]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - kernel/workqueue.c
workqueue: remove an unneeded UNBOUND test before waking up the next worker
[mirror_ubuntu-jammy-kernel.git] / kernel / workqueue.c
1 /*
2 * kernel/workqueue.c - generic async execution with shared worker pool
3 *
4 * Copyright (C) 2002 Ingo Molnar
5 *
6 * Derived from the taskqueue/keventd code by:
7 * David Woodhouse <dwmw2@infradead.org>
8 * Andrew Morton
9 * Kai Petzke <wpp@marie.physik.tu-berlin.de>
10 * Theodore Ts'o <tytso@mit.edu>
11 *
12 * Made to use alloc_percpu by Christoph Lameter.
13 *
14 * Copyright (C) 2010 SUSE Linux Products GmbH
15 * Copyright (C) 2010 Tejun Heo <tj@kernel.org>
16 *
17 * This is the generic async execution mechanism. Work items as are
18 * executed in process context. The worker pool is shared and
19 * automatically managed. There are two worker pools for each CPU (one for
20 * normal work items and the other for high priority ones) and some extra
21 * pools for workqueues which are not bound to any specific CPU - the
22 * number of these backing pools is dynamic.
23 *
24 * Please read Documentation/workqueue.txt for details.
25 */
26
27 #include <linux/export.h>
28 #include <linux/kernel.h>
29 #include <linux/sched.h>
30 #include <linux/init.h>
31 #include <linux/signal.h>
32 #include <linux/completion.h>
33 #include <linux/workqueue.h>
34 #include <linux/slab.h>
35 #include <linux/cpu.h>
36 #include <linux/notifier.h>
37 #include <linux/kthread.h>
38 #include <linux/hardirq.h>
39 #include <linux/mempolicy.h>
40 #include <linux/freezer.h>
41 #include <linux/kallsyms.h>
42 #include <linux/debug_locks.h>
43 #include <linux/lockdep.h>
44 #include <linux/idr.h>
45 #include <linux/jhash.h>
46 #include <linux/hashtable.h>
47 #include <linux/rculist.h>
48 #include <linux/nodemask.h>
49 #include <linux/moduleparam.h>
50 #include <linux/uaccess.h>
51
52 #include "workqueue_internal.h"
53
54 enum {
55 /*
56 * worker_pool flags
57 *
58 * A bound pool is either associated or disassociated with its CPU.
59 * While associated (!DISASSOCIATED), all workers are bound to the
60 * CPU and none has %WORKER_UNBOUND set and concurrency management
61 * is in effect.
62 *
63 * While DISASSOCIATED, the cpu may be offline and all workers have
64 * %WORKER_UNBOUND set and concurrency management disabled, and may
65 * be executing on any CPU. The pool behaves as an unbound one.
66 *
67 * Note that DISASSOCIATED should be flipped only while holding
68 * attach_mutex to avoid changing binding state while
69 * worker_attach_to_pool() is in progress.
70 */
71 POOL_DISASSOCIATED = 1 << 2, /* cpu can't serve workers */
72
73 /* worker flags */
74 WORKER_DIE = 1 << 1, /* die die die */
75 WORKER_IDLE = 1 << 2, /* is idle */
76 WORKER_PREP = 1 << 3, /* preparing to run works */
77 WORKER_CPU_INTENSIVE = 1 << 6, /* cpu intensive */
78 WORKER_UNBOUND = 1 << 7, /* worker is unbound */
79 WORKER_REBOUND = 1 << 8, /* worker was rebound */
80
81 WORKER_NOT_RUNNING = WORKER_PREP | WORKER_CPU_INTENSIVE |
82 WORKER_UNBOUND | WORKER_REBOUND,
83
84 NR_STD_WORKER_POOLS = 2, /* # standard pools per cpu */
85
86 UNBOUND_POOL_HASH_ORDER = 6, /* hashed by pool->attrs */
87 BUSY_WORKER_HASH_ORDER = 6, /* 64 pointers */
88
89 MAX_IDLE_WORKERS_RATIO = 4, /* 1/4 of busy can be idle */
90 IDLE_WORKER_TIMEOUT = 300 * HZ, /* keep idle ones for 5 mins */
91
92 MAYDAY_INITIAL_TIMEOUT = HZ / 100 >= 2 ? HZ / 100 : 2,
93 /* call for help after 10ms
94 (min two ticks) */
95 MAYDAY_INTERVAL = HZ / 10, /* and then every 100ms */
96 CREATE_COOLDOWN = HZ, /* time to breath after fail */
97
98 /*
99 * Rescue workers are used only on emergencies and shared by
100 * all cpus. Give MIN_NICE.
101 */
102 RESCUER_NICE_LEVEL = MIN_NICE,
103 HIGHPRI_NICE_LEVEL = MIN_NICE,
104
105 WQ_NAME_LEN = 24,
106 };
107
108 /*
109 * Structure fields follow one of the following exclusion rules.
110 *
111 * I: Modifiable by initialization/destruction paths and read-only for
112 * everyone else.
113 *
114 * P: Preemption protected. Disabling preemption is enough and should
115 * only be modified and accessed from the local cpu.
116 *
117 * L: pool->lock protected. Access with pool->lock held.
118 *
119 * X: During normal operation, modification requires pool->lock and should
120 * be done only from local cpu. Either disabling preemption on local
121 * cpu or grabbing pool->lock is enough for read access. If
122 * POOL_DISASSOCIATED is set, it's identical to L.
123 *
124 * A: pool->attach_mutex protected.
125 *
126 * PL: wq_pool_mutex protected.
127 *
128 * PR: wq_pool_mutex protected for writes. Sched-RCU protected for reads.
129 *
130 * WQ: wq->mutex protected.
131 *
132 * WR: wq->mutex protected for writes. Sched-RCU protected for reads.
133 *
134 * MD: wq_mayday_lock protected.
135 */
136
137 /* struct worker is defined in workqueue_internal.h */
138
139 struct worker_pool {
140 spinlock_t lock; /* the pool lock */
141 int cpu; /* I: the associated cpu */
142 int node; /* I: the associated node ID */
143 int id; /* I: pool ID */
144 unsigned int flags; /* X: flags */
145
146 struct list_head worklist; /* L: list of pending works */
147 int nr_workers; /* L: total number of workers */
148
149 /* nr_idle includes the ones off idle_list for rebinding */
150 int nr_idle; /* L: currently idle ones */
151
152 struct list_head idle_list; /* X: list of idle workers */
153 struct timer_list idle_timer; /* L: worker idle timeout */
154 struct timer_list mayday_timer; /* L: SOS timer for workers */
155
156 /* a workers is either on busy_hash or idle_list, or the manager */
157 DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
158 /* L: hash of busy workers */
159
160 /* see manage_workers() for details on the two manager mutexes */
161 struct mutex manager_arb; /* manager arbitration */
162 struct mutex attach_mutex; /* attach/detach exclusion */
163 struct list_head workers; /* A: attached workers */
164 struct completion *detach_completion; /* all workers detached */
165
166 struct ida worker_ida; /* worker IDs for task name */
167
168 struct workqueue_attrs *attrs; /* I: worker attributes */
169 struct hlist_node hash_node; /* PL: unbound_pool_hash node */
170 int refcnt; /* PL: refcnt for unbound pools */
171
172 /*
173 * The current concurrency level. As it's likely to be accessed
174 * from other CPUs during try_to_wake_up(), put it in a separate
175 * cacheline.
176 */
177 atomic_t nr_running ____cacheline_aligned_in_smp;
178
179 /*
180 * Destruction of pool is sched-RCU protected to allow dereferences
181 * from get_work_pool().
182 */
183 struct rcu_head rcu;
184 } ____cacheline_aligned_in_smp;
185
186 /*
187 * The per-pool workqueue. While queued, the lower WORK_STRUCT_FLAG_BITS
188 * of work_struct->data are used for flags and the remaining high bits
189 * point to the pwq; thus, pwqs need to be aligned at two's power of the
190 * number of flag bits.
191 */
192 struct pool_workqueue {
193 struct worker_pool *pool; /* I: the associated pool */
194 struct workqueue_struct *wq; /* I: the owning workqueue */
195 int work_color; /* L: current color */
196 int flush_color; /* L: flushing color */
197 int refcnt; /* L: reference count */
198 int nr_in_flight[WORK_NR_COLORS];
199 /* L: nr of in_flight works */
200 int nr_active; /* L: nr of active works */
201 int max_active; /* L: max active works */
202 struct list_head delayed_works; /* L: delayed works */
203 struct list_head pwqs_node; /* WR: node on wq->pwqs */
204 struct list_head mayday_node; /* MD: node on wq->maydays */
205
206 /*
207 * Release of unbound pwq is punted to system_wq. See put_pwq()
208 * and pwq_unbound_release_workfn() for details. pool_workqueue
209 * itself is also sched-RCU protected so that the first pwq can be
210 * determined without grabbing wq->mutex.
211 */
212 struct work_struct unbound_release_work;
213 struct rcu_head rcu;
214 } __aligned(1 << WORK_STRUCT_FLAG_BITS);
215
216 /*
217 * Structure used to wait for workqueue flush.
218 */
219 struct wq_flusher {
220 struct list_head list; /* WQ: list of flushers */
221 int flush_color; /* WQ: flush color waiting for */
222 struct completion done; /* flush completion */
223 };
224
225 struct wq_device;
226
227 /*
228 * The externally visible workqueue. It relays the issued work items to
229 * the appropriate worker_pool through its pool_workqueues.
230 */
231 struct workqueue_struct {
232 struct list_head pwqs; /* WR: all pwqs of this wq */
233 struct list_head list; /* PL: list of all workqueues */
234
235 struct mutex mutex; /* protects this wq */
236 int work_color; /* WQ: current work color */
237 int flush_color; /* WQ: current flush color */
238 atomic_t nr_pwqs_to_flush; /* flush in progress */
239 struct wq_flusher *first_flusher; /* WQ: first flusher */
240 struct list_head flusher_queue; /* WQ: flush waiters */
241 struct list_head flusher_overflow; /* WQ: flush overflow list */
242
243 struct list_head maydays; /* MD: pwqs requesting rescue */
244 struct worker *rescuer; /* I: rescue worker */
245
246 int nr_drainers; /* WQ: drain in progress */
247 int saved_max_active; /* WQ: saved pwq max_active */
248
249 struct workqueue_attrs *unbound_attrs; /* WQ: only for unbound wqs */
250 struct pool_workqueue *dfl_pwq; /* WQ: only for unbound wqs */
251
252 #ifdef CONFIG_SYSFS
253 struct wq_device *wq_dev; /* I: for sysfs interface */
254 #endif
255 #ifdef CONFIG_LOCKDEP
256 struct lockdep_map lockdep_map;
257 #endif
258 char name[WQ_NAME_LEN]; /* I: workqueue name */
259
260 /* hot fields used during command issue, aligned to cacheline */
261 unsigned int flags ____cacheline_aligned; /* WQ: WQ_* flags */
262 struct pool_workqueue __percpu *cpu_pwqs; /* I: per-cpu pwqs */
263 struct pool_workqueue __rcu *numa_pwq_tbl[]; /* FR: unbound pwqs indexed by node */
264 };
265
266 static struct kmem_cache *pwq_cache;
267
268 static int wq_numa_tbl_len; /* highest possible NUMA node id + 1 */
269 static cpumask_var_t *wq_numa_possible_cpumask;
270 /* possible CPUs of each node */
271
272 static bool wq_disable_numa;
273 module_param_named(disable_numa, wq_disable_numa, bool, 0444);
274
275 /* see the comment above the definition of WQ_POWER_EFFICIENT */
276 #ifdef CONFIG_WQ_POWER_EFFICIENT_DEFAULT
277 static bool wq_power_efficient = true;
278 #else
279 static bool wq_power_efficient;
280 #endif
281
282 module_param_named(power_efficient, wq_power_efficient, bool, 0444);
283
284 static bool wq_numa_enabled; /* unbound NUMA affinity enabled */
285
286 /* buf for wq_update_unbound_numa_attrs(), protected by CPU hotplug exclusion */
287 static struct workqueue_attrs *wq_update_unbound_numa_attrs_buf;
288
289 static DEFINE_MUTEX(wq_pool_mutex); /* protects pools and workqueues list */
290 static DEFINE_SPINLOCK(wq_mayday_lock); /* protects wq->maydays list */
291
292 static LIST_HEAD(workqueues); /* PL: list of all workqueues */
293 static bool workqueue_freezing; /* PL: have wqs started freezing? */
294
295 /* the per-cpu worker pools */
296 static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS],
297 cpu_worker_pools);
298
299 static DEFINE_IDR(worker_pool_idr); /* PR: idr of all pools */
300
301 /* PL: hash of all unbound pools keyed by pool->attrs */
302 static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER);
303
304 /* I: attributes used when instantiating standard unbound pools on demand */
305 static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS];
306
307 /* I: attributes used when instantiating ordered pools on demand */
308 static struct workqueue_attrs *ordered_wq_attrs[NR_STD_WORKER_POOLS];
309
310 struct workqueue_struct *system_wq __read_mostly;
311 EXPORT_SYMBOL(system_wq);
312 struct workqueue_struct *system_highpri_wq __read_mostly;
313 EXPORT_SYMBOL_GPL(system_highpri_wq);
314 struct workqueue_struct *system_long_wq __read_mostly;
315 EXPORT_SYMBOL_GPL(system_long_wq);
316 struct workqueue_struct *system_unbound_wq __read_mostly;
317 EXPORT_SYMBOL_GPL(system_unbound_wq);
318 struct workqueue_struct *system_freezable_wq __read_mostly;
319 EXPORT_SYMBOL_GPL(system_freezable_wq);
320 struct workqueue_struct *system_power_efficient_wq __read_mostly;
321 EXPORT_SYMBOL_GPL(system_power_efficient_wq);
322 struct workqueue_struct *system_freezable_power_efficient_wq __read_mostly;
323 EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq);
324
325 static int worker_thread(void *__worker);
326 static void copy_workqueue_attrs(struct workqueue_attrs *to,
327 const struct workqueue_attrs *from);
328
329 #define CREATE_TRACE_POINTS
330 #include <trace/events/workqueue.h>
331
332 #define assert_rcu_or_pool_mutex() \
333 rcu_lockdep_assert(rcu_read_lock_sched_held() || \
334 lockdep_is_held(&wq_pool_mutex), \
335 "sched RCU or wq_pool_mutex should be held")
336
337 #define assert_rcu_or_wq_mutex(wq) \
338 rcu_lockdep_assert(rcu_read_lock_sched_held() || \
339 lockdep_is_held(&wq->mutex), \
340 "sched RCU or wq->mutex should be held")
341
342 #define for_each_cpu_worker_pool(pool, cpu) \
343 for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0]; \
344 (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
345 (pool)++)
346
347 /**
348 * for_each_pool - iterate through all worker_pools in the system
349 * @pool: iteration cursor
350 * @pi: integer used for iteration
351 *
352 * This must be called either with wq_pool_mutex held or sched RCU read
353 * locked. If the pool needs to be used beyond the locking in effect, the
354 * caller is responsible for guaranteeing that the pool stays online.
355 *
356 * The if/else clause exists only for the lockdep assertion and can be
357 * ignored.
358 */
359 #define for_each_pool(pool, pi) \
360 idr_for_each_entry(&worker_pool_idr, pool, pi) \
361 if (({ assert_rcu_or_pool_mutex(); false; })) { } \
362 else
363
364 /**
365 * for_each_pool_worker - iterate through all workers of a worker_pool
366 * @worker: iteration cursor
367 * @pool: worker_pool to iterate workers of
368 *
369 * This must be called with @pool->attach_mutex.
370 *
371 * The if/else clause exists only for the lockdep assertion and can be
372 * ignored.
373 */
374 #define for_each_pool_worker(worker, pool) \
375 list_for_each_entry((worker), &(pool)->workers, node) \
376 if (({ lockdep_assert_held(&pool->attach_mutex); false; })) { } \
377 else
378
379 /**
380 * for_each_pwq - iterate through all pool_workqueues of the specified workqueue
381 * @pwq: iteration cursor
382 * @wq: the target workqueue
383 *
384 * This must be called either with wq->mutex held or sched RCU read locked.
385 * If the pwq needs to be used beyond the locking in effect, the caller is
386 * responsible for guaranteeing that the pwq stays online.
387 *
388 * The if/else clause exists only for the lockdep assertion and can be
389 * ignored.
390 */
391 #define for_each_pwq(pwq, wq) \
392 list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node) \
393 if (({ assert_rcu_or_wq_mutex(wq); false; })) { } \
394 else
395
396 #ifdef CONFIG_DEBUG_OBJECTS_WORK
397
398 static struct debug_obj_descr work_debug_descr;
399
400 static void *work_debug_hint(void *addr)
401 {
402 return ((struct work_struct *) addr)->func;
403 }
404
405 /*
406 * fixup_init is called when:
407 * - an active object is initialized
408 */
409 static int work_fixup_init(void *addr, enum debug_obj_state state)
410 {
411 struct work_struct *work = addr;
412
413 switch (state) {
414 case ODEBUG_STATE_ACTIVE:
415 cancel_work_sync(work);
416 debug_object_init(work, &work_debug_descr);
417 return 1;
418 default:
419 return 0;
420 }
421 }
422
423 /*
424 * fixup_activate is called when:
425 * - an active object is activated
426 * - an unknown object is activated (might be a statically initialized object)
427 */
428 static int work_fixup_activate(void *addr, enum debug_obj_state state)
429 {
430 struct work_struct *work = addr;
431
432 switch (state) {
433
434 case ODEBUG_STATE_NOTAVAILABLE:
435 /*
436 * This is not really a fixup. The work struct was
437 * statically initialized. We just make sure that it
438 * is tracked in the object tracker.
439 */
440 if (test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work))) {
441 debug_object_init(work, &work_debug_descr);
442 debug_object_activate(work, &work_debug_descr);
443 return 0;
444 }
445 WARN_ON_ONCE(1);
446 return 0;
447
448 case ODEBUG_STATE_ACTIVE:
449 WARN_ON(1);
450
451 default:
452 return 0;
453 }
454 }
455
456 /*
457 * fixup_free is called when:
458 * - an active object is freed
459 */
460 static int work_fixup_free(void *addr, enum debug_obj_state state)
461 {
462 struct work_struct *work = addr;
463
464 switch (state) {
465 case ODEBUG_STATE_ACTIVE:
466 cancel_work_sync(work);
467 debug_object_free(work, &work_debug_descr);
468 return 1;
469 default:
470 return 0;
471 }
472 }
473
474 static struct debug_obj_descr work_debug_descr = {
475 .name = "work_struct",
476 .debug_hint = work_debug_hint,
477 .fixup_init = work_fixup_init,
478 .fixup_activate = work_fixup_activate,
479 .fixup_free = work_fixup_free,
480 };
481
482 static inline void debug_work_activate(struct work_struct *work)
483 {
484 debug_object_activate(work, &work_debug_descr);
485 }
486
487 static inline void debug_work_deactivate(struct work_struct *work)
488 {
489 debug_object_deactivate(work, &work_debug_descr);
490 }
491
492 void __init_work(struct work_struct *work, int onstack)
493 {
494 if (onstack)
495 debug_object_init_on_stack(work, &work_debug_descr);
496 else
497 debug_object_init(work, &work_debug_descr);
498 }
499 EXPORT_SYMBOL_GPL(__init_work);
500
501 void destroy_work_on_stack(struct work_struct *work)
502 {
503 debug_object_free(work, &work_debug_descr);
504 }
505 EXPORT_SYMBOL_GPL(destroy_work_on_stack);
506
507 void destroy_delayed_work_on_stack(struct delayed_work *work)
508 {
509 destroy_timer_on_stack(&work->timer);
510 debug_object_free(&work->work, &work_debug_descr);
511 }
512 EXPORT_SYMBOL_GPL(destroy_delayed_work_on_stack);
513
514 #else
515 static inline void debug_work_activate(struct work_struct *work) { }
516 static inline void debug_work_deactivate(struct work_struct *work) { }
517 #endif
518
519 /**
520 * worker_pool_assign_id - allocate ID and assing it to @pool
521 * @pool: the pool pointer of interest
522 *
523 * Returns 0 if ID in [0, WORK_OFFQ_POOL_NONE) is allocated and assigned
524 * successfully, -errno on failure.
525 */
526 static int worker_pool_assign_id(struct worker_pool *pool)
527 {
528 int ret;
529
530 lockdep_assert_held(&wq_pool_mutex);
531
532 ret = idr_alloc(&worker_pool_idr, pool, 0, WORK_OFFQ_POOL_NONE,
533 GFP_KERNEL);
534 if (ret >= 0) {
535 pool->id = ret;
536 return 0;
537 }
538 return ret;
539 }
540
541 /**
542 * unbound_pwq_by_node - return the unbound pool_workqueue for the given node
543 * @wq: the target workqueue
544 * @node: the node ID
545 *
546 * This must be called either with pwq_lock held or sched RCU read locked.
547 * If the pwq needs to be used beyond the locking in effect, the caller is
548 * responsible for guaranteeing that the pwq stays online.
549 *
550 * Return: The unbound pool_workqueue for @node.
551 */
552 static struct pool_workqueue *unbound_pwq_by_node(struct workqueue_struct *wq,
553 int node)
554 {
555 assert_rcu_or_wq_mutex(wq);
556 return rcu_dereference_raw(wq->numa_pwq_tbl[node]);
557 }
558
559 static unsigned int work_color_to_flags(int color)
560 {
561 return color << WORK_STRUCT_COLOR_SHIFT;
562 }
563
564 static int get_work_color(struct work_struct *work)
565 {
566 return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
567 ((1 << WORK_STRUCT_COLOR_BITS) - 1);
568 }
569
570 static int work_next_color(int color)
571 {
572 return (color + 1) % WORK_NR_COLORS;
573 }
574
575 /*
576 * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
577 * contain the pointer to the queued pwq. Once execution starts, the flag
578 * is cleared and the high bits contain OFFQ flags and pool ID.
579 *
580 * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling()
581 * and clear_work_data() can be used to set the pwq, pool or clear
582 * work->data. These functions should only be called while the work is
583 * owned - ie. while the PENDING bit is set.
584 *
585 * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
586 * corresponding to a work. Pool is available once the work has been
587 * queued anywhere after initialization until it is sync canceled. pwq is
588 * available only while the work item is queued.
589 *
590 * %WORK_OFFQ_CANCELING is used to mark a work item which is being
591 * canceled. While being canceled, a work item may have its PENDING set
592 * but stay off timer and worklist for arbitrarily long and nobody should
593 * try to steal the PENDING bit.
594 */
595 static inline void set_work_data(struct work_struct *work, unsigned long data,
596 unsigned long flags)
597 {
598 WARN_ON_ONCE(!work_pending(work));
599 atomic_long_set(&work->data, data | flags | work_static(work));
600 }
601
602 static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq,
603 unsigned long extra_flags)
604 {
605 set_work_data(work, (unsigned long)pwq,
606 WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags);
607 }
608
609 static void set_work_pool_and_keep_pending(struct work_struct *work,
610 int pool_id)
611 {
612 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT,
613 WORK_STRUCT_PENDING);
614 }
615
616 static void set_work_pool_and_clear_pending(struct work_struct *work,
617 int pool_id)
618 {
619 /*
620 * The following wmb is paired with the implied mb in
621 * test_and_set_bit(PENDING) and ensures all updates to @work made
622 * here are visible to and precede any updates by the next PENDING
623 * owner.
624 */
625 smp_wmb();
626 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0);
627 }
628
629 static void clear_work_data(struct work_struct *work)
630 {
631 smp_wmb(); /* see set_work_pool_and_clear_pending() */
632 set_work_data(work, WORK_STRUCT_NO_POOL, 0);
633 }
634
635 static struct pool_workqueue *get_work_pwq(struct work_struct *work)
636 {
637 unsigned long data = atomic_long_read(&work->data);
638
639 if (data & WORK_STRUCT_PWQ)
640 return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
641 else
642 return NULL;
643 }
644
645 /**
646 * get_work_pool - return the worker_pool a given work was associated with
647 * @work: the work item of interest
648 *
649 * Pools are created and destroyed under wq_pool_mutex, and allows read
650 * access under sched-RCU read lock. As such, this function should be
651 * called under wq_pool_mutex or with preemption disabled.
652 *
653 * All fields of the returned pool are accessible as long as the above
654 * mentioned locking is in effect. If the returned pool needs to be used
655 * beyond the critical section, the caller is responsible for ensuring the
656 * returned pool is and stays online.
657 *
658 * Return: The worker_pool @work was last associated with. %NULL if none.
659 */
660 static struct worker_pool *get_work_pool(struct work_struct *work)
661 {
662 unsigned long data = atomic_long_read(&work->data);
663 int pool_id;
664
665 assert_rcu_or_pool_mutex();
666
667 if (data & WORK_STRUCT_PWQ)
668 return ((struct pool_workqueue *)
669 (data & WORK_STRUCT_WQ_DATA_MASK))->pool;
670
671 pool_id = data >> WORK_OFFQ_POOL_SHIFT;
672 if (pool_id == WORK_OFFQ_POOL_NONE)
673 return NULL;
674
675 return idr_find(&worker_pool_idr, pool_id);
676 }
677
678 /**
679 * get_work_pool_id - return the worker pool ID a given work is associated with
680 * @work: the work item of interest
681 *
682 * Return: The worker_pool ID @work was last associated with.
683 * %WORK_OFFQ_POOL_NONE if none.
684 */
685 static int get_work_pool_id(struct work_struct *work)
686 {
687 unsigned long data = atomic_long_read(&work->data);
688
689 if (data & WORK_STRUCT_PWQ)
690 return ((struct pool_workqueue *)
691 (data & WORK_STRUCT_WQ_DATA_MASK))->pool->id;
692
693 return data >> WORK_OFFQ_POOL_SHIFT;
694 }
695
696 static void mark_work_canceling(struct work_struct *work)
697 {
698 unsigned long pool_id = get_work_pool_id(work);
699
700 pool_id <<= WORK_OFFQ_POOL_SHIFT;
701 set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING);
702 }
703
704 static bool work_is_canceling(struct work_struct *work)
705 {
706 unsigned long data = atomic_long_read(&work->data);
707
708 return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING);
709 }
710
711 /*
712 * Policy functions. These define the policies on how the global worker
713 * pools are managed. Unless noted otherwise, these functions assume that
714 * they're being called with pool->lock held.
715 */
716
717 static bool __need_more_worker(struct worker_pool *pool)
718 {
719 return !atomic_read(&pool->nr_running);
720 }
721
722 /*
723 * Need to wake up a worker? Called from anything but currently
724 * running workers.
725 *
726 * Note that, because unbound workers never contribute to nr_running, this
727 * function will always return %true for unbound pools as long as the
728 * worklist isn't empty.
729 */
730 static bool need_more_worker(struct worker_pool *pool)
731 {
732 return !list_empty(&pool->worklist) && __need_more_worker(pool);
733 }
734
735 /* Can I start working? Called from busy but !running workers. */
736 static bool may_start_working(struct worker_pool *pool)
737 {
738 return pool->nr_idle;
739 }
740
741 /* Do I need to keep working? Called from currently running workers. */
742 static bool keep_working(struct worker_pool *pool)
743 {
744 return !list_empty(&pool->worklist) &&
745 atomic_read(&pool->nr_running) <= 1;
746 }
747
748 /* Do we need a new worker? Called from manager. */
749 static bool need_to_create_worker(struct worker_pool *pool)
750 {
751 return need_more_worker(pool) && !may_start_working(pool);
752 }
753
754 /* Do we have too many workers and should some go away? */
755 static bool too_many_workers(struct worker_pool *pool)
756 {
757 bool managing = mutex_is_locked(&pool->manager_arb);
758 int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
759 int nr_busy = pool->nr_workers - nr_idle;
760
761 return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
762 }
763
764 /*
765 * Wake up functions.
766 */
767
768 /* Return the first idle worker. Safe with preemption disabled */
769 static struct worker *first_idle_worker(struct worker_pool *pool)
770 {
771 if (unlikely(list_empty(&pool->idle_list)))
772 return NULL;
773
774 return list_first_entry(&pool->idle_list, struct worker, entry);
775 }
776
777 /**
778 * wake_up_worker - wake up an idle worker
779 * @pool: worker pool to wake worker from
780 *
781 * Wake up the first idle worker of @pool.
782 *
783 * CONTEXT:
784 * spin_lock_irq(pool->lock).
785 */
786 static void wake_up_worker(struct worker_pool *pool)
787 {
788 struct worker *worker = first_idle_worker(pool);
789
790 if (likely(worker))
791 wake_up_process(worker->task);
792 }
793
794 /**
795 * wq_worker_waking_up - a worker is waking up
796 * @task: task waking up
797 * @cpu: CPU @task is waking up to
798 *
799 * This function is called during try_to_wake_up() when a worker is
800 * being awoken.
801 *
802 * CONTEXT:
803 * spin_lock_irq(rq->lock)
804 */
805 void wq_worker_waking_up(struct task_struct *task, int cpu)
806 {
807 struct worker *worker = kthread_data(task);
808
809 if (!(worker->flags & WORKER_NOT_RUNNING)) {
810 WARN_ON_ONCE(worker->pool->cpu != cpu);
811 atomic_inc(&worker->pool->nr_running);
812 }
813 }
814
815 /**
816 * wq_worker_sleeping - a worker is going to sleep
817 * @task: task going to sleep
818 * @cpu: CPU in question, must be the current CPU number
819 *
820 * This function is called during schedule() when a busy worker is
821 * going to sleep. Worker on the same cpu can be woken up by
822 * returning pointer to its task.
823 *
824 * CONTEXT:
825 * spin_lock_irq(rq->lock)
826 *
827 * Return:
828 * Worker task on @cpu to wake up, %NULL if none.
829 */
830 struct task_struct *wq_worker_sleeping(struct task_struct *task, int cpu)
831 {
832 struct worker *worker = kthread_data(task), *to_wakeup = NULL;
833 struct worker_pool *pool;
834
835 /*
836 * Rescuers, which may not have all the fields set up like normal
837 * workers, also reach here, let's not access anything before
838 * checking NOT_RUNNING.
839 */
840 if (worker->flags & WORKER_NOT_RUNNING)
841 return NULL;
842
843 pool = worker->pool;
844
845 /* this can only happen on the local cpu */
846 if (WARN_ON_ONCE(cpu != raw_smp_processor_id() || pool->cpu != cpu))
847 return NULL;
848
849 /*
850 * The counterpart of the following dec_and_test, implied mb,
851 * worklist not empty test sequence is in insert_work().
852 * Please read comment there.
853 *
854 * NOT_RUNNING is clear. This means that we're bound to and
855 * running on the local cpu w/ rq lock held and preemption
856 * disabled, which in turn means that none else could be
857 * manipulating idle_list, so dereferencing idle_list without pool
858 * lock is safe.
859 */
860 if (atomic_dec_and_test(&pool->nr_running) &&
861 !list_empty(&pool->worklist))
862 to_wakeup = first_idle_worker(pool);
863 return to_wakeup ? to_wakeup->task : NULL;
864 }
865
866 /**
867 * worker_set_flags - set worker flags and adjust nr_running accordingly
868 * @worker: self
869 * @flags: flags to set
870 * @wakeup: wakeup an idle worker if necessary
871 *
872 * Set @flags in @worker->flags and adjust nr_running accordingly. If
873 * nr_running becomes zero and @wakeup is %true, an idle worker is
874 * woken up.
875 *
876 * CONTEXT:
877 * spin_lock_irq(pool->lock)
878 */
879 static inline void worker_set_flags(struct worker *worker, unsigned int flags,
880 bool wakeup)
881 {
882 struct worker_pool *pool = worker->pool;
883
884 WARN_ON_ONCE(worker->task != current);
885
886 /*
887 * If transitioning into NOT_RUNNING, adjust nr_running and
888 * wake up an idle worker as necessary if requested by
889 * @wakeup.
890 */
891 if ((flags & WORKER_NOT_RUNNING) &&
892 !(worker->flags & WORKER_NOT_RUNNING)) {
893 if (wakeup) {
894 if (atomic_dec_and_test(&pool->nr_running) &&
895 !list_empty(&pool->worklist))
896 wake_up_worker(pool);
897 } else
898 atomic_dec(&pool->nr_running);
899 }
900
901 worker->flags |= flags;
902 }
903
904 /**
905 * worker_clr_flags - clear worker flags and adjust nr_running accordingly
906 * @worker: self
907 * @flags: flags to clear
908 *
909 * Clear @flags in @worker->flags and adjust nr_running accordingly.
910 *
911 * CONTEXT:
912 * spin_lock_irq(pool->lock)
913 */
914 static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
915 {
916 struct worker_pool *pool = worker->pool;
917 unsigned int oflags = worker->flags;
918
919 WARN_ON_ONCE(worker->task != current);
920
921 worker->flags &= ~flags;
922
923 /*
924 * If transitioning out of NOT_RUNNING, increment nr_running. Note
925 * that the nested NOT_RUNNING is not a noop. NOT_RUNNING is mask
926 * of multiple flags, not a single flag.
927 */
928 if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
929 if (!(worker->flags & WORKER_NOT_RUNNING))
930 atomic_inc(&pool->nr_running);
931 }
932
933 /**
934 * find_worker_executing_work - find worker which is executing a work
935 * @pool: pool of interest
936 * @work: work to find worker for
937 *
938 * Find a worker which is executing @work on @pool by searching
939 * @pool->busy_hash which is keyed by the address of @work. For a worker
940 * to match, its current execution should match the address of @work and
941 * its work function. This is to avoid unwanted dependency between
942 * unrelated work executions through a work item being recycled while still
943 * being executed.
944 *
945 * This is a bit tricky. A work item may be freed once its execution
946 * starts and nothing prevents the freed area from being recycled for
947 * another work item. If the same work item address ends up being reused
948 * before the original execution finishes, workqueue will identify the
949 * recycled work item as currently executing and make it wait until the
950 * current execution finishes, introducing an unwanted dependency.
951 *
952 * This function checks the work item address and work function to avoid
953 * false positives. Note that this isn't complete as one may construct a
954 * work function which can introduce dependency onto itself through a
955 * recycled work item. Well, if somebody wants to shoot oneself in the
956 * foot that badly, there's only so much we can do, and if such deadlock
957 * actually occurs, it should be easy to locate the culprit work function.
958 *
959 * CONTEXT:
960 * spin_lock_irq(pool->lock).
961 *
962 * Return:
963 * Pointer to worker which is executing @work if found, %NULL
964 * otherwise.
965 */
966 static struct worker *find_worker_executing_work(struct worker_pool *pool,
967 struct work_struct *work)
968 {
969 struct worker *worker;
970
971 hash_for_each_possible(pool->busy_hash, worker, hentry,
972 (unsigned long)work)
973 if (worker->current_work == work &&
974 worker->current_func == work->func)
975 return worker;
976
977 return NULL;
978 }
979
980 /**
981 * move_linked_works - move linked works to a list
982 * @work: start of series of works to be scheduled
983 * @head: target list to append @work to
984 * @nextp: out paramter for nested worklist walking
985 *
986 * Schedule linked works starting from @work to @head. Work series to
987 * be scheduled starts at @work and includes any consecutive work with
988 * WORK_STRUCT_LINKED set in its predecessor.
989 *
990 * If @nextp is not NULL, it's updated to point to the next work of
991 * the last scheduled work. This allows move_linked_works() to be
992 * nested inside outer list_for_each_entry_safe().
993 *
994 * CONTEXT:
995 * spin_lock_irq(pool->lock).
996 */
997 static void move_linked_works(struct work_struct *work, struct list_head *head,
998 struct work_struct **nextp)
999 {
1000 struct work_struct *n;
1001
1002 /*
1003 * Linked worklist will always end before the end of the list,
1004 * use NULL for list head.
1005 */
1006 list_for_each_entry_safe_from(work, n, NULL, entry) {
1007 list_move_tail(&work->entry, head);
1008 if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
1009 break;
1010 }
1011
1012 /*
1013 * If we're already inside safe list traversal and have moved
1014 * multiple works to the scheduled queue, the next position
1015 * needs to be updated.
1016 */
1017 if (nextp)
1018 *nextp = n;
1019 }
1020
1021 /**
1022 * get_pwq - get an extra reference on the specified pool_workqueue
1023 * @pwq: pool_workqueue to get
1024 *
1025 * Obtain an extra reference on @pwq. The caller should guarantee that
1026 * @pwq has positive refcnt and be holding the matching pool->lock.
1027 */
1028 static void get_pwq(struct pool_workqueue *pwq)
1029 {
1030 lockdep_assert_held(&pwq->pool->lock);
1031 WARN_ON_ONCE(pwq->refcnt <= 0);
1032 pwq->refcnt++;
1033 }
1034
1035 /**
1036 * put_pwq - put a pool_workqueue reference
1037 * @pwq: pool_workqueue to put
1038 *
1039 * Drop a reference of @pwq. If its refcnt reaches zero, schedule its
1040 * destruction. The caller should be holding the matching pool->lock.
1041 */
1042 static void put_pwq(struct pool_workqueue *pwq)
1043 {
1044 lockdep_assert_held(&pwq->pool->lock);
1045 if (likely(--pwq->refcnt))
1046 return;
1047 if (WARN_ON_ONCE(!(pwq->wq->flags & WQ_UNBOUND)))
1048 return;
1049 /*
1050 * @pwq can't be released under pool->lock, bounce to
1051 * pwq_unbound_release_workfn(). This never recurses on the same
1052 * pool->lock as this path is taken only for unbound workqueues and
1053 * the release work item is scheduled on a per-cpu workqueue. To
1054 * avoid lockdep warning, unbound pool->locks are given lockdep
1055 * subclass of 1 in get_unbound_pool().
1056 */
1057 schedule_work(&pwq->unbound_release_work);
1058 }
1059
1060 /**
1061 * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock
1062 * @pwq: pool_workqueue to put (can be %NULL)
1063 *
1064 * put_pwq() with locking. This function also allows %NULL @pwq.
1065 */
1066 static void put_pwq_unlocked(struct pool_workqueue *pwq)
1067 {
1068 if (pwq) {
1069 /*
1070 * As both pwqs and pools are sched-RCU protected, the
1071 * following lock operations are safe.
1072 */
1073 spin_lock_irq(&pwq->pool->lock);
1074 put_pwq(pwq);
1075 spin_unlock_irq(&pwq->pool->lock);
1076 }
1077 }
1078
1079 static void pwq_activate_delayed_work(struct work_struct *work)
1080 {
1081 struct pool_workqueue *pwq = get_work_pwq(work);
1082
1083 trace_workqueue_activate_work(work);
1084 move_linked_works(work, &pwq->pool->worklist, NULL);
1085 __clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
1086 pwq->nr_active++;
1087 }
1088
1089 static void pwq_activate_first_delayed(struct pool_workqueue *pwq)
1090 {
1091 struct work_struct *work = list_first_entry(&pwq->delayed_works,
1092 struct work_struct, entry);
1093
1094 pwq_activate_delayed_work(work);
1095 }
1096
1097 /**
1098 * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
1099 * @pwq: pwq of interest
1100 * @color: color of work which left the queue
1101 *
1102 * A work either has completed or is removed from pending queue,
1103 * decrement nr_in_flight of its pwq and handle workqueue flushing.
1104 *
1105 * CONTEXT:
1106 * spin_lock_irq(pool->lock).
1107 */
1108 static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, int color)
1109 {
1110 /* uncolored work items don't participate in flushing or nr_active */
1111 if (color == WORK_NO_COLOR)
1112 goto out_put;
1113
1114 pwq->nr_in_flight[color]--;
1115
1116 pwq->nr_active--;
1117 if (!list_empty(&pwq->delayed_works)) {
1118 /* one down, submit a delayed one */
1119 if (pwq->nr_active < pwq->max_active)
1120 pwq_activate_first_delayed(pwq);
1121 }
1122
1123 /* is flush in progress and are we at the flushing tip? */
1124 if (likely(pwq->flush_color != color))
1125 goto out_put;
1126
1127 /* are there still in-flight works? */
1128 if (pwq->nr_in_flight[color])
1129 goto out_put;
1130
1131 /* this pwq is done, clear flush_color */
1132 pwq->flush_color = -1;
1133
1134 /*
1135 * If this was the last pwq, wake up the first flusher. It
1136 * will handle the rest.
1137 */
1138 if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush))
1139 complete(&pwq->wq->first_flusher->done);
1140 out_put:
1141 put_pwq(pwq);
1142 }
1143
1144 /**
1145 * try_to_grab_pending - steal work item from worklist and disable irq
1146 * @work: work item to steal
1147 * @is_dwork: @work is a delayed_work
1148 * @flags: place to store irq state
1149 *
1150 * Try to grab PENDING bit of @work. This function can handle @work in any
1151 * stable state - idle, on timer or on worklist.
1152 *
1153 * Return:
1154 * 1 if @work was pending and we successfully stole PENDING
1155 * 0 if @work was idle and we claimed PENDING
1156 * -EAGAIN if PENDING couldn't be grabbed at the moment, safe to busy-retry
1157 * -ENOENT if someone else is canceling @work, this state may persist
1158 * for arbitrarily long
1159 *
1160 * Note:
1161 * On >= 0 return, the caller owns @work's PENDING bit. To avoid getting
1162 * interrupted while holding PENDING and @work off queue, irq must be
1163 * disabled on entry. This, combined with delayed_work->timer being
1164 * irqsafe, ensures that we return -EAGAIN for finite short period of time.
1165 *
1166 * On successful return, >= 0, irq is disabled and the caller is
1167 * responsible for releasing it using local_irq_restore(*@flags).
1168 *
1169 * This function is safe to call from any context including IRQ handler.
1170 */
1171 static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
1172 unsigned long *flags)
1173 {
1174 struct worker_pool *pool;
1175 struct pool_workqueue *pwq;
1176
1177 local_irq_save(*flags);
1178
1179 /* try to steal the timer if it exists */
1180 if (is_dwork) {
1181 struct delayed_work *dwork = to_delayed_work(work);
1182
1183 /*
1184 * dwork->timer is irqsafe. If del_timer() fails, it's
1185 * guaranteed that the timer is not queued anywhere and not
1186 * running on the local CPU.
1187 */
1188 if (likely(del_timer(&dwork->timer)))
1189 return 1;
1190 }
1191
1192 /* try to claim PENDING the normal way */
1193 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
1194 return 0;
1195
1196 /*
1197 * The queueing is in progress, or it is already queued. Try to
1198 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
1199 */
1200 pool = get_work_pool(work);
1201 if (!pool)
1202 goto fail;
1203
1204 spin_lock(&pool->lock);
1205 /*
1206 * work->data is guaranteed to point to pwq only while the work
1207 * item is queued on pwq->wq, and both updating work->data to point
1208 * to pwq on queueing and to pool on dequeueing are done under
1209 * pwq->pool->lock. This in turn guarantees that, if work->data
1210 * points to pwq which is associated with a locked pool, the work
1211 * item is currently queued on that pool.
1212 */
1213 pwq = get_work_pwq(work);
1214 if (pwq && pwq->pool == pool) {
1215 debug_work_deactivate(work);
1216
1217 /*
1218 * A delayed work item cannot be grabbed directly because
1219 * it might have linked NO_COLOR work items which, if left
1220 * on the delayed_list, will confuse pwq->nr_active
1221 * management later on and cause stall. Make sure the work
1222 * item is activated before grabbing.
1223 */
1224 if (*work_data_bits(work) & WORK_STRUCT_DELAYED)
1225 pwq_activate_delayed_work(work);
1226
1227 list_del_init(&work->entry);
1228 pwq_dec_nr_in_flight(pwq, get_work_color(work));
1229
1230 /* work->data points to pwq iff queued, point to pool */
1231 set_work_pool_and_keep_pending(work, pool->id);
1232
1233 spin_unlock(&pool->lock);
1234 return 1;
1235 }
1236 spin_unlock(&pool->lock);
1237 fail:
1238 local_irq_restore(*flags);
1239 if (work_is_canceling(work))
1240 return -ENOENT;
1241 cpu_relax();
1242 return -EAGAIN;
1243 }
1244
1245 /**
1246 * insert_work - insert a work into a pool
1247 * @pwq: pwq @work belongs to
1248 * @work: work to insert
1249 * @head: insertion point
1250 * @extra_flags: extra WORK_STRUCT_* flags to set
1251 *
1252 * Insert @work which belongs to @pwq after @head. @extra_flags is or'd to
1253 * work_struct flags.
1254 *
1255 * CONTEXT:
1256 * spin_lock_irq(pool->lock).
1257 */
1258 static void insert_work(struct pool_workqueue *pwq, struct work_struct *work,
1259 struct list_head *head, unsigned int extra_flags)
1260 {
1261 struct worker_pool *pool = pwq->pool;
1262
1263 /* we own @work, set data and link */
1264 set_work_pwq(work, pwq, extra_flags);
1265 list_add_tail(&work->entry, head);
1266 get_pwq(pwq);
1267
1268 /*
1269 * Ensure either wq_worker_sleeping() sees the above
1270 * list_add_tail() or we see zero nr_running to avoid workers lying
1271 * around lazily while there are works to be processed.
1272 */
1273 smp_mb();
1274
1275 if (__need_more_worker(pool))
1276 wake_up_worker(pool);
1277 }
1278
1279 /*
1280 * Test whether @work is being queued from another work executing on the
1281 * same workqueue.
1282 */
1283 static bool is_chained_work(struct workqueue_struct *wq)
1284 {
1285 struct worker *worker;
1286
1287 worker = current_wq_worker();
1288 /*
1289 * Return %true iff I'm a worker execuing a work item on @wq. If
1290 * I'm @worker, it's safe to dereference it without locking.
1291 */
1292 return worker && worker->current_pwq->wq == wq;
1293 }
1294
1295 static void __queue_work(int cpu, struct workqueue_struct *wq,
1296 struct work_struct *work)
1297 {
1298 struct pool_workqueue *pwq;
1299 struct worker_pool *last_pool;
1300 struct list_head *worklist;
1301 unsigned int work_flags;
1302 unsigned int req_cpu = cpu;
1303
1304 /*
1305 * While a work item is PENDING && off queue, a task trying to
1306 * steal the PENDING will busy-loop waiting for it to either get
1307 * queued or lose PENDING. Grabbing PENDING and queueing should
1308 * happen with IRQ disabled.
1309 */
1310 WARN_ON_ONCE(!irqs_disabled());
1311
1312 debug_work_activate(work);
1313
1314 /* if draining, only works from the same workqueue are allowed */
1315 if (unlikely(wq->flags & __WQ_DRAINING) &&
1316 WARN_ON_ONCE(!is_chained_work(wq)))
1317 return;
1318 retry:
1319 if (req_cpu == WORK_CPU_UNBOUND)
1320 cpu = raw_smp_processor_id();
1321
1322 /* pwq which will be used unless @work is executing elsewhere */
1323 if (!(wq->flags & WQ_UNBOUND))
1324 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
1325 else
1326 pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
1327
1328 /*
1329 * If @work was previously on a different pool, it might still be
1330 * running there, in which case the work needs to be queued on that
1331 * pool to guarantee non-reentrancy.
1332 */
1333 last_pool = get_work_pool(work);
1334 if (last_pool && last_pool != pwq->pool) {
1335 struct worker *worker;
1336
1337 spin_lock(&last_pool->lock);
1338
1339 worker = find_worker_executing_work(last_pool, work);
1340
1341 if (worker && worker->current_pwq->wq == wq) {
1342 pwq = worker->current_pwq;
1343 } else {
1344 /* meh... not running there, queue here */
1345 spin_unlock(&last_pool->lock);
1346 spin_lock(&pwq->pool->lock);
1347 }
1348 } else {
1349 spin_lock(&pwq->pool->lock);
1350 }
1351
1352 /*
1353 * pwq is determined and locked. For unbound pools, we could have
1354 * raced with pwq release and it could already be dead. If its
1355 * refcnt is zero, repeat pwq selection. Note that pwqs never die
1356 * without another pwq replacing it in the numa_pwq_tbl or while
1357 * work items are executing on it, so the retrying is guaranteed to
1358 * make forward-progress.
1359 */
1360 if (unlikely(!pwq->refcnt)) {
1361 if (wq->flags & WQ_UNBOUND) {
1362 spin_unlock(&pwq->pool->lock);
1363 cpu_relax();
1364 goto retry;
1365 }
1366 /* oops */
1367 WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt",
1368 wq->name, cpu);
1369 }
1370
1371 /* pwq determined, queue */
1372 trace_workqueue_queue_work(req_cpu, pwq, work);
1373
1374 if (WARN_ON(!list_empty(&work->entry))) {
1375 spin_unlock(&pwq->pool->lock);
1376 return;
1377 }
1378
1379 pwq->nr_in_flight[pwq->work_color]++;
1380 work_flags = work_color_to_flags(pwq->work_color);
1381
1382 if (likely(pwq->nr_active < pwq->max_active)) {
1383 trace_workqueue_activate_work(work);
1384 pwq->nr_active++;
1385 worklist = &pwq->pool->worklist;
1386 } else {
1387 work_flags |= WORK_STRUCT_DELAYED;
1388 worklist = &pwq->delayed_works;
1389 }
1390
1391 insert_work(pwq, work, worklist, work_flags);
1392
1393 spin_unlock(&pwq->pool->lock);
1394 }
1395
1396 /**
1397 * queue_work_on - queue work on specific cpu
1398 * @cpu: CPU number to execute work on
1399 * @wq: workqueue to use
1400 * @work: work to queue
1401 *
1402 * We queue the work to a specific CPU, the caller must ensure it
1403 * can't go away.
1404 *
1405 * Return: %false if @work was already on a queue, %true otherwise.
1406 */
1407 bool queue_work_on(int cpu, struct workqueue_struct *wq,
1408 struct work_struct *work)
1409 {
1410 bool ret = false;
1411 unsigned long flags;
1412
1413 local_irq_save(flags);
1414
1415 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1416 __queue_work(cpu, wq, work);
1417 ret = true;
1418 }
1419
1420 local_irq_restore(flags);
1421 return ret;
1422 }
1423 EXPORT_SYMBOL(queue_work_on);
1424
1425 void delayed_work_timer_fn(unsigned long __data)
1426 {
1427 struct delayed_work *dwork = (struct delayed_work *)__data;
1428
1429 /* should have been called from irqsafe timer with irq already off */
1430 __queue_work(dwork->cpu, dwork->wq, &dwork->work);
1431 }
1432 EXPORT_SYMBOL(delayed_work_timer_fn);
1433
1434 static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
1435 struct delayed_work *dwork, unsigned long delay)
1436 {
1437 struct timer_list *timer = &dwork->timer;
1438 struct work_struct *work = &dwork->work;
1439
1440 WARN_ON_ONCE(timer->function != delayed_work_timer_fn ||
1441 timer->data != (unsigned long)dwork);
1442 WARN_ON_ONCE(timer_pending(timer));
1443 WARN_ON_ONCE(!list_empty(&work->entry));
1444
1445 /*
1446 * If @delay is 0, queue @dwork->work immediately. This is for
1447 * both optimization and correctness. The earliest @timer can
1448 * expire is on the closest next tick and delayed_work users depend
1449 * on that there's no such delay when @delay is 0.
1450 */
1451 if (!delay) {
1452 __queue_work(cpu, wq, &dwork->work);
1453 return;
1454 }
1455
1456 timer_stats_timer_set_start_info(&dwork->timer);
1457
1458 dwork->wq = wq;
1459 dwork->cpu = cpu;
1460 timer->expires = jiffies + delay;
1461
1462 if (unlikely(cpu != WORK_CPU_UNBOUND))
1463 add_timer_on(timer, cpu);
1464 else
1465 add_timer(timer);
1466 }
1467
1468 /**
1469 * queue_delayed_work_on - queue work on specific CPU after delay
1470 * @cpu: CPU number to execute work on
1471 * @wq: workqueue to use
1472 * @dwork: work to queue
1473 * @delay: number of jiffies to wait before queueing
1474 *
1475 * Return: %false if @work was already on a queue, %true otherwise. If
1476 * @delay is zero and @dwork is idle, it will be scheduled for immediate
1477 * execution.
1478 */
1479 bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
1480 struct delayed_work *dwork, unsigned long delay)
1481 {
1482 struct work_struct *work = &dwork->work;
1483 bool ret = false;
1484 unsigned long flags;
1485
1486 /* read the comment in __queue_work() */
1487 local_irq_save(flags);
1488
1489 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1490 __queue_delayed_work(cpu, wq, dwork, delay);
1491 ret = true;
1492 }
1493
1494 local_irq_restore(flags);
1495 return ret;
1496 }
1497 EXPORT_SYMBOL(queue_delayed_work_on);
1498
1499 /**
1500 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
1501 * @cpu: CPU number to execute work on
1502 * @wq: workqueue to use
1503 * @dwork: work to queue
1504 * @delay: number of jiffies to wait before queueing
1505 *
1506 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
1507 * modify @dwork's timer so that it expires after @delay. If @delay is
1508 * zero, @work is guaranteed to be scheduled immediately regardless of its
1509 * current state.
1510 *
1511 * Return: %false if @dwork was idle and queued, %true if @dwork was
1512 * pending and its timer was modified.
1513 *
1514 * This function is safe to call from any context including IRQ handler.
1515 * See try_to_grab_pending() for details.
1516 */
1517 bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
1518 struct delayed_work *dwork, unsigned long delay)
1519 {
1520 unsigned long flags;
1521 int ret;
1522
1523 do {
1524 ret = try_to_grab_pending(&dwork->work, true, &flags);
1525 } while (unlikely(ret == -EAGAIN));
1526
1527 if (likely(ret >= 0)) {
1528 __queue_delayed_work(cpu, wq, dwork, delay);
1529 local_irq_restore(flags);
1530 }
1531
1532 /* -ENOENT from try_to_grab_pending() becomes %true */
1533 return ret;
1534 }
1535 EXPORT_SYMBOL_GPL(mod_delayed_work_on);
1536
1537 /**
1538 * worker_enter_idle - enter idle state
1539 * @worker: worker which is entering idle state
1540 *
1541 * @worker is entering idle state. Update stats and idle timer if
1542 * necessary.
1543 *
1544 * LOCKING:
1545 * spin_lock_irq(pool->lock).
1546 */
1547 static void worker_enter_idle(struct worker *worker)
1548 {
1549 struct worker_pool *pool = worker->pool;
1550
1551 if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) ||
1552 WARN_ON_ONCE(!list_empty(&worker->entry) &&
1553 (worker->hentry.next || worker->hentry.pprev)))
1554 return;
1555
1556 /* can't use worker_set_flags(), also called from start_worker() */
1557 worker->flags |= WORKER_IDLE;
1558 pool->nr_idle++;
1559 worker->last_active = jiffies;
1560
1561 /* idle_list is LIFO */
1562 list_add(&worker->entry, &pool->idle_list);
1563
1564 if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
1565 mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
1566
1567 /*
1568 * Sanity check nr_running. Because wq_unbind_fn() releases
1569 * pool->lock between setting %WORKER_UNBOUND and zapping
1570 * nr_running, the warning may trigger spuriously. Check iff
1571 * unbind is not in progress.
1572 */
1573 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
1574 pool->nr_workers == pool->nr_idle &&
1575 atomic_read(&pool->nr_running));
1576 }
1577
1578 /**
1579 * worker_leave_idle - leave idle state
1580 * @worker: worker which is leaving idle state
1581 *
1582 * @worker is leaving idle state. Update stats.
1583 *
1584 * LOCKING:
1585 * spin_lock_irq(pool->lock).
1586 */
1587 static void worker_leave_idle(struct worker *worker)
1588 {
1589 struct worker_pool *pool = worker->pool;
1590
1591 if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE)))
1592 return;
1593 worker_clr_flags(worker, WORKER_IDLE);
1594 pool->nr_idle--;
1595 list_del_init(&worker->entry);
1596 }
1597
1598 static struct worker *alloc_worker(int node)
1599 {
1600 struct worker *worker;
1601
1602 worker = kzalloc_node(sizeof(*worker), GFP_KERNEL, node);
1603 if (worker) {
1604 INIT_LIST_HEAD(&worker->entry);
1605 INIT_LIST_HEAD(&worker->scheduled);
1606 INIT_LIST_HEAD(&worker->node);
1607 /* on creation a worker is in !idle && prep state */
1608 worker->flags = WORKER_PREP;
1609 }
1610 return worker;
1611 }
1612
1613 /**
1614 * worker_attach_to_pool() - attach a worker to a pool
1615 * @worker: worker to be attached
1616 * @pool: the target pool
1617 *
1618 * Attach @worker to @pool. Once attached, the %WORKER_UNBOUND flag and
1619 * cpu-binding of @worker are kept coordinated with the pool across
1620 * cpu-[un]hotplugs.
1621 */
1622 static void worker_attach_to_pool(struct worker *worker,
1623 struct worker_pool *pool)
1624 {
1625 mutex_lock(&pool->attach_mutex);
1626
1627 /*
1628 * set_cpus_allowed_ptr() will fail if the cpumask doesn't have any
1629 * online CPUs. It'll be re-applied when any of the CPUs come up.
1630 */
1631 set_cpus_allowed_ptr(worker->task, pool->attrs->cpumask);
1632
1633 /*
1634 * The pool->attach_mutex ensures %POOL_DISASSOCIATED remains
1635 * stable across this function. See the comments above the
1636 * flag definition for details.
1637 */
1638 if (pool->flags & POOL_DISASSOCIATED)
1639 worker->flags |= WORKER_UNBOUND;
1640
1641 list_add_tail(&worker->node, &pool->workers);
1642
1643 mutex_unlock(&pool->attach_mutex);
1644 }
1645
1646 /**
1647 * worker_detach_from_pool() - detach a worker from its pool
1648 * @worker: worker which is attached to its pool
1649 * @pool: the pool @worker is attached to
1650 *
1651 * Undo the attaching which had been done in worker_attach_to_pool(). The
1652 * caller worker shouldn't access to the pool after detached except it has
1653 * other reference to the pool.
1654 */
1655 static void worker_detach_from_pool(struct worker *worker,
1656 struct worker_pool *pool)
1657 {
1658 struct completion *detach_completion = NULL;
1659
1660 mutex_lock(&pool->attach_mutex);
1661 list_del(&worker->node);
1662 if (list_empty(&pool->workers))
1663 detach_completion = pool->detach_completion;
1664 mutex_unlock(&pool->attach_mutex);
1665
1666 /* clear leftover flags without pool->lock after it is detached */
1667 worker->flags &= ~(WORKER_UNBOUND | WORKER_REBOUND);
1668
1669 if (detach_completion)
1670 complete(detach_completion);
1671 }
1672
1673 /**
1674 * create_worker - create a new workqueue worker
1675 * @pool: pool the new worker will belong to
1676 *
1677 * Create a new worker which is attached to @pool. The new worker must be
1678 * started by start_worker().
1679 *
1680 * CONTEXT:
1681 * Might sleep. Does GFP_KERNEL allocations.
1682 *
1683 * Return:
1684 * Pointer to the newly created worker.
1685 */
1686 static struct worker *create_worker(struct worker_pool *pool)
1687 {
1688 struct worker *worker = NULL;
1689 int id = -1;
1690 char id_buf[16];
1691
1692 /* ID is needed to determine kthread name */
1693 id = ida_simple_get(&pool->worker_ida, 0, 0, GFP_KERNEL);
1694 if (id < 0)
1695 goto fail;
1696
1697 worker = alloc_worker(pool->node);
1698 if (!worker)
1699 goto fail;
1700
1701 worker->pool = pool;
1702 worker->id = id;
1703
1704 if (pool->cpu >= 0)
1705 snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id,
1706 pool->attrs->nice < 0 ? "H" : "");
1707 else
1708 snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id);
1709
1710 worker->task = kthread_create_on_node(worker_thread, worker, pool->node,
1711 "kworker/%s", id_buf);
1712 if (IS_ERR(worker->task))
1713 goto fail;
1714
1715 set_user_nice(worker->task, pool->attrs->nice);
1716
1717 /* prevent userland from meddling with cpumask of workqueue workers */
1718 worker->task->flags |= PF_NO_SETAFFINITY;
1719
1720 /* successful, attach the worker to the pool */
1721 worker_attach_to_pool(worker, pool);
1722
1723 return worker;
1724
1725 fail:
1726 if (id >= 0)
1727 ida_simple_remove(&pool->worker_ida, id);
1728 kfree(worker);
1729 return NULL;
1730 }
1731
1732 /**
1733 * start_worker - start a newly created worker
1734 * @worker: worker to start
1735 *
1736 * Make the pool aware of @worker and start it.
1737 *
1738 * CONTEXT:
1739 * spin_lock_irq(pool->lock).
1740 */
1741 static void start_worker(struct worker *worker)
1742 {
1743 worker->pool->nr_workers++;
1744 worker_enter_idle(worker);
1745 wake_up_process(worker->task);
1746 }
1747
1748 /**
1749 * create_and_start_worker - create and start a worker for a pool
1750 * @pool: the target pool
1751 *
1752 * Grab the managership of @pool and create and start a new worker for it.
1753 *
1754 * Return: 0 on success. A negative error code otherwise.
1755 */
1756 static int create_and_start_worker(struct worker_pool *pool)
1757 {
1758 struct worker *worker;
1759
1760 worker = create_worker(pool);
1761 if (worker) {
1762 spin_lock_irq(&pool->lock);
1763 start_worker(worker);
1764 spin_unlock_irq(&pool->lock);
1765 }
1766
1767 return worker ? 0 : -ENOMEM;
1768 }
1769
1770 /**
1771 * destroy_worker - destroy a workqueue worker
1772 * @worker: worker to be destroyed
1773 *
1774 * Destroy @worker and adjust @pool stats accordingly. The worker should
1775 * be idle.
1776 *
1777 * CONTEXT:
1778 * spin_lock_irq(pool->lock).
1779 */
1780 static void destroy_worker(struct worker *worker)
1781 {
1782 struct worker_pool *pool = worker->pool;
1783
1784 lockdep_assert_held(&pool->lock);
1785
1786 /* sanity check frenzy */
1787 if (WARN_ON(worker->current_work) ||
1788 WARN_ON(!list_empty(&worker->scheduled)) ||
1789 WARN_ON(!(worker->flags & WORKER_IDLE)))
1790 return;
1791
1792 pool->nr_workers--;
1793 pool->nr_idle--;
1794
1795 list_del_init(&worker->entry);
1796 worker->flags |= WORKER_DIE;
1797 wake_up_process(worker->task);
1798 }
1799
1800 static void idle_worker_timeout(unsigned long __pool)
1801 {
1802 struct worker_pool *pool = (void *)__pool;
1803
1804 spin_lock_irq(&pool->lock);
1805
1806 while (too_many_workers(pool)) {
1807 struct worker *worker;
1808 unsigned long expires;
1809
1810 /* idle_list is kept in LIFO order, check the last one */
1811 worker = list_entry(pool->idle_list.prev, struct worker, entry);
1812 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
1813
1814 if (time_before(jiffies, expires)) {
1815 mod_timer(&pool->idle_timer, expires);
1816 break;
1817 }
1818
1819 destroy_worker(worker);
1820 }
1821
1822 spin_unlock_irq(&pool->lock);
1823 }
1824
1825 static void send_mayday(struct work_struct *work)
1826 {
1827 struct pool_workqueue *pwq = get_work_pwq(work);
1828 struct workqueue_struct *wq = pwq->wq;
1829
1830 lockdep_assert_held(&wq_mayday_lock);
1831
1832 if (!wq->rescuer)
1833 return;
1834
1835 /* mayday mayday mayday */
1836 if (list_empty(&pwq->mayday_node)) {
1837 /*
1838 * If @pwq is for an unbound wq, its base ref may be put at
1839 * any time due to an attribute change. Pin @pwq until the
1840 * rescuer is done with it.
1841 */
1842 get_pwq(pwq);
1843 list_add_tail(&pwq->mayday_node, &wq->maydays);
1844 wake_up_process(wq->rescuer->task);
1845 }
1846 }
1847
1848 static void pool_mayday_timeout(unsigned long __pool)
1849 {
1850 struct worker_pool *pool = (void *)__pool;
1851 struct work_struct *work;
1852
1853 spin_lock_irq(&wq_mayday_lock); /* for wq->maydays */
1854 spin_lock(&pool->lock);
1855
1856 if (need_to_create_worker(pool)) {
1857 /*
1858 * We've been trying to create a new worker but
1859 * haven't been successful. We might be hitting an
1860 * allocation deadlock. Send distress signals to
1861 * rescuers.
1862 */
1863 list_for_each_entry(work, &pool->worklist, entry)
1864 send_mayday(work);
1865 }
1866
1867 spin_unlock(&pool->lock);
1868 spin_unlock_irq(&wq_mayday_lock);
1869
1870 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
1871 }
1872
1873 /**
1874 * maybe_create_worker - create a new worker if necessary
1875 * @pool: pool to create a new worker for
1876 *
1877 * Create a new worker for @pool if necessary. @pool is guaranteed to
1878 * have at least one idle worker on return from this function. If
1879 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
1880 * sent to all rescuers with works scheduled on @pool to resolve
1881 * possible allocation deadlock.
1882 *
1883 * On return, need_to_create_worker() is guaranteed to be %false and
1884 * may_start_working() %true.
1885 *
1886 * LOCKING:
1887 * spin_lock_irq(pool->lock) which may be released and regrabbed
1888 * multiple times. Does GFP_KERNEL allocations. Called only from
1889 * manager.
1890 *
1891 * Return:
1892 * %false if no action was taken and pool->lock stayed locked, %true
1893 * otherwise.
1894 */
1895 static bool maybe_create_worker(struct worker_pool *pool)
1896 __releases(&pool->lock)
1897 __acquires(&pool->lock)
1898 {
1899 if (!need_to_create_worker(pool))
1900 return false;
1901 restart:
1902 spin_unlock_irq(&pool->lock);
1903
1904 /* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
1905 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
1906
1907 while (true) {
1908 struct worker *worker;
1909
1910 worker = create_worker(pool);
1911 if (worker) {
1912 del_timer_sync(&pool->mayday_timer);
1913 spin_lock_irq(&pool->lock);
1914 start_worker(worker);
1915 if (WARN_ON_ONCE(need_to_create_worker(pool)))
1916 goto restart;
1917 return true;
1918 }
1919
1920 if (!need_to_create_worker(pool))
1921 break;
1922
1923 schedule_timeout_interruptible(CREATE_COOLDOWN);
1924
1925 if (!need_to_create_worker(pool))
1926 break;
1927 }
1928
1929 del_timer_sync(&pool->mayday_timer);
1930 spin_lock_irq(&pool->lock);
1931 if (need_to_create_worker(pool))
1932 goto restart;
1933 return true;
1934 }
1935
1936 /**
1937 * manage_workers - manage worker pool
1938 * @worker: self
1939 *
1940 * Assume the manager role and manage the worker pool @worker belongs
1941 * to. At any given time, there can be only zero or one manager per
1942 * pool. The exclusion is handled automatically by this function.
1943 *
1944 * The caller can safely start processing works on false return. On
1945 * true return, it's guaranteed that need_to_create_worker() is false
1946 * and may_start_working() is true.
1947 *
1948 * CONTEXT:
1949 * spin_lock_irq(pool->lock) which may be released and regrabbed
1950 * multiple times. Does GFP_KERNEL allocations.
1951 *
1952 * Return:
1953 * %false if the pool don't need management and the caller can safely start
1954 * processing works, %true indicates that the function released pool->lock
1955 * and reacquired it to perform some management function and that the
1956 * conditions that the caller verified while holding the lock before
1957 * calling the function might no longer be true.
1958 */
1959 static bool manage_workers(struct worker *worker)
1960 {
1961 struct worker_pool *pool = worker->pool;
1962 bool ret = false;
1963
1964 /*
1965 * Anyone who successfully grabs manager_arb wins the arbitration
1966 * and becomes the manager. mutex_trylock() on pool->manager_arb
1967 * failure while holding pool->lock reliably indicates that someone
1968 * else is managing the pool and the worker which failed trylock
1969 * can proceed to executing work items. This means that anyone
1970 * grabbing manager_arb is responsible for actually performing
1971 * manager duties. If manager_arb is grabbed and released without
1972 * actual management, the pool may stall indefinitely.
1973 */
1974 if (!mutex_trylock(&pool->manager_arb))
1975 return ret;
1976
1977 ret |= maybe_create_worker(pool);
1978
1979 mutex_unlock(&pool->manager_arb);
1980 return ret;
1981 }
1982
1983 /**
1984 * process_one_work - process single work
1985 * @worker: self
1986 * @work: work to process
1987 *
1988 * Process @work. This function contains all the logics necessary to
1989 * process a single work including synchronization against and
1990 * interaction with other workers on the same cpu, queueing and
1991 * flushing. As long as context requirement is met, any worker can
1992 * call this function to process a work.
1993 *
1994 * CONTEXT:
1995 * spin_lock_irq(pool->lock) which is released and regrabbed.
1996 */
1997 static void process_one_work(struct worker *worker, struct work_struct *work)
1998 __releases(&pool->lock)
1999 __acquires(&pool->lock)
2000 {
2001 struct pool_workqueue *pwq = get_work_pwq(work);
2002 struct worker_pool *pool = worker->pool;
2003 bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE;
2004 int work_color;
2005 struct worker *collision;
2006 #ifdef CONFIG_LOCKDEP
2007 /*
2008 * It is permissible to free the struct work_struct from
2009 * inside the function that is called from it, this we need to
2010 * take into account for lockdep too. To avoid bogus "held
2011 * lock freed" warnings as well as problems when looking into
2012 * work->lockdep_map, make a copy and use that here.
2013 */
2014 struct lockdep_map lockdep_map;
2015
2016 lockdep_copy_map(&lockdep_map, &work->lockdep_map);
2017 #endif
2018 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
2019 raw_smp_processor_id() != pool->cpu);
2020
2021 /*
2022 * A single work shouldn't be executed concurrently by
2023 * multiple workers on a single cpu. Check whether anyone is
2024 * already processing the work. If so, defer the work to the
2025 * currently executing one.
2026 */
2027 collision = find_worker_executing_work(pool, work);
2028 if (unlikely(collision)) {
2029 move_linked_works(work, &collision->scheduled, NULL);
2030 return;
2031 }
2032
2033 /* claim and dequeue */
2034 debug_work_deactivate(work);
2035 hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
2036 worker->current_work = work;
2037 worker->current_func = work->func;
2038 worker->current_pwq = pwq;
2039 work_color = get_work_color(work);
2040
2041 list_del_init(&work->entry);
2042
2043 /*
2044 * CPU intensive works don't participate in concurrency
2045 * management. They're the scheduler's responsibility.
2046 */
2047 if (unlikely(cpu_intensive))
2048 worker_set_flags(worker, WORKER_CPU_INTENSIVE, true);
2049
2050 /*
2051 * Wake up another worker if necessary. The condition is always
2052 * false for normal per-cpu workers since nr_running would always
2053 * be >= 1 at this point. This is used to chain execution of the
2054 * pending work items for WORKER_NOT_RUNNING workers such as the
2055 * UNBOUND ones.
2056 */
2057 if (need_more_worker(pool))
2058 wake_up_worker(pool);
2059
2060 /*
2061 * Record the last pool and clear PENDING which should be the last
2062 * update to @work. Also, do this inside @pool->lock so that
2063 * PENDING and queued state changes happen together while IRQ is
2064 * disabled.
2065 */
2066 set_work_pool_and_clear_pending(work, pool->id);
2067
2068 spin_unlock_irq(&pool->lock);
2069
2070 lock_map_acquire_read(&pwq->wq->lockdep_map);
2071 lock_map_acquire(&lockdep_map);
2072 trace_workqueue_execute_start(work);
2073 worker->current_func(work);
2074 /*
2075 * While we must be careful to not use "work" after this, the trace
2076 * point will only record its address.
2077 */
2078 trace_workqueue_execute_end(work);
2079 lock_map_release(&lockdep_map);
2080 lock_map_release(&pwq->wq->lockdep_map);
2081
2082 if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
2083 pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
2084 " last function: %pf\n",
2085 current->comm, preempt_count(), task_pid_nr(current),
2086 worker->current_func);
2087 debug_show_held_locks(current);
2088 dump_stack();
2089 }
2090
2091 /*
2092 * The following prevents a kworker from hogging CPU on !PREEMPT
2093 * kernels, where a requeueing work item waiting for something to
2094 * happen could deadlock with stop_machine as such work item could
2095 * indefinitely requeue itself while all other CPUs are trapped in
2096 * stop_machine.
2097 */
2098 cond_resched();
2099
2100 spin_lock_irq(&pool->lock);
2101
2102 /* clear cpu intensive status */
2103 if (unlikely(cpu_intensive))
2104 worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
2105
2106 /* we're done with it, release */
2107 hash_del(&worker->hentry);
2108 worker->current_work = NULL;
2109 worker->current_func = NULL;
2110 worker->current_pwq = NULL;
2111 worker->desc_valid = false;
2112 pwq_dec_nr_in_flight(pwq, work_color);
2113 }
2114
2115 /**
2116 * process_scheduled_works - process scheduled works
2117 * @worker: self
2118 *
2119 * Process all scheduled works. Please note that the scheduled list
2120 * may change while processing a work, so this function repeatedly
2121 * fetches a work from the top and executes it.
2122 *
2123 * CONTEXT:
2124 * spin_lock_irq(pool->lock) which may be released and regrabbed
2125 * multiple times.
2126 */
2127 static void process_scheduled_works(struct worker *worker)
2128 {
2129 while (!list_empty(&worker->scheduled)) {
2130 struct work_struct *work = list_first_entry(&worker->scheduled,
2131 struct work_struct, entry);
2132 process_one_work(worker, work);
2133 }
2134 }
2135
2136 /**
2137 * worker_thread - the worker thread function
2138 * @__worker: self
2139 *
2140 * The worker thread function. All workers belong to a worker_pool -
2141 * either a per-cpu one or dynamic unbound one. These workers process all
2142 * work items regardless of their specific target workqueue. The only
2143 * exception is work items which belong to workqueues with a rescuer which
2144 * will be explained in rescuer_thread().
2145 *
2146 * Return: 0
2147 */
2148 static int worker_thread(void *__worker)
2149 {
2150 struct worker *worker = __worker;
2151 struct worker_pool *pool = worker->pool;
2152
2153 /* tell the scheduler that this is a workqueue worker */
2154 worker->task->flags |= PF_WQ_WORKER;
2155 woke_up:
2156 spin_lock_irq(&pool->lock);
2157
2158 /* am I supposed to die? */
2159 if (unlikely(worker->flags & WORKER_DIE)) {
2160 spin_unlock_irq(&pool->lock);
2161 WARN_ON_ONCE(!list_empty(&worker->entry));
2162 worker->task->flags &= ~PF_WQ_WORKER;
2163
2164 set_task_comm(worker->task, "kworker/dying");
2165 ida_simple_remove(&pool->worker_ida, worker->id);
2166 worker_detach_from_pool(worker, pool);
2167 kfree(worker);
2168 return 0;
2169 }
2170
2171 worker_leave_idle(worker);
2172 recheck:
2173 /* no more worker necessary? */
2174 if (!need_more_worker(pool))
2175 goto sleep;
2176
2177 /* do we need to manage? */
2178 if (unlikely(!may_start_working(pool)) && manage_workers(worker))
2179 goto recheck;
2180
2181 /*
2182 * ->scheduled list can only be filled while a worker is
2183 * preparing to process a work or actually processing it.
2184 * Make sure nobody diddled with it while I was sleeping.
2185 */
2186 WARN_ON_ONCE(!list_empty(&worker->scheduled));
2187
2188 /*
2189 * Finish PREP stage. We're guaranteed to have at least one idle
2190 * worker or that someone else has already assumed the manager
2191 * role. This is where @worker starts participating in concurrency
2192 * management if applicable and concurrency management is restored
2193 * after being rebound. See rebind_workers() for details.
2194 */
2195 worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND);
2196
2197 do {
2198 struct work_struct *work =
2199 list_first_entry(&pool->worklist,
2200 struct work_struct, entry);
2201
2202 if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
2203 /* optimization path, not strictly necessary */
2204 process_one_work(worker, work);
2205 if (unlikely(!list_empty(&worker->scheduled)))
2206 process_scheduled_works(worker);
2207 } else {
2208 move_linked_works(work, &worker->scheduled, NULL);
2209 process_scheduled_works(worker);
2210 }
2211 } while (keep_working(pool));
2212
2213 worker_set_flags(worker, WORKER_PREP, false);
2214 sleep:
2215 /*
2216 * pool->lock is held and there's no work to process and no need to
2217 * manage, sleep. Workers are woken up only while holding
2218 * pool->lock or from local cpu, so setting the current state
2219 * before releasing pool->lock is enough to prevent losing any
2220 * event.
2221 */
2222 worker_enter_idle(worker);
2223 __set_current_state(TASK_INTERRUPTIBLE);
2224 spin_unlock_irq(&pool->lock);
2225 schedule();
2226 goto woke_up;
2227 }
2228
2229 /**
2230 * rescuer_thread - the rescuer thread function
2231 * @__rescuer: self
2232 *
2233 * Workqueue rescuer thread function. There's one rescuer for each
2234 * workqueue which has WQ_MEM_RECLAIM set.
2235 *
2236 * Regular work processing on a pool may block trying to create a new
2237 * worker which uses GFP_KERNEL allocation which has slight chance of
2238 * developing into deadlock if some works currently on the same queue
2239 * need to be processed to satisfy the GFP_KERNEL allocation. This is
2240 * the problem rescuer solves.
2241 *
2242 * When such condition is possible, the pool summons rescuers of all
2243 * workqueues which have works queued on the pool and let them process
2244 * those works so that forward progress can be guaranteed.
2245 *
2246 * This should happen rarely.
2247 *
2248 * Return: 0
2249 */
2250 static int rescuer_thread(void *__rescuer)
2251 {
2252 struct worker *rescuer = __rescuer;
2253 struct workqueue_struct *wq = rescuer->rescue_wq;
2254 struct list_head *scheduled = &rescuer->scheduled;
2255 bool should_stop;
2256
2257 set_user_nice(current, RESCUER_NICE_LEVEL);
2258
2259 /*
2260 * Mark rescuer as worker too. As WORKER_PREP is never cleared, it
2261 * doesn't participate in concurrency management.
2262 */
2263 rescuer->task->flags |= PF_WQ_WORKER;
2264 repeat:
2265 set_current_state(TASK_INTERRUPTIBLE);
2266
2267 /*
2268 * By the time the rescuer is requested to stop, the workqueue
2269 * shouldn't have any work pending, but @wq->maydays may still have
2270 * pwq(s) queued. This can happen by non-rescuer workers consuming
2271 * all the work items before the rescuer got to them. Go through
2272 * @wq->maydays processing before acting on should_stop so that the
2273 * list is always empty on exit.
2274 */
2275 should_stop = kthread_should_stop();
2276
2277 /* see whether any pwq is asking for help */
2278 spin_lock_irq(&wq_mayday_lock);
2279
2280 while (!list_empty(&wq->maydays)) {
2281 struct pool_workqueue *pwq = list_first_entry(&wq->maydays,
2282 struct pool_workqueue, mayday_node);
2283 struct worker_pool *pool = pwq->pool;
2284 struct work_struct *work, *n;
2285
2286 __set_current_state(TASK_RUNNING);
2287 list_del_init(&pwq->mayday_node);
2288
2289 spin_unlock_irq(&wq_mayday_lock);
2290
2291 worker_attach_to_pool(rescuer, pool);
2292
2293 spin_lock_irq(&pool->lock);
2294 rescuer->pool = pool;
2295
2296 /*
2297 * Slurp in all works issued via this workqueue and
2298 * process'em.
2299 */
2300 WARN_ON_ONCE(!list_empty(&rescuer->scheduled));
2301 list_for_each_entry_safe(work, n, &pool->worklist, entry)
2302 if (get_work_pwq(work) == pwq)
2303 move_linked_works(work, scheduled, &n);
2304
2305 process_scheduled_works(rescuer);
2306 spin_unlock_irq(&pool->lock);
2307
2308 worker_detach_from_pool(rescuer, pool);
2309
2310 spin_lock_irq(&pool->lock);
2311
2312 /*
2313 * Put the reference grabbed by send_mayday(). @pool won't
2314 * go away while we're holding its lock.
2315 */
2316 put_pwq(pwq);
2317
2318 /*
2319 * Leave this pool. If need_more_worker() is %true, notify a
2320 * regular worker; otherwise, we end up with 0 concurrency
2321 * and stalling the execution.
2322 */
2323 if (need_more_worker(pool))
2324 wake_up_worker(pool);
2325
2326 rescuer->pool = NULL;
2327 spin_unlock(&pool->lock);
2328 spin_lock(&wq_mayday_lock);
2329 }
2330
2331 spin_unlock_irq(&wq_mayday_lock);
2332
2333 if (should_stop) {
2334 __set_current_state(TASK_RUNNING);
2335 rescuer->task->flags &= ~PF_WQ_WORKER;
2336 return 0;
2337 }
2338
2339 /* rescuers should never participate in concurrency management */
2340 WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
2341 schedule();
2342 goto repeat;
2343 }
2344
2345 struct wq_barrier {
2346 struct work_struct work;
2347 struct completion done;
2348 };
2349
2350 static void wq_barrier_func(struct work_struct *work)
2351 {
2352 struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
2353 complete(&barr->done);
2354 }
2355
2356 /**
2357 * insert_wq_barrier - insert a barrier work
2358 * @pwq: pwq to insert barrier into
2359 * @barr: wq_barrier to insert
2360 * @target: target work to attach @barr to
2361 * @worker: worker currently executing @target, NULL if @target is not executing
2362 *
2363 * @barr is linked to @target such that @barr is completed only after
2364 * @target finishes execution. Please note that the ordering
2365 * guarantee is observed only with respect to @target and on the local
2366 * cpu.
2367 *
2368 * Currently, a queued barrier can't be canceled. This is because
2369 * try_to_grab_pending() can't determine whether the work to be
2370 * grabbed is at the head of the queue and thus can't clear LINKED
2371 * flag of the previous work while there must be a valid next work
2372 * after a work with LINKED flag set.
2373 *
2374 * Note that when @worker is non-NULL, @target may be modified
2375 * underneath us, so we can't reliably determine pwq from @target.
2376 *
2377 * CONTEXT:
2378 * spin_lock_irq(pool->lock).
2379 */
2380 static void insert_wq_barrier(struct pool_workqueue *pwq,
2381 struct wq_barrier *barr,
2382 struct work_struct *target, struct worker *worker)
2383 {
2384 struct list_head *head;
2385 unsigned int linked = 0;
2386
2387 /*
2388 * debugobject calls are safe here even with pool->lock locked
2389 * as we know for sure that this will not trigger any of the
2390 * checks and call back into the fixup functions where we
2391 * might deadlock.
2392 */
2393 INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
2394 __set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
2395 init_completion(&barr->done);
2396
2397 /*
2398 * If @target is currently being executed, schedule the
2399 * barrier to the worker; otherwise, put it after @target.
2400 */
2401 if (worker)
2402 head = worker->scheduled.next;
2403 else {
2404 unsigned long *bits = work_data_bits(target);
2405
2406 head = target->entry.next;
2407 /* there can already be other linked works, inherit and set */
2408 linked = *bits & WORK_STRUCT_LINKED;
2409 __set_bit(WORK_STRUCT_LINKED_BIT, bits);
2410 }
2411
2412 debug_work_activate(&barr->work);
2413 insert_work(pwq, &barr->work, head,
2414 work_color_to_flags(WORK_NO_COLOR) | linked);
2415 }
2416
2417 /**
2418 * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing
2419 * @wq: workqueue being flushed
2420 * @flush_color: new flush color, < 0 for no-op
2421 * @work_color: new work color, < 0 for no-op
2422 *
2423 * Prepare pwqs for workqueue flushing.
2424 *
2425 * If @flush_color is non-negative, flush_color on all pwqs should be
2426 * -1. If no pwq has in-flight commands at the specified color, all
2427 * pwq->flush_color's stay at -1 and %false is returned. If any pwq
2428 * has in flight commands, its pwq->flush_color is set to
2429 * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq
2430 * wakeup logic is armed and %true is returned.
2431 *
2432 * The caller should have initialized @wq->first_flusher prior to
2433 * calling this function with non-negative @flush_color. If
2434 * @flush_color is negative, no flush color update is done and %false
2435 * is returned.
2436 *
2437 * If @work_color is non-negative, all pwqs should have the same
2438 * work_color which is previous to @work_color and all will be
2439 * advanced to @work_color.
2440 *
2441 * CONTEXT:
2442 * mutex_lock(wq->mutex).
2443 *
2444 * Return:
2445 * %true if @flush_color >= 0 and there's something to flush. %false
2446 * otherwise.
2447 */
2448 static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq,
2449 int flush_color, int work_color)
2450 {
2451 bool wait = false;
2452 struct pool_workqueue *pwq;
2453
2454 if (flush_color >= 0) {
2455 WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush));
2456 atomic_set(&wq->nr_pwqs_to_flush, 1);
2457 }
2458
2459 for_each_pwq(pwq, wq) {
2460 struct worker_pool *pool = pwq->pool;
2461
2462 spin_lock_irq(&pool->lock);
2463
2464 if (flush_color >= 0) {
2465 WARN_ON_ONCE(pwq->flush_color != -1);
2466
2467 if (pwq->nr_in_flight[flush_color]) {
2468 pwq->flush_color = flush_color;
2469 atomic_inc(&wq->nr_pwqs_to_flush);
2470 wait = true;
2471 }
2472 }
2473
2474 if (work_color >= 0) {
2475 WARN_ON_ONCE(work_color != work_next_color(pwq->work_color));
2476 pwq->work_color = work_color;
2477 }
2478
2479 spin_unlock_irq(&pool->lock);
2480 }
2481
2482 if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush))
2483 complete(&wq->first_flusher->done);
2484
2485 return wait;
2486 }
2487
2488 /**
2489 * flush_workqueue - ensure that any scheduled work has run to completion.
2490 * @wq: workqueue to flush
2491 *
2492 * This function sleeps until all work items which were queued on entry
2493 * have finished execution, but it is not livelocked by new incoming ones.
2494 */
2495 void flush_workqueue(struct workqueue_struct *wq)
2496 {
2497 struct wq_flusher this_flusher = {
2498 .list = LIST_HEAD_INIT(this_flusher.list),
2499 .flush_color = -1,
2500 .done = COMPLETION_INITIALIZER_ONSTACK(this_flusher.done),
2501 };
2502 int next_color;
2503
2504 lock_map_acquire(&wq->lockdep_map);
2505 lock_map_release(&wq->lockdep_map);
2506
2507 mutex_lock(&wq->mutex);
2508
2509 /*
2510 * Start-to-wait phase
2511 */
2512 next_color = work_next_color(wq->work_color);
2513
2514 if (next_color != wq->flush_color) {
2515 /*
2516 * Color space is not full. The current work_color
2517 * becomes our flush_color and work_color is advanced
2518 * by one.
2519 */
2520 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow));
2521 this_flusher.flush_color = wq->work_color;
2522 wq->work_color = next_color;
2523
2524 if (!wq->first_flusher) {
2525 /* no flush in progress, become the first flusher */
2526 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2527
2528 wq->first_flusher = &this_flusher;
2529
2530 if (!flush_workqueue_prep_pwqs(wq, wq->flush_color,
2531 wq->work_color)) {
2532 /* nothing to flush, done */
2533 wq->flush_color = next_color;
2534 wq->first_flusher = NULL;
2535 goto out_unlock;
2536 }
2537 } else {
2538 /* wait in queue */
2539 WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color);
2540 list_add_tail(&this_flusher.list, &wq->flusher_queue);
2541 flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2542 }
2543 } else {
2544 /*
2545 * Oops, color space is full, wait on overflow queue.
2546 * The next flush completion will assign us
2547 * flush_color and transfer to flusher_queue.
2548 */
2549 list_add_tail(&this_flusher.list, &wq->flusher_overflow);
2550 }
2551
2552 mutex_unlock(&wq->mutex);
2553
2554 wait_for_completion(&this_flusher.done);
2555
2556 /*
2557 * Wake-up-and-cascade phase
2558 *
2559 * First flushers are responsible for cascading flushes and
2560 * handling overflow. Non-first flushers can simply return.
2561 */
2562 if (wq->first_flusher != &this_flusher)
2563 return;
2564
2565 mutex_lock(&wq->mutex);
2566
2567 /* we might have raced, check again with mutex held */
2568 if (wq->first_flusher != &this_flusher)
2569 goto out_unlock;
2570
2571 wq->first_flusher = NULL;
2572
2573 WARN_ON_ONCE(!list_empty(&this_flusher.list));
2574 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2575
2576 while (true) {
2577 struct wq_flusher *next, *tmp;
2578
2579 /* complete all the flushers sharing the current flush color */
2580 list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
2581 if (next->flush_color != wq->flush_color)
2582 break;
2583 list_del_init(&next->list);
2584 complete(&next->done);
2585 }
2586
2587 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) &&
2588 wq->flush_color != work_next_color(wq->work_color));
2589
2590 /* this flush_color is finished, advance by one */
2591 wq->flush_color = work_next_color(wq->flush_color);
2592
2593 /* one color has been freed, handle overflow queue */
2594 if (!list_empty(&wq->flusher_overflow)) {
2595 /*
2596 * Assign the same color to all overflowed
2597 * flushers, advance work_color and append to
2598 * flusher_queue. This is the start-to-wait
2599 * phase for these overflowed flushers.
2600 */
2601 list_for_each_entry(tmp, &wq->flusher_overflow, list)
2602 tmp->flush_color = wq->work_color;
2603
2604 wq->work_color = work_next_color(wq->work_color);
2605
2606 list_splice_tail_init(&wq->flusher_overflow,
2607 &wq->flusher_queue);
2608 flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2609 }
2610
2611 if (list_empty(&wq->flusher_queue)) {
2612 WARN_ON_ONCE(wq->flush_color != wq->work_color);
2613 break;
2614 }
2615
2616 /*
2617 * Need to flush more colors. Make the next flusher
2618 * the new first flusher and arm pwqs.
2619 */
2620 WARN_ON_ONCE(wq->flush_color == wq->work_color);
2621 WARN_ON_ONCE(wq->flush_color != next->flush_color);
2622
2623 list_del_init(&next->list);
2624 wq->first_flusher = next;
2625
2626 if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1))
2627 break;
2628
2629 /*
2630 * Meh... this color is already done, clear first
2631 * flusher and repeat cascading.
2632 */
2633 wq->first_flusher = NULL;
2634 }
2635
2636 out_unlock:
2637 mutex_unlock(&wq->mutex);
2638 }
2639 EXPORT_SYMBOL_GPL(flush_workqueue);
2640
2641 /**
2642 * drain_workqueue - drain a workqueue
2643 * @wq: workqueue to drain
2644 *
2645 * Wait until the workqueue becomes empty. While draining is in progress,
2646 * only chain queueing is allowed. IOW, only currently pending or running
2647 * work items on @wq can queue further work items on it. @wq is flushed
2648 * repeatedly until it becomes empty. The number of flushing is detemined
2649 * by the depth of chaining and should be relatively short. Whine if it
2650 * takes too long.
2651 */
2652 void drain_workqueue(struct workqueue_struct *wq)
2653 {
2654 unsigned int flush_cnt = 0;
2655 struct pool_workqueue *pwq;
2656
2657 /*
2658 * __queue_work() needs to test whether there are drainers, is much
2659 * hotter than drain_workqueue() and already looks at @wq->flags.
2660 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers.
2661 */
2662 mutex_lock(&wq->mutex);
2663 if (!wq->nr_drainers++)
2664 wq->flags |= __WQ_DRAINING;
2665 mutex_unlock(&wq->mutex);
2666 reflush:
2667 flush_workqueue(wq);
2668
2669 mutex_lock(&wq->mutex);
2670
2671 for_each_pwq(pwq, wq) {
2672 bool drained;
2673
2674 spin_lock_irq(&pwq->pool->lock);
2675 drained = !pwq->nr_active && list_empty(&pwq->delayed_works);
2676 spin_unlock_irq(&pwq->pool->lock);
2677
2678 if (drained)
2679 continue;
2680
2681 if (++flush_cnt == 10 ||
2682 (flush_cnt % 100 == 0 && flush_cnt <= 1000))
2683 pr_warn("workqueue %s: drain_workqueue() isn't complete after %u tries\n",
2684 wq->name, flush_cnt);
2685
2686 mutex_unlock(&wq->mutex);
2687 goto reflush;
2688 }
2689
2690 if (!--wq->nr_drainers)
2691 wq->flags &= ~__WQ_DRAINING;
2692 mutex_unlock(&wq->mutex);
2693 }
2694 EXPORT_SYMBOL_GPL(drain_workqueue);
2695
2696 static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr)
2697 {
2698 struct worker *worker = NULL;
2699 struct worker_pool *pool;
2700 struct pool_workqueue *pwq;
2701
2702 might_sleep();
2703
2704 local_irq_disable();
2705 pool = get_work_pool(work);
2706 if (!pool) {
2707 local_irq_enable();
2708 return false;
2709 }
2710
2711 spin_lock(&pool->lock);
2712 /* see the comment in try_to_grab_pending() with the same code */
2713 pwq = get_work_pwq(work);
2714 if (pwq) {
2715 if (unlikely(pwq->pool != pool))
2716 goto already_gone;
2717 } else {
2718 worker = find_worker_executing_work(pool, work);
2719 if (!worker)
2720 goto already_gone;
2721 pwq = worker->current_pwq;
2722 }
2723
2724 insert_wq_barrier(pwq, barr, work, worker);
2725 spin_unlock_irq(&pool->lock);
2726
2727 /*
2728 * If @max_active is 1 or rescuer is in use, flushing another work
2729 * item on the same workqueue may lead to deadlock. Make sure the
2730 * flusher is not running on the same workqueue by verifying write
2731 * access.
2732 */
2733 if (pwq->wq->saved_max_active == 1 || pwq->wq->rescuer)
2734 lock_map_acquire(&pwq->wq->lockdep_map);
2735 else
2736 lock_map_acquire_read(&pwq->wq->lockdep_map);
2737 lock_map_release(&pwq->wq->lockdep_map);
2738
2739 return true;
2740 already_gone:
2741 spin_unlock_irq(&pool->lock);
2742 return false;
2743 }
2744
2745 /**
2746 * flush_work - wait for a work to finish executing the last queueing instance
2747 * @work: the work to flush
2748 *
2749 * Wait until @work has finished execution. @work is guaranteed to be idle
2750 * on return if it hasn't been requeued since flush started.
2751 *
2752 * Return:
2753 * %true if flush_work() waited for the work to finish execution,
2754 * %false if it was already idle.
2755 */
2756 bool flush_work(struct work_struct *work)
2757 {
2758 struct wq_barrier barr;
2759
2760 lock_map_acquire(&work->lockdep_map);
2761 lock_map_release(&work->lockdep_map);
2762
2763 if (start_flush_work(work, &barr)) {
2764 wait_for_completion(&barr.done);
2765 destroy_work_on_stack(&barr.work);
2766 return true;
2767 } else {
2768 return false;
2769 }
2770 }
2771 EXPORT_SYMBOL_GPL(flush_work);
2772
2773 static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
2774 {
2775 unsigned long flags;
2776 int ret;
2777
2778 do {
2779 ret = try_to_grab_pending(work, is_dwork, &flags);
2780 /*
2781 * If someone else is canceling, wait for the same event it
2782 * would be waiting for before retrying.
2783 */
2784 if (unlikely(ret == -ENOENT))
2785 flush_work(work);
2786 } while (unlikely(ret < 0));
2787
2788 /* tell other tasks trying to grab @work to back off */
2789 mark_work_canceling(work);
2790 local_irq_restore(flags);
2791
2792 flush_work(work);
2793 clear_work_data(work);
2794 return ret;
2795 }
2796
2797 /**
2798 * cancel_work_sync - cancel a work and wait for it to finish
2799 * @work: the work to cancel
2800 *
2801 * Cancel @work and wait for its execution to finish. This function
2802 * can be used even if the work re-queues itself or migrates to
2803 * another workqueue. On return from this function, @work is
2804 * guaranteed to be not pending or executing on any CPU.
2805 *
2806 * cancel_work_sync(&delayed_work->work) must not be used for
2807 * delayed_work's. Use cancel_delayed_work_sync() instead.
2808 *
2809 * The caller must ensure that the workqueue on which @work was last
2810 * queued can't be destroyed before this function returns.
2811 *
2812 * Return:
2813 * %true if @work was pending, %false otherwise.
2814 */
2815 bool cancel_work_sync(struct work_struct *work)
2816 {
2817 return __cancel_work_timer(work, false);
2818 }
2819 EXPORT_SYMBOL_GPL(cancel_work_sync);
2820
2821 /**
2822 * flush_delayed_work - wait for a dwork to finish executing the last queueing
2823 * @dwork: the delayed work to flush
2824 *
2825 * Delayed timer is cancelled and the pending work is queued for
2826 * immediate execution. Like flush_work(), this function only
2827 * considers the last queueing instance of @dwork.
2828 *
2829 * Return:
2830 * %true if flush_work() waited for the work to finish execution,
2831 * %false if it was already idle.
2832 */
2833 bool flush_delayed_work(struct delayed_work *dwork)
2834 {
2835 local_irq_disable();
2836 if (del_timer_sync(&dwork->timer))
2837 __queue_work(dwork->cpu, dwork->wq, &dwork->work);
2838 local_irq_enable();
2839 return flush_work(&dwork->work);
2840 }
2841 EXPORT_SYMBOL(flush_delayed_work);
2842
2843 /**
2844 * cancel_delayed_work - cancel a delayed work
2845 * @dwork: delayed_work to cancel
2846 *
2847 * Kill off a pending delayed_work.
2848 *
2849 * Return: %true if @dwork was pending and canceled; %false if it wasn't
2850 * pending.
2851 *
2852 * Note:
2853 * The work callback function may still be running on return, unless
2854 * it returns %true and the work doesn't re-arm itself. Explicitly flush or
2855 * use cancel_delayed_work_sync() to wait on it.
2856 *
2857 * This function is safe to call from any context including IRQ handler.
2858 */
2859 bool cancel_delayed_work(struct delayed_work *dwork)
2860 {
2861 unsigned long flags;
2862 int ret;
2863
2864 do {
2865 ret = try_to_grab_pending(&dwork->work, true, &flags);
2866 } while (unlikely(ret == -EAGAIN));
2867
2868 if (unlikely(ret < 0))
2869 return false;
2870
2871 set_work_pool_and_clear_pending(&dwork->work,
2872 get_work_pool_id(&dwork->work));
2873 local_irq_restore(flags);
2874 return ret;
2875 }
2876 EXPORT_SYMBOL(cancel_delayed_work);
2877
2878 /**
2879 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
2880 * @dwork: the delayed work cancel
2881 *
2882 * This is cancel_work_sync() for delayed works.
2883 *
2884 * Return:
2885 * %true if @dwork was pending, %false otherwise.
2886 */
2887 bool cancel_delayed_work_sync(struct delayed_work *dwork)
2888 {
2889 return __cancel_work_timer(&dwork->work, true);
2890 }
2891 EXPORT_SYMBOL(cancel_delayed_work_sync);
2892
2893 /**
2894 * schedule_on_each_cpu - execute a function synchronously on each online CPU
2895 * @func: the function to call
2896 *
2897 * schedule_on_each_cpu() executes @func on each online CPU using the
2898 * system workqueue and blocks until all CPUs have completed.
2899 * schedule_on_each_cpu() is very slow.
2900 *
2901 * Return:
2902 * 0 on success, -errno on failure.
2903 */
2904 int schedule_on_each_cpu(work_func_t func)
2905 {
2906 int cpu;
2907 struct work_struct __percpu *works;
2908
2909 works = alloc_percpu(struct work_struct);
2910 if (!works)
2911 return -ENOMEM;
2912
2913 get_online_cpus();
2914
2915 for_each_online_cpu(cpu) {
2916 struct work_struct *work = per_cpu_ptr(works, cpu);
2917
2918 INIT_WORK(work, func);
2919 schedule_work_on(cpu, work);
2920 }
2921
2922 for_each_online_cpu(cpu)
2923 flush_work(per_cpu_ptr(works, cpu));
2924
2925 put_online_cpus();
2926 free_percpu(works);
2927 return 0;
2928 }
2929
2930 /**
2931 * flush_scheduled_work - ensure that any scheduled work has run to completion.
2932 *
2933 * Forces execution of the kernel-global workqueue and blocks until its
2934 * completion.
2935 *
2936 * Think twice before calling this function! It's very easy to get into
2937 * trouble if you don't take great care. Either of the following situations
2938 * will lead to deadlock:
2939 *
2940 * One of the work items currently on the workqueue needs to acquire
2941 * a lock held by your code or its caller.
2942 *
2943 * Your code is running in the context of a work routine.
2944 *
2945 * They will be detected by lockdep when they occur, but the first might not
2946 * occur very often. It depends on what work items are on the workqueue and
2947 * what locks they need, which you have no control over.
2948 *
2949 * In most situations flushing the entire workqueue is overkill; you merely
2950 * need to know that a particular work item isn't queued and isn't running.
2951 * In such cases you should use cancel_delayed_work_sync() or
2952 * cancel_work_sync() instead.
2953 */
2954 void flush_scheduled_work(void)
2955 {
2956 flush_workqueue(system_wq);
2957 }
2958 EXPORT_SYMBOL(flush_scheduled_work);
2959
2960 /**
2961 * execute_in_process_context - reliably execute the routine with user context
2962 * @fn: the function to execute
2963 * @ew: guaranteed storage for the execute work structure (must
2964 * be available when the work executes)
2965 *
2966 * Executes the function immediately if process context is available,
2967 * otherwise schedules the function for delayed execution.
2968 *
2969 * Return: 0 - function was executed
2970 * 1 - function was scheduled for execution
2971 */
2972 int execute_in_process_context(work_func_t fn, struct execute_work *ew)
2973 {
2974 if (!in_interrupt()) {
2975 fn(&ew->work);
2976 return 0;
2977 }
2978
2979 INIT_WORK(&ew->work, fn);
2980 schedule_work(&ew->work);
2981
2982 return 1;
2983 }
2984 EXPORT_SYMBOL_GPL(execute_in_process_context);
2985
2986 #ifdef CONFIG_SYSFS
2987 /*
2988 * Workqueues with WQ_SYSFS flag set is visible to userland via
2989 * /sys/bus/workqueue/devices/WQ_NAME. All visible workqueues have the
2990 * following attributes.
2991 *
2992 * per_cpu RO bool : whether the workqueue is per-cpu or unbound
2993 * max_active RW int : maximum number of in-flight work items
2994 *
2995 * Unbound workqueues have the following extra attributes.
2996 *
2997 * id RO int : the associated pool ID
2998 * nice RW int : nice value of the workers
2999 * cpumask RW mask : bitmask of allowed CPUs for the workers
3000 */
3001 struct wq_device {
3002 struct workqueue_struct *wq;
3003 struct device dev;
3004 };
3005
3006 static struct workqueue_struct *dev_to_wq(struct device *dev)
3007 {
3008 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
3009
3010 return wq_dev->wq;
3011 }
3012
3013 static ssize_t per_cpu_show(struct device *dev, struct device_attribute *attr,
3014 char *buf)
3015 {
3016 struct workqueue_struct *wq = dev_to_wq(dev);
3017
3018 return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND));
3019 }
3020 static DEVICE_ATTR_RO(per_cpu);
3021
3022 static ssize_t max_active_show(struct device *dev,
3023 struct device_attribute *attr, char *buf)
3024 {
3025 struct workqueue_struct *wq = dev_to_wq(dev);
3026
3027 return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active);
3028 }
3029
3030 static ssize_t max_active_store(struct device *dev,
3031 struct device_attribute *attr, const char *buf,
3032 size_t count)
3033 {
3034 struct workqueue_struct *wq = dev_to_wq(dev);
3035 int val;
3036
3037 if (sscanf(buf, "%d", &val) != 1 || val <= 0)
3038 return -EINVAL;
3039
3040 workqueue_set_max_active(wq, val);
3041 return count;
3042 }
3043 static DEVICE_ATTR_RW(max_active);
3044
3045 static struct attribute *wq_sysfs_attrs[] = {
3046 &dev_attr_per_cpu.attr,
3047 &dev_attr_max_active.attr,
3048 NULL,
3049 };
3050 ATTRIBUTE_GROUPS(wq_sysfs);
3051
3052 static ssize_t wq_pool_ids_show(struct device *dev,
3053 struct device_attribute *attr, char *buf)
3054 {
3055 struct workqueue_struct *wq = dev_to_wq(dev);
3056 const char *delim = "";
3057 int node, written = 0;
3058
3059 rcu_read_lock_sched();
3060 for_each_node(node) {
3061 written += scnprintf(buf + written, PAGE_SIZE - written,
3062 "%s%d:%d", delim, node,
3063 unbound_pwq_by_node(wq, node)->pool->id);
3064 delim = " ";
3065 }
3066 written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
3067 rcu_read_unlock_sched();
3068
3069 return written;
3070 }
3071
3072 static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr,
3073 char *buf)
3074 {
3075 struct workqueue_struct *wq = dev_to_wq(dev);
3076 int written;
3077
3078 mutex_lock(&wq->mutex);
3079 written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice);
3080 mutex_unlock(&wq->mutex);
3081
3082 return written;
3083 }
3084
3085 /* prepare workqueue_attrs for sysfs store operations */
3086 static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq)
3087 {
3088 struct workqueue_attrs *attrs;
3089
3090 attrs = alloc_workqueue_attrs(GFP_KERNEL);
3091 if (!attrs)
3092 return NULL;
3093
3094 mutex_lock(&wq->mutex);
3095 copy_workqueue_attrs(attrs, wq->unbound_attrs);
3096 mutex_unlock(&wq->mutex);
3097 return attrs;
3098 }
3099
3100 static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr,
3101 const char *buf, size_t count)
3102 {
3103 struct workqueue_struct *wq = dev_to_wq(dev);
3104 struct workqueue_attrs *attrs;
3105 int ret;
3106
3107 attrs = wq_sysfs_prep_attrs(wq);
3108 if (!attrs)
3109 return -ENOMEM;
3110
3111 if (sscanf(buf, "%d", &attrs->nice) == 1 &&
3112 attrs->nice >= MIN_NICE && attrs->nice <= MAX_NICE)
3113 ret = apply_workqueue_attrs(wq, attrs);
3114 else
3115 ret = -EINVAL;
3116
3117 free_workqueue_attrs(attrs);
3118 return ret ?: count;
3119 }
3120
3121 static ssize_t wq_cpumask_show(struct device *dev,
3122 struct device_attribute *attr, char *buf)
3123 {
3124 struct workqueue_struct *wq = dev_to_wq(dev);
3125 int written;
3126
3127 mutex_lock(&wq->mutex);
3128 written = cpumask_scnprintf(buf, PAGE_SIZE, wq->unbound_attrs->cpumask);
3129 mutex_unlock(&wq->mutex);
3130
3131 written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
3132 return written;
3133 }
3134
3135 static ssize_t wq_cpumask_store(struct device *dev,
3136 struct device_attribute *attr,
3137 const char *buf, size_t count)
3138 {
3139 struct workqueue_struct *wq = dev_to_wq(dev);
3140 struct workqueue_attrs *attrs;
3141 int ret;
3142
3143 attrs = wq_sysfs_prep_attrs(wq);
3144 if (!attrs)
3145 return -ENOMEM;
3146
3147 ret = cpumask_parse(buf, attrs->cpumask);
3148 if (!ret)
3149 ret = apply_workqueue_attrs(wq, attrs);
3150
3151 free_workqueue_attrs(attrs);
3152 return ret ?: count;
3153 }
3154
3155 static ssize_t wq_numa_show(struct device *dev, struct device_attribute *attr,
3156 char *buf)
3157 {
3158 struct workqueue_struct *wq = dev_to_wq(dev);
3159 int written;
3160
3161 mutex_lock(&wq->mutex);
3162 written = scnprintf(buf, PAGE_SIZE, "%d\n",
3163 !wq->unbound_attrs->no_numa);
3164 mutex_unlock(&wq->mutex);
3165
3166 return written;
3167 }
3168
3169 static ssize_t wq_numa_store(struct device *dev, struct device_attribute *attr,
3170 const char *buf, size_t count)
3171 {
3172 struct workqueue_struct *wq = dev_to_wq(dev);
3173 struct workqueue_attrs *attrs;
3174 int v, ret;
3175
3176 attrs = wq_sysfs_prep_attrs(wq);
3177 if (!attrs)
3178 return -ENOMEM;
3179
3180 ret = -EINVAL;
3181 if (sscanf(buf, "%d", &v) == 1) {
3182 attrs->no_numa = !v;
3183 ret = apply_workqueue_attrs(wq, attrs);
3184 }
3185
3186 free_workqueue_attrs(attrs);
3187 return ret ?: count;
3188 }
3189
3190 static struct device_attribute wq_sysfs_unbound_attrs[] = {
3191 __ATTR(pool_ids, 0444, wq_pool_ids_show, NULL),
3192 __ATTR(nice, 0644, wq_nice_show, wq_nice_store),
3193 __ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store),
3194 __ATTR(numa, 0644, wq_numa_show, wq_numa_store),
3195 __ATTR_NULL,
3196 };
3197
3198 static struct bus_type wq_subsys = {
3199 .name = "workqueue",
3200 .dev_groups = wq_sysfs_groups,
3201 };
3202
3203 static int __init wq_sysfs_init(void)
3204 {
3205 return subsys_virtual_register(&wq_subsys, NULL);
3206 }
3207 core_initcall(wq_sysfs_init);
3208
3209 static void wq_device_release(struct device *dev)
3210 {
3211 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
3212
3213 kfree(wq_dev);
3214 }
3215
3216 /**
3217 * workqueue_sysfs_register - make a workqueue visible in sysfs
3218 * @wq: the workqueue to register
3219 *
3220 * Expose @wq in sysfs under /sys/bus/workqueue/devices.
3221 * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set
3222 * which is the preferred method.
3223 *
3224 * Workqueue user should use this function directly iff it wants to apply
3225 * workqueue_attrs before making the workqueue visible in sysfs; otherwise,
3226 * apply_workqueue_attrs() may race against userland updating the
3227 * attributes.
3228 *
3229 * Return: 0 on success, -errno on failure.
3230 */
3231 int workqueue_sysfs_register(struct workqueue_struct *wq)
3232 {
3233 struct wq_device *wq_dev;
3234 int ret;
3235
3236 /*
3237 * Adjusting max_active or creating new pwqs by applyting
3238 * attributes breaks ordering guarantee. Disallow exposing ordered
3239 * workqueues.
3240 */
3241 if (WARN_ON(wq->flags & __WQ_ORDERED))
3242 return -EINVAL;
3243
3244 wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL);
3245 if (!wq_dev)
3246 return -ENOMEM;
3247
3248 wq_dev->wq = wq;
3249 wq_dev->dev.bus = &wq_subsys;
3250 wq_dev->dev.init_name = wq->name;
3251 wq_dev->dev.release = wq_device_release;
3252
3253 /*
3254 * unbound_attrs are created separately. Suppress uevent until
3255 * everything is ready.
3256 */
3257 dev_set_uevent_suppress(&wq_dev->dev, true);
3258
3259 ret = device_register(&wq_dev->dev);
3260 if (ret) {
3261 kfree(wq_dev);
3262 wq->wq_dev = NULL;
3263 return ret;
3264 }
3265
3266 if (wq->flags & WQ_UNBOUND) {
3267 struct device_attribute *attr;
3268
3269 for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) {
3270 ret = device_create_file(&wq_dev->dev, attr);
3271 if (ret) {
3272 device_unregister(&wq_dev->dev);
3273 wq->wq_dev = NULL;
3274 return ret;
3275 }
3276 }
3277 }
3278
3279 kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD);
3280 return 0;
3281 }
3282
3283 /**
3284 * workqueue_sysfs_unregister - undo workqueue_sysfs_register()
3285 * @wq: the workqueue to unregister
3286 *
3287 * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister.
3288 */
3289 static void workqueue_sysfs_unregister(struct workqueue_struct *wq)
3290 {
3291 struct wq_device *wq_dev = wq->wq_dev;
3292
3293 if (!wq->wq_dev)
3294 return;
3295
3296 wq->wq_dev = NULL;
3297 device_unregister(&wq_dev->dev);
3298 }
3299 #else /* CONFIG_SYSFS */
3300 static void workqueue_sysfs_unregister(struct workqueue_struct *wq) { }
3301 #endif /* CONFIG_SYSFS */
3302
3303 /**
3304 * free_workqueue_attrs - free a workqueue_attrs
3305 * @attrs: workqueue_attrs to free
3306 *
3307 * Undo alloc_workqueue_attrs().
3308 */
3309 void free_workqueue_attrs(struct workqueue_attrs *attrs)
3310 {
3311 if (attrs) {
3312 free_cpumask_var(attrs->cpumask);
3313 kfree(attrs);
3314 }
3315 }
3316
3317 /**
3318 * alloc_workqueue_attrs - allocate a workqueue_attrs
3319 * @gfp_mask: allocation mask to use
3320 *
3321 * Allocate a new workqueue_attrs, initialize with default settings and
3322 * return it.
3323 *
3324 * Return: The allocated new workqueue_attr on success. %NULL on failure.
3325 */
3326 struct workqueue_attrs *alloc_workqueue_attrs(gfp_t gfp_mask)
3327 {
3328 struct workqueue_attrs *attrs;
3329
3330 attrs = kzalloc(sizeof(*attrs), gfp_mask);
3331 if (!attrs)
3332 goto fail;
3333 if (!alloc_cpumask_var(&attrs->cpumask, gfp_mask))
3334 goto fail;
3335
3336 cpumask_copy(attrs->cpumask, cpu_possible_mask);
3337 return attrs;
3338 fail:
3339 free_workqueue_attrs(attrs);
3340 return NULL;
3341 }
3342
3343 static void copy_workqueue_attrs(struct workqueue_attrs *to,
3344 const struct workqueue_attrs *from)
3345 {
3346 to->nice = from->nice;
3347 cpumask_copy(to->cpumask, from->cpumask);
3348 /*
3349 * Unlike hash and equality test, this function doesn't ignore
3350 * ->no_numa as it is used for both pool and wq attrs. Instead,
3351 * get_unbound_pool() explicitly clears ->no_numa after copying.
3352 */
3353 to->no_numa = from->no_numa;
3354 }
3355
3356 /* hash value of the content of @attr */
3357 static u32 wqattrs_hash(const struct workqueue_attrs *attrs)
3358 {
3359 u32 hash = 0;
3360
3361 hash = jhash_1word(attrs->nice, hash);
3362 hash = jhash(cpumask_bits(attrs->cpumask),
3363 BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash);
3364 return hash;
3365 }
3366
3367 /* content equality test */
3368 static bool wqattrs_equal(const struct workqueue_attrs *a,
3369 const struct workqueue_attrs *b)
3370 {
3371 if (a->nice != b->nice)
3372 return false;
3373 if (!cpumask_equal(a->cpumask, b->cpumask))
3374 return false;
3375 return true;
3376 }
3377
3378 /**
3379 * init_worker_pool - initialize a newly zalloc'd worker_pool
3380 * @pool: worker_pool to initialize
3381 *
3382 * Initiailize a newly zalloc'd @pool. It also allocates @pool->attrs.
3383 *
3384 * Return: 0 on success, -errno on failure. Even on failure, all fields
3385 * inside @pool proper are initialized and put_unbound_pool() can be called
3386 * on @pool safely to release it.
3387 */
3388 static int init_worker_pool(struct worker_pool *pool)
3389 {
3390 spin_lock_init(&pool->lock);
3391 pool->id = -1;
3392 pool->cpu = -1;
3393 pool->node = NUMA_NO_NODE;
3394 pool->flags |= POOL_DISASSOCIATED;
3395 INIT_LIST_HEAD(&pool->worklist);
3396 INIT_LIST_HEAD(&pool->idle_list);
3397 hash_init(pool->busy_hash);
3398
3399 init_timer_deferrable(&pool->idle_timer);
3400 pool->idle_timer.function = idle_worker_timeout;
3401 pool->idle_timer.data = (unsigned long)pool;
3402
3403 setup_timer(&pool->mayday_timer, pool_mayday_timeout,
3404 (unsigned long)pool);
3405
3406 mutex_init(&pool->manager_arb);
3407 mutex_init(&pool->attach_mutex);
3408 INIT_LIST_HEAD(&pool->workers);
3409
3410 ida_init(&pool->worker_ida);
3411 INIT_HLIST_NODE(&pool->hash_node);
3412 pool->refcnt = 1;
3413
3414 /* shouldn't fail above this point */
3415 pool->attrs = alloc_workqueue_attrs(GFP_KERNEL);
3416 if (!pool->attrs)
3417 return -ENOMEM;
3418 return 0;
3419 }
3420
3421 static void rcu_free_pool(struct rcu_head *rcu)
3422 {
3423 struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu);
3424
3425 ida_destroy(&pool->worker_ida);
3426 free_workqueue_attrs(pool->attrs);
3427 kfree(pool);
3428 }
3429
3430 /**
3431 * put_unbound_pool - put a worker_pool
3432 * @pool: worker_pool to put
3433 *
3434 * Put @pool. If its refcnt reaches zero, it gets destroyed in sched-RCU
3435 * safe manner. get_unbound_pool() calls this function on its failure path
3436 * and this function should be able to release pools which went through,
3437 * successfully or not, init_worker_pool().
3438 *
3439 * Should be called with wq_pool_mutex held.
3440 */
3441 static void put_unbound_pool(struct worker_pool *pool)
3442 {
3443 DECLARE_COMPLETION_ONSTACK(detach_completion);
3444 struct worker *worker;
3445
3446 lockdep_assert_held(&wq_pool_mutex);
3447
3448 if (--pool->refcnt)
3449 return;
3450
3451 /* sanity checks */
3452 if (WARN_ON(!(pool->cpu < 0)) ||
3453 WARN_ON(!list_empty(&pool->worklist)))
3454 return;
3455
3456 /* release id and unhash */
3457 if (pool->id >= 0)
3458 idr_remove(&worker_pool_idr, pool->id);
3459 hash_del(&pool->hash_node);
3460
3461 /*
3462 * Become the manager and destroy all workers. Grabbing
3463 * manager_arb prevents @pool's workers from blocking on
3464 * attach_mutex.
3465 */
3466 mutex_lock(&pool->manager_arb);
3467
3468 spin_lock_irq(&pool->lock);
3469 while ((worker = first_idle_worker(pool)))
3470 destroy_worker(worker);
3471 WARN_ON(pool->nr_workers || pool->nr_idle);
3472 spin_unlock_irq(&pool->lock);
3473
3474 mutex_lock(&pool->attach_mutex);
3475 if (!list_empty(&pool->workers))
3476 pool->detach_completion = &detach_completion;
3477 mutex_unlock(&pool->attach_mutex);
3478
3479 if (pool->detach_completion)
3480 wait_for_completion(pool->detach_completion);
3481
3482 mutex_unlock(&pool->manager_arb);
3483
3484 /* shut down the timers */
3485 del_timer_sync(&pool->idle_timer);
3486 del_timer_sync(&pool->mayday_timer);
3487
3488 /* sched-RCU protected to allow dereferences from get_work_pool() */
3489 call_rcu_sched(&pool->rcu, rcu_free_pool);
3490 }
3491
3492 /**
3493 * get_unbound_pool - get a worker_pool with the specified attributes
3494 * @attrs: the attributes of the worker_pool to get
3495 *
3496 * Obtain a worker_pool which has the same attributes as @attrs, bump the
3497 * reference count and return it. If there already is a matching
3498 * worker_pool, it will be used; otherwise, this function attempts to
3499 * create a new one.
3500 *
3501 * Should be called with wq_pool_mutex held.
3502 *
3503 * Return: On success, a worker_pool with the same attributes as @attrs.
3504 * On failure, %NULL.
3505 */
3506 static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs)
3507 {
3508 u32 hash = wqattrs_hash(attrs);
3509 struct worker_pool *pool;
3510 int node;
3511
3512 lockdep_assert_held(&wq_pool_mutex);
3513
3514 /* do we already have a matching pool? */
3515 hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) {
3516 if (wqattrs_equal(pool->attrs, attrs)) {
3517 pool->refcnt++;
3518 goto out_unlock;
3519 }
3520 }
3521
3522 /* nope, create a new one */
3523 pool = kzalloc(sizeof(*pool), GFP_KERNEL);
3524 if (!pool || init_worker_pool(pool) < 0)
3525 goto fail;
3526
3527 lockdep_set_subclass(&pool->lock, 1); /* see put_pwq() */
3528 copy_workqueue_attrs(pool->attrs, attrs);
3529
3530 /*
3531 * no_numa isn't a worker_pool attribute, always clear it. See
3532 * 'struct workqueue_attrs' comments for detail.
3533 */
3534 pool->attrs->no_numa = false;
3535
3536 /* if cpumask is contained inside a NUMA node, we belong to that node */
3537 if (wq_numa_enabled) {
3538 for_each_node(node) {
3539 if (cpumask_subset(pool->attrs->cpumask,
3540 wq_numa_possible_cpumask[node])) {
3541 pool->node = node;
3542 break;
3543 }
3544 }
3545 }
3546
3547 if (worker_pool_assign_id(pool) < 0)
3548 goto fail;
3549
3550 /* create and start the initial worker */
3551 if (create_and_start_worker(pool) < 0)
3552 goto fail;
3553
3554 /* install */
3555 hash_add(unbound_pool_hash, &pool->hash_node, hash);
3556 out_unlock:
3557 return pool;
3558 fail:
3559 if (pool)
3560 put_unbound_pool(pool);
3561 return NULL;
3562 }
3563
3564 static void rcu_free_pwq(struct rcu_head *rcu)
3565 {
3566 kmem_cache_free(pwq_cache,
3567 container_of(rcu, struct pool_workqueue, rcu));
3568 }
3569
3570 /*
3571 * Scheduled on system_wq by put_pwq() when an unbound pwq hits zero refcnt
3572 * and needs to be destroyed.
3573 */
3574 static void pwq_unbound_release_workfn(struct work_struct *work)
3575 {
3576 struct pool_workqueue *pwq = container_of(work, struct pool_workqueue,
3577 unbound_release_work);
3578 struct workqueue_struct *wq = pwq->wq;
3579 struct worker_pool *pool = pwq->pool;
3580 bool is_last;
3581
3582 if (WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND)))
3583 return;
3584
3585 /*
3586 * Unlink @pwq. Synchronization against wq->mutex isn't strictly
3587 * necessary on release but do it anyway. It's easier to verify
3588 * and consistent with the linking path.
3589 */
3590 mutex_lock(&wq->mutex);
3591 list_del_rcu(&pwq->pwqs_node);
3592 is_last = list_empty(&wq->pwqs);
3593 mutex_unlock(&wq->mutex);
3594
3595 mutex_lock(&wq_pool_mutex);
3596 put_unbound_pool(pool);
3597 mutex_unlock(&wq_pool_mutex);
3598
3599 call_rcu_sched(&pwq->rcu, rcu_free_pwq);
3600
3601 /*
3602 * If we're the last pwq going away, @wq is already dead and no one
3603 * is gonna access it anymore. Free it.
3604 */
3605 if (is_last) {
3606 free_workqueue_attrs(wq->unbound_attrs);
3607 kfree(wq);
3608 }
3609 }
3610
3611 /**
3612 * pwq_adjust_max_active - update a pwq's max_active to the current setting
3613 * @pwq: target pool_workqueue
3614 *
3615 * If @pwq isn't freezing, set @pwq->max_active to the associated
3616 * workqueue's saved_max_active and activate delayed work items
3617 * accordingly. If @pwq is freezing, clear @pwq->max_active to zero.
3618 */
3619 static void pwq_adjust_max_active(struct pool_workqueue *pwq)
3620 {
3621 struct workqueue_struct *wq = pwq->wq;
3622 bool freezable = wq->flags & WQ_FREEZABLE;
3623
3624 /* for @wq->saved_max_active */
3625 lockdep_assert_held(&wq->mutex);
3626
3627 /* fast exit for non-freezable wqs */
3628 if (!freezable && pwq->max_active == wq->saved_max_active)
3629 return;
3630
3631 spin_lock_irq(&pwq->pool->lock);
3632
3633 /*
3634 * During [un]freezing, the caller is responsible for ensuring that
3635 * this function is called at least once after @workqueue_freezing
3636 * is updated and visible.
3637 */
3638 if (!freezable || !workqueue_freezing) {
3639 pwq->max_active = wq->saved_max_active;
3640
3641 while (!list_empty(&pwq->delayed_works) &&
3642 pwq->nr_active < pwq->max_active)
3643 pwq_activate_first_delayed(pwq);
3644
3645 /*
3646 * Need to kick a worker after thawed or an unbound wq's
3647 * max_active is bumped. It's a slow path. Do it always.
3648 */
3649 wake_up_worker(pwq->pool);
3650 } else {
3651 pwq->max_active = 0;
3652 }
3653
3654 spin_unlock_irq(&pwq->pool->lock);
3655 }
3656
3657 /* initialize newly alloced @pwq which is associated with @wq and @pool */
3658 static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq,
3659 struct worker_pool *pool)
3660 {
3661 BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK);
3662
3663 memset(pwq, 0, sizeof(*pwq));
3664
3665 pwq->pool = pool;
3666 pwq->wq = wq;
3667 pwq->flush_color = -1;
3668 pwq->refcnt = 1;
3669 INIT_LIST_HEAD(&pwq->delayed_works);
3670 INIT_LIST_HEAD(&pwq->pwqs_node);
3671 INIT_LIST_HEAD(&pwq->mayday_node);
3672 INIT_WORK(&pwq->unbound_release_work, pwq_unbound_release_workfn);
3673 }
3674
3675 /* sync @pwq with the current state of its associated wq and link it */
3676 static void link_pwq(struct pool_workqueue *pwq)
3677 {
3678 struct workqueue_struct *wq = pwq->wq;
3679
3680 lockdep_assert_held(&wq->mutex);
3681
3682 /* may be called multiple times, ignore if already linked */
3683 if (!list_empty(&pwq->pwqs_node))
3684 return;
3685
3686 /*
3687 * Set the matching work_color. This is synchronized with
3688 * wq->mutex to avoid confusing flush_workqueue().
3689 */
3690 pwq->work_color = wq->work_color;
3691
3692 /* sync max_active to the current setting */
3693 pwq_adjust_max_active(pwq);
3694
3695 /* link in @pwq */
3696 list_add_rcu(&pwq->pwqs_node, &wq->pwqs);
3697 }
3698
3699 /* obtain a pool matching @attr and create a pwq associating the pool and @wq */
3700 static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq,
3701 const struct workqueue_attrs *attrs)
3702 {
3703 struct worker_pool *pool;
3704 struct pool_workqueue *pwq;
3705
3706 lockdep_assert_held(&wq_pool_mutex);
3707
3708 pool = get_unbound_pool(attrs);
3709 if (!pool)
3710 return NULL;
3711
3712 pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node);
3713 if (!pwq) {
3714 put_unbound_pool(pool);
3715 return NULL;
3716 }
3717
3718 init_pwq(pwq, wq, pool);
3719 return pwq;
3720 }
3721
3722 /* undo alloc_unbound_pwq(), used only in the error path */
3723 static void free_unbound_pwq(struct pool_workqueue *pwq)
3724 {
3725 lockdep_assert_held(&wq_pool_mutex);
3726
3727 if (pwq) {
3728 put_unbound_pool(pwq->pool);
3729 kmem_cache_free(pwq_cache, pwq);
3730 }
3731 }
3732
3733 /**
3734 * wq_calc_node_mask - calculate a wq_attrs' cpumask for the specified node
3735 * @attrs: the wq_attrs of interest
3736 * @node: the target NUMA node
3737 * @cpu_going_down: if >= 0, the CPU to consider as offline
3738 * @cpumask: outarg, the resulting cpumask
3739 *
3740 * Calculate the cpumask a workqueue with @attrs should use on @node. If
3741 * @cpu_going_down is >= 0, that cpu is considered offline during
3742 * calculation. The result is stored in @cpumask.
3743 *
3744 * If NUMA affinity is not enabled, @attrs->cpumask is always used. If
3745 * enabled and @node has online CPUs requested by @attrs, the returned
3746 * cpumask is the intersection of the possible CPUs of @node and
3747 * @attrs->cpumask.
3748 *
3749 * The caller is responsible for ensuring that the cpumask of @node stays
3750 * stable.
3751 *
3752 * Return: %true if the resulting @cpumask is different from @attrs->cpumask,
3753 * %false if equal.
3754 */
3755 static bool wq_calc_node_cpumask(const struct workqueue_attrs *attrs, int node,
3756 int cpu_going_down, cpumask_t *cpumask)
3757 {
3758 if (!wq_numa_enabled || attrs->no_numa)
3759 goto use_dfl;
3760
3761 /* does @node have any online CPUs @attrs wants? */
3762 cpumask_and(cpumask, cpumask_of_node(node), attrs->cpumask);
3763 if (cpu_going_down >= 0)
3764 cpumask_clear_cpu(cpu_going_down, cpumask);
3765
3766 if (cpumask_empty(cpumask))
3767 goto use_dfl;
3768
3769 /* yeap, return possible CPUs in @node that @attrs wants */
3770 cpumask_and(cpumask, attrs->cpumask, wq_numa_possible_cpumask[node]);
3771 return !cpumask_equal(cpumask, attrs->cpumask);
3772
3773 use_dfl:
3774 cpumask_copy(cpumask, attrs->cpumask);
3775 return false;
3776 }
3777
3778 /* install @pwq into @wq's numa_pwq_tbl[] for @node and return the old pwq */
3779 static struct pool_workqueue *numa_pwq_tbl_install(struct workqueue_struct *wq,
3780 int node,
3781 struct pool_workqueue *pwq)
3782 {
3783 struct pool_workqueue *old_pwq;
3784
3785 lockdep_assert_held(&wq->mutex);
3786
3787 /* link_pwq() can handle duplicate calls */
3788 link_pwq(pwq);
3789
3790 old_pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
3791 rcu_assign_pointer(wq->numa_pwq_tbl[node], pwq);
3792 return old_pwq;
3793 }
3794
3795 /**
3796 * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue
3797 * @wq: the target workqueue
3798 * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs()
3799 *
3800 * Apply @attrs to an unbound workqueue @wq. Unless disabled, on NUMA
3801 * machines, this function maps a separate pwq to each NUMA node with
3802 * possibles CPUs in @attrs->cpumask so that work items are affine to the
3803 * NUMA node it was issued on. Older pwqs are released as in-flight work
3804 * items finish. Note that a work item which repeatedly requeues itself
3805 * back-to-back will stay on its current pwq.
3806 *
3807 * Performs GFP_KERNEL allocations.
3808 *
3809 * Return: 0 on success and -errno on failure.
3810 */
3811 int apply_workqueue_attrs(struct workqueue_struct *wq,
3812 const struct workqueue_attrs *attrs)
3813 {
3814 struct workqueue_attrs *new_attrs, *tmp_attrs;
3815 struct pool_workqueue **pwq_tbl, *dfl_pwq;
3816 int node, ret;
3817
3818 /* only unbound workqueues can change attributes */
3819 if (WARN_ON(!(wq->flags & WQ_UNBOUND)))
3820 return -EINVAL;
3821
3822 /* creating multiple pwqs breaks ordering guarantee */
3823 if (WARN_ON((wq->flags & __WQ_ORDERED) && !list_empty(&wq->pwqs)))
3824 return -EINVAL;
3825
3826 pwq_tbl = kzalloc(wq_numa_tbl_len * sizeof(pwq_tbl[0]), GFP_KERNEL);
3827 new_attrs = alloc_workqueue_attrs(GFP_KERNEL);
3828 tmp_attrs = alloc_workqueue_attrs(GFP_KERNEL);
3829 if (!pwq_tbl || !new_attrs || !tmp_attrs)
3830 goto enomem;
3831
3832 /* make a copy of @attrs and sanitize it */
3833 copy_workqueue_attrs(new_attrs, attrs);
3834 cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask);
3835
3836 /*
3837 * We may create multiple pwqs with differing cpumasks. Make a
3838 * copy of @new_attrs which will be modified and used to obtain
3839 * pools.
3840 */
3841 copy_workqueue_attrs(tmp_attrs, new_attrs);
3842
3843 /*
3844 * CPUs should stay stable across pwq creations and installations.
3845 * Pin CPUs, determine the target cpumask for each node and create
3846 * pwqs accordingly.
3847 */
3848 get_online_cpus();
3849
3850 mutex_lock(&wq_pool_mutex);
3851
3852 /*
3853 * If something goes wrong during CPU up/down, we'll fall back to
3854 * the default pwq covering whole @attrs->cpumask. Always create
3855 * it even if we don't use it immediately.
3856 */
3857 dfl_pwq = alloc_unbound_pwq(wq, new_attrs);
3858 if (!dfl_pwq)
3859 goto enomem_pwq;
3860
3861 for_each_node(node) {
3862 if (wq_calc_node_cpumask(attrs, node, -1, tmp_attrs->cpumask)) {
3863 pwq_tbl[node] = alloc_unbound_pwq(wq, tmp_attrs);
3864 if (!pwq_tbl[node])
3865 goto enomem_pwq;
3866 } else {
3867 dfl_pwq->refcnt++;
3868 pwq_tbl[node] = dfl_pwq;
3869 }
3870 }
3871
3872 mutex_unlock(&wq_pool_mutex);
3873
3874 /* all pwqs have been created successfully, let's install'em */
3875 mutex_lock(&wq->mutex);
3876
3877 copy_workqueue_attrs(wq->unbound_attrs, new_attrs);
3878
3879 /* save the previous pwq and install the new one */
3880 for_each_node(node)
3881 pwq_tbl[node] = numa_pwq_tbl_install(wq, node, pwq_tbl[node]);
3882
3883 /* @dfl_pwq might not have been used, ensure it's linked */
3884 link_pwq(dfl_pwq);
3885 swap(wq->dfl_pwq, dfl_pwq);
3886
3887 mutex_unlock(&wq->mutex);
3888
3889 /* put the old pwqs */
3890 for_each_node(node)
3891 put_pwq_unlocked(pwq_tbl[node]);
3892 put_pwq_unlocked(dfl_pwq);
3893
3894 put_online_cpus();
3895 ret = 0;
3896 /* fall through */
3897 out_free:
3898 free_workqueue_attrs(tmp_attrs);
3899 free_workqueue_attrs(new_attrs);
3900 kfree(pwq_tbl);
3901 return ret;
3902
3903 enomem_pwq:
3904 free_unbound_pwq(dfl_pwq);
3905 for_each_node(node)
3906 if (pwq_tbl && pwq_tbl[node] != dfl_pwq)
3907 free_unbound_pwq(pwq_tbl[node]);
3908 mutex_unlock(&wq_pool_mutex);
3909 put_online_cpus();
3910 enomem:
3911 ret = -ENOMEM;
3912 goto out_free;
3913 }
3914
3915 /**
3916 * wq_update_unbound_numa - update NUMA affinity of a wq for CPU hot[un]plug
3917 * @wq: the target workqueue
3918 * @cpu: the CPU coming up or going down
3919 * @online: whether @cpu is coming up or going down
3920 *
3921 * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and
3922 * %CPU_DOWN_FAILED. @cpu is being hot[un]plugged, update NUMA affinity of
3923 * @wq accordingly.
3924 *
3925 * If NUMA affinity can't be adjusted due to memory allocation failure, it
3926 * falls back to @wq->dfl_pwq which may not be optimal but is always
3927 * correct.
3928 *
3929 * Note that when the last allowed CPU of a NUMA node goes offline for a
3930 * workqueue with a cpumask spanning multiple nodes, the workers which were
3931 * already executing the work items for the workqueue will lose their CPU
3932 * affinity and may execute on any CPU. This is similar to how per-cpu
3933 * workqueues behave on CPU_DOWN. If a workqueue user wants strict
3934 * affinity, it's the user's responsibility to flush the work item from
3935 * CPU_DOWN_PREPARE.
3936 */
3937 static void wq_update_unbound_numa(struct workqueue_struct *wq, int cpu,
3938 bool online)
3939 {
3940 int node = cpu_to_node(cpu);
3941 int cpu_off = online ? -1 : cpu;
3942 struct pool_workqueue *old_pwq = NULL, *pwq;
3943 struct workqueue_attrs *target_attrs;
3944 cpumask_t *cpumask;
3945
3946 lockdep_assert_held(&wq_pool_mutex);
3947
3948 if (!wq_numa_enabled || !(wq->flags & WQ_UNBOUND))
3949 return;
3950
3951 /*
3952 * We don't wanna alloc/free wq_attrs for each wq for each CPU.
3953 * Let's use a preallocated one. The following buf is protected by
3954 * CPU hotplug exclusion.
3955 */
3956 target_attrs = wq_update_unbound_numa_attrs_buf;
3957 cpumask = target_attrs->cpumask;
3958
3959 mutex_lock(&wq->mutex);
3960 if (wq->unbound_attrs->no_numa)
3961 goto out_unlock;
3962
3963 copy_workqueue_attrs(target_attrs, wq->unbound_attrs);
3964 pwq = unbound_pwq_by_node(wq, node);
3965
3966 /*
3967 * Let's determine what needs to be done. If the target cpumask is
3968 * different from wq's, we need to compare it to @pwq's and create
3969 * a new one if they don't match. If the target cpumask equals
3970 * wq's, the default pwq should be used.
3971 */
3972 if (wq_calc_node_cpumask(wq->unbound_attrs, node, cpu_off, cpumask)) {
3973 if (cpumask_equal(cpumask, pwq->pool->attrs->cpumask))
3974 goto out_unlock;
3975 } else {
3976 goto use_dfl_pwq;
3977 }
3978
3979 mutex_unlock(&wq->mutex);
3980
3981 /* create a new pwq */
3982 pwq = alloc_unbound_pwq(wq, target_attrs);
3983 if (!pwq) {
3984 pr_warn("workqueue: allocation failed while updating NUMA affinity of \"%s\"\n",
3985 wq->name);
3986 mutex_lock(&wq->mutex);
3987 goto use_dfl_pwq;
3988 }
3989
3990 /*
3991 * Install the new pwq. As this function is called only from CPU
3992 * hotplug callbacks and applying a new attrs is wrapped with
3993 * get/put_online_cpus(), @wq->unbound_attrs couldn't have changed
3994 * inbetween.
3995 */
3996 mutex_lock(&wq->mutex);
3997 old_pwq = numa_pwq_tbl_install(wq, node, pwq);
3998 goto out_unlock;
3999
4000 use_dfl_pwq:
4001 spin_lock_irq(&wq->dfl_pwq->pool->lock);
4002 get_pwq(wq->dfl_pwq);
4003 spin_unlock_irq(&wq->dfl_pwq->pool->lock);
4004 old_pwq = numa_pwq_tbl_install(wq, node, wq->dfl_pwq);
4005 out_unlock:
4006 mutex_unlock(&wq->mutex);
4007 put_pwq_unlocked(old_pwq);
4008 }
4009
4010 static int alloc_and_link_pwqs(struct workqueue_struct *wq)
4011 {
4012 bool highpri = wq->flags & WQ_HIGHPRI;
4013 int cpu, ret;
4014
4015 if (!(wq->flags & WQ_UNBOUND)) {
4016 wq->cpu_pwqs = alloc_percpu(struct pool_workqueue);
4017 if (!wq->cpu_pwqs)
4018 return -ENOMEM;
4019
4020 for_each_possible_cpu(cpu) {
4021 struct pool_workqueue *pwq =
4022 per_cpu_ptr(wq->cpu_pwqs, cpu);
4023 struct worker_pool *cpu_pools =
4024 per_cpu(cpu_worker_pools, cpu);
4025
4026 init_pwq(pwq, wq, &cpu_pools[highpri]);
4027
4028 mutex_lock(&wq->mutex);
4029 link_pwq(pwq);
4030 mutex_unlock(&wq->mutex);
4031 }
4032 return 0;
4033 } else if (wq->flags & __WQ_ORDERED) {
4034 ret = apply_workqueue_attrs(wq, ordered_wq_attrs[highpri]);
4035 /* there should only be single pwq for ordering guarantee */
4036 WARN(!ret && (wq->pwqs.next != &wq->dfl_pwq->pwqs_node ||
4037 wq->pwqs.prev != &wq->dfl_pwq->pwqs_node),
4038 "ordering guarantee broken for workqueue %s\n", wq->name);
4039 return ret;
4040 } else {
4041 return apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]);
4042 }
4043 }
4044
4045 static int wq_clamp_max_active(int max_active, unsigned int flags,
4046 const char *name)
4047 {
4048 int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;
4049
4050 if (max_active < 1 || max_active > lim)
4051 pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
4052 max_active, name, 1, lim);
4053
4054 return clamp_val(max_active, 1, lim);
4055 }
4056
4057 struct workqueue_struct *__alloc_workqueue_key(const char *fmt,
4058 unsigned int flags,
4059 int max_active,
4060 struct lock_class_key *key,
4061 const char *lock_name, ...)
4062 {
4063 size_t tbl_size = 0;
4064 va_list args;
4065 struct workqueue_struct *wq;
4066 struct pool_workqueue *pwq;
4067
4068 /* see the comment above the definition of WQ_POWER_EFFICIENT */
4069 if ((flags & WQ_POWER_EFFICIENT) && wq_power_efficient)
4070 flags |= WQ_UNBOUND;
4071
4072 /* allocate wq and format name */
4073 if (flags & WQ_UNBOUND)
4074 tbl_size = wq_numa_tbl_len * sizeof(wq->numa_pwq_tbl[0]);
4075
4076 wq = kzalloc(sizeof(*wq) + tbl_size, GFP_KERNEL);
4077 if (!wq)
4078 return NULL;
4079
4080 if (flags & WQ_UNBOUND) {
4081 wq->unbound_attrs = alloc_workqueue_attrs(GFP_KERNEL);
4082 if (!wq->unbound_attrs)
4083 goto err_free_wq;
4084 }
4085
4086 va_start(args, lock_name);
4087 vsnprintf(wq->name, sizeof(wq->name), fmt, args);
4088 va_end(args);
4089
4090 max_active = max_active ?: WQ_DFL_ACTIVE;
4091 max_active = wq_clamp_max_active(max_active, flags, wq->name);
4092
4093 /* init wq */
4094 wq->flags = flags;
4095 wq->saved_max_active = max_active;
4096 mutex_init(&wq->mutex);
4097 atomic_set(&wq->nr_pwqs_to_flush, 0);
4098 INIT_LIST_HEAD(&wq->pwqs);
4099 INIT_LIST_HEAD(&wq->flusher_queue);
4100 INIT_LIST_HEAD(&wq->flusher_overflow);
4101 INIT_LIST_HEAD(&wq->maydays);
4102
4103 lockdep_init_map(&wq->lockdep_map, lock_name, key, 0);
4104 INIT_LIST_HEAD(&wq->list);
4105
4106 if (alloc_and_link_pwqs(wq) < 0)
4107 goto err_free_wq;
4108
4109 /*
4110 * Workqueues which may be used during memory reclaim should
4111 * have a rescuer to guarantee forward progress.
4112 */
4113 if (flags & WQ_MEM_RECLAIM) {
4114 struct worker *rescuer;
4115
4116 rescuer = alloc_worker(NUMA_NO_NODE);
4117 if (!rescuer)
4118 goto err_destroy;
4119
4120 rescuer->rescue_wq = wq;
4121 rescuer->task = kthread_create(rescuer_thread, rescuer, "%s",
4122 wq->name);
4123 if (IS_ERR(rescuer->task)) {
4124 kfree(rescuer);
4125 goto err_destroy;
4126 }
4127
4128 wq->rescuer = rescuer;
4129 rescuer->task->flags |= PF_NO_SETAFFINITY;
4130 wake_up_process(rescuer->task);
4131 }
4132
4133 if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq))
4134 goto err_destroy;
4135
4136 /*
4137 * wq_pool_mutex protects global freeze state and workqueues list.
4138 * Grab it, adjust max_active and add the new @wq to workqueues
4139 * list.
4140 */
4141 mutex_lock(&wq_pool_mutex);
4142
4143 mutex_lock(&wq->mutex);
4144 for_each_pwq(pwq, wq)
4145 pwq_adjust_max_active(pwq);
4146 mutex_unlock(&wq->mutex);
4147
4148 list_add(&wq->list, &workqueues);
4149
4150 mutex_unlock(&wq_pool_mutex);
4151
4152 return wq;
4153
4154 err_free_wq:
4155 free_workqueue_attrs(wq->unbound_attrs);
4156 kfree(wq);
4157 return NULL;
4158 err_destroy:
4159 destroy_workqueue(wq);
4160 return NULL;
4161 }
4162 EXPORT_SYMBOL_GPL(__alloc_workqueue_key);
4163
4164 /**
4165 * destroy_workqueue - safely terminate a workqueue
4166 * @wq: target workqueue
4167 *
4168 * Safely destroy a workqueue. All work currently pending will be done first.
4169 */
4170 void destroy_workqueue(struct workqueue_struct *wq)
4171 {
4172 struct pool_workqueue *pwq;
4173 int node;
4174
4175 /* drain it before proceeding with destruction */
4176 drain_workqueue(wq);
4177
4178 /* sanity checks */
4179 mutex_lock(&wq->mutex);
4180 for_each_pwq(pwq, wq) {
4181 int i;
4182
4183 for (i = 0; i < WORK_NR_COLORS; i++) {
4184 if (WARN_ON(pwq->nr_in_flight[i])) {
4185 mutex_unlock(&wq->mutex);
4186 return;
4187 }
4188 }
4189
4190 if (WARN_ON((pwq != wq->dfl_pwq) && (pwq->refcnt > 1)) ||
4191 WARN_ON(pwq->nr_active) ||
4192 WARN_ON(!list_empty(&pwq->delayed_works))) {
4193 mutex_unlock(&wq->mutex);
4194 return;
4195 }
4196 }
4197 mutex_unlock(&wq->mutex);
4198
4199 /*
4200 * wq list is used to freeze wq, remove from list after
4201 * flushing is complete in case freeze races us.
4202 */
4203 mutex_lock(&wq_pool_mutex);
4204 list_del_init(&wq->list);
4205 mutex_unlock(&wq_pool_mutex);
4206
4207 workqueue_sysfs_unregister(wq);
4208
4209 if (wq->rescuer) {
4210 kthread_stop(wq->rescuer->task);
4211 kfree(wq->rescuer);
4212 wq->rescuer = NULL;
4213 }
4214
4215 if (!(wq->flags & WQ_UNBOUND)) {
4216 /*
4217 * The base ref is never dropped on per-cpu pwqs. Directly
4218 * free the pwqs and wq.
4219 */
4220 free_percpu(wq->cpu_pwqs);
4221 kfree(wq);
4222 } else {
4223 /*
4224 * We're the sole accessor of @wq at this point. Directly
4225 * access numa_pwq_tbl[] and dfl_pwq to put the base refs.
4226 * @wq will be freed when the last pwq is released.
4227 */
4228 for_each_node(node) {
4229 pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
4230 RCU_INIT_POINTER(wq->numa_pwq_tbl[node], NULL);
4231 put_pwq_unlocked(pwq);
4232 }
4233
4234 /*
4235 * Put dfl_pwq. @wq may be freed any time after dfl_pwq is
4236 * put. Don't access it afterwards.
4237 */
4238 pwq = wq->dfl_pwq;
4239 wq->dfl_pwq = NULL;
4240 put_pwq_unlocked(pwq);
4241 }
4242 }
4243 EXPORT_SYMBOL_GPL(destroy_workqueue);
4244
4245 /**
4246 * workqueue_set_max_active - adjust max_active of a workqueue
4247 * @wq: target workqueue
4248 * @max_active: new max_active value.
4249 *
4250 * Set max_active of @wq to @max_active.
4251 *
4252 * CONTEXT:
4253 * Don't call from IRQ context.
4254 */
4255 void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
4256 {
4257 struct pool_workqueue *pwq;
4258
4259 /* disallow meddling with max_active for ordered workqueues */
4260 if (WARN_ON(wq->flags & __WQ_ORDERED))
4261 return;
4262
4263 max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
4264
4265 mutex_lock(&wq->mutex);
4266
4267 wq->saved_max_active = max_active;
4268
4269 for_each_pwq(pwq, wq)
4270 pwq_adjust_max_active(pwq);
4271
4272 mutex_unlock(&wq->mutex);
4273 }
4274 EXPORT_SYMBOL_GPL(workqueue_set_max_active);
4275
4276 /**
4277 * current_is_workqueue_rescuer - is %current workqueue rescuer?
4278 *
4279 * Determine whether %current is a workqueue rescuer. Can be used from
4280 * work functions to determine whether it's being run off the rescuer task.
4281 *
4282 * Return: %true if %current is a workqueue rescuer. %false otherwise.
4283 */
4284 bool current_is_workqueue_rescuer(void)
4285 {
4286 struct worker *worker = current_wq_worker();
4287
4288 return worker && worker->rescue_wq;
4289 }
4290
4291 /**
4292 * workqueue_congested - test whether a workqueue is congested
4293 * @cpu: CPU in question
4294 * @wq: target workqueue
4295 *
4296 * Test whether @wq's cpu workqueue for @cpu is congested. There is
4297 * no synchronization around this function and the test result is
4298 * unreliable and only useful as advisory hints or for debugging.
4299 *
4300 * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU.
4301 * Note that both per-cpu and unbound workqueues may be associated with
4302 * multiple pool_workqueues which have separate congested states. A
4303 * workqueue being congested on one CPU doesn't mean the workqueue is also
4304 * contested on other CPUs / NUMA nodes.
4305 *
4306 * Return:
4307 * %true if congested, %false otherwise.
4308 */
4309 bool workqueue_congested(int cpu, struct workqueue_struct *wq)
4310 {
4311 struct pool_workqueue *pwq;
4312 bool ret;
4313
4314 rcu_read_lock_sched();
4315
4316 if (cpu == WORK_CPU_UNBOUND)
4317 cpu = smp_processor_id();
4318
4319 if (!(wq->flags & WQ_UNBOUND))
4320 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
4321 else
4322 pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
4323
4324 ret = !list_empty(&pwq->delayed_works);
4325 rcu_read_unlock_sched();
4326
4327 return ret;
4328 }
4329 EXPORT_SYMBOL_GPL(workqueue_congested);
4330
4331 /**
4332 * work_busy - test whether a work is currently pending or running
4333 * @work: the work to be tested
4334 *
4335 * Test whether @work is currently pending or running. There is no
4336 * synchronization around this function and the test result is
4337 * unreliable and only useful as advisory hints or for debugging.
4338 *
4339 * Return:
4340 * OR'd bitmask of WORK_BUSY_* bits.
4341 */
4342 unsigned int work_busy(struct work_struct *work)
4343 {
4344 struct worker_pool *pool;
4345 unsigned long flags;
4346 unsigned int ret = 0;
4347
4348 if (work_pending(work))
4349 ret |= WORK_BUSY_PENDING;
4350
4351 local_irq_save(flags);
4352 pool = get_work_pool(work);
4353 if (pool) {
4354 spin_lock(&pool->lock);
4355 if (find_worker_executing_work(pool, work))
4356 ret |= WORK_BUSY_RUNNING;
4357 spin_unlock(&pool->lock);
4358 }
4359 local_irq_restore(flags);
4360
4361 return ret;
4362 }
4363 EXPORT_SYMBOL_GPL(work_busy);
4364
4365 /**
4366 * set_worker_desc - set description for the current work item
4367 * @fmt: printf-style format string
4368 * @...: arguments for the format string
4369 *
4370 * This function can be called by a running work function to describe what
4371 * the work item is about. If the worker task gets dumped, this
4372 * information will be printed out together to help debugging. The
4373 * description can be at most WORKER_DESC_LEN including the trailing '\0'.
4374 */
4375 void set_worker_desc(const char *fmt, ...)
4376 {
4377 struct worker *worker = current_wq_worker();
4378 va_list args;
4379
4380 if (worker) {
4381 va_start(args, fmt);
4382 vsnprintf(worker->desc, sizeof(worker->desc), fmt, args);
4383 va_end(args);
4384 worker->desc_valid = true;
4385 }
4386 }
4387
4388 /**
4389 * print_worker_info - print out worker information and description
4390 * @log_lvl: the log level to use when printing
4391 * @task: target task
4392 *
4393 * If @task is a worker and currently executing a work item, print out the
4394 * name of the workqueue being serviced and worker description set with
4395 * set_worker_desc() by the currently executing work item.
4396 *
4397 * This function can be safely called on any task as long as the
4398 * task_struct itself is accessible. While safe, this function isn't
4399 * synchronized and may print out mixups or garbages of limited length.
4400 */
4401 void print_worker_info(const char *log_lvl, struct task_struct *task)
4402 {
4403 work_func_t *fn = NULL;
4404 char name[WQ_NAME_LEN] = { };
4405 char desc[WORKER_DESC_LEN] = { };
4406 struct pool_workqueue *pwq = NULL;
4407 struct workqueue_struct *wq = NULL;
4408 bool desc_valid = false;
4409 struct worker *worker;
4410
4411 if (!(task->flags & PF_WQ_WORKER))
4412 return;
4413
4414 /*
4415 * This function is called without any synchronization and @task
4416 * could be in any state. Be careful with dereferences.
4417 */
4418 worker = probe_kthread_data(task);
4419
4420 /*
4421 * Carefully copy the associated workqueue's workfn and name. Keep
4422 * the original last '\0' in case the original contains garbage.
4423 */
4424 probe_kernel_read(&fn, &worker->current_func, sizeof(fn));
4425 probe_kernel_read(&pwq, &worker->current_pwq, sizeof(pwq));
4426 probe_kernel_read(&wq, &pwq->wq, sizeof(wq));
4427 probe_kernel_read(name, wq->name, sizeof(name) - 1);
4428
4429 /* copy worker description */
4430 probe_kernel_read(&desc_valid, &worker->desc_valid, sizeof(desc_valid));
4431 if (desc_valid)
4432 probe_kernel_read(desc, worker->desc, sizeof(desc) - 1);
4433
4434 if (fn || name[0] || desc[0]) {
4435 printk("%sWorkqueue: %s %pf", log_lvl, name, fn);
4436 if (desc[0])
4437 pr_cont(" (%s)", desc);
4438 pr_cont("\n");
4439 }
4440 }
4441
4442 /*
4443 * CPU hotplug.
4444 *
4445 * There are two challenges in supporting CPU hotplug. Firstly, there
4446 * are a lot of assumptions on strong associations among work, pwq and
4447 * pool which make migrating pending and scheduled works very
4448 * difficult to implement without impacting hot paths. Secondly,
4449 * worker pools serve mix of short, long and very long running works making
4450 * blocked draining impractical.
4451 *
4452 * This is solved by allowing the pools to be disassociated from the CPU
4453 * running as an unbound one and allowing it to be reattached later if the
4454 * cpu comes back online.
4455 */
4456
4457 static void wq_unbind_fn(struct work_struct *work)
4458 {
4459 int cpu = smp_processor_id();
4460 struct worker_pool *pool;
4461 struct worker *worker;
4462
4463 for_each_cpu_worker_pool(pool, cpu) {
4464 mutex_lock(&pool->attach_mutex);
4465 spin_lock_irq(&pool->lock);
4466
4467 /*
4468 * We've blocked all attach/detach operations. Make all workers
4469 * unbound and set DISASSOCIATED. Before this, all workers
4470 * except for the ones which are still executing works from
4471 * before the last CPU down must be on the cpu. After
4472 * this, they may become diasporas.
4473 */
4474 for_each_pool_worker(worker, pool)
4475 worker->flags |= WORKER_UNBOUND;
4476
4477 pool->flags |= POOL_DISASSOCIATED;
4478
4479 spin_unlock_irq(&pool->lock);
4480 mutex_unlock(&pool->attach_mutex);
4481
4482 /*
4483 * Call schedule() so that we cross rq->lock and thus can
4484 * guarantee sched callbacks see the %WORKER_UNBOUND flag.
4485 * This is necessary as scheduler callbacks may be invoked
4486 * from other cpus.
4487 */
4488 schedule();
4489
4490 /*
4491 * Sched callbacks are disabled now. Zap nr_running.
4492 * After this, nr_running stays zero and need_more_worker()
4493 * and keep_working() are always true as long as the
4494 * worklist is not empty. This pool now behaves as an
4495 * unbound (in terms of concurrency management) pool which
4496 * are served by workers tied to the pool.
4497 */
4498 atomic_set(&pool->nr_running, 0);
4499
4500 /*
4501 * With concurrency management just turned off, a busy
4502 * worker blocking could lead to lengthy stalls. Kick off
4503 * unbound chain execution of currently pending work items.
4504 */
4505 spin_lock_irq(&pool->lock);
4506 wake_up_worker(pool);
4507 spin_unlock_irq(&pool->lock);
4508 }
4509 }
4510
4511 /**
4512 * rebind_workers - rebind all workers of a pool to the associated CPU
4513 * @pool: pool of interest
4514 *
4515 * @pool->cpu is coming online. Rebind all workers to the CPU.
4516 */
4517 static void rebind_workers(struct worker_pool *pool)
4518 {
4519 struct worker *worker;
4520
4521 lockdep_assert_held(&pool->attach_mutex);
4522
4523 /*
4524 * Restore CPU affinity of all workers. As all idle workers should
4525 * be on the run-queue of the associated CPU before any local
4526 * wake-ups for concurrency management happen, restore CPU affinty
4527 * of all workers first and then clear UNBOUND. As we're called
4528 * from CPU_ONLINE, the following shouldn't fail.
4529 */
4530 for_each_pool_worker(worker, pool)
4531 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
4532 pool->attrs->cpumask) < 0);
4533
4534 spin_lock_irq(&pool->lock);
4535 pool->flags &= ~POOL_DISASSOCIATED;
4536
4537 for_each_pool_worker(worker, pool) {
4538 unsigned int worker_flags = worker->flags;
4539
4540 /*
4541 * A bound idle worker should actually be on the runqueue
4542 * of the associated CPU for local wake-ups targeting it to
4543 * work. Kick all idle workers so that they migrate to the
4544 * associated CPU. Doing this in the same loop as
4545 * replacing UNBOUND with REBOUND is safe as no worker will
4546 * be bound before @pool->lock is released.
4547 */
4548 if (worker_flags & WORKER_IDLE)
4549 wake_up_process(worker->task);
4550
4551 /*
4552 * We want to clear UNBOUND but can't directly call
4553 * worker_clr_flags() or adjust nr_running. Atomically
4554 * replace UNBOUND with another NOT_RUNNING flag REBOUND.
4555 * @worker will clear REBOUND using worker_clr_flags() when
4556 * it initiates the next execution cycle thus restoring
4557 * concurrency management. Note that when or whether
4558 * @worker clears REBOUND doesn't affect correctness.
4559 *
4560 * ACCESS_ONCE() is necessary because @worker->flags may be
4561 * tested without holding any lock in
4562 * wq_worker_waking_up(). Without it, NOT_RUNNING test may
4563 * fail incorrectly leading to premature concurrency
4564 * management operations.
4565 */
4566 WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND));
4567 worker_flags |= WORKER_REBOUND;
4568 worker_flags &= ~WORKER_UNBOUND;
4569 ACCESS_ONCE(worker->flags) = worker_flags;
4570 }
4571
4572 spin_unlock_irq(&pool->lock);
4573 }
4574
4575 /**
4576 * restore_unbound_workers_cpumask - restore cpumask of unbound workers
4577 * @pool: unbound pool of interest
4578 * @cpu: the CPU which is coming up
4579 *
4580 * An unbound pool may end up with a cpumask which doesn't have any online
4581 * CPUs. When a worker of such pool get scheduled, the scheduler resets
4582 * its cpus_allowed. If @cpu is in @pool's cpumask which didn't have any
4583 * online CPU before, cpus_allowed of all its workers should be restored.
4584 */
4585 static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu)
4586 {
4587 static cpumask_t cpumask;
4588 struct worker *worker;
4589
4590 lockdep_assert_held(&pool->attach_mutex);
4591
4592 /* is @cpu allowed for @pool? */
4593 if (!cpumask_test_cpu(cpu, pool->attrs->cpumask))
4594 return;
4595
4596 /* is @cpu the only online CPU? */
4597 cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask);
4598 if (cpumask_weight(&cpumask) != 1)
4599 return;
4600
4601 /* as we're called from CPU_ONLINE, the following shouldn't fail */
4602 for_each_pool_worker(worker, pool)
4603 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
4604 pool->attrs->cpumask) < 0);
4605 }
4606
4607 /*
4608 * Workqueues should be brought up before normal priority CPU notifiers.
4609 * This will be registered high priority CPU notifier.
4610 */
4611 static int workqueue_cpu_up_callback(struct notifier_block *nfb,
4612 unsigned long action,
4613 void *hcpu)
4614 {
4615 int cpu = (unsigned long)hcpu;
4616 struct worker_pool *pool;
4617 struct workqueue_struct *wq;
4618 int pi;
4619
4620 switch (action & ~CPU_TASKS_FROZEN) {
4621 case CPU_UP_PREPARE:
4622 for_each_cpu_worker_pool(pool, cpu) {
4623 if (pool->nr_workers)
4624 continue;
4625 if (create_and_start_worker(pool) < 0)
4626 return NOTIFY_BAD;
4627 }
4628 break;
4629
4630 case CPU_DOWN_FAILED:
4631 case CPU_ONLINE:
4632 mutex_lock(&wq_pool_mutex);
4633
4634 for_each_pool(pool, pi) {
4635 mutex_lock(&pool->attach_mutex);
4636
4637 if (pool->cpu == cpu) {
4638 rebind_workers(pool);
4639 } else if (pool->cpu < 0) {
4640 restore_unbound_workers_cpumask(pool, cpu);
4641 }
4642
4643 mutex_unlock(&pool->attach_mutex);
4644 }
4645
4646 /* update NUMA affinity of unbound workqueues */
4647 list_for_each_entry(wq, &workqueues, list)
4648 wq_update_unbound_numa(wq, cpu, true);
4649
4650 mutex_unlock(&wq_pool_mutex);
4651 break;
4652 }
4653 return NOTIFY_OK;
4654 }
4655
4656 /*
4657 * Workqueues should be brought down after normal priority CPU notifiers.
4658 * This will be registered as low priority CPU notifier.
4659 */
4660 static int workqueue_cpu_down_callback(struct notifier_block *nfb,
4661 unsigned long action,
4662 void *hcpu)
4663 {
4664 int cpu = (unsigned long)hcpu;
4665 struct work_struct unbind_work;
4666 struct workqueue_struct *wq;
4667
4668 switch (action & ~CPU_TASKS_FROZEN) {
4669 case CPU_DOWN_PREPARE:
4670 /* unbinding per-cpu workers should happen on the local CPU */
4671 INIT_WORK_ONSTACK(&unbind_work, wq_unbind_fn);
4672 queue_work_on(cpu, system_highpri_wq, &unbind_work);
4673
4674 /* update NUMA affinity of unbound workqueues */
4675 mutex_lock(&wq_pool_mutex);
4676 list_for_each_entry(wq, &workqueues, list)
4677 wq_update_unbound_numa(wq, cpu, false);
4678 mutex_unlock(&wq_pool_mutex);
4679
4680 /* wait for per-cpu unbinding to finish */
4681 flush_work(&unbind_work);
4682 destroy_work_on_stack(&unbind_work);
4683 break;
4684 }
4685 return NOTIFY_OK;
4686 }
4687
4688 #ifdef CONFIG_SMP
4689
4690 struct work_for_cpu {
4691 struct work_struct work;
4692 long (*fn)(void *);
4693 void *arg;
4694 long ret;
4695 };
4696
4697 static void work_for_cpu_fn(struct work_struct *work)
4698 {
4699 struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);
4700
4701 wfc->ret = wfc->fn(wfc->arg);
4702 }
4703
4704 /**
4705 * work_on_cpu - run a function in user context on a particular cpu
4706 * @cpu: the cpu to run on
4707 * @fn: the function to run
4708 * @arg: the function arg
4709 *
4710 * It is up to the caller to ensure that the cpu doesn't go offline.
4711 * The caller must not hold any locks which would prevent @fn from completing.
4712 *
4713 * Return: The value @fn returns.
4714 */
4715 long work_on_cpu(int cpu, long (*fn)(void *), void *arg)
4716 {
4717 struct work_for_cpu wfc = { .fn = fn, .arg = arg };
4718
4719 INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn);
4720 schedule_work_on(cpu, &wfc.work);
4721 flush_work(&wfc.work);
4722 destroy_work_on_stack(&wfc.work);
4723 return wfc.ret;
4724 }
4725 EXPORT_SYMBOL_GPL(work_on_cpu);
4726 #endif /* CONFIG_SMP */
4727
4728 #ifdef CONFIG_FREEZER
4729
4730 /**
4731 * freeze_workqueues_begin - begin freezing workqueues
4732 *
4733 * Start freezing workqueues. After this function returns, all freezable
4734 * workqueues will queue new works to their delayed_works list instead of
4735 * pool->worklist.
4736 *
4737 * CONTEXT:
4738 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
4739 */
4740 void freeze_workqueues_begin(void)
4741 {
4742 struct workqueue_struct *wq;
4743 struct pool_workqueue *pwq;
4744
4745 mutex_lock(&wq_pool_mutex);
4746
4747 WARN_ON_ONCE(workqueue_freezing);
4748 workqueue_freezing = true;
4749
4750 list_for_each_entry(wq, &workqueues, list) {
4751 mutex_lock(&wq->mutex);
4752 for_each_pwq(pwq, wq)
4753 pwq_adjust_max_active(pwq);
4754 mutex_unlock(&wq->mutex);
4755 }
4756
4757 mutex_unlock(&wq_pool_mutex);
4758 }
4759
4760 /**
4761 * freeze_workqueues_busy - are freezable workqueues still busy?
4762 *
4763 * Check whether freezing is complete. This function must be called
4764 * between freeze_workqueues_begin() and thaw_workqueues().
4765 *
4766 * CONTEXT:
4767 * Grabs and releases wq_pool_mutex.
4768 *
4769 * Return:
4770 * %true if some freezable workqueues are still busy. %false if freezing
4771 * is complete.
4772 */
4773 bool freeze_workqueues_busy(void)
4774 {
4775 bool busy = false;
4776 struct workqueue_struct *wq;
4777 struct pool_workqueue *pwq;
4778
4779 mutex_lock(&wq_pool_mutex);
4780
4781 WARN_ON_ONCE(!workqueue_freezing);
4782
4783 list_for_each_entry(wq, &workqueues, list) {
4784 if (!(wq->flags & WQ_FREEZABLE))
4785 continue;
4786 /*
4787 * nr_active is monotonically decreasing. It's safe
4788 * to peek without lock.
4789 */
4790 rcu_read_lock_sched();
4791 for_each_pwq(pwq, wq) {
4792 WARN_ON_ONCE(pwq->nr_active < 0);
4793 if (pwq->nr_active) {
4794 busy = true;
4795 rcu_read_unlock_sched();
4796 goto out_unlock;
4797 }
4798 }
4799 rcu_read_unlock_sched();
4800 }
4801 out_unlock:
4802 mutex_unlock(&wq_pool_mutex);
4803 return busy;
4804 }
4805
4806 /**
4807 * thaw_workqueues - thaw workqueues
4808 *
4809 * Thaw workqueues. Normal queueing is restored and all collected
4810 * frozen works are transferred to their respective pool worklists.
4811 *
4812 * CONTEXT:
4813 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
4814 */
4815 void thaw_workqueues(void)
4816 {
4817 struct workqueue_struct *wq;
4818 struct pool_workqueue *pwq;
4819
4820 mutex_lock(&wq_pool_mutex);
4821
4822 if (!workqueue_freezing)
4823 goto out_unlock;
4824
4825 workqueue_freezing = false;
4826
4827 /* restore max_active and repopulate worklist */
4828 list_for_each_entry(wq, &workqueues, list) {
4829 mutex_lock(&wq->mutex);
4830 for_each_pwq(pwq, wq)
4831 pwq_adjust_max_active(pwq);
4832 mutex_unlock(&wq->mutex);
4833 }
4834
4835 out_unlock:
4836 mutex_unlock(&wq_pool_mutex);
4837 }
4838 #endif /* CONFIG_FREEZER */
4839
4840 static void __init wq_numa_init(void)
4841 {
4842 cpumask_var_t *tbl;
4843 int node, cpu;
4844
4845 /* determine NUMA pwq table len - highest node id + 1 */
4846 for_each_node(node)
4847 wq_numa_tbl_len = max(wq_numa_tbl_len, node + 1);
4848
4849 if (num_possible_nodes() <= 1)
4850 return;
4851
4852 if (wq_disable_numa) {
4853 pr_info("workqueue: NUMA affinity support disabled\n");
4854 return;
4855 }
4856
4857 wq_update_unbound_numa_attrs_buf = alloc_workqueue_attrs(GFP_KERNEL);
4858 BUG_ON(!wq_update_unbound_numa_attrs_buf);
4859
4860 /*
4861 * We want masks of possible CPUs of each node which isn't readily
4862 * available. Build one from cpu_to_node() which should have been
4863 * fully initialized by now.
4864 */
4865 tbl = kzalloc(wq_numa_tbl_len * sizeof(tbl[0]), GFP_KERNEL);
4866 BUG_ON(!tbl);
4867
4868 for_each_node(node)
4869 BUG_ON(!alloc_cpumask_var_node(&tbl[node], GFP_KERNEL,
4870 node_online(node) ? node : NUMA_NO_NODE));
4871
4872 for_each_possible_cpu(cpu) {
4873 node = cpu_to_node(cpu);
4874 if (WARN_ON(node == NUMA_NO_NODE)) {
4875 pr_warn("workqueue: NUMA node mapping not available for cpu%d, disabling NUMA support\n", cpu);
4876 /* happens iff arch is bonkers, let's just proceed */
4877 return;
4878 }
4879 cpumask_set_cpu(cpu, tbl[node]);
4880 }
4881
4882 wq_numa_possible_cpumask = tbl;
4883 wq_numa_enabled = true;
4884 }
4885
4886 static int __init init_workqueues(void)
4887 {
4888 int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL };
4889 int i, cpu;
4890
4891 WARN_ON(__alignof__(struct pool_workqueue) < __alignof__(long long));
4892
4893 pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC);
4894
4895 cpu_notifier(workqueue_cpu_up_callback, CPU_PRI_WORKQUEUE_UP);
4896 hotcpu_notifier(workqueue_cpu_down_callback, CPU_PRI_WORKQUEUE_DOWN);
4897
4898 wq_numa_init();
4899
4900 /* initialize CPU pools */
4901 for_each_possible_cpu(cpu) {
4902 struct worker_pool *pool;
4903
4904 i = 0;
4905 for_each_cpu_worker_pool(pool, cpu) {
4906 BUG_ON(init_worker_pool(pool));
4907 pool->cpu = cpu;
4908 cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu));
4909 pool->attrs->nice = std_nice[i++];
4910 pool->node = cpu_to_node(cpu);
4911
4912 /* alloc pool ID */
4913 mutex_lock(&wq_pool_mutex);
4914 BUG_ON(worker_pool_assign_id(pool));
4915 mutex_unlock(&wq_pool_mutex);
4916 }
4917 }
4918
4919 /* create the initial worker */
4920 for_each_online_cpu(cpu) {
4921 struct worker_pool *pool;
4922
4923 for_each_cpu_worker_pool(pool, cpu) {
4924 pool->flags &= ~POOL_DISASSOCIATED;
4925 BUG_ON(create_and_start_worker(pool) < 0);
4926 }
4927 }
4928
4929 /* create default unbound and ordered wq attrs */
4930 for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
4931 struct workqueue_attrs *attrs;
4932
4933 BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
4934 attrs->nice = std_nice[i];
4935 unbound_std_wq_attrs[i] = attrs;
4936
4937 /*
4938 * An ordered wq should have only one pwq as ordering is
4939 * guaranteed by max_active which is enforced by pwqs.
4940 * Turn off NUMA so that dfl_pwq is used for all nodes.
4941 */
4942 BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
4943 attrs->nice = std_nice[i];
4944 attrs->no_numa = true;
4945 ordered_wq_attrs[i] = attrs;
4946 }
4947
4948 system_wq = alloc_workqueue("events", 0, 0);
4949 system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
4950 system_long_wq = alloc_workqueue("events_long", 0, 0);
4951 system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
4952 WQ_UNBOUND_MAX_ACTIVE);
4953 system_freezable_wq = alloc_workqueue("events_freezable",
4954 WQ_FREEZABLE, 0);
4955 system_power_efficient_wq = alloc_workqueue("events_power_efficient",
4956 WQ_POWER_EFFICIENT, 0);
4957 system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_power_efficient",
4958 WQ_FREEZABLE | WQ_POWER_EFFICIENT,
4959 0);
4960 BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
4961 !system_unbound_wq || !system_freezable_wq ||
4962 !system_power_efficient_wq ||
4963 !system_freezable_power_efficient_wq);
4964 return 0;
4965 }
4966 early_initcall(init_workqueues);