]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - kernel/workqueue.c
ce1ab069c5fee6dd7c07fb32d14ae9c8ae4468db
[mirror_ubuntu-jammy-kernel.git] / kernel / workqueue.c
1 /*
2 * kernel/workqueue.c - generic async execution with shared worker pool
3 *
4 * Copyright (C) 2002 Ingo Molnar
5 *
6 * Derived from the taskqueue/keventd code by:
7 * David Woodhouse <dwmw2@infradead.org>
8 * Andrew Morton
9 * Kai Petzke <wpp@marie.physik.tu-berlin.de>
10 * Theodore Ts'o <tytso@mit.edu>
11 *
12 * Made to use alloc_percpu by Christoph Lameter.
13 *
14 * Copyright (C) 2010 SUSE Linux Products GmbH
15 * Copyright (C) 2010 Tejun Heo <tj@kernel.org>
16 *
17 * This is the generic async execution mechanism. Work items as are
18 * executed in process context. The worker pool is shared and
19 * automatically managed. There is one worker pool for each CPU and
20 * one extra for works which are better served by workers which are
21 * not bound to any specific CPU.
22 *
23 * Please read Documentation/workqueue.txt for details.
24 */
25
26 #include <linux/export.h>
27 #include <linux/kernel.h>
28 #include <linux/sched.h>
29 #include <linux/init.h>
30 #include <linux/signal.h>
31 #include <linux/completion.h>
32 #include <linux/workqueue.h>
33 #include <linux/slab.h>
34 #include <linux/cpu.h>
35 #include <linux/notifier.h>
36 #include <linux/kthread.h>
37 #include <linux/hardirq.h>
38 #include <linux/mempolicy.h>
39 #include <linux/freezer.h>
40 #include <linux/kallsyms.h>
41 #include <linux/debug_locks.h>
42 #include <linux/lockdep.h>
43 #include <linux/idr.h>
44 #include <linux/jhash.h>
45 #include <linux/hashtable.h>
46 #include <linux/rculist.h>
47
48 #include "workqueue_internal.h"
49
50 enum {
51 /*
52 * worker_pool flags
53 *
54 * A bound pool is either associated or disassociated with its CPU.
55 * While associated (!DISASSOCIATED), all workers are bound to the
56 * CPU and none has %WORKER_UNBOUND set and concurrency management
57 * is in effect.
58 *
59 * While DISASSOCIATED, the cpu may be offline and all workers have
60 * %WORKER_UNBOUND set and concurrency management disabled, and may
61 * be executing on any CPU. The pool behaves as an unbound one.
62 *
63 * Note that DISASSOCIATED should be flipped only while holding
64 * manager_mutex to avoid changing binding state while
65 * create_worker() is in progress.
66 */
67 POOL_MANAGE_WORKERS = 1 << 0, /* need to manage workers */
68 POOL_DISASSOCIATED = 1 << 2, /* cpu can't serve workers */
69 POOL_FREEZING = 1 << 3, /* freeze in progress */
70
71 /* worker flags */
72 WORKER_STARTED = 1 << 0, /* started */
73 WORKER_DIE = 1 << 1, /* die die die */
74 WORKER_IDLE = 1 << 2, /* is idle */
75 WORKER_PREP = 1 << 3, /* preparing to run works */
76 WORKER_CPU_INTENSIVE = 1 << 6, /* cpu intensive */
77 WORKER_UNBOUND = 1 << 7, /* worker is unbound */
78
79 WORKER_NOT_RUNNING = WORKER_PREP | WORKER_UNBOUND |
80 WORKER_CPU_INTENSIVE,
81
82 NR_STD_WORKER_POOLS = 2, /* # standard pools per cpu */
83
84 UNBOUND_POOL_HASH_ORDER = 6, /* hashed by pool->attrs */
85 BUSY_WORKER_HASH_ORDER = 6, /* 64 pointers */
86
87 MAX_IDLE_WORKERS_RATIO = 4, /* 1/4 of busy can be idle */
88 IDLE_WORKER_TIMEOUT = 300 * HZ, /* keep idle ones for 5 mins */
89
90 MAYDAY_INITIAL_TIMEOUT = HZ / 100 >= 2 ? HZ / 100 : 2,
91 /* call for help after 10ms
92 (min two ticks) */
93 MAYDAY_INTERVAL = HZ / 10, /* and then every 100ms */
94 CREATE_COOLDOWN = HZ, /* time to breath after fail */
95
96 /*
97 * Rescue workers are used only on emergencies and shared by
98 * all cpus. Give -20.
99 */
100 RESCUER_NICE_LEVEL = -20,
101 HIGHPRI_NICE_LEVEL = -20,
102 };
103
104 /*
105 * Structure fields follow one of the following exclusion rules.
106 *
107 * I: Modifiable by initialization/destruction paths and read-only for
108 * everyone else.
109 *
110 * P: Preemption protected. Disabling preemption is enough and should
111 * only be modified and accessed from the local cpu.
112 *
113 * L: pool->lock protected. Access with pool->lock held.
114 *
115 * X: During normal operation, modification requires pool->lock and should
116 * be done only from local cpu. Either disabling preemption on local
117 * cpu or grabbing pool->lock is enough for read access. If
118 * POOL_DISASSOCIATED is set, it's identical to L.
119 *
120 * F: wq->flush_mutex protected.
121 *
122 * W: workqueue_lock protected.
123 *
124 * R: workqueue_lock protected for writes. Sched-RCU protected for reads.
125 *
126 * FR: wq->flush_mutex and workqueue_lock protected for writes. Sched-RCU
127 * protected for reads.
128 */
129
130 /* struct worker is defined in workqueue_internal.h */
131
132 struct worker_pool {
133 spinlock_t lock; /* the pool lock */
134 int cpu; /* I: the associated cpu */
135 int id; /* I: pool ID */
136 unsigned int flags; /* X: flags */
137
138 struct list_head worklist; /* L: list of pending works */
139 int nr_workers; /* L: total number of workers */
140
141 /* nr_idle includes the ones off idle_list for rebinding */
142 int nr_idle; /* L: currently idle ones */
143
144 struct list_head idle_list; /* X: list of idle workers */
145 struct timer_list idle_timer; /* L: worker idle timeout */
146 struct timer_list mayday_timer; /* L: SOS timer for workers */
147
148 /* a workers is either on busy_hash or idle_list, or the manager */
149 DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
150 /* L: hash of busy workers */
151
152 /* see manage_workers() for details on the two manager mutexes */
153 struct mutex manager_arb; /* manager arbitration */
154 struct mutex manager_mutex; /* manager exclusion */
155 struct ida worker_ida; /* L: for worker IDs */
156
157 struct workqueue_attrs *attrs; /* I: worker attributes */
158 struct hlist_node hash_node; /* W: unbound_pool_hash node */
159 int refcnt; /* W: refcnt for unbound pools */
160
161 /*
162 * The current concurrency level. As it's likely to be accessed
163 * from other CPUs during try_to_wake_up(), put it in a separate
164 * cacheline.
165 */
166 atomic_t nr_running ____cacheline_aligned_in_smp;
167
168 /*
169 * Destruction of pool is sched-RCU protected to allow dereferences
170 * from get_work_pool().
171 */
172 struct rcu_head rcu;
173 } ____cacheline_aligned_in_smp;
174
175 /*
176 * The per-pool workqueue. While queued, the lower WORK_STRUCT_FLAG_BITS
177 * of work_struct->data are used for flags and the remaining high bits
178 * point to the pwq; thus, pwqs need to be aligned at two's power of the
179 * number of flag bits.
180 */
181 struct pool_workqueue {
182 struct worker_pool *pool; /* I: the associated pool */
183 struct workqueue_struct *wq; /* I: the owning workqueue */
184 int work_color; /* L: current color */
185 int flush_color; /* L: flushing color */
186 int refcnt; /* L: reference count */
187 int nr_in_flight[WORK_NR_COLORS];
188 /* L: nr of in_flight works */
189 int nr_active; /* L: nr of active works */
190 int max_active; /* L: max active works */
191 struct list_head delayed_works; /* L: delayed works */
192 struct list_head pwqs_node; /* FR: node on wq->pwqs */
193 struct list_head mayday_node; /* W: node on wq->maydays */
194
195 /*
196 * Release of unbound pwq is punted to system_wq. See put_pwq()
197 * and pwq_unbound_release_workfn() for details. pool_workqueue
198 * itself is also sched-RCU protected so that the first pwq can be
199 * determined without grabbing workqueue_lock.
200 */
201 struct work_struct unbound_release_work;
202 struct rcu_head rcu;
203 } __aligned(1 << WORK_STRUCT_FLAG_BITS);
204
205 /*
206 * Structure used to wait for workqueue flush.
207 */
208 struct wq_flusher {
209 struct list_head list; /* F: list of flushers */
210 int flush_color; /* F: flush color waiting for */
211 struct completion done; /* flush completion */
212 };
213
214 struct wq_device;
215
216 /*
217 * The externally visible workqueue. It relays the issued work items to
218 * the appropriate worker_pool through its pool_workqueues.
219 */
220 struct workqueue_struct {
221 unsigned int flags; /* W: WQ_* flags */
222 struct pool_workqueue __percpu *cpu_pwqs; /* I: per-cpu pwq's */
223 struct list_head pwqs; /* FR: all pwqs of this wq */
224 struct list_head list; /* W: list of all workqueues */
225
226 struct mutex flush_mutex; /* protects wq flushing */
227 int work_color; /* F: current work color */
228 int flush_color; /* F: current flush color */
229 atomic_t nr_pwqs_to_flush; /* flush in progress */
230 struct wq_flusher *first_flusher; /* F: first flusher */
231 struct list_head flusher_queue; /* F: flush waiters */
232 struct list_head flusher_overflow; /* F: flush overflow list */
233
234 struct list_head maydays; /* W: pwqs requesting rescue */
235 struct worker *rescuer; /* I: rescue worker */
236
237 int nr_drainers; /* W: drain in progress */
238 int saved_max_active; /* W: saved pwq max_active */
239
240 #ifdef CONFIG_SYSFS
241 struct wq_device *wq_dev; /* I: for sysfs interface */
242 #endif
243 #ifdef CONFIG_LOCKDEP
244 struct lockdep_map lockdep_map;
245 #endif
246 char name[]; /* I: workqueue name */
247 };
248
249 static struct kmem_cache *pwq_cache;
250
251 /* W: hash of all unbound pools keyed by pool->attrs */
252 static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER);
253
254 /* I: attributes used when instantiating standard unbound pools on demand */
255 static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS];
256
257 struct workqueue_struct *system_wq __read_mostly;
258 EXPORT_SYMBOL_GPL(system_wq);
259 struct workqueue_struct *system_highpri_wq __read_mostly;
260 EXPORT_SYMBOL_GPL(system_highpri_wq);
261 struct workqueue_struct *system_long_wq __read_mostly;
262 EXPORT_SYMBOL_GPL(system_long_wq);
263 struct workqueue_struct *system_unbound_wq __read_mostly;
264 EXPORT_SYMBOL_GPL(system_unbound_wq);
265 struct workqueue_struct *system_freezable_wq __read_mostly;
266 EXPORT_SYMBOL_GPL(system_freezable_wq);
267
268 #define CREATE_TRACE_POINTS
269 #include <trace/events/workqueue.h>
270
271 #define assert_rcu_or_wq_lock() \
272 rcu_lockdep_assert(rcu_read_lock_sched_held() || \
273 lockdep_is_held(&workqueue_lock), \
274 "sched RCU or workqueue lock should be held")
275
276 #define for_each_cpu_worker_pool(pool, cpu) \
277 for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0]; \
278 (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
279 (pool)++)
280
281 #define for_each_busy_worker(worker, i, pool) \
282 hash_for_each(pool->busy_hash, i, worker, hentry)
283
284 /**
285 * for_each_pool - iterate through all worker_pools in the system
286 * @pool: iteration cursor
287 * @pi: integer used for iteration
288 *
289 * This must be called either with workqueue_lock held or sched RCU read
290 * locked. If the pool needs to be used beyond the locking in effect, the
291 * caller is responsible for guaranteeing that the pool stays online.
292 *
293 * The if/else clause exists only for the lockdep assertion and can be
294 * ignored.
295 */
296 #define for_each_pool(pool, pi) \
297 idr_for_each_entry(&worker_pool_idr, pool, pi) \
298 if (({ assert_rcu_or_wq_lock(); false; })) { } \
299 else
300
301 /**
302 * for_each_pwq - iterate through all pool_workqueues of the specified workqueue
303 * @pwq: iteration cursor
304 * @wq: the target workqueue
305 *
306 * This must be called either with workqueue_lock held or sched RCU read
307 * locked. If the pwq needs to be used beyond the locking in effect, the
308 * caller is responsible for guaranteeing that the pwq stays online.
309 *
310 * The if/else clause exists only for the lockdep assertion and can be
311 * ignored.
312 */
313 #define for_each_pwq(pwq, wq) \
314 list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node) \
315 if (({ assert_rcu_or_wq_lock(); false; })) { } \
316 else
317
318 #ifdef CONFIG_DEBUG_OBJECTS_WORK
319
320 static struct debug_obj_descr work_debug_descr;
321
322 static void *work_debug_hint(void *addr)
323 {
324 return ((struct work_struct *) addr)->func;
325 }
326
327 /*
328 * fixup_init is called when:
329 * - an active object is initialized
330 */
331 static int work_fixup_init(void *addr, enum debug_obj_state state)
332 {
333 struct work_struct *work = addr;
334
335 switch (state) {
336 case ODEBUG_STATE_ACTIVE:
337 cancel_work_sync(work);
338 debug_object_init(work, &work_debug_descr);
339 return 1;
340 default:
341 return 0;
342 }
343 }
344
345 /*
346 * fixup_activate is called when:
347 * - an active object is activated
348 * - an unknown object is activated (might be a statically initialized object)
349 */
350 static int work_fixup_activate(void *addr, enum debug_obj_state state)
351 {
352 struct work_struct *work = addr;
353
354 switch (state) {
355
356 case ODEBUG_STATE_NOTAVAILABLE:
357 /*
358 * This is not really a fixup. The work struct was
359 * statically initialized. We just make sure that it
360 * is tracked in the object tracker.
361 */
362 if (test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work))) {
363 debug_object_init(work, &work_debug_descr);
364 debug_object_activate(work, &work_debug_descr);
365 return 0;
366 }
367 WARN_ON_ONCE(1);
368 return 0;
369
370 case ODEBUG_STATE_ACTIVE:
371 WARN_ON(1);
372
373 default:
374 return 0;
375 }
376 }
377
378 /*
379 * fixup_free is called when:
380 * - an active object is freed
381 */
382 static int work_fixup_free(void *addr, enum debug_obj_state state)
383 {
384 struct work_struct *work = addr;
385
386 switch (state) {
387 case ODEBUG_STATE_ACTIVE:
388 cancel_work_sync(work);
389 debug_object_free(work, &work_debug_descr);
390 return 1;
391 default:
392 return 0;
393 }
394 }
395
396 static struct debug_obj_descr work_debug_descr = {
397 .name = "work_struct",
398 .debug_hint = work_debug_hint,
399 .fixup_init = work_fixup_init,
400 .fixup_activate = work_fixup_activate,
401 .fixup_free = work_fixup_free,
402 };
403
404 static inline void debug_work_activate(struct work_struct *work)
405 {
406 debug_object_activate(work, &work_debug_descr);
407 }
408
409 static inline void debug_work_deactivate(struct work_struct *work)
410 {
411 debug_object_deactivate(work, &work_debug_descr);
412 }
413
414 void __init_work(struct work_struct *work, int onstack)
415 {
416 if (onstack)
417 debug_object_init_on_stack(work, &work_debug_descr);
418 else
419 debug_object_init(work, &work_debug_descr);
420 }
421 EXPORT_SYMBOL_GPL(__init_work);
422
423 void destroy_work_on_stack(struct work_struct *work)
424 {
425 debug_object_free(work, &work_debug_descr);
426 }
427 EXPORT_SYMBOL_GPL(destroy_work_on_stack);
428
429 #else
430 static inline void debug_work_activate(struct work_struct *work) { }
431 static inline void debug_work_deactivate(struct work_struct *work) { }
432 #endif
433
434 /* Serializes the accesses to the list of workqueues. */
435 static DEFINE_SPINLOCK(workqueue_lock);
436 static LIST_HEAD(workqueues);
437 static bool workqueue_freezing; /* W: have wqs started freezing? */
438
439 /* the per-cpu worker pools */
440 static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS],
441 cpu_worker_pools);
442
443 /*
444 * R: idr of all pools. Modifications are protected by workqueue_lock.
445 * Read accesses are protected by sched-RCU protected.
446 */
447 static DEFINE_IDR(worker_pool_idr);
448
449 static int worker_thread(void *__worker);
450 static void copy_workqueue_attrs(struct workqueue_attrs *to,
451 const struct workqueue_attrs *from);
452
453 /* allocate ID and assign it to @pool */
454 static int worker_pool_assign_id(struct worker_pool *pool)
455 {
456 int ret;
457
458 do {
459 if (!idr_pre_get(&worker_pool_idr, GFP_KERNEL))
460 return -ENOMEM;
461
462 spin_lock_irq(&workqueue_lock);
463 ret = idr_get_new(&worker_pool_idr, pool, &pool->id);
464 spin_unlock_irq(&workqueue_lock);
465 } while (ret == -EAGAIN);
466
467 return ret;
468 }
469
470 /**
471 * first_pwq - return the first pool_workqueue of the specified workqueue
472 * @wq: the target workqueue
473 *
474 * This must be called either with workqueue_lock held or sched RCU read
475 * locked. If the pwq needs to be used beyond the locking in effect, the
476 * caller is responsible for guaranteeing that the pwq stays online.
477 */
478 static struct pool_workqueue *first_pwq(struct workqueue_struct *wq)
479 {
480 assert_rcu_or_wq_lock();
481 return list_first_or_null_rcu(&wq->pwqs, struct pool_workqueue,
482 pwqs_node);
483 }
484
485 static unsigned int work_color_to_flags(int color)
486 {
487 return color << WORK_STRUCT_COLOR_SHIFT;
488 }
489
490 static int get_work_color(struct work_struct *work)
491 {
492 return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
493 ((1 << WORK_STRUCT_COLOR_BITS) - 1);
494 }
495
496 static int work_next_color(int color)
497 {
498 return (color + 1) % WORK_NR_COLORS;
499 }
500
501 /*
502 * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
503 * contain the pointer to the queued pwq. Once execution starts, the flag
504 * is cleared and the high bits contain OFFQ flags and pool ID.
505 *
506 * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling()
507 * and clear_work_data() can be used to set the pwq, pool or clear
508 * work->data. These functions should only be called while the work is
509 * owned - ie. while the PENDING bit is set.
510 *
511 * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
512 * corresponding to a work. Pool is available once the work has been
513 * queued anywhere after initialization until it is sync canceled. pwq is
514 * available only while the work item is queued.
515 *
516 * %WORK_OFFQ_CANCELING is used to mark a work item which is being
517 * canceled. While being canceled, a work item may have its PENDING set
518 * but stay off timer and worklist for arbitrarily long and nobody should
519 * try to steal the PENDING bit.
520 */
521 static inline void set_work_data(struct work_struct *work, unsigned long data,
522 unsigned long flags)
523 {
524 WARN_ON_ONCE(!work_pending(work));
525 atomic_long_set(&work->data, data | flags | work_static(work));
526 }
527
528 static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq,
529 unsigned long extra_flags)
530 {
531 set_work_data(work, (unsigned long)pwq,
532 WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags);
533 }
534
535 static void set_work_pool_and_keep_pending(struct work_struct *work,
536 int pool_id)
537 {
538 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT,
539 WORK_STRUCT_PENDING);
540 }
541
542 static void set_work_pool_and_clear_pending(struct work_struct *work,
543 int pool_id)
544 {
545 /*
546 * The following wmb is paired with the implied mb in
547 * test_and_set_bit(PENDING) and ensures all updates to @work made
548 * here are visible to and precede any updates by the next PENDING
549 * owner.
550 */
551 smp_wmb();
552 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0);
553 }
554
555 static void clear_work_data(struct work_struct *work)
556 {
557 smp_wmb(); /* see set_work_pool_and_clear_pending() */
558 set_work_data(work, WORK_STRUCT_NO_POOL, 0);
559 }
560
561 static struct pool_workqueue *get_work_pwq(struct work_struct *work)
562 {
563 unsigned long data = atomic_long_read(&work->data);
564
565 if (data & WORK_STRUCT_PWQ)
566 return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
567 else
568 return NULL;
569 }
570
571 /**
572 * get_work_pool - return the worker_pool a given work was associated with
573 * @work: the work item of interest
574 *
575 * Return the worker_pool @work was last associated with. %NULL if none.
576 *
577 * Pools are created and destroyed under workqueue_lock, and allows read
578 * access under sched-RCU read lock. As such, this function should be
579 * called under workqueue_lock or with preemption disabled.
580 *
581 * All fields of the returned pool are accessible as long as the above
582 * mentioned locking is in effect. If the returned pool needs to be used
583 * beyond the critical section, the caller is responsible for ensuring the
584 * returned pool is and stays online.
585 */
586 static struct worker_pool *get_work_pool(struct work_struct *work)
587 {
588 unsigned long data = atomic_long_read(&work->data);
589 int pool_id;
590
591 assert_rcu_or_wq_lock();
592
593 if (data & WORK_STRUCT_PWQ)
594 return ((struct pool_workqueue *)
595 (data & WORK_STRUCT_WQ_DATA_MASK))->pool;
596
597 pool_id = data >> WORK_OFFQ_POOL_SHIFT;
598 if (pool_id == WORK_OFFQ_POOL_NONE)
599 return NULL;
600
601 return idr_find(&worker_pool_idr, pool_id);
602 }
603
604 /**
605 * get_work_pool_id - return the worker pool ID a given work is associated with
606 * @work: the work item of interest
607 *
608 * Return the worker_pool ID @work was last associated with.
609 * %WORK_OFFQ_POOL_NONE if none.
610 */
611 static int get_work_pool_id(struct work_struct *work)
612 {
613 unsigned long data = atomic_long_read(&work->data);
614
615 if (data & WORK_STRUCT_PWQ)
616 return ((struct pool_workqueue *)
617 (data & WORK_STRUCT_WQ_DATA_MASK))->pool->id;
618
619 return data >> WORK_OFFQ_POOL_SHIFT;
620 }
621
622 static void mark_work_canceling(struct work_struct *work)
623 {
624 unsigned long pool_id = get_work_pool_id(work);
625
626 pool_id <<= WORK_OFFQ_POOL_SHIFT;
627 set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING);
628 }
629
630 static bool work_is_canceling(struct work_struct *work)
631 {
632 unsigned long data = atomic_long_read(&work->data);
633
634 return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING);
635 }
636
637 /*
638 * Policy functions. These define the policies on how the global worker
639 * pools are managed. Unless noted otherwise, these functions assume that
640 * they're being called with pool->lock held.
641 */
642
643 static bool __need_more_worker(struct worker_pool *pool)
644 {
645 return !atomic_read(&pool->nr_running);
646 }
647
648 /*
649 * Need to wake up a worker? Called from anything but currently
650 * running workers.
651 *
652 * Note that, because unbound workers never contribute to nr_running, this
653 * function will always return %true for unbound pools as long as the
654 * worklist isn't empty.
655 */
656 static bool need_more_worker(struct worker_pool *pool)
657 {
658 return !list_empty(&pool->worklist) && __need_more_worker(pool);
659 }
660
661 /* Can I start working? Called from busy but !running workers. */
662 static bool may_start_working(struct worker_pool *pool)
663 {
664 return pool->nr_idle;
665 }
666
667 /* Do I need to keep working? Called from currently running workers. */
668 static bool keep_working(struct worker_pool *pool)
669 {
670 return !list_empty(&pool->worklist) &&
671 atomic_read(&pool->nr_running) <= 1;
672 }
673
674 /* Do we need a new worker? Called from manager. */
675 static bool need_to_create_worker(struct worker_pool *pool)
676 {
677 return need_more_worker(pool) && !may_start_working(pool);
678 }
679
680 /* Do I need to be the manager? */
681 static bool need_to_manage_workers(struct worker_pool *pool)
682 {
683 return need_to_create_worker(pool) ||
684 (pool->flags & POOL_MANAGE_WORKERS);
685 }
686
687 /* Do we have too many workers and should some go away? */
688 static bool too_many_workers(struct worker_pool *pool)
689 {
690 bool managing = mutex_is_locked(&pool->manager_arb);
691 int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
692 int nr_busy = pool->nr_workers - nr_idle;
693
694 /*
695 * nr_idle and idle_list may disagree if idle rebinding is in
696 * progress. Never return %true if idle_list is empty.
697 */
698 if (list_empty(&pool->idle_list))
699 return false;
700
701 return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
702 }
703
704 /*
705 * Wake up functions.
706 */
707
708 /* Return the first worker. Safe with preemption disabled */
709 static struct worker *first_worker(struct worker_pool *pool)
710 {
711 if (unlikely(list_empty(&pool->idle_list)))
712 return NULL;
713
714 return list_first_entry(&pool->idle_list, struct worker, entry);
715 }
716
717 /**
718 * wake_up_worker - wake up an idle worker
719 * @pool: worker pool to wake worker from
720 *
721 * Wake up the first idle worker of @pool.
722 *
723 * CONTEXT:
724 * spin_lock_irq(pool->lock).
725 */
726 static void wake_up_worker(struct worker_pool *pool)
727 {
728 struct worker *worker = first_worker(pool);
729
730 if (likely(worker))
731 wake_up_process(worker->task);
732 }
733
734 /**
735 * wq_worker_waking_up - a worker is waking up
736 * @task: task waking up
737 * @cpu: CPU @task is waking up to
738 *
739 * This function is called during try_to_wake_up() when a worker is
740 * being awoken.
741 *
742 * CONTEXT:
743 * spin_lock_irq(rq->lock)
744 */
745 void wq_worker_waking_up(struct task_struct *task, int cpu)
746 {
747 struct worker *worker = kthread_data(task);
748
749 if (!(worker->flags & WORKER_NOT_RUNNING)) {
750 WARN_ON_ONCE(worker->pool->cpu != cpu);
751 atomic_inc(&worker->pool->nr_running);
752 }
753 }
754
755 /**
756 * wq_worker_sleeping - a worker is going to sleep
757 * @task: task going to sleep
758 * @cpu: CPU in question, must be the current CPU number
759 *
760 * This function is called during schedule() when a busy worker is
761 * going to sleep. Worker on the same cpu can be woken up by
762 * returning pointer to its task.
763 *
764 * CONTEXT:
765 * spin_lock_irq(rq->lock)
766 *
767 * RETURNS:
768 * Worker task on @cpu to wake up, %NULL if none.
769 */
770 struct task_struct *wq_worker_sleeping(struct task_struct *task, int cpu)
771 {
772 struct worker *worker = kthread_data(task), *to_wakeup = NULL;
773 struct worker_pool *pool;
774
775 /*
776 * Rescuers, which may not have all the fields set up like normal
777 * workers, also reach here, let's not access anything before
778 * checking NOT_RUNNING.
779 */
780 if (worker->flags & WORKER_NOT_RUNNING)
781 return NULL;
782
783 pool = worker->pool;
784
785 /* this can only happen on the local cpu */
786 if (WARN_ON_ONCE(cpu != raw_smp_processor_id()))
787 return NULL;
788
789 /*
790 * The counterpart of the following dec_and_test, implied mb,
791 * worklist not empty test sequence is in insert_work().
792 * Please read comment there.
793 *
794 * NOT_RUNNING is clear. This means that we're bound to and
795 * running on the local cpu w/ rq lock held and preemption
796 * disabled, which in turn means that none else could be
797 * manipulating idle_list, so dereferencing idle_list without pool
798 * lock is safe.
799 */
800 if (atomic_dec_and_test(&pool->nr_running) &&
801 !list_empty(&pool->worklist))
802 to_wakeup = first_worker(pool);
803 return to_wakeup ? to_wakeup->task : NULL;
804 }
805
806 /**
807 * worker_set_flags - set worker flags and adjust nr_running accordingly
808 * @worker: self
809 * @flags: flags to set
810 * @wakeup: wakeup an idle worker if necessary
811 *
812 * Set @flags in @worker->flags and adjust nr_running accordingly. If
813 * nr_running becomes zero and @wakeup is %true, an idle worker is
814 * woken up.
815 *
816 * CONTEXT:
817 * spin_lock_irq(pool->lock)
818 */
819 static inline void worker_set_flags(struct worker *worker, unsigned int flags,
820 bool wakeup)
821 {
822 struct worker_pool *pool = worker->pool;
823
824 WARN_ON_ONCE(worker->task != current);
825
826 /*
827 * If transitioning into NOT_RUNNING, adjust nr_running and
828 * wake up an idle worker as necessary if requested by
829 * @wakeup.
830 */
831 if ((flags & WORKER_NOT_RUNNING) &&
832 !(worker->flags & WORKER_NOT_RUNNING)) {
833 if (wakeup) {
834 if (atomic_dec_and_test(&pool->nr_running) &&
835 !list_empty(&pool->worklist))
836 wake_up_worker(pool);
837 } else
838 atomic_dec(&pool->nr_running);
839 }
840
841 worker->flags |= flags;
842 }
843
844 /**
845 * worker_clr_flags - clear worker flags and adjust nr_running accordingly
846 * @worker: self
847 * @flags: flags to clear
848 *
849 * Clear @flags in @worker->flags and adjust nr_running accordingly.
850 *
851 * CONTEXT:
852 * spin_lock_irq(pool->lock)
853 */
854 static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
855 {
856 struct worker_pool *pool = worker->pool;
857 unsigned int oflags = worker->flags;
858
859 WARN_ON_ONCE(worker->task != current);
860
861 worker->flags &= ~flags;
862
863 /*
864 * If transitioning out of NOT_RUNNING, increment nr_running. Note
865 * that the nested NOT_RUNNING is not a noop. NOT_RUNNING is mask
866 * of multiple flags, not a single flag.
867 */
868 if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
869 if (!(worker->flags & WORKER_NOT_RUNNING))
870 atomic_inc(&pool->nr_running);
871 }
872
873 /**
874 * find_worker_executing_work - find worker which is executing a work
875 * @pool: pool of interest
876 * @work: work to find worker for
877 *
878 * Find a worker which is executing @work on @pool by searching
879 * @pool->busy_hash which is keyed by the address of @work. For a worker
880 * to match, its current execution should match the address of @work and
881 * its work function. This is to avoid unwanted dependency between
882 * unrelated work executions through a work item being recycled while still
883 * being executed.
884 *
885 * This is a bit tricky. A work item may be freed once its execution
886 * starts and nothing prevents the freed area from being recycled for
887 * another work item. If the same work item address ends up being reused
888 * before the original execution finishes, workqueue will identify the
889 * recycled work item as currently executing and make it wait until the
890 * current execution finishes, introducing an unwanted dependency.
891 *
892 * This function checks the work item address and work function to avoid
893 * false positives. Note that this isn't complete as one may construct a
894 * work function which can introduce dependency onto itself through a
895 * recycled work item. Well, if somebody wants to shoot oneself in the
896 * foot that badly, there's only so much we can do, and if such deadlock
897 * actually occurs, it should be easy to locate the culprit work function.
898 *
899 * CONTEXT:
900 * spin_lock_irq(pool->lock).
901 *
902 * RETURNS:
903 * Pointer to worker which is executing @work if found, NULL
904 * otherwise.
905 */
906 static struct worker *find_worker_executing_work(struct worker_pool *pool,
907 struct work_struct *work)
908 {
909 struct worker *worker;
910
911 hash_for_each_possible(pool->busy_hash, worker, hentry,
912 (unsigned long)work)
913 if (worker->current_work == work &&
914 worker->current_func == work->func)
915 return worker;
916
917 return NULL;
918 }
919
920 /**
921 * move_linked_works - move linked works to a list
922 * @work: start of series of works to be scheduled
923 * @head: target list to append @work to
924 * @nextp: out paramter for nested worklist walking
925 *
926 * Schedule linked works starting from @work to @head. Work series to
927 * be scheduled starts at @work and includes any consecutive work with
928 * WORK_STRUCT_LINKED set in its predecessor.
929 *
930 * If @nextp is not NULL, it's updated to point to the next work of
931 * the last scheduled work. This allows move_linked_works() to be
932 * nested inside outer list_for_each_entry_safe().
933 *
934 * CONTEXT:
935 * spin_lock_irq(pool->lock).
936 */
937 static void move_linked_works(struct work_struct *work, struct list_head *head,
938 struct work_struct **nextp)
939 {
940 struct work_struct *n;
941
942 /*
943 * Linked worklist will always end before the end of the list,
944 * use NULL for list head.
945 */
946 list_for_each_entry_safe_from(work, n, NULL, entry) {
947 list_move_tail(&work->entry, head);
948 if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
949 break;
950 }
951
952 /*
953 * If we're already inside safe list traversal and have moved
954 * multiple works to the scheduled queue, the next position
955 * needs to be updated.
956 */
957 if (nextp)
958 *nextp = n;
959 }
960
961 /**
962 * get_pwq - get an extra reference on the specified pool_workqueue
963 * @pwq: pool_workqueue to get
964 *
965 * Obtain an extra reference on @pwq. The caller should guarantee that
966 * @pwq has positive refcnt and be holding the matching pool->lock.
967 */
968 static void get_pwq(struct pool_workqueue *pwq)
969 {
970 lockdep_assert_held(&pwq->pool->lock);
971 WARN_ON_ONCE(pwq->refcnt <= 0);
972 pwq->refcnt++;
973 }
974
975 /**
976 * put_pwq - put a pool_workqueue reference
977 * @pwq: pool_workqueue to put
978 *
979 * Drop a reference of @pwq. If its refcnt reaches zero, schedule its
980 * destruction. The caller should be holding the matching pool->lock.
981 */
982 static void put_pwq(struct pool_workqueue *pwq)
983 {
984 lockdep_assert_held(&pwq->pool->lock);
985 if (likely(--pwq->refcnt))
986 return;
987 if (WARN_ON_ONCE(!(pwq->wq->flags & WQ_UNBOUND)))
988 return;
989 /*
990 * @pwq can't be released under pool->lock, bounce to
991 * pwq_unbound_release_workfn(). This never recurses on the same
992 * pool->lock as this path is taken only for unbound workqueues and
993 * the release work item is scheduled on a per-cpu workqueue. To
994 * avoid lockdep warning, unbound pool->locks are given lockdep
995 * subclass of 1 in get_unbound_pool().
996 */
997 schedule_work(&pwq->unbound_release_work);
998 }
999
1000 static void pwq_activate_delayed_work(struct work_struct *work)
1001 {
1002 struct pool_workqueue *pwq = get_work_pwq(work);
1003
1004 trace_workqueue_activate_work(work);
1005 move_linked_works(work, &pwq->pool->worklist, NULL);
1006 __clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
1007 pwq->nr_active++;
1008 }
1009
1010 static void pwq_activate_first_delayed(struct pool_workqueue *pwq)
1011 {
1012 struct work_struct *work = list_first_entry(&pwq->delayed_works,
1013 struct work_struct, entry);
1014
1015 pwq_activate_delayed_work(work);
1016 }
1017
1018 /**
1019 * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
1020 * @pwq: pwq of interest
1021 * @color: color of work which left the queue
1022 *
1023 * A work either has completed or is removed from pending queue,
1024 * decrement nr_in_flight of its pwq and handle workqueue flushing.
1025 *
1026 * CONTEXT:
1027 * spin_lock_irq(pool->lock).
1028 */
1029 static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, int color)
1030 {
1031 /* uncolored work items don't participate in flushing or nr_active */
1032 if (color == WORK_NO_COLOR)
1033 goto out_put;
1034
1035 pwq->nr_in_flight[color]--;
1036
1037 pwq->nr_active--;
1038 if (!list_empty(&pwq->delayed_works)) {
1039 /* one down, submit a delayed one */
1040 if (pwq->nr_active < pwq->max_active)
1041 pwq_activate_first_delayed(pwq);
1042 }
1043
1044 /* is flush in progress and are we at the flushing tip? */
1045 if (likely(pwq->flush_color != color))
1046 goto out_put;
1047
1048 /* are there still in-flight works? */
1049 if (pwq->nr_in_flight[color])
1050 goto out_put;
1051
1052 /* this pwq is done, clear flush_color */
1053 pwq->flush_color = -1;
1054
1055 /*
1056 * If this was the last pwq, wake up the first flusher. It
1057 * will handle the rest.
1058 */
1059 if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush))
1060 complete(&pwq->wq->first_flusher->done);
1061 out_put:
1062 put_pwq(pwq);
1063 }
1064
1065 /**
1066 * try_to_grab_pending - steal work item from worklist and disable irq
1067 * @work: work item to steal
1068 * @is_dwork: @work is a delayed_work
1069 * @flags: place to store irq state
1070 *
1071 * Try to grab PENDING bit of @work. This function can handle @work in any
1072 * stable state - idle, on timer or on worklist. Return values are
1073 *
1074 * 1 if @work was pending and we successfully stole PENDING
1075 * 0 if @work was idle and we claimed PENDING
1076 * -EAGAIN if PENDING couldn't be grabbed at the moment, safe to busy-retry
1077 * -ENOENT if someone else is canceling @work, this state may persist
1078 * for arbitrarily long
1079 *
1080 * On >= 0 return, the caller owns @work's PENDING bit. To avoid getting
1081 * interrupted while holding PENDING and @work off queue, irq must be
1082 * disabled on entry. This, combined with delayed_work->timer being
1083 * irqsafe, ensures that we return -EAGAIN for finite short period of time.
1084 *
1085 * On successful return, >= 0, irq is disabled and the caller is
1086 * responsible for releasing it using local_irq_restore(*@flags).
1087 *
1088 * This function is safe to call from any context including IRQ handler.
1089 */
1090 static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
1091 unsigned long *flags)
1092 {
1093 struct worker_pool *pool;
1094 struct pool_workqueue *pwq;
1095
1096 local_irq_save(*flags);
1097
1098 /* try to steal the timer if it exists */
1099 if (is_dwork) {
1100 struct delayed_work *dwork = to_delayed_work(work);
1101
1102 /*
1103 * dwork->timer is irqsafe. If del_timer() fails, it's
1104 * guaranteed that the timer is not queued anywhere and not
1105 * running on the local CPU.
1106 */
1107 if (likely(del_timer(&dwork->timer)))
1108 return 1;
1109 }
1110
1111 /* try to claim PENDING the normal way */
1112 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
1113 return 0;
1114
1115 /*
1116 * The queueing is in progress, or it is already queued. Try to
1117 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
1118 */
1119 pool = get_work_pool(work);
1120 if (!pool)
1121 goto fail;
1122
1123 spin_lock(&pool->lock);
1124 /*
1125 * work->data is guaranteed to point to pwq only while the work
1126 * item is queued on pwq->wq, and both updating work->data to point
1127 * to pwq on queueing and to pool on dequeueing are done under
1128 * pwq->pool->lock. This in turn guarantees that, if work->data
1129 * points to pwq which is associated with a locked pool, the work
1130 * item is currently queued on that pool.
1131 */
1132 pwq = get_work_pwq(work);
1133 if (pwq && pwq->pool == pool) {
1134 debug_work_deactivate(work);
1135
1136 /*
1137 * A delayed work item cannot be grabbed directly because
1138 * it might have linked NO_COLOR work items which, if left
1139 * on the delayed_list, will confuse pwq->nr_active
1140 * management later on and cause stall. Make sure the work
1141 * item is activated before grabbing.
1142 */
1143 if (*work_data_bits(work) & WORK_STRUCT_DELAYED)
1144 pwq_activate_delayed_work(work);
1145
1146 list_del_init(&work->entry);
1147 pwq_dec_nr_in_flight(get_work_pwq(work), get_work_color(work));
1148
1149 /* work->data points to pwq iff queued, point to pool */
1150 set_work_pool_and_keep_pending(work, pool->id);
1151
1152 spin_unlock(&pool->lock);
1153 return 1;
1154 }
1155 spin_unlock(&pool->lock);
1156 fail:
1157 local_irq_restore(*flags);
1158 if (work_is_canceling(work))
1159 return -ENOENT;
1160 cpu_relax();
1161 return -EAGAIN;
1162 }
1163
1164 /**
1165 * insert_work - insert a work into a pool
1166 * @pwq: pwq @work belongs to
1167 * @work: work to insert
1168 * @head: insertion point
1169 * @extra_flags: extra WORK_STRUCT_* flags to set
1170 *
1171 * Insert @work which belongs to @pwq after @head. @extra_flags is or'd to
1172 * work_struct flags.
1173 *
1174 * CONTEXT:
1175 * spin_lock_irq(pool->lock).
1176 */
1177 static void insert_work(struct pool_workqueue *pwq, struct work_struct *work,
1178 struct list_head *head, unsigned int extra_flags)
1179 {
1180 struct worker_pool *pool = pwq->pool;
1181
1182 /* we own @work, set data and link */
1183 set_work_pwq(work, pwq, extra_flags);
1184 list_add_tail(&work->entry, head);
1185 get_pwq(pwq);
1186
1187 /*
1188 * Ensure either wq_worker_sleeping() sees the above
1189 * list_add_tail() or we see zero nr_running to avoid workers lying
1190 * around lazily while there are works to be processed.
1191 */
1192 smp_mb();
1193
1194 if (__need_more_worker(pool))
1195 wake_up_worker(pool);
1196 }
1197
1198 /*
1199 * Test whether @work is being queued from another work executing on the
1200 * same workqueue.
1201 */
1202 static bool is_chained_work(struct workqueue_struct *wq)
1203 {
1204 struct worker *worker;
1205
1206 worker = current_wq_worker();
1207 /*
1208 * Return %true iff I'm a worker execuing a work item on @wq. If
1209 * I'm @worker, it's safe to dereference it without locking.
1210 */
1211 return worker && worker->current_pwq->wq == wq;
1212 }
1213
1214 static void __queue_work(int cpu, struct workqueue_struct *wq,
1215 struct work_struct *work)
1216 {
1217 struct pool_workqueue *pwq;
1218 struct worker_pool *last_pool;
1219 struct list_head *worklist;
1220 unsigned int work_flags;
1221 unsigned int req_cpu = cpu;
1222
1223 /*
1224 * While a work item is PENDING && off queue, a task trying to
1225 * steal the PENDING will busy-loop waiting for it to either get
1226 * queued or lose PENDING. Grabbing PENDING and queueing should
1227 * happen with IRQ disabled.
1228 */
1229 WARN_ON_ONCE(!irqs_disabled());
1230
1231 debug_work_activate(work);
1232
1233 /* if dying, only works from the same workqueue are allowed */
1234 if (unlikely(wq->flags & __WQ_DRAINING) &&
1235 WARN_ON_ONCE(!is_chained_work(wq)))
1236 return;
1237 retry:
1238 /* pwq which will be used unless @work is executing elsewhere */
1239 if (!(wq->flags & WQ_UNBOUND)) {
1240 if (cpu == WORK_CPU_UNBOUND)
1241 cpu = raw_smp_processor_id();
1242 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
1243 } else {
1244 pwq = first_pwq(wq);
1245 }
1246
1247 /*
1248 * If @work was previously on a different pool, it might still be
1249 * running there, in which case the work needs to be queued on that
1250 * pool to guarantee non-reentrancy.
1251 */
1252 last_pool = get_work_pool(work);
1253 if (last_pool && last_pool != pwq->pool) {
1254 struct worker *worker;
1255
1256 spin_lock(&last_pool->lock);
1257
1258 worker = find_worker_executing_work(last_pool, work);
1259
1260 if (worker && worker->current_pwq->wq == wq) {
1261 pwq = worker->current_pwq;
1262 } else {
1263 /* meh... not running there, queue here */
1264 spin_unlock(&last_pool->lock);
1265 spin_lock(&pwq->pool->lock);
1266 }
1267 } else {
1268 spin_lock(&pwq->pool->lock);
1269 }
1270
1271 /*
1272 * pwq is determined and locked. For unbound pools, we could have
1273 * raced with pwq release and it could already be dead. If its
1274 * refcnt is zero, repeat pwq selection. Note that pwqs never die
1275 * without another pwq replacing it as the first pwq or while a
1276 * work item is executing on it, so the retying is guaranteed to
1277 * make forward-progress.
1278 */
1279 if (unlikely(!pwq->refcnt)) {
1280 if (wq->flags & WQ_UNBOUND) {
1281 spin_unlock(&pwq->pool->lock);
1282 cpu_relax();
1283 goto retry;
1284 }
1285 /* oops */
1286 WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt",
1287 wq->name, cpu);
1288 }
1289
1290 /* pwq determined, queue */
1291 trace_workqueue_queue_work(req_cpu, pwq, work);
1292
1293 if (WARN_ON(!list_empty(&work->entry))) {
1294 spin_unlock(&pwq->pool->lock);
1295 return;
1296 }
1297
1298 pwq->nr_in_flight[pwq->work_color]++;
1299 work_flags = work_color_to_flags(pwq->work_color);
1300
1301 if (likely(pwq->nr_active < pwq->max_active)) {
1302 trace_workqueue_activate_work(work);
1303 pwq->nr_active++;
1304 worklist = &pwq->pool->worklist;
1305 } else {
1306 work_flags |= WORK_STRUCT_DELAYED;
1307 worklist = &pwq->delayed_works;
1308 }
1309
1310 insert_work(pwq, work, worklist, work_flags);
1311
1312 spin_unlock(&pwq->pool->lock);
1313 }
1314
1315 /**
1316 * queue_work_on - queue work on specific cpu
1317 * @cpu: CPU number to execute work on
1318 * @wq: workqueue to use
1319 * @work: work to queue
1320 *
1321 * Returns %false if @work was already on a queue, %true otherwise.
1322 *
1323 * We queue the work to a specific CPU, the caller must ensure it
1324 * can't go away.
1325 */
1326 bool queue_work_on(int cpu, struct workqueue_struct *wq,
1327 struct work_struct *work)
1328 {
1329 bool ret = false;
1330 unsigned long flags;
1331
1332 local_irq_save(flags);
1333
1334 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1335 __queue_work(cpu, wq, work);
1336 ret = true;
1337 }
1338
1339 local_irq_restore(flags);
1340 return ret;
1341 }
1342 EXPORT_SYMBOL_GPL(queue_work_on);
1343
1344 void delayed_work_timer_fn(unsigned long __data)
1345 {
1346 struct delayed_work *dwork = (struct delayed_work *)__data;
1347
1348 /* should have been called from irqsafe timer with irq already off */
1349 __queue_work(dwork->cpu, dwork->wq, &dwork->work);
1350 }
1351 EXPORT_SYMBOL(delayed_work_timer_fn);
1352
1353 static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
1354 struct delayed_work *dwork, unsigned long delay)
1355 {
1356 struct timer_list *timer = &dwork->timer;
1357 struct work_struct *work = &dwork->work;
1358
1359 WARN_ON_ONCE(timer->function != delayed_work_timer_fn ||
1360 timer->data != (unsigned long)dwork);
1361 WARN_ON_ONCE(timer_pending(timer));
1362 WARN_ON_ONCE(!list_empty(&work->entry));
1363
1364 /*
1365 * If @delay is 0, queue @dwork->work immediately. This is for
1366 * both optimization and correctness. The earliest @timer can
1367 * expire is on the closest next tick and delayed_work users depend
1368 * on that there's no such delay when @delay is 0.
1369 */
1370 if (!delay) {
1371 __queue_work(cpu, wq, &dwork->work);
1372 return;
1373 }
1374
1375 timer_stats_timer_set_start_info(&dwork->timer);
1376
1377 dwork->wq = wq;
1378 dwork->cpu = cpu;
1379 timer->expires = jiffies + delay;
1380
1381 if (unlikely(cpu != WORK_CPU_UNBOUND))
1382 add_timer_on(timer, cpu);
1383 else
1384 add_timer(timer);
1385 }
1386
1387 /**
1388 * queue_delayed_work_on - queue work on specific CPU after delay
1389 * @cpu: CPU number to execute work on
1390 * @wq: workqueue to use
1391 * @dwork: work to queue
1392 * @delay: number of jiffies to wait before queueing
1393 *
1394 * Returns %false if @work was already on a queue, %true otherwise. If
1395 * @delay is zero and @dwork is idle, it will be scheduled for immediate
1396 * execution.
1397 */
1398 bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
1399 struct delayed_work *dwork, unsigned long delay)
1400 {
1401 struct work_struct *work = &dwork->work;
1402 bool ret = false;
1403 unsigned long flags;
1404
1405 /* read the comment in __queue_work() */
1406 local_irq_save(flags);
1407
1408 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1409 __queue_delayed_work(cpu, wq, dwork, delay);
1410 ret = true;
1411 }
1412
1413 local_irq_restore(flags);
1414 return ret;
1415 }
1416 EXPORT_SYMBOL_GPL(queue_delayed_work_on);
1417
1418 /**
1419 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
1420 * @cpu: CPU number to execute work on
1421 * @wq: workqueue to use
1422 * @dwork: work to queue
1423 * @delay: number of jiffies to wait before queueing
1424 *
1425 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
1426 * modify @dwork's timer so that it expires after @delay. If @delay is
1427 * zero, @work is guaranteed to be scheduled immediately regardless of its
1428 * current state.
1429 *
1430 * Returns %false if @dwork was idle and queued, %true if @dwork was
1431 * pending and its timer was modified.
1432 *
1433 * This function is safe to call from any context including IRQ handler.
1434 * See try_to_grab_pending() for details.
1435 */
1436 bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
1437 struct delayed_work *dwork, unsigned long delay)
1438 {
1439 unsigned long flags;
1440 int ret;
1441
1442 do {
1443 ret = try_to_grab_pending(&dwork->work, true, &flags);
1444 } while (unlikely(ret == -EAGAIN));
1445
1446 if (likely(ret >= 0)) {
1447 __queue_delayed_work(cpu, wq, dwork, delay);
1448 local_irq_restore(flags);
1449 }
1450
1451 /* -ENOENT from try_to_grab_pending() becomes %true */
1452 return ret;
1453 }
1454 EXPORT_SYMBOL_GPL(mod_delayed_work_on);
1455
1456 /**
1457 * worker_enter_idle - enter idle state
1458 * @worker: worker which is entering idle state
1459 *
1460 * @worker is entering idle state. Update stats and idle timer if
1461 * necessary.
1462 *
1463 * LOCKING:
1464 * spin_lock_irq(pool->lock).
1465 */
1466 static void worker_enter_idle(struct worker *worker)
1467 {
1468 struct worker_pool *pool = worker->pool;
1469
1470 if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) ||
1471 WARN_ON_ONCE(!list_empty(&worker->entry) &&
1472 (worker->hentry.next || worker->hentry.pprev)))
1473 return;
1474
1475 /* can't use worker_set_flags(), also called from start_worker() */
1476 worker->flags |= WORKER_IDLE;
1477 pool->nr_idle++;
1478 worker->last_active = jiffies;
1479
1480 /* idle_list is LIFO */
1481 list_add(&worker->entry, &pool->idle_list);
1482
1483 if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
1484 mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
1485
1486 /*
1487 * Sanity check nr_running. Because wq_unbind_fn() releases
1488 * pool->lock between setting %WORKER_UNBOUND and zapping
1489 * nr_running, the warning may trigger spuriously. Check iff
1490 * unbind is not in progress.
1491 */
1492 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
1493 pool->nr_workers == pool->nr_idle &&
1494 atomic_read(&pool->nr_running));
1495 }
1496
1497 /**
1498 * worker_leave_idle - leave idle state
1499 * @worker: worker which is leaving idle state
1500 *
1501 * @worker is leaving idle state. Update stats.
1502 *
1503 * LOCKING:
1504 * spin_lock_irq(pool->lock).
1505 */
1506 static void worker_leave_idle(struct worker *worker)
1507 {
1508 struct worker_pool *pool = worker->pool;
1509
1510 if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE)))
1511 return;
1512 worker_clr_flags(worker, WORKER_IDLE);
1513 pool->nr_idle--;
1514 list_del_init(&worker->entry);
1515 }
1516
1517 /**
1518 * worker_maybe_bind_and_lock - try to bind %current to worker_pool and lock it
1519 * @pool: target worker_pool
1520 *
1521 * Bind %current to the cpu of @pool if it is associated and lock @pool.
1522 *
1523 * Works which are scheduled while the cpu is online must at least be
1524 * scheduled to a worker which is bound to the cpu so that if they are
1525 * flushed from cpu callbacks while cpu is going down, they are
1526 * guaranteed to execute on the cpu.
1527 *
1528 * This function is to be used by unbound workers and rescuers to bind
1529 * themselves to the target cpu and may race with cpu going down or
1530 * coming online. kthread_bind() can't be used because it may put the
1531 * worker to already dead cpu and set_cpus_allowed_ptr() can't be used
1532 * verbatim as it's best effort and blocking and pool may be
1533 * [dis]associated in the meantime.
1534 *
1535 * This function tries set_cpus_allowed() and locks pool and verifies the
1536 * binding against %POOL_DISASSOCIATED which is set during
1537 * %CPU_DOWN_PREPARE and cleared during %CPU_ONLINE, so if the worker
1538 * enters idle state or fetches works without dropping lock, it can
1539 * guarantee the scheduling requirement described in the first paragraph.
1540 *
1541 * CONTEXT:
1542 * Might sleep. Called without any lock but returns with pool->lock
1543 * held.
1544 *
1545 * RETURNS:
1546 * %true if the associated pool is online (@worker is successfully
1547 * bound), %false if offline.
1548 */
1549 static bool worker_maybe_bind_and_lock(struct worker_pool *pool)
1550 __acquires(&pool->lock)
1551 {
1552 while (true) {
1553 /*
1554 * The following call may fail, succeed or succeed
1555 * without actually migrating the task to the cpu if
1556 * it races with cpu hotunplug operation. Verify
1557 * against POOL_DISASSOCIATED.
1558 */
1559 if (!(pool->flags & POOL_DISASSOCIATED))
1560 set_cpus_allowed_ptr(current, pool->attrs->cpumask);
1561
1562 spin_lock_irq(&pool->lock);
1563 if (pool->flags & POOL_DISASSOCIATED)
1564 return false;
1565 if (task_cpu(current) == pool->cpu &&
1566 cpumask_equal(&current->cpus_allowed, pool->attrs->cpumask))
1567 return true;
1568 spin_unlock_irq(&pool->lock);
1569
1570 /*
1571 * We've raced with CPU hot[un]plug. Give it a breather
1572 * and retry migration. cond_resched() is required here;
1573 * otherwise, we might deadlock against cpu_stop trying to
1574 * bring down the CPU on non-preemptive kernel.
1575 */
1576 cpu_relax();
1577 cond_resched();
1578 }
1579 }
1580
1581 /*
1582 * Rebind an idle @worker to its CPU. worker_thread() will test
1583 * list_empty(@worker->entry) before leaving idle and call this function.
1584 */
1585 static void idle_worker_rebind(struct worker *worker)
1586 {
1587 /* CPU may go down again inbetween, clear UNBOUND only on success */
1588 if (worker_maybe_bind_and_lock(worker->pool))
1589 worker_clr_flags(worker, WORKER_UNBOUND);
1590
1591 /* rebind complete, become available again */
1592 list_add(&worker->entry, &worker->pool->idle_list);
1593 spin_unlock_irq(&worker->pool->lock);
1594 }
1595
1596 /*
1597 * Function for @worker->rebind.work used to rebind unbound busy workers to
1598 * the associated cpu which is coming back online. This is scheduled by
1599 * cpu up but can race with other cpu hotplug operations and may be
1600 * executed twice without intervening cpu down.
1601 */
1602 static void busy_worker_rebind_fn(struct work_struct *work)
1603 {
1604 struct worker *worker = container_of(work, struct worker, rebind_work);
1605
1606 if (worker_maybe_bind_and_lock(worker->pool))
1607 worker_clr_flags(worker, WORKER_UNBOUND);
1608
1609 spin_unlock_irq(&worker->pool->lock);
1610 }
1611
1612 /**
1613 * rebind_workers - rebind all workers of a pool to the associated CPU
1614 * @pool: pool of interest
1615 *
1616 * @pool->cpu is coming online. Rebind all workers to the CPU. Rebinding
1617 * is different for idle and busy ones.
1618 *
1619 * Idle ones will be removed from the idle_list and woken up. They will
1620 * add themselves back after completing rebind. This ensures that the
1621 * idle_list doesn't contain any unbound workers when re-bound busy workers
1622 * try to perform local wake-ups for concurrency management.
1623 *
1624 * Busy workers can rebind after they finish their current work items.
1625 * Queueing the rebind work item at the head of the scheduled list is
1626 * enough. Note that nr_running will be properly bumped as busy workers
1627 * rebind.
1628 *
1629 * On return, all non-manager workers are scheduled for rebind - see
1630 * manage_workers() for the manager special case. Any idle worker
1631 * including the manager will not appear on @idle_list until rebind is
1632 * complete, making local wake-ups safe.
1633 */
1634 static void rebind_workers(struct worker_pool *pool)
1635 {
1636 struct worker *worker, *n;
1637 int i;
1638
1639 lockdep_assert_held(&pool->manager_mutex);
1640 lockdep_assert_held(&pool->lock);
1641
1642 /* dequeue and kick idle ones */
1643 list_for_each_entry_safe(worker, n, &pool->idle_list, entry) {
1644 /*
1645 * idle workers should be off @pool->idle_list until rebind
1646 * is complete to avoid receiving premature local wake-ups.
1647 */
1648 list_del_init(&worker->entry);
1649
1650 /*
1651 * worker_thread() will see the above dequeuing and call
1652 * idle_worker_rebind().
1653 */
1654 wake_up_process(worker->task);
1655 }
1656
1657 /* rebind busy workers */
1658 for_each_busy_worker(worker, i, pool) {
1659 struct work_struct *rebind_work = &worker->rebind_work;
1660 struct workqueue_struct *wq;
1661
1662 if (test_and_set_bit(WORK_STRUCT_PENDING_BIT,
1663 work_data_bits(rebind_work)))
1664 continue;
1665
1666 debug_work_activate(rebind_work);
1667
1668 /*
1669 * wq doesn't really matter but let's keep @worker->pool
1670 * and @pwq->pool consistent for sanity.
1671 */
1672 if (worker->pool->attrs->nice < 0)
1673 wq = system_highpri_wq;
1674 else
1675 wq = system_wq;
1676
1677 insert_work(per_cpu_ptr(wq->cpu_pwqs, pool->cpu), rebind_work,
1678 worker->scheduled.next,
1679 work_color_to_flags(WORK_NO_COLOR));
1680 }
1681 }
1682
1683 static struct worker *alloc_worker(void)
1684 {
1685 struct worker *worker;
1686
1687 worker = kzalloc(sizeof(*worker), GFP_KERNEL);
1688 if (worker) {
1689 INIT_LIST_HEAD(&worker->entry);
1690 INIT_LIST_HEAD(&worker->scheduled);
1691 INIT_WORK(&worker->rebind_work, busy_worker_rebind_fn);
1692 /* on creation a worker is in !idle && prep state */
1693 worker->flags = WORKER_PREP;
1694 }
1695 return worker;
1696 }
1697
1698 /**
1699 * create_worker - create a new workqueue worker
1700 * @pool: pool the new worker will belong to
1701 *
1702 * Create a new worker which is bound to @pool. The returned worker
1703 * can be started by calling start_worker() or destroyed using
1704 * destroy_worker().
1705 *
1706 * CONTEXT:
1707 * Might sleep. Does GFP_KERNEL allocations.
1708 *
1709 * RETURNS:
1710 * Pointer to the newly created worker.
1711 */
1712 static struct worker *create_worker(struct worker_pool *pool)
1713 {
1714 const char *pri = pool->attrs->nice < 0 ? "H" : "";
1715 struct worker *worker = NULL;
1716 int id = -1;
1717
1718 lockdep_assert_held(&pool->manager_mutex);
1719
1720 spin_lock_irq(&pool->lock);
1721 while (ida_get_new(&pool->worker_ida, &id)) {
1722 spin_unlock_irq(&pool->lock);
1723 if (!ida_pre_get(&pool->worker_ida, GFP_KERNEL))
1724 goto fail;
1725 spin_lock_irq(&pool->lock);
1726 }
1727 spin_unlock_irq(&pool->lock);
1728
1729 worker = alloc_worker();
1730 if (!worker)
1731 goto fail;
1732
1733 worker->pool = pool;
1734 worker->id = id;
1735
1736 if (pool->cpu >= 0)
1737 worker->task = kthread_create_on_node(worker_thread,
1738 worker, cpu_to_node(pool->cpu),
1739 "kworker/%d:%d%s", pool->cpu, id, pri);
1740 else
1741 worker->task = kthread_create(worker_thread, worker,
1742 "kworker/u%d:%d%s",
1743 pool->id, id, pri);
1744 if (IS_ERR(worker->task))
1745 goto fail;
1746
1747 /*
1748 * set_cpus_allowed_ptr() will fail if the cpumask doesn't have any
1749 * online CPUs. It'll be re-applied when any of the CPUs come up.
1750 */
1751 set_user_nice(worker->task, pool->attrs->nice);
1752 set_cpus_allowed_ptr(worker->task, pool->attrs->cpumask);
1753
1754 /*
1755 * %PF_THREAD_BOUND is used to prevent userland from meddling with
1756 * cpumask of workqueue workers. This is an abuse. We need
1757 * %PF_NO_SETAFFINITY.
1758 */
1759 worker->task->flags |= PF_THREAD_BOUND;
1760
1761 /*
1762 * The caller is responsible for ensuring %POOL_DISASSOCIATED
1763 * remains stable across this function. See the comments above the
1764 * flag definition for details.
1765 */
1766 if (pool->flags & POOL_DISASSOCIATED)
1767 worker->flags |= WORKER_UNBOUND;
1768
1769 return worker;
1770 fail:
1771 if (id >= 0) {
1772 spin_lock_irq(&pool->lock);
1773 ida_remove(&pool->worker_ida, id);
1774 spin_unlock_irq(&pool->lock);
1775 }
1776 kfree(worker);
1777 return NULL;
1778 }
1779
1780 /**
1781 * start_worker - start a newly created worker
1782 * @worker: worker to start
1783 *
1784 * Make the pool aware of @worker and start it.
1785 *
1786 * CONTEXT:
1787 * spin_lock_irq(pool->lock).
1788 */
1789 static void start_worker(struct worker *worker)
1790 {
1791 worker->flags |= WORKER_STARTED;
1792 worker->pool->nr_workers++;
1793 worker_enter_idle(worker);
1794 wake_up_process(worker->task);
1795 }
1796
1797 /**
1798 * create_and_start_worker - create and start a worker for a pool
1799 * @pool: the target pool
1800 *
1801 * Grab the managership of @pool and create and start a new worker for it.
1802 */
1803 static int create_and_start_worker(struct worker_pool *pool)
1804 {
1805 struct worker *worker;
1806
1807 mutex_lock(&pool->manager_mutex);
1808
1809 worker = create_worker(pool);
1810 if (worker) {
1811 spin_lock_irq(&pool->lock);
1812 start_worker(worker);
1813 spin_unlock_irq(&pool->lock);
1814 }
1815
1816 mutex_unlock(&pool->manager_mutex);
1817
1818 return worker ? 0 : -ENOMEM;
1819 }
1820
1821 /**
1822 * destroy_worker - destroy a workqueue worker
1823 * @worker: worker to be destroyed
1824 *
1825 * Destroy @worker and adjust @pool stats accordingly.
1826 *
1827 * CONTEXT:
1828 * spin_lock_irq(pool->lock) which is released and regrabbed.
1829 */
1830 static void destroy_worker(struct worker *worker)
1831 {
1832 struct worker_pool *pool = worker->pool;
1833 int id = worker->id;
1834
1835 lockdep_assert_held(&pool->manager_mutex);
1836 lockdep_assert_held(&pool->lock);
1837
1838 /* sanity check frenzy */
1839 if (WARN_ON(worker->current_work) ||
1840 WARN_ON(!list_empty(&worker->scheduled)))
1841 return;
1842
1843 if (worker->flags & WORKER_STARTED)
1844 pool->nr_workers--;
1845 if (worker->flags & WORKER_IDLE)
1846 pool->nr_idle--;
1847
1848 list_del_init(&worker->entry);
1849 worker->flags |= WORKER_DIE;
1850
1851 spin_unlock_irq(&pool->lock);
1852
1853 kthread_stop(worker->task);
1854 kfree(worker);
1855
1856 spin_lock_irq(&pool->lock);
1857 ida_remove(&pool->worker_ida, id);
1858 }
1859
1860 static void idle_worker_timeout(unsigned long __pool)
1861 {
1862 struct worker_pool *pool = (void *)__pool;
1863
1864 spin_lock_irq(&pool->lock);
1865
1866 if (too_many_workers(pool)) {
1867 struct worker *worker;
1868 unsigned long expires;
1869
1870 /* idle_list is kept in LIFO order, check the last one */
1871 worker = list_entry(pool->idle_list.prev, struct worker, entry);
1872 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
1873
1874 if (time_before(jiffies, expires))
1875 mod_timer(&pool->idle_timer, expires);
1876 else {
1877 /* it's been idle for too long, wake up manager */
1878 pool->flags |= POOL_MANAGE_WORKERS;
1879 wake_up_worker(pool);
1880 }
1881 }
1882
1883 spin_unlock_irq(&pool->lock);
1884 }
1885
1886 static void send_mayday(struct work_struct *work)
1887 {
1888 struct pool_workqueue *pwq = get_work_pwq(work);
1889 struct workqueue_struct *wq = pwq->wq;
1890
1891 lockdep_assert_held(&workqueue_lock);
1892
1893 if (!wq->rescuer)
1894 return;
1895
1896 /* mayday mayday mayday */
1897 if (list_empty(&pwq->mayday_node)) {
1898 list_add_tail(&pwq->mayday_node, &wq->maydays);
1899 wake_up_process(wq->rescuer->task);
1900 }
1901 }
1902
1903 static void pool_mayday_timeout(unsigned long __pool)
1904 {
1905 struct worker_pool *pool = (void *)__pool;
1906 struct work_struct *work;
1907
1908 spin_lock_irq(&workqueue_lock); /* for wq->maydays */
1909 spin_lock(&pool->lock);
1910
1911 if (need_to_create_worker(pool)) {
1912 /*
1913 * We've been trying to create a new worker but
1914 * haven't been successful. We might be hitting an
1915 * allocation deadlock. Send distress signals to
1916 * rescuers.
1917 */
1918 list_for_each_entry(work, &pool->worklist, entry)
1919 send_mayday(work);
1920 }
1921
1922 spin_unlock(&pool->lock);
1923 spin_unlock_irq(&workqueue_lock);
1924
1925 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
1926 }
1927
1928 /**
1929 * maybe_create_worker - create a new worker if necessary
1930 * @pool: pool to create a new worker for
1931 *
1932 * Create a new worker for @pool if necessary. @pool is guaranteed to
1933 * have at least one idle worker on return from this function. If
1934 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
1935 * sent to all rescuers with works scheduled on @pool to resolve
1936 * possible allocation deadlock.
1937 *
1938 * On return, need_to_create_worker() is guaranteed to be %false and
1939 * may_start_working() %true.
1940 *
1941 * LOCKING:
1942 * spin_lock_irq(pool->lock) which may be released and regrabbed
1943 * multiple times. Does GFP_KERNEL allocations. Called only from
1944 * manager.
1945 *
1946 * RETURNS:
1947 * %false if no action was taken and pool->lock stayed locked, %true
1948 * otherwise.
1949 */
1950 static bool maybe_create_worker(struct worker_pool *pool)
1951 __releases(&pool->lock)
1952 __acquires(&pool->lock)
1953 {
1954 if (!need_to_create_worker(pool))
1955 return false;
1956 restart:
1957 spin_unlock_irq(&pool->lock);
1958
1959 /* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
1960 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
1961
1962 while (true) {
1963 struct worker *worker;
1964
1965 worker = create_worker(pool);
1966 if (worker) {
1967 del_timer_sync(&pool->mayday_timer);
1968 spin_lock_irq(&pool->lock);
1969 start_worker(worker);
1970 if (WARN_ON_ONCE(need_to_create_worker(pool)))
1971 goto restart;
1972 return true;
1973 }
1974
1975 if (!need_to_create_worker(pool))
1976 break;
1977
1978 __set_current_state(TASK_INTERRUPTIBLE);
1979 schedule_timeout(CREATE_COOLDOWN);
1980
1981 if (!need_to_create_worker(pool))
1982 break;
1983 }
1984
1985 del_timer_sync(&pool->mayday_timer);
1986 spin_lock_irq(&pool->lock);
1987 if (need_to_create_worker(pool))
1988 goto restart;
1989 return true;
1990 }
1991
1992 /**
1993 * maybe_destroy_worker - destroy workers which have been idle for a while
1994 * @pool: pool to destroy workers for
1995 *
1996 * Destroy @pool workers which have been idle for longer than
1997 * IDLE_WORKER_TIMEOUT.
1998 *
1999 * LOCKING:
2000 * spin_lock_irq(pool->lock) which may be released and regrabbed
2001 * multiple times. Called only from manager.
2002 *
2003 * RETURNS:
2004 * %false if no action was taken and pool->lock stayed locked, %true
2005 * otherwise.
2006 */
2007 static bool maybe_destroy_workers(struct worker_pool *pool)
2008 {
2009 bool ret = false;
2010
2011 while (too_many_workers(pool)) {
2012 struct worker *worker;
2013 unsigned long expires;
2014
2015 worker = list_entry(pool->idle_list.prev, struct worker, entry);
2016 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
2017
2018 if (time_before(jiffies, expires)) {
2019 mod_timer(&pool->idle_timer, expires);
2020 break;
2021 }
2022
2023 destroy_worker(worker);
2024 ret = true;
2025 }
2026
2027 return ret;
2028 }
2029
2030 /**
2031 * manage_workers - manage worker pool
2032 * @worker: self
2033 *
2034 * Assume the manager role and manage the worker pool @worker belongs
2035 * to. At any given time, there can be only zero or one manager per
2036 * pool. The exclusion is handled automatically by this function.
2037 *
2038 * The caller can safely start processing works on false return. On
2039 * true return, it's guaranteed that need_to_create_worker() is false
2040 * and may_start_working() is true.
2041 *
2042 * CONTEXT:
2043 * spin_lock_irq(pool->lock) which may be released and regrabbed
2044 * multiple times. Does GFP_KERNEL allocations.
2045 *
2046 * RETURNS:
2047 * spin_lock_irq(pool->lock) which may be released and regrabbed
2048 * multiple times. Does GFP_KERNEL allocations.
2049 */
2050 static bool manage_workers(struct worker *worker)
2051 {
2052 struct worker_pool *pool = worker->pool;
2053 bool ret = false;
2054
2055 /*
2056 * Managership is governed by two mutexes - manager_arb and
2057 * manager_mutex. manager_arb handles arbitration of manager role.
2058 * Anyone who successfully grabs manager_arb wins the arbitration
2059 * and becomes the manager. mutex_trylock() on pool->manager_arb
2060 * failure while holding pool->lock reliably indicates that someone
2061 * else is managing the pool and the worker which failed trylock
2062 * can proceed to executing work items. This means that anyone
2063 * grabbing manager_arb is responsible for actually performing
2064 * manager duties. If manager_arb is grabbed and released without
2065 * actual management, the pool may stall indefinitely.
2066 *
2067 * manager_mutex is used for exclusion of actual management
2068 * operations. The holder of manager_mutex can be sure that none
2069 * of management operations, including creation and destruction of
2070 * workers, won't take place until the mutex is released. Because
2071 * manager_mutex doesn't interfere with manager role arbitration,
2072 * it is guaranteed that the pool's management, while may be
2073 * delayed, won't be disturbed by someone else grabbing
2074 * manager_mutex.
2075 */
2076 if (!mutex_trylock(&pool->manager_arb))
2077 return ret;
2078
2079 /*
2080 * With manager arbitration won, manager_mutex would be free in
2081 * most cases. trylock first without dropping @pool->lock.
2082 */
2083 if (unlikely(!mutex_trylock(&pool->manager_mutex))) {
2084 spin_unlock_irq(&pool->lock);
2085 mutex_lock(&pool->manager_mutex);
2086 /*
2087 * CPU hotplug could have happened while we were waiting
2088 * for assoc_mutex. Hotplug itself can't handle us
2089 * because manager isn't either on idle or busy list, and
2090 * @pool's state and ours could have deviated.
2091 *
2092 * As hotplug is now excluded via manager_mutex, we can
2093 * simply try to bind. It will succeed or fail depending
2094 * on @pool's current state. Try it and adjust
2095 * %WORKER_UNBOUND accordingly.
2096 */
2097 if (worker_maybe_bind_and_lock(pool))
2098 worker->flags &= ~WORKER_UNBOUND;
2099 else
2100 worker->flags |= WORKER_UNBOUND;
2101
2102 ret = true;
2103 }
2104
2105 pool->flags &= ~POOL_MANAGE_WORKERS;
2106
2107 /*
2108 * Destroy and then create so that may_start_working() is true
2109 * on return.
2110 */
2111 ret |= maybe_destroy_workers(pool);
2112 ret |= maybe_create_worker(pool);
2113
2114 mutex_unlock(&pool->manager_mutex);
2115 mutex_unlock(&pool->manager_arb);
2116 return ret;
2117 }
2118
2119 /**
2120 * process_one_work - process single work
2121 * @worker: self
2122 * @work: work to process
2123 *
2124 * Process @work. This function contains all the logics necessary to
2125 * process a single work including synchronization against and
2126 * interaction with other workers on the same cpu, queueing and
2127 * flushing. As long as context requirement is met, any worker can
2128 * call this function to process a work.
2129 *
2130 * CONTEXT:
2131 * spin_lock_irq(pool->lock) which is released and regrabbed.
2132 */
2133 static void process_one_work(struct worker *worker, struct work_struct *work)
2134 __releases(&pool->lock)
2135 __acquires(&pool->lock)
2136 {
2137 struct pool_workqueue *pwq = get_work_pwq(work);
2138 struct worker_pool *pool = worker->pool;
2139 bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE;
2140 int work_color;
2141 struct worker *collision;
2142 #ifdef CONFIG_LOCKDEP
2143 /*
2144 * It is permissible to free the struct work_struct from
2145 * inside the function that is called from it, this we need to
2146 * take into account for lockdep too. To avoid bogus "held
2147 * lock freed" warnings as well as problems when looking into
2148 * work->lockdep_map, make a copy and use that here.
2149 */
2150 struct lockdep_map lockdep_map;
2151
2152 lockdep_copy_map(&lockdep_map, &work->lockdep_map);
2153 #endif
2154 /*
2155 * Ensure we're on the correct CPU. DISASSOCIATED test is
2156 * necessary to avoid spurious warnings from rescuers servicing the
2157 * unbound or a disassociated pool.
2158 */
2159 WARN_ON_ONCE(!(worker->flags & WORKER_UNBOUND) &&
2160 !(pool->flags & POOL_DISASSOCIATED) &&
2161 raw_smp_processor_id() != pool->cpu);
2162
2163 /*
2164 * A single work shouldn't be executed concurrently by
2165 * multiple workers on a single cpu. Check whether anyone is
2166 * already processing the work. If so, defer the work to the
2167 * currently executing one.
2168 */
2169 collision = find_worker_executing_work(pool, work);
2170 if (unlikely(collision)) {
2171 move_linked_works(work, &collision->scheduled, NULL);
2172 return;
2173 }
2174
2175 /* claim and dequeue */
2176 debug_work_deactivate(work);
2177 hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
2178 worker->current_work = work;
2179 worker->current_func = work->func;
2180 worker->current_pwq = pwq;
2181 work_color = get_work_color(work);
2182
2183 list_del_init(&work->entry);
2184
2185 /*
2186 * CPU intensive works don't participate in concurrency
2187 * management. They're the scheduler's responsibility.
2188 */
2189 if (unlikely(cpu_intensive))
2190 worker_set_flags(worker, WORKER_CPU_INTENSIVE, true);
2191
2192 /*
2193 * Unbound pool isn't concurrency managed and work items should be
2194 * executed ASAP. Wake up another worker if necessary.
2195 */
2196 if ((worker->flags & WORKER_UNBOUND) && need_more_worker(pool))
2197 wake_up_worker(pool);
2198
2199 /*
2200 * Record the last pool and clear PENDING which should be the last
2201 * update to @work. Also, do this inside @pool->lock so that
2202 * PENDING and queued state changes happen together while IRQ is
2203 * disabled.
2204 */
2205 set_work_pool_and_clear_pending(work, pool->id);
2206
2207 spin_unlock_irq(&pool->lock);
2208
2209 lock_map_acquire_read(&pwq->wq->lockdep_map);
2210 lock_map_acquire(&lockdep_map);
2211 trace_workqueue_execute_start(work);
2212 worker->current_func(work);
2213 /*
2214 * While we must be careful to not use "work" after this, the trace
2215 * point will only record its address.
2216 */
2217 trace_workqueue_execute_end(work);
2218 lock_map_release(&lockdep_map);
2219 lock_map_release(&pwq->wq->lockdep_map);
2220
2221 if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
2222 pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
2223 " last function: %pf\n",
2224 current->comm, preempt_count(), task_pid_nr(current),
2225 worker->current_func);
2226 debug_show_held_locks(current);
2227 dump_stack();
2228 }
2229
2230 spin_lock_irq(&pool->lock);
2231
2232 /* clear cpu intensive status */
2233 if (unlikely(cpu_intensive))
2234 worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
2235
2236 /* we're done with it, release */
2237 hash_del(&worker->hentry);
2238 worker->current_work = NULL;
2239 worker->current_func = NULL;
2240 worker->current_pwq = NULL;
2241 pwq_dec_nr_in_flight(pwq, work_color);
2242 }
2243
2244 /**
2245 * process_scheduled_works - process scheduled works
2246 * @worker: self
2247 *
2248 * Process all scheduled works. Please note that the scheduled list
2249 * may change while processing a work, so this function repeatedly
2250 * fetches a work from the top and executes it.
2251 *
2252 * CONTEXT:
2253 * spin_lock_irq(pool->lock) which may be released and regrabbed
2254 * multiple times.
2255 */
2256 static void process_scheduled_works(struct worker *worker)
2257 {
2258 while (!list_empty(&worker->scheduled)) {
2259 struct work_struct *work = list_first_entry(&worker->scheduled,
2260 struct work_struct, entry);
2261 process_one_work(worker, work);
2262 }
2263 }
2264
2265 /**
2266 * worker_thread - the worker thread function
2267 * @__worker: self
2268 *
2269 * The worker thread function. All workers belong to a worker_pool -
2270 * either a per-cpu one or dynamic unbound one. These workers process all
2271 * work items regardless of their specific target workqueue. The only
2272 * exception is work items which belong to workqueues with a rescuer which
2273 * will be explained in rescuer_thread().
2274 */
2275 static int worker_thread(void *__worker)
2276 {
2277 struct worker *worker = __worker;
2278 struct worker_pool *pool = worker->pool;
2279
2280 /* tell the scheduler that this is a workqueue worker */
2281 worker->task->flags |= PF_WQ_WORKER;
2282 woke_up:
2283 spin_lock_irq(&pool->lock);
2284
2285 /* we are off idle list if destruction or rebind is requested */
2286 if (unlikely(list_empty(&worker->entry))) {
2287 spin_unlock_irq(&pool->lock);
2288
2289 /* if DIE is set, destruction is requested */
2290 if (worker->flags & WORKER_DIE) {
2291 worker->task->flags &= ~PF_WQ_WORKER;
2292 return 0;
2293 }
2294
2295 /* otherwise, rebind */
2296 idle_worker_rebind(worker);
2297 goto woke_up;
2298 }
2299
2300 worker_leave_idle(worker);
2301 recheck:
2302 /* no more worker necessary? */
2303 if (!need_more_worker(pool))
2304 goto sleep;
2305
2306 /* do we need to manage? */
2307 if (unlikely(!may_start_working(pool)) && manage_workers(worker))
2308 goto recheck;
2309
2310 /*
2311 * ->scheduled list can only be filled while a worker is
2312 * preparing to process a work or actually processing it.
2313 * Make sure nobody diddled with it while I was sleeping.
2314 */
2315 WARN_ON_ONCE(!list_empty(&worker->scheduled));
2316
2317 /*
2318 * When control reaches this point, we're guaranteed to have
2319 * at least one idle worker or that someone else has already
2320 * assumed the manager role.
2321 */
2322 worker_clr_flags(worker, WORKER_PREP);
2323
2324 do {
2325 struct work_struct *work =
2326 list_first_entry(&pool->worklist,
2327 struct work_struct, entry);
2328
2329 if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
2330 /* optimization path, not strictly necessary */
2331 process_one_work(worker, work);
2332 if (unlikely(!list_empty(&worker->scheduled)))
2333 process_scheduled_works(worker);
2334 } else {
2335 move_linked_works(work, &worker->scheduled, NULL);
2336 process_scheduled_works(worker);
2337 }
2338 } while (keep_working(pool));
2339
2340 worker_set_flags(worker, WORKER_PREP, false);
2341 sleep:
2342 if (unlikely(need_to_manage_workers(pool)) && manage_workers(worker))
2343 goto recheck;
2344
2345 /*
2346 * pool->lock is held and there's no work to process and no need to
2347 * manage, sleep. Workers are woken up only while holding
2348 * pool->lock or from local cpu, so setting the current state
2349 * before releasing pool->lock is enough to prevent losing any
2350 * event.
2351 */
2352 worker_enter_idle(worker);
2353 __set_current_state(TASK_INTERRUPTIBLE);
2354 spin_unlock_irq(&pool->lock);
2355 schedule();
2356 goto woke_up;
2357 }
2358
2359 /**
2360 * rescuer_thread - the rescuer thread function
2361 * @__rescuer: self
2362 *
2363 * Workqueue rescuer thread function. There's one rescuer for each
2364 * workqueue which has WQ_MEM_RECLAIM set.
2365 *
2366 * Regular work processing on a pool may block trying to create a new
2367 * worker which uses GFP_KERNEL allocation which has slight chance of
2368 * developing into deadlock if some works currently on the same queue
2369 * need to be processed to satisfy the GFP_KERNEL allocation. This is
2370 * the problem rescuer solves.
2371 *
2372 * When such condition is possible, the pool summons rescuers of all
2373 * workqueues which have works queued on the pool and let them process
2374 * those works so that forward progress can be guaranteed.
2375 *
2376 * This should happen rarely.
2377 */
2378 static int rescuer_thread(void *__rescuer)
2379 {
2380 struct worker *rescuer = __rescuer;
2381 struct workqueue_struct *wq = rescuer->rescue_wq;
2382 struct list_head *scheduled = &rescuer->scheduled;
2383
2384 set_user_nice(current, RESCUER_NICE_LEVEL);
2385
2386 /*
2387 * Mark rescuer as worker too. As WORKER_PREP is never cleared, it
2388 * doesn't participate in concurrency management.
2389 */
2390 rescuer->task->flags |= PF_WQ_WORKER;
2391 repeat:
2392 set_current_state(TASK_INTERRUPTIBLE);
2393
2394 if (kthread_should_stop()) {
2395 __set_current_state(TASK_RUNNING);
2396 rescuer->task->flags &= ~PF_WQ_WORKER;
2397 return 0;
2398 }
2399
2400 /* see whether any pwq is asking for help */
2401 spin_lock_irq(&workqueue_lock);
2402
2403 while (!list_empty(&wq->maydays)) {
2404 struct pool_workqueue *pwq = list_first_entry(&wq->maydays,
2405 struct pool_workqueue, mayday_node);
2406 struct worker_pool *pool = pwq->pool;
2407 struct work_struct *work, *n;
2408
2409 __set_current_state(TASK_RUNNING);
2410 list_del_init(&pwq->mayday_node);
2411
2412 spin_unlock_irq(&workqueue_lock);
2413
2414 /* migrate to the target cpu if possible */
2415 worker_maybe_bind_and_lock(pool);
2416 rescuer->pool = pool;
2417
2418 /*
2419 * Slurp in all works issued via this workqueue and
2420 * process'em.
2421 */
2422 WARN_ON_ONCE(!list_empty(&rescuer->scheduled));
2423 list_for_each_entry_safe(work, n, &pool->worklist, entry)
2424 if (get_work_pwq(work) == pwq)
2425 move_linked_works(work, scheduled, &n);
2426
2427 process_scheduled_works(rescuer);
2428
2429 /*
2430 * Leave this pool. If keep_working() is %true, notify a
2431 * regular worker; otherwise, we end up with 0 concurrency
2432 * and stalling the execution.
2433 */
2434 if (keep_working(pool))
2435 wake_up_worker(pool);
2436
2437 rescuer->pool = NULL;
2438 spin_unlock(&pool->lock);
2439 spin_lock(&workqueue_lock);
2440 }
2441
2442 spin_unlock_irq(&workqueue_lock);
2443
2444 /* rescuers should never participate in concurrency management */
2445 WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
2446 schedule();
2447 goto repeat;
2448 }
2449
2450 struct wq_barrier {
2451 struct work_struct work;
2452 struct completion done;
2453 };
2454
2455 static void wq_barrier_func(struct work_struct *work)
2456 {
2457 struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
2458 complete(&barr->done);
2459 }
2460
2461 /**
2462 * insert_wq_barrier - insert a barrier work
2463 * @pwq: pwq to insert barrier into
2464 * @barr: wq_barrier to insert
2465 * @target: target work to attach @barr to
2466 * @worker: worker currently executing @target, NULL if @target is not executing
2467 *
2468 * @barr is linked to @target such that @barr is completed only after
2469 * @target finishes execution. Please note that the ordering
2470 * guarantee is observed only with respect to @target and on the local
2471 * cpu.
2472 *
2473 * Currently, a queued barrier can't be canceled. This is because
2474 * try_to_grab_pending() can't determine whether the work to be
2475 * grabbed is at the head of the queue and thus can't clear LINKED
2476 * flag of the previous work while there must be a valid next work
2477 * after a work with LINKED flag set.
2478 *
2479 * Note that when @worker is non-NULL, @target may be modified
2480 * underneath us, so we can't reliably determine pwq from @target.
2481 *
2482 * CONTEXT:
2483 * spin_lock_irq(pool->lock).
2484 */
2485 static void insert_wq_barrier(struct pool_workqueue *pwq,
2486 struct wq_barrier *barr,
2487 struct work_struct *target, struct worker *worker)
2488 {
2489 struct list_head *head;
2490 unsigned int linked = 0;
2491
2492 /*
2493 * debugobject calls are safe here even with pool->lock locked
2494 * as we know for sure that this will not trigger any of the
2495 * checks and call back into the fixup functions where we
2496 * might deadlock.
2497 */
2498 INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
2499 __set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
2500 init_completion(&barr->done);
2501
2502 /*
2503 * If @target is currently being executed, schedule the
2504 * barrier to the worker; otherwise, put it after @target.
2505 */
2506 if (worker)
2507 head = worker->scheduled.next;
2508 else {
2509 unsigned long *bits = work_data_bits(target);
2510
2511 head = target->entry.next;
2512 /* there can already be other linked works, inherit and set */
2513 linked = *bits & WORK_STRUCT_LINKED;
2514 __set_bit(WORK_STRUCT_LINKED_BIT, bits);
2515 }
2516
2517 debug_work_activate(&barr->work);
2518 insert_work(pwq, &barr->work, head,
2519 work_color_to_flags(WORK_NO_COLOR) | linked);
2520 }
2521
2522 /**
2523 * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing
2524 * @wq: workqueue being flushed
2525 * @flush_color: new flush color, < 0 for no-op
2526 * @work_color: new work color, < 0 for no-op
2527 *
2528 * Prepare pwqs for workqueue flushing.
2529 *
2530 * If @flush_color is non-negative, flush_color on all pwqs should be
2531 * -1. If no pwq has in-flight commands at the specified color, all
2532 * pwq->flush_color's stay at -1 and %false is returned. If any pwq
2533 * has in flight commands, its pwq->flush_color is set to
2534 * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq
2535 * wakeup logic is armed and %true is returned.
2536 *
2537 * The caller should have initialized @wq->first_flusher prior to
2538 * calling this function with non-negative @flush_color. If
2539 * @flush_color is negative, no flush color update is done and %false
2540 * is returned.
2541 *
2542 * If @work_color is non-negative, all pwqs should have the same
2543 * work_color which is previous to @work_color and all will be
2544 * advanced to @work_color.
2545 *
2546 * CONTEXT:
2547 * mutex_lock(wq->flush_mutex).
2548 *
2549 * RETURNS:
2550 * %true if @flush_color >= 0 and there's something to flush. %false
2551 * otherwise.
2552 */
2553 static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq,
2554 int flush_color, int work_color)
2555 {
2556 bool wait = false;
2557 struct pool_workqueue *pwq;
2558
2559 if (flush_color >= 0) {
2560 WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush));
2561 atomic_set(&wq->nr_pwqs_to_flush, 1);
2562 }
2563
2564 local_irq_disable();
2565
2566 for_each_pwq(pwq, wq) {
2567 struct worker_pool *pool = pwq->pool;
2568
2569 spin_lock(&pool->lock);
2570
2571 if (flush_color >= 0) {
2572 WARN_ON_ONCE(pwq->flush_color != -1);
2573
2574 if (pwq->nr_in_flight[flush_color]) {
2575 pwq->flush_color = flush_color;
2576 atomic_inc(&wq->nr_pwqs_to_flush);
2577 wait = true;
2578 }
2579 }
2580
2581 if (work_color >= 0) {
2582 WARN_ON_ONCE(work_color != work_next_color(pwq->work_color));
2583 pwq->work_color = work_color;
2584 }
2585
2586 spin_unlock(&pool->lock);
2587 }
2588
2589 local_irq_enable();
2590
2591 if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush))
2592 complete(&wq->first_flusher->done);
2593
2594 return wait;
2595 }
2596
2597 /**
2598 * flush_workqueue - ensure that any scheduled work has run to completion.
2599 * @wq: workqueue to flush
2600 *
2601 * This function sleeps until all work items which were queued on entry
2602 * have finished execution, but it is not livelocked by new incoming ones.
2603 */
2604 void flush_workqueue(struct workqueue_struct *wq)
2605 {
2606 struct wq_flusher this_flusher = {
2607 .list = LIST_HEAD_INIT(this_flusher.list),
2608 .flush_color = -1,
2609 .done = COMPLETION_INITIALIZER_ONSTACK(this_flusher.done),
2610 };
2611 int next_color;
2612
2613 lock_map_acquire(&wq->lockdep_map);
2614 lock_map_release(&wq->lockdep_map);
2615
2616 mutex_lock(&wq->flush_mutex);
2617
2618 /*
2619 * Start-to-wait phase
2620 */
2621 next_color = work_next_color(wq->work_color);
2622
2623 if (next_color != wq->flush_color) {
2624 /*
2625 * Color space is not full. The current work_color
2626 * becomes our flush_color and work_color is advanced
2627 * by one.
2628 */
2629 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow));
2630 this_flusher.flush_color = wq->work_color;
2631 wq->work_color = next_color;
2632
2633 if (!wq->first_flusher) {
2634 /* no flush in progress, become the first flusher */
2635 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2636
2637 wq->first_flusher = &this_flusher;
2638
2639 if (!flush_workqueue_prep_pwqs(wq, wq->flush_color,
2640 wq->work_color)) {
2641 /* nothing to flush, done */
2642 wq->flush_color = next_color;
2643 wq->first_flusher = NULL;
2644 goto out_unlock;
2645 }
2646 } else {
2647 /* wait in queue */
2648 WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color);
2649 list_add_tail(&this_flusher.list, &wq->flusher_queue);
2650 flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2651 }
2652 } else {
2653 /*
2654 * Oops, color space is full, wait on overflow queue.
2655 * The next flush completion will assign us
2656 * flush_color and transfer to flusher_queue.
2657 */
2658 list_add_tail(&this_flusher.list, &wq->flusher_overflow);
2659 }
2660
2661 mutex_unlock(&wq->flush_mutex);
2662
2663 wait_for_completion(&this_flusher.done);
2664
2665 /*
2666 * Wake-up-and-cascade phase
2667 *
2668 * First flushers are responsible for cascading flushes and
2669 * handling overflow. Non-first flushers can simply return.
2670 */
2671 if (wq->first_flusher != &this_flusher)
2672 return;
2673
2674 mutex_lock(&wq->flush_mutex);
2675
2676 /* we might have raced, check again with mutex held */
2677 if (wq->first_flusher != &this_flusher)
2678 goto out_unlock;
2679
2680 wq->first_flusher = NULL;
2681
2682 WARN_ON_ONCE(!list_empty(&this_flusher.list));
2683 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2684
2685 while (true) {
2686 struct wq_flusher *next, *tmp;
2687
2688 /* complete all the flushers sharing the current flush color */
2689 list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
2690 if (next->flush_color != wq->flush_color)
2691 break;
2692 list_del_init(&next->list);
2693 complete(&next->done);
2694 }
2695
2696 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) &&
2697 wq->flush_color != work_next_color(wq->work_color));
2698
2699 /* this flush_color is finished, advance by one */
2700 wq->flush_color = work_next_color(wq->flush_color);
2701
2702 /* one color has been freed, handle overflow queue */
2703 if (!list_empty(&wq->flusher_overflow)) {
2704 /*
2705 * Assign the same color to all overflowed
2706 * flushers, advance work_color and append to
2707 * flusher_queue. This is the start-to-wait
2708 * phase for these overflowed flushers.
2709 */
2710 list_for_each_entry(tmp, &wq->flusher_overflow, list)
2711 tmp->flush_color = wq->work_color;
2712
2713 wq->work_color = work_next_color(wq->work_color);
2714
2715 list_splice_tail_init(&wq->flusher_overflow,
2716 &wq->flusher_queue);
2717 flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2718 }
2719
2720 if (list_empty(&wq->flusher_queue)) {
2721 WARN_ON_ONCE(wq->flush_color != wq->work_color);
2722 break;
2723 }
2724
2725 /*
2726 * Need to flush more colors. Make the next flusher
2727 * the new first flusher and arm pwqs.
2728 */
2729 WARN_ON_ONCE(wq->flush_color == wq->work_color);
2730 WARN_ON_ONCE(wq->flush_color != next->flush_color);
2731
2732 list_del_init(&next->list);
2733 wq->first_flusher = next;
2734
2735 if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1))
2736 break;
2737
2738 /*
2739 * Meh... this color is already done, clear first
2740 * flusher and repeat cascading.
2741 */
2742 wq->first_flusher = NULL;
2743 }
2744
2745 out_unlock:
2746 mutex_unlock(&wq->flush_mutex);
2747 }
2748 EXPORT_SYMBOL_GPL(flush_workqueue);
2749
2750 /**
2751 * drain_workqueue - drain a workqueue
2752 * @wq: workqueue to drain
2753 *
2754 * Wait until the workqueue becomes empty. While draining is in progress,
2755 * only chain queueing is allowed. IOW, only currently pending or running
2756 * work items on @wq can queue further work items on it. @wq is flushed
2757 * repeatedly until it becomes empty. The number of flushing is detemined
2758 * by the depth of chaining and should be relatively short. Whine if it
2759 * takes too long.
2760 */
2761 void drain_workqueue(struct workqueue_struct *wq)
2762 {
2763 unsigned int flush_cnt = 0;
2764 struct pool_workqueue *pwq;
2765
2766 /*
2767 * __queue_work() needs to test whether there are drainers, is much
2768 * hotter than drain_workqueue() and already looks at @wq->flags.
2769 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers.
2770 */
2771 spin_lock_irq(&workqueue_lock);
2772 if (!wq->nr_drainers++)
2773 wq->flags |= __WQ_DRAINING;
2774 spin_unlock_irq(&workqueue_lock);
2775 reflush:
2776 flush_workqueue(wq);
2777
2778 local_irq_disable();
2779
2780 for_each_pwq(pwq, wq) {
2781 bool drained;
2782
2783 spin_lock(&pwq->pool->lock);
2784 drained = !pwq->nr_active && list_empty(&pwq->delayed_works);
2785 spin_unlock(&pwq->pool->lock);
2786
2787 if (drained)
2788 continue;
2789
2790 if (++flush_cnt == 10 ||
2791 (flush_cnt % 100 == 0 && flush_cnt <= 1000))
2792 pr_warn("workqueue %s: drain_workqueue() isn't complete after %u tries\n",
2793 wq->name, flush_cnt);
2794
2795 local_irq_enable();
2796 goto reflush;
2797 }
2798
2799 spin_lock(&workqueue_lock);
2800 if (!--wq->nr_drainers)
2801 wq->flags &= ~__WQ_DRAINING;
2802 spin_unlock(&workqueue_lock);
2803
2804 local_irq_enable();
2805 }
2806 EXPORT_SYMBOL_GPL(drain_workqueue);
2807
2808 static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr)
2809 {
2810 struct worker *worker = NULL;
2811 struct worker_pool *pool;
2812 struct pool_workqueue *pwq;
2813
2814 might_sleep();
2815
2816 local_irq_disable();
2817 pool = get_work_pool(work);
2818 if (!pool) {
2819 local_irq_enable();
2820 return false;
2821 }
2822
2823 spin_lock(&pool->lock);
2824 /* see the comment in try_to_grab_pending() with the same code */
2825 pwq = get_work_pwq(work);
2826 if (pwq) {
2827 if (unlikely(pwq->pool != pool))
2828 goto already_gone;
2829 } else {
2830 worker = find_worker_executing_work(pool, work);
2831 if (!worker)
2832 goto already_gone;
2833 pwq = worker->current_pwq;
2834 }
2835
2836 insert_wq_barrier(pwq, barr, work, worker);
2837 spin_unlock_irq(&pool->lock);
2838
2839 /*
2840 * If @max_active is 1 or rescuer is in use, flushing another work
2841 * item on the same workqueue may lead to deadlock. Make sure the
2842 * flusher is not running on the same workqueue by verifying write
2843 * access.
2844 */
2845 if (pwq->wq->saved_max_active == 1 || pwq->wq->rescuer)
2846 lock_map_acquire(&pwq->wq->lockdep_map);
2847 else
2848 lock_map_acquire_read(&pwq->wq->lockdep_map);
2849 lock_map_release(&pwq->wq->lockdep_map);
2850
2851 return true;
2852 already_gone:
2853 spin_unlock_irq(&pool->lock);
2854 return false;
2855 }
2856
2857 /**
2858 * flush_work - wait for a work to finish executing the last queueing instance
2859 * @work: the work to flush
2860 *
2861 * Wait until @work has finished execution. @work is guaranteed to be idle
2862 * on return if it hasn't been requeued since flush started.
2863 *
2864 * RETURNS:
2865 * %true if flush_work() waited for the work to finish execution,
2866 * %false if it was already idle.
2867 */
2868 bool flush_work(struct work_struct *work)
2869 {
2870 struct wq_barrier barr;
2871
2872 lock_map_acquire(&work->lockdep_map);
2873 lock_map_release(&work->lockdep_map);
2874
2875 if (start_flush_work(work, &barr)) {
2876 wait_for_completion(&barr.done);
2877 destroy_work_on_stack(&barr.work);
2878 return true;
2879 } else {
2880 return false;
2881 }
2882 }
2883 EXPORT_SYMBOL_GPL(flush_work);
2884
2885 static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
2886 {
2887 unsigned long flags;
2888 int ret;
2889
2890 do {
2891 ret = try_to_grab_pending(work, is_dwork, &flags);
2892 /*
2893 * If someone else is canceling, wait for the same event it
2894 * would be waiting for before retrying.
2895 */
2896 if (unlikely(ret == -ENOENT))
2897 flush_work(work);
2898 } while (unlikely(ret < 0));
2899
2900 /* tell other tasks trying to grab @work to back off */
2901 mark_work_canceling(work);
2902 local_irq_restore(flags);
2903
2904 flush_work(work);
2905 clear_work_data(work);
2906 return ret;
2907 }
2908
2909 /**
2910 * cancel_work_sync - cancel a work and wait for it to finish
2911 * @work: the work to cancel
2912 *
2913 * Cancel @work and wait for its execution to finish. This function
2914 * can be used even if the work re-queues itself or migrates to
2915 * another workqueue. On return from this function, @work is
2916 * guaranteed to be not pending or executing on any CPU.
2917 *
2918 * cancel_work_sync(&delayed_work->work) must not be used for
2919 * delayed_work's. Use cancel_delayed_work_sync() instead.
2920 *
2921 * The caller must ensure that the workqueue on which @work was last
2922 * queued can't be destroyed before this function returns.
2923 *
2924 * RETURNS:
2925 * %true if @work was pending, %false otherwise.
2926 */
2927 bool cancel_work_sync(struct work_struct *work)
2928 {
2929 return __cancel_work_timer(work, false);
2930 }
2931 EXPORT_SYMBOL_GPL(cancel_work_sync);
2932
2933 /**
2934 * flush_delayed_work - wait for a dwork to finish executing the last queueing
2935 * @dwork: the delayed work to flush
2936 *
2937 * Delayed timer is cancelled and the pending work is queued for
2938 * immediate execution. Like flush_work(), this function only
2939 * considers the last queueing instance of @dwork.
2940 *
2941 * RETURNS:
2942 * %true if flush_work() waited for the work to finish execution,
2943 * %false if it was already idle.
2944 */
2945 bool flush_delayed_work(struct delayed_work *dwork)
2946 {
2947 local_irq_disable();
2948 if (del_timer_sync(&dwork->timer))
2949 __queue_work(dwork->cpu, dwork->wq, &dwork->work);
2950 local_irq_enable();
2951 return flush_work(&dwork->work);
2952 }
2953 EXPORT_SYMBOL(flush_delayed_work);
2954
2955 /**
2956 * cancel_delayed_work - cancel a delayed work
2957 * @dwork: delayed_work to cancel
2958 *
2959 * Kill off a pending delayed_work. Returns %true if @dwork was pending
2960 * and canceled; %false if wasn't pending. Note that the work callback
2961 * function may still be running on return, unless it returns %true and the
2962 * work doesn't re-arm itself. Explicitly flush or use
2963 * cancel_delayed_work_sync() to wait on it.
2964 *
2965 * This function is safe to call from any context including IRQ handler.
2966 */
2967 bool cancel_delayed_work(struct delayed_work *dwork)
2968 {
2969 unsigned long flags;
2970 int ret;
2971
2972 do {
2973 ret = try_to_grab_pending(&dwork->work, true, &flags);
2974 } while (unlikely(ret == -EAGAIN));
2975
2976 if (unlikely(ret < 0))
2977 return false;
2978
2979 set_work_pool_and_clear_pending(&dwork->work,
2980 get_work_pool_id(&dwork->work));
2981 local_irq_restore(flags);
2982 return ret;
2983 }
2984 EXPORT_SYMBOL(cancel_delayed_work);
2985
2986 /**
2987 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
2988 * @dwork: the delayed work cancel
2989 *
2990 * This is cancel_work_sync() for delayed works.
2991 *
2992 * RETURNS:
2993 * %true if @dwork was pending, %false otherwise.
2994 */
2995 bool cancel_delayed_work_sync(struct delayed_work *dwork)
2996 {
2997 return __cancel_work_timer(&dwork->work, true);
2998 }
2999 EXPORT_SYMBOL(cancel_delayed_work_sync);
3000
3001 /**
3002 * schedule_on_each_cpu - execute a function synchronously on each online CPU
3003 * @func: the function to call
3004 *
3005 * schedule_on_each_cpu() executes @func on each online CPU using the
3006 * system workqueue and blocks until all CPUs have completed.
3007 * schedule_on_each_cpu() is very slow.
3008 *
3009 * RETURNS:
3010 * 0 on success, -errno on failure.
3011 */
3012 int schedule_on_each_cpu(work_func_t func)
3013 {
3014 int cpu;
3015 struct work_struct __percpu *works;
3016
3017 works = alloc_percpu(struct work_struct);
3018 if (!works)
3019 return -ENOMEM;
3020
3021 get_online_cpus();
3022
3023 for_each_online_cpu(cpu) {
3024 struct work_struct *work = per_cpu_ptr(works, cpu);
3025
3026 INIT_WORK(work, func);
3027 schedule_work_on(cpu, work);
3028 }
3029
3030 for_each_online_cpu(cpu)
3031 flush_work(per_cpu_ptr(works, cpu));
3032
3033 put_online_cpus();
3034 free_percpu(works);
3035 return 0;
3036 }
3037
3038 /**
3039 * flush_scheduled_work - ensure that any scheduled work has run to completion.
3040 *
3041 * Forces execution of the kernel-global workqueue and blocks until its
3042 * completion.
3043 *
3044 * Think twice before calling this function! It's very easy to get into
3045 * trouble if you don't take great care. Either of the following situations
3046 * will lead to deadlock:
3047 *
3048 * One of the work items currently on the workqueue needs to acquire
3049 * a lock held by your code or its caller.
3050 *
3051 * Your code is running in the context of a work routine.
3052 *
3053 * They will be detected by lockdep when they occur, but the first might not
3054 * occur very often. It depends on what work items are on the workqueue and
3055 * what locks they need, which you have no control over.
3056 *
3057 * In most situations flushing the entire workqueue is overkill; you merely
3058 * need to know that a particular work item isn't queued and isn't running.
3059 * In such cases you should use cancel_delayed_work_sync() or
3060 * cancel_work_sync() instead.
3061 */
3062 void flush_scheduled_work(void)
3063 {
3064 flush_workqueue(system_wq);
3065 }
3066 EXPORT_SYMBOL(flush_scheduled_work);
3067
3068 /**
3069 * execute_in_process_context - reliably execute the routine with user context
3070 * @fn: the function to execute
3071 * @ew: guaranteed storage for the execute work structure (must
3072 * be available when the work executes)
3073 *
3074 * Executes the function immediately if process context is available,
3075 * otherwise schedules the function for delayed execution.
3076 *
3077 * Returns: 0 - function was executed
3078 * 1 - function was scheduled for execution
3079 */
3080 int execute_in_process_context(work_func_t fn, struct execute_work *ew)
3081 {
3082 if (!in_interrupt()) {
3083 fn(&ew->work);
3084 return 0;
3085 }
3086
3087 INIT_WORK(&ew->work, fn);
3088 schedule_work(&ew->work);
3089
3090 return 1;
3091 }
3092 EXPORT_SYMBOL_GPL(execute_in_process_context);
3093
3094 #ifdef CONFIG_SYSFS
3095 /*
3096 * Workqueues with WQ_SYSFS flag set is visible to userland via
3097 * /sys/bus/workqueue/devices/WQ_NAME. All visible workqueues have the
3098 * following attributes.
3099 *
3100 * per_cpu RO bool : whether the workqueue is per-cpu or unbound
3101 * max_active RW int : maximum number of in-flight work items
3102 *
3103 * Unbound workqueues have the following extra attributes.
3104 *
3105 * id RO int : the associated pool ID
3106 * nice RW int : nice value of the workers
3107 * cpumask RW mask : bitmask of allowed CPUs for the workers
3108 */
3109 struct wq_device {
3110 struct workqueue_struct *wq;
3111 struct device dev;
3112 };
3113
3114 static struct workqueue_struct *dev_to_wq(struct device *dev)
3115 {
3116 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
3117
3118 return wq_dev->wq;
3119 }
3120
3121 static ssize_t wq_per_cpu_show(struct device *dev,
3122 struct device_attribute *attr, char *buf)
3123 {
3124 struct workqueue_struct *wq = dev_to_wq(dev);
3125
3126 return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND));
3127 }
3128
3129 static ssize_t wq_max_active_show(struct device *dev,
3130 struct device_attribute *attr, char *buf)
3131 {
3132 struct workqueue_struct *wq = dev_to_wq(dev);
3133
3134 return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active);
3135 }
3136
3137 static ssize_t wq_max_active_store(struct device *dev,
3138 struct device_attribute *attr,
3139 const char *buf, size_t count)
3140 {
3141 struct workqueue_struct *wq = dev_to_wq(dev);
3142 int val;
3143
3144 if (sscanf(buf, "%d", &val) != 1 || val <= 0)
3145 return -EINVAL;
3146
3147 workqueue_set_max_active(wq, val);
3148 return count;
3149 }
3150
3151 static struct device_attribute wq_sysfs_attrs[] = {
3152 __ATTR(per_cpu, 0444, wq_per_cpu_show, NULL),
3153 __ATTR(max_active, 0644, wq_max_active_show, wq_max_active_store),
3154 __ATTR_NULL,
3155 };
3156
3157 static ssize_t wq_pool_id_show(struct device *dev,
3158 struct device_attribute *attr, char *buf)
3159 {
3160 struct workqueue_struct *wq = dev_to_wq(dev);
3161 struct worker_pool *pool;
3162 int written;
3163
3164 rcu_read_lock_sched();
3165 pool = first_pwq(wq)->pool;
3166 written = scnprintf(buf, PAGE_SIZE, "%d\n", pool->id);
3167 rcu_read_unlock_sched();
3168
3169 return written;
3170 }
3171
3172 static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr,
3173 char *buf)
3174 {
3175 struct workqueue_struct *wq = dev_to_wq(dev);
3176 int written;
3177
3178 rcu_read_lock_sched();
3179 written = scnprintf(buf, PAGE_SIZE, "%d\n",
3180 first_pwq(wq)->pool->attrs->nice);
3181 rcu_read_unlock_sched();
3182
3183 return written;
3184 }
3185
3186 /* prepare workqueue_attrs for sysfs store operations */
3187 static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq)
3188 {
3189 struct workqueue_attrs *attrs;
3190
3191 attrs = alloc_workqueue_attrs(GFP_KERNEL);
3192 if (!attrs)
3193 return NULL;
3194
3195 rcu_read_lock_sched();
3196 copy_workqueue_attrs(attrs, first_pwq(wq)->pool->attrs);
3197 rcu_read_unlock_sched();
3198 return attrs;
3199 }
3200
3201 static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr,
3202 const char *buf, size_t count)
3203 {
3204 struct workqueue_struct *wq = dev_to_wq(dev);
3205 struct workqueue_attrs *attrs;
3206 int ret;
3207
3208 attrs = wq_sysfs_prep_attrs(wq);
3209 if (!attrs)
3210 return -ENOMEM;
3211
3212 if (sscanf(buf, "%d", &attrs->nice) == 1 &&
3213 attrs->nice >= -20 && attrs->nice <= 19)
3214 ret = apply_workqueue_attrs(wq, attrs);
3215 else
3216 ret = -EINVAL;
3217
3218 free_workqueue_attrs(attrs);
3219 return ret ?: count;
3220 }
3221
3222 static ssize_t wq_cpumask_show(struct device *dev,
3223 struct device_attribute *attr, char *buf)
3224 {
3225 struct workqueue_struct *wq = dev_to_wq(dev);
3226 int written;
3227
3228 rcu_read_lock_sched();
3229 written = cpumask_scnprintf(buf, PAGE_SIZE,
3230 first_pwq(wq)->pool->attrs->cpumask);
3231 rcu_read_unlock_sched();
3232
3233 written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
3234 return written;
3235 }
3236
3237 static ssize_t wq_cpumask_store(struct device *dev,
3238 struct device_attribute *attr,
3239 const char *buf, size_t count)
3240 {
3241 struct workqueue_struct *wq = dev_to_wq(dev);
3242 struct workqueue_attrs *attrs;
3243 int ret;
3244
3245 attrs = wq_sysfs_prep_attrs(wq);
3246 if (!attrs)
3247 return -ENOMEM;
3248
3249 ret = cpumask_parse(buf, attrs->cpumask);
3250 if (!ret)
3251 ret = apply_workqueue_attrs(wq, attrs);
3252
3253 free_workqueue_attrs(attrs);
3254 return ret ?: count;
3255 }
3256
3257 static struct device_attribute wq_sysfs_unbound_attrs[] = {
3258 __ATTR(pool_id, 0444, wq_pool_id_show, NULL),
3259 __ATTR(nice, 0644, wq_nice_show, wq_nice_store),
3260 __ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store),
3261 __ATTR_NULL,
3262 };
3263
3264 static struct bus_type wq_subsys = {
3265 .name = "workqueue",
3266 .dev_attrs = wq_sysfs_attrs,
3267 };
3268
3269 static int __init wq_sysfs_init(void)
3270 {
3271 return subsys_virtual_register(&wq_subsys, NULL);
3272 }
3273 core_initcall(wq_sysfs_init);
3274
3275 static void wq_device_release(struct device *dev)
3276 {
3277 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
3278
3279 kfree(wq_dev);
3280 }
3281
3282 /**
3283 * workqueue_sysfs_register - make a workqueue visible in sysfs
3284 * @wq: the workqueue to register
3285 *
3286 * Expose @wq in sysfs under /sys/bus/workqueue/devices.
3287 * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set
3288 * which is the preferred method.
3289 *
3290 * Workqueue user should use this function directly iff it wants to apply
3291 * workqueue_attrs before making the workqueue visible in sysfs; otherwise,
3292 * apply_workqueue_attrs() may race against userland updating the
3293 * attributes.
3294 *
3295 * Returns 0 on success, -errno on failure.
3296 */
3297 int workqueue_sysfs_register(struct workqueue_struct *wq)
3298 {
3299 struct wq_device *wq_dev;
3300 int ret;
3301
3302 /*
3303 * Adjusting max_active or creating new pwqs by applyting
3304 * attributes breaks ordering guarantee. Disallow exposing ordered
3305 * workqueues.
3306 */
3307 if (WARN_ON(wq->flags & __WQ_ORDERED))
3308 return -EINVAL;
3309
3310 wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL);
3311 if (!wq_dev)
3312 return -ENOMEM;
3313
3314 wq_dev->wq = wq;
3315 wq_dev->dev.bus = &wq_subsys;
3316 wq_dev->dev.init_name = wq->name;
3317 wq_dev->dev.release = wq_device_release;
3318
3319 /*
3320 * unbound_attrs are created separately. Suppress uevent until
3321 * everything is ready.
3322 */
3323 dev_set_uevent_suppress(&wq_dev->dev, true);
3324
3325 ret = device_register(&wq_dev->dev);
3326 if (ret) {
3327 kfree(wq_dev);
3328 wq->wq_dev = NULL;
3329 return ret;
3330 }
3331
3332 if (wq->flags & WQ_UNBOUND) {
3333 struct device_attribute *attr;
3334
3335 for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) {
3336 ret = device_create_file(&wq_dev->dev, attr);
3337 if (ret) {
3338 device_unregister(&wq_dev->dev);
3339 wq->wq_dev = NULL;
3340 return ret;
3341 }
3342 }
3343 }
3344
3345 kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD);
3346 return 0;
3347 }
3348
3349 /**
3350 * workqueue_sysfs_unregister - undo workqueue_sysfs_register()
3351 * @wq: the workqueue to unregister
3352 *
3353 * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister.
3354 */
3355 static void workqueue_sysfs_unregister(struct workqueue_struct *wq)
3356 {
3357 struct wq_device *wq_dev = wq->wq_dev;
3358
3359 if (!wq->wq_dev)
3360 return;
3361
3362 wq->wq_dev = NULL;
3363 device_unregister(&wq_dev->dev);
3364 }
3365 #else /* CONFIG_SYSFS */
3366 static void workqueue_sysfs_unregister(struct workqueue_struct *wq) { }
3367 #endif /* CONFIG_SYSFS */
3368
3369 /**
3370 * free_workqueue_attrs - free a workqueue_attrs
3371 * @attrs: workqueue_attrs to free
3372 *
3373 * Undo alloc_workqueue_attrs().
3374 */
3375 void free_workqueue_attrs(struct workqueue_attrs *attrs)
3376 {
3377 if (attrs) {
3378 free_cpumask_var(attrs->cpumask);
3379 kfree(attrs);
3380 }
3381 }
3382
3383 /**
3384 * alloc_workqueue_attrs - allocate a workqueue_attrs
3385 * @gfp_mask: allocation mask to use
3386 *
3387 * Allocate a new workqueue_attrs, initialize with default settings and
3388 * return it. Returns NULL on failure.
3389 */
3390 struct workqueue_attrs *alloc_workqueue_attrs(gfp_t gfp_mask)
3391 {
3392 struct workqueue_attrs *attrs;
3393
3394 attrs = kzalloc(sizeof(*attrs), gfp_mask);
3395 if (!attrs)
3396 goto fail;
3397 if (!alloc_cpumask_var(&attrs->cpumask, gfp_mask))
3398 goto fail;
3399
3400 cpumask_setall(attrs->cpumask);
3401 return attrs;
3402 fail:
3403 free_workqueue_attrs(attrs);
3404 return NULL;
3405 }
3406
3407 static void copy_workqueue_attrs(struct workqueue_attrs *to,
3408 const struct workqueue_attrs *from)
3409 {
3410 to->nice = from->nice;
3411 cpumask_copy(to->cpumask, from->cpumask);
3412 }
3413
3414 /*
3415 * Hacky implementation of jhash of bitmaps which only considers the
3416 * specified number of bits. We probably want a proper implementation in
3417 * include/linux/jhash.h.
3418 */
3419 static u32 jhash_bitmap(const unsigned long *bitmap, int bits, u32 hash)
3420 {
3421 int nr_longs = bits / BITS_PER_LONG;
3422 int nr_leftover = bits % BITS_PER_LONG;
3423 unsigned long leftover = 0;
3424
3425 if (nr_longs)
3426 hash = jhash(bitmap, nr_longs * sizeof(long), hash);
3427 if (nr_leftover) {
3428 bitmap_copy(&leftover, bitmap + nr_longs, nr_leftover);
3429 hash = jhash(&leftover, sizeof(long), hash);
3430 }
3431 return hash;
3432 }
3433
3434 /* hash value of the content of @attr */
3435 static u32 wqattrs_hash(const struct workqueue_attrs *attrs)
3436 {
3437 u32 hash = 0;
3438
3439 hash = jhash_1word(attrs->nice, hash);
3440 hash = jhash_bitmap(cpumask_bits(attrs->cpumask), nr_cpu_ids, hash);
3441 return hash;
3442 }
3443
3444 /* content equality test */
3445 static bool wqattrs_equal(const struct workqueue_attrs *a,
3446 const struct workqueue_attrs *b)
3447 {
3448 if (a->nice != b->nice)
3449 return false;
3450 if (!cpumask_equal(a->cpumask, b->cpumask))
3451 return false;
3452 return true;
3453 }
3454
3455 /**
3456 * init_worker_pool - initialize a newly zalloc'd worker_pool
3457 * @pool: worker_pool to initialize
3458 *
3459 * Initiailize a newly zalloc'd @pool. It also allocates @pool->attrs.
3460 * Returns 0 on success, -errno on failure. Even on failure, all fields
3461 * inside @pool proper are initialized and put_unbound_pool() can be called
3462 * on @pool safely to release it.
3463 */
3464 static int init_worker_pool(struct worker_pool *pool)
3465 {
3466 spin_lock_init(&pool->lock);
3467 pool->id = -1;
3468 pool->cpu = -1;
3469 pool->flags |= POOL_DISASSOCIATED;
3470 INIT_LIST_HEAD(&pool->worklist);
3471 INIT_LIST_HEAD(&pool->idle_list);
3472 hash_init(pool->busy_hash);
3473
3474 init_timer_deferrable(&pool->idle_timer);
3475 pool->idle_timer.function = idle_worker_timeout;
3476 pool->idle_timer.data = (unsigned long)pool;
3477
3478 setup_timer(&pool->mayday_timer, pool_mayday_timeout,
3479 (unsigned long)pool);
3480
3481 mutex_init(&pool->manager_arb);
3482 mutex_init(&pool->manager_mutex);
3483 ida_init(&pool->worker_ida);
3484
3485 INIT_HLIST_NODE(&pool->hash_node);
3486 pool->refcnt = 1;
3487
3488 /* shouldn't fail above this point */
3489 pool->attrs = alloc_workqueue_attrs(GFP_KERNEL);
3490 if (!pool->attrs)
3491 return -ENOMEM;
3492 return 0;
3493 }
3494
3495 static void rcu_free_pool(struct rcu_head *rcu)
3496 {
3497 struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu);
3498
3499 ida_destroy(&pool->worker_ida);
3500 free_workqueue_attrs(pool->attrs);
3501 kfree(pool);
3502 }
3503
3504 /**
3505 * put_unbound_pool - put a worker_pool
3506 * @pool: worker_pool to put
3507 *
3508 * Put @pool. If its refcnt reaches zero, it gets destroyed in sched-RCU
3509 * safe manner. get_unbound_pool() calls this function on its failure path
3510 * and this function should be able to release pools which went through,
3511 * successfully or not, init_worker_pool().
3512 */
3513 static void put_unbound_pool(struct worker_pool *pool)
3514 {
3515 struct worker *worker;
3516
3517 spin_lock_irq(&workqueue_lock);
3518 if (--pool->refcnt) {
3519 spin_unlock_irq(&workqueue_lock);
3520 return;
3521 }
3522
3523 /* sanity checks */
3524 if (WARN_ON(!(pool->flags & POOL_DISASSOCIATED)) ||
3525 WARN_ON(!list_empty(&pool->worklist))) {
3526 spin_unlock_irq(&workqueue_lock);
3527 return;
3528 }
3529
3530 /* release id and unhash */
3531 if (pool->id >= 0)
3532 idr_remove(&worker_pool_idr, pool->id);
3533 hash_del(&pool->hash_node);
3534
3535 spin_unlock_irq(&workqueue_lock);
3536
3537 /*
3538 * Become the manager and destroy all workers. Grabbing
3539 * manager_arb prevents @pool's workers from blocking on
3540 * manager_mutex.
3541 */
3542 mutex_lock(&pool->manager_arb);
3543 mutex_lock(&pool->manager_mutex);
3544 spin_lock_irq(&pool->lock);
3545
3546 while ((worker = first_worker(pool)))
3547 destroy_worker(worker);
3548 WARN_ON(pool->nr_workers || pool->nr_idle);
3549
3550 spin_unlock_irq(&pool->lock);
3551 mutex_unlock(&pool->manager_mutex);
3552 mutex_unlock(&pool->manager_arb);
3553
3554 /* shut down the timers */
3555 del_timer_sync(&pool->idle_timer);
3556 del_timer_sync(&pool->mayday_timer);
3557
3558 /* sched-RCU protected to allow dereferences from get_work_pool() */
3559 call_rcu_sched(&pool->rcu, rcu_free_pool);
3560 }
3561
3562 /**
3563 * get_unbound_pool - get a worker_pool with the specified attributes
3564 * @attrs: the attributes of the worker_pool to get
3565 *
3566 * Obtain a worker_pool which has the same attributes as @attrs, bump the
3567 * reference count and return it. If there already is a matching
3568 * worker_pool, it will be used; otherwise, this function attempts to
3569 * create a new one. On failure, returns NULL.
3570 */
3571 static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs)
3572 {
3573 static DEFINE_MUTEX(create_mutex);
3574 u32 hash = wqattrs_hash(attrs);
3575 struct worker_pool *pool;
3576
3577 mutex_lock(&create_mutex);
3578
3579 /* do we already have a matching pool? */
3580 spin_lock_irq(&workqueue_lock);
3581 hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) {
3582 if (wqattrs_equal(pool->attrs, attrs)) {
3583 pool->refcnt++;
3584 goto out_unlock;
3585 }
3586 }
3587 spin_unlock_irq(&workqueue_lock);
3588
3589 /* nope, create a new one */
3590 pool = kzalloc(sizeof(*pool), GFP_KERNEL);
3591 if (!pool || init_worker_pool(pool) < 0)
3592 goto fail;
3593
3594 lockdep_set_subclass(&pool->lock, 1); /* see put_pwq() */
3595 copy_workqueue_attrs(pool->attrs, attrs);
3596
3597 if (worker_pool_assign_id(pool) < 0)
3598 goto fail;
3599
3600 /* create and start the initial worker */
3601 if (create_and_start_worker(pool) < 0)
3602 goto fail;
3603
3604 /* install */
3605 spin_lock_irq(&workqueue_lock);
3606 hash_add(unbound_pool_hash, &pool->hash_node, hash);
3607 out_unlock:
3608 spin_unlock_irq(&workqueue_lock);
3609 mutex_unlock(&create_mutex);
3610 return pool;
3611 fail:
3612 mutex_unlock(&create_mutex);
3613 if (pool)
3614 put_unbound_pool(pool);
3615 return NULL;
3616 }
3617
3618 static void rcu_free_pwq(struct rcu_head *rcu)
3619 {
3620 kmem_cache_free(pwq_cache,
3621 container_of(rcu, struct pool_workqueue, rcu));
3622 }
3623
3624 /*
3625 * Scheduled on system_wq by put_pwq() when an unbound pwq hits zero refcnt
3626 * and needs to be destroyed.
3627 */
3628 static void pwq_unbound_release_workfn(struct work_struct *work)
3629 {
3630 struct pool_workqueue *pwq = container_of(work, struct pool_workqueue,
3631 unbound_release_work);
3632 struct workqueue_struct *wq = pwq->wq;
3633 struct worker_pool *pool = pwq->pool;
3634
3635 if (WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND)))
3636 return;
3637
3638 /*
3639 * Unlink @pwq. Synchronization against flush_mutex isn't strictly
3640 * necessary on release but do it anyway. It's easier to verify
3641 * and consistent with the linking path.
3642 */
3643 mutex_lock(&wq->flush_mutex);
3644 spin_lock_irq(&workqueue_lock);
3645 list_del_rcu(&pwq->pwqs_node);
3646 spin_unlock_irq(&workqueue_lock);
3647 mutex_unlock(&wq->flush_mutex);
3648
3649 put_unbound_pool(pool);
3650 call_rcu_sched(&pwq->rcu, rcu_free_pwq);
3651
3652 /*
3653 * If we're the last pwq going away, @wq is already dead and no one
3654 * is gonna access it anymore. Free it.
3655 */
3656 if (list_empty(&wq->pwqs))
3657 kfree(wq);
3658 }
3659
3660 /**
3661 * pwq_adjust_max_active - update a pwq's max_active to the current setting
3662 * @pwq: target pool_workqueue
3663 *
3664 * If @pwq isn't freezing, set @pwq->max_active to the associated
3665 * workqueue's saved_max_active and activate delayed work items
3666 * accordingly. If @pwq is freezing, clear @pwq->max_active to zero.
3667 */
3668 static void pwq_adjust_max_active(struct pool_workqueue *pwq)
3669 {
3670 struct workqueue_struct *wq = pwq->wq;
3671 bool freezable = wq->flags & WQ_FREEZABLE;
3672
3673 /* for @wq->saved_max_active */
3674 lockdep_assert_held(&workqueue_lock);
3675
3676 /* fast exit for non-freezable wqs */
3677 if (!freezable && pwq->max_active == wq->saved_max_active)
3678 return;
3679
3680 spin_lock(&pwq->pool->lock);
3681
3682 if (!freezable || !(pwq->pool->flags & POOL_FREEZING)) {
3683 pwq->max_active = wq->saved_max_active;
3684
3685 while (!list_empty(&pwq->delayed_works) &&
3686 pwq->nr_active < pwq->max_active)
3687 pwq_activate_first_delayed(pwq);
3688 } else {
3689 pwq->max_active = 0;
3690 }
3691
3692 spin_unlock(&pwq->pool->lock);
3693 }
3694
3695 static void init_and_link_pwq(struct pool_workqueue *pwq,
3696 struct workqueue_struct *wq,
3697 struct worker_pool *pool,
3698 struct pool_workqueue **p_last_pwq)
3699 {
3700 BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK);
3701
3702 pwq->pool = pool;
3703 pwq->wq = wq;
3704 pwq->flush_color = -1;
3705 pwq->refcnt = 1;
3706 INIT_LIST_HEAD(&pwq->delayed_works);
3707 INIT_LIST_HEAD(&pwq->mayday_node);
3708 INIT_WORK(&pwq->unbound_release_work, pwq_unbound_release_workfn);
3709
3710 mutex_lock(&wq->flush_mutex);
3711 spin_lock_irq(&workqueue_lock);
3712
3713 /*
3714 * Set the matching work_color. This is synchronized with
3715 * flush_mutex to avoid confusing flush_workqueue().
3716 */
3717 if (p_last_pwq)
3718 *p_last_pwq = first_pwq(wq);
3719 pwq->work_color = wq->work_color;
3720
3721 /* sync max_active to the current setting */
3722 pwq_adjust_max_active(pwq);
3723
3724 /* link in @pwq */
3725 list_add_rcu(&pwq->pwqs_node, &wq->pwqs);
3726
3727 spin_unlock_irq(&workqueue_lock);
3728 mutex_unlock(&wq->flush_mutex);
3729 }
3730
3731 /**
3732 * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue
3733 * @wq: the target workqueue
3734 * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs()
3735 *
3736 * Apply @attrs to an unbound workqueue @wq. If @attrs doesn't match the
3737 * current attributes, a new pwq is created and made the first pwq which
3738 * will serve all new work items. Older pwqs are released as in-flight
3739 * work items finish. Note that a work item which repeatedly requeues
3740 * itself back-to-back will stay on its current pwq.
3741 *
3742 * Performs GFP_KERNEL allocations. Returns 0 on success and -errno on
3743 * failure.
3744 */
3745 int apply_workqueue_attrs(struct workqueue_struct *wq,
3746 const struct workqueue_attrs *attrs)
3747 {
3748 struct pool_workqueue *pwq, *last_pwq;
3749 struct worker_pool *pool;
3750
3751 /* only unbound workqueues can change attributes */
3752 if (WARN_ON(!(wq->flags & WQ_UNBOUND)))
3753 return -EINVAL;
3754
3755 /* creating multiple pwqs breaks ordering guarantee */
3756 if (WARN_ON((wq->flags & __WQ_ORDERED) && !list_empty(&wq->pwqs)))
3757 return -EINVAL;
3758
3759 pwq = kmem_cache_zalloc(pwq_cache, GFP_KERNEL);
3760 if (!pwq)
3761 return -ENOMEM;
3762
3763 pool = get_unbound_pool(attrs);
3764 if (!pool) {
3765 kmem_cache_free(pwq_cache, pwq);
3766 return -ENOMEM;
3767 }
3768
3769 init_and_link_pwq(pwq, wq, pool, &last_pwq);
3770 if (last_pwq) {
3771 spin_lock_irq(&last_pwq->pool->lock);
3772 put_pwq(last_pwq);
3773 spin_unlock_irq(&last_pwq->pool->lock);
3774 }
3775
3776 return 0;
3777 }
3778
3779 static int alloc_and_link_pwqs(struct workqueue_struct *wq)
3780 {
3781 bool highpri = wq->flags & WQ_HIGHPRI;
3782 int cpu;
3783
3784 if (!(wq->flags & WQ_UNBOUND)) {
3785 wq->cpu_pwqs = alloc_percpu(struct pool_workqueue);
3786 if (!wq->cpu_pwqs)
3787 return -ENOMEM;
3788
3789 for_each_possible_cpu(cpu) {
3790 struct pool_workqueue *pwq =
3791 per_cpu_ptr(wq->cpu_pwqs, cpu);
3792 struct worker_pool *cpu_pools =
3793 per_cpu(cpu_worker_pools, cpu);
3794
3795 init_and_link_pwq(pwq, wq, &cpu_pools[highpri], NULL);
3796 }
3797 return 0;
3798 } else {
3799 return apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]);
3800 }
3801 }
3802
3803 static int wq_clamp_max_active(int max_active, unsigned int flags,
3804 const char *name)
3805 {
3806 int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;
3807
3808 if (max_active < 1 || max_active > lim)
3809 pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
3810 max_active, name, 1, lim);
3811
3812 return clamp_val(max_active, 1, lim);
3813 }
3814
3815 struct workqueue_struct *__alloc_workqueue_key(const char *fmt,
3816 unsigned int flags,
3817 int max_active,
3818 struct lock_class_key *key,
3819 const char *lock_name, ...)
3820 {
3821 va_list args, args1;
3822 struct workqueue_struct *wq;
3823 struct pool_workqueue *pwq;
3824 size_t namelen;
3825
3826 /* determine namelen, allocate wq and format name */
3827 va_start(args, lock_name);
3828 va_copy(args1, args);
3829 namelen = vsnprintf(NULL, 0, fmt, args) + 1;
3830
3831 wq = kzalloc(sizeof(*wq) + namelen, GFP_KERNEL);
3832 if (!wq)
3833 return NULL;
3834
3835 vsnprintf(wq->name, namelen, fmt, args1);
3836 va_end(args);
3837 va_end(args1);
3838
3839 max_active = max_active ?: WQ_DFL_ACTIVE;
3840 max_active = wq_clamp_max_active(max_active, flags, wq->name);
3841
3842 /* init wq */
3843 wq->flags = flags;
3844 wq->saved_max_active = max_active;
3845 mutex_init(&wq->flush_mutex);
3846 atomic_set(&wq->nr_pwqs_to_flush, 0);
3847 INIT_LIST_HEAD(&wq->pwqs);
3848 INIT_LIST_HEAD(&wq->flusher_queue);
3849 INIT_LIST_HEAD(&wq->flusher_overflow);
3850 INIT_LIST_HEAD(&wq->maydays);
3851
3852 lockdep_init_map(&wq->lockdep_map, lock_name, key, 0);
3853 INIT_LIST_HEAD(&wq->list);
3854
3855 if (alloc_and_link_pwqs(wq) < 0)
3856 goto err_free_wq;
3857
3858 /*
3859 * Workqueues which may be used during memory reclaim should
3860 * have a rescuer to guarantee forward progress.
3861 */
3862 if (flags & WQ_MEM_RECLAIM) {
3863 struct worker *rescuer;
3864
3865 rescuer = alloc_worker();
3866 if (!rescuer)
3867 goto err_destroy;
3868
3869 rescuer->rescue_wq = wq;
3870 rescuer->task = kthread_create(rescuer_thread, rescuer, "%s",
3871 wq->name);
3872 if (IS_ERR(rescuer->task)) {
3873 kfree(rescuer);
3874 goto err_destroy;
3875 }
3876
3877 wq->rescuer = rescuer;
3878 rescuer->task->flags |= PF_THREAD_BOUND;
3879 wake_up_process(rescuer->task);
3880 }
3881
3882 if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq))
3883 goto err_destroy;
3884
3885 /*
3886 * workqueue_lock protects global freeze state and workqueues list.
3887 * Grab it, adjust max_active and add the new workqueue to
3888 * workqueues list.
3889 */
3890 spin_lock_irq(&workqueue_lock);
3891
3892 for_each_pwq(pwq, wq)
3893 pwq_adjust_max_active(pwq);
3894
3895 list_add(&wq->list, &workqueues);
3896
3897 spin_unlock_irq(&workqueue_lock);
3898
3899 return wq;
3900
3901 err_free_wq:
3902 kfree(wq);
3903 return NULL;
3904 err_destroy:
3905 destroy_workqueue(wq);
3906 return NULL;
3907 }
3908 EXPORT_SYMBOL_GPL(__alloc_workqueue_key);
3909
3910 /**
3911 * destroy_workqueue - safely terminate a workqueue
3912 * @wq: target workqueue
3913 *
3914 * Safely destroy a workqueue. All work currently pending will be done first.
3915 */
3916 void destroy_workqueue(struct workqueue_struct *wq)
3917 {
3918 struct pool_workqueue *pwq;
3919
3920 /* drain it before proceeding with destruction */
3921 drain_workqueue(wq);
3922
3923 spin_lock_irq(&workqueue_lock);
3924
3925 /* sanity checks */
3926 for_each_pwq(pwq, wq) {
3927 int i;
3928
3929 for (i = 0; i < WORK_NR_COLORS; i++) {
3930 if (WARN_ON(pwq->nr_in_flight[i])) {
3931 spin_unlock_irq(&workqueue_lock);
3932 return;
3933 }
3934 }
3935
3936 if (WARN_ON(pwq->refcnt > 1) ||
3937 WARN_ON(pwq->nr_active) ||
3938 WARN_ON(!list_empty(&pwq->delayed_works))) {
3939 spin_unlock_irq(&workqueue_lock);
3940 return;
3941 }
3942 }
3943
3944 /*
3945 * wq list is used to freeze wq, remove from list after
3946 * flushing is complete in case freeze races us.
3947 */
3948 list_del_init(&wq->list);
3949
3950 spin_unlock_irq(&workqueue_lock);
3951
3952 workqueue_sysfs_unregister(wq);
3953
3954 if (wq->rescuer) {
3955 kthread_stop(wq->rescuer->task);
3956 kfree(wq->rescuer);
3957 wq->rescuer = NULL;
3958 }
3959
3960 if (!(wq->flags & WQ_UNBOUND)) {
3961 /*
3962 * The base ref is never dropped on per-cpu pwqs. Directly
3963 * free the pwqs and wq.
3964 */
3965 free_percpu(wq->cpu_pwqs);
3966 kfree(wq);
3967 } else {
3968 /*
3969 * We're the sole accessor of @wq at this point. Directly
3970 * access the first pwq and put the base ref. As both pwqs
3971 * and pools are sched-RCU protected, the lock operations
3972 * are safe. @wq will be freed when the last pwq is
3973 * released.
3974 */
3975 pwq = list_first_entry(&wq->pwqs, struct pool_workqueue,
3976 pwqs_node);
3977 spin_lock_irq(&pwq->pool->lock);
3978 put_pwq(pwq);
3979 spin_unlock_irq(&pwq->pool->lock);
3980 }
3981 }
3982 EXPORT_SYMBOL_GPL(destroy_workqueue);
3983
3984 /**
3985 * workqueue_set_max_active - adjust max_active of a workqueue
3986 * @wq: target workqueue
3987 * @max_active: new max_active value.
3988 *
3989 * Set max_active of @wq to @max_active.
3990 *
3991 * CONTEXT:
3992 * Don't call from IRQ context.
3993 */
3994 void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
3995 {
3996 struct pool_workqueue *pwq;
3997
3998 /* disallow meddling with max_active for ordered workqueues */
3999 if (WARN_ON(wq->flags & __WQ_ORDERED))
4000 return;
4001
4002 max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
4003
4004 spin_lock_irq(&workqueue_lock);
4005
4006 wq->saved_max_active = max_active;
4007
4008 for_each_pwq(pwq, wq)
4009 pwq_adjust_max_active(pwq);
4010
4011 spin_unlock_irq(&workqueue_lock);
4012 }
4013 EXPORT_SYMBOL_GPL(workqueue_set_max_active);
4014
4015 /**
4016 * current_is_workqueue_rescuer - is %current workqueue rescuer?
4017 *
4018 * Determine whether %current is a workqueue rescuer. Can be used from
4019 * work functions to determine whether it's being run off the rescuer task.
4020 */
4021 bool current_is_workqueue_rescuer(void)
4022 {
4023 struct worker *worker = current_wq_worker();
4024
4025 return worker && worker == worker->current_pwq->wq->rescuer;
4026 }
4027
4028 /**
4029 * workqueue_congested - test whether a workqueue is congested
4030 * @cpu: CPU in question
4031 * @wq: target workqueue
4032 *
4033 * Test whether @wq's cpu workqueue for @cpu is congested. There is
4034 * no synchronization around this function and the test result is
4035 * unreliable and only useful as advisory hints or for debugging.
4036 *
4037 * RETURNS:
4038 * %true if congested, %false otherwise.
4039 */
4040 bool workqueue_congested(int cpu, struct workqueue_struct *wq)
4041 {
4042 struct pool_workqueue *pwq;
4043 bool ret;
4044
4045 preempt_disable();
4046
4047 if (!(wq->flags & WQ_UNBOUND))
4048 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
4049 else
4050 pwq = first_pwq(wq);
4051
4052 ret = !list_empty(&pwq->delayed_works);
4053 preempt_enable();
4054
4055 return ret;
4056 }
4057 EXPORT_SYMBOL_GPL(workqueue_congested);
4058
4059 /**
4060 * work_busy - test whether a work is currently pending or running
4061 * @work: the work to be tested
4062 *
4063 * Test whether @work is currently pending or running. There is no
4064 * synchronization around this function and the test result is
4065 * unreliable and only useful as advisory hints or for debugging.
4066 *
4067 * RETURNS:
4068 * OR'd bitmask of WORK_BUSY_* bits.
4069 */
4070 unsigned int work_busy(struct work_struct *work)
4071 {
4072 struct worker_pool *pool;
4073 unsigned long flags;
4074 unsigned int ret = 0;
4075
4076 if (work_pending(work))
4077 ret |= WORK_BUSY_PENDING;
4078
4079 local_irq_save(flags);
4080 pool = get_work_pool(work);
4081 if (pool) {
4082 spin_lock(&pool->lock);
4083 if (find_worker_executing_work(pool, work))
4084 ret |= WORK_BUSY_RUNNING;
4085 spin_unlock(&pool->lock);
4086 }
4087 local_irq_restore(flags);
4088
4089 return ret;
4090 }
4091 EXPORT_SYMBOL_GPL(work_busy);
4092
4093 /*
4094 * CPU hotplug.
4095 *
4096 * There are two challenges in supporting CPU hotplug. Firstly, there
4097 * are a lot of assumptions on strong associations among work, pwq and
4098 * pool which make migrating pending and scheduled works very
4099 * difficult to implement without impacting hot paths. Secondly,
4100 * worker pools serve mix of short, long and very long running works making
4101 * blocked draining impractical.
4102 *
4103 * This is solved by allowing the pools to be disassociated from the CPU
4104 * running as an unbound one and allowing it to be reattached later if the
4105 * cpu comes back online.
4106 */
4107
4108 static void wq_unbind_fn(struct work_struct *work)
4109 {
4110 int cpu = smp_processor_id();
4111 struct worker_pool *pool;
4112 struct worker *worker;
4113 int i;
4114
4115 for_each_cpu_worker_pool(pool, cpu) {
4116 WARN_ON_ONCE(cpu != smp_processor_id());
4117
4118 mutex_lock(&pool->manager_mutex);
4119 spin_lock_irq(&pool->lock);
4120
4121 /*
4122 * We've blocked all manager operations. Make all workers
4123 * unbound and set DISASSOCIATED. Before this, all workers
4124 * except for the ones which are still executing works from
4125 * before the last CPU down must be on the cpu. After
4126 * this, they may become diasporas.
4127 */
4128 list_for_each_entry(worker, &pool->idle_list, entry)
4129 worker->flags |= WORKER_UNBOUND;
4130
4131 for_each_busy_worker(worker, i, pool)
4132 worker->flags |= WORKER_UNBOUND;
4133
4134 pool->flags |= POOL_DISASSOCIATED;
4135
4136 spin_unlock_irq(&pool->lock);
4137 mutex_unlock(&pool->manager_mutex);
4138 }
4139
4140 /*
4141 * Call schedule() so that we cross rq->lock and thus can guarantee
4142 * sched callbacks see the %WORKER_UNBOUND flag. This is necessary
4143 * as scheduler callbacks may be invoked from other cpus.
4144 */
4145 schedule();
4146
4147 /*
4148 * Sched callbacks are disabled now. Zap nr_running. After this,
4149 * nr_running stays zero and need_more_worker() and keep_working()
4150 * are always true as long as the worklist is not empty. Pools on
4151 * @cpu now behave as unbound (in terms of concurrency management)
4152 * pools which are served by workers tied to the CPU.
4153 *
4154 * On return from this function, the current worker would trigger
4155 * unbound chain execution of pending work items if other workers
4156 * didn't already.
4157 */
4158 for_each_cpu_worker_pool(pool, cpu)
4159 atomic_set(&pool->nr_running, 0);
4160 }
4161
4162 /*
4163 * Workqueues should be brought up before normal priority CPU notifiers.
4164 * This will be registered high priority CPU notifier.
4165 */
4166 static int __cpuinit workqueue_cpu_up_callback(struct notifier_block *nfb,
4167 unsigned long action,
4168 void *hcpu)
4169 {
4170 int cpu = (unsigned long)hcpu;
4171 struct worker_pool *pool;
4172
4173 switch (action & ~CPU_TASKS_FROZEN) {
4174 case CPU_UP_PREPARE:
4175 for_each_cpu_worker_pool(pool, cpu) {
4176 if (pool->nr_workers)
4177 continue;
4178 if (create_and_start_worker(pool) < 0)
4179 return NOTIFY_BAD;
4180 }
4181 break;
4182
4183 case CPU_DOWN_FAILED:
4184 case CPU_ONLINE:
4185 for_each_cpu_worker_pool(pool, cpu) {
4186 mutex_lock(&pool->manager_mutex);
4187 spin_lock_irq(&pool->lock);
4188
4189 pool->flags &= ~POOL_DISASSOCIATED;
4190 rebind_workers(pool);
4191
4192 spin_unlock_irq(&pool->lock);
4193 mutex_unlock(&pool->manager_mutex);
4194 }
4195 break;
4196 }
4197 return NOTIFY_OK;
4198 }
4199
4200 /*
4201 * Workqueues should be brought down after normal priority CPU notifiers.
4202 * This will be registered as low priority CPU notifier.
4203 */
4204 static int __cpuinit workqueue_cpu_down_callback(struct notifier_block *nfb,
4205 unsigned long action,
4206 void *hcpu)
4207 {
4208 int cpu = (unsigned long)hcpu;
4209 struct work_struct unbind_work;
4210
4211 switch (action & ~CPU_TASKS_FROZEN) {
4212 case CPU_DOWN_PREPARE:
4213 /* unbinding should happen on the local CPU */
4214 INIT_WORK_ONSTACK(&unbind_work, wq_unbind_fn);
4215 queue_work_on(cpu, system_highpri_wq, &unbind_work);
4216 flush_work(&unbind_work);
4217 break;
4218 }
4219 return NOTIFY_OK;
4220 }
4221
4222 #ifdef CONFIG_SMP
4223
4224 struct work_for_cpu {
4225 struct work_struct work;
4226 long (*fn)(void *);
4227 void *arg;
4228 long ret;
4229 };
4230
4231 static void work_for_cpu_fn(struct work_struct *work)
4232 {
4233 struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);
4234
4235 wfc->ret = wfc->fn(wfc->arg);
4236 }
4237
4238 /**
4239 * work_on_cpu - run a function in user context on a particular cpu
4240 * @cpu: the cpu to run on
4241 * @fn: the function to run
4242 * @arg: the function arg
4243 *
4244 * This will return the value @fn returns.
4245 * It is up to the caller to ensure that the cpu doesn't go offline.
4246 * The caller must not hold any locks which would prevent @fn from completing.
4247 */
4248 long work_on_cpu(int cpu, long (*fn)(void *), void *arg)
4249 {
4250 struct work_for_cpu wfc = { .fn = fn, .arg = arg };
4251
4252 INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn);
4253 schedule_work_on(cpu, &wfc.work);
4254 flush_work(&wfc.work);
4255 return wfc.ret;
4256 }
4257 EXPORT_SYMBOL_GPL(work_on_cpu);
4258 #endif /* CONFIG_SMP */
4259
4260 #ifdef CONFIG_FREEZER
4261
4262 /**
4263 * freeze_workqueues_begin - begin freezing workqueues
4264 *
4265 * Start freezing workqueues. After this function returns, all freezable
4266 * workqueues will queue new works to their delayed_works list instead of
4267 * pool->worklist.
4268 *
4269 * CONTEXT:
4270 * Grabs and releases workqueue_lock and pool->lock's.
4271 */
4272 void freeze_workqueues_begin(void)
4273 {
4274 struct worker_pool *pool;
4275 struct workqueue_struct *wq;
4276 struct pool_workqueue *pwq;
4277 int pi;
4278
4279 spin_lock_irq(&workqueue_lock);
4280
4281 WARN_ON_ONCE(workqueue_freezing);
4282 workqueue_freezing = true;
4283
4284 /* set FREEZING */
4285 for_each_pool(pool, pi) {
4286 spin_lock(&pool->lock);
4287 WARN_ON_ONCE(pool->flags & POOL_FREEZING);
4288 pool->flags |= POOL_FREEZING;
4289 spin_unlock(&pool->lock);
4290 }
4291
4292 /* suppress further executions by setting max_active to zero */
4293 list_for_each_entry(wq, &workqueues, list) {
4294 for_each_pwq(pwq, wq)
4295 pwq_adjust_max_active(pwq);
4296 }
4297
4298 spin_unlock_irq(&workqueue_lock);
4299 }
4300
4301 /**
4302 * freeze_workqueues_busy - are freezable workqueues still busy?
4303 *
4304 * Check whether freezing is complete. This function must be called
4305 * between freeze_workqueues_begin() and thaw_workqueues().
4306 *
4307 * CONTEXT:
4308 * Grabs and releases workqueue_lock.
4309 *
4310 * RETURNS:
4311 * %true if some freezable workqueues are still busy. %false if freezing
4312 * is complete.
4313 */
4314 bool freeze_workqueues_busy(void)
4315 {
4316 bool busy = false;
4317 struct workqueue_struct *wq;
4318 struct pool_workqueue *pwq;
4319
4320 spin_lock_irq(&workqueue_lock);
4321
4322 WARN_ON_ONCE(!workqueue_freezing);
4323
4324 list_for_each_entry(wq, &workqueues, list) {
4325 if (!(wq->flags & WQ_FREEZABLE))
4326 continue;
4327 /*
4328 * nr_active is monotonically decreasing. It's safe
4329 * to peek without lock.
4330 */
4331 for_each_pwq(pwq, wq) {
4332 WARN_ON_ONCE(pwq->nr_active < 0);
4333 if (pwq->nr_active) {
4334 busy = true;
4335 goto out_unlock;
4336 }
4337 }
4338 }
4339 out_unlock:
4340 spin_unlock_irq(&workqueue_lock);
4341 return busy;
4342 }
4343
4344 /**
4345 * thaw_workqueues - thaw workqueues
4346 *
4347 * Thaw workqueues. Normal queueing is restored and all collected
4348 * frozen works are transferred to their respective pool worklists.
4349 *
4350 * CONTEXT:
4351 * Grabs and releases workqueue_lock and pool->lock's.
4352 */
4353 void thaw_workqueues(void)
4354 {
4355 struct workqueue_struct *wq;
4356 struct pool_workqueue *pwq;
4357 struct worker_pool *pool;
4358 int pi;
4359
4360 spin_lock_irq(&workqueue_lock);
4361
4362 if (!workqueue_freezing)
4363 goto out_unlock;
4364
4365 /* clear FREEZING */
4366 for_each_pool(pool, pi) {
4367 spin_lock(&pool->lock);
4368 WARN_ON_ONCE(!(pool->flags & POOL_FREEZING));
4369 pool->flags &= ~POOL_FREEZING;
4370 spin_unlock(&pool->lock);
4371 }
4372
4373 /* restore max_active and repopulate worklist */
4374 list_for_each_entry(wq, &workqueues, list) {
4375 for_each_pwq(pwq, wq)
4376 pwq_adjust_max_active(pwq);
4377 }
4378
4379 /* kick workers */
4380 for_each_pool(pool, pi) {
4381 spin_lock(&pool->lock);
4382 wake_up_worker(pool);
4383 spin_unlock(&pool->lock);
4384 }
4385
4386 workqueue_freezing = false;
4387 out_unlock:
4388 spin_unlock_irq(&workqueue_lock);
4389 }
4390 #endif /* CONFIG_FREEZER */
4391
4392 static int __init init_workqueues(void)
4393 {
4394 int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL };
4395 int i, cpu;
4396
4397 /* make sure we have enough bits for OFFQ pool ID */
4398 BUILD_BUG_ON((1LU << (BITS_PER_LONG - WORK_OFFQ_POOL_SHIFT)) <
4399 WORK_CPU_END * NR_STD_WORKER_POOLS);
4400
4401 WARN_ON(__alignof__(struct pool_workqueue) < __alignof__(long long));
4402
4403 pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC);
4404
4405 cpu_notifier(workqueue_cpu_up_callback, CPU_PRI_WORKQUEUE_UP);
4406 hotcpu_notifier(workqueue_cpu_down_callback, CPU_PRI_WORKQUEUE_DOWN);
4407
4408 /* initialize CPU pools */
4409 for_each_possible_cpu(cpu) {
4410 struct worker_pool *pool;
4411
4412 i = 0;
4413 for_each_cpu_worker_pool(pool, cpu) {
4414 BUG_ON(init_worker_pool(pool));
4415 pool->cpu = cpu;
4416 cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu));
4417 pool->attrs->nice = std_nice[i++];
4418
4419 /* alloc pool ID */
4420 BUG_ON(worker_pool_assign_id(pool));
4421 }
4422 }
4423
4424 /* create the initial worker */
4425 for_each_online_cpu(cpu) {
4426 struct worker_pool *pool;
4427
4428 for_each_cpu_worker_pool(pool, cpu) {
4429 pool->flags &= ~POOL_DISASSOCIATED;
4430 BUG_ON(create_and_start_worker(pool) < 0);
4431 }
4432 }
4433
4434 /* create default unbound wq attrs */
4435 for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
4436 struct workqueue_attrs *attrs;
4437
4438 BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
4439
4440 attrs->nice = std_nice[i];
4441 cpumask_setall(attrs->cpumask);
4442
4443 unbound_std_wq_attrs[i] = attrs;
4444 }
4445
4446 system_wq = alloc_workqueue("events", 0, 0);
4447 system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
4448 system_long_wq = alloc_workqueue("events_long", 0, 0);
4449 system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
4450 WQ_UNBOUND_MAX_ACTIVE);
4451 system_freezable_wq = alloc_workqueue("events_freezable",
4452 WQ_FREEZABLE, 0);
4453 BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
4454 !system_unbound_wq || !system_freezable_wq);
4455 return 0;
4456 }
4457 early_initcall(init_workqueues);