]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - kernel/workqueue.c
scsi: cxgb4i: call neigh_event_send() to update MAC address
[mirror_ubuntu-artful-kernel.git] / kernel / workqueue.c
1 /*
2 * kernel/workqueue.c - generic async execution with shared worker pool
3 *
4 * Copyright (C) 2002 Ingo Molnar
5 *
6 * Derived from the taskqueue/keventd code by:
7 * David Woodhouse <dwmw2@infradead.org>
8 * Andrew Morton
9 * Kai Petzke <wpp@marie.physik.tu-berlin.de>
10 * Theodore Ts'o <tytso@mit.edu>
11 *
12 * Made to use alloc_percpu by Christoph Lameter.
13 *
14 * Copyright (C) 2010 SUSE Linux Products GmbH
15 * Copyright (C) 2010 Tejun Heo <tj@kernel.org>
16 *
17 * This is the generic async execution mechanism. Work items as are
18 * executed in process context. The worker pool is shared and
19 * automatically managed. There are two worker pools for each CPU (one for
20 * normal work items and the other for high priority ones) and some extra
21 * pools for workqueues which are not bound to any specific CPU - the
22 * number of these backing pools is dynamic.
23 *
24 * Please read Documentation/workqueue.txt for details.
25 */
26
27 #include <linux/export.h>
28 #include <linux/kernel.h>
29 #include <linux/sched.h>
30 #include <linux/init.h>
31 #include <linux/signal.h>
32 #include <linux/completion.h>
33 #include <linux/workqueue.h>
34 #include <linux/slab.h>
35 #include <linux/cpu.h>
36 #include <linux/notifier.h>
37 #include <linux/kthread.h>
38 #include <linux/hardirq.h>
39 #include <linux/mempolicy.h>
40 #include <linux/freezer.h>
41 #include <linux/kallsyms.h>
42 #include <linux/debug_locks.h>
43 #include <linux/lockdep.h>
44 #include <linux/idr.h>
45 #include <linux/jhash.h>
46 #include <linux/hashtable.h>
47 #include <linux/rculist.h>
48 #include <linux/nodemask.h>
49 #include <linux/moduleparam.h>
50 #include <linux/uaccess.h>
51
52 #include "workqueue_internal.h"
53
54 enum {
55 /*
56 * worker_pool flags
57 *
58 * A bound pool is either associated or disassociated with its CPU.
59 * While associated (!DISASSOCIATED), all workers are bound to the
60 * CPU and none has %WORKER_UNBOUND set and concurrency management
61 * is in effect.
62 *
63 * While DISASSOCIATED, the cpu may be offline and all workers have
64 * %WORKER_UNBOUND set and concurrency management disabled, and may
65 * be executing on any CPU. The pool behaves as an unbound one.
66 *
67 * Note that DISASSOCIATED should be flipped only while holding
68 * attach_mutex to avoid changing binding state while
69 * worker_attach_to_pool() is in progress.
70 */
71 POOL_DISASSOCIATED = 1 << 2, /* cpu can't serve workers */
72
73 /* worker flags */
74 WORKER_DIE = 1 << 1, /* die die die */
75 WORKER_IDLE = 1 << 2, /* is idle */
76 WORKER_PREP = 1 << 3, /* preparing to run works */
77 WORKER_CPU_INTENSIVE = 1 << 6, /* cpu intensive */
78 WORKER_UNBOUND = 1 << 7, /* worker is unbound */
79 WORKER_REBOUND = 1 << 8, /* worker was rebound */
80
81 WORKER_NOT_RUNNING = WORKER_PREP | WORKER_CPU_INTENSIVE |
82 WORKER_UNBOUND | WORKER_REBOUND,
83
84 NR_STD_WORKER_POOLS = 2, /* # standard pools per cpu */
85
86 UNBOUND_POOL_HASH_ORDER = 6, /* hashed by pool->attrs */
87 BUSY_WORKER_HASH_ORDER = 6, /* 64 pointers */
88
89 MAX_IDLE_WORKERS_RATIO = 4, /* 1/4 of busy can be idle */
90 IDLE_WORKER_TIMEOUT = 300 * HZ, /* keep idle ones for 5 mins */
91
92 MAYDAY_INITIAL_TIMEOUT = HZ / 100 >= 2 ? HZ / 100 : 2,
93 /* call for help after 10ms
94 (min two ticks) */
95 MAYDAY_INTERVAL = HZ / 10, /* and then every 100ms */
96 CREATE_COOLDOWN = HZ, /* time to breath after fail */
97
98 /*
99 * Rescue workers are used only on emergencies and shared by
100 * all cpus. Give MIN_NICE.
101 */
102 RESCUER_NICE_LEVEL = MIN_NICE,
103 HIGHPRI_NICE_LEVEL = MIN_NICE,
104
105 WQ_NAME_LEN = 24,
106 };
107
108 /*
109 * Structure fields follow one of the following exclusion rules.
110 *
111 * I: Modifiable by initialization/destruction paths and read-only for
112 * everyone else.
113 *
114 * P: Preemption protected. Disabling preemption is enough and should
115 * only be modified and accessed from the local cpu.
116 *
117 * L: pool->lock protected. Access with pool->lock held.
118 *
119 * X: During normal operation, modification requires pool->lock and should
120 * be done only from local cpu. Either disabling preemption on local
121 * cpu or grabbing pool->lock is enough for read access. If
122 * POOL_DISASSOCIATED is set, it's identical to L.
123 *
124 * A: pool->attach_mutex protected.
125 *
126 * PL: wq_pool_mutex protected.
127 *
128 * PR: wq_pool_mutex protected for writes. Sched-RCU protected for reads.
129 *
130 * PW: wq_pool_mutex and wq->mutex protected for writes. Either for reads.
131 *
132 * PWR: wq_pool_mutex and wq->mutex protected for writes. Either or
133 * sched-RCU for reads.
134 *
135 * WQ: wq->mutex protected.
136 *
137 * WR: wq->mutex protected for writes. Sched-RCU protected for reads.
138 *
139 * MD: wq_mayday_lock protected.
140 */
141
142 /* struct worker is defined in workqueue_internal.h */
143
144 struct worker_pool {
145 spinlock_t lock; /* the pool lock */
146 int cpu; /* I: the associated cpu */
147 int node; /* I: the associated node ID */
148 int id; /* I: pool ID */
149 unsigned int flags; /* X: flags */
150
151 unsigned long watchdog_ts; /* L: watchdog timestamp */
152
153 struct list_head worklist; /* L: list of pending works */
154 int nr_workers; /* L: total number of workers */
155
156 /* nr_idle includes the ones off idle_list for rebinding */
157 int nr_idle; /* L: currently idle ones */
158
159 struct list_head idle_list; /* X: list of idle workers */
160 struct timer_list idle_timer; /* L: worker idle timeout */
161 struct timer_list mayday_timer; /* L: SOS timer for workers */
162
163 /* a workers is either on busy_hash or idle_list, or the manager */
164 DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
165 /* L: hash of busy workers */
166
167 /* see manage_workers() for details on the two manager mutexes */
168 struct mutex manager_arb; /* manager arbitration */
169 struct worker *manager; /* L: purely informational */
170 struct mutex attach_mutex; /* attach/detach exclusion */
171 struct list_head workers; /* A: attached workers */
172 struct completion *detach_completion; /* all workers detached */
173
174 struct ida worker_ida; /* worker IDs for task name */
175
176 struct workqueue_attrs *attrs; /* I: worker attributes */
177 struct hlist_node hash_node; /* PL: unbound_pool_hash node */
178 int refcnt; /* PL: refcnt for unbound pools */
179
180 /*
181 * The current concurrency level. As it's likely to be accessed
182 * from other CPUs during try_to_wake_up(), put it in a separate
183 * cacheline.
184 */
185 atomic_t nr_running ____cacheline_aligned_in_smp;
186
187 /*
188 * Destruction of pool is sched-RCU protected to allow dereferences
189 * from get_work_pool().
190 */
191 struct rcu_head rcu;
192 } ____cacheline_aligned_in_smp;
193
194 /*
195 * The per-pool workqueue. While queued, the lower WORK_STRUCT_FLAG_BITS
196 * of work_struct->data are used for flags and the remaining high bits
197 * point to the pwq; thus, pwqs need to be aligned at two's power of the
198 * number of flag bits.
199 */
200 struct pool_workqueue {
201 struct worker_pool *pool; /* I: the associated pool */
202 struct workqueue_struct *wq; /* I: the owning workqueue */
203 int work_color; /* L: current color */
204 int flush_color; /* L: flushing color */
205 int refcnt; /* L: reference count */
206 int nr_in_flight[WORK_NR_COLORS];
207 /* L: nr of in_flight works */
208 int nr_active; /* L: nr of active works */
209 int max_active; /* L: max active works */
210 struct list_head delayed_works; /* L: delayed works */
211 struct list_head pwqs_node; /* WR: node on wq->pwqs */
212 struct list_head mayday_node; /* MD: node on wq->maydays */
213
214 /*
215 * Release of unbound pwq is punted to system_wq. See put_pwq()
216 * and pwq_unbound_release_workfn() for details. pool_workqueue
217 * itself is also sched-RCU protected so that the first pwq can be
218 * determined without grabbing wq->mutex.
219 */
220 struct work_struct unbound_release_work;
221 struct rcu_head rcu;
222 } __aligned(1 << WORK_STRUCT_FLAG_BITS);
223
224 /*
225 * Structure used to wait for workqueue flush.
226 */
227 struct wq_flusher {
228 struct list_head list; /* WQ: list of flushers */
229 int flush_color; /* WQ: flush color waiting for */
230 struct completion done; /* flush completion */
231 };
232
233 struct wq_device;
234
235 /*
236 * The externally visible workqueue. It relays the issued work items to
237 * the appropriate worker_pool through its pool_workqueues.
238 */
239 struct workqueue_struct {
240 struct list_head pwqs; /* WR: all pwqs of this wq */
241 struct list_head list; /* PR: list of all workqueues */
242
243 struct mutex mutex; /* protects this wq */
244 int work_color; /* WQ: current work color */
245 int flush_color; /* WQ: current flush color */
246 atomic_t nr_pwqs_to_flush; /* flush in progress */
247 struct wq_flusher *first_flusher; /* WQ: first flusher */
248 struct list_head flusher_queue; /* WQ: flush waiters */
249 struct list_head flusher_overflow; /* WQ: flush overflow list */
250
251 struct list_head maydays; /* MD: pwqs requesting rescue */
252 struct worker *rescuer; /* I: rescue worker */
253
254 int nr_drainers; /* WQ: drain in progress */
255 int saved_max_active; /* WQ: saved pwq max_active */
256
257 struct workqueue_attrs *unbound_attrs; /* PW: only for unbound wqs */
258 struct pool_workqueue *dfl_pwq; /* PW: only for unbound wqs */
259
260 #ifdef CONFIG_SYSFS
261 struct wq_device *wq_dev; /* I: for sysfs interface */
262 #endif
263 #ifdef CONFIG_LOCKDEP
264 struct lockdep_map lockdep_map;
265 #endif
266 char name[WQ_NAME_LEN]; /* I: workqueue name */
267
268 /*
269 * Destruction of workqueue_struct is sched-RCU protected to allow
270 * walking the workqueues list without grabbing wq_pool_mutex.
271 * This is used to dump all workqueues from sysrq.
272 */
273 struct rcu_head rcu;
274
275 /* hot fields used during command issue, aligned to cacheline */
276 unsigned int flags ____cacheline_aligned; /* WQ: WQ_* flags */
277 struct pool_workqueue __percpu *cpu_pwqs; /* I: per-cpu pwqs */
278 struct pool_workqueue __rcu *numa_pwq_tbl[]; /* PWR: unbound pwqs indexed by node */
279 };
280
281 static struct kmem_cache *pwq_cache;
282
283 static cpumask_var_t *wq_numa_possible_cpumask;
284 /* possible CPUs of each node */
285
286 static bool wq_disable_numa;
287 module_param_named(disable_numa, wq_disable_numa, bool, 0444);
288
289 /* see the comment above the definition of WQ_POWER_EFFICIENT */
290 static bool wq_power_efficient = IS_ENABLED(CONFIG_WQ_POWER_EFFICIENT_DEFAULT);
291 module_param_named(power_efficient, wq_power_efficient, bool, 0444);
292
293 static bool wq_online; /* can kworkers be created yet? */
294
295 static bool wq_numa_enabled; /* unbound NUMA affinity enabled */
296
297 /* buf for wq_update_unbound_numa_attrs(), protected by CPU hotplug exclusion */
298 static struct workqueue_attrs *wq_update_unbound_numa_attrs_buf;
299
300 static DEFINE_MUTEX(wq_pool_mutex); /* protects pools and workqueues list */
301 static DEFINE_SPINLOCK(wq_mayday_lock); /* protects wq->maydays list */
302
303 static LIST_HEAD(workqueues); /* PR: list of all workqueues */
304 static bool workqueue_freezing; /* PL: have wqs started freezing? */
305
306 /* PL: allowable cpus for unbound wqs and work items */
307 static cpumask_var_t wq_unbound_cpumask;
308
309 /* CPU where unbound work was last round robin scheduled from this CPU */
310 static DEFINE_PER_CPU(int, wq_rr_cpu_last);
311
312 /*
313 * Local execution of unbound work items is no longer guaranteed. The
314 * following always forces round-robin CPU selection on unbound work items
315 * to uncover usages which depend on it.
316 */
317 #ifdef CONFIG_DEBUG_WQ_FORCE_RR_CPU
318 static bool wq_debug_force_rr_cpu = true;
319 #else
320 static bool wq_debug_force_rr_cpu = false;
321 #endif
322 module_param_named(debug_force_rr_cpu, wq_debug_force_rr_cpu, bool, 0644);
323
324 /* the per-cpu worker pools */
325 static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS], cpu_worker_pools);
326
327 static DEFINE_IDR(worker_pool_idr); /* PR: idr of all pools */
328
329 /* PL: hash of all unbound pools keyed by pool->attrs */
330 static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER);
331
332 /* I: attributes used when instantiating standard unbound pools on demand */
333 static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS];
334
335 /* I: attributes used when instantiating ordered pools on demand */
336 static struct workqueue_attrs *ordered_wq_attrs[NR_STD_WORKER_POOLS];
337
338 struct workqueue_struct *system_wq __read_mostly;
339 EXPORT_SYMBOL(system_wq);
340 struct workqueue_struct *system_highpri_wq __read_mostly;
341 EXPORT_SYMBOL_GPL(system_highpri_wq);
342 struct workqueue_struct *system_long_wq __read_mostly;
343 EXPORT_SYMBOL_GPL(system_long_wq);
344 struct workqueue_struct *system_unbound_wq __read_mostly;
345 EXPORT_SYMBOL_GPL(system_unbound_wq);
346 struct workqueue_struct *system_freezable_wq __read_mostly;
347 EXPORT_SYMBOL_GPL(system_freezable_wq);
348 struct workqueue_struct *system_power_efficient_wq __read_mostly;
349 EXPORT_SYMBOL_GPL(system_power_efficient_wq);
350 struct workqueue_struct *system_freezable_power_efficient_wq __read_mostly;
351 EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq);
352
353 static int worker_thread(void *__worker);
354 static void workqueue_sysfs_unregister(struct workqueue_struct *wq);
355
356 #define CREATE_TRACE_POINTS
357 #include <trace/events/workqueue.h>
358
359 #define assert_rcu_or_pool_mutex() \
360 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held() && \
361 !lockdep_is_held(&wq_pool_mutex), \
362 "sched RCU or wq_pool_mutex should be held")
363
364 #define assert_rcu_or_wq_mutex(wq) \
365 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held() && \
366 !lockdep_is_held(&wq->mutex), \
367 "sched RCU or wq->mutex should be held")
368
369 #define assert_rcu_or_wq_mutex_or_pool_mutex(wq) \
370 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held() && \
371 !lockdep_is_held(&wq->mutex) && \
372 !lockdep_is_held(&wq_pool_mutex), \
373 "sched RCU, wq->mutex or wq_pool_mutex should be held")
374
375 #define for_each_cpu_worker_pool(pool, cpu) \
376 for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0]; \
377 (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
378 (pool)++)
379
380 /**
381 * for_each_pool - iterate through all worker_pools in the system
382 * @pool: iteration cursor
383 * @pi: integer used for iteration
384 *
385 * This must be called either with wq_pool_mutex held or sched RCU read
386 * locked. If the pool needs to be used beyond the locking in effect, the
387 * caller is responsible for guaranteeing that the pool stays online.
388 *
389 * The if/else clause exists only for the lockdep assertion and can be
390 * ignored.
391 */
392 #define for_each_pool(pool, pi) \
393 idr_for_each_entry(&worker_pool_idr, pool, pi) \
394 if (({ assert_rcu_or_pool_mutex(); false; })) { } \
395 else
396
397 /**
398 * for_each_pool_worker - iterate through all workers of a worker_pool
399 * @worker: iteration cursor
400 * @pool: worker_pool to iterate workers of
401 *
402 * This must be called with @pool->attach_mutex.
403 *
404 * The if/else clause exists only for the lockdep assertion and can be
405 * ignored.
406 */
407 #define for_each_pool_worker(worker, pool) \
408 list_for_each_entry((worker), &(pool)->workers, node) \
409 if (({ lockdep_assert_held(&pool->attach_mutex); false; })) { } \
410 else
411
412 /**
413 * for_each_pwq - iterate through all pool_workqueues of the specified workqueue
414 * @pwq: iteration cursor
415 * @wq: the target workqueue
416 *
417 * This must be called either with wq->mutex held or sched RCU read locked.
418 * If the pwq needs to be used beyond the locking in effect, the caller is
419 * responsible for guaranteeing that the pwq stays online.
420 *
421 * The if/else clause exists only for the lockdep assertion and can be
422 * ignored.
423 */
424 #define for_each_pwq(pwq, wq) \
425 list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node) \
426 if (({ assert_rcu_or_wq_mutex(wq); false; })) { } \
427 else
428
429 #ifdef CONFIG_DEBUG_OBJECTS_WORK
430
431 static struct debug_obj_descr work_debug_descr;
432
433 static void *work_debug_hint(void *addr)
434 {
435 return ((struct work_struct *) addr)->func;
436 }
437
438 static bool work_is_static_object(void *addr)
439 {
440 struct work_struct *work = addr;
441
442 return test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work));
443 }
444
445 /*
446 * fixup_init is called when:
447 * - an active object is initialized
448 */
449 static bool work_fixup_init(void *addr, enum debug_obj_state state)
450 {
451 struct work_struct *work = addr;
452
453 switch (state) {
454 case ODEBUG_STATE_ACTIVE:
455 cancel_work_sync(work);
456 debug_object_init(work, &work_debug_descr);
457 return true;
458 default:
459 return false;
460 }
461 }
462
463 /*
464 * fixup_free is called when:
465 * - an active object is freed
466 */
467 static bool work_fixup_free(void *addr, enum debug_obj_state state)
468 {
469 struct work_struct *work = addr;
470
471 switch (state) {
472 case ODEBUG_STATE_ACTIVE:
473 cancel_work_sync(work);
474 debug_object_free(work, &work_debug_descr);
475 return true;
476 default:
477 return false;
478 }
479 }
480
481 static struct debug_obj_descr work_debug_descr = {
482 .name = "work_struct",
483 .debug_hint = work_debug_hint,
484 .is_static_object = work_is_static_object,
485 .fixup_init = work_fixup_init,
486 .fixup_free = work_fixup_free,
487 };
488
489 static inline void debug_work_activate(struct work_struct *work)
490 {
491 debug_object_activate(work, &work_debug_descr);
492 }
493
494 static inline void debug_work_deactivate(struct work_struct *work)
495 {
496 debug_object_deactivate(work, &work_debug_descr);
497 }
498
499 void __init_work(struct work_struct *work, int onstack)
500 {
501 if (onstack)
502 debug_object_init_on_stack(work, &work_debug_descr);
503 else
504 debug_object_init(work, &work_debug_descr);
505 }
506 EXPORT_SYMBOL_GPL(__init_work);
507
508 void destroy_work_on_stack(struct work_struct *work)
509 {
510 debug_object_free(work, &work_debug_descr);
511 }
512 EXPORT_SYMBOL_GPL(destroy_work_on_stack);
513
514 void destroy_delayed_work_on_stack(struct delayed_work *work)
515 {
516 destroy_timer_on_stack(&work->timer);
517 debug_object_free(&work->work, &work_debug_descr);
518 }
519 EXPORT_SYMBOL_GPL(destroy_delayed_work_on_stack);
520
521 #else
522 static inline void debug_work_activate(struct work_struct *work) { }
523 static inline void debug_work_deactivate(struct work_struct *work) { }
524 #endif
525
526 /**
527 * worker_pool_assign_id - allocate ID and assing it to @pool
528 * @pool: the pool pointer of interest
529 *
530 * Returns 0 if ID in [0, WORK_OFFQ_POOL_NONE) is allocated and assigned
531 * successfully, -errno on failure.
532 */
533 static int worker_pool_assign_id(struct worker_pool *pool)
534 {
535 int ret;
536
537 lockdep_assert_held(&wq_pool_mutex);
538
539 ret = idr_alloc(&worker_pool_idr, pool, 0, WORK_OFFQ_POOL_NONE,
540 GFP_KERNEL);
541 if (ret >= 0) {
542 pool->id = ret;
543 return 0;
544 }
545 return ret;
546 }
547
548 /**
549 * unbound_pwq_by_node - return the unbound pool_workqueue for the given node
550 * @wq: the target workqueue
551 * @node: the node ID
552 *
553 * This must be called with any of wq_pool_mutex, wq->mutex or sched RCU
554 * read locked.
555 * If the pwq needs to be used beyond the locking in effect, the caller is
556 * responsible for guaranteeing that the pwq stays online.
557 *
558 * Return: The unbound pool_workqueue for @node.
559 */
560 static struct pool_workqueue *unbound_pwq_by_node(struct workqueue_struct *wq,
561 int node)
562 {
563 assert_rcu_or_wq_mutex_or_pool_mutex(wq);
564
565 /*
566 * XXX: @node can be NUMA_NO_NODE if CPU goes offline while a
567 * delayed item is pending. The plan is to keep CPU -> NODE
568 * mapping valid and stable across CPU on/offlines. Once that
569 * happens, this workaround can be removed.
570 */
571 if (unlikely(node == NUMA_NO_NODE))
572 return wq->dfl_pwq;
573
574 return rcu_dereference_raw(wq->numa_pwq_tbl[node]);
575 }
576
577 static unsigned int work_color_to_flags(int color)
578 {
579 return color << WORK_STRUCT_COLOR_SHIFT;
580 }
581
582 static int get_work_color(struct work_struct *work)
583 {
584 return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
585 ((1 << WORK_STRUCT_COLOR_BITS) - 1);
586 }
587
588 static int work_next_color(int color)
589 {
590 return (color + 1) % WORK_NR_COLORS;
591 }
592
593 /*
594 * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
595 * contain the pointer to the queued pwq. Once execution starts, the flag
596 * is cleared and the high bits contain OFFQ flags and pool ID.
597 *
598 * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling()
599 * and clear_work_data() can be used to set the pwq, pool or clear
600 * work->data. These functions should only be called while the work is
601 * owned - ie. while the PENDING bit is set.
602 *
603 * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
604 * corresponding to a work. Pool is available once the work has been
605 * queued anywhere after initialization until it is sync canceled. pwq is
606 * available only while the work item is queued.
607 *
608 * %WORK_OFFQ_CANCELING is used to mark a work item which is being
609 * canceled. While being canceled, a work item may have its PENDING set
610 * but stay off timer and worklist for arbitrarily long and nobody should
611 * try to steal the PENDING bit.
612 */
613 static inline void set_work_data(struct work_struct *work, unsigned long data,
614 unsigned long flags)
615 {
616 WARN_ON_ONCE(!work_pending(work));
617 atomic_long_set(&work->data, data | flags | work_static(work));
618 }
619
620 static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq,
621 unsigned long extra_flags)
622 {
623 set_work_data(work, (unsigned long)pwq,
624 WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags);
625 }
626
627 static void set_work_pool_and_keep_pending(struct work_struct *work,
628 int pool_id)
629 {
630 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT,
631 WORK_STRUCT_PENDING);
632 }
633
634 static void set_work_pool_and_clear_pending(struct work_struct *work,
635 int pool_id)
636 {
637 /*
638 * The following wmb is paired with the implied mb in
639 * test_and_set_bit(PENDING) and ensures all updates to @work made
640 * here are visible to and precede any updates by the next PENDING
641 * owner.
642 */
643 smp_wmb();
644 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0);
645 /*
646 * The following mb guarantees that previous clear of a PENDING bit
647 * will not be reordered with any speculative LOADS or STORES from
648 * work->current_func, which is executed afterwards. This possible
649 * reordering can lead to a missed execution on attempt to qeueue
650 * the same @work. E.g. consider this case:
651 *
652 * CPU#0 CPU#1
653 * ---------------------------- --------------------------------
654 *
655 * 1 STORE event_indicated
656 * 2 queue_work_on() {
657 * 3 test_and_set_bit(PENDING)
658 * 4 } set_..._and_clear_pending() {
659 * 5 set_work_data() # clear bit
660 * 6 smp_mb()
661 * 7 work->current_func() {
662 * 8 LOAD event_indicated
663 * }
664 *
665 * Without an explicit full barrier speculative LOAD on line 8 can
666 * be executed before CPU#0 does STORE on line 1. If that happens,
667 * CPU#0 observes the PENDING bit is still set and new execution of
668 * a @work is not queued in a hope, that CPU#1 will eventually
669 * finish the queued @work. Meanwhile CPU#1 does not see
670 * event_indicated is set, because speculative LOAD was executed
671 * before actual STORE.
672 */
673 smp_mb();
674 }
675
676 static void clear_work_data(struct work_struct *work)
677 {
678 smp_wmb(); /* see set_work_pool_and_clear_pending() */
679 set_work_data(work, WORK_STRUCT_NO_POOL, 0);
680 }
681
682 static struct pool_workqueue *get_work_pwq(struct work_struct *work)
683 {
684 unsigned long data = atomic_long_read(&work->data);
685
686 if (data & WORK_STRUCT_PWQ)
687 return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
688 else
689 return NULL;
690 }
691
692 /**
693 * get_work_pool - return the worker_pool a given work was associated with
694 * @work: the work item of interest
695 *
696 * Pools are created and destroyed under wq_pool_mutex, and allows read
697 * access under sched-RCU read lock. As such, this function should be
698 * called under wq_pool_mutex or with preemption disabled.
699 *
700 * All fields of the returned pool are accessible as long as the above
701 * mentioned locking is in effect. If the returned pool needs to be used
702 * beyond the critical section, the caller is responsible for ensuring the
703 * returned pool is and stays online.
704 *
705 * Return: The worker_pool @work was last associated with. %NULL if none.
706 */
707 static struct worker_pool *get_work_pool(struct work_struct *work)
708 {
709 unsigned long data = atomic_long_read(&work->data);
710 int pool_id;
711
712 assert_rcu_or_pool_mutex();
713
714 if (data & WORK_STRUCT_PWQ)
715 return ((struct pool_workqueue *)
716 (data & WORK_STRUCT_WQ_DATA_MASK))->pool;
717
718 pool_id = data >> WORK_OFFQ_POOL_SHIFT;
719 if (pool_id == WORK_OFFQ_POOL_NONE)
720 return NULL;
721
722 return idr_find(&worker_pool_idr, pool_id);
723 }
724
725 /**
726 * get_work_pool_id - return the worker pool ID a given work is associated with
727 * @work: the work item of interest
728 *
729 * Return: The worker_pool ID @work was last associated with.
730 * %WORK_OFFQ_POOL_NONE if none.
731 */
732 static int get_work_pool_id(struct work_struct *work)
733 {
734 unsigned long data = atomic_long_read(&work->data);
735
736 if (data & WORK_STRUCT_PWQ)
737 return ((struct pool_workqueue *)
738 (data & WORK_STRUCT_WQ_DATA_MASK))->pool->id;
739
740 return data >> WORK_OFFQ_POOL_SHIFT;
741 }
742
743 static void mark_work_canceling(struct work_struct *work)
744 {
745 unsigned long pool_id = get_work_pool_id(work);
746
747 pool_id <<= WORK_OFFQ_POOL_SHIFT;
748 set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING);
749 }
750
751 static bool work_is_canceling(struct work_struct *work)
752 {
753 unsigned long data = atomic_long_read(&work->data);
754
755 return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING);
756 }
757
758 /*
759 * Policy functions. These define the policies on how the global worker
760 * pools are managed. Unless noted otherwise, these functions assume that
761 * they're being called with pool->lock held.
762 */
763
764 static bool __need_more_worker(struct worker_pool *pool)
765 {
766 return !atomic_read(&pool->nr_running);
767 }
768
769 /*
770 * Need to wake up a worker? Called from anything but currently
771 * running workers.
772 *
773 * Note that, because unbound workers never contribute to nr_running, this
774 * function will always return %true for unbound pools as long as the
775 * worklist isn't empty.
776 */
777 static bool need_more_worker(struct worker_pool *pool)
778 {
779 return !list_empty(&pool->worklist) && __need_more_worker(pool);
780 }
781
782 /* Can I start working? Called from busy but !running workers. */
783 static bool may_start_working(struct worker_pool *pool)
784 {
785 return pool->nr_idle;
786 }
787
788 /* Do I need to keep working? Called from currently running workers. */
789 static bool keep_working(struct worker_pool *pool)
790 {
791 return !list_empty(&pool->worklist) &&
792 atomic_read(&pool->nr_running) <= 1;
793 }
794
795 /* Do we need a new worker? Called from manager. */
796 static bool need_to_create_worker(struct worker_pool *pool)
797 {
798 return need_more_worker(pool) && !may_start_working(pool);
799 }
800
801 /* Do we have too many workers and should some go away? */
802 static bool too_many_workers(struct worker_pool *pool)
803 {
804 bool managing = mutex_is_locked(&pool->manager_arb);
805 int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
806 int nr_busy = pool->nr_workers - nr_idle;
807
808 return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
809 }
810
811 /*
812 * Wake up functions.
813 */
814
815 /* Return the first idle worker. Safe with preemption disabled */
816 static struct worker *first_idle_worker(struct worker_pool *pool)
817 {
818 if (unlikely(list_empty(&pool->idle_list)))
819 return NULL;
820
821 return list_first_entry(&pool->idle_list, struct worker, entry);
822 }
823
824 /**
825 * wake_up_worker - wake up an idle worker
826 * @pool: worker pool to wake worker from
827 *
828 * Wake up the first idle worker of @pool.
829 *
830 * CONTEXT:
831 * spin_lock_irq(pool->lock).
832 */
833 static void wake_up_worker(struct worker_pool *pool)
834 {
835 struct worker *worker = first_idle_worker(pool);
836
837 if (likely(worker))
838 wake_up_process(worker->task);
839 }
840
841 /**
842 * wq_worker_waking_up - a worker is waking up
843 * @task: task waking up
844 * @cpu: CPU @task is waking up to
845 *
846 * This function is called during try_to_wake_up() when a worker is
847 * being awoken.
848 *
849 * CONTEXT:
850 * spin_lock_irq(rq->lock)
851 */
852 void wq_worker_waking_up(struct task_struct *task, int cpu)
853 {
854 struct worker *worker = kthread_data(task);
855
856 if (!(worker->flags & WORKER_NOT_RUNNING)) {
857 WARN_ON_ONCE(worker->pool->cpu != cpu);
858 atomic_inc(&worker->pool->nr_running);
859 }
860 }
861
862 /**
863 * wq_worker_sleeping - a worker is going to sleep
864 * @task: task going to sleep
865 *
866 * This function is called during schedule() when a busy worker is
867 * going to sleep. Worker on the same cpu can be woken up by
868 * returning pointer to its task.
869 *
870 * CONTEXT:
871 * spin_lock_irq(rq->lock)
872 *
873 * Return:
874 * Worker task on @cpu to wake up, %NULL if none.
875 */
876 struct task_struct *wq_worker_sleeping(struct task_struct *task)
877 {
878 struct worker *worker = kthread_data(task), *to_wakeup = NULL;
879 struct worker_pool *pool;
880
881 /*
882 * Rescuers, which may not have all the fields set up like normal
883 * workers, also reach here, let's not access anything before
884 * checking NOT_RUNNING.
885 */
886 if (worker->flags & WORKER_NOT_RUNNING)
887 return NULL;
888
889 pool = worker->pool;
890
891 /* this can only happen on the local cpu */
892 if (WARN_ON_ONCE(pool->cpu != raw_smp_processor_id()))
893 return NULL;
894
895 /*
896 * The counterpart of the following dec_and_test, implied mb,
897 * worklist not empty test sequence is in insert_work().
898 * Please read comment there.
899 *
900 * NOT_RUNNING is clear. This means that we're bound to and
901 * running on the local cpu w/ rq lock held and preemption
902 * disabled, which in turn means that none else could be
903 * manipulating idle_list, so dereferencing idle_list without pool
904 * lock is safe.
905 */
906 if (atomic_dec_and_test(&pool->nr_running) &&
907 !list_empty(&pool->worklist))
908 to_wakeup = first_idle_worker(pool);
909 return to_wakeup ? to_wakeup->task : NULL;
910 }
911
912 /**
913 * worker_set_flags - set worker flags and adjust nr_running accordingly
914 * @worker: self
915 * @flags: flags to set
916 *
917 * Set @flags in @worker->flags and adjust nr_running accordingly.
918 *
919 * CONTEXT:
920 * spin_lock_irq(pool->lock)
921 */
922 static inline void worker_set_flags(struct worker *worker, unsigned int flags)
923 {
924 struct worker_pool *pool = worker->pool;
925
926 WARN_ON_ONCE(worker->task != current);
927
928 /* If transitioning into NOT_RUNNING, adjust nr_running. */
929 if ((flags & WORKER_NOT_RUNNING) &&
930 !(worker->flags & WORKER_NOT_RUNNING)) {
931 atomic_dec(&pool->nr_running);
932 }
933
934 worker->flags |= flags;
935 }
936
937 /**
938 * worker_clr_flags - clear worker flags and adjust nr_running accordingly
939 * @worker: self
940 * @flags: flags to clear
941 *
942 * Clear @flags in @worker->flags and adjust nr_running accordingly.
943 *
944 * CONTEXT:
945 * spin_lock_irq(pool->lock)
946 */
947 static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
948 {
949 struct worker_pool *pool = worker->pool;
950 unsigned int oflags = worker->flags;
951
952 WARN_ON_ONCE(worker->task != current);
953
954 worker->flags &= ~flags;
955
956 /*
957 * If transitioning out of NOT_RUNNING, increment nr_running. Note
958 * that the nested NOT_RUNNING is not a noop. NOT_RUNNING is mask
959 * of multiple flags, not a single flag.
960 */
961 if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
962 if (!(worker->flags & WORKER_NOT_RUNNING))
963 atomic_inc(&pool->nr_running);
964 }
965
966 /**
967 * find_worker_executing_work - find worker which is executing a work
968 * @pool: pool of interest
969 * @work: work to find worker for
970 *
971 * Find a worker which is executing @work on @pool by searching
972 * @pool->busy_hash which is keyed by the address of @work. For a worker
973 * to match, its current execution should match the address of @work and
974 * its work function. This is to avoid unwanted dependency between
975 * unrelated work executions through a work item being recycled while still
976 * being executed.
977 *
978 * This is a bit tricky. A work item may be freed once its execution
979 * starts and nothing prevents the freed area from being recycled for
980 * another work item. If the same work item address ends up being reused
981 * before the original execution finishes, workqueue will identify the
982 * recycled work item as currently executing and make it wait until the
983 * current execution finishes, introducing an unwanted dependency.
984 *
985 * This function checks the work item address and work function to avoid
986 * false positives. Note that this isn't complete as one may construct a
987 * work function which can introduce dependency onto itself through a
988 * recycled work item. Well, if somebody wants to shoot oneself in the
989 * foot that badly, there's only so much we can do, and if such deadlock
990 * actually occurs, it should be easy to locate the culprit work function.
991 *
992 * CONTEXT:
993 * spin_lock_irq(pool->lock).
994 *
995 * Return:
996 * Pointer to worker which is executing @work if found, %NULL
997 * otherwise.
998 */
999 static struct worker *find_worker_executing_work(struct worker_pool *pool,
1000 struct work_struct *work)
1001 {
1002 struct worker *worker;
1003
1004 hash_for_each_possible(pool->busy_hash, worker, hentry,
1005 (unsigned long)work)
1006 if (worker->current_work == work &&
1007 worker->current_func == work->func)
1008 return worker;
1009
1010 return NULL;
1011 }
1012
1013 /**
1014 * move_linked_works - move linked works to a list
1015 * @work: start of series of works to be scheduled
1016 * @head: target list to append @work to
1017 * @nextp: out parameter for nested worklist walking
1018 *
1019 * Schedule linked works starting from @work to @head. Work series to
1020 * be scheduled starts at @work and includes any consecutive work with
1021 * WORK_STRUCT_LINKED set in its predecessor.
1022 *
1023 * If @nextp is not NULL, it's updated to point to the next work of
1024 * the last scheduled work. This allows move_linked_works() to be
1025 * nested inside outer list_for_each_entry_safe().
1026 *
1027 * CONTEXT:
1028 * spin_lock_irq(pool->lock).
1029 */
1030 static void move_linked_works(struct work_struct *work, struct list_head *head,
1031 struct work_struct **nextp)
1032 {
1033 struct work_struct *n;
1034
1035 /*
1036 * Linked worklist will always end before the end of the list,
1037 * use NULL for list head.
1038 */
1039 list_for_each_entry_safe_from(work, n, NULL, entry) {
1040 list_move_tail(&work->entry, head);
1041 if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
1042 break;
1043 }
1044
1045 /*
1046 * If we're already inside safe list traversal and have moved
1047 * multiple works to the scheduled queue, the next position
1048 * needs to be updated.
1049 */
1050 if (nextp)
1051 *nextp = n;
1052 }
1053
1054 /**
1055 * get_pwq - get an extra reference on the specified pool_workqueue
1056 * @pwq: pool_workqueue to get
1057 *
1058 * Obtain an extra reference on @pwq. The caller should guarantee that
1059 * @pwq has positive refcnt and be holding the matching pool->lock.
1060 */
1061 static void get_pwq(struct pool_workqueue *pwq)
1062 {
1063 lockdep_assert_held(&pwq->pool->lock);
1064 WARN_ON_ONCE(pwq->refcnt <= 0);
1065 pwq->refcnt++;
1066 }
1067
1068 /**
1069 * put_pwq - put a pool_workqueue reference
1070 * @pwq: pool_workqueue to put
1071 *
1072 * Drop a reference of @pwq. If its refcnt reaches zero, schedule its
1073 * destruction. The caller should be holding the matching pool->lock.
1074 */
1075 static void put_pwq(struct pool_workqueue *pwq)
1076 {
1077 lockdep_assert_held(&pwq->pool->lock);
1078 if (likely(--pwq->refcnt))
1079 return;
1080 if (WARN_ON_ONCE(!(pwq->wq->flags & WQ_UNBOUND)))
1081 return;
1082 /*
1083 * @pwq can't be released under pool->lock, bounce to
1084 * pwq_unbound_release_workfn(). This never recurses on the same
1085 * pool->lock as this path is taken only for unbound workqueues and
1086 * the release work item is scheduled on a per-cpu workqueue. To
1087 * avoid lockdep warning, unbound pool->locks are given lockdep
1088 * subclass of 1 in get_unbound_pool().
1089 */
1090 schedule_work(&pwq->unbound_release_work);
1091 }
1092
1093 /**
1094 * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock
1095 * @pwq: pool_workqueue to put (can be %NULL)
1096 *
1097 * put_pwq() with locking. This function also allows %NULL @pwq.
1098 */
1099 static void put_pwq_unlocked(struct pool_workqueue *pwq)
1100 {
1101 if (pwq) {
1102 /*
1103 * As both pwqs and pools are sched-RCU protected, the
1104 * following lock operations are safe.
1105 */
1106 spin_lock_irq(&pwq->pool->lock);
1107 put_pwq(pwq);
1108 spin_unlock_irq(&pwq->pool->lock);
1109 }
1110 }
1111
1112 static void pwq_activate_delayed_work(struct work_struct *work)
1113 {
1114 struct pool_workqueue *pwq = get_work_pwq(work);
1115
1116 trace_workqueue_activate_work(work);
1117 if (list_empty(&pwq->pool->worklist))
1118 pwq->pool->watchdog_ts = jiffies;
1119 move_linked_works(work, &pwq->pool->worklist, NULL);
1120 __clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
1121 pwq->nr_active++;
1122 }
1123
1124 static void pwq_activate_first_delayed(struct pool_workqueue *pwq)
1125 {
1126 struct work_struct *work = list_first_entry(&pwq->delayed_works,
1127 struct work_struct, entry);
1128
1129 pwq_activate_delayed_work(work);
1130 }
1131
1132 /**
1133 * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
1134 * @pwq: pwq of interest
1135 * @color: color of work which left the queue
1136 *
1137 * A work either has completed or is removed from pending queue,
1138 * decrement nr_in_flight of its pwq and handle workqueue flushing.
1139 *
1140 * CONTEXT:
1141 * spin_lock_irq(pool->lock).
1142 */
1143 static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, int color)
1144 {
1145 /* uncolored work items don't participate in flushing or nr_active */
1146 if (color == WORK_NO_COLOR)
1147 goto out_put;
1148
1149 pwq->nr_in_flight[color]--;
1150
1151 pwq->nr_active--;
1152 if (!list_empty(&pwq->delayed_works)) {
1153 /* one down, submit a delayed one */
1154 if (pwq->nr_active < pwq->max_active)
1155 pwq_activate_first_delayed(pwq);
1156 }
1157
1158 /* is flush in progress and are we at the flushing tip? */
1159 if (likely(pwq->flush_color != color))
1160 goto out_put;
1161
1162 /* are there still in-flight works? */
1163 if (pwq->nr_in_flight[color])
1164 goto out_put;
1165
1166 /* this pwq is done, clear flush_color */
1167 pwq->flush_color = -1;
1168
1169 /*
1170 * If this was the last pwq, wake up the first flusher. It
1171 * will handle the rest.
1172 */
1173 if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush))
1174 complete(&pwq->wq->first_flusher->done);
1175 out_put:
1176 put_pwq(pwq);
1177 }
1178
1179 /**
1180 * try_to_grab_pending - steal work item from worklist and disable irq
1181 * @work: work item to steal
1182 * @is_dwork: @work is a delayed_work
1183 * @flags: place to store irq state
1184 *
1185 * Try to grab PENDING bit of @work. This function can handle @work in any
1186 * stable state - idle, on timer or on worklist.
1187 *
1188 * Return:
1189 * 1 if @work was pending and we successfully stole PENDING
1190 * 0 if @work was idle and we claimed PENDING
1191 * -EAGAIN if PENDING couldn't be grabbed at the moment, safe to busy-retry
1192 * -ENOENT if someone else is canceling @work, this state may persist
1193 * for arbitrarily long
1194 *
1195 * Note:
1196 * On >= 0 return, the caller owns @work's PENDING bit. To avoid getting
1197 * interrupted while holding PENDING and @work off queue, irq must be
1198 * disabled on entry. This, combined with delayed_work->timer being
1199 * irqsafe, ensures that we return -EAGAIN for finite short period of time.
1200 *
1201 * On successful return, >= 0, irq is disabled and the caller is
1202 * responsible for releasing it using local_irq_restore(*@flags).
1203 *
1204 * This function is safe to call from any context including IRQ handler.
1205 */
1206 static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
1207 unsigned long *flags)
1208 {
1209 struct worker_pool *pool;
1210 struct pool_workqueue *pwq;
1211
1212 local_irq_save(*flags);
1213
1214 /* try to steal the timer if it exists */
1215 if (is_dwork) {
1216 struct delayed_work *dwork = to_delayed_work(work);
1217
1218 /*
1219 * dwork->timer is irqsafe. If del_timer() fails, it's
1220 * guaranteed that the timer is not queued anywhere and not
1221 * running on the local CPU.
1222 */
1223 if (likely(del_timer(&dwork->timer)))
1224 return 1;
1225 }
1226
1227 /* try to claim PENDING the normal way */
1228 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
1229 return 0;
1230
1231 /*
1232 * The queueing is in progress, or it is already queued. Try to
1233 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
1234 */
1235 pool = get_work_pool(work);
1236 if (!pool)
1237 goto fail;
1238
1239 spin_lock(&pool->lock);
1240 /*
1241 * work->data is guaranteed to point to pwq only while the work
1242 * item is queued on pwq->wq, and both updating work->data to point
1243 * to pwq on queueing and to pool on dequeueing are done under
1244 * pwq->pool->lock. This in turn guarantees that, if work->data
1245 * points to pwq which is associated with a locked pool, the work
1246 * item is currently queued on that pool.
1247 */
1248 pwq = get_work_pwq(work);
1249 if (pwq && pwq->pool == pool) {
1250 debug_work_deactivate(work);
1251
1252 /*
1253 * A delayed work item cannot be grabbed directly because
1254 * it might have linked NO_COLOR work items which, if left
1255 * on the delayed_list, will confuse pwq->nr_active
1256 * management later on and cause stall. Make sure the work
1257 * item is activated before grabbing.
1258 */
1259 if (*work_data_bits(work) & WORK_STRUCT_DELAYED)
1260 pwq_activate_delayed_work(work);
1261
1262 list_del_init(&work->entry);
1263 pwq_dec_nr_in_flight(pwq, get_work_color(work));
1264
1265 /* work->data points to pwq iff queued, point to pool */
1266 set_work_pool_and_keep_pending(work, pool->id);
1267
1268 spin_unlock(&pool->lock);
1269 return 1;
1270 }
1271 spin_unlock(&pool->lock);
1272 fail:
1273 local_irq_restore(*flags);
1274 if (work_is_canceling(work))
1275 return -ENOENT;
1276 cpu_relax();
1277 return -EAGAIN;
1278 }
1279
1280 /**
1281 * insert_work - insert a work into a pool
1282 * @pwq: pwq @work belongs to
1283 * @work: work to insert
1284 * @head: insertion point
1285 * @extra_flags: extra WORK_STRUCT_* flags to set
1286 *
1287 * Insert @work which belongs to @pwq after @head. @extra_flags is or'd to
1288 * work_struct flags.
1289 *
1290 * CONTEXT:
1291 * spin_lock_irq(pool->lock).
1292 */
1293 static void insert_work(struct pool_workqueue *pwq, struct work_struct *work,
1294 struct list_head *head, unsigned int extra_flags)
1295 {
1296 struct worker_pool *pool = pwq->pool;
1297
1298 /* we own @work, set data and link */
1299 set_work_pwq(work, pwq, extra_flags);
1300 list_add_tail(&work->entry, head);
1301 get_pwq(pwq);
1302
1303 /*
1304 * Ensure either wq_worker_sleeping() sees the above
1305 * list_add_tail() or we see zero nr_running to avoid workers lying
1306 * around lazily while there are works to be processed.
1307 */
1308 smp_mb();
1309
1310 if (__need_more_worker(pool))
1311 wake_up_worker(pool);
1312 }
1313
1314 /*
1315 * Test whether @work is being queued from another work executing on the
1316 * same workqueue.
1317 */
1318 static bool is_chained_work(struct workqueue_struct *wq)
1319 {
1320 struct worker *worker;
1321
1322 worker = current_wq_worker();
1323 /*
1324 * Return %true iff I'm a worker execuing a work item on @wq. If
1325 * I'm @worker, it's safe to dereference it without locking.
1326 */
1327 return worker && worker->current_pwq->wq == wq;
1328 }
1329
1330 /*
1331 * When queueing an unbound work item to a wq, prefer local CPU if allowed
1332 * by wq_unbound_cpumask. Otherwise, round robin among the allowed ones to
1333 * avoid perturbing sensitive tasks.
1334 */
1335 static int wq_select_unbound_cpu(int cpu)
1336 {
1337 static bool printed_dbg_warning;
1338 int new_cpu;
1339
1340 if (likely(!wq_debug_force_rr_cpu)) {
1341 if (cpumask_test_cpu(cpu, wq_unbound_cpumask))
1342 return cpu;
1343 } else if (!printed_dbg_warning) {
1344 pr_warn("workqueue: round-robin CPU selection forced, expect performance impact\n");
1345 printed_dbg_warning = true;
1346 }
1347
1348 if (cpumask_empty(wq_unbound_cpumask))
1349 return cpu;
1350
1351 new_cpu = __this_cpu_read(wq_rr_cpu_last);
1352 new_cpu = cpumask_next_and(new_cpu, wq_unbound_cpumask, cpu_online_mask);
1353 if (unlikely(new_cpu >= nr_cpu_ids)) {
1354 new_cpu = cpumask_first_and(wq_unbound_cpumask, cpu_online_mask);
1355 if (unlikely(new_cpu >= nr_cpu_ids))
1356 return cpu;
1357 }
1358 __this_cpu_write(wq_rr_cpu_last, new_cpu);
1359
1360 return new_cpu;
1361 }
1362
1363 static void __queue_work(int cpu, struct workqueue_struct *wq,
1364 struct work_struct *work)
1365 {
1366 struct pool_workqueue *pwq;
1367 struct worker_pool *last_pool;
1368 struct list_head *worklist;
1369 unsigned int work_flags;
1370 unsigned int req_cpu = cpu;
1371
1372 /*
1373 * While a work item is PENDING && off queue, a task trying to
1374 * steal the PENDING will busy-loop waiting for it to either get
1375 * queued or lose PENDING. Grabbing PENDING and queueing should
1376 * happen with IRQ disabled.
1377 */
1378 WARN_ON_ONCE(!irqs_disabled());
1379
1380 debug_work_activate(work);
1381
1382 /* if draining, only works from the same workqueue are allowed */
1383 if (unlikely(wq->flags & __WQ_DRAINING) &&
1384 WARN_ON_ONCE(!is_chained_work(wq)))
1385 return;
1386 retry:
1387 if (req_cpu == WORK_CPU_UNBOUND)
1388 cpu = wq_select_unbound_cpu(raw_smp_processor_id());
1389
1390 /* pwq which will be used unless @work is executing elsewhere */
1391 if (!(wq->flags & WQ_UNBOUND))
1392 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
1393 else
1394 pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
1395
1396 /*
1397 * If @work was previously on a different pool, it might still be
1398 * running there, in which case the work needs to be queued on that
1399 * pool to guarantee non-reentrancy.
1400 */
1401 last_pool = get_work_pool(work);
1402 if (last_pool && last_pool != pwq->pool) {
1403 struct worker *worker;
1404
1405 spin_lock(&last_pool->lock);
1406
1407 worker = find_worker_executing_work(last_pool, work);
1408
1409 if (worker && worker->current_pwq->wq == wq) {
1410 pwq = worker->current_pwq;
1411 } else {
1412 /* meh... not running there, queue here */
1413 spin_unlock(&last_pool->lock);
1414 spin_lock(&pwq->pool->lock);
1415 }
1416 } else {
1417 spin_lock(&pwq->pool->lock);
1418 }
1419
1420 /*
1421 * pwq is determined and locked. For unbound pools, we could have
1422 * raced with pwq release and it could already be dead. If its
1423 * refcnt is zero, repeat pwq selection. Note that pwqs never die
1424 * without another pwq replacing it in the numa_pwq_tbl or while
1425 * work items are executing on it, so the retrying is guaranteed to
1426 * make forward-progress.
1427 */
1428 if (unlikely(!pwq->refcnt)) {
1429 if (wq->flags & WQ_UNBOUND) {
1430 spin_unlock(&pwq->pool->lock);
1431 cpu_relax();
1432 goto retry;
1433 }
1434 /* oops */
1435 WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt",
1436 wq->name, cpu);
1437 }
1438
1439 /* pwq determined, queue */
1440 trace_workqueue_queue_work(req_cpu, pwq, work);
1441
1442 if (WARN_ON(!list_empty(&work->entry))) {
1443 spin_unlock(&pwq->pool->lock);
1444 return;
1445 }
1446
1447 pwq->nr_in_flight[pwq->work_color]++;
1448 work_flags = work_color_to_flags(pwq->work_color);
1449
1450 if (likely(pwq->nr_active < pwq->max_active)) {
1451 trace_workqueue_activate_work(work);
1452 pwq->nr_active++;
1453 worklist = &pwq->pool->worklist;
1454 if (list_empty(worklist))
1455 pwq->pool->watchdog_ts = jiffies;
1456 } else {
1457 work_flags |= WORK_STRUCT_DELAYED;
1458 worklist = &pwq->delayed_works;
1459 }
1460
1461 insert_work(pwq, work, worklist, work_flags);
1462
1463 spin_unlock(&pwq->pool->lock);
1464 }
1465
1466 /**
1467 * queue_work_on - queue work on specific cpu
1468 * @cpu: CPU number to execute work on
1469 * @wq: workqueue to use
1470 * @work: work to queue
1471 *
1472 * We queue the work to a specific CPU, the caller must ensure it
1473 * can't go away.
1474 *
1475 * Return: %false if @work was already on a queue, %true otherwise.
1476 */
1477 bool queue_work_on(int cpu, struct workqueue_struct *wq,
1478 struct work_struct *work)
1479 {
1480 bool ret = false;
1481 unsigned long flags;
1482
1483 local_irq_save(flags);
1484
1485 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1486 __queue_work(cpu, wq, work);
1487 ret = true;
1488 }
1489
1490 local_irq_restore(flags);
1491 return ret;
1492 }
1493 EXPORT_SYMBOL(queue_work_on);
1494
1495 void delayed_work_timer_fn(unsigned long __data)
1496 {
1497 struct delayed_work *dwork = (struct delayed_work *)__data;
1498
1499 /* should have been called from irqsafe timer with irq already off */
1500 __queue_work(dwork->cpu, dwork->wq, &dwork->work);
1501 }
1502 EXPORT_SYMBOL(delayed_work_timer_fn);
1503
1504 static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
1505 struct delayed_work *dwork, unsigned long delay)
1506 {
1507 struct timer_list *timer = &dwork->timer;
1508 struct work_struct *work = &dwork->work;
1509
1510 WARN_ON_ONCE(!wq);
1511 WARN_ON_ONCE(timer->function != delayed_work_timer_fn ||
1512 timer->data != (unsigned long)dwork);
1513 WARN_ON_ONCE(timer_pending(timer));
1514 WARN_ON_ONCE(!list_empty(&work->entry));
1515
1516 /*
1517 * If @delay is 0, queue @dwork->work immediately. This is for
1518 * both optimization and correctness. The earliest @timer can
1519 * expire is on the closest next tick and delayed_work users depend
1520 * on that there's no such delay when @delay is 0.
1521 */
1522 if (!delay) {
1523 __queue_work(cpu, wq, &dwork->work);
1524 return;
1525 }
1526
1527 dwork->wq = wq;
1528 dwork->cpu = cpu;
1529 timer->expires = jiffies + delay;
1530
1531 if (unlikely(cpu != WORK_CPU_UNBOUND))
1532 add_timer_on(timer, cpu);
1533 else
1534 add_timer(timer);
1535 }
1536
1537 /**
1538 * queue_delayed_work_on - queue work on specific CPU after delay
1539 * @cpu: CPU number to execute work on
1540 * @wq: workqueue to use
1541 * @dwork: work to queue
1542 * @delay: number of jiffies to wait before queueing
1543 *
1544 * Return: %false if @work was already on a queue, %true otherwise. If
1545 * @delay is zero and @dwork is idle, it will be scheduled for immediate
1546 * execution.
1547 */
1548 bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
1549 struct delayed_work *dwork, unsigned long delay)
1550 {
1551 struct work_struct *work = &dwork->work;
1552 bool ret = false;
1553 unsigned long flags;
1554
1555 /* read the comment in __queue_work() */
1556 local_irq_save(flags);
1557
1558 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1559 __queue_delayed_work(cpu, wq, dwork, delay);
1560 ret = true;
1561 }
1562
1563 local_irq_restore(flags);
1564 return ret;
1565 }
1566 EXPORT_SYMBOL(queue_delayed_work_on);
1567
1568 /**
1569 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
1570 * @cpu: CPU number to execute work on
1571 * @wq: workqueue to use
1572 * @dwork: work to queue
1573 * @delay: number of jiffies to wait before queueing
1574 *
1575 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
1576 * modify @dwork's timer so that it expires after @delay. If @delay is
1577 * zero, @work is guaranteed to be scheduled immediately regardless of its
1578 * current state.
1579 *
1580 * Return: %false if @dwork was idle and queued, %true if @dwork was
1581 * pending and its timer was modified.
1582 *
1583 * This function is safe to call from any context including IRQ handler.
1584 * See try_to_grab_pending() for details.
1585 */
1586 bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
1587 struct delayed_work *dwork, unsigned long delay)
1588 {
1589 unsigned long flags;
1590 int ret;
1591
1592 do {
1593 ret = try_to_grab_pending(&dwork->work, true, &flags);
1594 } while (unlikely(ret == -EAGAIN));
1595
1596 if (likely(ret >= 0)) {
1597 __queue_delayed_work(cpu, wq, dwork, delay);
1598 local_irq_restore(flags);
1599 }
1600
1601 /* -ENOENT from try_to_grab_pending() becomes %true */
1602 return ret;
1603 }
1604 EXPORT_SYMBOL_GPL(mod_delayed_work_on);
1605
1606 /**
1607 * worker_enter_idle - enter idle state
1608 * @worker: worker which is entering idle state
1609 *
1610 * @worker is entering idle state. Update stats and idle timer if
1611 * necessary.
1612 *
1613 * LOCKING:
1614 * spin_lock_irq(pool->lock).
1615 */
1616 static void worker_enter_idle(struct worker *worker)
1617 {
1618 struct worker_pool *pool = worker->pool;
1619
1620 if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) ||
1621 WARN_ON_ONCE(!list_empty(&worker->entry) &&
1622 (worker->hentry.next || worker->hentry.pprev)))
1623 return;
1624
1625 /* can't use worker_set_flags(), also called from create_worker() */
1626 worker->flags |= WORKER_IDLE;
1627 pool->nr_idle++;
1628 worker->last_active = jiffies;
1629
1630 /* idle_list is LIFO */
1631 list_add(&worker->entry, &pool->idle_list);
1632
1633 if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
1634 mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
1635
1636 /*
1637 * Sanity check nr_running. Because wq_unbind_fn() releases
1638 * pool->lock between setting %WORKER_UNBOUND and zapping
1639 * nr_running, the warning may trigger spuriously. Check iff
1640 * unbind is not in progress.
1641 */
1642 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
1643 pool->nr_workers == pool->nr_idle &&
1644 atomic_read(&pool->nr_running));
1645 }
1646
1647 /**
1648 * worker_leave_idle - leave idle state
1649 * @worker: worker which is leaving idle state
1650 *
1651 * @worker is leaving idle state. Update stats.
1652 *
1653 * LOCKING:
1654 * spin_lock_irq(pool->lock).
1655 */
1656 static void worker_leave_idle(struct worker *worker)
1657 {
1658 struct worker_pool *pool = worker->pool;
1659
1660 if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE)))
1661 return;
1662 worker_clr_flags(worker, WORKER_IDLE);
1663 pool->nr_idle--;
1664 list_del_init(&worker->entry);
1665 }
1666
1667 static struct worker *alloc_worker(int node)
1668 {
1669 struct worker *worker;
1670
1671 worker = kzalloc_node(sizeof(*worker), GFP_KERNEL, node);
1672 if (worker) {
1673 INIT_LIST_HEAD(&worker->entry);
1674 INIT_LIST_HEAD(&worker->scheduled);
1675 INIT_LIST_HEAD(&worker->node);
1676 /* on creation a worker is in !idle && prep state */
1677 worker->flags = WORKER_PREP;
1678 }
1679 return worker;
1680 }
1681
1682 /**
1683 * worker_attach_to_pool() - attach a worker to a pool
1684 * @worker: worker to be attached
1685 * @pool: the target pool
1686 *
1687 * Attach @worker to @pool. Once attached, the %WORKER_UNBOUND flag and
1688 * cpu-binding of @worker are kept coordinated with the pool across
1689 * cpu-[un]hotplugs.
1690 */
1691 static void worker_attach_to_pool(struct worker *worker,
1692 struct worker_pool *pool)
1693 {
1694 mutex_lock(&pool->attach_mutex);
1695
1696 /*
1697 * set_cpus_allowed_ptr() will fail if the cpumask doesn't have any
1698 * online CPUs. It'll be re-applied when any of the CPUs come up.
1699 */
1700 set_cpus_allowed_ptr(worker->task, pool->attrs->cpumask);
1701
1702 /*
1703 * The pool->attach_mutex ensures %POOL_DISASSOCIATED remains
1704 * stable across this function. See the comments above the
1705 * flag definition for details.
1706 */
1707 if (pool->flags & POOL_DISASSOCIATED)
1708 worker->flags |= WORKER_UNBOUND;
1709
1710 list_add_tail(&worker->node, &pool->workers);
1711
1712 mutex_unlock(&pool->attach_mutex);
1713 }
1714
1715 /**
1716 * worker_detach_from_pool() - detach a worker from its pool
1717 * @worker: worker which is attached to its pool
1718 * @pool: the pool @worker is attached to
1719 *
1720 * Undo the attaching which had been done in worker_attach_to_pool(). The
1721 * caller worker shouldn't access to the pool after detached except it has
1722 * other reference to the pool.
1723 */
1724 static void worker_detach_from_pool(struct worker *worker,
1725 struct worker_pool *pool)
1726 {
1727 struct completion *detach_completion = NULL;
1728
1729 mutex_lock(&pool->attach_mutex);
1730 list_del(&worker->node);
1731 if (list_empty(&pool->workers))
1732 detach_completion = pool->detach_completion;
1733 mutex_unlock(&pool->attach_mutex);
1734
1735 /* clear leftover flags without pool->lock after it is detached */
1736 worker->flags &= ~(WORKER_UNBOUND | WORKER_REBOUND);
1737
1738 if (detach_completion)
1739 complete(detach_completion);
1740 }
1741
1742 /**
1743 * create_worker - create a new workqueue worker
1744 * @pool: pool the new worker will belong to
1745 *
1746 * Create and start a new worker which is attached to @pool.
1747 *
1748 * CONTEXT:
1749 * Might sleep. Does GFP_KERNEL allocations.
1750 *
1751 * Return:
1752 * Pointer to the newly created worker.
1753 */
1754 static struct worker *create_worker(struct worker_pool *pool)
1755 {
1756 struct worker *worker = NULL;
1757 int id = -1;
1758 char id_buf[16];
1759
1760 /* ID is needed to determine kthread name */
1761 id = ida_simple_get(&pool->worker_ida, 0, 0, GFP_KERNEL);
1762 if (id < 0)
1763 goto fail;
1764
1765 worker = alloc_worker(pool->node);
1766 if (!worker)
1767 goto fail;
1768
1769 worker->pool = pool;
1770 worker->id = id;
1771
1772 if (pool->cpu >= 0)
1773 snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id,
1774 pool->attrs->nice < 0 ? "H" : "");
1775 else
1776 snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id);
1777
1778 worker->task = kthread_create_on_node(worker_thread, worker, pool->node,
1779 "kworker/%s", id_buf);
1780 if (IS_ERR(worker->task))
1781 goto fail;
1782
1783 set_user_nice(worker->task, pool->attrs->nice);
1784 kthread_bind_mask(worker->task, pool->attrs->cpumask);
1785
1786 /* successful, attach the worker to the pool */
1787 worker_attach_to_pool(worker, pool);
1788
1789 /* start the newly created worker */
1790 spin_lock_irq(&pool->lock);
1791 worker->pool->nr_workers++;
1792 worker_enter_idle(worker);
1793 wake_up_process(worker->task);
1794 spin_unlock_irq(&pool->lock);
1795
1796 return worker;
1797
1798 fail:
1799 if (id >= 0)
1800 ida_simple_remove(&pool->worker_ida, id);
1801 kfree(worker);
1802 return NULL;
1803 }
1804
1805 /**
1806 * destroy_worker - destroy a workqueue worker
1807 * @worker: worker to be destroyed
1808 *
1809 * Destroy @worker and adjust @pool stats accordingly. The worker should
1810 * be idle.
1811 *
1812 * CONTEXT:
1813 * spin_lock_irq(pool->lock).
1814 */
1815 static void destroy_worker(struct worker *worker)
1816 {
1817 struct worker_pool *pool = worker->pool;
1818
1819 lockdep_assert_held(&pool->lock);
1820
1821 /* sanity check frenzy */
1822 if (WARN_ON(worker->current_work) ||
1823 WARN_ON(!list_empty(&worker->scheduled)) ||
1824 WARN_ON(!(worker->flags & WORKER_IDLE)))
1825 return;
1826
1827 pool->nr_workers--;
1828 pool->nr_idle--;
1829
1830 list_del_init(&worker->entry);
1831 worker->flags |= WORKER_DIE;
1832 wake_up_process(worker->task);
1833 }
1834
1835 static void idle_worker_timeout(unsigned long __pool)
1836 {
1837 struct worker_pool *pool = (void *)__pool;
1838
1839 spin_lock_irq(&pool->lock);
1840
1841 while (too_many_workers(pool)) {
1842 struct worker *worker;
1843 unsigned long expires;
1844
1845 /* idle_list is kept in LIFO order, check the last one */
1846 worker = list_entry(pool->idle_list.prev, struct worker, entry);
1847 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
1848
1849 if (time_before(jiffies, expires)) {
1850 mod_timer(&pool->idle_timer, expires);
1851 break;
1852 }
1853
1854 destroy_worker(worker);
1855 }
1856
1857 spin_unlock_irq(&pool->lock);
1858 }
1859
1860 static void send_mayday(struct work_struct *work)
1861 {
1862 struct pool_workqueue *pwq = get_work_pwq(work);
1863 struct workqueue_struct *wq = pwq->wq;
1864
1865 lockdep_assert_held(&wq_mayday_lock);
1866
1867 if (!wq->rescuer)
1868 return;
1869
1870 /* mayday mayday mayday */
1871 if (list_empty(&pwq->mayday_node)) {
1872 /*
1873 * If @pwq is for an unbound wq, its base ref may be put at
1874 * any time due to an attribute change. Pin @pwq until the
1875 * rescuer is done with it.
1876 */
1877 get_pwq(pwq);
1878 list_add_tail(&pwq->mayday_node, &wq->maydays);
1879 wake_up_process(wq->rescuer->task);
1880 }
1881 }
1882
1883 static void pool_mayday_timeout(unsigned long __pool)
1884 {
1885 struct worker_pool *pool = (void *)__pool;
1886 struct work_struct *work;
1887
1888 spin_lock_irq(&pool->lock);
1889 spin_lock(&wq_mayday_lock); /* for wq->maydays */
1890
1891 if (need_to_create_worker(pool)) {
1892 /*
1893 * We've been trying to create a new worker but
1894 * haven't been successful. We might be hitting an
1895 * allocation deadlock. Send distress signals to
1896 * rescuers.
1897 */
1898 list_for_each_entry(work, &pool->worklist, entry)
1899 send_mayday(work);
1900 }
1901
1902 spin_unlock(&wq_mayday_lock);
1903 spin_unlock_irq(&pool->lock);
1904
1905 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
1906 }
1907
1908 /**
1909 * maybe_create_worker - create a new worker if necessary
1910 * @pool: pool to create a new worker for
1911 *
1912 * Create a new worker for @pool if necessary. @pool is guaranteed to
1913 * have at least one idle worker on return from this function. If
1914 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
1915 * sent to all rescuers with works scheduled on @pool to resolve
1916 * possible allocation deadlock.
1917 *
1918 * On return, need_to_create_worker() is guaranteed to be %false and
1919 * may_start_working() %true.
1920 *
1921 * LOCKING:
1922 * spin_lock_irq(pool->lock) which may be released and regrabbed
1923 * multiple times. Does GFP_KERNEL allocations. Called only from
1924 * manager.
1925 */
1926 static void maybe_create_worker(struct worker_pool *pool)
1927 __releases(&pool->lock)
1928 __acquires(&pool->lock)
1929 {
1930 restart:
1931 spin_unlock_irq(&pool->lock);
1932
1933 /* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
1934 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
1935
1936 while (true) {
1937 if (create_worker(pool) || !need_to_create_worker(pool))
1938 break;
1939
1940 schedule_timeout_interruptible(CREATE_COOLDOWN);
1941
1942 if (!need_to_create_worker(pool))
1943 break;
1944 }
1945
1946 del_timer_sync(&pool->mayday_timer);
1947 spin_lock_irq(&pool->lock);
1948 /*
1949 * This is necessary even after a new worker was just successfully
1950 * created as @pool->lock was dropped and the new worker might have
1951 * already become busy.
1952 */
1953 if (need_to_create_worker(pool))
1954 goto restart;
1955 }
1956
1957 /**
1958 * manage_workers - manage worker pool
1959 * @worker: self
1960 *
1961 * Assume the manager role and manage the worker pool @worker belongs
1962 * to. At any given time, there can be only zero or one manager per
1963 * pool. The exclusion is handled automatically by this function.
1964 *
1965 * The caller can safely start processing works on false return. On
1966 * true return, it's guaranteed that need_to_create_worker() is false
1967 * and may_start_working() is true.
1968 *
1969 * CONTEXT:
1970 * spin_lock_irq(pool->lock) which may be released and regrabbed
1971 * multiple times. Does GFP_KERNEL allocations.
1972 *
1973 * Return:
1974 * %false if the pool doesn't need management and the caller can safely
1975 * start processing works, %true if management function was performed and
1976 * the conditions that the caller verified before calling the function may
1977 * no longer be true.
1978 */
1979 static bool manage_workers(struct worker *worker)
1980 {
1981 struct worker_pool *pool = worker->pool;
1982
1983 /*
1984 * Anyone who successfully grabs manager_arb wins the arbitration
1985 * and becomes the manager. mutex_trylock() on pool->manager_arb
1986 * failure while holding pool->lock reliably indicates that someone
1987 * else is managing the pool and the worker which failed trylock
1988 * can proceed to executing work items. This means that anyone
1989 * grabbing manager_arb is responsible for actually performing
1990 * manager duties. If manager_arb is grabbed and released without
1991 * actual management, the pool may stall indefinitely.
1992 */
1993 if (!mutex_trylock(&pool->manager_arb))
1994 return false;
1995 pool->manager = worker;
1996
1997 maybe_create_worker(pool);
1998
1999 pool->manager = NULL;
2000 mutex_unlock(&pool->manager_arb);
2001 return true;
2002 }
2003
2004 /**
2005 * process_one_work - process single work
2006 * @worker: self
2007 * @work: work to process
2008 *
2009 * Process @work. This function contains all the logics necessary to
2010 * process a single work including synchronization against and
2011 * interaction with other workers on the same cpu, queueing and
2012 * flushing. As long as context requirement is met, any worker can
2013 * call this function to process a work.
2014 *
2015 * CONTEXT:
2016 * spin_lock_irq(pool->lock) which is released and regrabbed.
2017 */
2018 static void process_one_work(struct worker *worker, struct work_struct *work)
2019 __releases(&pool->lock)
2020 __acquires(&pool->lock)
2021 {
2022 struct pool_workqueue *pwq = get_work_pwq(work);
2023 struct worker_pool *pool = worker->pool;
2024 bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE;
2025 int work_color;
2026 struct worker *collision;
2027 #ifdef CONFIG_LOCKDEP
2028 /*
2029 * It is permissible to free the struct work_struct from
2030 * inside the function that is called from it, this we need to
2031 * take into account for lockdep too. To avoid bogus "held
2032 * lock freed" warnings as well as problems when looking into
2033 * work->lockdep_map, make a copy and use that here.
2034 */
2035 struct lockdep_map lockdep_map;
2036
2037 lockdep_copy_map(&lockdep_map, &work->lockdep_map);
2038 #endif
2039 /* ensure we're on the correct CPU */
2040 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
2041 raw_smp_processor_id() != pool->cpu);
2042
2043 /*
2044 * A single work shouldn't be executed concurrently by
2045 * multiple workers on a single cpu. Check whether anyone is
2046 * already processing the work. If so, defer the work to the
2047 * currently executing one.
2048 */
2049 collision = find_worker_executing_work(pool, work);
2050 if (unlikely(collision)) {
2051 move_linked_works(work, &collision->scheduled, NULL);
2052 return;
2053 }
2054
2055 /* claim and dequeue */
2056 debug_work_deactivate(work);
2057 hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
2058 worker->current_work = work;
2059 worker->current_func = work->func;
2060 worker->current_pwq = pwq;
2061 work_color = get_work_color(work);
2062
2063 list_del_init(&work->entry);
2064
2065 /*
2066 * CPU intensive works don't participate in concurrency management.
2067 * They're the scheduler's responsibility. This takes @worker out
2068 * of concurrency management and the next code block will chain
2069 * execution of the pending work items.
2070 */
2071 if (unlikely(cpu_intensive))
2072 worker_set_flags(worker, WORKER_CPU_INTENSIVE);
2073
2074 /*
2075 * Wake up another worker if necessary. The condition is always
2076 * false for normal per-cpu workers since nr_running would always
2077 * be >= 1 at this point. This is used to chain execution of the
2078 * pending work items for WORKER_NOT_RUNNING workers such as the
2079 * UNBOUND and CPU_INTENSIVE ones.
2080 */
2081 if (need_more_worker(pool))
2082 wake_up_worker(pool);
2083
2084 /*
2085 * Record the last pool and clear PENDING which should be the last
2086 * update to @work. Also, do this inside @pool->lock so that
2087 * PENDING and queued state changes happen together while IRQ is
2088 * disabled.
2089 */
2090 set_work_pool_and_clear_pending(work, pool->id);
2091
2092 spin_unlock_irq(&pool->lock);
2093
2094 lock_map_acquire_read(&pwq->wq->lockdep_map);
2095 lock_map_acquire(&lockdep_map);
2096 trace_workqueue_execute_start(work);
2097 worker->current_func(work);
2098 /*
2099 * While we must be careful to not use "work" after this, the trace
2100 * point will only record its address.
2101 */
2102 trace_workqueue_execute_end(work);
2103 lock_map_release(&lockdep_map);
2104 lock_map_release(&pwq->wq->lockdep_map);
2105
2106 if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
2107 pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
2108 " last function: %pf\n",
2109 current->comm, preempt_count(), task_pid_nr(current),
2110 worker->current_func);
2111 debug_show_held_locks(current);
2112 dump_stack();
2113 }
2114
2115 /*
2116 * The following prevents a kworker from hogging CPU on !PREEMPT
2117 * kernels, where a requeueing work item waiting for something to
2118 * happen could deadlock with stop_machine as such work item could
2119 * indefinitely requeue itself while all other CPUs are trapped in
2120 * stop_machine. At the same time, report a quiescent RCU state so
2121 * the same condition doesn't freeze RCU.
2122 */
2123 cond_resched_rcu_qs();
2124
2125 spin_lock_irq(&pool->lock);
2126
2127 /* clear cpu intensive status */
2128 if (unlikely(cpu_intensive))
2129 worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
2130
2131 /* we're done with it, release */
2132 hash_del(&worker->hentry);
2133 worker->current_work = NULL;
2134 worker->current_func = NULL;
2135 worker->current_pwq = NULL;
2136 worker->desc_valid = false;
2137 pwq_dec_nr_in_flight(pwq, work_color);
2138 }
2139
2140 /**
2141 * process_scheduled_works - process scheduled works
2142 * @worker: self
2143 *
2144 * Process all scheduled works. Please note that the scheduled list
2145 * may change while processing a work, so this function repeatedly
2146 * fetches a work from the top and executes it.
2147 *
2148 * CONTEXT:
2149 * spin_lock_irq(pool->lock) which may be released and regrabbed
2150 * multiple times.
2151 */
2152 static void process_scheduled_works(struct worker *worker)
2153 {
2154 while (!list_empty(&worker->scheduled)) {
2155 struct work_struct *work = list_first_entry(&worker->scheduled,
2156 struct work_struct, entry);
2157 process_one_work(worker, work);
2158 }
2159 }
2160
2161 /**
2162 * worker_thread - the worker thread function
2163 * @__worker: self
2164 *
2165 * The worker thread function. All workers belong to a worker_pool -
2166 * either a per-cpu one or dynamic unbound one. These workers process all
2167 * work items regardless of their specific target workqueue. The only
2168 * exception is work items which belong to workqueues with a rescuer which
2169 * will be explained in rescuer_thread().
2170 *
2171 * Return: 0
2172 */
2173 static int worker_thread(void *__worker)
2174 {
2175 struct worker *worker = __worker;
2176 struct worker_pool *pool = worker->pool;
2177
2178 /* tell the scheduler that this is a workqueue worker */
2179 worker->task->flags |= PF_WQ_WORKER;
2180 woke_up:
2181 spin_lock_irq(&pool->lock);
2182
2183 /* am I supposed to die? */
2184 if (unlikely(worker->flags & WORKER_DIE)) {
2185 spin_unlock_irq(&pool->lock);
2186 WARN_ON_ONCE(!list_empty(&worker->entry));
2187 worker->task->flags &= ~PF_WQ_WORKER;
2188
2189 set_task_comm(worker->task, "kworker/dying");
2190 ida_simple_remove(&pool->worker_ida, worker->id);
2191 worker_detach_from_pool(worker, pool);
2192 kfree(worker);
2193 return 0;
2194 }
2195
2196 worker_leave_idle(worker);
2197 recheck:
2198 /* no more worker necessary? */
2199 if (!need_more_worker(pool))
2200 goto sleep;
2201
2202 /* do we need to manage? */
2203 if (unlikely(!may_start_working(pool)) && manage_workers(worker))
2204 goto recheck;
2205
2206 /*
2207 * ->scheduled list can only be filled while a worker is
2208 * preparing to process a work or actually processing it.
2209 * Make sure nobody diddled with it while I was sleeping.
2210 */
2211 WARN_ON_ONCE(!list_empty(&worker->scheduled));
2212
2213 /*
2214 * Finish PREP stage. We're guaranteed to have at least one idle
2215 * worker or that someone else has already assumed the manager
2216 * role. This is where @worker starts participating in concurrency
2217 * management if applicable and concurrency management is restored
2218 * after being rebound. See rebind_workers() for details.
2219 */
2220 worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND);
2221
2222 do {
2223 struct work_struct *work =
2224 list_first_entry(&pool->worklist,
2225 struct work_struct, entry);
2226
2227 pool->watchdog_ts = jiffies;
2228
2229 if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
2230 /* optimization path, not strictly necessary */
2231 process_one_work(worker, work);
2232 if (unlikely(!list_empty(&worker->scheduled)))
2233 process_scheduled_works(worker);
2234 } else {
2235 move_linked_works(work, &worker->scheduled, NULL);
2236 process_scheduled_works(worker);
2237 }
2238 } while (keep_working(pool));
2239
2240 worker_set_flags(worker, WORKER_PREP);
2241 sleep:
2242 /*
2243 * pool->lock is held and there's no work to process and no need to
2244 * manage, sleep. Workers are woken up only while holding
2245 * pool->lock or from local cpu, so setting the current state
2246 * before releasing pool->lock is enough to prevent losing any
2247 * event.
2248 */
2249 worker_enter_idle(worker);
2250 __set_current_state(TASK_INTERRUPTIBLE);
2251 spin_unlock_irq(&pool->lock);
2252 schedule();
2253 goto woke_up;
2254 }
2255
2256 /**
2257 * rescuer_thread - the rescuer thread function
2258 * @__rescuer: self
2259 *
2260 * Workqueue rescuer thread function. There's one rescuer for each
2261 * workqueue which has WQ_MEM_RECLAIM set.
2262 *
2263 * Regular work processing on a pool may block trying to create a new
2264 * worker which uses GFP_KERNEL allocation which has slight chance of
2265 * developing into deadlock if some works currently on the same queue
2266 * need to be processed to satisfy the GFP_KERNEL allocation. This is
2267 * the problem rescuer solves.
2268 *
2269 * When such condition is possible, the pool summons rescuers of all
2270 * workqueues which have works queued on the pool and let them process
2271 * those works so that forward progress can be guaranteed.
2272 *
2273 * This should happen rarely.
2274 *
2275 * Return: 0
2276 */
2277 static int rescuer_thread(void *__rescuer)
2278 {
2279 struct worker *rescuer = __rescuer;
2280 struct workqueue_struct *wq = rescuer->rescue_wq;
2281 struct list_head *scheduled = &rescuer->scheduled;
2282 bool should_stop;
2283
2284 set_user_nice(current, RESCUER_NICE_LEVEL);
2285
2286 /*
2287 * Mark rescuer as worker too. As WORKER_PREP is never cleared, it
2288 * doesn't participate in concurrency management.
2289 */
2290 rescuer->task->flags |= PF_WQ_WORKER;
2291 repeat:
2292 set_current_state(TASK_INTERRUPTIBLE);
2293
2294 /*
2295 * By the time the rescuer is requested to stop, the workqueue
2296 * shouldn't have any work pending, but @wq->maydays may still have
2297 * pwq(s) queued. This can happen by non-rescuer workers consuming
2298 * all the work items before the rescuer got to them. Go through
2299 * @wq->maydays processing before acting on should_stop so that the
2300 * list is always empty on exit.
2301 */
2302 should_stop = kthread_should_stop();
2303
2304 /* see whether any pwq is asking for help */
2305 spin_lock_irq(&wq_mayday_lock);
2306
2307 while (!list_empty(&wq->maydays)) {
2308 struct pool_workqueue *pwq = list_first_entry(&wq->maydays,
2309 struct pool_workqueue, mayday_node);
2310 struct worker_pool *pool = pwq->pool;
2311 struct work_struct *work, *n;
2312 bool first = true;
2313
2314 __set_current_state(TASK_RUNNING);
2315 list_del_init(&pwq->mayday_node);
2316
2317 spin_unlock_irq(&wq_mayday_lock);
2318
2319 worker_attach_to_pool(rescuer, pool);
2320
2321 spin_lock_irq(&pool->lock);
2322 rescuer->pool = pool;
2323
2324 /*
2325 * Slurp in all works issued via this workqueue and
2326 * process'em.
2327 */
2328 WARN_ON_ONCE(!list_empty(scheduled));
2329 list_for_each_entry_safe(work, n, &pool->worklist, entry) {
2330 if (get_work_pwq(work) == pwq) {
2331 if (first)
2332 pool->watchdog_ts = jiffies;
2333 move_linked_works(work, scheduled, &n);
2334 }
2335 first = false;
2336 }
2337
2338 if (!list_empty(scheduled)) {
2339 process_scheduled_works(rescuer);
2340
2341 /*
2342 * The above execution of rescued work items could
2343 * have created more to rescue through
2344 * pwq_activate_first_delayed() or chained
2345 * queueing. Let's put @pwq back on mayday list so
2346 * that such back-to-back work items, which may be
2347 * being used to relieve memory pressure, don't
2348 * incur MAYDAY_INTERVAL delay inbetween.
2349 */
2350 if (need_to_create_worker(pool)) {
2351 spin_lock(&wq_mayday_lock);
2352 get_pwq(pwq);
2353 list_move_tail(&pwq->mayday_node, &wq->maydays);
2354 spin_unlock(&wq_mayday_lock);
2355 }
2356 }
2357
2358 /*
2359 * Put the reference grabbed by send_mayday(). @pool won't
2360 * go away while we're still attached to it.
2361 */
2362 put_pwq(pwq);
2363
2364 /*
2365 * Leave this pool. If need_more_worker() is %true, notify a
2366 * regular worker; otherwise, we end up with 0 concurrency
2367 * and stalling the execution.
2368 */
2369 if (need_more_worker(pool))
2370 wake_up_worker(pool);
2371
2372 rescuer->pool = NULL;
2373 spin_unlock_irq(&pool->lock);
2374
2375 worker_detach_from_pool(rescuer, pool);
2376
2377 spin_lock_irq(&wq_mayday_lock);
2378 }
2379
2380 spin_unlock_irq(&wq_mayday_lock);
2381
2382 if (should_stop) {
2383 __set_current_state(TASK_RUNNING);
2384 rescuer->task->flags &= ~PF_WQ_WORKER;
2385 return 0;
2386 }
2387
2388 /* rescuers should never participate in concurrency management */
2389 WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
2390 schedule();
2391 goto repeat;
2392 }
2393
2394 /**
2395 * check_flush_dependency - check for flush dependency sanity
2396 * @target_wq: workqueue being flushed
2397 * @target_work: work item being flushed (NULL for workqueue flushes)
2398 *
2399 * %current is trying to flush the whole @target_wq or @target_work on it.
2400 * If @target_wq doesn't have %WQ_MEM_RECLAIM, verify that %current is not
2401 * reclaiming memory or running on a workqueue which doesn't have
2402 * %WQ_MEM_RECLAIM as that can break forward-progress guarantee leading to
2403 * a deadlock.
2404 */
2405 static void check_flush_dependency(struct workqueue_struct *target_wq,
2406 struct work_struct *target_work)
2407 {
2408 work_func_t target_func = target_work ? target_work->func : NULL;
2409 struct worker *worker;
2410
2411 if (target_wq->flags & WQ_MEM_RECLAIM)
2412 return;
2413
2414 worker = current_wq_worker();
2415
2416 WARN_ONCE(current->flags & PF_MEMALLOC,
2417 "workqueue: PF_MEMALLOC task %d(%s) is flushing !WQ_MEM_RECLAIM %s:%pf",
2418 current->pid, current->comm, target_wq->name, target_func);
2419 WARN_ONCE(worker && ((worker->current_pwq->wq->flags &
2420 (WQ_MEM_RECLAIM | __WQ_LEGACY)) == WQ_MEM_RECLAIM),
2421 "workqueue: WQ_MEM_RECLAIM %s:%pf is flushing !WQ_MEM_RECLAIM %s:%pf",
2422 worker->current_pwq->wq->name, worker->current_func,
2423 target_wq->name, target_func);
2424 }
2425
2426 struct wq_barrier {
2427 struct work_struct work;
2428 struct completion done;
2429 struct task_struct *task; /* purely informational */
2430 };
2431
2432 static void wq_barrier_func(struct work_struct *work)
2433 {
2434 struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
2435 complete(&barr->done);
2436 }
2437
2438 /**
2439 * insert_wq_barrier - insert a barrier work
2440 * @pwq: pwq to insert barrier into
2441 * @barr: wq_barrier to insert
2442 * @target: target work to attach @barr to
2443 * @worker: worker currently executing @target, NULL if @target is not executing
2444 *
2445 * @barr is linked to @target such that @barr is completed only after
2446 * @target finishes execution. Please note that the ordering
2447 * guarantee is observed only with respect to @target and on the local
2448 * cpu.
2449 *
2450 * Currently, a queued barrier can't be canceled. This is because
2451 * try_to_grab_pending() can't determine whether the work to be
2452 * grabbed is at the head of the queue and thus can't clear LINKED
2453 * flag of the previous work while there must be a valid next work
2454 * after a work with LINKED flag set.
2455 *
2456 * Note that when @worker is non-NULL, @target may be modified
2457 * underneath us, so we can't reliably determine pwq from @target.
2458 *
2459 * CONTEXT:
2460 * spin_lock_irq(pool->lock).
2461 */
2462 static void insert_wq_barrier(struct pool_workqueue *pwq,
2463 struct wq_barrier *barr,
2464 struct work_struct *target, struct worker *worker)
2465 {
2466 struct list_head *head;
2467 unsigned int linked = 0;
2468
2469 /*
2470 * debugobject calls are safe here even with pool->lock locked
2471 * as we know for sure that this will not trigger any of the
2472 * checks and call back into the fixup functions where we
2473 * might deadlock.
2474 */
2475 INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
2476 __set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
2477 init_completion(&barr->done);
2478 barr->task = current;
2479
2480 /*
2481 * If @target is currently being executed, schedule the
2482 * barrier to the worker; otherwise, put it after @target.
2483 */
2484 if (worker)
2485 head = worker->scheduled.next;
2486 else {
2487 unsigned long *bits = work_data_bits(target);
2488
2489 head = target->entry.next;
2490 /* there can already be other linked works, inherit and set */
2491 linked = *bits & WORK_STRUCT_LINKED;
2492 __set_bit(WORK_STRUCT_LINKED_BIT, bits);
2493 }
2494
2495 debug_work_activate(&barr->work);
2496 insert_work(pwq, &barr->work, head,
2497 work_color_to_flags(WORK_NO_COLOR) | linked);
2498 }
2499
2500 /**
2501 * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing
2502 * @wq: workqueue being flushed
2503 * @flush_color: new flush color, < 0 for no-op
2504 * @work_color: new work color, < 0 for no-op
2505 *
2506 * Prepare pwqs for workqueue flushing.
2507 *
2508 * If @flush_color is non-negative, flush_color on all pwqs should be
2509 * -1. If no pwq has in-flight commands at the specified color, all
2510 * pwq->flush_color's stay at -1 and %false is returned. If any pwq
2511 * has in flight commands, its pwq->flush_color is set to
2512 * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq
2513 * wakeup logic is armed and %true is returned.
2514 *
2515 * The caller should have initialized @wq->first_flusher prior to
2516 * calling this function with non-negative @flush_color. If
2517 * @flush_color is negative, no flush color update is done and %false
2518 * is returned.
2519 *
2520 * If @work_color is non-negative, all pwqs should have the same
2521 * work_color which is previous to @work_color and all will be
2522 * advanced to @work_color.
2523 *
2524 * CONTEXT:
2525 * mutex_lock(wq->mutex).
2526 *
2527 * Return:
2528 * %true if @flush_color >= 0 and there's something to flush. %false
2529 * otherwise.
2530 */
2531 static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq,
2532 int flush_color, int work_color)
2533 {
2534 bool wait = false;
2535 struct pool_workqueue *pwq;
2536
2537 if (flush_color >= 0) {
2538 WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush));
2539 atomic_set(&wq->nr_pwqs_to_flush, 1);
2540 }
2541
2542 for_each_pwq(pwq, wq) {
2543 struct worker_pool *pool = pwq->pool;
2544
2545 spin_lock_irq(&pool->lock);
2546
2547 if (flush_color >= 0) {
2548 WARN_ON_ONCE(pwq->flush_color != -1);
2549
2550 if (pwq->nr_in_flight[flush_color]) {
2551 pwq->flush_color = flush_color;
2552 atomic_inc(&wq->nr_pwqs_to_flush);
2553 wait = true;
2554 }
2555 }
2556
2557 if (work_color >= 0) {
2558 WARN_ON_ONCE(work_color != work_next_color(pwq->work_color));
2559 pwq->work_color = work_color;
2560 }
2561
2562 spin_unlock_irq(&pool->lock);
2563 }
2564
2565 if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush))
2566 complete(&wq->first_flusher->done);
2567
2568 return wait;
2569 }
2570
2571 /**
2572 * flush_workqueue - ensure that any scheduled work has run to completion.
2573 * @wq: workqueue to flush
2574 *
2575 * This function sleeps until all work items which were queued on entry
2576 * have finished execution, but it is not livelocked by new incoming ones.
2577 */
2578 void flush_workqueue(struct workqueue_struct *wq)
2579 {
2580 struct wq_flusher this_flusher = {
2581 .list = LIST_HEAD_INIT(this_flusher.list),
2582 .flush_color = -1,
2583 .done = COMPLETION_INITIALIZER_ONSTACK(this_flusher.done),
2584 };
2585 int next_color;
2586
2587 if (WARN_ON(!wq_online))
2588 return;
2589
2590 lock_map_acquire(&wq->lockdep_map);
2591 lock_map_release(&wq->lockdep_map);
2592
2593 mutex_lock(&wq->mutex);
2594
2595 /*
2596 * Start-to-wait phase
2597 */
2598 next_color = work_next_color(wq->work_color);
2599
2600 if (next_color != wq->flush_color) {
2601 /*
2602 * Color space is not full. The current work_color
2603 * becomes our flush_color and work_color is advanced
2604 * by one.
2605 */
2606 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow));
2607 this_flusher.flush_color = wq->work_color;
2608 wq->work_color = next_color;
2609
2610 if (!wq->first_flusher) {
2611 /* no flush in progress, become the first flusher */
2612 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2613
2614 wq->first_flusher = &this_flusher;
2615
2616 if (!flush_workqueue_prep_pwqs(wq, wq->flush_color,
2617 wq->work_color)) {
2618 /* nothing to flush, done */
2619 wq->flush_color = next_color;
2620 wq->first_flusher = NULL;
2621 goto out_unlock;
2622 }
2623 } else {
2624 /* wait in queue */
2625 WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color);
2626 list_add_tail(&this_flusher.list, &wq->flusher_queue);
2627 flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2628 }
2629 } else {
2630 /*
2631 * Oops, color space is full, wait on overflow queue.
2632 * The next flush completion will assign us
2633 * flush_color and transfer to flusher_queue.
2634 */
2635 list_add_tail(&this_flusher.list, &wq->flusher_overflow);
2636 }
2637
2638 check_flush_dependency(wq, NULL);
2639
2640 mutex_unlock(&wq->mutex);
2641
2642 wait_for_completion(&this_flusher.done);
2643
2644 /*
2645 * Wake-up-and-cascade phase
2646 *
2647 * First flushers are responsible for cascading flushes and
2648 * handling overflow. Non-first flushers can simply return.
2649 */
2650 if (wq->first_flusher != &this_flusher)
2651 return;
2652
2653 mutex_lock(&wq->mutex);
2654
2655 /* we might have raced, check again with mutex held */
2656 if (wq->first_flusher != &this_flusher)
2657 goto out_unlock;
2658
2659 wq->first_flusher = NULL;
2660
2661 WARN_ON_ONCE(!list_empty(&this_flusher.list));
2662 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2663
2664 while (true) {
2665 struct wq_flusher *next, *tmp;
2666
2667 /* complete all the flushers sharing the current flush color */
2668 list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
2669 if (next->flush_color != wq->flush_color)
2670 break;
2671 list_del_init(&next->list);
2672 complete(&next->done);
2673 }
2674
2675 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) &&
2676 wq->flush_color != work_next_color(wq->work_color));
2677
2678 /* this flush_color is finished, advance by one */
2679 wq->flush_color = work_next_color(wq->flush_color);
2680
2681 /* one color has been freed, handle overflow queue */
2682 if (!list_empty(&wq->flusher_overflow)) {
2683 /*
2684 * Assign the same color to all overflowed
2685 * flushers, advance work_color and append to
2686 * flusher_queue. This is the start-to-wait
2687 * phase for these overflowed flushers.
2688 */
2689 list_for_each_entry(tmp, &wq->flusher_overflow, list)
2690 tmp->flush_color = wq->work_color;
2691
2692 wq->work_color = work_next_color(wq->work_color);
2693
2694 list_splice_tail_init(&wq->flusher_overflow,
2695 &wq->flusher_queue);
2696 flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2697 }
2698
2699 if (list_empty(&wq->flusher_queue)) {
2700 WARN_ON_ONCE(wq->flush_color != wq->work_color);
2701 break;
2702 }
2703
2704 /*
2705 * Need to flush more colors. Make the next flusher
2706 * the new first flusher and arm pwqs.
2707 */
2708 WARN_ON_ONCE(wq->flush_color == wq->work_color);
2709 WARN_ON_ONCE(wq->flush_color != next->flush_color);
2710
2711 list_del_init(&next->list);
2712 wq->first_flusher = next;
2713
2714 if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1))
2715 break;
2716
2717 /*
2718 * Meh... this color is already done, clear first
2719 * flusher and repeat cascading.
2720 */
2721 wq->first_flusher = NULL;
2722 }
2723
2724 out_unlock:
2725 mutex_unlock(&wq->mutex);
2726 }
2727 EXPORT_SYMBOL(flush_workqueue);
2728
2729 /**
2730 * drain_workqueue - drain a workqueue
2731 * @wq: workqueue to drain
2732 *
2733 * Wait until the workqueue becomes empty. While draining is in progress,
2734 * only chain queueing is allowed. IOW, only currently pending or running
2735 * work items on @wq can queue further work items on it. @wq is flushed
2736 * repeatedly until it becomes empty. The number of flushing is determined
2737 * by the depth of chaining and should be relatively short. Whine if it
2738 * takes too long.
2739 */
2740 void drain_workqueue(struct workqueue_struct *wq)
2741 {
2742 unsigned int flush_cnt = 0;
2743 struct pool_workqueue *pwq;
2744
2745 /*
2746 * __queue_work() needs to test whether there are drainers, is much
2747 * hotter than drain_workqueue() and already looks at @wq->flags.
2748 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers.
2749 */
2750 mutex_lock(&wq->mutex);
2751 if (!wq->nr_drainers++)
2752 wq->flags |= __WQ_DRAINING;
2753 mutex_unlock(&wq->mutex);
2754 reflush:
2755 flush_workqueue(wq);
2756
2757 mutex_lock(&wq->mutex);
2758
2759 for_each_pwq(pwq, wq) {
2760 bool drained;
2761
2762 spin_lock_irq(&pwq->pool->lock);
2763 drained = !pwq->nr_active && list_empty(&pwq->delayed_works);
2764 spin_unlock_irq(&pwq->pool->lock);
2765
2766 if (drained)
2767 continue;
2768
2769 if (++flush_cnt == 10 ||
2770 (flush_cnt % 100 == 0 && flush_cnt <= 1000))
2771 pr_warn("workqueue %s: drain_workqueue() isn't complete after %u tries\n",
2772 wq->name, flush_cnt);
2773
2774 mutex_unlock(&wq->mutex);
2775 goto reflush;
2776 }
2777
2778 if (!--wq->nr_drainers)
2779 wq->flags &= ~__WQ_DRAINING;
2780 mutex_unlock(&wq->mutex);
2781 }
2782 EXPORT_SYMBOL_GPL(drain_workqueue);
2783
2784 static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr)
2785 {
2786 struct worker *worker = NULL;
2787 struct worker_pool *pool;
2788 struct pool_workqueue *pwq;
2789
2790 might_sleep();
2791
2792 local_irq_disable();
2793 pool = get_work_pool(work);
2794 if (!pool) {
2795 local_irq_enable();
2796 return false;
2797 }
2798
2799 spin_lock(&pool->lock);
2800 /* see the comment in try_to_grab_pending() with the same code */
2801 pwq = get_work_pwq(work);
2802 if (pwq) {
2803 if (unlikely(pwq->pool != pool))
2804 goto already_gone;
2805 } else {
2806 worker = find_worker_executing_work(pool, work);
2807 if (!worker)
2808 goto already_gone;
2809 pwq = worker->current_pwq;
2810 }
2811
2812 check_flush_dependency(pwq->wq, work);
2813
2814 insert_wq_barrier(pwq, barr, work, worker);
2815 spin_unlock_irq(&pool->lock);
2816
2817 /*
2818 * If @max_active is 1 or rescuer is in use, flushing another work
2819 * item on the same workqueue may lead to deadlock. Make sure the
2820 * flusher is not running on the same workqueue by verifying write
2821 * access.
2822 */
2823 if (pwq->wq->saved_max_active == 1 || pwq->wq->rescuer)
2824 lock_map_acquire(&pwq->wq->lockdep_map);
2825 else
2826 lock_map_acquire_read(&pwq->wq->lockdep_map);
2827 lock_map_release(&pwq->wq->lockdep_map);
2828
2829 return true;
2830 already_gone:
2831 spin_unlock_irq(&pool->lock);
2832 return false;
2833 }
2834
2835 /**
2836 * flush_work - wait for a work to finish executing the last queueing instance
2837 * @work: the work to flush
2838 *
2839 * Wait until @work has finished execution. @work is guaranteed to be idle
2840 * on return if it hasn't been requeued since flush started.
2841 *
2842 * Return:
2843 * %true if flush_work() waited for the work to finish execution,
2844 * %false if it was already idle.
2845 */
2846 bool flush_work(struct work_struct *work)
2847 {
2848 struct wq_barrier barr;
2849
2850 if (WARN_ON(!wq_online))
2851 return false;
2852
2853 lock_map_acquire(&work->lockdep_map);
2854 lock_map_release(&work->lockdep_map);
2855
2856 if (start_flush_work(work, &barr)) {
2857 wait_for_completion(&barr.done);
2858 destroy_work_on_stack(&barr.work);
2859 return true;
2860 } else {
2861 return false;
2862 }
2863 }
2864 EXPORT_SYMBOL_GPL(flush_work);
2865
2866 struct cwt_wait {
2867 wait_queue_entry_t wait;
2868 struct work_struct *work;
2869 };
2870
2871 static int cwt_wakefn(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
2872 {
2873 struct cwt_wait *cwait = container_of(wait, struct cwt_wait, wait);
2874
2875 if (cwait->work != key)
2876 return 0;
2877 return autoremove_wake_function(wait, mode, sync, key);
2878 }
2879
2880 static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
2881 {
2882 static DECLARE_WAIT_QUEUE_HEAD(cancel_waitq);
2883 unsigned long flags;
2884 int ret;
2885
2886 do {
2887 ret = try_to_grab_pending(work, is_dwork, &flags);
2888 /*
2889 * If someone else is already canceling, wait for it to
2890 * finish. flush_work() doesn't work for PREEMPT_NONE
2891 * because we may get scheduled between @work's completion
2892 * and the other canceling task resuming and clearing
2893 * CANCELING - flush_work() will return false immediately
2894 * as @work is no longer busy, try_to_grab_pending() will
2895 * return -ENOENT as @work is still being canceled and the
2896 * other canceling task won't be able to clear CANCELING as
2897 * we're hogging the CPU.
2898 *
2899 * Let's wait for completion using a waitqueue. As this
2900 * may lead to the thundering herd problem, use a custom
2901 * wake function which matches @work along with exclusive
2902 * wait and wakeup.
2903 */
2904 if (unlikely(ret == -ENOENT)) {
2905 struct cwt_wait cwait;
2906
2907 init_wait(&cwait.wait);
2908 cwait.wait.func = cwt_wakefn;
2909 cwait.work = work;
2910
2911 prepare_to_wait_exclusive(&cancel_waitq, &cwait.wait,
2912 TASK_UNINTERRUPTIBLE);
2913 if (work_is_canceling(work))
2914 schedule();
2915 finish_wait(&cancel_waitq, &cwait.wait);
2916 }
2917 } while (unlikely(ret < 0));
2918
2919 /* tell other tasks trying to grab @work to back off */
2920 mark_work_canceling(work);
2921 local_irq_restore(flags);
2922
2923 /*
2924 * This allows canceling during early boot. We know that @work
2925 * isn't executing.
2926 */
2927 if (wq_online)
2928 flush_work(work);
2929
2930 clear_work_data(work);
2931
2932 /*
2933 * Paired with prepare_to_wait() above so that either
2934 * waitqueue_active() is visible here or !work_is_canceling() is
2935 * visible there.
2936 */
2937 smp_mb();
2938 if (waitqueue_active(&cancel_waitq))
2939 __wake_up(&cancel_waitq, TASK_NORMAL, 1, work);
2940
2941 return ret;
2942 }
2943
2944 /**
2945 * cancel_work_sync - cancel a work and wait for it to finish
2946 * @work: the work to cancel
2947 *
2948 * Cancel @work and wait for its execution to finish. This function
2949 * can be used even if the work re-queues itself or migrates to
2950 * another workqueue. On return from this function, @work is
2951 * guaranteed to be not pending or executing on any CPU.
2952 *
2953 * cancel_work_sync(&delayed_work->work) must not be used for
2954 * delayed_work's. Use cancel_delayed_work_sync() instead.
2955 *
2956 * The caller must ensure that the workqueue on which @work was last
2957 * queued can't be destroyed before this function returns.
2958 *
2959 * Return:
2960 * %true if @work was pending, %false otherwise.
2961 */
2962 bool cancel_work_sync(struct work_struct *work)
2963 {
2964 return __cancel_work_timer(work, false);
2965 }
2966 EXPORT_SYMBOL_GPL(cancel_work_sync);
2967
2968 /**
2969 * flush_delayed_work - wait for a dwork to finish executing the last queueing
2970 * @dwork: the delayed work to flush
2971 *
2972 * Delayed timer is cancelled and the pending work is queued for
2973 * immediate execution. Like flush_work(), this function only
2974 * considers the last queueing instance of @dwork.
2975 *
2976 * Return:
2977 * %true if flush_work() waited for the work to finish execution,
2978 * %false if it was already idle.
2979 */
2980 bool flush_delayed_work(struct delayed_work *dwork)
2981 {
2982 local_irq_disable();
2983 if (del_timer_sync(&dwork->timer))
2984 __queue_work(dwork->cpu, dwork->wq, &dwork->work);
2985 local_irq_enable();
2986 return flush_work(&dwork->work);
2987 }
2988 EXPORT_SYMBOL(flush_delayed_work);
2989
2990 static bool __cancel_work(struct work_struct *work, bool is_dwork)
2991 {
2992 unsigned long flags;
2993 int ret;
2994
2995 do {
2996 ret = try_to_grab_pending(work, is_dwork, &flags);
2997 } while (unlikely(ret == -EAGAIN));
2998
2999 if (unlikely(ret < 0))
3000 return false;
3001
3002 set_work_pool_and_clear_pending(work, get_work_pool_id(work));
3003 local_irq_restore(flags);
3004 return ret;
3005 }
3006
3007 /*
3008 * See cancel_delayed_work()
3009 */
3010 bool cancel_work(struct work_struct *work)
3011 {
3012 return __cancel_work(work, false);
3013 }
3014
3015 /**
3016 * cancel_delayed_work - cancel a delayed work
3017 * @dwork: delayed_work to cancel
3018 *
3019 * Kill off a pending delayed_work.
3020 *
3021 * Return: %true if @dwork was pending and canceled; %false if it wasn't
3022 * pending.
3023 *
3024 * Note:
3025 * The work callback function may still be running on return, unless
3026 * it returns %true and the work doesn't re-arm itself. Explicitly flush or
3027 * use cancel_delayed_work_sync() to wait on it.
3028 *
3029 * This function is safe to call from any context including IRQ handler.
3030 */
3031 bool cancel_delayed_work(struct delayed_work *dwork)
3032 {
3033 return __cancel_work(&dwork->work, true);
3034 }
3035 EXPORT_SYMBOL(cancel_delayed_work);
3036
3037 /**
3038 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
3039 * @dwork: the delayed work cancel
3040 *
3041 * This is cancel_work_sync() for delayed works.
3042 *
3043 * Return:
3044 * %true if @dwork was pending, %false otherwise.
3045 */
3046 bool cancel_delayed_work_sync(struct delayed_work *dwork)
3047 {
3048 return __cancel_work_timer(&dwork->work, true);
3049 }
3050 EXPORT_SYMBOL(cancel_delayed_work_sync);
3051
3052 /**
3053 * schedule_on_each_cpu - execute a function synchronously on each online CPU
3054 * @func: the function to call
3055 *
3056 * schedule_on_each_cpu() executes @func on each online CPU using the
3057 * system workqueue and blocks until all CPUs have completed.
3058 * schedule_on_each_cpu() is very slow.
3059 *
3060 * Return:
3061 * 0 on success, -errno on failure.
3062 */
3063 int schedule_on_each_cpu(work_func_t func)
3064 {
3065 int cpu;
3066 struct work_struct __percpu *works;
3067
3068 works = alloc_percpu(struct work_struct);
3069 if (!works)
3070 return -ENOMEM;
3071
3072 get_online_cpus();
3073
3074 for_each_online_cpu(cpu) {
3075 struct work_struct *work = per_cpu_ptr(works, cpu);
3076
3077 INIT_WORK(work, func);
3078 schedule_work_on(cpu, work);
3079 }
3080
3081 for_each_online_cpu(cpu)
3082 flush_work(per_cpu_ptr(works, cpu));
3083
3084 put_online_cpus();
3085 free_percpu(works);
3086 return 0;
3087 }
3088
3089 /**
3090 * execute_in_process_context - reliably execute the routine with user context
3091 * @fn: the function to execute
3092 * @ew: guaranteed storage for the execute work structure (must
3093 * be available when the work executes)
3094 *
3095 * Executes the function immediately if process context is available,
3096 * otherwise schedules the function for delayed execution.
3097 *
3098 * Return: 0 - function was executed
3099 * 1 - function was scheduled for execution
3100 */
3101 int execute_in_process_context(work_func_t fn, struct execute_work *ew)
3102 {
3103 if (!in_interrupt()) {
3104 fn(&ew->work);
3105 return 0;
3106 }
3107
3108 INIT_WORK(&ew->work, fn);
3109 schedule_work(&ew->work);
3110
3111 return 1;
3112 }
3113 EXPORT_SYMBOL_GPL(execute_in_process_context);
3114
3115 /**
3116 * free_workqueue_attrs - free a workqueue_attrs
3117 * @attrs: workqueue_attrs to free
3118 *
3119 * Undo alloc_workqueue_attrs().
3120 */
3121 void free_workqueue_attrs(struct workqueue_attrs *attrs)
3122 {
3123 if (attrs) {
3124 free_cpumask_var(attrs->cpumask);
3125 kfree(attrs);
3126 }
3127 }
3128
3129 /**
3130 * alloc_workqueue_attrs - allocate a workqueue_attrs
3131 * @gfp_mask: allocation mask to use
3132 *
3133 * Allocate a new workqueue_attrs, initialize with default settings and
3134 * return it.
3135 *
3136 * Return: The allocated new workqueue_attr on success. %NULL on failure.
3137 */
3138 struct workqueue_attrs *alloc_workqueue_attrs(gfp_t gfp_mask)
3139 {
3140 struct workqueue_attrs *attrs;
3141
3142 attrs = kzalloc(sizeof(*attrs), gfp_mask);
3143 if (!attrs)
3144 goto fail;
3145 if (!alloc_cpumask_var(&attrs->cpumask, gfp_mask))
3146 goto fail;
3147
3148 cpumask_copy(attrs->cpumask, cpu_possible_mask);
3149 return attrs;
3150 fail:
3151 free_workqueue_attrs(attrs);
3152 return NULL;
3153 }
3154
3155 static void copy_workqueue_attrs(struct workqueue_attrs *to,
3156 const struct workqueue_attrs *from)
3157 {
3158 to->nice = from->nice;
3159 cpumask_copy(to->cpumask, from->cpumask);
3160 /*
3161 * Unlike hash and equality test, this function doesn't ignore
3162 * ->no_numa as it is used for both pool and wq attrs. Instead,
3163 * get_unbound_pool() explicitly clears ->no_numa after copying.
3164 */
3165 to->no_numa = from->no_numa;
3166 }
3167
3168 /* hash value of the content of @attr */
3169 static u32 wqattrs_hash(const struct workqueue_attrs *attrs)
3170 {
3171 u32 hash = 0;
3172
3173 hash = jhash_1word(attrs->nice, hash);
3174 hash = jhash(cpumask_bits(attrs->cpumask),
3175 BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash);
3176 return hash;
3177 }
3178
3179 /* content equality test */
3180 static bool wqattrs_equal(const struct workqueue_attrs *a,
3181 const struct workqueue_attrs *b)
3182 {
3183 if (a->nice != b->nice)
3184 return false;
3185 if (!cpumask_equal(a->cpumask, b->cpumask))
3186 return false;
3187 return true;
3188 }
3189
3190 /**
3191 * init_worker_pool - initialize a newly zalloc'd worker_pool
3192 * @pool: worker_pool to initialize
3193 *
3194 * Initialize a newly zalloc'd @pool. It also allocates @pool->attrs.
3195 *
3196 * Return: 0 on success, -errno on failure. Even on failure, all fields
3197 * inside @pool proper are initialized and put_unbound_pool() can be called
3198 * on @pool safely to release it.
3199 */
3200 static int init_worker_pool(struct worker_pool *pool)
3201 {
3202 spin_lock_init(&pool->lock);
3203 pool->id = -1;
3204 pool->cpu = -1;
3205 pool->node = NUMA_NO_NODE;
3206 pool->flags |= POOL_DISASSOCIATED;
3207 pool->watchdog_ts = jiffies;
3208 INIT_LIST_HEAD(&pool->worklist);
3209 INIT_LIST_HEAD(&pool->idle_list);
3210 hash_init(pool->busy_hash);
3211
3212 setup_deferrable_timer(&pool->idle_timer, idle_worker_timeout,
3213 (unsigned long)pool);
3214
3215 setup_timer(&pool->mayday_timer, pool_mayday_timeout,
3216 (unsigned long)pool);
3217
3218 mutex_init(&pool->manager_arb);
3219 mutex_init(&pool->attach_mutex);
3220 INIT_LIST_HEAD(&pool->workers);
3221
3222 ida_init(&pool->worker_ida);
3223 INIT_HLIST_NODE(&pool->hash_node);
3224 pool->refcnt = 1;
3225
3226 /* shouldn't fail above this point */
3227 pool->attrs = alloc_workqueue_attrs(GFP_KERNEL);
3228 if (!pool->attrs)
3229 return -ENOMEM;
3230 return 0;
3231 }
3232
3233 static void rcu_free_wq(struct rcu_head *rcu)
3234 {
3235 struct workqueue_struct *wq =
3236 container_of(rcu, struct workqueue_struct, rcu);
3237
3238 if (!(wq->flags & WQ_UNBOUND))
3239 free_percpu(wq->cpu_pwqs);
3240 else
3241 free_workqueue_attrs(wq->unbound_attrs);
3242
3243 kfree(wq->rescuer);
3244 kfree(wq);
3245 }
3246
3247 static void rcu_free_pool(struct rcu_head *rcu)
3248 {
3249 struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu);
3250
3251 ida_destroy(&pool->worker_ida);
3252 free_workqueue_attrs(pool->attrs);
3253 kfree(pool);
3254 }
3255
3256 /**
3257 * put_unbound_pool - put a worker_pool
3258 * @pool: worker_pool to put
3259 *
3260 * Put @pool. If its refcnt reaches zero, it gets destroyed in sched-RCU
3261 * safe manner. get_unbound_pool() calls this function on its failure path
3262 * and this function should be able to release pools which went through,
3263 * successfully or not, init_worker_pool().
3264 *
3265 * Should be called with wq_pool_mutex held.
3266 */
3267 static void put_unbound_pool(struct worker_pool *pool)
3268 {
3269 DECLARE_COMPLETION_ONSTACK(detach_completion);
3270 struct worker *worker;
3271
3272 lockdep_assert_held(&wq_pool_mutex);
3273
3274 if (--pool->refcnt)
3275 return;
3276
3277 /* sanity checks */
3278 if (WARN_ON(!(pool->cpu < 0)) ||
3279 WARN_ON(!list_empty(&pool->worklist)))
3280 return;
3281
3282 /* release id and unhash */
3283 if (pool->id >= 0)
3284 idr_remove(&worker_pool_idr, pool->id);
3285 hash_del(&pool->hash_node);
3286
3287 /*
3288 * Become the manager and destroy all workers. Grabbing
3289 * manager_arb prevents @pool's workers from blocking on
3290 * attach_mutex.
3291 */
3292 mutex_lock(&pool->manager_arb);
3293
3294 spin_lock_irq(&pool->lock);
3295 while ((worker = first_idle_worker(pool)))
3296 destroy_worker(worker);
3297 WARN_ON(pool->nr_workers || pool->nr_idle);
3298 spin_unlock_irq(&pool->lock);
3299
3300 mutex_lock(&pool->attach_mutex);
3301 if (!list_empty(&pool->workers))
3302 pool->detach_completion = &detach_completion;
3303 mutex_unlock(&pool->attach_mutex);
3304
3305 if (pool->detach_completion)
3306 wait_for_completion(pool->detach_completion);
3307
3308 mutex_unlock(&pool->manager_arb);
3309
3310 /* shut down the timers */
3311 del_timer_sync(&pool->idle_timer);
3312 del_timer_sync(&pool->mayday_timer);
3313
3314 /* sched-RCU protected to allow dereferences from get_work_pool() */
3315 call_rcu_sched(&pool->rcu, rcu_free_pool);
3316 }
3317
3318 /**
3319 * get_unbound_pool - get a worker_pool with the specified attributes
3320 * @attrs: the attributes of the worker_pool to get
3321 *
3322 * Obtain a worker_pool which has the same attributes as @attrs, bump the
3323 * reference count and return it. If there already is a matching
3324 * worker_pool, it will be used; otherwise, this function attempts to
3325 * create a new one.
3326 *
3327 * Should be called with wq_pool_mutex held.
3328 *
3329 * Return: On success, a worker_pool with the same attributes as @attrs.
3330 * On failure, %NULL.
3331 */
3332 static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs)
3333 {
3334 u32 hash = wqattrs_hash(attrs);
3335 struct worker_pool *pool;
3336 int node;
3337 int target_node = NUMA_NO_NODE;
3338
3339 lockdep_assert_held(&wq_pool_mutex);
3340
3341 /* do we already have a matching pool? */
3342 hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) {
3343 if (wqattrs_equal(pool->attrs, attrs)) {
3344 pool->refcnt++;
3345 return pool;
3346 }
3347 }
3348
3349 /* if cpumask is contained inside a NUMA node, we belong to that node */
3350 if (wq_numa_enabled) {
3351 for_each_node(node) {
3352 if (cpumask_subset(attrs->cpumask,
3353 wq_numa_possible_cpumask[node])) {
3354 target_node = node;
3355 break;
3356 }
3357 }
3358 }
3359
3360 /* nope, create a new one */
3361 pool = kzalloc_node(sizeof(*pool), GFP_KERNEL, target_node);
3362 if (!pool || init_worker_pool(pool) < 0)
3363 goto fail;
3364
3365 lockdep_set_subclass(&pool->lock, 1); /* see put_pwq() */
3366 copy_workqueue_attrs(pool->attrs, attrs);
3367 pool->node = target_node;
3368
3369 /*
3370 * no_numa isn't a worker_pool attribute, always clear it. See
3371 * 'struct workqueue_attrs' comments for detail.
3372 */
3373 pool->attrs->no_numa = false;
3374
3375 if (worker_pool_assign_id(pool) < 0)
3376 goto fail;
3377
3378 /* create and start the initial worker */
3379 if (wq_online && !create_worker(pool))
3380 goto fail;
3381
3382 /* install */
3383 hash_add(unbound_pool_hash, &pool->hash_node, hash);
3384
3385 return pool;
3386 fail:
3387 if (pool)
3388 put_unbound_pool(pool);
3389 return NULL;
3390 }
3391
3392 static void rcu_free_pwq(struct rcu_head *rcu)
3393 {
3394 kmem_cache_free(pwq_cache,
3395 container_of(rcu, struct pool_workqueue, rcu));
3396 }
3397
3398 /*
3399 * Scheduled on system_wq by put_pwq() when an unbound pwq hits zero refcnt
3400 * and needs to be destroyed.
3401 */
3402 static void pwq_unbound_release_workfn(struct work_struct *work)
3403 {
3404 struct pool_workqueue *pwq = container_of(work, struct pool_workqueue,
3405 unbound_release_work);
3406 struct workqueue_struct *wq = pwq->wq;
3407 struct worker_pool *pool = pwq->pool;
3408 bool is_last;
3409
3410 if (WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND)))
3411 return;
3412
3413 mutex_lock(&wq->mutex);
3414 list_del_rcu(&pwq->pwqs_node);
3415 is_last = list_empty(&wq->pwqs);
3416 mutex_unlock(&wq->mutex);
3417
3418 mutex_lock(&wq_pool_mutex);
3419 put_unbound_pool(pool);
3420 mutex_unlock(&wq_pool_mutex);
3421
3422 call_rcu_sched(&pwq->rcu, rcu_free_pwq);
3423
3424 /*
3425 * If we're the last pwq going away, @wq is already dead and no one
3426 * is gonna access it anymore. Schedule RCU free.
3427 */
3428 if (is_last)
3429 call_rcu_sched(&wq->rcu, rcu_free_wq);
3430 }
3431
3432 /**
3433 * pwq_adjust_max_active - update a pwq's max_active to the current setting
3434 * @pwq: target pool_workqueue
3435 *
3436 * If @pwq isn't freezing, set @pwq->max_active to the associated
3437 * workqueue's saved_max_active and activate delayed work items
3438 * accordingly. If @pwq is freezing, clear @pwq->max_active to zero.
3439 */
3440 static void pwq_adjust_max_active(struct pool_workqueue *pwq)
3441 {
3442 struct workqueue_struct *wq = pwq->wq;
3443 bool freezable = wq->flags & WQ_FREEZABLE;
3444 unsigned long flags;
3445
3446 /* for @wq->saved_max_active */
3447 lockdep_assert_held(&wq->mutex);
3448
3449 /* fast exit for non-freezable wqs */
3450 if (!freezable && pwq->max_active == wq->saved_max_active)
3451 return;
3452
3453 /* this function can be called during early boot w/ irq disabled */
3454 spin_lock_irqsave(&pwq->pool->lock, flags);
3455
3456 /*
3457 * During [un]freezing, the caller is responsible for ensuring that
3458 * this function is called at least once after @workqueue_freezing
3459 * is updated and visible.
3460 */
3461 if (!freezable || !workqueue_freezing) {
3462 pwq->max_active = wq->saved_max_active;
3463
3464 while (!list_empty(&pwq->delayed_works) &&
3465 pwq->nr_active < pwq->max_active)
3466 pwq_activate_first_delayed(pwq);
3467
3468 /*
3469 * Need to kick a worker after thawed or an unbound wq's
3470 * max_active is bumped. It's a slow path. Do it always.
3471 */
3472 wake_up_worker(pwq->pool);
3473 } else {
3474 pwq->max_active = 0;
3475 }
3476
3477 spin_unlock_irqrestore(&pwq->pool->lock, flags);
3478 }
3479
3480 /* initialize newly alloced @pwq which is associated with @wq and @pool */
3481 static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq,
3482 struct worker_pool *pool)
3483 {
3484 BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK);
3485
3486 memset(pwq, 0, sizeof(*pwq));
3487
3488 pwq->pool = pool;
3489 pwq->wq = wq;
3490 pwq->flush_color = -1;
3491 pwq->refcnt = 1;
3492 INIT_LIST_HEAD(&pwq->delayed_works);
3493 INIT_LIST_HEAD(&pwq->pwqs_node);
3494 INIT_LIST_HEAD(&pwq->mayday_node);
3495 INIT_WORK(&pwq->unbound_release_work, pwq_unbound_release_workfn);
3496 }
3497
3498 /* sync @pwq with the current state of its associated wq and link it */
3499 static void link_pwq(struct pool_workqueue *pwq)
3500 {
3501 struct workqueue_struct *wq = pwq->wq;
3502
3503 lockdep_assert_held(&wq->mutex);
3504
3505 /* may be called multiple times, ignore if already linked */
3506 if (!list_empty(&pwq->pwqs_node))
3507 return;
3508
3509 /* set the matching work_color */
3510 pwq->work_color = wq->work_color;
3511
3512 /* sync max_active to the current setting */
3513 pwq_adjust_max_active(pwq);
3514
3515 /* link in @pwq */
3516 list_add_rcu(&pwq->pwqs_node, &wq->pwqs);
3517 }
3518
3519 /* obtain a pool matching @attr and create a pwq associating the pool and @wq */
3520 static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq,
3521 const struct workqueue_attrs *attrs)
3522 {
3523 struct worker_pool *pool;
3524 struct pool_workqueue *pwq;
3525
3526 lockdep_assert_held(&wq_pool_mutex);
3527
3528 pool = get_unbound_pool(attrs);
3529 if (!pool)
3530 return NULL;
3531
3532 pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node);
3533 if (!pwq) {
3534 put_unbound_pool(pool);
3535 return NULL;
3536 }
3537
3538 init_pwq(pwq, wq, pool);
3539 return pwq;
3540 }
3541
3542 /**
3543 * wq_calc_node_cpumask - calculate a wq_attrs' cpumask for the specified node
3544 * @attrs: the wq_attrs of the default pwq of the target workqueue
3545 * @node: the target NUMA node
3546 * @cpu_going_down: if >= 0, the CPU to consider as offline
3547 * @cpumask: outarg, the resulting cpumask
3548 *
3549 * Calculate the cpumask a workqueue with @attrs should use on @node. If
3550 * @cpu_going_down is >= 0, that cpu is considered offline during
3551 * calculation. The result is stored in @cpumask.
3552 *
3553 * If NUMA affinity is not enabled, @attrs->cpumask is always used. If
3554 * enabled and @node has online CPUs requested by @attrs, the returned
3555 * cpumask is the intersection of the possible CPUs of @node and
3556 * @attrs->cpumask.
3557 *
3558 * The caller is responsible for ensuring that the cpumask of @node stays
3559 * stable.
3560 *
3561 * Return: %true if the resulting @cpumask is different from @attrs->cpumask,
3562 * %false if equal.
3563 */
3564 static bool wq_calc_node_cpumask(const struct workqueue_attrs *attrs, int node,
3565 int cpu_going_down, cpumask_t *cpumask)
3566 {
3567 if (!wq_numa_enabled || attrs->no_numa)
3568 goto use_dfl;
3569
3570 /* does @node have any online CPUs @attrs wants? */
3571 cpumask_and(cpumask, cpumask_of_node(node), attrs->cpumask);
3572 if (cpu_going_down >= 0)
3573 cpumask_clear_cpu(cpu_going_down, cpumask);
3574
3575 if (cpumask_empty(cpumask))
3576 goto use_dfl;
3577
3578 /* yeap, return possible CPUs in @node that @attrs wants */
3579 cpumask_and(cpumask, attrs->cpumask, wq_numa_possible_cpumask[node]);
3580 return !cpumask_equal(cpumask, attrs->cpumask);
3581
3582 use_dfl:
3583 cpumask_copy(cpumask, attrs->cpumask);
3584 return false;
3585 }
3586
3587 /* install @pwq into @wq's numa_pwq_tbl[] for @node and return the old pwq */
3588 static struct pool_workqueue *numa_pwq_tbl_install(struct workqueue_struct *wq,
3589 int node,
3590 struct pool_workqueue *pwq)
3591 {
3592 struct pool_workqueue *old_pwq;
3593
3594 lockdep_assert_held(&wq_pool_mutex);
3595 lockdep_assert_held(&wq->mutex);
3596
3597 /* link_pwq() can handle duplicate calls */
3598 link_pwq(pwq);
3599
3600 old_pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
3601 rcu_assign_pointer(wq->numa_pwq_tbl[node], pwq);
3602 return old_pwq;
3603 }
3604
3605 /* context to store the prepared attrs & pwqs before applying */
3606 struct apply_wqattrs_ctx {
3607 struct workqueue_struct *wq; /* target workqueue */
3608 struct workqueue_attrs *attrs; /* attrs to apply */
3609 struct list_head list; /* queued for batching commit */
3610 struct pool_workqueue *dfl_pwq;
3611 struct pool_workqueue *pwq_tbl[];
3612 };
3613
3614 /* free the resources after success or abort */
3615 static void apply_wqattrs_cleanup(struct apply_wqattrs_ctx *ctx)
3616 {
3617 if (ctx) {
3618 int node;
3619
3620 for_each_node(node)
3621 put_pwq_unlocked(ctx->pwq_tbl[node]);
3622 put_pwq_unlocked(ctx->dfl_pwq);
3623
3624 free_workqueue_attrs(ctx->attrs);
3625
3626 kfree(ctx);
3627 }
3628 }
3629
3630 /* allocate the attrs and pwqs for later installation */
3631 static struct apply_wqattrs_ctx *
3632 apply_wqattrs_prepare(struct workqueue_struct *wq,
3633 const struct workqueue_attrs *attrs)
3634 {
3635 struct apply_wqattrs_ctx *ctx;
3636 struct workqueue_attrs *new_attrs, *tmp_attrs;
3637 int node;
3638
3639 lockdep_assert_held(&wq_pool_mutex);
3640
3641 ctx = kzalloc(sizeof(*ctx) + nr_node_ids * sizeof(ctx->pwq_tbl[0]),
3642 GFP_KERNEL);
3643
3644 new_attrs = alloc_workqueue_attrs(GFP_KERNEL);
3645 tmp_attrs = alloc_workqueue_attrs(GFP_KERNEL);
3646 if (!ctx || !new_attrs || !tmp_attrs)
3647 goto out_free;
3648
3649 /*
3650 * Calculate the attrs of the default pwq.
3651 * If the user configured cpumask doesn't overlap with the
3652 * wq_unbound_cpumask, we fallback to the wq_unbound_cpumask.
3653 */
3654 copy_workqueue_attrs(new_attrs, attrs);
3655 cpumask_and(new_attrs->cpumask, new_attrs->cpumask, wq_unbound_cpumask);
3656 if (unlikely(cpumask_empty(new_attrs->cpumask)))
3657 cpumask_copy(new_attrs->cpumask, wq_unbound_cpumask);
3658
3659 /*
3660 * We may create multiple pwqs with differing cpumasks. Make a
3661 * copy of @new_attrs which will be modified and used to obtain
3662 * pools.
3663 */
3664 copy_workqueue_attrs(tmp_attrs, new_attrs);
3665
3666 /*
3667 * If something goes wrong during CPU up/down, we'll fall back to
3668 * the default pwq covering whole @attrs->cpumask. Always create
3669 * it even if we don't use it immediately.
3670 */
3671 ctx->dfl_pwq = alloc_unbound_pwq(wq, new_attrs);
3672 if (!ctx->dfl_pwq)
3673 goto out_free;
3674
3675 for_each_node(node) {
3676 if (wq_calc_node_cpumask(new_attrs, node, -1, tmp_attrs->cpumask)) {
3677 ctx->pwq_tbl[node] = alloc_unbound_pwq(wq, tmp_attrs);
3678 if (!ctx->pwq_tbl[node])
3679 goto out_free;
3680 } else {
3681 ctx->dfl_pwq->refcnt++;
3682 ctx->pwq_tbl[node] = ctx->dfl_pwq;
3683 }
3684 }
3685
3686 /* save the user configured attrs and sanitize it. */
3687 copy_workqueue_attrs(new_attrs, attrs);
3688 cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask);
3689 ctx->attrs = new_attrs;
3690
3691 ctx->wq = wq;
3692 free_workqueue_attrs(tmp_attrs);
3693 return ctx;
3694
3695 out_free:
3696 free_workqueue_attrs(tmp_attrs);
3697 free_workqueue_attrs(new_attrs);
3698 apply_wqattrs_cleanup(ctx);
3699 return NULL;
3700 }
3701
3702 /* set attrs and install prepared pwqs, @ctx points to old pwqs on return */
3703 static void apply_wqattrs_commit(struct apply_wqattrs_ctx *ctx)
3704 {
3705 int node;
3706
3707 /* all pwqs have been created successfully, let's install'em */
3708 mutex_lock(&ctx->wq->mutex);
3709
3710 copy_workqueue_attrs(ctx->wq->unbound_attrs, ctx->attrs);
3711
3712 /* save the previous pwq and install the new one */
3713 for_each_node(node)
3714 ctx->pwq_tbl[node] = numa_pwq_tbl_install(ctx->wq, node,
3715 ctx->pwq_tbl[node]);
3716
3717 /* @dfl_pwq might not have been used, ensure it's linked */
3718 link_pwq(ctx->dfl_pwq);
3719 swap(ctx->wq->dfl_pwq, ctx->dfl_pwq);
3720
3721 mutex_unlock(&ctx->wq->mutex);
3722 }
3723
3724 static void apply_wqattrs_lock(void)
3725 {
3726 /* CPUs should stay stable across pwq creations and installations */
3727 get_online_cpus();
3728 mutex_lock(&wq_pool_mutex);
3729 }
3730
3731 static void apply_wqattrs_unlock(void)
3732 {
3733 mutex_unlock(&wq_pool_mutex);
3734 put_online_cpus();
3735 }
3736
3737 static int apply_workqueue_attrs_locked(struct workqueue_struct *wq,
3738 const struct workqueue_attrs *attrs)
3739 {
3740 struct apply_wqattrs_ctx *ctx;
3741
3742 /* only unbound workqueues can change attributes */
3743 if (WARN_ON(!(wq->flags & WQ_UNBOUND)))
3744 return -EINVAL;
3745
3746 /* creating multiple pwqs breaks ordering guarantee */
3747 if (WARN_ON((wq->flags & __WQ_ORDERED) && !list_empty(&wq->pwqs)))
3748 return -EINVAL;
3749
3750 ctx = apply_wqattrs_prepare(wq, attrs);
3751 if (!ctx)
3752 return -ENOMEM;
3753
3754 /* the ctx has been prepared successfully, let's commit it */
3755 apply_wqattrs_commit(ctx);
3756 apply_wqattrs_cleanup(ctx);
3757
3758 return 0;
3759 }
3760
3761 /**
3762 * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue
3763 * @wq: the target workqueue
3764 * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs()
3765 *
3766 * Apply @attrs to an unbound workqueue @wq. Unless disabled, on NUMA
3767 * machines, this function maps a separate pwq to each NUMA node with
3768 * possibles CPUs in @attrs->cpumask so that work items are affine to the
3769 * NUMA node it was issued on. Older pwqs are released as in-flight work
3770 * items finish. Note that a work item which repeatedly requeues itself
3771 * back-to-back will stay on its current pwq.
3772 *
3773 * Performs GFP_KERNEL allocations.
3774 *
3775 * Return: 0 on success and -errno on failure.
3776 */
3777 int apply_workqueue_attrs(struct workqueue_struct *wq,
3778 const struct workqueue_attrs *attrs)
3779 {
3780 int ret;
3781
3782 apply_wqattrs_lock();
3783 ret = apply_workqueue_attrs_locked(wq, attrs);
3784 apply_wqattrs_unlock();
3785
3786 return ret;
3787 }
3788
3789 /**
3790 * wq_update_unbound_numa - update NUMA affinity of a wq for CPU hot[un]plug
3791 * @wq: the target workqueue
3792 * @cpu: the CPU coming up or going down
3793 * @online: whether @cpu is coming up or going down
3794 *
3795 * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and
3796 * %CPU_DOWN_FAILED. @cpu is being hot[un]plugged, update NUMA affinity of
3797 * @wq accordingly.
3798 *
3799 * If NUMA affinity can't be adjusted due to memory allocation failure, it
3800 * falls back to @wq->dfl_pwq which may not be optimal but is always
3801 * correct.
3802 *
3803 * Note that when the last allowed CPU of a NUMA node goes offline for a
3804 * workqueue with a cpumask spanning multiple nodes, the workers which were
3805 * already executing the work items for the workqueue will lose their CPU
3806 * affinity and may execute on any CPU. This is similar to how per-cpu
3807 * workqueues behave on CPU_DOWN. If a workqueue user wants strict
3808 * affinity, it's the user's responsibility to flush the work item from
3809 * CPU_DOWN_PREPARE.
3810 */
3811 static void wq_update_unbound_numa(struct workqueue_struct *wq, int cpu,
3812 bool online)
3813 {
3814 int node = cpu_to_node(cpu);
3815 int cpu_off = online ? -1 : cpu;
3816 struct pool_workqueue *old_pwq = NULL, *pwq;
3817 struct workqueue_attrs *target_attrs;
3818 cpumask_t *cpumask;
3819
3820 lockdep_assert_held(&wq_pool_mutex);
3821
3822 if (!wq_numa_enabled || !(wq->flags & WQ_UNBOUND) ||
3823 wq->unbound_attrs->no_numa)
3824 return;
3825
3826 /*
3827 * We don't wanna alloc/free wq_attrs for each wq for each CPU.
3828 * Let's use a preallocated one. The following buf is protected by
3829 * CPU hotplug exclusion.
3830 */
3831 target_attrs = wq_update_unbound_numa_attrs_buf;
3832 cpumask = target_attrs->cpumask;
3833
3834 copy_workqueue_attrs(target_attrs, wq->unbound_attrs);
3835 pwq = unbound_pwq_by_node(wq, node);
3836
3837 /*
3838 * Let's determine what needs to be done. If the target cpumask is
3839 * different from the default pwq's, we need to compare it to @pwq's
3840 * and create a new one if they don't match. If the target cpumask
3841 * equals the default pwq's, the default pwq should be used.
3842 */
3843 if (wq_calc_node_cpumask(wq->dfl_pwq->pool->attrs, node, cpu_off, cpumask)) {
3844 if (cpumask_equal(cpumask, pwq->pool->attrs->cpumask))
3845 return;
3846 } else {
3847 goto use_dfl_pwq;
3848 }
3849
3850 /* create a new pwq */
3851 pwq = alloc_unbound_pwq(wq, target_attrs);
3852 if (!pwq) {
3853 pr_warn("workqueue: allocation failed while updating NUMA affinity of \"%s\"\n",
3854 wq->name);
3855 goto use_dfl_pwq;
3856 }
3857
3858 /* Install the new pwq. */
3859 mutex_lock(&wq->mutex);
3860 old_pwq = numa_pwq_tbl_install(wq, node, pwq);
3861 goto out_unlock;
3862
3863 use_dfl_pwq:
3864 mutex_lock(&wq->mutex);
3865 spin_lock_irq(&wq->dfl_pwq->pool->lock);
3866 get_pwq(wq->dfl_pwq);
3867 spin_unlock_irq(&wq->dfl_pwq->pool->lock);
3868 old_pwq = numa_pwq_tbl_install(wq, node, wq->dfl_pwq);
3869 out_unlock:
3870 mutex_unlock(&wq->mutex);
3871 put_pwq_unlocked(old_pwq);
3872 }
3873
3874 static int alloc_and_link_pwqs(struct workqueue_struct *wq)
3875 {
3876 bool highpri = wq->flags & WQ_HIGHPRI;
3877 int cpu, ret;
3878
3879 if (!(wq->flags & WQ_UNBOUND)) {
3880 wq->cpu_pwqs = alloc_percpu(struct pool_workqueue);
3881 if (!wq->cpu_pwqs)
3882 return -ENOMEM;
3883
3884 for_each_possible_cpu(cpu) {
3885 struct pool_workqueue *pwq =
3886 per_cpu_ptr(wq->cpu_pwqs, cpu);
3887 struct worker_pool *cpu_pools =
3888 per_cpu(cpu_worker_pools, cpu);
3889
3890 init_pwq(pwq, wq, &cpu_pools[highpri]);
3891
3892 mutex_lock(&wq->mutex);
3893 link_pwq(pwq);
3894 mutex_unlock(&wq->mutex);
3895 }
3896 return 0;
3897 } else if (wq->flags & __WQ_ORDERED) {
3898 ret = apply_workqueue_attrs(wq, ordered_wq_attrs[highpri]);
3899 /* there should only be single pwq for ordering guarantee */
3900 WARN(!ret && (wq->pwqs.next != &wq->dfl_pwq->pwqs_node ||
3901 wq->pwqs.prev != &wq->dfl_pwq->pwqs_node),
3902 "ordering guarantee broken for workqueue %s\n", wq->name);
3903 return ret;
3904 } else {
3905 return apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]);
3906 }
3907 }
3908
3909 static int wq_clamp_max_active(int max_active, unsigned int flags,
3910 const char *name)
3911 {
3912 int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;
3913
3914 if (max_active < 1 || max_active > lim)
3915 pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
3916 max_active, name, 1, lim);
3917
3918 return clamp_val(max_active, 1, lim);
3919 }
3920
3921 struct workqueue_struct *__alloc_workqueue_key(const char *fmt,
3922 unsigned int flags,
3923 int max_active,
3924 struct lock_class_key *key,
3925 const char *lock_name, ...)
3926 {
3927 size_t tbl_size = 0;
3928 va_list args;
3929 struct workqueue_struct *wq;
3930 struct pool_workqueue *pwq;
3931
3932 /* see the comment above the definition of WQ_POWER_EFFICIENT */
3933 if ((flags & WQ_POWER_EFFICIENT) && wq_power_efficient)
3934 flags |= WQ_UNBOUND;
3935
3936 /* allocate wq and format name */
3937 if (flags & WQ_UNBOUND)
3938 tbl_size = nr_node_ids * sizeof(wq->numa_pwq_tbl[0]);
3939
3940 wq = kzalloc(sizeof(*wq) + tbl_size, GFP_KERNEL);
3941 if (!wq)
3942 return NULL;
3943
3944 if (flags & WQ_UNBOUND) {
3945 wq->unbound_attrs = alloc_workqueue_attrs(GFP_KERNEL);
3946 if (!wq->unbound_attrs)
3947 goto err_free_wq;
3948 }
3949
3950 va_start(args, lock_name);
3951 vsnprintf(wq->name, sizeof(wq->name), fmt, args);
3952 va_end(args);
3953
3954 max_active = max_active ?: WQ_DFL_ACTIVE;
3955 max_active = wq_clamp_max_active(max_active, flags, wq->name);
3956
3957 /* init wq */
3958 wq->flags = flags;
3959 wq->saved_max_active = max_active;
3960 mutex_init(&wq->mutex);
3961 atomic_set(&wq->nr_pwqs_to_flush, 0);
3962 INIT_LIST_HEAD(&wq->pwqs);
3963 INIT_LIST_HEAD(&wq->flusher_queue);
3964 INIT_LIST_HEAD(&wq->flusher_overflow);
3965 INIT_LIST_HEAD(&wq->maydays);
3966
3967 lockdep_init_map(&wq->lockdep_map, lock_name, key, 0);
3968 INIT_LIST_HEAD(&wq->list);
3969
3970 if (alloc_and_link_pwqs(wq) < 0)
3971 goto err_free_wq;
3972
3973 /*
3974 * Workqueues which may be used during memory reclaim should
3975 * have a rescuer to guarantee forward progress.
3976 */
3977 if (flags & WQ_MEM_RECLAIM) {
3978 struct worker *rescuer;
3979
3980 rescuer = alloc_worker(NUMA_NO_NODE);
3981 if (!rescuer)
3982 goto err_destroy;
3983
3984 rescuer->rescue_wq = wq;
3985 rescuer->task = kthread_create(rescuer_thread, rescuer, "%s",
3986 wq->name);
3987 if (IS_ERR(rescuer->task)) {
3988 kfree(rescuer);
3989 goto err_destroy;
3990 }
3991
3992 wq->rescuer = rescuer;
3993 kthread_bind_mask(rescuer->task, cpu_possible_mask);
3994 wake_up_process(rescuer->task);
3995 }
3996
3997 if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq))
3998 goto err_destroy;
3999
4000 /*
4001 * wq_pool_mutex protects global freeze state and workqueues list.
4002 * Grab it, adjust max_active and add the new @wq to workqueues
4003 * list.
4004 */
4005 mutex_lock(&wq_pool_mutex);
4006
4007 mutex_lock(&wq->mutex);
4008 for_each_pwq(pwq, wq)
4009 pwq_adjust_max_active(pwq);
4010 mutex_unlock(&wq->mutex);
4011
4012 list_add_tail_rcu(&wq->list, &workqueues);
4013
4014 mutex_unlock(&wq_pool_mutex);
4015
4016 return wq;
4017
4018 err_free_wq:
4019 free_workqueue_attrs(wq->unbound_attrs);
4020 kfree(wq);
4021 return NULL;
4022 err_destroy:
4023 destroy_workqueue(wq);
4024 return NULL;
4025 }
4026 EXPORT_SYMBOL_GPL(__alloc_workqueue_key);
4027
4028 /**
4029 * destroy_workqueue - safely terminate a workqueue
4030 * @wq: target workqueue
4031 *
4032 * Safely destroy a workqueue. All work currently pending will be done first.
4033 */
4034 void destroy_workqueue(struct workqueue_struct *wq)
4035 {
4036 struct pool_workqueue *pwq;
4037 int node;
4038
4039 /* drain it before proceeding with destruction */
4040 drain_workqueue(wq);
4041
4042 /* sanity checks */
4043 mutex_lock(&wq->mutex);
4044 for_each_pwq(pwq, wq) {
4045 int i;
4046
4047 for (i = 0; i < WORK_NR_COLORS; i++) {
4048 if (WARN_ON(pwq->nr_in_flight[i])) {
4049 mutex_unlock(&wq->mutex);
4050 show_workqueue_state();
4051 return;
4052 }
4053 }
4054
4055 if (WARN_ON((pwq != wq->dfl_pwq) && (pwq->refcnt > 1)) ||
4056 WARN_ON(pwq->nr_active) ||
4057 WARN_ON(!list_empty(&pwq->delayed_works))) {
4058 mutex_unlock(&wq->mutex);
4059 show_workqueue_state();
4060 return;
4061 }
4062 }
4063 mutex_unlock(&wq->mutex);
4064
4065 /*
4066 * wq list is used to freeze wq, remove from list after
4067 * flushing is complete in case freeze races us.
4068 */
4069 mutex_lock(&wq_pool_mutex);
4070 list_del_rcu(&wq->list);
4071 mutex_unlock(&wq_pool_mutex);
4072
4073 workqueue_sysfs_unregister(wq);
4074
4075 if (wq->rescuer)
4076 kthread_stop(wq->rescuer->task);
4077
4078 if (!(wq->flags & WQ_UNBOUND)) {
4079 /*
4080 * The base ref is never dropped on per-cpu pwqs. Directly
4081 * schedule RCU free.
4082 */
4083 call_rcu_sched(&wq->rcu, rcu_free_wq);
4084 } else {
4085 /*
4086 * We're the sole accessor of @wq at this point. Directly
4087 * access numa_pwq_tbl[] and dfl_pwq to put the base refs.
4088 * @wq will be freed when the last pwq is released.
4089 */
4090 for_each_node(node) {
4091 pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
4092 RCU_INIT_POINTER(wq->numa_pwq_tbl[node], NULL);
4093 put_pwq_unlocked(pwq);
4094 }
4095
4096 /*
4097 * Put dfl_pwq. @wq may be freed any time after dfl_pwq is
4098 * put. Don't access it afterwards.
4099 */
4100 pwq = wq->dfl_pwq;
4101 wq->dfl_pwq = NULL;
4102 put_pwq_unlocked(pwq);
4103 }
4104 }
4105 EXPORT_SYMBOL_GPL(destroy_workqueue);
4106
4107 /**
4108 * workqueue_set_max_active - adjust max_active of a workqueue
4109 * @wq: target workqueue
4110 * @max_active: new max_active value.
4111 *
4112 * Set max_active of @wq to @max_active.
4113 *
4114 * CONTEXT:
4115 * Don't call from IRQ context.
4116 */
4117 void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
4118 {
4119 struct pool_workqueue *pwq;
4120
4121 /* disallow meddling with max_active for ordered workqueues */
4122 if (WARN_ON(wq->flags & __WQ_ORDERED))
4123 return;
4124
4125 max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
4126
4127 mutex_lock(&wq->mutex);
4128
4129 wq->saved_max_active = max_active;
4130
4131 for_each_pwq(pwq, wq)
4132 pwq_adjust_max_active(pwq);
4133
4134 mutex_unlock(&wq->mutex);
4135 }
4136 EXPORT_SYMBOL_GPL(workqueue_set_max_active);
4137
4138 /**
4139 * current_is_workqueue_rescuer - is %current workqueue rescuer?
4140 *
4141 * Determine whether %current is a workqueue rescuer. Can be used from
4142 * work functions to determine whether it's being run off the rescuer task.
4143 *
4144 * Return: %true if %current is a workqueue rescuer. %false otherwise.
4145 */
4146 bool current_is_workqueue_rescuer(void)
4147 {
4148 struct worker *worker = current_wq_worker();
4149
4150 return worker && worker->rescue_wq;
4151 }
4152
4153 /**
4154 * workqueue_congested - test whether a workqueue is congested
4155 * @cpu: CPU in question
4156 * @wq: target workqueue
4157 *
4158 * Test whether @wq's cpu workqueue for @cpu is congested. There is
4159 * no synchronization around this function and the test result is
4160 * unreliable and only useful as advisory hints or for debugging.
4161 *
4162 * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU.
4163 * Note that both per-cpu and unbound workqueues may be associated with
4164 * multiple pool_workqueues which have separate congested states. A
4165 * workqueue being congested on one CPU doesn't mean the workqueue is also
4166 * contested on other CPUs / NUMA nodes.
4167 *
4168 * Return:
4169 * %true if congested, %false otherwise.
4170 */
4171 bool workqueue_congested(int cpu, struct workqueue_struct *wq)
4172 {
4173 struct pool_workqueue *pwq;
4174 bool ret;
4175
4176 rcu_read_lock_sched();
4177
4178 if (cpu == WORK_CPU_UNBOUND)
4179 cpu = smp_processor_id();
4180
4181 if (!(wq->flags & WQ_UNBOUND))
4182 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
4183 else
4184 pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
4185
4186 ret = !list_empty(&pwq->delayed_works);
4187 rcu_read_unlock_sched();
4188
4189 return ret;
4190 }
4191 EXPORT_SYMBOL_GPL(workqueue_congested);
4192
4193 /**
4194 * work_busy - test whether a work is currently pending or running
4195 * @work: the work to be tested
4196 *
4197 * Test whether @work is currently pending or running. There is no
4198 * synchronization around this function and the test result is
4199 * unreliable and only useful as advisory hints or for debugging.
4200 *
4201 * Return:
4202 * OR'd bitmask of WORK_BUSY_* bits.
4203 */
4204 unsigned int work_busy(struct work_struct *work)
4205 {
4206 struct worker_pool *pool;
4207 unsigned long flags;
4208 unsigned int ret = 0;
4209
4210 if (work_pending(work))
4211 ret |= WORK_BUSY_PENDING;
4212
4213 local_irq_save(flags);
4214 pool = get_work_pool(work);
4215 if (pool) {
4216 spin_lock(&pool->lock);
4217 if (find_worker_executing_work(pool, work))
4218 ret |= WORK_BUSY_RUNNING;
4219 spin_unlock(&pool->lock);
4220 }
4221 local_irq_restore(flags);
4222
4223 return ret;
4224 }
4225 EXPORT_SYMBOL_GPL(work_busy);
4226
4227 /**
4228 * set_worker_desc - set description for the current work item
4229 * @fmt: printf-style format string
4230 * @...: arguments for the format string
4231 *
4232 * This function can be called by a running work function to describe what
4233 * the work item is about. If the worker task gets dumped, this
4234 * information will be printed out together to help debugging. The
4235 * description can be at most WORKER_DESC_LEN including the trailing '\0'.
4236 */
4237 void set_worker_desc(const char *fmt, ...)
4238 {
4239 struct worker *worker = current_wq_worker();
4240 va_list args;
4241
4242 if (worker) {
4243 va_start(args, fmt);
4244 vsnprintf(worker->desc, sizeof(worker->desc), fmt, args);
4245 va_end(args);
4246 worker->desc_valid = true;
4247 }
4248 }
4249
4250 /**
4251 * print_worker_info - print out worker information and description
4252 * @log_lvl: the log level to use when printing
4253 * @task: target task
4254 *
4255 * If @task is a worker and currently executing a work item, print out the
4256 * name of the workqueue being serviced and worker description set with
4257 * set_worker_desc() by the currently executing work item.
4258 *
4259 * This function can be safely called on any task as long as the
4260 * task_struct itself is accessible. While safe, this function isn't
4261 * synchronized and may print out mixups or garbages of limited length.
4262 */
4263 void print_worker_info(const char *log_lvl, struct task_struct *task)
4264 {
4265 work_func_t *fn = NULL;
4266 char name[WQ_NAME_LEN] = { };
4267 char desc[WORKER_DESC_LEN] = { };
4268 struct pool_workqueue *pwq = NULL;
4269 struct workqueue_struct *wq = NULL;
4270 bool desc_valid = false;
4271 struct worker *worker;
4272
4273 if (!(task->flags & PF_WQ_WORKER))
4274 return;
4275
4276 /*
4277 * This function is called without any synchronization and @task
4278 * could be in any state. Be careful with dereferences.
4279 */
4280 worker = kthread_probe_data(task);
4281
4282 /*
4283 * Carefully copy the associated workqueue's workfn and name. Keep
4284 * the original last '\0' in case the original contains garbage.
4285 */
4286 probe_kernel_read(&fn, &worker->current_func, sizeof(fn));
4287 probe_kernel_read(&pwq, &worker->current_pwq, sizeof(pwq));
4288 probe_kernel_read(&wq, &pwq->wq, sizeof(wq));
4289 probe_kernel_read(name, wq->name, sizeof(name) - 1);
4290
4291 /* copy worker description */
4292 probe_kernel_read(&desc_valid, &worker->desc_valid, sizeof(desc_valid));
4293 if (desc_valid)
4294 probe_kernel_read(desc, worker->desc, sizeof(desc) - 1);
4295
4296 if (fn || name[0] || desc[0]) {
4297 printk("%sWorkqueue: %s %pf", log_lvl, name, fn);
4298 if (desc[0])
4299 pr_cont(" (%s)", desc);
4300 pr_cont("\n");
4301 }
4302 }
4303
4304 static void pr_cont_pool_info(struct worker_pool *pool)
4305 {
4306 pr_cont(" cpus=%*pbl", nr_cpumask_bits, pool->attrs->cpumask);
4307 if (pool->node != NUMA_NO_NODE)
4308 pr_cont(" node=%d", pool->node);
4309 pr_cont(" flags=0x%x nice=%d", pool->flags, pool->attrs->nice);
4310 }
4311
4312 static void pr_cont_work(bool comma, struct work_struct *work)
4313 {
4314 if (work->func == wq_barrier_func) {
4315 struct wq_barrier *barr;
4316
4317 barr = container_of(work, struct wq_barrier, work);
4318
4319 pr_cont("%s BAR(%d)", comma ? "," : "",
4320 task_pid_nr(barr->task));
4321 } else {
4322 pr_cont("%s %pf", comma ? "," : "", work->func);
4323 }
4324 }
4325
4326 static void show_pwq(struct pool_workqueue *pwq)
4327 {
4328 struct worker_pool *pool = pwq->pool;
4329 struct work_struct *work;
4330 struct worker *worker;
4331 bool has_in_flight = false, has_pending = false;
4332 int bkt;
4333
4334 pr_info(" pwq %d:", pool->id);
4335 pr_cont_pool_info(pool);
4336
4337 pr_cont(" active=%d/%d%s\n", pwq->nr_active, pwq->max_active,
4338 !list_empty(&pwq->mayday_node) ? " MAYDAY" : "");
4339
4340 hash_for_each(pool->busy_hash, bkt, worker, hentry) {
4341 if (worker->current_pwq == pwq) {
4342 has_in_flight = true;
4343 break;
4344 }
4345 }
4346 if (has_in_flight) {
4347 bool comma = false;
4348
4349 pr_info(" in-flight:");
4350 hash_for_each(pool->busy_hash, bkt, worker, hentry) {
4351 if (worker->current_pwq != pwq)
4352 continue;
4353
4354 pr_cont("%s %d%s:%pf", comma ? "," : "",
4355 task_pid_nr(worker->task),
4356 worker == pwq->wq->rescuer ? "(RESCUER)" : "",
4357 worker->current_func);
4358 list_for_each_entry(work, &worker->scheduled, entry)
4359 pr_cont_work(false, work);
4360 comma = true;
4361 }
4362 pr_cont("\n");
4363 }
4364
4365 list_for_each_entry(work, &pool->worklist, entry) {
4366 if (get_work_pwq(work) == pwq) {
4367 has_pending = true;
4368 break;
4369 }
4370 }
4371 if (has_pending) {
4372 bool comma = false;
4373
4374 pr_info(" pending:");
4375 list_for_each_entry(work, &pool->worklist, entry) {
4376 if (get_work_pwq(work) != pwq)
4377 continue;
4378
4379 pr_cont_work(comma, work);
4380 comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
4381 }
4382 pr_cont("\n");
4383 }
4384
4385 if (!list_empty(&pwq->delayed_works)) {
4386 bool comma = false;
4387
4388 pr_info(" delayed:");
4389 list_for_each_entry(work, &pwq->delayed_works, entry) {
4390 pr_cont_work(comma, work);
4391 comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
4392 }
4393 pr_cont("\n");
4394 }
4395 }
4396
4397 /**
4398 * show_workqueue_state - dump workqueue state
4399 *
4400 * Called from a sysrq handler or try_to_freeze_tasks() and prints out
4401 * all busy workqueues and pools.
4402 */
4403 void show_workqueue_state(void)
4404 {
4405 struct workqueue_struct *wq;
4406 struct worker_pool *pool;
4407 unsigned long flags;
4408 int pi;
4409
4410 rcu_read_lock_sched();
4411
4412 pr_info("Showing busy workqueues and worker pools:\n");
4413
4414 list_for_each_entry_rcu(wq, &workqueues, list) {
4415 struct pool_workqueue *pwq;
4416 bool idle = true;
4417
4418 for_each_pwq(pwq, wq) {
4419 if (pwq->nr_active || !list_empty(&pwq->delayed_works)) {
4420 idle = false;
4421 break;
4422 }
4423 }
4424 if (idle)
4425 continue;
4426
4427 pr_info("workqueue %s: flags=0x%x\n", wq->name, wq->flags);
4428
4429 for_each_pwq(pwq, wq) {
4430 spin_lock_irqsave(&pwq->pool->lock, flags);
4431 if (pwq->nr_active || !list_empty(&pwq->delayed_works))
4432 show_pwq(pwq);
4433 spin_unlock_irqrestore(&pwq->pool->lock, flags);
4434 }
4435 }
4436
4437 for_each_pool(pool, pi) {
4438 struct worker *worker;
4439 bool first = true;
4440
4441 spin_lock_irqsave(&pool->lock, flags);
4442 if (pool->nr_workers == pool->nr_idle)
4443 goto next_pool;
4444
4445 pr_info("pool %d:", pool->id);
4446 pr_cont_pool_info(pool);
4447 pr_cont(" hung=%us workers=%d",
4448 jiffies_to_msecs(jiffies - pool->watchdog_ts) / 1000,
4449 pool->nr_workers);
4450 if (pool->manager)
4451 pr_cont(" manager: %d",
4452 task_pid_nr(pool->manager->task));
4453 list_for_each_entry(worker, &pool->idle_list, entry) {
4454 pr_cont(" %s%d", first ? "idle: " : "",
4455 task_pid_nr(worker->task));
4456 first = false;
4457 }
4458 pr_cont("\n");
4459 next_pool:
4460 spin_unlock_irqrestore(&pool->lock, flags);
4461 }
4462
4463 rcu_read_unlock_sched();
4464 }
4465
4466 /*
4467 * CPU hotplug.
4468 *
4469 * There are two challenges in supporting CPU hotplug. Firstly, there
4470 * are a lot of assumptions on strong associations among work, pwq and
4471 * pool which make migrating pending and scheduled works very
4472 * difficult to implement without impacting hot paths. Secondly,
4473 * worker pools serve mix of short, long and very long running works making
4474 * blocked draining impractical.
4475 *
4476 * This is solved by allowing the pools to be disassociated from the CPU
4477 * running as an unbound one and allowing it to be reattached later if the
4478 * cpu comes back online.
4479 */
4480
4481 static void wq_unbind_fn(struct work_struct *work)
4482 {
4483 int cpu = smp_processor_id();
4484 struct worker_pool *pool;
4485 struct worker *worker;
4486
4487 for_each_cpu_worker_pool(pool, cpu) {
4488 mutex_lock(&pool->attach_mutex);
4489 spin_lock_irq(&pool->lock);
4490
4491 /*
4492 * We've blocked all attach/detach operations. Make all workers
4493 * unbound and set DISASSOCIATED. Before this, all workers
4494 * except for the ones which are still executing works from
4495 * before the last CPU down must be on the cpu. After
4496 * this, they may become diasporas.
4497 */
4498 for_each_pool_worker(worker, pool)
4499 worker->flags |= WORKER_UNBOUND;
4500
4501 pool->flags |= POOL_DISASSOCIATED;
4502
4503 spin_unlock_irq(&pool->lock);
4504 mutex_unlock(&pool->attach_mutex);
4505
4506 /*
4507 * Call schedule() so that we cross rq->lock and thus can
4508 * guarantee sched callbacks see the %WORKER_UNBOUND flag.
4509 * This is necessary as scheduler callbacks may be invoked
4510 * from other cpus.
4511 */
4512 schedule();
4513
4514 /*
4515 * Sched callbacks are disabled now. Zap nr_running.
4516 * After this, nr_running stays zero and need_more_worker()
4517 * and keep_working() are always true as long as the
4518 * worklist is not empty. This pool now behaves as an
4519 * unbound (in terms of concurrency management) pool which
4520 * are served by workers tied to the pool.
4521 */
4522 atomic_set(&pool->nr_running, 0);
4523
4524 /*
4525 * With concurrency management just turned off, a busy
4526 * worker blocking could lead to lengthy stalls. Kick off
4527 * unbound chain execution of currently pending work items.
4528 */
4529 spin_lock_irq(&pool->lock);
4530 wake_up_worker(pool);
4531 spin_unlock_irq(&pool->lock);
4532 }
4533 }
4534
4535 /**
4536 * rebind_workers - rebind all workers of a pool to the associated CPU
4537 * @pool: pool of interest
4538 *
4539 * @pool->cpu is coming online. Rebind all workers to the CPU.
4540 */
4541 static void rebind_workers(struct worker_pool *pool)
4542 {
4543 struct worker *worker;
4544
4545 lockdep_assert_held(&pool->attach_mutex);
4546
4547 /*
4548 * Restore CPU affinity of all workers. As all idle workers should
4549 * be on the run-queue of the associated CPU before any local
4550 * wake-ups for concurrency management happen, restore CPU affinity
4551 * of all workers first and then clear UNBOUND. As we're called
4552 * from CPU_ONLINE, the following shouldn't fail.
4553 */
4554 for_each_pool_worker(worker, pool)
4555 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
4556 pool->attrs->cpumask) < 0);
4557
4558 spin_lock_irq(&pool->lock);
4559
4560 /*
4561 * XXX: CPU hotplug notifiers are weird and can call DOWN_FAILED
4562 * w/o preceding DOWN_PREPARE. Work around it. CPU hotplug is
4563 * being reworked and this can go away in time.
4564 */
4565 if (!(pool->flags & POOL_DISASSOCIATED)) {
4566 spin_unlock_irq(&pool->lock);
4567 return;
4568 }
4569
4570 pool->flags &= ~POOL_DISASSOCIATED;
4571
4572 for_each_pool_worker(worker, pool) {
4573 unsigned int worker_flags = worker->flags;
4574
4575 /*
4576 * A bound idle worker should actually be on the runqueue
4577 * of the associated CPU for local wake-ups targeting it to
4578 * work. Kick all idle workers so that they migrate to the
4579 * associated CPU. Doing this in the same loop as
4580 * replacing UNBOUND with REBOUND is safe as no worker will
4581 * be bound before @pool->lock is released.
4582 */
4583 if (worker_flags & WORKER_IDLE)
4584 wake_up_process(worker->task);
4585
4586 /*
4587 * We want to clear UNBOUND but can't directly call
4588 * worker_clr_flags() or adjust nr_running. Atomically
4589 * replace UNBOUND with another NOT_RUNNING flag REBOUND.
4590 * @worker will clear REBOUND using worker_clr_flags() when
4591 * it initiates the next execution cycle thus restoring
4592 * concurrency management. Note that when or whether
4593 * @worker clears REBOUND doesn't affect correctness.
4594 *
4595 * ACCESS_ONCE() is necessary because @worker->flags may be
4596 * tested without holding any lock in
4597 * wq_worker_waking_up(). Without it, NOT_RUNNING test may
4598 * fail incorrectly leading to premature concurrency
4599 * management operations.
4600 */
4601 WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND));
4602 worker_flags |= WORKER_REBOUND;
4603 worker_flags &= ~WORKER_UNBOUND;
4604 ACCESS_ONCE(worker->flags) = worker_flags;
4605 }
4606
4607 spin_unlock_irq(&pool->lock);
4608 }
4609
4610 /**
4611 * restore_unbound_workers_cpumask - restore cpumask of unbound workers
4612 * @pool: unbound pool of interest
4613 * @cpu: the CPU which is coming up
4614 *
4615 * An unbound pool may end up with a cpumask which doesn't have any online
4616 * CPUs. When a worker of such pool get scheduled, the scheduler resets
4617 * its cpus_allowed. If @cpu is in @pool's cpumask which didn't have any
4618 * online CPU before, cpus_allowed of all its workers should be restored.
4619 */
4620 static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu)
4621 {
4622 static cpumask_t cpumask;
4623 struct worker *worker;
4624
4625 lockdep_assert_held(&pool->attach_mutex);
4626
4627 /* is @cpu allowed for @pool? */
4628 if (!cpumask_test_cpu(cpu, pool->attrs->cpumask))
4629 return;
4630
4631 cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask);
4632
4633 /* as we're called from CPU_ONLINE, the following shouldn't fail */
4634 for_each_pool_worker(worker, pool)
4635 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, &cpumask) < 0);
4636 }
4637
4638 int workqueue_prepare_cpu(unsigned int cpu)
4639 {
4640 struct worker_pool *pool;
4641
4642 for_each_cpu_worker_pool(pool, cpu) {
4643 if (pool->nr_workers)
4644 continue;
4645 if (!create_worker(pool))
4646 return -ENOMEM;
4647 }
4648 return 0;
4649 }
4650
4651 int workqueue_online_cpu(unsigned int cpu)
4652 {
4653 struct worker_pool *pool;
4654 struct workqueue_struct *wq;
4655 int pi;
4656
4657 mutex_lock(&wq_pool_mutex);
4658
4659 for_each_pool(pool, pi) {
4660 mutex_lock(&pool->attach_mutex);
4661
4662 if (pool->cpu == cpu)
4663 rebind_workers(pool);
4664 else if (pool->cpu < 0)
4665 restore_unbound_workers_cpumask(pool, cpu);
4666
4667 mutex_unlock(&pool->attach_mutex);
4668 }
4669
4670 /* update NUMA affinity of unbound workqueues */
4671 list_for_each_entry(wq, &workqueues, list)
4672 wq_update_unbound_numa(wq, cpu, true);
4673
4674 mutex_unlock(&wq_pool_mutex);
4675 return 0;
4676 }
4677
4678 int workqueue_offline_cpu(unsigned int cpu)
4679 {
4680 struct work_struct unbind_work;
4681 struct workqueue_struct *wq;
4682
4683 /* unbinding per-cpu workers should happen on the local CPU */
4684 INIT_WORK_ONSTACK(&unbind_work, wq_unbind_fn);
4685 queue_work_on(cpu, system_highpri_wq, &unbind_work);
4686
4687 /* update NUMA affinity of unbound workqueues */
4688 mutex_lock(&wq_pool_mutex);
4689 list_for_each_entry(wq, &workqueues, list)
4690 wq_update_unbound_numa(wq, cpu, false);
4691 mutex_unlock(&wq_pool_mutex);
4692
4693 /* wait for per-cpu unbinding to finish */
4694 flush_work(&unbind_work);
4695 destroy_work_on_stack(&unbind_work);
4696 return 0;
4697 }
4698
4699 #ifdef CONFIG_SMP
4700
4701 struct work_for_cpu {
4702 struct work_struct work;
4703 long (*fn)(void *);
4704 void *arg;
4705 long ret;
4706 };
4707
4708 static void work_for_cpu_fn(struct work_struct *work)
4709 {
4710 struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);
4711
4712 wfc->ret = wfc->fn(wfc->arg);
4713 }
4714
4715 /**
4716 * work_on_cpu - run a function in thread context on a particular cpu
4717 * @cpu: the cpu to run on
4718 * @fn: the function to run
4719 * @arg: the function arg
4720 *
4721 * It is up to the caller to ensure that the cpu doesn't go offline.
4722 * The caller must not hold any locks which would prevent @fn from completing.
4723 *
4724 * Return: The value @fn returns.
4725 */
4726 long work_on_cpu(int cpu, long (*fn)(void *), void *arg)
4727 {
4728 struct work_for_cpu wfc = { .fn = fn, .arg = arg };
4729
4730 INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn);
4731 schedule_work_on(cpu, &wfc.work);
4732 flush_work(&wfc.work);
4733 destroy_work_on_stack(&wfc.work);
4734 return wfc.ret;
4735 }
4736 EXPORT_SYMBOL_GPL(work_on_cpu);
4737
4738 /**
4739 * work_on_cpu_safe - run a function in thread context on a particular cpu
4740 * @cpu: the cpu to run on
4741 * @fn: the function to run
4742 * @arg: the function argument
4743 *
4744 * Disables CPU hotplug and calls work_on_cpu(). The caller must not hold
4745 * any locks which would prevent @fn from completing.
4746 *
4747 * Return: The value @fn returns.
4748 */
4749 long work_on_cpu_safe(int cpu, long (*fn)(void *), void *arg)
4750 {
4751 long ret = -ENODEV;
4752
4753 get_online_cpus();
4754 if (cpu_online(cpu))
4755 ret = work_on_cpu(cpu, fn, arg);
4756 put_online_cpus();
4757 return ret;
4758 }
4759 EXPORT_SYMBOL_GPL(work_on_cpu_safe);
4760 #endif /* CONFIG_SMP */
4761
4762 #ifdef CONFIG_FREEZER
4763
4764 /**
4765 * freeze_workqueues_begin - begin freezing workqueues
4766 *
4767 * Start freezing workqueues. After this function returns, all freezable
4768 * workqueues will queue new works to their delayed_works list instead of
4769 * pool->worklist.
4770 *
4771 * CONTEXT:
4772 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
4773 */
4774 void freeze_workqueues_begin(void)
4775 {
4776 struct workqueue_struct *wq;
4777 struct pool_workqueue *pwq;
4778
4779 mutex_lock(&wq_pool_mutex);
4780
4781 WARN_ON_ONCE(workqueue_freezing);
4782 workqueue_freezing = true;
4783
4784 list_for_each_entry(wq, &workqueues, list) {
4785 mutex_lock(&wq->mutex);
4786 for_each_pwq(pwq, wq)
4787 pwq_adjust_max_active(pwq);
4788 mutex_unlock(&wq->mutex);
4789 }
4790
4791 mutex_unlock(&wq_pool_mutex);
4792 }
4793
4794 /**
4795 * freeze_workqueues_busy - are freezable workqueues still busy?
4796 *
4797 * Check whether freezing is complete. This function must be called
4798 * between freeze_workqueues_begin() and thaw_workqueues().
4799 *
4800 * CONTEXT:
4801 * Grabs and releases wq_pool_mutex.
4802 *
4803 * Return:
4804 * %true if some freezable workqueues are still busy. %false if freezing
4805 * is complete.
4806 */
4807 bool freeze_workqueues_busy(void)
4808 {
4809 bool busy = false;
4810 struct workqueue_struct *wq;
4811 struct pool_workqueue *pwq;
4812
4813 mutex_lock(&wq_pool_mutex);
4814
4815 WARN_ON_ONCE(!workqueue_freezing);
4816
4817 list_for_each_entry(wq, &workqueues, list) {
4818 if (!(wq->flags & WQ_FREEZABLE))
4819 continue;
4820 /*
4821 * nr_active is monotonically decreasing. It's safe
4822 * to peek without lock.
4823 */
4824 rcu_read_lock_sched();
4825 for_each_pwq(pwq, wq) {
4826 WARN_ON_ONCE(pwq->nr_active < 0);
4827 if (pwq->nr_active) {
4828 busy = true;
4829 rcu_read_unlock_sched();
4830 goto out_unlock;
4831 }
4832 }
4833 rcu_read_unlock_sched();
4834 }
4835 out_unlock:
4836 mutex_unlock(&wq_pool_mutex);
4837 return busy;
4838 }
4839
4840 /**
4841 * thaw_workqueues - thaw workqueues
4842 *
4843 * Thaw workqueues. Normal queueing is restored and all collected
4844 * frozen works are transferred to their respective pool worklists.
4845 *
4846 * CONTEXT:
4847 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
4848 */
4849 void thaw_workqueues(void)
4850 {
4851 struct workqueue_struct *wq;
4852 struct pool_workqueue *pwq;
4853
4854 mutex_lock(&wq_pool_mutex);
4855
4856 if (!workqueue_freezing)
4857 goto out_unlock;
4858
4859 workqueue_freezing = false;
4860
4861 /* restore max_active and repopulate worklist */
4862 list_for_each_entry(wq, &workqueues, list) {
4863 mutex_lock(&wq->mutex);
4864 for_each_pwq(pwq, wq)
4865 pwq_adjust_max_active(pwq);
4866 mutex_unlock(&wq->mutex);
4867 }
4868
4869 out_unlock:
4870 mutex_unlock(&wq_pool_mutex);
4871 }
4872 #endif /* CONFIG_FREEZER */
4873
4874 static int workqueue_apply_unbound_cpumask(void)
4875 {
4876 LIST_HEAD(ctxs);
4877 int ret = 0;
4878 struct workqueue_struct *wq;
4879 struct apply_wqattrs_ctx *ctx, *n;
4880
4881 lockdep_assert_held(&wq_pool_mutex);
4882
4883 list_for_each_entry(wq, &workqueues, list) {
4884 if (!(wq->flags & WQ_UNBOUND))
4885 continue;
4886 /* creating multiple pwqs breaks ordering guarantee */
4887 if (wq->flags & __WQ_ORDERED)
4888 continue;
4889
4890 ctx = apply_wqattrs_prepare(wq, wq->unbound_attrs);
4891 if (!ctx) {
4892 ret = -ENOMEM;
4893 break;
4894 }
4895
4896 list_add_tail(&ctx->list, &ctxs);
4897 }
4898
4899 list_for_each_entry_safe(ctx, n, &ctxs, list) {
4900 if (!ret)
4901 apply_wqattrs_commit(ctx);
4902 apply_wqattrs_cleanup(ctx);
4903 }
4904
4905 return ret;
4906 }
4907
4908 /**
4909 * workqueue_set_unbound_cpumask - Set the low-level unbound cpumask
4910 * @cpumask: the cpumask to set
4911 *
4912 * The low-level workqueues cpumask is a global cpumask that limits
4913 * the affinity of all unbound workqueues. This function check the @cpumask
4914 * and apply it to all unbound workqueues and updates all pwqs of them.
4915 *
4916 * Retun: 0 - Success
4917 * -EINVAL - Invalid @cpumask
4918 * -ENOMEM - Failed to allocate memory for attrs or pwqs.
4919 */
4920 int workqueue_set_unbound_cpumask(cpumask_var_t cpumask)
4921 {
4922 int ret = -EINVAL;
4923 cpumask_var_t saved_cpumask;
4924
4925 if (!zalloc_cpumask_var(&saved_cpumask, GFP_KERNEL))
4926 return -ENOMEM;
4927
4928 cpumask_and(cpumask, cpumask, cpu_possible_mask);
4929 if (!cpumask_empty(cpumask)) {
4930 apply_wqattrs_lock();
4931
4932 /* save the old wq_unbound_cpumask. */
4933 cpumask_copy(saved_cpumask, wq_unbound_cpumask);
4934
4935 /* update wq_unbound_cpumask at first and apply it to wqs. */
4936 cpumask_copy(wq_unbound_cpumask, cpumask);
4937 ret = workqueue_apply_unbound_cpumask();
4938
4939 /* restore the wq_unbound_cpumask when failed. */
4940 if (ret < 0)
4941 cpumask_copy(wq_unbound_cpumask, saved_cpumask);
4942
4943 apply_wqattrs_unlock();
4944 }
4945
4946 free_cpumask_var(saved_cpumask);
4947 return ret;
4948 }
4949
4950 #ifdef CONFIG_SYSFS
4951 /*
4952 * Workqueues with WQ_SYSFS flag set is visible to userland via
4953 * /sys/bus/workqueue/devices/WQ_NAME. All visible workqueues have the
4954 * following attributes.
4955 *
4956 * per_cpu RO bool : whether the workqueue is per-cpu or unbound
4957 * max_active RW int : maximum number of in-flight work items
4958 *
4959 * Unbound workqueues have the following extra attributes.
4960 *
4961 * id RO int : the associated pool ID
4962 * nice RW int : nice value of the workers
4963 * cpumask RW mask : bitmask of allowed CPUs for the workers
4964 */
4965 struct wq_device {
4966 struct workqueue_struct *wq;
4967 struct device dev;
4968 };
4969
4970 static struct workqueue_struct *dev_to_wq(struct device *dev)
4971 {
4972 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
4973
4974 return wq_dev->wq;
4975 }
4976
4977 static ssize_t per_cpu_show(struct device *dev, struct device_attribute *attr,
4978 char *buf)
4979 {
4980 struct workqueue_struct *wq = dev_to_wq(dev);
4981
4982 return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND));
4983 }
4984 static DEVICE_ATTR_RO(per_cpu);
4985
4986 static ssize_t max_active_show(struct device *dev,
4987 struct device_attribute *attr, char *buf)
4988 {
4989 struct workqueue_struct *wq = dev_to_wq(dev);
4990
4991 return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active);
4992 }
4993
4994 static ssize_t max_active_store(struct device *dev,
4995 struct device_attribute *attr, const char *buf,
4996 size_t count)
4997 {
4998 struct workqueue_struct *wq = dev_to_wq(dev);
4999 int val;
5000
5001 if (sscanf(buf, "%d", &val) != 1 || val <= 0)
5002 return -EINVAL;
5003
5004 workqueue_set_max_active(wq, val);
5005 return count;
5006 }
5007 static DEVICE_ATTR_RW(max_active);
5008
5009 static struct attribute *wq_sysfs_attrs[] = {
5010 &dev_attr_per_cpu.attr,
5011 &dev_attr_max_active.attr,
5012 NULL,
5013 };
5014 ATTRIBUTE_GROUPS(wq_sysfs);
5015
5016 static ssize_t wq_pool_ids_show(struct device *dev,
5017 struct device_attribute *attr, char *buf)
5018 {
5019 struct workqueue_struct *wq = dev_to_wq(dev);
5020 const char *delim = "";
5021 int node, written = 0;
5022
5023 rcu_read_lock_sched();
5024 for_each_node(node) {
5025 written += scnprintf(buf + written, PAGE_SIZE - written,
5026 "%s%d:%d", delim, node,
5027 unbound_pwq_by_node(wq, node)->pool->id);
5028 delim = " ";
5029 }
5030 written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
5031 rcu_read_unlock_sched();
5032
5033 return written;
5034 }
5035
5036 static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr,
5037 char *buf)
5038 {
5039 struct workqueue_struct *wq = dev_to_wq(dev);
5040 int written;
5041
5042 mutex_lock(&wq->mutex);
5043 written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice);
5044 mutex_unlock(&wq->mutex);
5045
5046 return written;
5047 }
5048
5049 /* prepare workqueue_attrs for sysfs store operations */
5050 static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq)
5051 {
5052 struct workqueue_attrs *attrs;
5053
5054 lockdep_assert_held(&wq_pool_mutex);
5055
5056 attrs = alloc_workqueue_attrs(GFP_KERNEL);
5057 if (!attrs)
5058 return NULL;
5059
5060 copy_workqueue_attrs(attrs, wq->unbound_attrs);
5061 return attrs;
5062 }
5063
5064 static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr,
5065 const char *buf, size_t count)
5066 {
5067 struct workqueue_struct *wq = dev_to_wq(dev);
5068 struct workqueue_attrs *attrs;
5069 int ret = -ENOMEM;
5070
5071 apply_wqattrs_lock();
5072
5073 attrs = wq_sysfs_prep_attrs(wq);
5074 if (!attrs)
5075 goto out_unlock;
5076
5077 if (sscanf(buf, "%d", &attrs->nice) == 1 &&
5078 attrs->nice >= MIN_NICE && attrs->nice <= MAX_NICE)
5079 ret = apply_workqueue_attrs_locked(wq, attrs);
5080 else
5081 ret = -EINVAL;
5082
5083 out_unlock:
5084 apply_wqattrs_unlock();
5085 free_workqueue_attrs(attrs);
5086 return ret ?: count;
5087 }
5088
5089 static ssize_t wq_cpumask_show(struct device *dev,
5090 struct device_attribute *attr, char *buf)
5091 {
5092 struct workqueue_struct *wq = dev_to_wq(dev);
5093 int written;
5094
5095 mutex_lock(&wq->mutex);
5096 written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
5097 cpumask_pr_args(wq->unbound_attrs->cpumask));
5098 mutex_unlock(&wq->mutex);
5099 return written;
5100 }
5101
5102 static ssize_t wq_cpumask_store(struct device *dev,
5103 struct device_attribute *attr,
5104 const char *buf, size_t count)
5105 {
5106 struct workqueue_struct *wq = dev_to_wq(dev);
5107 struct workqueue_attrs *attrs;
5108 int ret = -ENOMEM;
5109
5110 apply_wqattrs_lock();
5111
5112 attrs = wq_sysfs_prep_attrs(wq);
5113 if (!attrs)
5114 goto out_unlock;
5115
5116 ret = cpumask_parse(buf, attrs->cpumask);
5117 if (!ret)
5118 ret = apply_workqueue_attrs_locked(wq, attrs);
5119
5120 out_unlock:
5121 apply_wqattrs_unlock();
5122 free_workqueue_attrs(attrs);
5123 return ret ?: count;
5124 }
5125
5126 static ssize_t wq_numa_show(struct device *dev, struct device_attribute *attr,
5127 char *buf)
5128 {
5129 struct workqueue_struct *wq = dev_to_wq(dev);
5130 int written;
5131
5132 mutex_lock(&wq->mutex);
5133 written = scnprintf(buf, PAGE_SIZE, "%d\n",
5134 !wq->unbound_attrs->no_numa);
5135 mutex_unlock(&wq->mutex);
5136
5137 return written;
5138 }
5139
5140 static ssize_t wq_numa_store(struct device *dev, struct device_attribute *attr,
5141 const char *buf, size_t count)
5142 {
5143 struct workqueue_struct *wq = dev_to_wq(dev);
5144 struct workqueue_attrs *attrs;
5145 int v, ret = -ENOMEM;
5146
5147 apply_wqattrs_lock();
5148
5149 attrs = wq_sysfs_prep_attrs(wq);
5150 if (!attrs)
5151 goto out_unlock;
5152
5153 ret = -EINVAL;
5154 if (sscanf(buf, "%d", &v) == 1) {
5155 attrs->no_numa = !v;
5156 ret = apply_workqueue_attrs_locked(wq, attrs);
5157 }
5158
5159 out_unlock:
5160 apply_wqattrs_unlock();
5161 free_workqueue_attrs(attrs);
5162 return ret ?: count;
5163 }
5164
5165 static struct device_attribute wq_sysfs_unbound_attrs[] = {
5166 __ATTR(pool_ids, 0444, wq_pool_ids_show, NULL),
5167 __ATTR(nice, 0644, wq_nice_show, wq_nice_store),
5168 __ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store),
5169 __ATTR(numa, 0644, wq_numa_show, wq_numa_store),
5170 __ATTR_NULL,
5171 };
5172
5173 static struct bus_type wq_subsys = {
5174 .name = "workqueue",
5175 .dev_groups = wq_sysfs_groups,
5176 };
5177
5178 static ssize_t wq_unbound_cpumask_show(struct device *dev,
5179 struct device_attribute *attr, char *buf)
5180 {
5181 int written;
5182
5183 mutex_lock(&wq_pool_mutex);
5184 written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
5185 cpumask_pr_args(wq_unbound_cpumask));
5186 mutex_unlock(&wq_pool_mutex);
5187
5188 return written;
5189 }
5190
5191 static ssize_t wq_unbound_cpumask_store(struct device *dev,
5192 struct device_attribute *attr, const char *buf, size_t count)
5193 {
5194 cpumask_var_t cpumask;
5195 int ret;
5196
5197 if (!zalloc_cpumask_var(&cpumask, GFP_KERNEL))
5198 return -ENOMEM;
5199
5200 ret = cpumask_parse(buf, cpumask);
5201 if (!ret)
5202 ret = workqueue_set_unbound_cpumask(cpumask);
5203
5204 free_cpumask_var(cpumask);
5205 return ret ? ret : count;
5206 }
5207
5208 static struct device_attribute wq_sysfs_cpumask_attr =
5209 __ATTR(cpumask, 0644, wq_unbound_cpumask_show,
5210 wq_unbound_cpumask_store);
5211
5212 static int __init wq_sysfs_init(void)
5213 {
5214 int err;
5215
5216 err = subsys_virtual_register(&wq_subsys, NULL);
5217 if (err)
5218 return err;
5219
5220 return device_create_file(wq_subsys.dev_root, &wq_sysfs_cpumask_attr);
5221 }
5222 core_initcall(wq_sysfs_init);
5223
5224 static void wq_device_release(struct device *dev)
5225 {
5226 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
5227
5228 kfree(wq_dev);
5229 }
5230
5231 /**
5232 * workqueue_sysfs_register - make a workqueue visible in sysfs
5233 * @wq: the workqueue to register
5234 *
5235 * Expose @wq in sysfs under /sys/bus/workqueue/devices.
5236 * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set
5237 * which is the preferred method.
5238 *
5239 * Workqueue user should use this function directly iff it wants to apply
5240 * workqueue_attrs before making the workqueue visible in sysfs; otherwise,
5241 * apply_workqueue_attrs() may race against userland updating the
5242 * attributes.
5243 *
5244 * Return: 0 on success, -errno on failure.
5245 */
5246 int workqueue_sysfs_register(struct workqueue_struct *wq)
5247 {
5248 struct wq_device *wq_dev;
5249 int ret;
5250
5251 /*
5252 * Adjusting max_active or creating new pwqs by applying
5253 * attributes breaks ordering guarantee. Disallow exposing ordered
5254 * workqueues.
5255 */
5256 if (WARN_ON(wq->flags & __WQ_ORDERED))
5257 return -EINVAL;
5258
5259 wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL);
5260 if (!wq_dev)
5261 return -ENOMEM;
5262
5263 wq_dev->wq = wq;
5264 wq_dev->dev.bus = &wq_subsys;
5265 wq_dev->dev.release = wq_device_release;
5266 dev_set_name(&wq_dev->dev, "%s", wq->name);
5267
5268 /*
5269 * unbound_attrs are created separately. Suppress uevent until
5270 * everything is ready.
5271 */
5272 dev_set_uevent_suppress(&wq_dev->dev, true);
5273
5274 ret = device_register(&wq_dev->dev);
5275 if (ret) {
5276 kfree(wq_dev);
5277 wq->wq_dev = NULL;
5278 return ret;
5279 }
5280
5281 if (wq->flags & WQ_UNBOUND) {
5282 struct device_attribute *attr;
5283
5284 for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) {
5285 ret = device_create_file(&wq_dev->dev, attr);
5286 if (ret) {
5287 device_unregister(&wq_dev->dev);
5288 wq->wq_dev = NULL;
5289 return ret;
5290 }
5291 }
5292 }
5293
5294 dev_set_uevent_suppress(&wq_dev->dev, false);
5295 kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD);
5296 return 0;
5297 }
5298
5299 /**
5300 * workqueue_sysfs_unregister - undo workqueue_sysfs_register()
5301 * @wq: the workqueue to unregister
5302 *
5303 * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister.
5304 */
5305 static void workqueue_sysfs_unregister(struct workqueue_struct *wq)
5306 {
5307 struct wq_device *wq_dev = wq->wq_dev;
5308
5309 if (!wq->wq_dev)
5310 return;
5311
5312 wq->wq_dev = NULL;
5313 device_unregister(&wq_dev->dev);
5314 }
5315 #else /* CONFIG_SYSFS */
5316 static void workqueue_sysfs_unregister(struct workqueue_struct *wq) { }
5317 #endif /* CONFIG_SYSFS */
5318
5319 /*
5320 * Workqueue watchdog.
5321 *
5322 * Stall may be caused by various bugs - missing WQ_MEM_RECLAIM, illegal
5323 * flush dependency, a concurrency managed work item which stays RUNNING
5324 * indefinitely. Workqueue stalls can be very difficult to debug as the
5325 * usual warning mechanisms don't trigger and internal workqueue state is
5326 * largely opaque.
5327 *
5328 * Workqueue watchdog monitors all worker pools periodically and dumps
5329 * state if some pools failed to make forward progress for a while where
5330 * forward progress is defined as the first item on ->worklist changing.
5331 *
5332 * This mechanism is controlled through the kernel parameter
5333 * "workqueue.watchdog_thresh" which can be updated at runtime through the
5334 * corresponding sysfs parameter file.
5335 */
5336 #ifdef CONFIG_WQ_WATCHDOG
5337
5338 static void wq_watchdog_timer_fn(unsigned long data);
5339
5340 static unsigned long wq_watchdog_thresh = 30;
5341 static struct timer_list wq_watchdog_timer =
5342 TIMER_DEFERRED_INITIALIZER(wq_watchdog_timer_fn, 0, 0);
5343
5344 static unsigned long wq_watchdog_touched = INITIAL_JIFFIES;
5345 static DEFINE_PER_CPU(unsigned long, wq_watchdog_touched_cpu) = INITIAL_JIFFIES;
5346
5347 static void wq_watchdog_reset_touched(void)
5348 {
5349 int cpu;
5350
5351 wq_watchdog_touched = jiffies;
5352 for_each_possible_cpu(cpu)
5353 per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
5354 }
5355
5356 static void wq_watchdog_timer_fn(unsigned long data)
5357 {
5358 unsigned long thresh = READ_ONCE(wq_watchdog_thresh) * HZ;
5359 bool lockup_detected = false;
5360 struct worker_pool *pool;
5361 int pi;
5362
5363 if (!thresh)
5364 return;
5365
5366 rcu_read_lock();
5367
5368 for_each_pool(pool, pi) {
5369 unsigned long pool_ts, touched, ts;
5370
5371 if (list_empty(&pool->worklist))
5372 continue;
5373
5374 /* get the latest of pool and touched timestamps */
5375 pool_ts = READ_ONCE(pool->watchdog_ts);
5376 touched = READ_ONCE(wq_watchdog_touched);
5377
5378 if (time_after(pool_ts, touched))
5379 ts = pool_ts;
5380 else
5381 ts = touched;
5382
5383 if (pool->cpu >= 0) {
5384 unsigned long cpu_touched =
5385 READ_ONCE(per_cpu(wq_watchdog_touched_cpu,
5386 pool->cpu));
5387 if (time_after(cpu_touched, ts))
5388 ts = cpu_touched;
5389 }
5390
5391 /* did we stall? */
5392 if (time_after(jiffies, ts + thresh)) {
5393 lockup_detected = true;
5394 pr_emerg("BUG: workqueue lockup - pool");
5395 pr_cont_pool_info(pool);
5396 pr_cont(" stuck for %us!\n",
5397 jiffies_to_msecs(jiffies - pool_ts) / 1000);
5398 }
5399 }
5400
5401 rcu_read_unlock();
5402
5403 if (lockup_detected)
5404 show_workqueue_state();
5405
5406 wq_watchdog_reset_touched();
5407 mod_timer(&wq_watchdog_timer, jiffies + thresh);
5408 }
5409
5410 void wq_watchdog_touch(int cpu)
5411 {
5412 if (cpu >= 0)
5413 per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
5414 else
5415 wq_watchdog_touched = jiffies;
5416 }
5417
5418 static void wq_watchdog_set_thresh(unsigned long thresh)
5419 {
5420 wq_watchdog_thresh = 0;
5421 del_timer_sync(&wq_watchdog_timer);
5422
5423 if (thresh) {
5424 wq_watchdog_thresh = thresh;
5425 wq_watchdog_reset_touched();
5426 mod_timer(&wq_watchdog_timer, jiffies + thresh * HZ);
5427 }
5428 }
5429
5430 static int wq_watchdog_param_set_thresh(const char *val,
5431 const struct kernel_param *kp)
5432 {
5433 unsigned long thresh;
5434 int ret;
5435
5436 ret = kstrtoul(val, 0, &thresh);
5437 if (ret)
5438 return ret;
5439
5440 if (system_wq)
5441 wq_watchdog_set_thresh(thresh);
5442 else
5443 wq_watchdog_thresh = thresh;
5444
5445 return 0;
5446 }
5447
5448 static const struct kernel_param_ops wq_watchdog_thresh_ops = {
5449 .set = wq_watchdog_param_set_thresh,
5450 .get = param_get_ulong,
5451 };
5452
5453 module_param_cb(watchdog_thresh, &wq_watchdog_thresh_ops, &wq_watchdog_thresh,
5454 0644);
5455
5456 static void wq_watchdog_init(void)
5457 {
5458 wq_watchdog_set_thresh(wq_watchdog_thresh);
5459 }
5460
5461 #else /* CONFIG_WQ_WATCHDOG */
5462
5463 static inline void wq_watchdog_init(void) { }
5464
5465 #endif /* CONFIG_WQ_WATCHDOG */
5466
5467 static void __init wq_numa_init(void)
5468 {
5469 cpumask_var_t *tbl;
5470 int node, cpu;
5471
5472 if (num_possible_nodes() <= 1)
5473 return;
5474
5475 if (wq_disable_numa) {
5476 pr_info("workqueue: NUMA affinity support disabled\n");
5477 return;
5478 }
5479
5480 wq_update_unbound_numa_attrs_buf = alloc_workqueue_attrs(GFP_KERNEL);
5481 BUG_ON(!wq_update_unbound_numa_attrs_buf);
5482
5483 /*
5484 * We want masks of possible CPUs of each node which isn't readily
5485 * available. Build one from cpu_to_node() which should have been
5486 * fully initialized by now.
5487 */
5488 tbl = kzalloc(nr_node_ids * sizeof(tbl[0]), GFP_KERNEL);
5489 BUG_ON(!tbl);
5490
5491 for_each_node(node)
5492 BUG_ON(!zalloc_cpumask_var_node(&tbl[node], GFP_KERNEL,
5493 node_online(node) ? node : NUMA_NO_NODE));
5494
5495 for_each_possible_cpu(cpu) {
5496 node = cpu_to_node(cpu);
5497 if (WARN_ON(node == NUMA_NO_NODE)) {
5498 pr_warn("workqueue: NUMA node mapping not available for cpu%d, disabling NUMA support\n", cpu);
5499 /* happens iff arch is bonkers, let's just proceed */
5500 return;
5501 }
5502 cpumask_set_cpu(cpu, tbl[node]);
5503 }
5504
5505 wq_numa_possible_cpumask = tbl;
5506 wq_numa_enabled = true;
5507 }
5508
5509 /**
5510 * workqueue_init_early - early init for workqueue subsystem
5511 *
5512 * This is the first half of two-staged workqueue subsystem initialization
5513 * and invoked as soon as the bare basics - memory allocation, cpumasks and
5514 * idr are up. It sets up all the data structures and system workqueues
5515 * and allows early boot code to create workqueues and queue/cancel work
5516 * items. Actual work item execution starts only after kthreads can be
5517 * created and scheduled right before early initcalls.
5518 */
5519 int __init workqueue_init_early(void)
5520 {
5521 int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL };
5522 int i, cpu;
5523
5524 WARN_ON(__alignof__(struct pool_workqueue) < __alignof__(long long));
5525
5526 BUG_ON(!alloc_cpumask_var(&wq_unbound_cpumask, GFP_KERNEL));
5527 cpumask_copy(wq_unbound_cpumask, cpu_possible_mask);
5528
5529 pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC);
5530
5531 /* initialize CPU pools */
5532 for_each_possible_cpu(cpu) {
5533 struct worker_pool *pool;
5534
5535 i = 0;
5536 for_each_cpu_worker_pool(pool, cpu) {
5537 BUG_ON(init_worker_pool(pool));
5538 pool->cpu = cpu;
5539 cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu));
5540 pool->attrs->nice = std_nice[i++];
5541 pool->node = cpu_to_node(cpu);
5542
5543 /* alloc pool ID */
5544 mutex_lock(&wq_pool_mutex);
5545 BUG_ON(worker_pool_assign_id(pool));
5546 mutex_unlock(&wq_pool_mutex);
5547 }
5548 }
5549
5550 /* create default unbound and ordered wq attrs */
5551 for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
5552 struct workqueue_attrs *attrs;
5553
5554 BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
5555 attrs->nice = std_nice[i];
5556 unbound_std_wq_attrs[i] = attrs;
5557
5558 /*
5559 * An ordered wq should have only one pwq as ordering is
5560 * guaranteed by max_active which is enforced by pwqs.
5561 * Turn off NUMA so that dfl_pwq is used for all nodes.
5562 */
5563 BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
5564 attrs->nice = std_nice[i];
5565 attrs->no_numa = true;
5566 ordered_wq_attrs[i] = attrs;
5567 }
5568
5569 system_wq = alloc_workqueue("events", 0, 0);
5570 system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
5571 system_long_wq = alloc_workqueue("events_long", 0, 0);
5572 system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
5573 WQ_UNBOUND_MAX_ACTIVE);
5574 system_freezable_wq = alloc_workqueue("events_freezable",
5575 WQ_FREEZABLE, 0);
5576 system_power_efficient_wq = alloc_workqueue("events_power_efficient",
5577 WQ_POWER_EFFICIENT, 0);
5578 system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_power_efficient",
5579 WQ_FREEZABLE | WQ_POWER_EFFICIENT,
5580 0);
5581 BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
5582 !system_unbound_wq || !system_freezable_wq ||
5583 !system_power_efficient_wq ||
5584 !system_freezable_power_efficient_wq);
5585
5586 return 0;
5587 }
5588
5589 /**
5590 * workqueue_init - bring workqueue subsystem fully online
5591 *
5592 * This is the latter half of two-staged workqueue subsystem initialization
5593 * and invoked as soon as kthreads can be created and scheduled.
5594 * Workqueues have been created and work items queued on them, but there
5595 * are no kworkers executing the work items yet. Populate the worker pools
5596 * with the initial workers and enable future kworker creations.
5597 */
5598 int __init workqueue_init(void)
5599 {
5600 struct workqueue_struct *wq;
5601 struct worker_pool *pool;
5602 int cpu, bkt;
5603
5604 /*
5605 * It'd be simpler to initialize NUMA in workqueue_init_early() but
5606 * CPU to node mapping may not be available that early on some
5607 * archs such as power and arm64. As per-cpu pools created
5608 * previously could be missing node hint and unbound pools NUMA
5609 * affinity, fix them up.
5610 */
5611 wq_numa_init();
5612
5613 mutex_lock(&wq_pool_mutex);
5614
5615 for_each_possible_cpu(cpu) {
5616 for_each_cpu_worker_pool(pool, cpu) {
5617 pool->node = cpu_to_node(cpu);
5618 }
5619 }
5620
5621 list_for_each_entry(wq, &workqueues, list)
5622 wq_update_unbound_numa(wq, smp_processor_id(), true);
5623
5624 mutex_unlock(&wq_pool_mutex);
5625
5626 /* create the initial workers */
5627 for_each_online_cpu(cpu) {
5628 for_each_cpu_worker_pool(pool, cpu) {
5629 pool->flags &= ~POOL_DISASSOCIATED;
5630 BUG_ON(!create_worker(pool));
5631 }
5632 }
5633
5634 hash_for_each(unbound_pool_hash, bkt, pool, hash_node)
5635 BUG_ON(!create_worker(pool));
5636
5637 wq_online = true;
5638 wq_watchdog_init();
5639
5640 return 0;
5641 }