]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - kernel/workqueue.c
workqueue: restructure pool / pool_workqueue iterations in freeze/thaw functions
[mirror_ubuntu-jammy-kernel.git] / kernel / workqueue.c
1 /*
2 * kernel/workqueue.c - generic async execution with shared worker pool
3 *
4 * Copyright (C) 2002 Ingo Molnar
5 *
6 * Derived from the taskqueue/keventd code by:
7 * David Woodhouse <dwmw2@infradead.org>
8 * Andrew Morton
9 * Kai Petzke <wpp@marie.physik.tu-berlin.de>
10 * Theodore Ts'o <tytso@mit.edu>
11 *
12 * Made to use alloc_percpu by Christoph Lameter.
13 *
14 * Copyright (C) 2010 SUSE Linux Products GmbH
15 * Copyright (C) 2010 Tejun Heo <tj@kernel.org>
16 *
17 * This is the generic async execution mechanism. Work items as are
18 * executed in process context. The worker pool is shared and
19 * automatically managed. There is one worker pool for each CPU and
20 * one extra for works which are better served by workers which are
21 * not bound to any specific CPU.
22 *
23 * Please read Documentation/workqueue.txt for details.
24 */
25
26 #include <linux/export.h>
27 #include <linux/kernel.h>
28 #include <linux/sched.h>
29 #include <linux/init.h>
30 #include <linux/signal.h>
31 #include <linux/completion.h>
32 #include <linux/workqueue.h>
33 #include <linux/slab.h>
34 #include <linux/cpu.h>
35 #include <linux/notifier.h>
36 #include <linux/kthread.h>
37 #include <linux/hardirq.h>
38 #include <linux/mempolicy.h>
39 #include <linux/freezer.h>
40 #include <linux/kallsyms.h>
41 #include <linux/debug_locks.h>
42 #include <linux/lockdep.h>
43 #include <linux/idr.h>
44 #include <linux/hashtable.h>
45
46 #include "workqueue_internal.h"
47
48 enum {
49 /*
50 * worker_pool flags
51 *
52 * A bound pool is either associated or disassociated with its CPU.
53 * While associated (!DISASSOCIATED), all workers are bound to the
54 * CPU and none has %WORKER_UNBOUND set and concurrency management
55 * is in effect.
56 *
57 * While DISASSOCIATED, the cpu may be offline and all workers have
58 * %WORKER_UNBOUND set and concurrency management disabled, and may
59 * be executing on any CPU. The pool behaves as an unbound one.
60 *
61 * Note that DISASSOCIATED can be flipped only while holding
62 * assoc_mutex to avoid changing binding state while
63 * create_worker() is in progress.
64 */
65 POOL_MANAGE_WORKERS = 1 << 0, /* need to manage workers */
66 POOL_MANAGING_WORKERS = 1 << 1, /* managing workers */
67 POOL_DISASSOCIATED = 1 << 2, /* cpu can't serve workers */
68 POOL_FREEZING = 1 << 3, /* freeze in progress */
69
70 /* worker flags */
71 WORKER_STARTED = 1 << 0, /* started */
72 WORKER_DIE = 1 << 1, /* die die die */
73 WORKER_IDLE = 1 << 2, /* is idle */
74 WORKER_PREP = 1 << 3, /* preparing to run works */
75 WORKER_CPU_INTENSIVE = 1 << 6, /* cpu intensive */
76 WORKER_UNBOUND = 1 << 7, /* worker is unbound */
77
78 WORKER_NOT_RUNNING = WORKER_PREP | WORKER_UNBOUND |
79 WORKER_CPU_INTENSIVE,
80
81 NR_STD_WORKER_POOLS = 2, /* # standard pools per cpu */
82
83 BUSY_WORKER_HASH_ORDER = 6, /* 64 pointers */
84
85 MAX_IDLE_WORKERS_RATIO = 4, /* 1/4 of busy can be idle */
86 IDLE_WORKER_TIMEOUT = 300 * HZ, /* keep idle ones for 5 mins */
87
88 MAYDAY_INITIAL_TIMEOUT = HZ / 100 >= 2 ? HZ / 100 : 2,
89 /* call for help after 10ms
90 (min two ticks) */
91 MAYDAY_INTERVAL = HZ / 10, /* and then every 100ms */
92 CREATE_COOLDOWN = HZ, /* time to breath after fail */
93
94 /*
95 * Rescue workers are used only on emergencies and shared by
96 * all cpus. Give -20.
97 */
98 RESCUER_NICE_LEVEL = -20,
99 HIGHPRI_NICE_LEVEL = -20,
100 };
101
102 /*
103 * Structure fields follow one of the following exclusion rules.
104 *
105 * I: Modifiable by initialization/destruction paths and read-only for
106 * everyone else.
107 *
108 * P: Preemption protected. Disabling preemption is enough and should
109 * only be modified and accessed from the local cpu.
110 *
111 * L: pool->lock protected. Access with pool->lock held.
112 *
113 * X: During normal operation, modification requires pool->lock and should
114 * be done only from local cpu. Either disabling preemption on local
115 * cpu or grabbing pool->lock is enough for read access. If
116 * POOL_DISASSOCIATED is set, it's identical to L.
117 *
118 * F: wq->flush_mutex protected.
119 *
120 * W: workqueue_lock protected.
121 */
122
123 /* struct worker is defined in workqueue_internal.h */
124
125 struct worker_pool {
126 spinlock_t lock; /* the pool lock */
127 unsigned int cpu; /* I: the associated cpu */
128 int id; /* I: pool ID */
129 unsigned int flags; /* X: flags */
130
131 struct list_head worklist; /* L: list of pending works */
132 int nr_workers; /* L: total number of workers */
133
134 /* nr_idle includes the ones off idle_list for rebinding */
135 int nr_idle; /* L: currently idle ones */
136
137 struct list_head idle_list; /* X: list of idle workers */
138 struct timer_list idle_timer; /* L: worker idle timeout */
139 struct timer_list mayday_timer; /* L: SOS timer for workers */
140
141 /* workers are chained either in busy_hash or idle_list */
142 DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
143 /* L: hash of busy workers */
144
145 struct mutex assoc_mutex; /* protect POOL_DISASSOCIATED */
146 struct ida worker_ida; /* L: for worker IDs */
147
148 /*
149 * The current concurrency level. As it's likely to be accessed
150 * from other CPUs during try_to_wake_up(), put it in a separate
151 * cacheline.
152 */
153 atomic_t nr_running ____cacheline_aligned_in_smp;
154 } ____cacheline_aligned_in_smp;
155
156 /*
157 * The per-pool workqueue. While queued, the lower WORK_STRUCT_FLAG_BITS
158 * of work_struct->data are used for flags and the remaining high bits
159 * point to the pwq; thus, pwqs need to be aligned at two's power of the
160 * number of flag bits.
161 */
162 struct pool_workqueue {
163 struct worker_pool *pool; /* I: the associated pool */
164 struct workqueue_struct *wq; /* I: the owning workqueue */
165 int work_color; /* L: current color */
166 int flush_color; /* L: flushing color */
167 int nr_in_flight[WORK_NR_COLORS];
168 /* L: nr of in_flight works */
169 int nr_active; /* L: nr of active works */
170 int max_active; /* L: max active works */
171 struct list_head delayed_works; /* L: delayed works */
172 struct list_head pwqs_node; /* I: node on wq->pwqs */
173 } __aligned(1 << WORK_STRUCT_FLAG_BITS);
174
175 /*
176 * Structure used to wait for workqueue flush.
177 */
178 struct wq_flusher {
179 struct list_head list; /* F: list of flushers */
180 int flush_color; /* F: flush color waiting for */
181 struct completion done; /* flush completion */
182 };
183
184 /*
185 * All cpumasks are assumed to be always set on UP and thus can't be
186 * used to determine whether there's something to be done.
187 */
188 #ifdef CONFIG_SMP
189 typedef cpumask_var_t mayday_mask_t;
190 #define mayday_test_and_set_cpu(cpu, mask) \
191 cpumask_test_and_set_cpu((cpu), (mask))
192 #define mayday_clear_cpu(cpu, mask) cpumask_clear_cpu((cpu), (mask))
193 #define for_each_mayday_cpu(cpu, mask) for_each_cpu((cpu), (mask))
194 #define alloc_mayday_mask(maskp, gfp) zalloc_cpumask_var((maskp), (gfp))
195 #define free_mayday_mask(mask) free_cpumask_var((mask))
196 #else
197 typedef unsigned long mayday_mask_t;
198 #define mayday_test_and_set_cpu(cpu, mask) test_and_set_bit(0, &(mask))
199 #define mayday_clear_cpu(cpu, mask) clear_bit(0, &(mask))
200 #define for_each_mayday_cpu(cpu, mask) if ((cpu) = 0, (mask))
201 #define alloc_mayday_mask(maskp, gfp) true
202 #define free_mayday_mask(mask) do { } while (0)
203 #endif
204
205 /*
206 * The externally visible workqueue abstraction is an array of
207 * per-CPU workqueues:
208 */
209 struct workqueue_struct {
210 unsigned int flags; /* W: WQ_* flags */
211 union {
212 struct pool_workqueue __percpu *pcpu;
213 struct pool_workqueue *single;
214 unsigned long v;
215 } pool_wq; /* I: pwq's */
216 struct list_head pwqs; /* I: all pwqs of this wq */
217 struct list_head list; /* W: list of all workqueues */
218
219 struct mutex flush_mutex; /* protects wq flushing */
220 int work_color; /* F: current work color */
221 int flush_color; /* F: current flush color */
222 atomic_t nr_pwqs_to_flush; /* flush in progress */
223 struct wq_flusher *first_flusher; /* F: first flusher */
224 struct list_head flusher_queue; /* F: flush waiters */
225 struct list_head flusher_overflow; /* F: flush overflow list */
226
227 mayday_mask_t mayday_mask; /* cpus requesting rescue */
228 struct worker *rescuer; /* I: rescue worker */
229
230 int nr_drainers; /* W: drain in progress */
231 int saved_max_active; /* W: saved pwq max_active */
232 #ifdef CONFIG_LOCKDEP
233 struct lockdep_map lockdep_map;
234 #endif
235 char name[]; /* I: workqueue name */
236 };
237
238 static struct kmem_cache *pwq_cache;
239
240 struct workqueue_struct *system_wq __read_mostly;
241 EXPORT_SYMBOL_GPL(system_wq);
242 struct workqueue_struct *system_highpri_wq __read_mostly;
243 EXPORT_SYMBOL_GPL(system_highpri_wq);
244 struct workqueue_struct *system_long_wq __read_mostly;
245 EXPORT_SYMBOL_GPL(system_long_wq);
246 struct workqueue_struct *system_unbound_wq __read_mostly;
247 EXPORT_SYMBOL_GPL(system_unbound_wq);
248 struct workqueue_struct *system_freezable_wq __read_mostly;
249 EXPORT_SYMBOL_GPL(system_freezable_wq);
250
251 #define CREATE_TRACE_POINTS
252 #include <trace/events/workqueue.h>
253
254 #define for_each_std_worker_pool(pool, cpu) \
255 for ((pool) = &std_worker_pools(cpu)[0]; \
256 (pool) < &std_worker_pools(cpu)[NR_STD_WORKER_POOLS]; (pool)++)
257
258 #define for_each_busy_worker(worker, i, pool) \
259 hash_for_each(pool->busy_hash, i, worker, hentry)
260
261 static inline int __next_wq_cpu(int cpu, const struct cpumask *mask,
262 unsigned int sw)
263 {
264 if (cpu < nr_cpu_ids) {
265 if (sw & 1) {
266 cpu = cpumask_next(cpu, mask);
267 if (cpu < nr_cpu_ids)
268 return cpu;
269 }
270 if (sw & 2)
271 return WORK_CPU_UNBOUND;
272 }
273 return WORK_CPU_END;
274 }
275
276 /*
277 * CPU iterators
278 *
279 * An extra cpu number is defined using an invalid cpu number
280 * (WORK_CPU_UNBOUND) to host workqueues which are not bound to any
281 * specific CPU. The following iterators are similar to for_each_*_cpu()
282 * iterators but also considers the unbound CPU.
283 *
284 * for_each_wq_cpu() : possible CPUs + WORK_CPU_UNBOUND
285 * for_each_online_wq_cpu() : online CPUs + WORK_CPU_UNBOUND
286 */
287 #define for_each_wq_cpu(cpu) \
288 for ((cpu) = __next_wq_cpu(-1, cpu_possible_mask, 3); \
289 (cpu) < WORK_CPU_END; \
290 (cpu) = __next_wq_cpu((cpu), cpu_possible_mask, 3))
291
292 #define for_each_online_wq_cpu(cpu) \
293 for ((cpu) = __next_wq_cpu(-1, cpu_online_mask, 3); \
294 (cpu) < WORK_CPU_END; \
295 (cpu) = __next_wq_cpu((cpu), cpu_online_mask, 3))
296
297 /**
298 * for_each_pool - iterate through all worker_pools in the system
299 * @pool: iteration cursor
300 * @id: integer used for iteration
301 */
302 #define for_each_pool(pool, id) \
303 idr_for_each_entry(&worker_pool_idr, pool, id)
304
305 /**
306 * for_each_pwq - iterate through all pool_workqueues of the specified workqueue
307 * @pwq: iteration cursor
308 * @wq: the target workqueue
309 */
310 #define for_each_pwq(pwq, wq) \
311 list_for_each_entry((pwq), &(wq)->pwqs, pwqs_node)
312
313 #ifdef CONFIG_DEBUG_OBJECTS_WORK
314
315 static struct debug_obj_descr work_debug_descr;
316
317 static void *work_debug_hint(void *addr)
318 {
319 return ((struct work_struct *) addr)->func;
320 }
321
322 /*
323 * fixup_init is called when:
324 * - an active object is initialized
325 */
326 static int work_fixup_init(void *addr, enum debug_obj_state state)
327 {
328 struct work_struct *work = addr;
329
330 switch (state) {
331 case ODEBUG_STATE_ACTIVE:
332 cancel_work_sync(work);
333 debug_object_init(work, &work_debug_descr);
334 return 1;
335 default:
336 return 0;
337 }
338 }
339
340 /*
341 * fixup_activate is called when:
342 * - an active object is activated
343 * - an unknown object is activated (might be a statically initialized object)
344 */
345 static int work_fixup_activate(void *addr, enum debug_obj_state state)
346 {
347 struct work_struct *work = addr;
348
349 switch (state) {
350
351 case ODEBUG_STATE_NOTAVAILABLE:
352 /*
353 * This is not really a fixup. The work struct was
354 * statically initialized. We just make sure that it
355 * is tracked in the object tracker.
356 */
357 if (test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work))) {
358 debug_object_init(work, &work_debug_descr);
359 debug_object_activate(work, &work_debug_descr);
360 return 0;
361 }
362 WARN_ON_ONCE(1);
363 return 0;
364
365 case ODEBUG_STATE_ACTIVE:
366 WARN_ON(1);
367
368 default:
369 return 0;
370 }
371 }
372
373 /*
374 * fixup_free is called when:
375 * - an active object is freed
376 */
377 static int work_fixup_free(void *addr, enum debug_obj_state state)
378 {
379 struct work_struct *work = addr;
380
381 switch (state) {
382 case ODEBUG_STATE_ACTIVE:
383 cancel_work_sync(work);
384 debug_object_free(work, &work_debug_descr);
385 return 1;
386 default:
387 return 0;
388 }
389 }
390
391 static struct debug_obj_descr work_debug_descr = {
392 .name = "work_struct",
393 .debug_hint = work_debug_hint,
394 .fixup_init = work_fixup_init,
395 .fixup_activate = work_fixup_activate,
396 .fixup_free = work_fixup_free,
397 };
398
399 static inline void debug_work_activate(struct work_struct *work)
400 {
401 debug_object_activate(work, &work_debug_descr);
402 }
403
404 static inline void debug_work_deactivate(struct work_struct *work)
405 {
406 debug_object_deactivate(work, &work_debug_descr);
407 }
408
409 void __init_work(struct work_struct *work, int onstack)
410 {
411 if (onstack)
412 debug_object_init_on_stack(work, &work_debug_descr);
413 else
414 debug_object_init(work, &work_debug_descr);
415 }
416 EXPORT_SYMBOL_GPL(__init_work);
417
418 void destroy_work_on_stack(struct work_struct *work)
419 {
420 debug_object_free(work, &work_debug_descr);
421 }
422 EXPORT_SYMBOL_GPL(destroy_work_on_stack);
423
424 #else
425 static inline void debug_work_activate(struct work_struct *work) { }
426 static inline void debug_work_deactivate(struct work_struct *work) { }
427 #endif
428
429 /* Serializes the accesses to the list of workqueues. */
430 static DEFINE_SPINLOCK(workqueue_lock);
431 static LIST_HEAD(workqueues);
432 static bool workqueue_freezing; /* W: have wqs started freezing? */
433
434 /*
435 * The CPU and unbound standard worker pools. The unbound ones have
436 * POOL_DISASSOCIATED set, and their workers have WORKER_UNBOUND set.
437 */
438 static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS],
439 cpu_std_worker_pools);
440 static struct worker_pool unbound_std_worker_pools[NR_STD_WORKER_POOLS];
441
442 /* idr of all pools */
443 static DEFINE_MUTEX(worker_pool_idr_mutex);
444 static DEFINE_IDR(worker_pool_idr);
445
446 static int worker_thread(void *__worker);
447
448 static struct worker_pool *std_worker_pools(int cpu)
449 {
450 if (cpu != WORK_CPU_UNBOUND)
451 return per_cpu(cpu_std_worker_pools, cpu);
452 else
453 return unbound_std_worker_pools;
454 }
455
456 static int std_worker_pool_pri(struct worker_pool *pool)
457 {
458 return pool - std_worker_pools(pool->cpu);
459 }
460
461 /* allocate ID and assign it to @pool */
462 static int worker_pool_assign_id(struct worker_pool *pool)
463 {
464 int ret;
465
466 mutex_lock(&worker_pool_idr_mutex);
467 idr_pre_get(&worker_pool_idr, GFP_KERNEL);
468 ret = idr_get_new(&worker_pool_idr, pool, &pool->id);
469 mutex_unlock(&worker_pool_idr_mutex);
470
471 return ret;
472 }
473
474 /*
475 * Lookup worker_pool by id. The idr currently is built during boot and
476 * never modified. Don't worry about locking for now.
477 */
478 static struct worker_pool *worker_pool_by_id(int pool_id)
479 {
480 return idr_find(&worker_pool_idr, pool_id);
481 }
482
483 static struct worker_pool *get_std_worker_pool(int cpu, bool highpri)
484 {
485 struct worker_pool *pools = std_worker_pools(cpu);
486
487 return &pools[highpri];
488 }
489
490 static struct pool_workqueue *get_pwq(unsigned int cpu,
491 struct workqueue_struct *wq)
492 {
493 if (!(wq->flags & WQ_UNBOUND)) {
494 if (likely(cpu < nr_cpu_ids))
495 return per_cpu_ptr(wq->pool_wq.pcpu, cpu);
496 } else if (likely(cpu == WORK_CPU_UNBOUND))
497 return wq->pool_wq.single;
498 return NULL;
499 }
500
501 static unsigned int work_color_to_flags(int color)
502 {
503 return color << WORK_STRUCT_COLOR_SHIFT;
504 }
505
506 static int get_work_color(struct work_struct *work)
507 {
508 return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
509 ((1 << WORK_STRUCT_COLOR_BITS) - 1);
510 }
511
512 static int work_next_color(int color)
513 {
514 return (color + 1) % WORK_NR_COLORS;
515 }
516
517 /*
518 * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
519 * contain the pointer to the queued pwq. Once execution starts, the flag
520 * is cleared and the high bits contain OFFQ flags and pool ID.
521 *
522 * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling()
523 * and clear_work_data() can be used to set the pwq, pool or clear
524 * work->data. These functions should only be called while the work is
525 * owned - ie. while the PENDING bit is set.
526 *
527 * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
528 * corresponding to a work. Pool is available once the work has been
529 * queued anywhere after initialization until it is sync canceled. pwq is
530 * available only while the work item is queued.
531 *
532 * %WORK_OFFQ_CANCELING is used to mark a work item which is being
533 * canceled. While being canceled, a work item may have its PENDING set
534 * but stay off timer and worklist for arbitrarily long and nobody should
535 * try to steal the PENDING bit.
536 */
537 static inline void set_work_data(struct work_struct *work, unsigned long data,
538 unsigned long flags)
539 {
540 WARN_ON_ONCE(!work_pending(work));
541 atomic_long_set(&work->data, data | flags | work_static(work));
542 }
543
544 static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq,
545 unsigned long extra_flags)
546 {
547 set_work_data(work, (unsigned long)pwq,
548 WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags);
549 }
550
551 static void set_work_pool_and_keep_pending(struct work_struct *work,
552 int pool_id)
553 {
554 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT,
555 WORK_STRUCT_PENDING);
556 }
557
558 static void set_work_pool_and_clear_pending(struct work_struct *work,
559 int pool_id)
560 {
561 /*
562 * The following wmb is paired with the implied mb in
563 * test_and_set_bit(PENDING) and ensures all updates to @work made
564 * here are visible to and precede any updates by the next PENDING
565 * owner.
566 */
567 smp_wmb();
568 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0);
569 }
570
571 static void clear_work_data(struct work_struct *work)
572 {
573 smp_wmb(); /* see set_work_pool_and_clear_pending() */
574 set_work_data(work, WORK_STRUCT_NO_POOL, 0);
575 }
576
577 static struct pool_workqueue *get_work_pwq(struct work_struct *work)
578 {
579 unsigned long data = atomic_long_read(&work->data);
580
581 if (data & WORK_STRUCT_PWQ)
582 return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
583 else
584 return NULL;
585 }
586
587 /**
588 * get_work_pool - return the worker_pool a given work was associated with
589 * @work: the work item of interest
590 *
591 * Return the worker_pool @work was last associated with. %NULL if none.
592 */
593 static struct worker_pool *get_work_pool(struct work_struct *work)
594 {
595 unsigned long data = atomic_long_read(&work->data);
596 struct worker_pool *pool;
597 int pool_id;
598
599 if (data & WORK_STRUCT_PWQ)
600 return ((struct pool_workqueue *)
601 (data & WORK_STRUCT_WQ_DATA_MASK))->pool;
602
603 pool_id = data >> WORK_OFFQ_POOL_SHIFT;
604 if (pool_id == WORK_OFFQ_POOL_NONE)
605 return NULL;
606
607 pool = worker_pool_by_id(pool_id);
608 WARN_ON_ONCE(!pool);
609 return pool;
610 }
611
612 /**
613 * get_work_pool_id - return the worker pool ID a given work is associated with
614 * @work: the work item of interest
615 *
616 * Return the worker_pool ID @work was last associated with.
617 * %WORK_OFFQ_POOL_NONE if none.
618 */
619 static int get_work_pool_id(struct work_struct *work)
620 {
621 unsigned long data = atomic_long_read(&work->data);
622
623 if (data & WORK_STRUCT_PWQ)
624 return ((struct pool_workqueue *)
625 (data & WORK_STRUCT_WQ_DATA_MASK))->pool->id;
626
627 return data >> WORK_OFFQ_POOL_SHIFT;
628 }
629
630 static void mark_work_canceling(struct work_struct *work)
631 {
632 unsigned long pool_id = get_work_pool_id(work);
633
634 pool_id <<= WORK_OFFQ_POOL_SHIFT;
635 set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING);
636 }
637
638 static bool work_is_canceling(struct work_struct *work)
639 {
640 unsigned long data = atomic_long_read(&work->data);
641
642 return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING);
643 }
644
645 /*
646 * Policy functions. These define the policies on how the global worker
647 * pools are managed. Unless noted otherwise, these functions assume that
648 * they're being called with pool->lock held.
649 */
650
651 static bool __need_more_worker(struct worker_pool *pool)
652 {
653 return !atomic_read(&pool->nr_running);
654 }
655
656 /*
657 * Need to wake up a worker? Called from anything but currently
658 * running workers.
659 *
660 * Note that, because unbound workers never contribute to nr_running, this
661 * function will always return %true for unbound pools as long as the
662 * worklist isn't empty.
663 */
664 static bool need_more_worker(struct worker_pool *pool)
665 {
666 return !list_empty(&pool->worklist) && __need_more_worker(pool);
667 }
668
669 /* Can I start working? Called from busy but !running workers. */
670 static bool may_start_working(struct worker_pool *pool)
671 {
672 return pool->nr_idle;
673 }
674
675 /* Do I need to keep working? Called from currently running workers. */
676 static bool keep_working(struct worker_pool *pool)
677 {
678 return !list_empty(&pool->worklist) &&
679 atomic_read(&pool->nr_running) <= 1;
680 }
681
682 /* Do we need a new worker? Called from manager. */
683 static bool need_to_create_worker(struct worker_pool *pool)
684 {
685 return need_more_worker(pool) && !may_start_working(pool);
686 }
687
688 /* Do I need to be the manager? */
689 static bool need_to_manage_workers(struct worker_pool *pool)
690 {
691 return need_to_create_worker(pool) ||
692 (pool->flags & POOL_MANAGE_WORKERS);
693 }
694
695 /* Do we have too many workers and should some go away? */
696 static bool too_many_workers(struct worker_pool *pool)
697 {
698 bool managing = pool->flags & POOL_MANAGING_WORKERS;
699 int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
700 int nr_busy = pool->nr_workers - nr_idle;
701
702 /*
703 * nr_idle and idle_list may disagree if idle rebinding is in
704 * progress. Never return %true if idle_list is empty.
705 */
706 if (list_empty(&pool->idle_list))
707 return false;
708
709 return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
710 }
711
712 /*
713 * Wake up functions.
714 */
715
716 /* Return the first worker. Safe with preemption disabled */
717 static struct worker *first_worker(struct worker_pool *pool)
718 {
719 if (unlikely(list_empty(&pool->idle_list)))
720 return NULL;
721
722 return list_first_entry(&pool->idle_list, struct worker, entry);
723 }
724
725 /**
726 * wake_up_worker - wake up an idle worker
727 * @pool: worker pool to wake worker from
728 *
729 * Wake up the first idle worker of @pool.
730 *
731 * CONTEXT:
732 * spin_lock_irq(pool->lock).
733 */
734 static void wake_up_worker(struct worker_pool *pool)
735 {
736 struct worker *worker = first_worker(pool);
737
738 if (likely(worker))
739 wake_up_process(worker->task);
740 }
741
742 /**
743 * wq_worker_waking_up - a worker is waking up
744 * @task: task waking up
745 * @cpu: CPU @task is waking up to
746 *
747 * This function is called during try_to_wake_up() when a worker is
748 * being awoken.
749 *
750 * CONTEXT:
751 * spin_lock_irq(rq->lock)
752 */
753 void wq_worker_waking_up(struct task_struct *task, unsigned int cpu)
754 {
755 struct worker *worker = kthread_data(task);
756
757 if (!(worker->flags & WORKER_NOT_RUNNING)) {
758 WARN_ON_ONCE(worker->pool->cpu != cpu);
759 atomic_inc(&worker->pool->nr_running);
760 }
761 }
762
763 /**
764 * wq_worker_sleeping - a worker is going to sleep
765 * @task: task going to sleep
766 * @cpu: CPU in question, must be the current CPU number
767 *
768 * This function is called during schedule() when a busy worker is
769 * going to sleep. Worker on the same cpu can be woken up by
770 * returning pointer to its task.
771 *
772 * CONTEXT:
773 * spin_lock_irq(rq->lock)
774 *
775 * RETURNS:
776 * Worker task on @cpu to wake up, %NULL if none.
777 */
778 struct task_struct *wq_worker_sleeping(struct task_struct *task,
779 unsigned int cpu)
780 {
781 struct worker *worker = kthread_data(task), *to_wakeup = NULL;
782 struct worker_pool *pool;
783
784 /*
785 * Rescuers, which may not have all the fields set up like normal
786 * workers, also reach here, let's not access anything before
787 * checking NOT_RUNNING.
788 */
789 if (worker->flags & WORKER_NOT_RUNNING)
790 return NULL;
791
792 pool = worker->pool;
793
794 /* this can only happen on the local cpu */
795 if (WARN_ON_ONCE(cpu != raw_smp_processor_id()))
796 return NULL;
797
798 /*
799 * The counterpart of the following dec_and_test, implied mb,
800 * worklist not empty test sequence is in insert_work().
801 * Please read comment there.
802 *
803 * NOT_RUNNING is clear. This means that we're bound to and
804 * running on the local cpu w/ rq lock held and preemption
805 * disabled, which in turn means that none else could be
806 * manipulating idle_list, so dereferencing idle_list without pool
807 * lock is safe.
808 */
809 if (atomic_dec_and_test(&pool->nr_running) &&
810 !list_empty(&pool->worklist))
811 to_wakeup = first_worker(pool);
812 return to_wakeup ? to_wakeup->task : NULL;
813 }
814
815 /**
816 * worker_set_flags - set worker flags and adjust nr_running accordingly
817 * @worker: self
818 * @flags: flags to set
819 * @wakeup: wakeup an idle worker if necessary
820 *
821 * Set @flags in @worker->flags and adjust nr_running accordingly. If
822 * nr_running becomes zero and @wakeup is %true, an idle worker is
823 * woken up.
824 *
825 * CONTEXT:
826 * spin_lock_irq(pool->lock)
827 */
828 static inline void worker_set_flags(struct worker *worker, unsigned int flags,
829 bool wakeup)
830 {
831 struct worker_pool *pool = worker->pool;
832
833 WARN_ON_ONCE(worker->task != current);
834
835 /*
836 * If transitioning into NOT_RUNNING, adjust nr_running and
837 * wake up an idle worker as necessary if requested by
838 * @wakeup.
839 */
840 if ((flags & WORKER_NOT_RUNNING) &&
841 !(worker->flags & WORKER_NOT_RUNNING)) {
842 if (wakeup) {
843 if (atomic_dec_and_test(&pool->nr_running) &&
844 !list_empty(&pool->worklist))
845 wake_up_worker(pool);
846 } else
847 atomic_dec(&pool->nr_running);
848 }
849
850 worker->flags |= flags;
851 }
852
853 /**
854 * worker_clr_flags - clear worker flags and adjust nr_running accordingly
855 * @worker: self
856 * @flags: flags to clear
857 *
858 * Clear @flags in @worker->flags and adjust nr_running accordingly.
859 *
860 * CONTEXT:
861 * spin_lock_irq(pool->lock)
862 */
863 static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
864 {
865 struct worker_pool *pool = worker->pool;
866 unsigned int oflags = worker->flags;
867
868 WARN_ON_ONCE(worker->task != current);
869
870 worker->flags &= ~flags;
871
872 /*
873 * If transitioning out of NOT_RUNNING, increment nr_running. Note
874 * that the nested NOT_RUNNING is not a noop. NOT_RUNNING is mask
875 * of multiple flags, not a single flag.
876 */
877 if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
878 if (!(worker->flags & WORKER_NOT_RUNNING))
879 atomic_inc(&pool->nr_running);
880 }
881
882 /**
883 * find_worker_executing_work - find worker which is executing a work
884 * @pool: pool of interest
885 * @work: work to find worker for
886 *
887 * Find a worker which is executing @work on @pool by searching
888 * @pool->busy_hash which is keyed by the address of @work. For a worker
889 * to match, its current execution should match the address of @work and
890 * its work function. This is to avoid unwanted dependency between
891 * unrelated work executions through a work item being recycled while still
892 * being executed.
893 *
894 * This is a bit tricky. A work item may be freed once its execution
895 * starts and nothing prevents the freed area from being recycled for
896 * another work item. If the same work item address ends up being reused
897 * before the original execution finishes, workqueue will identify the
898 * recycled work item as currently executing and make it wait until the
899 * current execution finishes, introducing an unwanted dependency.
900 *
901 * This function checks the work item address, work function and workqueue
902 * to avoid false positives. Note that this isn't complete as one may
903 * construct a work function which can introduce dependency onto itself
904 * through a recycled work item. Well, if somebody wants to shoot oneself
905 * in the foot that badly, there's only so much we can do, and if such
906 * deadlock actually occurs, it should be easy to locate the culprit work
907 * function.
908 *
909 * CONTEXT:
910 * spin_lock_irq(pool->lock).
911 *
912 * RETURNS:
913 * Pointer to worker which is executing @work if found, NULL
914 * otherwise.
915 */
916 static struct worker *find_worker_executing_work(struct worker_pool *pool,
917 struct work_struct *work)
918 {
919 struct worker *worker;
920
921 hash_for_each_possible(pool->busy_hash, worker, hentry,
922 (unsigned long)work)
923 if (worker->current_work == work &&
924 worker->current_func == work->func)
925 return worker;
926
927 return NULL;
928 }
929
930 /**
931 * move_linked_works - move linked works to a list
932 * @work: start of series of works to be scheduled
933 * @head: target list to append @work to
934 * @nextp: out paramter for nested worklist walking
935 *
936 * Schedule linked works starting from @work to @head. Work series to
937 * be scheduled starts at @work and includes any consecutive work with
938 * WORK_STRUCT_LINKED set in its predecessor.
939 *
940 * If @nextp is not NULL, it's updated to point to the next work of
941 * the last scheduled work. This allows move_linked_works() to be
942 * nested inside outer list_for_each_entry_safe().
943 *
944 * CONTEXT:
945 * spin_lock_irq(pool->lock).
946 */
947 static void move_linked_works(struct work_struct *work, struct list_head *head,
948 struct work_struct **nextp)
949 {
950 struct work_struct *n;
951
952 /*
953 * Linked worklist will always end before the end of the list,
954 * use NULL for list head.
955 */
956 list_for_each_entry_safe_from(work, n, NULL, entry) {
957 list_move_tail(&work->entry, head);
958 if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
959 break;
960 }
961
962 /*
963 * If we're already inside safe list traversal and have moved
964 * multiple works to the scheduled queue, the next position
965 * needs to be updated.
966 */
967 if (nextp)
968 *nextp = n;
969 }
970
971 static void pwq_activate_delayed_work(struct work_struct *work)
972 {
973 struct pool_workqueue *pwq = get_work_pwq(work);
974
975 trace_workqueue_activate_work(work);
976 move_linked_works(work, &pwq->pool->worklist, NULL);
977 __clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
978 pwq->nr_active++;
979 }
980
981 static void pwq_activate_first_delayed(struct pool_workqueue *pwq)
982 {
983 struct work_struct *work = list_first_entry(&pwq->delayed_works,
984 struct work_struct, entry);
985
986 pwq_activate_delayed_work(work);
987 }
988
989 /**
990 * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
991 * @pwq: pwq of interest
992 * @color: color of work which left the queue
993 *
994 * A work either has completed or is removed from pending queue,
995 * decrement nr_in_flight of its pwq and handle workqueue flushing.
996 *
997 * CONTEXT:
998 * spin_lock_irq(pool->lock).
999 */
1000 static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, int color)
1001 {
1002 /* ignore uncolored works */
1003 if (color == WORK_NO_COLOR)
1004 return;
1005
1006 pwq->nr_in_flight[color]--;
1007
1008 pwq->nr_active--;
1009 if (!list_empty(&pwq->delayed_works)) {
1010 /* one down, submit a delayed one */
1011 if (pwq->nr_active < pwq->max_active)
1012 pwq_activate_first_delayed(pwq);
1013 }
1014
1015 /* is flush in progress and are we at the flushing tip? */
1016 if (likely(pwq->flush_color != color))
1017 return;
1018
1019 /* are there still in-flight works? */
1020 if (pwq->nr_in_flight[color])
1021 return;
1022
1023 /* this pwq is done, clear flush_color */
1024 pwq->flush_color = -1;
1025
1026 /*
1027 * If this was the last pwq, wake up the first flusher. It
1028 * will handle the rest.
1029 */
1030 if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush))
1031 complete(&pwq->wq->first_flusher->done);
1032 }
1033
1034 /**
1035 * try_to_grab_pending - steal work item from worklist and disable irq
1036 * @work: work item to steal
1037 * @is_dwork: @work is a delayed_work
1038 * @flags: place to store irq state
1039 *
1040 * Try to grab PENDING bit of @work. This function can handle @work in any
1041 * stable state - idle, on timer or on worklist. Return values are
1042 *
1043 * 1 if @work was pending and we successfully stole PENDING
1044 * 0 if @work was idle and we claimed PENDING
1045 * -EAGAIN if PENDING couldn't be grabbed at the moment, safe to busy-retry
1046 * -ENOENT if someone else is canceling @work, this state may persist
1047 * for arbitrarily long
1048 *
1049 * On >= 0 return, the caller owns @work's PENDING bit. To avoid getting
1050 * interrupted while holding PENDING and @work off queue, irq must be
1051 * disabled on entry. This, combined with delayed_work->timer being
1052 * irqsafe, ensures that we return -EAGAIN for finite short period of time.
1053 *
1054 * On successful return, >= 0, irq is disabled and the caller is
1055 * responsible for releasing it using local_irq_restore(*@flags).
1056 *
1057 * This function is safe to call from any context including IRQ handler.
1058 */
1059 static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
1060 unsigned long *flags)
1061 {
1062 struct worker_pool *pool;
1063 struct pool_workqueue *pwq;
1064
1065 local_irq_save(*flags);
1066
1067 /* try to steal the timer if it exists */
1068 if (is_dwork) {
1069 struct delayed_work *dwork = to_delayed_work(work);
1070
1071 /*
1072 * dwork->timer is irqsafe. If del_timer() fails, it's
1073 * guaranteed that the timer is not queued anywhere and not
1074 * running on the local CPU.
1075 */
1076 if (likely(del_timer(&dwork->timer)))
1077 return 1;
1078 }
1079
1080 /* try to claim PENDING the normal way */
1081 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
1082 return 0;
1083
1084 /*
1085 * The queueing is in progress, or it is already queued. Try to
1086 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
1087 */
1088 pool = get_work_pool(work);
1089 if (!pool)
1090 goto fail;
1091
1092 spin_lock(&pool->lock);
1093 /*
1094 * work->data is guaranteed to point to pwq only while the work
1095 * item is queued on pwq->wq, and both updating work->data to point
1096 * to pwq on queueing and to pool on dequeueing are done under
1097 * pwq->pool->lock. This in turn guarantees that, if work->data
1098 * points to pwq which is associated with a locked pool, the work
1099 * item is currently queued on that pool.
1100 */
1101 pwq = get_work_pwq(work);
1102 if (pwq && pwq->pool == pool) {
1103 debug_work_deactivate(work);
1104
1105 /*
1106 * A delayed work item cannot be grabbed directly because
1107 * it might have linked NO_COLOR work items which, if left
1108 * on the delayed_list, will confuse pwq->nr_active
1109 * management later on and cause stall. Make sure the work
1110 * item is activated before grabbing.
1111 */
1112 if (*work_data_bits(work) & WORK_STRUCT_DELAYED)
1113 pwq_activate_delayed_work(work);
1114
1115 list_del_init(&work->entry);
1116 pwq_dec_nr_in_flight(get_work_pwq(work), get_work_color(work));
1117
1118 /* work->data points to pwq iff queued, point to pool */
1119 set_work_pool_and_keep_pending(work, pool->id);
1120
1121 spin_unlock(&pool->lock);
1122 return 1;
1123 }
1124 spin_unlock(&pool->lock);
1125 fail:
1126 local_irq_restore(*flags);
1127 if (work_is_canceling(work))
1128 return -ENOENT;
1129 cpu_relax();
1130 return -EAGAIN;
1131 }
1132
1133 /**
1134 * insert_work - insert a work into a pool
1135 * @pwq: pwq @work belongs to
1136 * @work: work to insert
1137 * @head: insertion point
1138 * @extra_flags: extra WORK_STRUCT_* flags to set
1139 *
1140 * Insert @work which belongs to @pwq after @head. @extra_flags is or'd to
1141 * work_struct flags.
1142 *
1143 * CONTEXT:
1144 * spin_lock_irq(pool->lock).
1145 */
1146 static void insert_work(struct pool_workqueue *pwq, struct work_struct *work,
1147 struct list_head *head, unsigned int extra_flags)
1148 {
1149 struct worker_pool *pool = pwq->pool;
1150
1151 /* we own @work, set data and link */
1152 set_work_pwq(work, pwq, extra_flags);
1153 list_add_tail(&work->entry, head);
1154
1155 /*
1156 * Ensure either worker_sched_deactivated() sees the above
1157 * list_add_tail() or we see zero nr_running to avoid workers
1158 * lying around lazily while there are works to be processed.
1159 */
1160 smp_mb();
1161
1162 if (__need_more_worker(pool))
1163 wake_up_worker(pool);
1164 }
1165
1166 /*
1167 * Test whether @work is being queued from another work executing on the
1168 * same workqueue.
1169 */
1170 static bool is_chained_work(struct workqueue_struct *wq)
1171 {
1172 struct worker *worker;
1173
1174 worker = current_wq_worker();
1175 /*
1176 * Return %true iff I'm a worker execuing a work item on @wq. If
1177 * I'm @worker, it's safe to dereference it without locking.
1178 */
1179 return worker && worker->current_pwq->wq == wq;
1180 }
1181
1182 static void __queue_work(unsigned int cpu, struct workqueue_struct *wq,
1183 struct work_struct *work)
1184 {
1185 struct pool_workqueue *pwq;
1186 struct list_head *worklist;
1187 unsigned int work_flags;
1188 unsigned int req_cpu = cpu;
1189
1190 /*
1191 * While a work item is PENDING && off queue, a task trying to
1192 * steal the PENDING will busy-loop waiting for it to either get
1193 * queued or lose PENDING. Grabbing PENDING and queueing should
1194 * happen with IRQ disabled.
1195 */
1196 WARN_ON_ONCE(!irqs_disabled());
1197
1198 debug_work_activate(work);
1199
1200 /* if dying, only works from the same workqueue are allowed */
1201 if (unlikely(wq->flags & WQ_DRAINING) &&
1202 WARN_ON_ONCE(!is_chained_work(wq)))
1203 return;
1204
1205 /* determine the pwq to use */
1206 if (!(wq->flags & WQ_UNBOUND)) {
1207 struct worker_pool *last_pool;
1208
1209 if (cpu == WORK_CPU_UNBOUND)
1210 cpu = raw_smp_processor_id();
1211
1212 /*
1213 * It's multi cpu. If @work was previously on a different
1214 * cpu, it might still be running there, in which case the
1215 * work needs to be queued on that cpu to guarantee
1216 * non-reentrancy.
1217 */
1218 pwq = get_pwq(cpu, wq);
1219 last_pool = get_work_pool(work);
1220
1221 if (last_pool && last_pool != pwq->pool) {
1222 struct worker *worker;
1223
1224 spin_lock(&last_pool->lock);
1225
1226 worker = find_worker_executing_work(last_pool, work);
1227
1228 if (worker && worker->current_pwq->wq == wq) {
1229 pwq = get_pwq(last_pool->cpu, wq);
1230 } else {
1231 /* meh... not running there, queue here */
1232 spin_unlock(&last_pool->lock);
1233 spin_lock(&pwq->pool->lock);
1234 }
1235 } else {
1236 spin_lock(&pwq->pool->lock);
1237 }
1238 } else {
1239 pwq = get_pwq(WORK_CPU_UNBOUND, wq);
1240 spin_lock(&pwq->pool->lock);
1241 }
1242
1243 /* pwq determined, queue */
1244 trace_workqueue_queue_work(req_cpu, pwq, work);
1245
1246 if (WARN_ON(!list_empty(&work->entry))) {
1247 spin_unlock(&pwq->pool->lock);
1248 return;
1249 }
1250
1251 pwq->nr_in_flight[pwq->work_color]++;
1252 work_flags = work_color_to_flags(pwq->work_color);
1253
1254 if (likely(pwq->nr_active < pwq->max_active)) {
1255 trace_workqueue_activate_work(work);
1256 pwq->nr_active++;
1257 worklist = &pwq->pool->worklist;
1258 } else {
1259 work_flags |= WORK_STRUCT_DELAYED;
1260 worklist = &pwq->delayed_works;
1261 }
1262
1263 insert_work(pwq, work, worklist, work_flags);
1264
1265 spin_unlock(&pwq->pool->lock);
1266 }
1267
1268 /**
1269 * queue_work_on - queue work on specific cpu
1270 * @cpu: CPU number to execute work on
1271 * @wq: workqueue to use
1272 * @work: work to queue
1273 *
1274 * Returns %false if @work was already on a queue, %true otherwise.
1275 *
1276 * We queue the work to a specific CPU, the caller must ensure it
1277 * can't go away.
1278 */
1279 bool queue_work_on(int cpu, struct workqueue_struct *wq,
1280 struct work_struct *work)
1281 {
1282 bool ret = false;
1283 unsigned long flags;
1284
1285 local_irq_save(flags);
1286
1287 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1288 __queue_work(cpu, wq, work);
1289 ret = true;
1290 }
1291
1292 local_irq_restore(flags);
1293 return ret;
1294 }
1295 EXPORT_SYMBOL_GPL(queue_work_on);
1296
1297 /**
1298 * queue_work - queue work on a workqueue
1299 * @wq: workqueue to use
1300 * @work: work to queue
1301 *
1302 * Returns %false if @work was already on a queue, %true otherwise.
1303 *
1304 * We queue the work to the CPU on which it was submitted, but if the CPU dies
1305 * it can be processed by another CPU.
1306 */
1307 bool queue_work(struct workqueue_struct *wq, struct work_struct *work)
1308 {
1309 return queue_work_on(WORK_CPU_UNBOUND, wq, work);
1310 }
1311 EXPORT_SYMBOL_GPL(queue_work);
1312
1313 void delayed_work_timer_fn(unsigned long __data)
1314 {
1315 struct delayed_work *dwork = (struct delayed_work *)__data;
1316
1317 /* should have been called from irqsafe timer with irq already off */
1318 __queue_work(dwork->cpu, dwork->wq, &dwork->work);
1319 }
1320 EXPORT_SYMBOL(delayed_work_timer_fn);
1321
1322 static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
1323 struct delayed_work *dwork, unsigned long delay)
1324 {
1325 struct timer_list *timer = &dwork->timer;
1326 struct work_struct *work = &dwork->work;
1327
1328 WARN_ON_ONCE(timer->function != delayed_work_timer_fn ||
1329 timer->data != (unsigned long)dwork);
1330 WARN_ON_ONCE(timer_pending(timer));
1331 WARN_ON_ONCE(!list_empty(&work->entry));
1332
1333 /*
1334 * If @delay is 0, queue @dwork->work immediately. This is for
1335 * both optimization and correctness. The earliest @timer can
1336 * expire is on the closest next tick and delayed_work users depend
1337 * on that there's no such delay when @delay is 0.
1338 */
1339 if (!delay) {
1340 __queue_work(cpu, wq, &dwork->work);
1341 return;
1342 }
1343
1344 timer_stats_timer_set_start_info(&dwork->timer);
1345
1346 dwork->wq = wq;
1347 dwork->cpu = cpu;
1348 timer->expires = jiffies + delay;
1349
1350 if (unlikely(cpu != WORK_CPU_UNBOUND))
1351 add_timer_on(timer, cpu);
1352 else
1353 add_timer(timer);
1354 }
1355
1356 /**
1357 * queue_delayed_work_on - queue work on specific CPU after delay
1358 * @cpu: CPU number to execute work on
1359 * @wq: workqueue to use
1360 * @dwork: work to queue
1361 * @delay: number of jiffies to wait before queueing
1362 *
1363 * Returns %false if @work was already on a queue, %true otherwise. If
1364 * @delay is zero and @dwork is idle, it will be scheduled for immediate
1365 * execution.
1366 */
1367 bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
1368 struct delayed_work *dwork, unsigned long delay)
1369 {
1370 struct work_struct *work = &dwork->work;
1371 bool ret = false;
1372 unsigned long flags;
1373
1374 /* read the comment in __queue_work() */
1375 local_irq_save(flags);
1376
1377 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1378 __queue_delayed_work(cpu, wq, dwork, delay);
1379 ret = true;
1380 }
1381
1382 local_irq_restore(flags);
1383 return ret;
1384 }
1385 EXPORT_SYMBOL_GPL(queue_delayed_work_on);
1386
1387 /**
1388 * queue_delayed_work - queue work on a workqueue after delay
1389 * @wq: workqueue to use
1390 * @dwork: delayable work to queue
1391 * @delay: number of jiffies to wait before queueing
1392 *
1393 * Equivalent to queue_delayed_work_on() but tries to use the local CPU.
1394 */
1395 bool queue_delayed_work(struct workqueue_struct *wq,
1396 struct delayed_work *dwork, unsigned long delay)
1397 {
1398 return queue_delayed_work_on(WORK_CPU_UNBOUND, wq, dwork, delay);
1399 }
1400 EXPORT_SYMBOL_GPL(queue_delayed_work);
1401
1402 /**
1403 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
1404 * @cpu: CPU number to execute work on
1405 * @wq: workqueue to use
1406 * @dwork: work to queue
1407 * @delay: number of jiffies to wait before queueing
1408 *
1409 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
1410 * modify @dwork's timer so that it expires after @delay. If @delay is
1411 * zero, @work is guaranteed to be scheduled immediately regardless of its
1412 * current state.
1413 *
1414 * Returns %false if @dwork was idle and queued, %true if @dwork was
1415 * pending and its timer was modified.
1416 *
1417 * This function is safe to call from any context including IRQ handler.
1418 * See try_to_grab_pending() for details.
1419 */
1420 bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
1421 struct delayed_work *dwork, unsigned long delay)
1422 {
1423 unsigned long flags;
1424 int ret;
1425
1426 do {
1427 ret = try_to_grab_pending(&dwork->work, true, &flags);
1428 } while (unlikely(ret == -EAGAIN));
1429
1430 if (likely(ret >= 0)) {
1431 __queue_delayed_work(cpu, wq, dwork, delay);
1432 local_irq_restore(flags);
1433 }
1434
1435 /* -ENOENT from try_to_grab_pending() becomes %true */
1436 return ret;
1437 }
1438 EXPORT_SYMBOL_GPL(mod_delayed_work_on);
1439
1440 /**
1441 * mod_delayed_work - modify delay of or queue a delayed work
1442 * @wq: workqueue to use
1443 * @dwork: work to queue
1444 * @delay: number of jiffies to wait before queueing
1445 *
1446 * mod_delayed_work_on() on local CPU.
1447 */
1448 bool mod_delayed_work(struct workqueue_struct *wq, struct delayed_work *dwork,
1449 unsigned long delay)
1450 {
1451 return mod_delayed_work_on(WORK_CPU_UNBOUND, wq, dwork, delay);
1452 }
1453 EXPORT_SYMBOL_GPL(mod_delayed_work);
1454
1455 /**
1456 * worker_enter_idle - enter idle state
1457 * @worker: worker which is entering idle state
1458 *
1459 * @worker is entering idle state. Update stats and idle timer if
1460 * necessary.
1461 *
1462 * LOCKING:
1463 * spin_lock_irq(pool->lock).
1464 */
1465 static void worker_enter_idle(struct worker *worker)
1466 {
1467 struct worker_pool *pool = worker->pool;
1468
1469 if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) ||
1470 WARN_ON_ONCE(!list_empty(&worker->entry) &&
1471 (worker->hentry.next || worker->hentry.pprev)))
1472 return;
1473
1474 /* can't use worker_set_flags(), also called from start_worker() */
1475 worker->flags |= WORKER_IDLE;
1476 pool->nr_idle++;
1477 worker->last_active = jiffies;
1478
1479 /* idle_list is LIFO */
1480 list_add(&worker->entry, &pool->idle_list);
1481
1482 if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
1483 mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
1484
1485 /*
1486 * Sanity check nr_running. Because wq_unbind_fn() releases
1487 * pool->lock between setting %WORKER_UNBOUND and zapping
1488 * nr_running, the warning may trigger spuriously. Check iff
1489 * unbind is not in progress.
1490 */
1491 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
1492 pool->nr_workers == pool->nr_idle &&
1493 atomic_read(&pool->nr_running));
1494 }
1495
1496 /**
1497 * worker_leave_idle - leave idle state
1498 * @worker: worker which is leaving idle state
1499 *
1500 * @worker is leaving idle state. Update stats.
1501 *
1502 * LOCKING:
1503 * spin_lock_irq(pool->lock).
1504 */
1505 static void worker_leave_idle(struct worker *worker)
1506 {
1507 struct worker_pool *pool = worker->pool;
1508
1509 if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE)))
1510 return;
1511 worker_clr_flags(worker, WORKER_IDLE);
1512 pool->nr_idle--;
1513 list_del_init(&worker->entry);
1514 }
1515
1516 /**
1517 * worker_maybe_bind_and_lock - try to bind %current to worker_pool and lock it
1518 * @pool: target worker_pool
1519 *
1520 * Bind %current to the cpu of @pool if it is associated and lock @pool.
1521 *
1522 * Works which are scheduled while the cpu is online must at least be
1523 * scheduled to a worker which is bound to the cpu so that if they are
1524 * flushed from cpu callbacks while cpu is going down, they are
1525 * guaranteed to execute on the cpu.
1526 *
1527 * This function is to be used by unbound workers and rescuers to bind
1528 * themselves to the target cpu and may race with cpu going down or
1529 * coming online. kthread_bind() can't be used because it may put the
1530 * worker to already dead cpu and set_cpus_allowed_ptr() can't be used
1531 * verbatim as it's best effort and blocking and pool may be
1532 * [dis]associated in the meantime.
1533 *
1534 * This function tries set_cpus_allowed() and locks pool and verifies the
1535 * binding against %POOL_DISASSOCIATED which is set during
1536 * %CPU_DOWN_PREPARE and cleared during %CPU_ONLINE, so if the worker
1537 * enters idle state or fetches works without dropping lock, it can
1538 * guarantee the scheduling requirement described in the first paragraph.
1539 *
1540 * CONTEXT:
1541 * Might sleep. Called without any lock but returns with pool->lock
1542 * held.
1543 *
1544 * RETURNS:
1545 * %true if the associated pool is online (@worker is successfully
1546 * bound), %false if offline.
1547 */
1548 static bool worker_maybe_bind_and_lock(struct worker_pool *pool)
1549 __acquires(&pool->lock)
1550 {
1551 while (true) {
1552 /*
1553 * The following call may fail, succeed or succeed
1554 * without actually migrating the task to the cpu if
1555 * it races with cpu hotunplug operation. Verify
1556 * against POOL_DISASSOCIATED.
1557 */
1558 if (!(pool->flags & POOL_DISASSOCIATED))
1559 set_cpus_allowed_ptr(current, get_cpu_mask(pool->cpu));
1560
1561 spin_lock_irq(&pool->lock);
1562 if (pool->flags & POOL_DISASSOCIATED)
1563 return false;
1564 if (task_cpu(current) == pool->cpu &&
1565 cpumask_equal(&current->cpus_allowed,
1566 get_cpu_mask(pool->cpu)))
1567 return true;
1568 spin_unlock_irq(&pool->lock);
1569
1570 /*
1571 * We've raced with CPU hot[un]plug. Give it a breather
1572 * and retry migration. cond_resched() is required here;
1573 * otherwise, we might deadlock against cpu_stop trying to
1574 * bring down the CPU on non-preemptive kernel.
1575 */
1576 cpu_relax();
1577 cond_resched();
1578 }
1579 }
1580
1581 /*
1582 * Rebind an idle @worker to its CPU. worker_thread() will test
1583 * list_empty(@worker->entry) before leaving idle and call this function.
1584 */
1585 static void idle_worker_rebind(struct worker *worker)
1586 {
1587 /* CPU may go down again inbetween, clear UNBOUND only on success */
1588 if (worker_maybe_bind_and_lock(worker->pool))
1589 worker_clr_flags(worker, WORKER_UNBOUND);
1590
1591 /* rebind complete, become available again */
1592 list_add(&worker->entry, &worker->pool->idle_list);
1593 spin_unlock_irq(&worker->pool->lock);
1594 }
1595
1596 /*
1597 * Function for @worker->rebind.work used to rebind unbound busy workers to
1598 * the associated cpu which is coming back online. This is scheduled by
1599 * cpu up but can race with other cpu hotplug operations and may be
1600 * executed twice without intervening cpu down.
1601 */
1602 static void busy_worker_rebind_fn(struct work_struct *work)
1603 {
1604 struct worker *worker = container_of(work, struct worker, rebind_work);
1605
1606 if (worker_maybe_bind_and_lock(worker->pool))
1607 worker_clr_flags(worker, WORKER_UNBOUND);
1608
1609 spin_unlock_irq(&worker->pool->lock);
1610 }
1611
1612 /**
1613 * rebind_workers - rebind all workers of a pool to the associated CPU
1614 * @pool: pool of interest
1615 *
1616 * @pool->cpu is coming online. Rebind all workers to the CPU. Rebinding
1617 * is different for idle and busy ones.
1618 *
1619 * Idle ones will be removed from the idle_list and woken up. They will
1620 * add themselves back after completing rebind. This ensures that the
1621 * idle_list doesn't contain any unbound workers when re-bound busy workers
1622 * try to perform local wake-ups for concurrency management.
1623 *
1624 * Busy workers can rebind after they finish their current work items.
1625 * Queueing the rebind work item at the head of the scheduled list is
1626 * enough. Note that nr_running will be properly bumped as busy workers
1627 * rebind.
1628 *
1629 * On return, all non-manager workers are scheduled for rebind - see
1630 * manage_workers() for the manager special case. Any idle worker
1631 * including the manager will not appear on @idle_list until rebind is
1632 * complete, making local wake-ups safe.
1633 */
1634 static void rebind_workers(struct worker_pool *pool)
1635 {
1636 struct worker *worker, *n;
1637 int i;
1638
1639 lockdep_assert_held(&pool->assoc_mutex);
1640 lockdep_assert_held(&pool->lock);
1641
1642 /* dequeue and kick idle ones */
1643 list_for_each_entry_safe(worker, n, &pool->idle_list, entry) {
1644 /*
1645 * idle workers should be off @pool->idle_list until rebind
1646 * is complete to avoid receiving premature local wake-ups.
1647 */
1648 list_del_init(&worker->entry);
1649
1650 /*
1651 * worker_thread() will see the above dequeuing and call
1652 * idle_worker_rebind().
1653 */
1654 wake_up_process(worker->task);
1655 }
1656
1657 /* rebind busy workers */
1658 for_each_busy_worker(worker, i, pool) {
1659 struct work_struct *rebind_work = &worker->rebind_work;
1660 struct workqueue_struct *wq;
1661
1662 if (test_and_set_bit(WORK_STRUCT_PENDING_BIT,
1663 work_data_bits(rebind_work)))
1664 continue;
1665
1666 debug_work_activate(rebind_work);
1667
1668 /*
1669 * wq doesn't really matter but let's keep @worker->pool
1670 * and @pwq->pool consistent for sanity.
1671 */
1672 if (std_worker_pool_pri(worker->pool))
1673 wq = system_highpri_wq;
1674 else
1675 wq = system_wq;
1676
1677 insert_work(get_pwq(pool->cpu, wq), rebind_work,
1678 worker->scheduled.next,
1679 work_color_to_flags(WORK_NO_COLOR));
1680 }
1681 }
1682
1683 static struct worker *alloc_worker(void)
1684 {
1685 struct worker *worker;
1686
1687 worker = kzalloc(sizeof(*worker), GFP_KERNEL);
1688 if (worker) {
1689 INIT_LIST_HEAD(&worker->entry);
1690 INIT_LIST_HEAD(&worker->scheduled);
1691 INIT_WORK(&worker->rebind_work, busy_worker_rebind_fn);
1692 /* on creation a worker is in !idle && prep state */
1693 worker->flags = WORKER_PREP;
1694 }
1695 return worker;
1696 }
1697
1698 /**
1699 * create_worker - create a new workqueue worker
1700 * @pool: pool the new worker will belong to
1701 *
1702 * Create a new worker which is bound to @pool. The returned worker
1703 * can be started by calling start_worker() or destroyed using
1704 * destroy_worker().
1705 *
1706 * CONTEXT:
1707 * Might sleep. Does GFP_KERNEL allocations.
1708 *
1709 * RETURNS:
1710 * Pointer to the newly created worker.
1711 */
1712 static struct worker *create_worker(struct worker_pool *pool)
1713 {
1714 const char *pri = std_worker_pool_pri(pool) ? "H" : "";
1715 struct worker *worker = NULL;
1716 int id = -1;
1717
1718 spin_lock_irq(&pool->lock);
1719 while (ida_get_new(&pool->worker_ida, &id)) {
1720 spin_unlock_irq(&pool->lock);
1721 if (!ida_pre_get(&pool->worker_ida, GFP_KERNEL))
1722 goto fail;
1723 spin_lock_irq(&pool->lock);
1724 }
1725 spin_unlock_irq(&pool->lock);
1726
1727 worker = alloc_worker();
1728 if (!worker)
1729 goto fail;
1730
1731 worker->pool = pool;
1732 worker->id = id;
1733
1734 if (pool->cpu != WORK_CPU_UNBOUND)
1735 worker->task = kthread_create_on_node(worker_thread,
1736 worker, cpu_to_node(pool->cpu),
1737 "kworker/%u:%d%s", pool->cpu, id, pri);
1738 else
1739 worker->task = kthread_create(worker_thread, worker,
1740 "kworker/u:%d%s", id, pri);
1741 if (IS_ERR(worker->task))
1742 goto fail;
1743
1744 if (std_worker_pool_pri(pool))
1745 set_user_nice(worker->task, HIGHPRI_NICE_LEVEL);
1746
1747 /*
1748 * Determine CPU binding of the new worker depending on
1749 * %POOL_DISASSOCIATED. The caller is responsible for ensuring the
1750 * flag remains stable across this function. See the comments
1751 * above the flag definition for details.
1752 *
1753 * As an unbound worker may later become a regular one if CPU comes
1754 * online, make sure every worker has %PF_THREAD_BOUND set.
1755 */
1756 if (!(pool->flags & POOL_DISASSOCIATED)) {
1757 kthread_bind(worker->task, pool->cpu);
1758 } else {
1759 worker->task->flags |= PF_THREAD_BOUND;
1760 worker->flags |= WORKER_UNBOUND;
1761 }
1762
1763 return worker;
1764 fail:
1765 if (id >= 0) {
1766 spin_lock_irq(&pool->lock);
1767 ida_remove(&pool->worker_ida, id);
1768 spin_unlock_irq(&pool->lock);
1769 }
1770 kfree(worker);
1771 return NULL;
1772 }
1773
1774 /**
1775 * start_worker - start a newly created worker
1776 * @worker: worker to start
1777 *
1778 * Make the pool aware of @worker and start it.
1779 *
1780 * CONTEXT:
1781 * spin_lock_irq(pool->lock).
1782 */
1783 static void start_worker(struct worker *worker)
1784 {
1785 worker->flags |= WORKER_STARTED;
1786 worker->pool->nr_workers++;
1787 worker_enter_idle(worker);
1788 wake_up_process(worker->task);
1789 }
1790
1791 /**
1792 * destroy_worker - destroy a workqueue worker
1793 * @worker: worker to be destroyed
1794 *
1795 * Destroy @worker and adjust @pool stats accordingly.
1796 *
1797 * CONTEXT:
1798 * spin_lock_irq(pool->lock) which is released and regrabbed.
1799 */
1800 static void destroy_worker(struct worker *worker)
1801 {
1802 struct worker_pool *pool = worker->pool;
1803 int id = worker->id;
1804
1805 /* sanity check frenzy */
1806 if (WARN_ON(worker->current_work) ||
1807 WARN_ON(!list_empty(&worker->scheduled)))
1808 return;
1809
1810 if (worker->flags & WORKER_STARTED)
1811 pool->nr_workers--;
1812 if (worker->flags & WORKER_IDLE)
1813 pool->nr_idle--;
1814
1815 list_del_init(&worker->entry);
1816 worker->flags |= WORKER_DIE;
1817
1818 spin_unlock_irq(&pool->lock);
1819
1820 kthread_stop(worker->task);
1821 kfree(worker);
1822
1823 spin_lock_irq(&pool->lock);
1824 ida_remove(&pool->worker_ida, id);
1825 }
1826
1827 static void idle_worker_timeout(unsigned long __pool)
1828 {
1829 struct worker_pool *pool = (void *)__pool;
1830
1831 spin_lock_irq(&pool->lock);
1832
1833 if (too_many_workers(pool)) {
1834 struct worker *worker;
1835 unsigned long expires;
1836
1837 /* idle_list is kept in LIFO order, check the last one */
1838 worker = list_entry(pool->idle_list.prev, struct worker, entry);
1839 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
1840
1841 if (time_before(jiffies, expires))
1842 mod_timer(&pool->idle_timer, expires);
1843 else {
1844 /* it's been idle for too long, wake up manager */
1845 pool->flags |= POOL_MANAGE_WORKERS;
1846 wake_up_worker(pool);
1847 }
1848 }
1849
1850 spin_unlock_irq(&pool->lock);
1851 }
1852
1853 static bool send_mayday(struct work_struct *work)
1854 {
1855 struct pool_workqueue *pwq = get_work_pwq(work);
1856 struct workqueue_struct *wq = pwq->wq;
1857 unsigned int cpu;
1858
1859 if (!(wq->flags & WQ_RESCUER))
1860 return false;
1861
1862 /* mayday mayday mayday */
1863 cpu = pwq->pool->cpu;
1864 /* WORK_CPU_UNBOUND can't be set in cpumask, use cpu 0 instead */
1865 if (cpu == WORK_CPU_UNBOUND)
1866 cpu = 0;
1867 if (!mayday_test_and_set_cpu(cpu, wq->mayday_mask))
1868 wake_up_process(wq->rescuer->task);
1869 return true;
1870 }
1871
1872 static void pool_mayday_timeout(unsigned long __pool)
1873 {
1874 struct worker_pool *pool = (void *)__pool;
1875 struct work_struct *work;
1876
1877 spin_lock_irq(&pool->lock);
1878
1879 if (need_to_create_worker(pool)) {
1880 /*
1881 * We've been trying to create a new worker but
1882 * haven't been successful. We might be hitting an
1883 * allocation deadlock. Send distress signals to
1884 * rescuers.
1885 */
1886 list_for_each_entry(work, &pool->worklist, entry)
1887 send_mayday(work);
1888 }
1889
1890 spin_unlock_irq(&pool->lock);
1891
1892 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
1893 }
1894
1895 /**
1896 * maybe_create_worker - create a new worker if necessary
1897 * @pool: pool to create a new worker for
1898 *
1899 * Create a new worker for @pool if necessary. @pool is guaranteed to
1900 * have at least one idle worker on return from this function. If
1901 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
1902 * sent to all rescuers with works scheduled on @pool to resolve
1903 * possible allocation deadlock.
1904 *
1905 * On return, need_to_create_worker() is guaranteed to be false and
1906 * may_start_working() true.
1907 *
1908 * LOCKING:
1909 * spin_lock_irq(pool->lock) which may be released and regrabbed
1910 * multiple times. Does GFP_KERNEL allocations. Called only from
1911 * manager.
1912 *
1913 * RETURNS:
1914 * false if no action was taken and pool->lock stayed locked, true
1915 * otherwise.
1916 */
1917 static bool maybe_create_worker(struct worker_pool *pool)
1918 __releases(&pool->lock)
1919 __acquires(&pool->lock)
1920 {
1921 if (!need_to_create_worker(pool))
1922 return false;
1923 restart:
1924 spin_unlock_irq(&pool->lock);
1925
1926 /* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
1927 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
1928
1929 while (true) {
1930 struct worker *worker;
1931
1932 worker = create_worker(pool);
1933 if (worker) {
1934 del_timer_sync(&pool->mayday_timer);
1935 spin_lock_irq(&pool->lock);
1936 start_worker(worker);
1937 if (WARN_ON_ONCE(need_to_create_worker(pool)))
1938 goto restart;
1939 return true;
1940 }
1941
1942 if (!need_to_create_worker(pool))
1943 break;
1944
1945 __set_current_state(TASK_INTERRUPTIBLE);
1946 schedule_timeout(CREATE_COOLDOWN);
1947
1948 if (!need_to_create_worker(pool))
1949 break;
1950 }
1951
1952 del_timer_sync(&pool->mayday_timer);
1953 spin_lock_irq(&pool->lock);
1954 if (need_to_create_worker(pool))
1955 goto restart;
1956 return true;
1957 }
1958
1959 /**
1960 * maybe_destroy_worker - destroy workers which have been idle for a while
1961 * @pool: pool to destroy workers for
1962 *
1963 * Destroy @pool workers which have been idle for longer than
1964 * IDLE_WORKER_TIMEOUT.
1965 *
1966 * LOCKING:
1967 * spin_lock_irq(pool->lock) which may be released and regrabbed
1968 * multiple times. Called only from manager.
1969 *
1970 * RETURNS:
1971 * false if no action was taken and pool->lock stayed locked, true
1972 * otherwise.
1973 */
1974 static bool maybe_destroy_workers(struct worker_pool *pool)
1975 {
1976 bool ret = false;
1977
1978 while (too_many_workers(pool)) {
1979 struct worker *worker;
1980 unsigned long expires;
1981
1982 worker = list_entry(pool->idle_list.prev, struct worker, entry);
1983 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
1984
1985 if (time_before(jiffies, expires)) {
1986 mod_timer(&pool->idle_timer, expires);
1987 break;
1988 }
1989
1990 destroy_worker(worker);
1991 ret = true;
1992 }
1993
1994 return ret;
1995 }
1996
1997 /**
1998 * manage_workers - manage worker pool
1999 * @worker: self
2000 *
2001 * Assume the manager role and manage the worker pool @worker belongs
2002 * to. At any given time, there can be only zero or one manager per
2003 * pool. The exclusion is handled automatically by this function.
2004 *
2005 * The caller can safely start processing works on false return. On
2006 * true return, it's guaranteed that need_to_create_worker() is false
2007 * and may_start_working() is true.
2008 *
2009 * CONTEXT:
2010 * spin_lock_irq(pool->lock) which may be released and regrabbed
2011 * multiple times. Does GFP_KERNEL allocations.
2012 *
2013 * RETURNS:
2014 * spin_lock_irq(pool->lock) which may be released and regrabbed
2015 * multiple times. Does GFP_KERNEL allocations.
2016 */
2017 static bool manage_workers(struct worker *worker)
2018 {
2019 struct worker_pool *pool = worker->pool;
2020 bool ret = false;
2021
2022 if (pool->flags & POOL_MANAGING_WORKERS)
2023 return ret;
2024
2025 pool->flags |= POOL_MANAGING_WORKERS;
2026
2027 /*
2028 * To simplify both worker management and CPU hotplug, hold off
2029 * management while hotplug is in progress. CPU hotplug path can't
2030 * grab %POOL_MANAGING_WORKERS to achieve this because that can
2031 * lead to idle worker depletion (all become busy thinking someone
2032 * else is managing) which in turn can result in deadlock under
2033 * extreme circumstances. Use @pool->assoc_mutex to synchronize
2034 * manager against CPU hotplug.
2035 *
2036 * assoc_mutex would always be free unless CPU hotplug is in
2037 * progress. trylock first without dropping @pool->lock.
2038 */
2039 if (unlikely(!mutex_trylock(&pool->assoc_mutex))) {
2040 spin_unlock_irq(&pool->lock);
2041 mutex_lock(&pool->assoc_mutex);
2042 /*
2043 * CPU hotplug could have happened while we were waiting
2044 * for assoc_mutex. Hotplug itself can't handle us
2045 * because manager isn't either on idle or busy list, and
2046 * @pool's state and ours could have deviated.
2047 *
2048 * As hotplug is now excluded via assoc_mutex, we can
2049 * simply try to bind. It will succeed or fail depending
2050 * on @pool's current state. Try it and adjust
2051 * %WORKER_UNBOUND accordingly.
2052 */
2053 if (worker_maybe_bind_and_lock(pool))
2054 worker->flags &= ~WORKER_UNBOUND;
2055 else
2056 worker->flags |= WORKER_UNBOUND;
2057
2058 ret = true;
2059 }
2060
2061 pool->flags &= ~POOL_MANAGE_WORKERS;
2062
2063 /*
2064 * Destroy and then create so that may_start_working() is true
2065 * on return.
2066 */
2067 ret |= maybe_destroy_workers(pool);
2068 ret |= maybe_create_worker(pool);
2069
2070 pool->flags &= ~POOL_MANAGING_WORKERS;
2071 mutex_unlock(&pool->assoc_mutex);
2072 return ret;
2073 }
2074
2075 /**
2076 * process_one_work - process single work
2077 * @worker: self
2078 * @work: work to process
2079 *
2080 * Process @work. This function contains all the logics necessary to
2081 * process a single work including synchronization against and
2082 * interaction with other workers on the same cpu, queueing and
2083 * flushing. As long as context requirement is met, any worker can
2084 * call this function to process a work.
2085 *
2086 * CONTEXT:
2087 * spin_lock_irq(pool->lock) which is released and regrabbed.
2088 */
2089 static void process_one_work(struct worker *worker, struct work_struct *work)
2090 __releases(&pool->lock)
2091 __acquires(&pool->lock)
2092 {
2093 struct pool_workqueue *pwq = get_work_pwq(work);
2094 struct worker_pool *pool = worker->pool;
2095 bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE;
2096 int work_color;
2097 struct worker *collision;
2098 #ifdef CONFIG_LOCKDEP
2099 /*
2100 * It is permissible to free the struct work_struct from
2101 * inside the function that is called from it, this we need to
2102 * take into account for lockdep too. To avoid bogus "held
2103 * lock freed" warnings as well as problems when looking into
2104 * work->lockdep_map, make a copy and use that here.
2105 */
2106 struct lockdep_map lockdep_map;
2107
2108 lockdep_copy_map(&lockdep_map, &work->lockdep_map);
2109 #endif
2110 /*
2111 * Ensure we're on the correct CPU. DISASSOCIATED test is
2112 * necessary to avoid spurious warnings from rescuers servicing the
2113 * unbound or a disassociated pool.
2114 */
2115 WARN_ON_ONCE(!(worker->flags & WORKER_UNBOUND) &&
2116 !(pool->flags & POOL_DISASSOCIATED) &&
2117 raw_smp_processor_id() != pool->cpu);
2118
2119 /*
2120 * A single work shouldn't be executed concurrently by
2121 * multiple workers on a single cpu. Check whether anyone is
2122 * already processing the work. If so, defer the work to the
2123 * currently executing one.
2124 */
2125 collision = find_worker_executing_work(pool, work);
2126 if (unlikely(collision)) {
2127 move_linked_works(work, &collision->scheduled, NULL);
2128 return;
2129 }
2130
2131 /* claim and dequeue */
2132 debug_work_deactivate(work);
2133 hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
2134 worker->current_work = work;
2135 worker->current_func = work->func;
2136 worker->current_pwq = pwq;
2137 work_color = get_work_color(work);
2138
2139 list_del_init(&work->entry);
2140
2141 /*
2142 * CPU intensive works don't participate in concurrency
2143 * management. They're the scheduler's responsibility.
2144 */
2145 if (unlikely(cpu_intensive))
2146 worker_set_flags(worker, WORKER_CPU_INTENSIVE, true);
2147
2148 /*
2149 * Unbound pool isn't concurrency managed and work items should be
2150 * executed ASAP. Wake up another worker if necessary.
2151 */
2152 if ((worker->flags & WORKER_UNBOUND) && need_more_worker(pool))
2153 wake_up_worker(pool);
2154
2155 /*
2156 * Record the last pool and clear PENDING which should be the last
2157 * update to @work. Also, do this inside @pool->lock so that
2158 * PENDING and queued state changes happen together while IRQ is
2159 * disabled.
2160 */
2161 set_work_pool_and_clear_pending(work, pool->id);
2162
2163 spin_unlock_irq(&pool->lock);
2164
2165 lock_map_acquire_read(&pwq->wq->lockdep_map);
2166 lock_map_acquire(&lockdep_map);
2167 trace_workqueue_execute_start(work);
2168 worker->current_func(work);
2169 /*
2170 * While we must be careful to not use "work" after this, the trace
2171 * point will only record its address.
2172 */
2173 trace_workqueue_execute_end(work);
2174 lock_map_release(&lockdep_map);
2175 lock_map_release(&pwq->wq->lockdep_map);
2176
2177 if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
2178 pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
2179 " last function: %pf\n",
2180 current->comm, preempt_count(), task_pid_nr(current),
2181 worker->current_func);
2182 debug_show_held_locks(current);
2183 dump_stack();
2184 }
2185
2186 spin_lock_irq(&pool->lock);
2187
2188 /* clear cpu intensive status */
2189 if (unlikely(cpu_intensive))
2190 worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
2191
2192 /* we're done with it, release */
2193 hash_del(&worker->hentry);
2194 worker->current_work = NULL;
2195 worker->current_func = NULL;
2196 worker->current_pwq = NULL;
2197 pwq_dec_nr_in_flight(pwq, work_color);
2198 }
2199
2200 /**
2201 * process_scheduled_works - process scheduled works
2202 * @worker: self
2203 *
2204 * Process all scheduled works. Please note that the scheduled list
2205 * may change while processing a work, so this function repeatedly
2206 * fetches a work from the top and executes it.
2207 *
2208 * CONTEXT:
2209 * spin_lock_irq(pool->lock) which may be released and regrabbed
2210 * multiple times.
2211 */
2212 static void process_scheduled_works(struct worker *worker)
2213 {
2214 while (!list_empty(&worker->scheduled)) {
2215 struct work_struct *work = list_first_entry(&worker->scheduled,
2216 struct work_struct, entry);
2217 process_one_work(worker, work);
2218 }
2219 }
2220
2221 /**
2222 * worker_thread - the worker thread function
2223 * @__worker: self
2224 *
2225 * The worker thread function. There are NR_CPU_WORKER_POOLS dynamic pools
2226 * of these per each cpu. These workers process all works regardless of
2227 * their specific target workqueue. The only exception is works which
2228 * belong to workqueues with a rescuer which will be explained in
2229 * rescuer_thread().
2230 */
2231 static int worker_thread(void *__worker)
2232 {
2233 struct worker *worker = __worker;
2234 struct worker_pool *pool = worker->pool;
2235
2236 /* tell the scheduler that this is a workqueue worker */
2237 worker->task->flags |= PF_WQ_WORKER;
2238 woke_up:
2239 spin_lock_irq(&pool->lock);
2240
2241 /* we are off idle list if destruction or rebind is requested */
2242 if (unlikely(list_empty(&worker->entry))) {
2243 spin_unlock_irq(&pool->lock);
2244
2245 /* if DIE is set, destruction is requested */
2246 if (worker->flags & WORKER_DIE) {
2247 worker->task->flags &= ~PF_WQ_WORKER;
2248 return 0;
2249 }
2250
2251 /* otherwise, rebind */
2252 idle_worker_rebind(worker);
2253 goto woke_up;
2254 }
2255
2256 worker_leave_idle(worker);
2257 recheck:
2258 /* no more worker necessary? */
2259 if (!need_more_worker(pool))
2260 goto sleep;
2261
2262 /* do we need to manage? */
2263 if (unlikely(!may_start_working(pool)) && manage_workers(worker))
2264 goto recheck;
2265
2266 /*
2267 * ->scheduled list can only be filled while a worker is
2268 * preparing to process a work or actually processing it.
2269 * Make sure nobody diddled with it while I was sleeping.
2270 */
2271 WARN_ON_ONCE(!list_empty(&worker->scheduled));
2272
2273 /*
2274 * When control reaches this point, we're guaranteed to have
2275 * at least one idle worker or that someone else has already
2276 * assumed the manager role.
2277 */
2278 worker_clr_flags(worker, WORKER_PREP);
2279
2280 do {
2281 struct work_struct *work =
2282 list_first_entry(&pool->worklist,
2283 struct work_struct, entry);
2284
2285 if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
2286 /* optimization path, not strictly necessary */
2287 process_one_work(worker, work);
2288 if (unlikely(!list_empty(&worker->scheduled)))
2289 process_scheduled_works(worker);
2290 } else {
2291 move_linked_works(work, &worker->scheduled, NULL);
2292 process_scheduled_works(worker);
2293 }
2294 } while (keep_working(pool));
2295
2296 worker_set_flags(worker, WORKER_PREP, false);
2297 sleep:
2298 if (unlikely(need_to_manage_workers(pool)) && manage_workers(worker))
2299 goto recheck;
2300
2301 /*
2302 * pool->lock is held and there's no work to process and no need to
2303 * manage, sleep. Workers are woken up only while holding
2304 * pool->lock or from local cpu, so setting the current state
2305 * before releasing pool->lock is enough to prevent losing any
2306 * event.
2307 */
2308 worker_enter_idle(worker);
2309 __set_current_state(TASK_INTERRUPTIBLE);
2310 spin_unlock_irq(&pool->lock);
2311 schedule();
2312 goto woke_up;
2313 }
2314
2315 /**
2316 * rescuer_thread - the rescuer thread function
2317 * @__rescuer: self
2318 *
2319 * Workqueue rescuer thread function. There's one rescuer for each
2320 * workqueue which has WQ_RESCUER set.
2321 *
2322 * Regular work processing on a pool may block trying to create a new
2323 * worker which uses GFP_KERNEL allocation which has slight chance of
2324 * developing into deadlock if some works currently on the same queue
2325 * need to be processed to satisfy the GFP_KERNEL allocation. This is
2326 * the problem rescuer solves.
2327 *
2328 * When such condition is possible, the pool summons rescuers of all
2329 * workqueues which have works queued on the pool and let them process
2330 * those works so that forward progress can be guaranteed.
2331 *
2332 * This should happen rarely.
2333 */
2334 static int rescuer_thread(void *__rescuer)
2335 {
2336 struct worker *rescuer = __rescuer;
2337 struct workqueue_struct *wq = rescuer->rescue_wq;
2338 struct list_head *scheduled = &rescuer->scheduled;
2339 bool is_unbound = wq->flags & WQ_UNBOUND;
2340 unsigned int cpu;
2341
2342 set_user_nice(current, RESCUER_NICE_LEVEL);
2343
2344 /*
2345 * Mark rescuer as worker too. As WORKER_PREP is never cleared, it
2346 * doesn't participate in concurrency management.
2347 */
2348 rescuer->task->flags |= PF_WQ_WORKER;
2349 repeat:
2350 set_current_state(TASK_INTERRUPTIBLE);
2351
2352 if (kthread_should_stop()) {
2353 __set_current_state(TASK_RUNNING);
2354 rescuer->task->flags &= ~PF_WQ_WORKER;
2355 return 0;
2356 }
2357
2358 /*
2359 * See whether any cpu is asking for help. Unbounded
2360 * workqueues use cpu 0 in mayday_mask for CPU_UNBOUND.
2361 */
2362 for_each_mayday_cpu(cpu, wq->mayday_mask) {
2363 unsigned int tcpu = is_unbound ? WORK_CPU_UNBOUND : cpu;
2364 struct pool_workqueue *pwq = get_pwq(tcpu, wq);
2365 struct worker_pool *pool = pwq->pool;
2366 struct work_struct *work, *n;
2367
2368 __set_current_state(TASK_RUNNING);
2369 mayday_clear_cpu(cpu, wq->mayday_mask);
2370
2371 /* migrate to the target cpu if possible */
2372 worker_maybe_bind_and_lock(pool);
2373 rescuer->pool = pool;
2374
2375 /*
2376 * Slurp in all works issued via this workqueue and
2377 * process'em.
2378 */
2379 WARN_ON_ONCE(!list_empty(&rescuer->scheduled));
2380 list_for_each_entry_safe(work, n, &pool->worklist, entry)
2381 if (get_work_pwq(work) == pwq)
2382 move_linked_works(work, scheduled, &n);
2383
2384 process_scheduled_works(rescuer);
2385
2386 /*
2387 * Leave this pool. If keep_working() is %true, notify a
2388 * regular worker; otherwise, we end up with 0 concurrency
2389 * and stalling the execution.
2390 */
2391 if (keep_working(pool))
2392 wake_up_worker(pool);
2393
2394 rescuer->pool = NULL;
2395 spin_unlock_irq(&pool->lock);
2396 }
2397
2398 /* rescuers should never participate in concurrency management */
2399 WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
2400 schedule();
2401 goto repeat;
2402 }
2403
2404 struct wq_barrier {
2405 struct work_struct work;
2406 struct completion done;
2407 };
2408
2409 static void wq_barrier_func(struct work_struct *work)
2410 {
2411 struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
2412 complete(&barr->done);
2413 }
2414
2415 /**
2416 * insert_wq_barrier - insert a barrier work
2417 * @pwq: pwq to insert barrier into
2418 * @barr: wq_barrier to insert
2419 * @target: target work to attach @barr to
2420 * @worker: worker currently executing @target, NULL if @target is not executing
2421 *
2422 * @barr is linked to @target such that @barr is completed only after
2423 * @target finishes execution. Please note that the ordering
2424 * guarantee is observed only with respect to @target and on the local
2425 * cpu.
2426 *
2427 * Currently, a queued barrier can't be canceled. This is because
2428 * try_to_grab_pending() can't determine whether the work to be
2429 * grabbed is at the head of the queue and thus can't clear LINKED
2430 * flag of the previous work while there must be a valid next work
2431 * after a work with LINKED flag set.
2432 *
2433 * Note that when @worker is non-NULL, @target may be modified
2434 * underneath us, so we can't reliably determine pwq from @target.
2435 *
2436 * CONTEXT:
2437 * spin_lock_irq(pool->lock).
2438 */
2439 static void insert_wq_barrier(struct pool_workqueue *pwq,
2440 struct wq_barrier *barr,
2441 struct work_struct *target, struct worker *worker)
2442 {
2443 struct list_head *head;
2444 unsigned int linked = 0;
2445
2446 /*
2447 * debugobject calls are safe here even with pool->lock locked
2448 * as we know for sure that this will not trigger any of the
2449 * checks and call back into the fixup functions where we
2450 * might deadlock.
2451 */
2452 INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
2453 __set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
2454 init_completion(&barr->done);
2455
2456 /*
2457 * If @target is currently being executed, schedule the
2458 * barrier to the worker; otherwise, put it after @target.
2459 */
2460 if (worker)
2461 head = worker->scheduled.next;
2462 else {
2463 unsigned long *bits = work_data_bits(target);
2464
2465 head = target->entry.next;
2466 /* there can already be other linked works, inherit and set */
2467 linked = *bits & WORK_STRUCT_LINKED;
2468 __set_bit(WORK_STRUCT_LINKED_BIT, bits);
2469 }
2470
2471 debug_work_activate(&barr->work);
2472 insert_work(pwq, &barr->work, head,
2473 work_color_to_flags(WORK_NO_COLOR) | linked);
2474 }
2475
2476 /**
2477 * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing
2478 * @wq: workqueue being flushed
2479 * @flush_color: new flush color, < 0 for no-op
2480 * @work_color: new work color, < 0 for no-op
2481 *
2482 * Prepare pwqs for workqueue flushing.
2483 *
2484 * If @flush_color is non-negative, flush_color on all pwqs should be
2485 * -1. If no pwq has in-flight commands at the specified color, all
2486 * pwq->flush_color's stay at -1 and %false is returned. If any pwq
2487 * has in flight commands, its pwq->flush_color is set to
2488 * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq
2489 * wakeup logic is armed and %true is returned.
2490 *
2491 * The caller should have initialized @wq->first_flusher prior to
2492 * calling this function with non-negative @flush_color. If
2493 * @flush_color is negative, no flush color update is done and %false
2494 * is returned.
2495 *
2496 * If @work_color is non-negative, all pwqs should have the same
2497 * work_color which is previous to @work_color and all will be
2498 * advanced to @work_color.
2499 *
2500 * CONTEXT:
2501 * mutex_lock(wq->flush_mutex).
2502 *
2503 * RETURNS:
2504 * %true if @flush_color >= 0 and there's something to flush. %false
2505 * otherwise.
2506 */
2507 static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq,
2508 int flush_color, int work_color)
2509 {
2510 bool wait = false;
2511 struct pool_workqueue *pwq;
2512
2513 if (flush_color >= 0) {
2514 WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush));
2515 atomic_set(&wq->nr_pwqs_to_flush, 1);
2516 }
2517
2518 for_each_pwq(pwq, wq) {
2519 struct worker_pool *pool = pwq->pool;
2520
2521 spin_lock_irq(&pool->lock);
2522
2523 if (flush_color >= 0) {
2524 WARN_ON_ONCE(pwq->flush_color != -1);
2525
2526 if (pwq->nr_in_flight[flush_color]) {
2527 pwq->flush_color = flush_color;
2528 atomic_inc(&wq->nr_pwqs_to_flush);
2529 wait = true;
2530 }
2531 }
2532
2533 if (work_color >= 0) {
2534 WARN_ON_ONCE(work_color != work_next_color(pwq->work_color));
2535 pwq->work_color = work_color;
2536 }
2537
2538 spin_unlock_irq(&pool->lock);
2539 }
2540
2541 if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush))
2542 complete(&wq->first_flusher->done);
2543
2544 return wait;
2545 }
2546
2547 /**
2548 * flush_workqueue - ensure that any scheduled work has run to completion.
2549 * @wq: workqueue to flush
2550 *
2551 * Forces execution of the workqueue and blocks until its completion.
2552 * This is typically used in driver shutdown handlers.
2553 *
2554 * We sleep until all works which were queued on entry have been handled,
2555 * but we are not livelocked by new incoming ones.
2556 */
2557 void flush_workqueue(struct workqueue_struct *wq)
2558 {
2559 struct wq_flusher this_flusher = {
2560 .list = LIST_HEAD_INIT(this_flusher.list),
2561 .flush_color = -1,
2562 .done = COMPLETION_INITIALIZER_ONSTACK(this_flusher.done),
2563 };
2564 int next_color;
2565
2566 lock_map_acquire(&wq->lockdep_map);
2567 lock_map_release(&wq->lockdep_map);
2568
2569 mutex_lock(&wq->flush_mutex);
2570
2571 /*
2572 * Start-to-wait phase
2573 */
2574 next_color = work_next_color(wq->work_color);
2575
2576 if (next_color != wq->flush_color) {
2577 /*
2578 * Color space is not full. The current work_color
2579 * becomes our flush_color and work_color is advanced
2580 * by one.
2581 */
2582 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow));
2583 this_flusher.flush_color = wq->work_color;
2584 wq->work_color = next_color;
2585
2586 if (!wq->first_flusher) {
2587 /* no flush in progress, become the first flusher */
2588 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2589
2590 wq->first_flusher = &this_flusher;
2591
2592 if (!flush_workqueue_prep_pwqs(wq, wq->flush_color,
2593 wq->work_color)) {
2594 /* nothing to flush, done */
2595 wq->flush_color = next_color;
2596 wq->first_flusher = NULL;
2597 goto out_unlock;
2598 }
2599 } else {
2600 /* wait in queue */
2601 WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color);
2602 list_add_tail(&this_flusher.list, &wq->flusher_queue);
2603 flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2604 }
2605 } else {
2606 /*
2607 * Oops, color space is full, wait on overflow queue.
2608 * The next flush completion will assign us
2609 * flush_color and transfer to flusher_queue.
2610 */
2611 list_add_tail(&this_flusher.list, &wq->flusher_overflow);
2612 }
2613
2614 mutex_unlock(&wq->flush_mutex);
2615
2616 wait_for_completion(&this_flusher.done);
2617
2618 /*
2619 * Wake-up-and-cascade phase
2620 *
2621 * First flushers are responsible for cascading flushes and
2622 * handling overflow. Non-first flushers can simply return.
2623 */
2624 if (wq->first_flusher != &this_flusher)
2625 return;
2626
2627 mutex_lock(&wq->flush_mutex);
2628
2629 /* we might have raced, check again with mutex held */
2630 if (wq->first_flusher != &this_flusher)
2631 goto out_unlock;
2632
2633 wq->first_flusher = NULL;
2634
2635 WARN_ON_ONCE(!list_empty(&this_flusher.list));
2636 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2637
2638 while (true) {
2639 struct wq_flusher *next, *tmp;
2640
2641 /* complete all the flushers sharing the current flush color */
2642 list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
2643 if (next->flush_color != wq->flush_color)
2644 break;
2645 list_del_init(&next->list);
2646 complete(&next->done);
2647 }
2648
2649 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) &&
2650 wq->flush_color != work_next_color(wq->work_color));
2651
2652 /* this flush_color is finished, advance by one */
2653 wq->flush_color = work_next_color(wq->flush_color);
2654
2655 /* one color has been freed, handle overflow queue */
2656 if (!list_empty(&wq->flusher_overflow)) {
2657 /*
2658 * Assign the same color to all overflowed
2659 * flushers, advance work_color and append to
2660 * flusher_queue. This is the start-to-wait
2661 * phase for these overflowed flushers.
2662 */
2663 list_for_each_entry(tmp, &wq->flusher_overflow, list)
2664 tmp->flush_color = wq->work_color;
2665
2666 wq->work_color = work_next_color(wq->work_color);
2667
2668 list_splice_tail_init(&wq->flusher_overflow,
2669 &wq->flusher_queue);
2670 flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2671 }
2672
2673 if (list_empty(&wq->flusher_queue)) {
2674 WARN_ON_ONCE(wq->flush_color != wq->work_color);
2675 break;
2676 }
2677
2678 /*
2679 * Need to flush more colors. Make the next flusher
2680 * the new first flusher and arm pwqs.
2681 */
2682 WARN_ON_ONCE(wq->flush_color == wq->work_color);
2683 WARN_ON_ONCE(wq->flush_color != next->flush_color);
2684
2685 list_del_init(&next->list);
2686 wq->first_flusher = next;
2687
2688 if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1))
2689 break;
2690
2691 /*
2692 * Meh... this color is already done, clear first
2693 * flusher and repeat cascading.
2694 */
2695 wq->first_flusher = NULL;
2696 }
2697
2698 out_unlock:
2699 mutex_unlock(&wq->flush_mutex);
2700 }
2701 EXPORT_SYMBOL_GPL(flush_workqueue);
2702
2703 /**
2704 * drain_workqueue - drain a workqueue
2705 * @wq: workqueue to drain
2706 *
2707 * Wait until the workqueue becomes empty. While draining is in progress,
2708 * only chain queueing is allowed. IOW, only currently pending or running
2709 * work items on @wq can queue further work items on it. @wq is flushed
2710 * repeatedly until it becomes empty. The number of flushing is detemined
2711 * by the depth of chaining and should be relatively short. Whine if it
2712 * takes too long.
2713 */
2714 void drain_workqueue(struct workqueue_struct *wq)
2715 {
2716 unsigned int flush_cnt = 0;
2717 struct pool_workqueue *pwq;
2718
2719 /*
2720 * __queue_work() needs to test whether there are drainers, is much
2721 * hotter than drain_workqueue() and already looks at @wq->flags.
2722 * Use WQ_DRAINING so that queue doesn't have to check nr_drainers.
2723 */
2724 spin_lock_irq(&workqueue_lock);
2725 if (!wq->nr_drainers++)
2726 wq->flags |= WQ_DRAINING;
2727 spin_unlock_irq(&workqueue_lock);
2728 reflush:
2729 flush_workqueue(wq);
2730
2731 for_each_pwq(pwq, wq) {
2732 bool drained;
2733
2734 spin_lock_irq(&pwq->pool->lock);
2735 drained = !pwq->nr_active && list_empty(&pwq->delayed_works);
2736 spin_unlock_irq(&pwq->pool->lock);
2737
2738 if (drained)
2739 continue;
2740
2741 if (++flush_cnt == 10 ||
2742 (flush_cnt % 100 == 0 && flush_cnt <= 1000))
2743 pr_warn("workqueue %s: flush on destruction isn't complete after %u tries\n",
2744 wq->name, flush_cnt);
2745 goto reflush;
2746 }
2747
2748 spin_lock_irq(&workqueue_lock);
2749 if (!--wq->nr_drainers)
2750 wq->flags &= ~WQ_DRAINING;
2751 spin_unlock_irq(&workqueue_lock);
2752 }
2753 EXPORT_SYMBOL_GPL(drain_workqueue);
2754
2755 static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr)
2756 {
2757 struct worker *worker = NULL;
2758 struct worker_pool *pool;
2759 struct pool_workqueue *pwq;
2760
2761 might_sleep();
2762 pool = get_work_pool(work);
2763 if (!pool)
2764 return false;
2765
2766 spin_lock_irq(&pool->lock);
2767 /* see the comment in try_to_grab_pending() with the same code */
2768 pwq = get_work_pwq(work);
2769 if (pwq) {
2770 if (unlikely(pwq->pool != pool))
2771 goto already_gone;
2772 } else {
2773 worker = find_worker_executing_work(pool, work);
2774 if (!worker)
2775 goto already_gone;
2776 pwq = worker->current_pwq;
2777 }
2778
2779 insert_wq_barrier(pwq, barr, work, worker);
2780 spin_unlock_irq(&pool->lock);
2781
2782 /*
2783 * If @max_active is 1 or rescuer is in use, flushing another work
2784 * item on the same workqueue may lead to deadlock. Make sure the
2785 * flusher is not running on the same workqueue by verifying write
2786 * access.
2787 */
2788 if (pwq->wq->saved_max_active == 1 || pwq->wq->flags & WQ_RESCUER)
2789 lock_map_acquire(&pwq->wq->lockdep_map);
2790 else
2791 lock_map_acquire_read(&pwq->wq->lockdep_map);
2792 lock_map_release(&pwq->wq->lockdep_map);
2793
2794 return true;
2795 already_gone:
2796 spin_unlock_irq(&pool->lock);
2797 return false;
2798 }
2799
2800 /**
2801 * flush_work - wait for a work to finish executing the last queueing instance
2802 * @work: the work to flush
2803 *
2804 * Wait until @work has finished execution. @work is guaranteed to be idle
2805 * on return if it hasn't been requeued since flush started.
2806 *
2807 * RETURNS:
2808 * %true if flush_work() waited for the work to finish execution,
2809 * %false if it was already idle.
2810 */
2811 bool flush_work(struct work_struct *work)
2812 {
2813 struct wq_barrier barr;
2814
2815 lock_map_acquire(&work->lockdep_map);
2816 lock_map_release(&work->lockdep_map);
2817
2818 if (start_flush_work(work, &barr)) {
2819 wait_for_completion(&barr.done);
2820 destroy_work_on_stack(&barr.work);
2821 return true;
2822 } else {
2823 return false;
2824 }
2825 }
2826 EXPORT_SYMBOL_GPL(flush_work);
2827
2828 static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
2829 {
2830 unsigned long flags;
2831 int ret;
2832
2833 do {
2834 ret = try_to_grab_pending(work, is_dwork, &flags);
2835 /*
2836 * If someone else is canceling, wait for the same event it
2837 * would be waiting for before retrying.
2838 */
2839 if (unlikely(ret == -ENOENT))
2840 flush_work(work);
2841 } while (unlikely(ret < 0));
2842
2843 /* tell other tasks trying to grab @work to back off */
2844 mark_work_canceling(work);
2845 local_irq_restore(flags);
2846
2847 flush_work(work);
2848 clear_work_data(work);
2849 return ret;
2850 }
2851
2852 /**
2853 * cancel_work_sync - cancel a work and wait for it to finish
2854 * @work: the work to cancel
2855 *
2856 * Cancel @work and wait for its execution to finish. This function
2857 * can be used even if the work re-queues itself or migrates to
2858 * another workqueue. On return from this function, @work is
2859 * guaranteed to be not pending or executing on any CPU.
2860 *
2861 * cancel_work_sync(&delayed_work->work) must not be used for
2862 * delayed_work's. Use cancel_delayed_work_sync() instead.
2863 *
2864 * The caller must ensure that the workqueue on which @work was last
2865 * queued can't be destroyed before this function returns.
2866 *
2867 * RETURNS:
2868 * %true if @work was pending, %false otherwise.
2869 */
2870 bool cancel_work_sync(struct work_struct *work)
2871 {
2872 return __cancel_work_timer(work, false);
2873 }
2874 EXPORT_SYMBOL_GPL(cancel_work_sync);
2875
2876 /**
2877 * flush_delayed_work - wait for a dwork to finish executing the last queueing
2878 * @dwork: the delayed work to flush
2879 *
2880 * Delayed timer is cancelled and the pending work is queued for
2881 * immediate execution. Like flush_work(), this function only
2882 * considers the last queueing instance of @dwork.
2883 *
2884 * RETURNS:
2885 * %true if flush_work() waited for the work to finish execution,
2886 * %false if it was already idle.
2887 */
2888 bool flush_delayed_work(struct delayed_work *dwork)
2889 {
2890 local_irq_disable();
2891 if (del_timer_sync(&dwork->timer))
2892 __queue_work(dwork->cpu, dwork->wq, &dwork->work);
2893 local_irq_enable();
2894 return flush_work(&dwork->work);
2895 }
2896 EXPORT_SYMBOL(flush_delayed_work);
2897
2898 /**
2899 * cancel_delayed_work - cancel a delayed work
2900 * @dwork: delayed_work to cancel
2901 *
2902 * Kill off a pending delayed_work. Returns %true if @dwork was pending
2903 * and canceled; %false if wasn't pending. Note that the work callback
2904 * function may still be running on return, unless it returns %true and the
2905 * work doesn't re-arm itself. Explicitly flush or use
2906 * cancel_delayed_work_sync() to wait on it.
2907 *
2908 * This function is safe to call from any context including IRQ handler.
2909 */
2910 bool cancel_delayed_work(struct delayed_work *dwork)
2911 {
2912 unsigned long flags;
2913 int ret;
2914
2915 do {
2916 ret = try_to_grab_pending(&dwork->work, true, &flags);
2917 } while (unlikely(ret == -EAGAIN));
2918
2919 if (unlikely(ret < 0))
2920 return false;
2921
2922 set_work_pool_and_clear_pending(&dwork->work,
2923 get_work_pool_id(&dwork->work));
2924 local_irq_restore(flags);
2925 return ret;
2926 }
2927 EXPORT_SYMBOL(cancel_delayed_work);
2928
2929 /**
2930 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
2931 * @dwork: the delayed work cancel
2932 *
2933 * This is cancel_work_sync() for delayed works.
2934 *
2935 * RETURNS:
2936 * %true if @dwork was pending, %false otherwise.
2937 */
2938 bool cancel_delayed_work_sync(struct delayed_work *dwork)
2939 {
2940 return __cancel_work_timer(&dwork->work, true);
2941 }
2942 EXPORT_SYMBOL(cancel_delayed_work_sync);
2943
2944 /**
2945 * schedule_work_on - put work task on a specific cpu
2946 * @cpu: cpu to put the work task on
2947 * @work: job to be done
2948 *
2949 * This puts a job on a specific cpu
2950 */
2951 bool schedule_work_on(int cpu, struct work_struct *work)
2952 {
2953 return queue_work_on(cpu, system_wq, work);
2954 }
2955 EXPORT_SYMBOL(schedule_work_on);
2956
2957 /**
2958 * schedule_work - put work task in global workqueue
2959 * @work: job to be done
2960 *
2961 * Returns %false if @work was already on the kernel-global workqueue and
2962 * %true otherwise.
2963 *
2964 * This puts a job in the kernel-global workqueue if it was not already
2965 * queued and leaves it in the same position on the kernel-global
2966 * workqueue otherwise.
2967 */
2968 bool schedule_work(struct work_struct *work)
2969 {
2970 return queue_work(system_wq, work);
2971 }
2972 EXPORT_SYMBOL(schedule_work);
2973
2974 /**
2975 * schedule_delayed_work_on - queue work in global workqueue on CPU after delay
2976 * @cpu: cpu to use
2977 * @dwork: job to be done
2978 * @delay: number of jiffies to wait
2979 *
2980 * After waiting for a given time this puts a job in the kernel-global
2981 * workqueue on the specified CPU.
2982 */
2983 bool schedule_delayed_work_on(int cpu, struct delayed_work *dwork,
2984 unsigned long delay)
2985 {
2986 return queue_delayed_work_on(cpu, system_wq, dwork, delay);
2987 }
2988 EXPORT_SYMBOL(schedule_delayed_work_on);
2989
2990 /**
2991 * schedule_delayed_work - put work task in global workqueue after delay
2992 * @dwork: job to be done
2993 * @delay: number of jiffies to wait or 0 for immediate execution
2994 *
2995 * After waiting for a given time this puts a job in the kernel-global
2996 * workqueue.
2997 */
2998 bool schedule_delayed_work(struct delayed_work *dwork, unsigned long delay)
2999 {
3000 return queue_delayed_work(system_wq, dwork, delay);
3001 }
3002 EXPORT_SYMBOL(schedule_delayed_work);
3003
3004 /**
3005 * schedule_on_each_cpu - execute a function synchronously on each online CPU
3006 * @func: the function to call
3007 *
3008 * schedule_on_each_cpu() executes @func on each online CPU using the
3009 * system workqueue and blocks until all CPUs have completed.
3010 * schedule_on_each_cpu() is very slow.
3011 *
3012 * RETURNS:
3013 * 0 on success, -errno on failure.
3014 */
3015 int schedule_on_each_cpu(work_func_t func)
3016 {
3017 int cpu;
3018 struct work_struct __percpu *works;
3019
3020 works = alloc_percpu(struct work_struct);
3021 if (!works)
3022 return -ENOMEM;
3023
3024 get_online_cpus();
3025
3026 for_each_online_cpu(cpu) {
3027 struct work_struct *work = per_cpu_ptr(works, cpu);
3028
3029 INIT_WORK(work, func);
3030 schedule_work_on(cpu, work);
3031 }
3032
3033 for_each_online_cpu(cpu)
3034 flush_work(per_cpu_ptr(works, cpu));
3035
3036 put_online_cpus();
3037 free_percpu(works);
3038 return 0;
3039 }
3040
3041 /**
3042 * flush_scheduled_work - ensure that any scheduled work has run to completion.
3043 *
3044 * Forces execution of the kernel-global workqueue and blocks until its
3045 * completion.
3046 *
3047 * Think twice before calling this function! It's very easy to get into
3048 * trouble if you don't take great care. Either of the following situations
3049 * will lead to deadlock:
3050 *
3051 * One of the work items currently on the workqueue needs to acquire
3052 * a lock held by your code or its caller.
3053 *
3054 * Your code is running in the context of a work routine.
3055 *
3056 * They will be detected by lockdep when they occur, but the first might not
3057 * occur very often. It depends on what work items are on the workqueue and
3058 * what locks they need, which you have no control over.
3059 *
3060 * In most situations flushing the entire workqueue is overkill; you merely
3061 * need to know that a particular work item isn't queued and isn't running.
3062 * In such cases you should use cancel_delayed_work_sync() or
3063 * cancel_work_sync() instead.
3064 */
3065 void flush_scheduled_work(void)
3066 {
3067 flush_workqueue(system_wq);
3068 }
3069 EXPORT_SYMBOL(flush_scheduled_work);
3070
3071 /**
3072 * execute_in_process_context - reliably execute the routine with user context
3073 * @fn: the function to execute
3074 * @ew: guaranteed storage for the execute work structure (must
3075 * be available when the work executes)
3076 *
3077 * Executes the function immediately if process context is available,
3078 * otherwise schedules the function for delayed execution.
3079 *
3080 * Returns: 0 - function was executed
3081 * 1 - function was scheduled for execution
3082 */
3083 int execute_in_process_context(work_func_t fn, struct execute_work *ew)
3084 {
3085 if (!in_interrupt()) {
3086 fn(&ew->work);
3087 return 0;
3088 }
3089
3090 INIT_WORK(&ew->work, fn);
3091 schedule_work(&ew->work);
3092
3093 return 1;
3094 }
3095 EXPORT_SYMBOL_GPL(execute_in_process_context);
3096
3097 int keventd_up(void)
3098 {
3099 return system_wq != NULL;
3100 }
3101
3102 static int alloc_and_link_pwqs(struct workqueue_struct *wq)
3103 {
3104 bool highpri = wq->flags & WQ_HIGHPRI;
3105 int cpu;
3106
3107 if (!(wq->flags & WQ_UNBOUND)) {
3108 wq->pool_wq.pcpu = alloc_percpu(struct pool_workqueue);
3109 if (!wq->pool_wq.pcpu)
3110 return -ENOMEM;
3111
3112 for_each_possible_cpu(cpu) {
3113 struct pool_workqueue *pwq = get_pwq(cpu, wq);
3114
3115 pwq->pool = get_std_worker_pool(cpu, highpri);
3116 list_add_tail(&pwq->pwqs_node, &wq->pwqs);
3117 }
3118 } else {
3119 struct pool_workqueue *pwq;
3120
3121 pwq = kmem_cache_zalloc(pwq_cache, GFP_KERNEL);
3122 if (!pwq)
3123 return -ENOMEM;
3124
3125 wq->pool_wq.single = pwq;
3126 pwq->pool = get_std_worker_pool(WORK_CPU_UNBOUND, highpri);
3127 list_add_tail(&pwq->pwqs_node, &wq->pwqs);
3128 }
3129
3130 return 0;
3131 }
3132
3133 static void free_pwqs(struct workqueue_struct *wq)
3134 {
3135 if (!(wq->flags & WQ_UNBOUND))
3136 free_percpu(wq->pool_wq.pcpu);
3137 else
3138 kmem_cache_free(pwq_cache, wq->pool_wq.single);
3139 }
3140
3141 static int wq_clamp_max_active(int max_active, unsigned int flags,
3142 const char *name)
3143 {
3144 int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;
3145
3146 if (max_active < 1 || max_active > lim)
3147 pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
3148 max_active, name, 1, lim);
3149
3150 return clamp_val(max_active, 1, lim);
3151 }
3152
3153 struct workqueue_struct *__alloc_workqueue_key(const char *fmt,
3154 unsigned int flags,
3155 int max_active,
3156 struct lock_class_key *key,
3157 const char *lock_name, ...)
3158 {
3159 va_list args, args1;
3160 struct workqueue_struct *wq;
3161 struct pool_workqueue *pwq;
3162 size_t namelen;
3163
3164 /* determine namelen, allocate wq and format name */
3165 va_start(args, lock_name);
3166 va_copy(args1, args);
3167 namelen = vsnprintf(NULL, 0, fmt, args) + 1;
3168
3169 wq = kzalloc(sizeof(*wq) + namelen, GFP_KERNEL);
3170 if (!wq)
3171 goto err;
3172
3173 vsnprintf(wq->name, namelen, fmt, args1);
3174 va_end(args);
3175 va_end(args1);
3176
3177 /*
3178 * Workqueues which may be used during memory reclaim should
3179 * have a rescuer to guarantee forward progress.
3180 */
3181 if (flags & WQ_MEM_RECLAIM)
3182 flags |= WQ_RESCUER;
3183
3184 max_active = max_active ?: WQ_DFL_ACTIVE;
3185 max_active = wq_clamp_max_active(max_active, flags, wq->name);
3186
3187 /* init wq */
3188 wq->flags = flags;
3189 wq->saved_max_active = max_active;
3190 mutex_init(&wq->flush_mutex);
3191 atomic_set(&wq->nr_pwqs_to_flush, 0);
3192 INIT_LIST_HEAD(&wq->pwqs);
3193 INIT_LIST_HEAD(&wq->flusher_queue);
3194 INIT_LIST_HEAD(&wq->flusher_overflow);
3195
3196 lockdep_init_map(&wq->lockdep_map, lock_name, key, 0);
3197 INIT_LIST_HEAD(&wq->list);
3198
3199 if (alloc_and_link_pwqs(wq) < 0)
3200 goto err;
3201
3202 for_each_pwq(pwq, wq) {
3203 BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK);
3204 pwq->wq = wq;
3205 pwq->flush_color = -1;
3206 pwq->max_active = max_active;
3207 INIT_LIST_HEAD(&pwq->delayed_works);
3208 }
3209
3210 if (flags & WQ_RESCUER) {
3211 struct worker *rescuer;
3212
3213 if (!alloc_mayday_mask(&wq->mayday_mask, GFP_KERNEL))
3214 goto err;
3215
3216 wq->rescuer = rescuer = alloc_worker();
3217 if (!rescuer)
3218 goto err;
3219
3220 rescuer->rescue_wq = wq;
3221 rescuer->task = kthread_create(rescuer_thread, rescuer, "%s",
3222 wq->name);
3223 if (IS_ERR(rescuer->task))
3224 goto err;
3225
3226 rescuer->task->flags |= PF_THREAD_BOUND;
3227 wake_up_process(rescuer->task);
3228 }
3229
3230 /*
3231 * workqueue_lock protects global freeze state and workqueues
3232 * list. Grab it, set max_active accordingly and add the new
3233 * workqueue to workqueues list.
3234 */
3235 spin_lock_irq(&workqueue_lock);
3236
3237 if (workqueue_freezing && wq->flags & WQ_FREEZABLE)
3238 for_each_pwq(pwq, wq)
3239 pwq->max_active = 0;
3240
3241 list_add(&wq->list, &workqueues);
3242
3243 spin_unlock_irq(&workqueue_lock);
3244
3245 return wq;
3246 err:
3247 if (wq) {
3248 free_pwqs(wq);
3249 free_mayday_mask(wq->mayday_mask);
3250 kfree(wq->rescuer);
3251 kfree(wq);
3252 }
3253 return NULL;
3254 }
3255 EXPORT_SYMBOL_GPL(__alloc_workqueue_key);
3256
3257 /**
3258 * destroy_workqueue - safely terminate a workqueue
3259 * @wq: target workqueue
3260 *
3261 * Safely destroy a workqueue. All work currently pending will be done first.
3262 */
3263 void destroy_workqueue(struct workqueue_struct *wq)
3264 {
3265 struct pool_workqueue *pwq;
3266
3267 /* drain it before proceeding with destruction */
3268 drain_workqueue(wq);
3269
3270 /* sanity checks */
3271 for_each_pwq(pwq, wq) {
3272 int i;
3273
3274 for (i = 0; i < WORK_NR_COLORS; i++)
3275 if (WARN_ON(pwq->nr_in_flight[i]))
3276 return;
3277 if (WARN_ON(pwq->nr_active) ||
3278 WARN_ON(!list_empty(&pwq->delayed_works)))
3279 return;
3280 }
3281
3282 /*
3283 * wq list is used to freeze wq, remove from list after
3284 * flushing is complete in case freeze races us.
3285 */
3286 spin_lock_irq(&workqueue_lock);
3287 list_del(&wq->list);
3288 spin_unlock_irq(&workqueue_lock);
3289
3290 if (wq->flags & WQ_RESCUER) {
3291 kthread_stop(wq->rescuer->task);
3292 free_mayday_mask(wq->mayday_mask);
3293 kfree(wq->rescuer);
3294 }
3295
3296 free_pwqs(wq);
3297 kfree(wq);
3298 }
3299 EXPORT_SYMBOL_GPL(destroy_workqueue);
3300
3301 /**
3302 * pwq_set_max_active - adjust max_active of a pwq
3303 * @pwq: target pool_workqueue
3304 * @max_active: new max_active value.
3305 *
3306 * Set @pwq->max_active to @max_active and activate delayed works if
3307 * increased.
3308 *
3309 * CONTEXT:
3310 * spin_lock_irq(pool->lock).
3311 */
3312 static void pwq_set_max_active(struct pool_workqueue *pwq, int max_active)
3313 {
3314 pwq->max_active = max_active;
3315
3316 while (!list_empty(&pwq->delayed_works) &&
3317 pwq->nr_active < pwq->max_active)
3318 pwq_activate_first_delayed(pwq);
3319 }
3320
3321 /**
3322 * workqueue_set_max_active - adjust max_active of a workqueue
3323 * @wq: target workqueue
3324 * @max_active: new max_active value.
3325 *
3326 * Set max_active of @wq to @max_active.
3327 *
3328 * CONTEXT:
3329 * Don't call from IRQ context.
3330 */
3331 void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
3332 {
3333 struct pool_workqueue *pwq;
3334
3335 max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
3336
3337 spin_lock_irq(&workqueue_lock);
3338
3339 wq->saved_max_active = max_active;
3340
3341 for_each_pwq(pwq, wq) {
3342 struct worker_pool *pool = pwq->pool;
3343
3344 spin_lock(&pool->lock);
3345
3346 if (!(wq->flags & WQ_FREEZABLE) ||
3347 !(pool->flags & POOL_FREEZING))
3348 pwq_set_max_active(pwq, max_active);
3349
3350 spin_unlock(&pool->lock);
3351 }
3352
3353 spin_unlock_irq(&workqueue_lock);
3354 }
3355 EXPORT_SYMBOL_GPL(workqueue_set_max_active);
3356
3357 /**
3358 * workqueue_congested - test whether a workqueue is congested
3359 * @cpu: CPU in question
3360 * @wq: target workqueue
3361 *
3362 * Test whether @wq's cpu workqueue for @cpu is congested. There is
3363 * no synchronization around this function and the test result is
3364 * unreliable and only useful as advisory hints or for debugging.
3365 *
3366 * RETURNS:
3367 * %true if congested, %false otherwise.
3368 */
3369 bool workqueue_congested(unsigned int cpu, struct workqueue_struct *wq)
3370 {
3371 struct pool_workqueue *pwq = get_pwq(cpu, wq);
3372
3373 return !list_empty(&pwq->delayed_works);
3374 }
3375 EXPORT_SYMBOL_GPL(workqueue_congested);
3376
3377 /**
3378 * work_busy - test whether a work is currently pending or running
3379 * @work: the work to be tested
3380 *
3381 * Test whether @work is currently pending or running. There is no
3382 * synchronization around this function and the test result is
3383 * unreliable and only useful as advisory hints or for debugging.
3384 *
3385 * RETURNS:
3386 * OR'd bitmask of WORK_BUSY_* bits.
3387 */
3388 unsigned int work_busy(struct work_struct *work)
3389 {
3390 struct worker_pool *pool = get_work_pool(work);
3391 unsigned long flags;
3392 unsigned int ret = 0;
3393
3394 if (work_pending(work))
3395 ret |= WORK_BUSY_PENDING;
3396
3397 if (pool) {
3398 spin_lock_irqsave(&pool->lock, flags);
3399 if (find_worker_executing_work(pool, work))
3400 ret |= WORK_BUSY_RUNNING;
3401 spin_unlock_irqrestore(&pool->lock, flags);
3402 }
3403
3404 return ret;
3405 }
3406 EXPORT_SYMBOL_GPL(work_busy);
3407
3408 /*
3409 * CPU hotplug.
3410 *
3411 * There are two challenges in supporting CPU hotplug. Firstly, there
3412 * are a lot of assumptions on strong associations among work, pwq and
3413 * pool which make migrating pending and scheduled works very
3414 * difficult to implement without impacting hot paths. Secondly,
3415 * worker pools serve mix of short, long and very long running works making
3416 * blocked draining impractical.
3417 *
3418 * This is solved by allowing the pools to be disassociated from the CPU
3419 * running as an unbound one and allowing it to be reattached later if the
3420 * cpu comes back online.
3421 */
3422
3423 static void wq_unbind_fn(struct work_struct *work)
3424 {
3425 int cpu = smp_processor_id();
3426 struct worker_pool *pool;
3427 struct worker *worker;
3428 int i;
3429
3430 for_each_std_worker_pool(pool, cpu) {
3431 WARN_ON_ONCE(cpu != smp_processor_id());
3432
3433 mutex_lock(&pool->assoc_mutex);
3434 spin_lock_irq(&pool->lock);
3435
3436 /*
3437 * We've claimed all manager positions. Make all workers
3438 * unbound and set DISASSOCIATED. Before this, all workers
3439 * except for the ones which are still executing works from
3440 * before the last CPU down must be on the cpu. After
3441 * this, they may become diasporas.
3442 */
3443 list_for_each_entry(worker, &pool->idle_list, entry)
3444 worker->flags |= WORKER_UNBOUND;
3445
3446 for_each_busy_worker(worker, i, pool)
3447 worker->flags |= WORKER_UNBOUND;
3448
3449 pool->flags |= POOL_DISASSOCIATED;
3450
3451 spin_unlock_irq(&pool->lock);
3452 mutex_unlock(&pool->assoc_mutex);
3453 }
3454
3455 /*
3456 * Call schedule() so that we cross rq->lock and thus can guarantee
3457 * sched callbacks see the %WORKER_UNBOUND flag. This is necessary
3458 * as scheduler callbacks may be invoked from other cpus.
3459 */
3460 schedule();
3461
3462 /*
3463 * Sched callbacks are disabled now. Zap nr_running. After this,
3464 * nr_running stays zero and need_more_worker() and keep_working()
3465 * are always true as long as the worklist is not empty. Pools on
3466 * @cpu now behave as unbound (in terms of concurrency management)
3467 * pools which are served by workers tied to the CPU.
3468 *
3469 * On return from this function, the current worker would trigger
3470 * unbound chain execution of pending work items if other workers
3471 * didn't already.
3472 */
3473 for_each_std_worker_pool(pool, cpu)
3474 atomic_set(&pool->nr_running, 0);
3475 }
3476
3477 /*
3478 * Workqueues should be brought up before normal priority CPU notifiers.
3479 * This will be registered high priority CPU notifier.
3480 */
3481 static int __cpuinit workqueue_cpu_up_callback(struct notifier_block *nfb,
3482 unsigned long action,
3483 void *hcpu)
3484 {
3485 unsigned int cpu = (unsigned long)hcpu;
3486 struct worker_pool *pool;
3487
3488 switch (action & ~CPU_TASKS_FROZEN) {
3489 case CPU_UP_PREPARE:
3490 for_each_std_worker_pool(pool, cpu) {
3491 struct worker *worker;
3492
3493 if (pool->nr_workers)
3494 continue;
3495
3496 worker = create_worker(pool);
3497 if (!worker)
3498 return NOTIFY_BAD;
3499
3500 spin_lock_irq(&pool->lock);
3501 start_worker(worker);
3502 spin_unlock_irq(&pool->lock);
3503 }
3504 break;
3505
3506 case CPU_DOWN_FAILED:
3507 case CPU_ONLINE:
3508 for_each_std_worker_pool(pool, cpu) {
3509 mutex_lock(&pool->assoc_mutex);
3510 spin_lock_irq(&pool->lock);
3511
3512 pool->flags &= ~POOL_DISASSOCIATED;
3513 rebind_workers(pool);
3514
3515 spin_unlock_irq(&pool->lock);
3516 mutex_unlock(&pool->assoc_mutex);
3517 }
3518 break;
3519 }
3520 return NOTIFY_OK;
3521 }
3522
3523 /*
3524 * Workqueues should be brought down after normal priority CPU notifiers.
3525 * This will be registered as low priority CPU notifier.
3526 */
3527 static int __cpuinit workqueue_cpu_down_callback(struct notifier_block *nfb,
3528 unsigned long action,
3529 void *hcpu)
3530 {
3531 unsigned int cpu = (unsigned long)hcpu;
3532 struct work_struct unbind_work;
3533
3534 switch (action & ~CPU_TASKS_FROZEN) {
3535 case CPU_DOWN_PREPARE:
3536 /* unbinding should happen on the local CPU */
3537 INIT_WORK_ONSTACK(&unbind_work, wq_unbind_fn);
3538 queue_work_on(cpu, system_highpri_wq, &unbind_work);
3539 flush_work(&unbind_work);
3540 break;
3541 }
3542 return NOTIFY_OK;
3543 }
3544
3545 #ifdef CONFIG_SMP
3546
3547 struct work_for_cpu {
3548 struct work_struct work;
3549 long (*fn)(void *);
3550 void *arg;
3551 long ret;
3552 };
3553
3554 static void work_for_cpu_fn(struct work_struct *work)
3555 {
3556 struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);
3557
3558 wfc->ret = wfc->fn(wfc->arg);
3559 }
3560
3561 /**
3562 * work_on_cpu - run a function in user context on a particular cpu
3563 * @cpu: the cpu to run on
3564 * @fn: the function to run
3565 * @arg: the function arg
3566 *
3567 * This will return the value @fn returns.
3568 * It is up to the caller to ensure that the cpu doesn't go offline.
3569 * The caller must not hold any locks which would prevent @fn from completing.
3570 */
3571 long work_on_cpu(unsigned int cpu, long (*fn)(void *), void *arg)
3572 {
3573 struct work_for_cpu wfc = { .fn = fn, .arg = arg };
3574
3575 INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn);
3576 schedule_work_on(cpu, &wfc.work);
3577 flush_work(&wfc.work);
3578 return wfc.ret;
3579 }
3580 EXPORT_SYMBOL_GPL(work_on_cpu);
3581 #endif /* CONFIG_SMP */
3582
3583 #ifdef CONFIG_FREEZER
3584
3585 /**
3586 * freeze_workqueues_begin - begin freezing workqueues
3587 *
3588 * Start freezing workqueues. After this function returns, all freezable
3589 * workqueues will queue new works to their frozen_works list instead of
3590 * pool->worklist.
3591 *
3592 * CONTEXT:
3593 * Grabs and releases workqueue_lock and pool->lock's.
3594 */
3595 void freeze_workqueues_begin(void)
3596 {
3597 struct worker_pool *pool;
3598 struct workqueue_struct *wq;
3599 struct pool_workqueue *pwq;
3600 int id;
3601
3602 spin_lock_irq(&workqueue_lock);
3603
3604 WARN_ON_ONCE(workqueue_freezing);
3605 workqueue_freezing = true;
3606
3607 /* set FREEZING */
3608 for_each_pool(pool, id) {
3609 spin_lock(&pool->lock);
3610 WARN_ON_ONCE(pool->flags & POOL_FREEZING);
3611 pool->flags |= POOL_FREEZING;
3612 spin_unlock(&pool->lock);
3613 }
3614
3615 /* suppress further executions by setting max_active to zero */
3616 list_for_each_entry(wq, &workqueues, list) {
3617 if (!(wq->flags & WQ_FREEZABLE))
3618 continue;
3619
3620 for_each_pwq(pwq, wq) {
3621 spin_lock(&pwq->pool->lock);
3622 pwq->max_active = 0;
3623 spin_unlock(&pwq->pool->lock);
3624 }
3625 }
3626
3627 spin_unlock_irq(&workqueue_lock);
3628 }
3629
3630 /**
3631 * freeze_workqueues_busy - are freezable workqueues still busy?
3632 *
3633 * Check whether freezing is complete. This function must be called
3634 * between freeze_workqueues_begin() and thaw_workqueues().
3635 *
3636 * CONTEXT:
3637 * Grabs and releases workqueue_lock.
3638 *
3639 * RETURNS:
3640 * %true if some freezable workqueues are still busy. %false if freezing
3641 * is complete.
3642 */
3643 bool freeze_workqueues_busy(void)
3644 {
3645 bool busy = false;
3646 struct workqueue_struct *wq;
3647 struct pool_workqueue *pwq;
3648
3649 spin_lock_irq(&workqueue_lock);
3650
3651 WARN_ON_ONCE(!workqueue_freezing);
3652
3653 list_for_each_entry(wq, &workqueues, list) {
3654 if (!(wq->flags & WQ_FREEZABLE))
3655 continue;
3656 /*
3657 * nr_active is monotonically decreasing. It's safe
3658 * to peek without lock.
3659 */
3660 for_each_pwq(pwq, wq) {
3661 WARN_ON_ONCE(pwq->nr_active < 0);
3662 if (pwq->nr_active) {
3663 busy = true;
3664 goto out_unlock;
3665 }
3666 }
3667 }
3668 out_unlock:
3669 spin_unlock_irq(&workqueue_lock);
3670 return busy;
3671 }
3672
3673 /**
3674 * thaw_workqueues - thaw workqueues
3675 *
3676 * Thaw workqueues. Normal queueing is restored and all collected
3677 * frozen works are transferred to their respective pool worklists.
3678 *
3679 * CONTEXT:
3680 * Grabs and releases workqueue_lock and pool->lock's.
3681 */
3682 void thaw_workqueues(void)
3683 {
3684 struct workqueue_struct *wq;
3685 struct pool_workqueue *pwq;
3686 struct worker_pool *pool;
3687 int id;
3688
3689 spin_lock_irq(&workqueue_lock);
3690
3691 if (!workqueue_freezing)
3692 goto out_unlock;
3693
3694 /* clear FREEZING */
3695 for_each_pool(pool, id) {
3696 spin_lock(&pool->lock);
3697 WARN_ON_ONCE(!(pool->flags & POOL_FREEZING));
3698 pool->flags &= ~POOL_FREEZING;
3699 spin_unlock(&pool->lock);
3700 }
3701
3702 /* restore max_active and repopulate worklist */
3703 list_for_each_entry(wq, &workqueues, list) {
3704 if (!(wq->flags & WQ_FREEZABLE))
3705 continue;
3706
3707 for_each_pwq(pwq, wq) {
3708 spin_lock(&pwq->pool->lock);
3709 pwq_set_max_active(pwq, wq->saved_max_active);
3710 spin_unlock(&pwq->pool->lock);
3711 }
3712 }
3713
3714 /* kick workers */
3715 for_each_pool(pool, id) {
3716 spin_lock(&pool->lock);
3717 wake_up_worker(pool);
3718 spin_unlock(&pool->lock);
3719 }
3720
3721 workqueue_freezing = false;
3722 out_unlock:
3723 spin_unlock_irq(&workqueue_lock);
3724 }
3725 #endif /* CONFIG_FREEZER */
3726
3727 static int __init init_workqueues(void)
3728 {
3729 unsigned int cpu;
3730
3731 /* make sure we have enough bits for OFFQ pool ID */
3732 BUILD_BUG_ON((1LU << (BITS_PER_LONG - WORK_OFFQ_POOL_SHIFT)) <
3733 WORK_CPU_END * NR_STD_WORKER_POOLS);
3734
3735 WARN_ON(__alignof__(struct pool_workqueue) < __alignof__(long long));
3736
3737 pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC);
3738
3739 cpu_notifier(workqueue_cpu_up_callback, CPU_PRI_WORKQUEUE_UP);
3740 hotcpu_notifier(workqueue_cpu_down_callback, CPU_PRI_WORKQUEUE_DOWN);
3741
3742 /* initialize CPU pools */
3743 for_each_wq_cpu(cpu) {
3744 struct worker_pool *pool;
3745
3746 for_each_std_worker_pool(pool, cpu) {
3747 spin_lock_init(&pool->lock);
3748 pool->cpu = cpu;
3749 pool->flags |= POOL_DISASSOCIATED;
3750 INIT_LIST_HEAD(&pool->worklist);
3751 INIT_LIST_HEAD(&pool->idle_list);
3752 hash_init(pool->busy_hash);
3753
3754 init_timer_deferrable(&pool->idle_timer);
3755 pool->idle_timer.function = idle_worker_timeout;
3756 pool->idle_timer.data = (unsigned long)pool;
3757
3758 setup_timer(&pool->mayday_timer, pool_mayday_timeout,
3759 (unsigned long)pool);
3760
3761 mutex_init(&pool->assoc_mutex);
3762 ida_init(&pool->worker_ida);
3763
3764 /* alloc pool ID */
3765 BUG_ON(worker_pool_assign_id(pool));
3766 }
3767 }
3768
3769 /* create the initial worker */
3770 for_each_online_wq_cpu(cpu) {
3771 struct worker_pool *pool;
3772
3773 for_each_std_worker_pool(pool, cpu) {
3774 struct worker *worker;
3775
3776 if (cpu != WORK_CPU_UNBOUND)
3777 pool->flags &= ~POOL_DISASSOCIATED;
3778
3779 worker = create_worker(pool);
3780 BUG_ON(!worker);
3781 spin_lock_irq(&pool->lock);
3782 start_worker(worker);
3783 spin_unlock_irq(&pool->lock);
3784 }
3785 }
3786
3787 system_wq = alloc_workqueue("events", 0, 0);
3788 system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
3789 system_long_wq = alloc_workqueue("events_long", 0, 0);
3790 system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
3791 WQ_UNBOUND_MAX_ACTIVE);
3792 system_freezable_wq = alloc_workqueue("events_freezable",
3793 WQ_FREEZABLE, 0);
3794 BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
3795 !system_unbound_wq || !system_freezable_wq);
3796 return 0;
3797 }
3798 early_initcall(init_workqueues);