumask, pwq->pool->attrs->cpumask))
3748 return;
3749 } else {
3750 goto use_dfl_pwq;
3751 }
3752
3753 /* create a new pwq */
3754 pwq = alloc_unbound_pwq(wq, target_attrs);
3755 if (!pwq) {
3756 pr_warn("workqueue: allocation failed while updating NUMA affinity of \"%s\"\n",
3757 wq->name);
3758 goto use_dfl_pwq;
3759 }
3760
3761 /* Install the new pwq. */
3762 mutex_lock(&wq->mutex);
3763 old_pwq = numa_pwq_tbl_install(wq, node, pwq);
3764 goto out_unlock;
3765
3766 use_dfl_pwq:
3767 mutex_lock(&wq->mutex);
3768 spin_lock_irq(&wq->dfl_pwq->pool->lock);
3769 get_pwq(wq->dfl_pwq);
3770 spin_unlock_irq(&wq->dfl_pwq->pool->lock);
3771 old_pwq = numa_pwq_tbl_install(wq, node, wq->dfl_pwq);
3772 out_unlock:
3773 mutex_unlock(&wq->mutex);
3774 put_pwq_unlocked(old_pwq);
3775 }
3776
3777 static int alloc_and_link_pwqs(struct workqueue_struct *wq)
3778 {
3779 bool highpri = wq->flags & WQ_HIGHPRI;
3780 int cpu, ret;
3781
3782 if (!(wq->flags & WQ_UNBOUND)) {
3783 wq->cpu_pwqs = alloc_percpu(struct pool_workqueue);
3784 if (!wq->cpu_pwqs)
3785 return -ENOMEM;
3786
3787 for_each_possible_cpu(cpu) {
3788 struct pool_workqueue *pwq =
3789 per_cpu_ptr(wq->cpu_pwqs, cpu);
3790 struct worker_pool *cpu_pools =
3791 per_cpu(cpu_worker_pools, cpu);
3792
3793 init_pwq(pwq, wq, &cpu_pools[highpri]);
3794
3795 mutex_lock(&wq->mutex);
3796 link_pwq(pwq);
3797 mutex_unlock(&wq->mutex);
3798 }
3799 return 0;
3800 } else if (wq->flags & __WQ_ORDERED) {
3801 ret = apply_workqueue_attrs(wq, ordered_wq_attrs[highpri]);
3802 /* there should only be single pwq for ordering guarantee */
3803 WARN(!ret && (wq->pwqs.next != &wq->dfl_pwq->pwqs_node ||
3804 wq->pwqs.prev != &wq->dfl_pwq->pwqs_node),
3805 "ordering guarantee broken for workqueue %s\n", wq->name);
3806 return ret;
3807 } else {
3808 return apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]);
3809 }
3810 }
3811
3812 static int wq_clamp_max_active(int max_active, unsigned int flags,
3813 const char *name)
3814 {
3815 int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;
3816
3817 if (max_active < 1 || max_active > lim)
3818 pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
3819 max_active, name, 1, lim);
3820
3821 return clamp_val(max_active, 1, lim);
3822 }
3823
3824 struct workqueue_struct *__alloc_workqueue_key(const char *fmt,
3825 unsigned int flags,
3826 int max_active,
3827 struct lock_class_key *key,
3828 const char *lock_name, ...)
3829 {
3830 size_t tbl_size = 0;
3831 va_list args;
3832 struct workqueue_struct *wq;
3833 struct pool_workqueue *pwq;
3834
3835 /*
3836 * Unbound && max_active == 1 used to imply ordered, which is no
3837 * longer the case on NUMA machines due to per-node pools. While
3838 * alloc_ordered_workqueue() is the right way to create an ordered
3839 * workqueue, keep the previous behavior to avoid subtle breakages
3840 * on NUMA.
3841 */
3842 if ((flags & WQ_UNBOUND) && max_active == 1)
3843 flags |= __WQ_ORDERED;
3844
3845 /* see the comment above the definition of WQ_POWER_EFFICIENT */
3846 if ((flags & WQ_POWER_EFFICIENT) && wq_power_efficient)
3847 flags |= WQ_UNBOUND;
3848
3849 /* allocate wq and format name */
3850 if (flags & WQ_UNBOUND)
3851 tbl_size = nr_node_ids * sizeof(wq->numa_pwq_tbl[0]);
3852
3853 wq = kzalloc(sizeof(*wq) + tbl_size, GFP_KERNEL);
3854 if (!wq)
3855 return NULL;
3856
3857 if (flags & WQ_UNBOUND) {
3858 wq->unbound_attrs = alloc_workqueue_attrs(GFP_KERNEL);
3859 if (!wq->unbound_attrs)
3860 goto err_free_wq;
3861 }
3862
3863 va_start(args, lock_name);
3864 vsnprintf(wq->name, sizeof(wq->name), fmt, args);
3865 va_end(args);
3866
3867 max_active = max_active ?: WQ_DFL_ACTIVE;
3868 max_active = wq_clamp_max_active(max_active, flags, wq->name);
3869
3870 /* init wq */
3871 wq->flags = flags;
3872 wq->saved_max_active = max_active;
3873 mutex_init(&wq->mutex);
3874 atomic_set(&wq->nr_pwqs_to_flush, 0);
3875 INIT_LIST_HEAD(&wq->pwqs);
3876 INIT_LIST_HEAD(&wq->flusher_queue);
3877 INIT_LIST_HEAD(&wq->flusher_overflow);
3878 INIT_LIST_HEAD(&wq->maydays);
3879
3880 lockdep_init_map(&wq->lockdep_map, lock_name, key, 0);
3881 INIT_LIST_HEAD(&wq->list);
3882
3883 if (alloc_and_link_pwqs(wq) < 0)
3884 goto err_free_wq;
3885
3886 /*
3887 * Workqueues which may be used during memory reclaim should
3888 * have a rescuer to guarantee forward progress.
3889 */
3890 if (flags & WQ_MEM_RECLAIM) {
3891 struct worker *rescuer;
3892
3893 rescuer = alloc_worker(NUMA_NO_NODE);
3894 if (!rescuer)
3895 goto err_destroy;
3896
3897 rescuer->rescue_wq = wq;
3898 rescuer->task = kthread_create(rescuer_thread, rescuer, "%s",
3899 wq->name);
3900 if (IS_ERR(rescuer->task)) {
3901 kfree(rescuer);
3902 goto err_destroy;
3903 }
3904
3905 wq->rescuer = rescuer;
3906 kthread_bind_mask(rescuer->task, cpu_possible_mask);
3907 wake_up_process(rescuer->task);
3908 }
3909
3910 if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq))
3911 goto err_destroy;
3912
3913 /*
3914 * wq_pool_mutex protects global freeze state and workqueues list.
3915 * Grab it, adjust max_active and add the new @wq to workqueues
3916 * list.
3917 */
3918 mutex_lock(&wq_pool_mutex);
3919
3920 mutex_lock(&wq->mutex);
3921 for_each_pwq(pwq, wq)
3922 pwq_adjust_max_active(pwq);
3923 mutex_unlock(&wq->mutex);
3924
3925 list_add_tail_rcu(&wq->list, &workqueues);
3926
3927 mutex_unlock(&wq_pool_mutex);
3928
3929 return wq;
3930
3931 err_free_wq:
3932 free_workqueue_attrs(wq->unbound_attrs);
3933 kfree(wq);
3934 return NULL;
3935 err_destroy:
3936 destroy_workqueue(wq);
3937 return NULL;
3938 }
3939 EXPORT_SYMBOL_GPL(__alloc_workqueue_key);
3940
3941 /**
3942 * destroy_workqueue - safely terminate a workqueue
3943 * @wq: target workqueue
3944 *
3945 * Safely destroy a workqueue. All work currently pending will be done first.
3946 */
3947 void destroy_workqueue(struct workqueue_struct *wq)
3948 {
3949 struct pool_workqueue *pwq;
3950 int node;
3951
3952 /* drain it before proceeding with destruction */
3953 drain_workqueue(wq);
3954
3955 /* sanity checks */
3956 mutex_lock(&wq->mutex);
3957 for_each_pwq(pwq, wq) {
3958 int i;
3959
3960 for (i = 0; i < WORK_NR_COLORS; i++) {
3961 if (WARN_ON(pwq->nr_in_flight[i])) {
3962 mutex_unlock(&wq->mutex);
3963 return;
3964 }
3965 }
3966
3967 if (WARN_ON((pwq != wq->dfl_pwq) && (pwq->refcnt > 1)) ||
3968 WARN_ON(pwq->nr_active) ||
3969 WARN_ON(!list_empty(&pwq->delayed_works))) {
3970 mutex_unlock(&wq->mutex);
3971 return;
3972 }
3973 }
3974 mutex_unlock(&wq->mutex);
3975
3976 /*
3977 * wq list is used to freeze wq, remove from list after
3978 * flushing is complete in case freeze races us.
3979 */
3980 mutex_lock(&wq_pool_mutex);
3981 list_del_rcu(&wq->list);
3982 mutex_unlock(&wq_pool_mutex);
3983
3984 workqueue_sysfs_unregister(wq);
3985
3986 if (wq->rescuer)
3987 kthread_stop(wq->rescuer->task);
3988
3989 if (!(wq->flags & WQ_UNBOUND)) {
3990 /*
3991 * The base ref is never dropped on per-cpu pwqs. Directly
3992 * schedule RCU free.
3993 */
3994 call_rcu_sched(&wq->rcu, rcu_free_wq);
3995 } else {
3996 /*
3997 * We're the sole accessor of @wq at this point. Directly
3998 * access numa_pwq_tbl[] and dfl_pwq to put the base refs.
3999 * @wq will be freed when the last pwq is released.
4000 */
4001 for_each_node(node) {
4002 pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
4003 RCU_INIT_POINTER(wq->numa_pwq_tbl[node], NULL);
4004 put_pwq_unlocked(pwq);
4005 }
4006
4007 /*
4008 * Put dfl_pwq. @wq may be freed any time after dfl_pwq is
4009 * put. Don't access it afterwards.
4010 */
4011 pwq = wq->dfl_pwq;
4012 wq->dfl_pwq = NULL;
4013 put_pwq_unlocked(pwq);
4014 }
4015 }
4016 EXPORT_SYMBOL_GPL(destroy_workqueue);
4017
4018 /**
4019 * workqueue_set_max_active - adjust max_active of a workqueue
4020 * @wq: target workqueue
4021 * @max_active: new max_active value.
4022 *
4023 * Set max_active of @wq to @max_active.
4024 *
4025 * CONTEXT:
4026 * Don't call from IRQ context.
4027 */
4028 void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
4029 {
4030 struct pool_workqueue *pwq;
4031
4032 /* disallow meddling with max_active for ordered workqueues */
4033 if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
4034 return;
4035
4036 max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
4037
4038 mutex_lock(&wq->mutex);
4039
4040 wq->flags &= ~__WQ_ORDERED;
4041 wq->saved_max_active = max_active;
4042
4043 for_each_pwq(pwq, wq)
4044 pwq_adjust_max_active(pwq);
4045
4046 mutex_unlock(&wq->mutex);
4047 }
4048 EXPORT_SYMBOL_GPL(workqueue_set_max_active);
4049
4050 /**
4051 * current_is_workqueue_rescuer - is %current workqueue rescuer?
4052 *
4053 * Determine whether %current is a workqueue rescuer. Can be used from
4054 * work functions to determine whether it's being run off the rescuer task.
4055 *
4056 * Return: %true if %current is a workqueue rescuer. %false otherwise.
4057 */
4058 bool current_is_workqueue_rescuer(void)
4059 {
4060 struct worker *worker = current_wq_worker();
4061
4062 return worker && worker->rescue_wq;
4063 }
4064
4065 /**
4066 * workqueue_congested - test whether a workqueue is congested
4067 * @cpu: CPU in question
4068 * @wq: target workqueue
4069 *
4070 * Test whether @wq's cpu workqueue for @cpu is congested. There is
4071 * no synchronization around this function and the test result is
4072 * unreliable and only useful as advisory hints or for debugging.
4073 *
4074 * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU.
4075 * Note that both per-cpu and unbound workqueues may be associated with
4076 * multiple pool_workqueues which have separate congested states. A
4077 * workqueue being congested on one CPU doesn't mean the workqueue is also
4078 * contested on other CPUs / NUMA nodes.
4079 *
4080 * Return:
4081 * %true if congested, %false otherwise.
4082 */
4083 bool workqueue_congested(int cpu, struct workqueue_struct *wq)
4084 {
4085 struct pool_workqueue *pwq;
4086 bool ret;
4087
4088 rcu_read_lock_sched();
4089
4090 if (cpu == WORK_CPU_UNBOUND)
4091 cpu = smp_processor_id();
4092
4093 if (!(wq->flags & WQ_UNBOUND))
4094 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
4095 else
4096 pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
4097
4098 ret = !list_empty(&pwq->delayed_works);
4099 rcu_read_unlock_sched();
4100
4101 return ret;
4102 }
4103 EXPORT_SYMBOL_GPL(workqueue_congested);
4104
4105 /**
4106 * work_busy - test whether a work is currently pending or running
4107 * @work: the work to be tested
4108 *
4109 * Test whether @work is currently pending or running. There is no
4110 * synchronization around this function and the test result is
4111 * unreliable and only useful as advisory hints or for debugging.
4112 *
4113 * Return:
4114 * OR'd bitmask of WORK_BUSY_* bits.
4115 */
4116 unsigned int work_busy(struct work_struct *work)
4117 {
4118 struct worker_pool *pool;
4119 unsigned long flags;
4120 unsigned int ret = 0;
4121
4122 if (work_pending(work))
4123 ret |= WORK_BUSY_PENDING;
4124
4125 local_irq_save(flags);
4126 pool = get_work_pool(work);
4127 if (pool) {
4128 spin_lock(&pool->lock);
4129 if (find_worker_executing_work(pool, work))
4130 ret |= WORK_BUSY_RUNNING;
4131 spin_unlock(&pool->lock);
4132 }
4133 local_irq_restore(flags);
4134
4135 return ret;
4136 }
4137 EXPORT_SYMBOL_GPL(work_busy);
4138
4139 /**
4140 * set_worker_desc - set description for the current work item
4141 * @fmt: printf-style format string
4142 * @...: arguments for the format string
4143 *
4144 * This function can be called by a running work function to describe what
4145 * the work item is about. If the worker task gets dumped, this
4146 * information will be printed out together to help debugging. The
4147 * description can be at most WORKER_DESC_LEN including the trailing '\0'.
4148 */
4149 void set_worker_desc(const char *fmt, ...)
4150 {
4151 struct worker *worker = current_wq_worker();
4152 va_list args;
4153
4154 if (worker) {
4155 va_start(args, fmt);
4156 vsnprintf(worker->desc, sizeof(worker->desc), fmt, args);
4157 va_end(args);
4158 worker->desc_valid = true;
4159 }
4160 }
4161
4162 /**
4163 * print_worker_info - print out worker information and description
4164 * @log_lvl: the log level to use when printing
4165 * @task: target task
4166 *
4167 * If @task is a worker and currently executing a work item, print out the
4168 * name of the workqueue being serviced and worker description set with
4169 * set_worker_desc() by the currently executing work item.
4170 *
4171 * This function can be safely called on any task as long as the
4172 * task_struct itself is accessible. While safe, this function isn't
4173 * synchronized and may print out mixups or garbages of limited length.
4174 */
4175 void print_worker_info(const char *log_lvl, struct task_struct *task)
4176 {
4177 work_func_t *fn = NULL;
4178 char name[WQ_NAME_LEN] = { };
4179 char desc[WORKER_DESC_LEN] = { };
4180 struct pool_workqueue *pwq = NULL;
4181 struct workqueue_struct *wq = NULL;
4182 bool desc_valid = false;
4183 struct worker *worker;
4184
4185 if (!(task->flags & PF_WQ_WORKER))
4186 return;
4187
4188 /*
4189 * This function is called without any synchronization and @task
4190 * could be in any state. Be careful with dereferences.
4191 */
4192 worker = probe_kthread_data(task);
4193
4194 /*
4195 * Carefully copy the associated workqueue's workfn and name. Keep
4196 * the original last '\0' in case the original contains garbage.
4197 */
4198 probe_kernel_read(&fn, &worker->current_func, sizeof(fn));
4199 probe_kernel_read(&pwq, &worker->current_pwq, sizeof(pwq));
4200 probe_kernel_read(&wq, &pwq->wq, sizeof(wq));
4201 probe_kernel_read(name, wq->name, sizeof(name) - 1);
4202
4203 /* copy worker description */
4204 probe_kernel_read(&desc_valid, &worker->desc_valid, sizeof(desc_valid));
4205 if (desc_valid)
4206 probe_kernel_read(desc, worker->desc, sizeof(desc) - 1);
4207
4208 if (fn || name[0] || desc[0]) {
4209 printk("%sWorkqueue: %s %pf", log_lvl, name, fn);
4210 if (desc[0])
4211 pr_cont(" (%s)", desc);
4212 pr_cont("\n");
4213 }
4214 }
4215
4216 static void pr_cont_pool_info(struct worker_pool *pool)
4217 {
4218 pr_cont(" cpus=%*pbl", nr_cpumask_bits, pool->attrs->cpumask);
4219 if (pool->node != NUMA_NO_NODE)
4220 pr_cont(" node=%d", pool->node);
4221 pr_cont(" flags=0x%x nice=%d", pool->flags, pool->attrs->nice);
4222 }
4223
4224 static void pr_cont_work(bool comma, struct work_struct *work)
4225 {
4226 if (work->func == wq_barrier_func) {
4227 struct wq_barrier *barr;
4228
4229 barr = container_of(work, struct wq_barrier, work);
4230
4231 pr_cont("%s BAR(%d)", comma ? "," : "",
4232 task_pid_nr(barr->task));
4233 } else {
4234 pr_cont("%s %pf", comma ? "," : "", work->func);
4235 }
4236 }
4237
4238 static void show_pwq(struct pool_workqueue *pwq)
4239 {
4240 struct worker_pool *pool = pwq->pool;
4241 struct work_struct *work;
4242 struct worker *worker;
4243 bool has_in_flight = false, has_pending = false;
4244 int bkt;
4245
4246 pr_info(" pwq %d:", pool->id);
4247 pr_cont_pool_info(pool);
4248
4249 pr_cont(" active=%d/%d%s\n", pwq->nr_active, pwq->max_active,
4250 !list_empty(&pwq->mayday_node) ? " MAYDAY" : "");
4251
4252 hash_for_each(pool->busy_hash, bkt, worker, hentry) {
4253 if (worker->current_pwq == pwq) {
4254 has_in_flight = true;
4255 break;
4256 }
4257 }
4258 if (has_in_flight) {
4259 bool comma = false;
4260
4261 pr_info(" in-flight:");
4262 hash_for_each(pool->busy_hash, bkt, worker, hentry) {
4263 if (worker->current_pwq != pwq)
4264 continue;
4265
4266 pr_cont("%s %d%s:%pf", comma ? "," : "",
4267 task_pid_nr(worker->task),
4268 worker == pwq->wq->rescuer ? "(RESCUER)" : "",
4269 worker->current_func);
4270 list_for_each_entry(work, &worker->scheduled, entry)
4271 pr_cont_work(false, work);
4272 comma = true;
4273 }
4274 pr_cont("\n");
4275 }
4276
4277 list_for_each_entry(work, &pool->worklist, entry) {
4278 if (get_work_pwq(work) == pwq) {
4279 has_pending = true;
4280 break;
4281 }
4282 }
4283 if (has_pending) {
4284 bool comma = false;
4285
4286 pr_info(" pending:");
4287 list_for_each_entry(work, &pool->worklist, entry) {
4288 if (get_work_pwq(work) != pwq)
4289 continue;
4290
4291 pr_cont_work(comma, work);
4292 comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
4293 }
4294 pr_cont("\n");
4295 }
4296
4297 if (!list_empty(&pwq->delayed_works)) {
4298 bool comma = false;
4299
4300 pr_info(" delayed:");
4301 list_for_each_entry(work, &pwq->delayed_works, entry) {
4302 pr_cont_work(comma, work);
4303 comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
4304 }
4305 pr_cont("\n");
4306 }
4307 }
4308
4309 /**
4310 * show_workqueue_state - dump workqueue state
4311 *
4312 * Called from a sysrq handler and prints out all busy workqueues and
4313 * pools.
4314 */
4315 void show_workqueue_state(void)
4316 {
4317 struct workqueue_struct *wq;
4318 struct worker_pool *pool;
4319 unsigned long flags;
4320 int pi;
4321
4322 rcu_read_lock_sched();
4323
4324 pr_info("Showing busy workqueues and worker pools:\n");
4325
4326 list_for_each_entry_rcu(wq, &workqueues, list) {
4327 struct pool_workqueue *pwq;
4328 bool idle = true;
4329
4330 for_each_pwq(pwq, wq) {
4331 if (pwq->nr_active || !list_empty(&pwq->delayed_works)) {
4332 idle = false;
4333 break;
4334 }
4335 }
4336 if (idle)
4337 continue;
4338
4339 pr_info("workqueue %s: flags=0x%x\n", wq->name, wq->flags);
4340
4341 for_each_pwq(pwq, wq) {
4342 spin_lock_irqsave(&pwq->pool->lock, flags);
4343 if (pwq->nr_active || !list_empty(&pwq->delayed_works))
4344 show_pwq(pwq);
4345 spin_unlock_irqrestore(&pwq->pool->lock, flags);
4346 }
4347 }
4348
4349 for_each_pool(pool, pi) {
4350 struct worker *worker;
4351 bool first = true;
4352
4353 spin_lock_irqsave(&pool->lock, flags);
4354 if (pool->nr_workers == pool->nr_idle)
4355 goto next_pool;
4356
4357 pr_info("pool %d:", pool->id);
4358 pr_cont_pool_info(pool);
4359 pr_cont(" workers=%d", pool->nr_workers);
4360 if (pool->manager)
4361 pr_cont(" manager: %d",
4362 task_pid_nr(pool->manager->task));
4363 list_for_each_entry(worker, &pool->idle_list, entry) {
4364 pr_cont(" %s%d", first ? "idle: " : "",
4365 task_pid_nr(worker->task));
4366 first = false;
4367 }
4368 pr_cont("\n");
4369 next_pool:
4370 spin_unlock_irqrestore(&pool->lock, flags);
4371 }
4372
4373 rcu_read_unlock_sched();
4374 }
4375
4376 /*
4377 * CPU hotplug.
4378 *
4379 * There are two challenges in supporting CPU hotplug. Firstly, there
4380 * are a lot of assumptions on strong associations among work, pwq and
4381 * pool which make migrating pending and scheduled works very
4382 * difficult to implement without impacting hot paths. Secondly,
4383 * worker pools serve mix of short, long and very long running works making
4384 * blocked draining impractical.
4385 *
4386 * This is solved by allowing the pools to be disassociated from the CPU
4387 * running as an unbound one and allowing it to be reattached later if the
4388 * cpu comes back online.
4389 */
4390
4391 static void wq_unbind_fn(struct work_struct *work)
4392 {
4393 int cpu = smp_processor_id();
4394 struct worker_pool *pool;
4395 struct worker *worker;
4396
4397 for_each_cpu_worker_pool(pool, cpu) {
4398 mutex_lock(&pool->attach_mutex);
4399 spin_lock_irq(&pool->lock);
4400
4401 /*
4402 * We've blocked all attach/detach operations. Make all workers
4403 * unbound and set DISASSOCIATED. Before this, all workers
4404 * except for the ones which are still executing works from
4405 * before the last CPU down must be on the cpu. After
4406 * this, they may become diasporas.
4407 */
4408 for_each_pool_worker(worker, pool)
4409 worker->flags |= WORKER_UNBOUND;
4410
4411 pool->flags |= POOL_DISASSOCIATED;
4412
4413 spin_unlock_irq(&pool->lock);
4414 mutex_unlock(&pool->attach_mutex);
4415
4416 /*
4417 * Call schedule() so that we cross rq->lock and thus can
4418 * guarantee sched callbacks see the %WORKER_UNBOUND flag.
4419 * This is necessary as scheduler callbacks may be invoked
4420 * from other cpus.
4421 */
4422 schedule();
4423
4424 /*
4425 * Sched callbacks are disabled now. Zap nr_running.
4426 * After this, nr_running stays zero and need_more_worker()
4427 * and keep_working() are always true as long as the
4428 * worklist is not empty. This pool now behaves as an
4429 * unbound (in terms of concurrency management) pool which
4430 * are served by workers tied to the pool.
4431 */
4432 atomic_set(&pool->nr_running, 0);
4433
4434 /*
4435 * With concurrency management just turned off, a busy
4436 * worker blocking could lead to lengthy stalls. Kick off
4437 * unbound chain execution of currently pending work items.
4438 */
4439 spin_lock_irq(&pool->lock);
4440 wake_up_worker(pool);
4441 spin_unlock_irq(&pool->lock);
4442 }
4443 }
4444
4445 /**
4446 * rebind_workers - rebind all workers of a pool to the associated CPU
4447 * @pool: pool of interest
4448 *
4449 * @pool->cpu is coming online. Rebind all workers to the CPU.
4450 */
4451 static void rebind_workers(struct worker_pool *pool)
4452 {
4453 struct worker *worker;
4454
4455 lockdep_assert_held(&pool->attach_mutex);
4456
4457 /*
4458 * Restore CPU affinity of all workers. As all idle workers should
4459 * be on the run-queue of the associated CPU before any local
4460 * wake-ups for concurrency management happen, restore CPU affinity
4461 * of all workers first and then clear UNBOUND. As we're called
4462 * from CPU_ONLINE, the following shouldn't fail.
4463 */
4464 for_each_pool_worker(worker, pool)
4465 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
4466 pool->attrs->cpumask) < 0);
4467
4468 spin_lock_irq(&pool->lock);
4469
4470 /*
4471 * XXX: CPU hotplug notifiers are weird and can call DOWN_FAILED
4472 * w/o preceding DOWN_PREPARE. Work around it. CPU hotplug is
4473 * being reworked and this can go away in time.
4474 */
4475 if (!(pool->flags & POOL_DISASSOCIATED)) {
4476 spin_unlock_irq(&pool->lock);
4477 return;
4478 }
4479
4480 pool->flags &= ~POOL_DISASSOCIATED;
4481
4482 for_each_pool_worker(worker, pool) {
4483 unsigned int worker_flags = worker->flags;
4484
4485 /*
4486 * A bound idle worker should actually be on the runqueue
4487 * of the associated CPU for local wake-ups targeting it to
4488 * work. Kick all idle workers so that they migrate to the
4489 * associated CPU. Doing this in the same loop as
4490 * replacing UNBOUND with REBOUND is safe as no worker will
4491 * be bound before @pool->lock is released.
4492 */
4493 if (worker_flags & WORKER_IDLE)
4494 wake_up_process(worker->task);
4495
4496 /*
4497 * We want to clear UNBOUND but can't directly call
4498 * worker_clr_flags() or adjust nr_running. Atomically
4499 * replace UNBOUND with another NOT_RUNNING flag REBOUND.
4500 * @worker will clear REBOUND using worker_clr_flags() when
4501 * it initiates the next execution cycle thus restoring
4502 * concurrency management. Note that when or whether
4503 * @worker clears REBOUND doesn't affect correctness.
4504 *
4505 * ACCESS_ONCE() is necessary because @worker->flags may be
4506 * tested without holding any lock in
4507 * wq_worker_waking_up(). Without it, NOT_RUNNING test may
4508 * fail incorrectly leading to premature concurrency
4509 * management operations.
4510 */
4511 WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND));
4512 worker_flags |= WORKER_REBOUND;
4513 worker_flags &= ~WORKER_UNBOUND;
4514 ACCESS_ONCE(worker->flags) = worker_flags;
4515 }
4516
4517 spin_unlock_irq(&pool->lock);
4518 }
4519
4520 /**
4521 * restore_unbound_workers_cpumask - restore cpumask of unbound workers
4522 * @pool: unbound pool of interest
4523 * @cpu: the CPU which is coming up
4524 *
4525 * An unbound pool may end up with a cpumask which doesn't have any online
4526 * CPUs. When a worker of such pool get scheduled, the scheduler resets
4527 * its cpus_allowed. If @cpu is in @pool's cpumask which didn't have any
4528 * online CPU before, cpus_allowed of all its workers should be restored.
4529 */
4530 static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu)
4531 {
4532 static cpumask_t cpumask;
4533 struct worker *worker;
4534
4535 lockdep_assert_held(&pool->attach_mutex);
4536
4537 /* is @cpu allowed for @pool? */
4538 if (!cpumask_test_cpu(cpu, pool->attrs->cpumask))
4539 return;
4540
4541 /* is @cpu the only online CPU? */
4542 cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask);
4543 if (cpumask_weight(&cpumask) != 1)
4544 return;
4545
4546 /* as we're called from CPU_ONLINE, the following shouldn't fail */
4547 for_each_pool_worker(worker, pool)
4548 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
4549 pool->attrs->cpumask) < 0);
4550 }
4551
4552 /*
4553 * Workqueues should be brought up before normal priority CPU notifiers.
4554 * This will be registered high priority CPU notifier.
4555 */
4556 static int workqueue_cpu_up_callback(struct notifier_block *nfb,
4557 unsigned long action,
4558 void *hcpu)
4559 {
4560 int cpu = (unsigned long)hcpu;
4561 struct worker_pool *pool;
4562 struct workqueue_struct *wq;
4563 int pi;
4564
4565 switch (action & ~CPU_TASKS_FROZEN) {
4566 case CPU_UP_PREPARE:
4567 for_each_cpu_worker_pool(pool, cpu) {
4568 if (pool->nr_workers)
4569 continue;
4570 if (!create_worker(pool))
4571 return NOTIFY_BAD;
4572 }
4573 break;
4574
4575 case CPU_DOWN_FAILED:
4576 case CPU_ONLINE:
4577 mutex_lock(&wq_pool_mutex);
4578
4579 for_each_pool(pool, pi) {
4580 mutex_lock(&pool->attach_mutex);
4581
4582 if (pool->cpu == cpu)
4583 rebind_workers(pool);
4584 else if (pool->cpu < 0)
4585 restore_unbound_workers_cpumask(pool, cpu);
4586
4587 mutex_unlock(&pool->attach_mutex);
4588 }
4589
4590 /* update NUMA affinity of unbound workqueues */
4591 list_for_each_entry(wq, &workqueues, list)
4592 wq_update_unbound_numa(wq, cpu, true);
4593
4594 mutex_unlock(&wq_pool_mutex);
4595 break;
4596 }
4597 return NOTIFY_OK;
4598 }
4599
4600 /*
4601 * Workqueues should be brought down after normal priority CPU notifiers.
4602 * This will be registered as low priority CPU notifier.
4603 */
4604 static int workqueue_cpu_down_callback(struct notifier_block *nfb,
4605 unsigned long action,
4606 void *hcpu)
4607 {
4608 int cpu = (unsigned long)hcpu;
4609 struct work_struct unbind_work;
4610 struct workqueue_struct *wq;
4611
4612 switch (action & ~CPU_TASKS_FROZEN) {
4613 case CPU_DOWN_PREPARE:
4614 /* unbinding per-cpu workers should happen on the local CPU */
4615 INIT_WORK_ONSTACK(&unbind_work, wq_unbind_fn);
4616 queue_work_on(cpu, system_highpri_wq, &unbind_work);
4617
4618 /* update NUMA affinity of unbound workqueues */
4619 mutex_lock(&wq_pool_mutex);
4620 list_for_each_entry(wq, &workqueues, list)
4621 wq_update_unbound_numa(wq, cpu, false);
4622 mutex_unlock(&wq_pool_mutex);
4623
4624 /* wait for per-cpu unbinding to finish */
4625 flush_work(&unbind_work);
4626 destroy_work_on_stack(&unbind_work);
4627 break;
4628 }
4629 return NOTIFY_OK;
4630 }
4631
4632 #ifdef CONFIG_SMP
4633
4634 struct work_for_cpu {
4635 struct work_struct work;
4636 long (*fn)(void *);
4637 void *arg;
4638 long ret;
4639 };
4640
4641 static void work_for_cpu_fn(struct work_struct *work)
4642 {
4643 struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);
4644
4645 wfc->ret = wfc->fn(wfc->arg);
4646 }
4647
4648 /**
4649 * work_on_cpu - run a function in user context on a particular cpu
4650 * @cpu: the cpu to run on
4651 * @fn: the function to run
4652 * @arg: the function arg
4653 *
4654 * It is up to the caller to ensure that the cpu doesn't go offline.
4655 * The caller must not hold any locks which would prevent @fn from completing.
4656 *
4657 * Return: The value @fn returns.
4658 */
4659 long work_on_cpu(int cpu, long (*fn)(void *), void *arg)
4660 {
4661 struct work_for_cpu wfc = { .fn = fn, .arg = arg };
4662
4663 INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn);
4664 schedule_work_on(cpu, &wfc.work);
4665 flush_work(&wfc.work);
4666 destroy_work_on_stack(&wfc.work);
4667 return wfc.ret;
4668 }
4669 EXPORT_SYMBOL_GPL(work_on_cpu);
4670 #endif /* CONFIG_SMP */
4671
4672 #ifdef CONFIG_FREEZER
4673
4674 /**
4675 * freeze_workqueues_begin - begin freezing workqueues
4676 *
4677 * Start freezing workqueues. After this function returns, all freezable
4678 * workqueues will queue new works to their delayed_works list instead of
4679 * pool->worklist.
4680 *
4681 * CONTEXT:
4682 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
4683 */
4684 void freeze_workqueues_begin(void)
4685 {
4686 struct workqueue_struct *wq;
4687 struct pool_workqueue *pwq;
4688
4689 mutex_lock(&wq_pool_mutex);
4690
4691 WARN_ON_ONCE(workqueue_freezing);
4692 workqueue_freezing = true;
4693
4694 list_for_each_entry(wq, &workqueues, list) {
4695 mutex_lock(&wq->mutex);
4696 for_each_pwq(pwq, wq)
4697 pwq_adjust_max_active(pwq);
4698 mutex_unlock(&wq->mutex);
4699 }
4700
4701 mutex_unlock(&wq_pool_mutex);
4702 }
4703
4704 /**
4705 * freeze_workqueues_busy - are freezable workqueues still busy?
4706 *
4707 * Check whether freezing is complete. This function must be called
4708 * between freeze_workqueues_begin() and thaw_workqueues().
4709 *
4710 * CONTEXT:
4711 * Grabs and releases wq_pool_mutex.
4712 *
4713 * Return:
4714 * %true if some freezable workqueues are still busy. %false if freezing
4715 * is complete.
4716 */
4717 bool freeze_workqueues_busy(void)
4718 {
4719 bool busy = false;
4720 struct workqueue_struct *wq;
4721 struct pool_workqueue *pwq;
4722
4723 mutex_lock(&wq_pool_mutex);
4724
4725 WARN_ON_ONCE(!workqueue_freezing);
4726
4727 list_for_each_entry(wq, &workqueues, list) {
4728 if (!(wq->flags & WQ_FREEZABLE))
4729 continue;
4730 /*
4731 * nr_active is monotonically decreasing. It's safe
4732 * to peek without lock.
4733 */
4734 rcu_read_lock_sched();
4735 for_each_pwq(pwq, wq) {
4736 WARN_ON_ONCE(pwq->nr_active < 0);
4737 if (pwq->nr_active) {
4738 busy = true;
4739 rcu_read_unlock_sched();
4740 goto out_unlock;
4741 }
4742 }
4743 rcu_read_unlock_sched();
4744 }
4745 out_unlock:
4746 mutex_unlock(&wq_pool_mutex);
4747 return busy;
4748 }
4749
4750 /**
4751 * thaw_workqueues - thaw workqueues
4752 *
4753 * Thaw workqueues. Normal queueing is restored and all collected
4754 * frozen works are transferred to their respective pool worklists.
4755 *
4756 * CONTEXT:
4757 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
4758 */
4759 void thaw_workqueues(void)
4760 {
4761 struct workqueue_struct *wq;
4762 struct pool_workqueue *pwq;
4763
4764 mutex_lock(&wq_pool_mutex);
4765
4766 if (!workqueue_freezing)
4767 goto out_unlock;
4768
4769 workqueue_freezing = false;
4770
4771 /* restore max_active and repopulate worklist */
4772 list_for_each_entry(wq, &workqueues, list) {
4773 mutex_lock(&wq->mutex);
4774 for_each_pwq(pwq, wq)
4775 pwq_adjust_max_active(pwq);
4776 mutex_unlock(&wq->mutex);
4777 }
4778
4779 out_unlock:
4780 mutex_unlock(&wq_pool_mutex);
4781 }
4782 #endif /* CONFIG_FREEZER */
4783
4784 static int workqueue_apply_unbound_cpumask(void)
4785 {
4786 LIST_HEAD(ctxs);
4787 int ret = 0;
4788 struct workqueue_struct *wq;
4789 struct apply_wqattrs_ctx *ctx, *n;
4790
4791 lockdep_assert_held(&wq_pool_mutex);
4792
4793 list_for_each_entry(wq, &workqueues, list) {
4794 if (!(wq->flags & WQ_UNBOUND))
4795 continue;
4796 /* creating multiple pwqs breaks ordering guarantee */
4797 if (wq->flags & __WQ_ORDERED)
4798 continue;
4799
4800 ctx = apply_wqattrs_prepare(wq, wq->unbound_attrs);
4801 if (!ctx) {
4802 ret = -ENOMEM;
4803 break;
4804 }
4805
4806 list_add_tail(&ctx->list, &ctxs);
4807 }
4808
4809 list_for_each_entry_safe(ctx, n, &ctxs, list) {
4810 if (!ret)
4811 apply_wqattrs_commit(ctx);
4812 apply_wqattrs_cleanup(ctx);
4813 }
4814
4815 return ret;
4816 }
4817
4818 /**
4819 * workqueue_set_unbound_cpumask - Set the low-level unbound cpumask
4820 * @cpumask: the cpumask to set
4821 *
4822 * The low-level workqueues cpumask is a global cpumask that limits
4823 * the affinity of all unbound workqueues. This function check the @cpumask
4824 * and apply it to all unbound workqueues and updates all pwqs of them.
4825 *
4826 * Retun: 0 - Success
4827 * -EINVAL - Invalid @cpumask
4828 * -ENOMEM - Failed to allocate memory for attrs or pwqs.
4829 */
4830 int workqueue_set_unbound_cpumask(cpumask_var_t cpumask)
4831 {
4832 int ret = -EINVAL;
4833 cpumask_var_t saved_cpumask;
4834
4835 if (!zalloc_cpumask_var(&saved_cpumask, GFP_KERNEL))
4836 return -ENOMEM;
4837
4838 cpumask_and(cpumask, cpumask, cpu_possible_mask);
4839 if (!cpumask_empty(cpumask)) {
4840 apply_wqattrs_lock();
4841
4842 /* save the old wq_unbound_cpumask. */
4843 cpumask_copy(saved_cpumask, wq_unbound_cpumask);
4844
4845 /* update wq_unbound_cpumask at first and apply it to wqs. */
4846 cpumask_copy(wq_unbound_cpumask, cpumask);
4847 ret = workqueue_apply_unbound_cpumask();
4848
4849 /* restore the wq_unbound_cpumask when failed. */
4850 if (ret < 0)
4851 cpumask_copy(wq_unbound_cpumask, saved_cpumask);
4852
4853 apply_wqattrs_unlock();
4854 }
4855
4856 free_cpumask_var(saved_cpumask);
4857 return ret;
4858 }
4859
4860 #ifdef CONFIG_SYSFS
4861 /*
4862 * Workqueues with WQ_SYSFS flag set is visible to userland via
4863 * /sys/bus/workqueue/devices/WQ_NAME. All visible workqueues have the
4864 * following attributes.
4865 *
4866 * per_cpu RO bool : whether the workqueue is per-cpu or unbound
4867 * max_active RW int : maximum number of in-flight work items
4868 *
4869 * Unbound workqueues have the following extra attributes.
4870 *
4871 * id RO int : the associated pool ID
4872 * nice RW int : nice value of the workers
4873 * cpumask RW mask : bitmask of allowed CPUs for the workers
4874 */
4875 struct wq_device {
4876 struct workqueue_struct *wq;
4877 struct device dev;
4878 };
4879
4880 static struct workqueue_struct *dev_to_wq(struct device *dev)
4881 {
4882 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
4883
4884 return wq_dev->wq;
4885 }
4886
4887 static ssize_t per_cpu_show(struct device *dev, struct device_attribute *attr,
4888 char *buf)
4889 {
4890 struct workqueue_struct *wq = dev_to_wq(dev);
4891
4892 return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND));
4893 }
4894 static DEVICE_ATTR_RO(per_cpu);
4895
4896 static ssize_t max_active_show(struct device *dev,
4897 struct device_attribute *attr, char *buf)
4898 {
4899 struct workqueue_struct *wq = dev_to_wq(dev);
4900
4901 return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active);
4902 }
4903
4904 static ssize_t max_active_store(struct device *dev,
4905 struct device_attribute *attr, const char *buf,
4906 size_t count)
4907 {
4908 struct workqueue_struct *wq = dev_to_wq(dev);
4909 int val;
4910
4911 if (sscanf(buf, "%d", &val) != 1 || val <= 0)
4912 return -EINVAL;
4913
4914 workqueue_set_max_active(wq, val);
4915 return count;
4916 }
4917 static DEVICE_ATTR_RW(max_active);
4918
4919 static struct attribute *wq_sysfs_attrs[] = {
4920 &dev_attr_per_cpu.attr,
4921 &dev_attr_max_active.attr,
4922 NULL,
4923 };
4924 ATTRIBUTE_GROUPS(wq_sysfs);
4925
4926 static ssize_t wq_pool_ids_show(struct device *dev,
4927 struct device_attribute *attr, char *buf)
4928 {
4929 struct workqueue_struct *wq = dev_to_wq(dev);
4930 const char *delim = "";
4931 int node, written = 0;
4932
4933 rcu_read_lock_sched();
4934 for_each_node(node) {
4935 written += scnprintf(buf + written, PAGE_SIZE - written,
4936 "%s%d:%d", delim, node,
4937 unbound_pwq_by_node(wq, node)->pool->id);
4938 delim = " ";
4939 }
4940 written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
4941 rcu_read_unlock_sched();
4942
4943 return written;
4944 }
4945
4946 static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr,
4947 char *buf)
4948 {
4949 struct workqueue_struct *wq = dev_to_wq(dev);
4950 int written;
4951
4952 mutex_lock(&wq->mutex);
4953 written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice);
4954 mutex_unlock(&wq->mutex);
4955
4956 return written;
4957 }
4958
4959 /* prepare workqueue_attrs for sysfs store operations */
4960 static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq)
4961 {
4962 struct workqueue_attrs *attrs;
4963
4964 lockdep_assert_held(&wq_pool_mutex);
4965
4966 attrs = alloc_workqueue_attrs(GFP_KERNEL);
4967 if (!attrs)
4968 return NULL;
4969
4970 copy_workqueue_attrs(attrs, wq->unbound_attrs);
4971 return attrs;
4972 }
4973
4974 static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr,
4975 const char *buf, size_t count)
4976 {
4977 struct workqueue_struct *wq = dev_to_wq(dev);
4978 struct workqueue_attrs *attrs;
4979 int ret = -ENOMEM;
4980
4981 apply_wqattrs_lock();
4982
4983 attrs = wq_sysfs_prep_attrs(wq);
4984 if (!attrs)
4985 goto out_unlock;
4986
4987 if (sscanf(buf, "%d", &attrs->nice) == 1 &&
4988 attrs->nice >= MIN_NICE && attrs->nice <= MAX_NICE)
4989 ret = apply_workqueue_attrs_locked(wq, attrs);
4990 else
4991 ret = -EINVAL;
4992
4993 out_unlock:
4994 apply_wqattrs_unlock();
4995 free_workqueue_attrs(attrs);
4996 return ret ?: count;
4997 }
4998
4999 static ssize_t wq_cpumask_show(struct device *dev,
5000 struct device_attribute *attr, char *buf)
5001 {
5002 struct workqueue_struct *wq = dev_to_wq(dev);
5003 int written;
5004
5005 mutex_lock(&wq->mutex);
5006 written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
5007 cpumask_pr_args(wq->unbound_attrs->cpumask));
5008 mutex_unlock(&wq->mutex);
5009 return written;
5010 }
5011
5012 static ssize_t wq_cpumask_store(struct device *dev,
5013 struct device_attribute *attr,
5014 const char *buf, size_t count)
5015 {
5016 struct workqueue_struct *wq = dev_to_wq(dev);
5017 struct workqueue_attrs *attrs;
5018 int ret = -ENOMEM;
5019
5020 apply_wqattrs_lock();
5021
5022 attrs = wq_sysfs_prep_attrs(wq);
5023 if (!attrs)
5024 goto out_unlock;
5025
5026 ret = cpumask_parse(buf, attrs->cpumask);
5027 if (!ret)
5028 ret = apply_workqueue_attrs_locked(wq, attrs);
5029
5030 out_unlock:
5031 apply_wqattrs_unlock();
5032 free_workqueue_attrs(attrs);
5033 return ret ?: count;
5034 }
5035
5036 static ssize_t wq_numa_show(struct device *dev, struct device_attribute *attr,
5037 char *buf)
5038 {
5039 struct workqueue_struct *wq = dev_to_wq(dev);
5040 int written;
5041
5042 mutex_lock(&wq->mutex);
5043 written = scnprintf(buf, PAGE_SIZE, "%d\n",
5044 !wq->unbound_attrs->no_numa);
5045 mutex_unlock(&wq->mutex);
5046
5047 return written;
5048 }
5049
5050 static ssize_t wq_numa_store(struct device *dev, struct device_attribute *attr,
5051 const char *buf, size_t count)
5052 {
5053 struct workqueue_struct *wq = dev_to_wq(dev);
5054 struct workqueue_attrs *attrs;
5055 int v, ret = -ENOMEM;
5056
5057 apply_wqattrs_lock();
5058
5059 attrs = wq_sysfs_prep_attrs(wq);
5060 if (!attrs)
5061 goto out_unlock;
5062
5063 ret = -EINVAL;
5064 if (sscanf(buf, "%d", &v) == 1) {
5065 attrs->no_numa = !v;
5066 ret = apply_workqueue_attrs_locked(wq, attrs);
5067 }
5068
5069 out_unlock:
5070 apply_wqattrs_unlock();
5071 free_workqueue_attrs(attrs);
5072 return ret ?: count;
5073 }
5074
5075 static struct device_attribute wq_sysfs_unbound_attrs[] = {
5076 __ATTR(pool_ids, 0444, wq_pool_ids_show, NULL),
5077 __ATTR(nice, 0644, wq_nice_show, wq_nice_store),
5078 __ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store),
5079 __ATTR(numa, 0644, wq_numa_show, wq_numa_store),
5080 __ATTR_NULL,
5081 };
5082
5083 static struct bus_type wq_subsys = {
5084 .name = "workqueue",
5085 .dev_groups = wq_sysfs_groups,
5086 };
5087
5088 static ssize_t wq_unbound_cpumask_show(struct device *dev,
5089 struct device_attribute *attr, char *buf)
5090 {
5091 int written;
5092
5093 mutex_lock(&wq_pool_mutex);
5094 written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
5095 cpumask_pr_args(wq_unbound_cpumask));
5096 mutex_unlock(&wq_pool_mutex);
5097
5098 return written;
5099 }
5100
5101 static ssize_t wq_unbound_cpumask_store(struct device *dev,
5102 struct device_attribute *attr, const char *buf, size_t count)
5103 {
5104 cpumask_var_t cpumask;
5105 int ret;
5106
5107 if (!zalloc_cpumask_var(&cpumask, GFP_KERNEL))
5108 return -ENOMEM;
5109
5110 ret = cpumask_parse(buf, cpumask);
5111 if (!ret)
5112 ret = workqueue_set_unbound_cpumask(cpumask);
5113
5114 free_cpumask_var(cpumask);
5115 return ret ? ret : count;
5116 }
5117
5118 static struct device_attribute wq_sysfs_cpumask_attr =
5119 __ATTR(cpumask, 0644, wq_unbound_cpumask_show,
5120 wq_unbound_cpumask_store);
5121
5122 static int __init wq_sysfs_init(void)
5123 {
5124 int err;
5125
5126 err = subsys_virtual_register(&wq_subsys, NULL);
5127 if (err)
5128 return err;
5129
5130 return device_create_file(wq_subsys.dev_root, &wq_sysfs_cpumask_attr);
5131 }
5132 core_initcall(wq_sysfs_init);
5133
5134 static void wq_device_release(struct device *dev)
5135 {
5136 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
5137
5138 kfree(wq_dev);
5139 }
5140
5141 /**
5142 * workqueue_sysfs_register - make a workqueue visible in sysfs
5143 * @wq: the workqueue to register
5144 *
5145 * Expose @wq in sysfs under /sys/bus/workqueue/devices.
5146 * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set
5147 * which is the preferred method.
5148 *
5149 * Workqueue user should use this function directly iff it wants to apply
5150 * workqueue_attrs before making the workqueue visible in sysfs; otherwise,
5151 * apply_workqueue_attrs() may race against userland updating the
5152 * attributes.
5153 *
5154 * Return: 0 on success, -errno on failure.
5155 */
5156 int workqueue_sysfs_register(struct workqueue_struct *wq)
5157 {
5158 struct wq_device *wq_dev;
5159 int ret;
5160
5161 /*
5162 * Adjusting max_active or creating new pwqs by applying
5163 * attributes breaks ordering guarantee. Disallow exposing ordered
5164 * workqueues.
5165 */
5166 if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
5167 return -EINVAL;
5168
5169 wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL);
5170 if (!wq_dev)
5171 return -ENOMEM;
5172
5173 wq_dev->wq = wq;
5174 wq_dev->dev.bus = &wq_subsys;
5175 wq_dev->dev.init_name = wq->name;
5176 wq_dev->dev.release = wq_device_release;
5177
5178 /*
5179 * unbound_attrs are created separately. Suppress uevent until
5180 * everything is ready.
5181 */
5182 dev_set_uevent_suppress(&wq_dev->dev, true);
5183
5184 ret = device_register(&wq_dev->dev);
5185 if (ret) {
5186 kfree(wq_dev);
5187 wq->wq_dev = NULL;
5188 return ret;
5189 }
5190
5191 if (wq->flags & WQ_UNBOUND) {
5192 struct device_attribute *attr;
5193
5194 for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) {
5195 ret = device_create_file(&wq_dev->dev, attr);
5196 if (ret) {
5197 device_unregister(&wq_dev->dev);
5198 wq->wq_dev = NULL;
5199 return ret;
5200 }
5201 }
5202 }
5203
5204 dev_set_uevent_suppress(&wq_dev->dev, false);
5205 kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD);
5206 return 0;
5207 }
5208
5209 /**
5210 * workqueue_sysfs_unregister - undo workqueue_sysfs_register()
5211 * @wq: the workqueue to unregister
5212 *
5213 * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister.
5214 */
5215 static void workqueue_sysfs_unregister(struct workqueue_struct *wq)
5216 {
5217 struct wq_device *wq_dev = wq->wq_dev;
5218
5219 if (!wq->wq_dev)
5220 return;
5221
5222 wq->wq_dev = NULL;
5223 device_unregister(&wq_dev->dev);
5224 }
5225 #else /* CONFIG_SYSFS */
5226 static void workqueue_sysfs_unregister(struct workqueue_struct *wq) { }
5227 #endif /* CONFIG_SYSFS */
5228
5229 static void __init wq_numa_init(void)
5230 {
5231 cpumask_var_t *tbl;
5232 int node, cpu;
5233
5234 if (num_possible_nodes() <= 1)
5235 return;
5236
5237 if (wq_disable_numa) {
5238 pr_info("workqueue: NUMA affinity support disabled\n");
5239 return;
5240 }
5241
5242 wq_update_unbound_numa_attrs_buf = alloc_workqueue_attrs(GFP_KERNEL);
5243 BUG_ON(!wq_update_unbound_numa_attrs_buf);
5244
5245 /*
5246 * We want masks of possible CPUs of each node which isn't readily
5247 * available. Build one from cpu_to_node() which should have been
5248 * fully initialized by now.
5249 */
5250 tbl = kzalloc(nr_node_ids * sizeof(tbl[0]), GFP_KERNEL);
5251 BUG_ON(!tbl);
5252
5253 for_each_node(node)
5254 BUG_ON(!zalloc_cpumask_var_node(&tbl[node], GFP_KERNEL,
5255 node_online(node) ? node : NUMA_NO_NODE));
5256
5257 for_each_possible_cpu(cpu) {
5258 node = cpu_to_node(cpu);
5259 if (WARN_ON(node == NUMA_NO_NODE)) {
5260 pr_warn("workqueue: NUMA node mapping not available for cpu%d, disabling NUMA support\n", cpu);
5261 /* happens iff arch is bonkers, let's just proceed */
5262 return;
5263 }
5264 cpumask_set_cpu(cpu, tbl[node]);
5265 }
5266
5267 wq_numa_possible_cpumask = tbl;
5268 wq_numa_enabled = true;
5269 }
5270
5271 static int __init init_workqueues(void)
5272 {
5273 int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL };
5274 int i, cpu;
5275
5276 WARN_ON(__alignof__(struct pool_workqueue) < __alignof__(long long));
5277
5278 BUG_ON(!alloc_cpumask_var(&wq_unbound_cpumask, GFP_KERNEL));
5279 cpumask_copy(wq_unbound_cpumask, cpu_possible_mask);
5280
5281 pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC);
5282
5283 cpu_notifier(workqueue_cpu_up_callback, CPU_PRI_WORKQUEUE_UP);
5284 hotcpu_notifier(workqueue_cpu_down_callback, CPU_PRI_WORKQUEUE_DOWN);
5285
5286 wq_numa_init();
5287
5288 /* initialize CPU pools */
5289 for_each_possible_cpu(cpu) {
5290 struct worker_pool *pool;
5291
5292 i = 0;
5293 for_each_cpu_worker_pool(pool, cpu) {
5294 BUG_ON(init_worker_pool(pool));
5295 pool->cpu = cpu;
5296 cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu));
5297 pool->attrs->nice = std_nice[i++];
5298 pool->node = cpu_to_node(cpu);
5299
5300 /* alloc pool ID */
5301 mutex_lock(&wq_pool_mutex);
5302 BUG_ON(worker_pool_assign_id(pool));
5303 mutex_unlock(&wq_pool_mutex);
5304 }
5305 }
5306
5307 /* create the initial worker */
5308 for_each_online_cpu(cpu) {
5309 struct worker_pool *pool;
5310
5311 for_each_cpu_worker_pool(pool, cpu) {
5312 pool->flags &= ~POOL_DISASSOCIATED;
5313 BUG_ON(!create_worker(pool));
5314 }
5315 }
5316
5317 /* create default unbound and ordered wq attrs */
5318 for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
5319 struct workqueue_attrs *attrs;
5320
5321 BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
5322 attrs->nice = std_nice[i];
5323 unbound_std_wq_attrs[i] = attrs;
5324
5325 /*
5326 * An ordered wq should have only one pwq as ordering is
5327 * guaranteed by max_active which is enforced by pwqs.
5328 * Turn off NUMA so that dfl_pwq is used for all nodes.
5329 */
5330 BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
5331 attrs->nice = std_nice[i];
5332 attrs->no_numa = true;
5333 ordered_wq_attrs[i] = attrs;
5334 }
5335
5336 system_wq = alloc_workqueue("events", 0, 0);
5337 system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
5338 system_long_wq = alloc_workqueue("events_long", 0, 0);
5339 system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
5340 WQ_UNBOUND_MAX_ACTIVE);
5341 system_freezable_wq = alloc_workqueue("events_freezable",
5342 WQ_FREEZABLE, 0);
5343 system_power_efficient_wq = alloc_workqueue("events_power_efficient",
5344 WQ_POWER_EFFICIENT, 0);
5345 system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_power_efficient",
5346 WQ_FREEZABLE | WQ_POWER_EFFICIENT,
5347 0);
5348 BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
5349 !system_unbound_wq || !system_freezable_wq ||
5350 !system_power_efficient_wq ||
5351 !system_freezable_power_efficient_wq);
5352 return 0;
5353 }
5354 early_initcall(init_workqueues);