]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - kernel/workqueue.c
workqueue: wake regular worker if need_more_worker() when rescuer leave the pool
[mirror_ubuntu-jammy-kernel.git] / kernel / workqueue.c
1 /*
2 * kernel/workqueue.c - generic async execution with shared worker pool
3 *
4 * Copyright (C) 2002 Ingo Molnar
5 *
6 * Derived from the taskqueue/keventd code by:
7 * David Woodhouse <dwmw2@infradead.org>
8 * Andrew Morton
9 * Kai Petzke <wpp@marie.physik.tu-berlin.de>
10 * Theodore Ts'o <tytso@mit.edu>
11 *
12 * Made to use alloc_percpu by Christoph Lameter.
13 *
14 * Copyright (C) 2010 SUSE Linux Products GmbH
15 * Copyright (C) 2010 Tejun Heo <tj@kernel.org>
16 *
17 * This is the generic async execution mechanism. Work items as are
18 * executed in process context. The worker pool is shared and
19 * automatically managed. There are two worker pools for each CPU (one for
20 * normal work items and the other for high priority ones) and some extra
21 * pools for workqueues which are not bound to any specific CPU - the
22 * number of these backing pools is dynamic.
23 *
24 * Please read Documentation/workqueue.txt for details.
25 */
26
27 #include <linux/export.h>
28 #include <linux/kernel.h>
29 #include <linux/sched.h>
30 #include <linux/init.h>
31 #include <linux/signal.h>
32 #include <linux/completion.h>
33 #include <linux/workqueue.h>
34 #include <linux/slab.h>
35 #include <linux/cpu.h>
36 #include <linux/notifier.h>
37 #include <linux/kthread.h>
38 #include <linux/hardirq.h>
39 #include <linux/mempolicy.h>
40 #include <linux/freezer.h>
41 #include <linux/kallsyms.h>
42 #include <linux/debug_locks.h>
43 #include <linux/lockdep.h>
44 #include <linux/idr.h>
45 #include <linux/jhash.h>
46 #include <linux/hashtable.h>
47 #include <linux/rculist.h>
48 #include <linux/nodemask.h>
49 #include <linux/moduleparam.h>
50 #include <linux/uaccess.h>
51
52 #include "workqueue_internal.h"
53
54 enum {
55 /*
56 * worker_pool flags
57 *
58 * A bound pool is either associated or disassociated with its CPU.
59 * While associated (!DISASSOCIATED), all workers are bound to the
60 * CPU and none has %WORKER_UNBOUND set and concurrency management
61 * is in effect.
62 *
63 * While DISASSOCIATED, the cpu may be offline and all workers have
64 * %WORKER_UNBOUND set and concurrency management disabled, and may
65 * be executing on any CPU. The pool behaves as an unbound one.
66 *
67 * Note that DISASSOCIATED should be flipped only while holding
68 * attach_mutex to avoid changing binding state while
69 * worker_attach_to_pool() is in progress.
70 */
71 POOL_DISASSOCIATED = 1 << 2, /* cpu can't serve workers */
72
73 /* worker flags */
74 WORKER_DIE = 1 << 1, /* die die die */
75 WORKER_IDLE = 1 << 2, /* is idle */
76 WORKER_PREP = 1 << 3, /* preparing to run works */
77 WORKER_CPU_INTENSIVE = 1 << 6, /* cpu intensive */
78 WORKER_UNBOUND = 1 << 7, /* worker is unbound */
79 WORKER_REBOUND = 1 << 8, /* worker was rebound */
80
81 WORKER_NOT_RUNNING = WORKER_PREP | WORKER_CPU_INTENSIVE |
82 WORKER_UNBOUND | WORKER_REBOUND,
83
84 NR_STD_WORKER_POOLS = 2, /* # standard pools per cpu */
85
86 UNBOUND_POOL_HASH_ORDER = 6, /* hashed by pool->attrs */
87 BUSY_WORKER_HASH_ORDER = 6, /* 64 pointers */
88
89 MAX_IDLE_WORKERS_RATIO = 4, /* 1/4 of busy can be idle */
90 IDLE_WORKER_TIMEOUT = 300 * HZ, /* keep idle ones for 5 mins */
91
92 MAYDAY_INITIAL_TIMEOUT = HZ / 100 >= 2 ? HZ / 100 : 2,
93 /* call for help after 10ms
94 (min two ticks) */
95 MAYDAY_INTERVAL = HZ / 10, /* and then every 100ms */
96 CREATE_COOLDOWN = HZ, /* time to breath after fail */
97
98 /*
99 * Rescue workers are used only on emergencies and shared by
100 * all cpus. Give MIN_NICE.
101 */
102 RESCUER_NICE_LEVEL = MIN_NICE,
103 HIGHPRI_NICE_LEVEL = MIN_NICE,
104
105 WQ_NAME_LEN = 24,
106 };
107
108 /*
109 * Structure fields follow one of the following exclusion rules.
110 *
111 * I: Modifiable by initialization/destruction paths and read-only for
112 * everyone else.
113 *
114 * P: Preemption protected. Disabling preemption is enough and should
115 * only be modified and accessed from the local cpu.
116 *
117 * L: pool->lock protected. Access with pool->lock held.
118 *
119 * X: During normal operation, modification requires pool->lock and should
120 * be done only from local cpu. Either disabling preemption on local
121 * cpu or grabbing pool->lock is enough for read access. If
122 * POOL_DISASSOCIATED is set, it's identical to L.
123 *
124 * A: pool->attach_mutex protected.
125 *
126 * PL: wq_pool_mutex protected.
127 *
128 * PR: wq_pool_mutex protected for writes. Sched-RCU protected for reads.
129 *
130 * WQ: wq->mutex protected.
131 *
132 * WR: wq->mutex protected for writes. Sched-RCU protected for reads.
133 *
134 * MD: wq_mayday_lock protected.
135 */
136
137 /* struct worker is defined in workqueue_internal.h */
138
139 struct worker_pool {
140 spinlock_t lock; /* the pool lock */
141 int cpu; /* I: the associated cpu */
142 int node; /* I: the associated node ID */
143 int id; /* I: pool ID */
144 unsigned int flags; /* X: flags */
145
146 struct list_head worklist; /* L: list of pending works */
147 int nr_workers; /* L: total number of workers */
148
149 /* nr_idle includes the ones off idle_list for rebinding */
150 int nr_idle; /* L: currently idle ones */
151
152 struct list_head idle_list; /* X: list of idle workers */
153 struct timer_list idle_timer; /* L: worker idle timeout */
154 struct timer_list mayday_timer; /* L: SOS timer for workers */
155
156 /* a workers is either on busy_hash or idle_list, or the manager */
157 DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
158 /* L: hash of busy workers */
159
160 /* see manage_workers() for details on the two manager mutexes */
161 struct mutex manager_arb; /* manager arbitration */
162 struct mutex attach_mutex; /* attach/detach exclusion */
163 struct list_head workers; /* A: attached workers */
164 struct completion *detach_completion; /* all workers detached */
165
166 struct ida worker_ida; /* worker IDs for task name */
167
168 struct workqueue_attrs *attrs; /* I: worker attributes */
169 struct hlist_node hash_node; /* PL: unbound_pool_hash node */
170 int refcnt; /* PL: refcnt for unbound pools */
171
172 /*
173 * The current concurrency level. As it's likely to be accessed
174 * from other CPUs during try_to_wake_up(), put it in a separate
175 * cacheline.
176 */
177 atomic_t nr_running ____cacheline_aligned_in_smp;
178
179 /*
180 * Destruction of pool is sched-RCU protected to allow dereferences
181 * from get_work_pool().
182 */
183 struct rcu_head rcu;
184 } ____cacheline_aligned_in_smp;
185
186 /*
187 * The per-pool workqueue. While queued, the lower WORK_STRUCT_FLAG_BITS
188 * of work_struct->data are used for flags and the remaining high bits
189 * point to the pwq; thus, pwqs need to be aligned at two's power of the
190 * number of flag bits.
191 */
192 struct pool_workqueue {
193 struct worker_pool *pool; /* I: the associated pool */
194 struct workqueue_struct *wq; /* I: the owning workqueue */
195 int work_color; /* L: current color */
196 int flush_color; /* L: flushing color */
197 int refcnt; /* L: reference count */
198 int nr_in_flight[WORK_NR_COLORS];
199 /* L: nr of in_flight works */
200 int nr_active; /* L: nr of active works */
201 int max_active; /* L: max active works */
202 struct list_head delayed_works; /* L: delayed works */
203 struct list_head pwqs_node; /* WR: node on wq->pwqs */
204 struct list_head mayday_node; /* MD: node on wq->maydays */
205
206 /*
207 * Release of unbound pwq is punted to system_wq. See put_pwq()
208 * and pwq_unbound_release_workfn() for details. pool_workqueue
209 * itself is also sched-RCU protected so that the first pwq can be
210 * determined without grabbing wq->mutex.
211 */
212 struct work_struct unbound_release_work;
213 struct rcu_head rcu;
214 } __aligned(1 << WORK_STRUCT_FLAG_BITS);
215
216 /*
217 * Structure used to wait for workqueue flush.
218 */
219 struct wq_flusher {
220 struct list_head list; /* WQ: list of flushers */
221 int flush_color; /* WQ: flush color waiting for */
222 struct completion done; /* flush completion */
223 };
224
225 struct wq_device;
226
227 /*
228 * The externally visible workqueue. It relays the issued work items to
229 * the appropriate worker_pool through its pool_workqueues.
230 */
231 struct workqueue_struct {
232 struct list_head pwqs; /* WR: all pwqs of this wq */
233 struct list_head list; /* PL: list of all workqueues */
234
235 struct mutex mutex; /* protects this wq */
236 int work_color; /* WQ: current work color */
237 int flush_color; /* WQ: current flush color */
238 atomic_t nr_pwqs_to_flush; /* flush in progress */
239 struct wq_flusher *first_flusher; /* WQ: first flusher */
240 struct list_head flusher_queue; /* WQ: flush waiters */
241 struct list_head flusher_overflow; /* WQ: flush overflow list */
242
243 struct list_head maydays; /* MD: pwqs requesting rescue */
244 struct worker *rescuer; /* I: rescue worker */
245
246 int nr_drainers; /* WQ: drain in progress */
247 int saved_max_active; /* WQ: saved pwq max_active */
248
249 struct workqueue_attrs *unbound_attrs; /* WQ: only for unbound wqs */
250 struct pool_workqueue *dfl_pwq; /* WQ: only for unbound wqs */
251
252 #ifdef CONFIG_SYSFS
253 struct wq_device *wq_dev; /* I: for sysfs interface */
254 #endif
255 #ifdef CONFIG_LOCKDEP
256 struct lockdep_map lockdep_map;
257 #endif
258 char name[WQ_NAME_LEN]; /* I: workqueue name */
259
260 /* hot fields used during command issue, aligned to cacheline */
261 unsigned int flags ____cacheline_aligned; /* WQ: WQ_* flags */
262 struct pool_workqueue __percpu *cpu_pwqs; /* I: per-cpu pwqs */
263 struct pool_workqueue __rcu *numa_pwq_tbl[]; /* FR: unbound pwqs indexed by node */
264 };
265
266 static struct kmem_cache *pwq_cache;
267
268 static int wq_numa_tbl_len; /* highest possible NUMA node id + 1 */
269 static cpumask_var_t *wq_numa_possible_cpumask;
270 /* possible CPUs of each node */
271
272 static bool wq_disable_numa;
273 module_param_named(disable_numa, wq_disable_numa, bool, 0444);
274
275 /* see the comment above the definition of WQ_POWER_EFFICIENT */
276 #ifdef CONFIG_WQ_POWER_EFFICIENT_DEFAULT
277 static bool wq_power_efficient = true;
278 #else
279 static bool wq_power_efficient;
280 #endif
281
282 module_param_named(power_efficient, wq_power_efficient, bool, 0444);
283
284 static bool wq_numa_enabled; /* unbound NUMA affinity enabled */
285
286 /* buf for wq_update_unbound_numa_attrs(), protected by CPU hotplug exclusion */
287 static struct workqueue_attrs *wq_update_unbound_numa_attrs_buf;
288
289 static DEFINE_MUTEX(wq_pool_mutex); /* protects pools and workqueues list */
290 static DEFINE_SPINLOCK(wq_mayday_lock); /* protects wq->maydays list */
291
292 static LIST_HEAD(workqueues); /* PL: list of all workqueues */
293 static bool workqueue_freezing; /* PL: have wqs started freezing? */
294
295 /* the per-cpu worker pools */
296 static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS],
297 cpu_worker_pools);
298
299 static DEFINE_IDR(worker_pool_idr); /* PR: idr of all pools */
300
301 /* PL: hash of all unbound pools keyed by pool->attrs */
302 static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER);
303
304 /* I: attributes used when instantiating standard unbound pools on demand */
305 static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS];
306
307 /* I: attributes used when instantiating ordered pools on demand */
308 static struct workqueue_attrs *ordered_wq_attrs[NR_STD_WORKER_POOLS];
309
310 struct workqueue_struct *system_wq __read_mostly;
311 EXPORT_SYMBOL(system_wq);
312 struct workqueue_struct *system_highpri_wq __read_mostly;
313 EXPORT_SYMBOL_GPL(system_highpri_wq);
314 struct workqueue_struct *system_long_wq __read_mostly;
315 EXPORT_SYMBOL_GPL(system_long_wq);
316 struct workqueue_struct *system_unbound_wq __read_mostly;
317 EXPORT_SYMBOL_GPL(system_unbound_wq);
318 struct workqueue_struct *system_freezable_wq __read_mostly;
319 EXPORT_SYMBOL_GPL(system_freezable_wq);
320 struct workqueue_struct *system_power_efficient_wq __read_mostly;
321 EXPORT_SYMBOL_GPL(system_power_efficient_wq);
322 struct workqueue_struct *system_freezable_power_efficient_wq __read_mostly;
323 EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq);
324
325 static int worker_thread(void *__worker);
326 static void copy_workqueue_attrs(struct workqueue_attrs *to,
327 const struct workqueue_attrs *from);
328
329 #define CREATE_TRACE_POINTS
330 #include <trace/events/workqueue.h>
331
332 #define assert_rcu_or_pool_mutex() \
333 rcu_lockdep_assert(rcu_read_lock_sched_held() || \
334 lockdep_is_held(&wq_pool_mutex), \
335 "sched RCU or wq_pool_mutex should be held")
336
337 #define assert_rcu_or_wq_mutex(wq) \
338 rcu_lockdep_assert(rcu_read_lock_sched_held() || \
339 lockdep_is_held(&wq->mutex), \
340 "sched RCU or wq->mutex should be held")
341
342 #define for_each_cpu_worker_pool(pool, cpu) \
343 for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0]; \
344 (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
345 (pool)++)
346
347 /**
348 * for_each_pool - iterate through all worker_pools in the system
349 * @pool: iteration cursor
350 * @pi: integer used for iteration
351 *
352 * This must be called either with wq_pool_mutex held or sched RCU read
353 * locked. If the pool needs to be used beyond the locking in effect, the
354 * caller is responsible for guaranteeing that the pool stays online.
355 *
356 * The if/else clause exists only for the lockdep assertion and can be
357 * ignored.
358 */
359 #define for_each_pool(pool, pi) \
360 idr_for_each_entry(&worker_pool_idr, pool, pi) \
361 if (({ assert_rcu_or_pool_mutex(); false; })) { } \
362 else
363
364 /**
365 * for_each_pool_worker - iterate through all workers of a worker_pool
366 * @worker: iteration cursor
367 * @pool: worker_pool to iterate workers of
368 *
369 * This must be called with @pool->attach_mutex.
370 *
371 * The if/else clause exists only for the lockdep assertion and can be
372 * ignored.
373 */
374 #define for_each_pool_worker(worker, pool) \
375 list_for_each_entry((worker), &(pool)->workers, node) \
376 if (({ lockdep_assert_held(&pool->attach_mutex); false; })) { } \
377 else
378
379 /**
380 * for_each_pwq - iterate through all pool_workqueues of the specified workqueue
381 * @pwq: iteration cursor
382 * @wq: the target workqueue
383 *
384 * This must be called either with wq->mutex held or sched RCU read locked.
385 * If the pwq needs to be used beyond the locking in effect, the caller is
386 * responsible for guaranteeing that the pwq stays online.
387 *
388 * The if/else clause exists only for the lockdep assertion and can be
389 * ignored.
390 */
391 #define for_each_pwq(pwq, wq) \
392 list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node) \
393 if (({ assert_rcu_or_wq_mutex(wq); false; })) { } \
394 else
395
396 #ifdef CONFIG_DEBUG_OBJECTS_WORK
397
398 static struct debug_obj_descr work_debug_descr;
399
400 static void *work_debug_hint(void *addr)
401 {
402 return ((struct work_struct *) addr)->func;
403 }
404
405 /*
406 * fixup_init is called when:
407 * - an active object is initialized
408 */
409 static int work_fixup_init(void *addr, enum debug_obj_state state)
410 {
411 struct work_struct *work = addr;
412
413 switch (state) {
414 case ODEBUG_STATE_ACTIVE:
415 cancel_work_sync(work);
416 debug_object_init(work, &work_debug_descr);
417 return 1;
418 default:
419 return 0;
420 }
421 }
422
423 /*
424 * fixup_activate is called when:
425 * - an active object is activated
426 * - an unknown object is activated (might be a statically initialized object)
427 */
428 static int work_fixup_activate(void *addr, enum debug_obj_state state)
429 {
430 struct work_struct *work = addr;
431
432 switch (state) {
433
434 case ODEBUG_STATE_NOTAVAILABLE:
435 /*
436 * This is not really a fixup. The work struct was
437 * statically initialized. We just make sure that it
438 * is tracked in the object tracker.
439 */
440 if (test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work))) {
441 debug_object_init(work, &work_debug_descr);
442 debug_object_activate(work, &work_debug_descr);
443 return 0;
444 }
445 WARN_ON_ONCE(1);
446 return 0;
447
448 case ODEBUG_STATE_ACTIVE:
449 WARN_ON(1);
450
451 default:
452 return 0;
453 }
454 }
455
456 /*
457 * fixup_free is called when:
458 * - an active object is freed
459 */
460 static int work_fixup_free(void *addr, enum debug_obj_state state)
461 {
462 struct work_struct *work = addr;
463
464 switch (state) {
465 case ODEBUG_STATE_ACTIVE:
466 cancel_work_sync(work);
467 debug_object_free(work, &work_debug_descr);
468 return 1;
469 default:
470 return 0;
471 }
472 }
473
474 static struct debug_obj_descr work_debug_descr = {
475 .name = "work_struct",
476 .debug_hint = work_debug_hint,
477 .fixup_init = work_fixup_init,
478 .fixup_activate = work_fixup_activate,
479 .fixup_free = work_fixup_free,
480 };
481
482 static inline void debug_work_activate(struct work_struct *work)
483 {
484 debug_object_activate(work, &work_debug_descr);
485 }
486
487 static inline void debug_work_deactivate(struct work_struct *work)
488 {
489 debug_object_deactivate(work, &work_debug_descr);
490 }
491
492 void __init_work(struct work_struct *work, int onstack)
493 {
494 if (onstack)
495 debug_object_init_on_stack(work, &work_debug_descr);
496 else
497 debug_object_init(work, &work_debug_descr);
498 }
499 EXPORT_SYMBOL_GPL(__init_work);
500
501 void destroy_work_on_stack(struct work_struct *work)
502 {
503 debug_object_free(work, &work_debug_descr);
504 }
505 EXPORT_SYMBOL_GPL(destroy_work_on_stack);
506
507 void destroy_delayed_work_on_stack(struct delayed_work *work)
508 {
509 destroy_timer_on_stack(&work->timer);
510 debug_object_free(&work->work, &work_debug_descr);
511 }
512 EXPORT_SYMBOL_GPL(destroy_delayed_work_on_stack);
513
514 #else
515 static inline void debug_work_activate(struct work_struct *work) { }
516 static inline void debug_work_deactivate(struct work_struct *work) { }
517 #endif
518
519 /**
520 * worker_pool_assign_id - allocate ID and assing it to @pool
521 * @pool: the pool pointer of interest
522 *
523 * Returns 0 if ID in [0, WORK_OFFQ_POOL_NONE) is allocated and assigned
524 * successfully, -errno on failure.
525 */
526 static int worker_pool_assign_id(struct worker_pool *pool)
527 {
528 int ret;
529
530 lockdep_assert_held(&wq_pool_mutex);
531
532 ret = idr_alloc(&worker_pool_idr, pool, 0, WORK_OFFQ_POOL_NONE,
533 GFP_KERNEL);
534 if (ret >= 0) {
535 pool->id = ret;
536 return 0;
537 }
538 return ret;
539 }
540
541 /**
542 * unbound_pwq_by_node - return the unbound pool_workqueue for the given node
543 * @wq: the target workqueue
544 * @node: the node ID
545 *
546 * This must be called either with pwq_lock held or sched RCU read locked.
547 * If the pwq needs to be used beyond the locking in effect, the caller is
548 * responsible for guaranteeing that the pwq stays online.
549 *
550 * Return: The unbound pool_workqueue for @node.
551 */
552 static struct pool_workqueue *unbound_pwq_by_node(struct workqueue_struct *wq,
553 int node)
554 {
555 assert_rcu_or_wq_mutex(wq);
556 return rcu_dereference_raw(wq->numa_pwq_tbl[node]);
557 }
558
559 static unsigned int work_color_to_flags(int color)
560 {
561 return color << WORK_STRUCT_COLOR_SHIFT;
562 }
563
564 static int get_work_color(struct work_struct *work)
565 {
566 return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
567 ((1 << WORK_STRUCT_COLOR_BITS) - 1);
568 }
569
570 static int work_next_color(int color)
571 {
572 return (color + 1) % WORK_NR_COLORS;
573 }
574
575 /*
576 * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
577 * contain the pointer to the queued pwq. Once execution starts, the flag
578 * is cleared and the high bits contain OFFQ flags and pool ID.
579 *
580 * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling()
581 * and clear_work_data() can be used to set the pwq, pool or clear
582 * work->data. These functions should only be called while the work is
583 * owned - ie. while the PENDING bit is set.
584 *
585 * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
586 * corresponding to a work. Pool is available once the work has been
587 * queued anywhere after initialization until it is sync canceled. pwq is
588 * available only while the work item is queued.
589 *
590 * %WORK_OFFQ_CANCELING is used to mark a work item which is being
591 * canceled. While being canceled, a work item may have its PENDING set
592 * but stay off timer and worklist for arbitrarily long and nobody should
593 * try to steal the PENDING bit.
594 */
595 static inline void set_work_data(struct work_struct *work, unsigned long data,
596 unsigned long flags)
597 {
598 WARN_ON_ONCE(!work_pending(work));
599 atomic_long_set(&work->data, data | flags | work_static(work));
600 }
601
602 static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq,
603 unsigned long extra_flags)
604 {
605 set_work_data(work, (unsigned long)pwq,
606 WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags);
607 }
608
609 static void set_work_pool_and_keep_pending(struct work_struct *work,
610 int pool_id)
611 {
612 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT,
613 WORK_STRUCT_PENDING);
614 }
615
616 static void set_work_pool_and_clear_pending(struct work_struct *work,
617 int pool_id)
618 {
619 /*
620 * The following wmb is paired with the implied mb in
621 * test_and_set_bit(PENDING) and ensures all updates to @work made
622 * here are visible to and precede any updates by the next PENDING
623 * owner.
624 */
625 smp_wmb();
626 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0);
627 }
628
629 static void clear_work_data(struct work_struct *work)
630 {
631 smp_wmb(); /* see set_work_pool_and_clear_pending() */
632 set_work_data(work, WORK_STRUCT_NO_POOL, 0);
633 }
634
635 static struct pool_workqueue *get_work_pwq(struct work_struct *work)
636 {
637 unsigned long data = atomic_long_read(&work->data);
638
639 if (data & WORK_STRUCT_PWQ)
640 return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
641 else
642 return NULL;
643 }
644
645 /**
646 * get_work_pool - return the worker_pool a given work was associated with
647 * @work: the work item of interest
648 *
649 * Pools are created and destroyed under wq_pool_mutex, and allows read
650 * access under sched-RCU read lock. As such, this function should be
651 * called under wq_pool_mutex or with preemption disabled.
652 *
653 * All fields of the returned pool are accessible as long as the above
654 * mentioned locking is in effect. If the returned pool needs to be used
655 * beyond the critical section, the caller is responsible for ensuring the
656 * returned pool is and stays online.
657 *
658 * Return: The worker_pool @work was last associated with. %NULL if none.
659 */
660 static struct worker_pool *get_work_pool(struct work_struct *work)
661 {
662 unsigned long data = atomic_long_read(&work->data);
663 int pool_id;
664
665 assert_rcu_or_pool_mutex();
666
667 if (data & WORK_STRUCT_PWQ)
668 return ((struct pool_workqueue *)
669 (data & WORK_STRUCT_WQ_DATA_MASK))->pool;
670
671 pool_id = data >> WORK_OFFQ_POOL_SHIFT;
672 if (pool_id == WORK_OFFQ_POOL_NONE)
673 return NULL;
674
675 return idr_find(&worker_pool_idr, pool_id);
676 }
677
678 /**
679 * get_work_pool_id - return the worker pool ID a given work is associated with
680 * @work: the work item of interest
681 *
682 * Return: The worker_pool ID @work was last associated with.
683 * %WORK_OFFQ_POOL_NONE if none.
684 */
685 static int get_work_pool_id(struct work_struct *work)
686 {
687 unsigned long data = atomic_long_read(&work->data);
688
689 if (data & WORK_STRUCT_PWQ)
690 return ((struct pool_workqueue *)
691 (data & WORK_STRUCT_WQ_DATA_MASK))->pool->id;
692
693 return data >> WORK_OFFQ_POOL_SHIFT;
694 }
695
696 static void mark_work_canceling(struct work_struct *work)
697 {
698 unsigned long pool_id = get_work_pool_id(work);
699
700 pool_id <<= WORK_OFFQ_POOL_SHIFT;
701 set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING);
702 }
703
704 static bool work_is_canceling(struct work_struct *work)
705 {
706 unsigned long data = atomic_long_read(&work->data);
707
708 return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING);
709 }
710
711 /*
712 * Policy functions. These define the policies on how the global worker
713 * pools are managed. Unless noted otherwise, these functions assume that
714 * they're being called with pool->lock held.
715 */
716
717 static bool __need_more_worker(struct worker_pool *pool)
718 {
719 return !atomic_read(&pool->nr_running);
720 }
721
722 /*
723 * Need to wake up a worker? Called from anything but currently
724 * running workers.
725 *
726 * Note that, because unbound workers never contribute to nr_running, this
727 * function will always return %true for unbound pools as long as the
728 * worklist isn't empty.
729 */
730 static bool need_more_worker(struct worker_pool *pool)
731 {
732 return !list_empty(&pool->worklist) && __need_more_worker(pool);
733 }
734
735 /* Can I start working? Called from busy but !running workers. */
736 static bool may_start_working(struct worker_pool *pool)
737 {
738 return pool->nr_idle;
739 }
740
741 /* Do I need to keep working? Called from currently running workers. */
742 static bool keep_working(struct worker_pool *pool)
743 {
744 return !list_empty(&pool->worklist) &&
745 atomic_read(&pool->nr_running) <= 1;
746 }
747
748 /* Do we need a new worker? Called from manager. */
749 static bool need_to_create_worker(struct worker_pool *pool)
750 {
751 return need_more_worker(pool) && !may_start_working(pool);
752 }
753
754 /* Do we have too many workers and should some go away? */
755 static bool too_many_workers(struct worker_pool *pool)
756 {
757 bool managing = mutex_is_locked(&pool->manager_arb);
758 int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
759 int nr_busy = pool->nr_workers - nr_idle;
760
761 return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
762 }
763
764 /*
765 * Wake up functions.
766 */
767
768 /* Return the first idle worker. Safe with preemption disabled */
769 static struct worker *first_idle_worker(struct worker_pool *pool)
770 {
771 if (unlikely(list_empty(&pool->idle_list)))
772 return NULL;
773
774 return list_first_entry(&pool->idle_list, struct worker, entry);
775 }
776
777 /**
778 * wake_up_worker - wake up an idle worker
779 * @pool: worker pool to wake worker from
780 *
781 * Wake up the first idle worker of @pool.
782 *
783 * CONTEXT:
784 * spin_lock_irq(pool->lock).
785 */
786 static void wake_up_worker(struct worker_pool *pool)
787 {
788 struct worker *worker = first_idle_worker(pool);
789
790 if (likely(worker))
791 wake_up_process(worker->task);
792 }
793
794 /**
795 * wq_worker_waking_up - a worker is waking up
796 * @task: task waking up
797 * @cpu: CPU @task is waking up to
798 *
799 * This function is called during try_to_wake_up() when a worker is
800 * being awoken.
801 *
802 * CONTEXT:
803 * spin_lock_irq(rq->lock)
804 */
805 void wq_worker_waking_up(struct task_struct *task, int cpu)
806 {
807 struct worker *worker = kthread_data(task);
808
809 if (!(worker->flags & WORKER_NOT_RUNNING)) {
810 WARN_ON_ONCE(worker->pool->cpu != cpu);
811 atomic_inc(&worker->pool->nr_running);
812 }
813 }
814
815 /**
816 * wq_worker_sleeping - a worker is going to sleep
817 * @task: task going to sleep
818 * @cpu: CPU in question, must be the current CPU number
819 *
820 * This function is called during schedule() when a busy worker is
821 * going to sleep. Worker on the same cpu can be woken up by
822 * returning pointer to its task.
823 *
824 * CONTEXT:
825 * spin_lock_irq(rq->lock)
826 *
827 * Return:
828 * Worker task on @cpu to wake up, %NULL if none.
829 */
830 struct task_struct *wq_worker_sleeping(struct task_struct *task, int cpu)
831 {
832 struct worker *worker = kthread_data(task), *to_wakeup = NULL;
833 struct worker_pool *pool;
834
835 /*
836 * Rescuers, which may not have all the fields set up like normal
837 * workers, also reach here, let's not access anything before
838 * checking NOT_RUNNING.
839 */
840 if (worker->flags & WORKER_NOT_RUNNING)
841 return NULL;
842
843 pool = worker->pool;
844
845 /* this can only happen on the local cpu */
846 if (WARN_ON_ONCE(cpu != raw_smp_processor_id() || pool->cpu != cpu))
847 return NULL;
848
849 /*
850 * The counterpart of the following dec_and_test, implied mb,
851 * worklist not empty test sequence is in insert_work().
852 * Please read comment there.
853 *
854 * NOT_RUNNING is clear. This means that we're bound to and
855 * running on the local cpu w/ rq lock held and preemption
856 * disabled, which in turn means that none else could be
857 * manipulating idle_list, so dereferencing idle_list without pool
858 * lock is safe.
859 */
860 if (atomic_dec_and_test(&pool->nr_running) &&
861 !list_empty(&pool->worklist))
862 to_wakeup = first_idle_worker(pool);
863 return to_wakeup ? to_wakeup->task : NULL;
864 }
865
866 /**
867 * worker_set_flags - set worker flags and adjust nr_running accordingly
868 * @worker: self
869 * @flags: flags to set
870 * @wakeup: wakeup an idle worker if necessary
871 *
872 * Set @flags in @worker->flags and adjust nr_running accordingly. If
873 * nr_running becomes zero and @wakeup is %true, an idle worker is
874 * woken up.
875 *
876 * CONTEXT:
877 * spin_lock_irq(pool->lock)
878 */
879 static inline void worker_set_flags(struct worker *worker, unsigned int flags,
880 bool wakeup)
881 {
882 struct worker_pool *pool = worker->pool;
883
884 WARN_ON_ONCE(worker->task != current);
885
886 /*
887 * If transitioning into NOT_RUNNING, adjust nr_running and
888 * wake up an idle worker as necessary if requested by
889 * @wakeup.
890 */
891 if ((flags & WORKER_NOT_RUNNING) &&
892 !(worker->flags & WORKER_NOT_RUNNING)) {
893 if (wakeup) {
894 if (atomic_dec_and_test(&pool->nr_running) &&
895 !list_empty(&pool->worklist))
896 wake_up_worker(pool);
897 } else
898 atomic_dec(&pool->nr_running);
899 }
900
901 worker->flags |= flags;
902 }
903
904 /**
905 * worker_clr_flags - clear worker flags and adjust nr_running accordingly
906 * @worker: self
907 * @flags: flags to clear
908 *
909 * Clear @flags in @worker->flags and adjust nr_running accordingly.
910 *
911 * CONTEXT:
912 * spin_lock_irq(pool->lock)
913 */
914 static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
915 {
916 struct worker_pool *pool = worker->pool;
917 unsigned int oflags = worker->flags;
918
919 WARN_ON_ONCE(worker->task != current);
920
921 worker->flags &= ~flags;
922
923 /*
924 * If transitioning out of NOT_RUNNING, increment nr_running. Note
925 * that the nested NOT_RUNNING is not a noop. NOT_RUNNING is mask
926 * of multiple flags, not a single flag.
927 */
928 if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
929 if (!(worker->flags & WORKER_NOT_RUNNING))
930 atomic_inc(&pool->nr_running);
931 }
932
933 /**
934 * find_worker_executing_work - find worker which is executing a work
935 * @pool: pool of interest
936 * @work: work to find worker for
937 *
938 * Find a worker which is executing @work on @pool by searching
939 * @pool->busy_hash which is keyed by the address of @work. For a worker
940 * to match, its current execution should match the address of @work and
941 * its work function. This is to avoid unwanted dependency between
942 * unrelated work executions through a work item being recycled while still
943 * being executed.
944 *
945 * This is a bit tricky. A work item may be freed once its execution
946 * starts and nothing prevents the freed area from being recycled for
947 * another work item. If the same work item address ends up being reused
948 * before the original execution finishes, workqueue will identify the
949 * recycled work item as currently executing and make it wait until the
950 * current execution finishes, introducing an unwanted dependency.
951 *
952 * This function checks the work item address and work function to avoid
953 * false positives. Note that this isn't complete as one may construct a
954 * work function which can introduce dependency onto itself through a
955 * recycled work item. Well, if somebody wants to shoot oneself in the
956 * foot that badly, there's only so much we can do, and if such deadlock
957 * actually occurs, it should be easy to locate the culprit work function.
958 *
959 * CONTEXT:
960 * spin_lock_irq(pool->lock).
961 *
962 * Return:
963 * Pointer to worker which is executing @work if found, %NULL
964 * otherwise.
965 */
966 static struct worker *find_worker_executing_work(struct worker_pool *pool,
967 struct work_struct *work)
968 {
969 struct worker *worker;
970
971 hash_for_each_possible(pool->busy_hash, worker, hentry,
972 (unsigned long)work)
973 if (worker->current_work == work &&
974 worker->current_func == work->func)
975 return worker;
976
977 return NULL;
978 }
979
980 /**
981 * move_linked_works - move linked works to a list
982 * @work: start of series of works to be scheduled
983 * @head: target list to append @work to
984 * @nextp: out paramter for nested worklist walking
985 *
986 * Schedule linked works starting from @work to @head. Work series to
987 * be scheduled starts at @work and includes any consecutive work with
988 * WORK_STRUCT_LINKED set in its predecessor.
989 *
990 * If @nextp is not NULL, it's updated to point to the next work of
991 * the last scheduled work. This allows move_linked_works() to be
992 * nested inside outer list_for_each_entry_safe().
993 *
994 * CONTEXT:
995 * spin_lock_irq(pool->lock).
996 */
997 static void move_linked_works(struct work_struct *work, struct list_head *head,
998 struct work_struct **nextp)
999 {
1000 struct work_struct *n;
1001
1002 /*
1003 * Linked worklist will always end before the end of the list,
1004 * use NULL for list head.
1005 */
1006 list_for_each_entry_safe_from(work, n, NULL, entry) {
1007 list_move_tail(&work->entry, head);
1008 if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
1009 break;
1010 }
1011
1012 /*
1013 * If we're already inside safe list traversal and have moved
1014 * multiple works to the scheduled queue, the next position
1015 * needs to be updated.
1016 */
1017 if (nextp)
1018 *nextp = n;
1019 }
1020
1021 /**
1022 * get_pwq - get an extra reference on the specified pool_workqueue
1023 * @pwq: pool_workqueue to get
1024 *
1025 * Obtain an extra reference on @pwq. The caller should guarantee that
1026 * @pwq has positive refcnt and be holding the matching pool->lock.
1027 */
1028 static void get_pwq(struct pool_workqueue *pwq)
1029 {
1030 lockdep_assert_held(&pwq->pool->lock);
1031 WARN_ON_ONCE(pwq->refcnt <= 0);
1032 pwq->refcnt++;
1033 }
1034
1035 /**
1036 * put_pwq - put a pool_workqueue reference
1037 * @pwq: pool_workqueue to put
1038 *
1039 * Drop a reference of @pwq. If its refcnt reaches zero, schedule its
1040 * destruction. The caller should be holding the matching pool->lock.
1041 */
1042 static void put_pwq(struct pool_workqueue *pwq)
1043 {
1044 lockdep_assert_held(&pwq->pool->lock);
1045 if (likely(--pwq->refcnt))
1046 return;
1047 if (WARN_ON_ONCE(!(pwq->wq->flags & WQ_UNBOUND)))
1048 return;
1049 /*
1050 * @pwq can't be released under pool->lock, bounce to
1051 * pwq_unbound_release_workfn(). This never recurses on the same
1052 * pool->lock as this path is taken only for unbound workqueues and
1053 * the release work item is scheduled on a per-cpu workqueue. To
1054 * avoid lockdep warning, unbound pool->locks are given lockdep
1055 * subclass of 1 in get_unbound_pool().
1056 */
1057 schedule_work(&pwq->unbound_release_work);
1058 }
1059
1060 /**
1061 * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock
1062 * @pwq: pool_workqueue to put (can be %NULL)
1063 *
1064 * put_pwq() with locking. This function also allows %NULL @pwq.
1065 */
1066 static void put_pwq_unlocked(struct pool_workqueue *pwq)
1067 {
1068 if (pwq) {
1069 /*
1070 * As both pwqs and pools are sched-RCU protected, the
1071 * following lock operations are safe.
1072 */
1073 spin_lock_irq(&pwq->pool->lock);
1074 put_pwq(pwq);
1075 spin_unlock_irq(&pwq->pool->lock);
1076 }
1077 }
1078
1079 static void pwq_activate_delayed_work(struct work_struct *work)
1080 {
1081 struct pool_workqueue *pwq = get_work_pwq(work);
1082
1083 trace_workqueue_activate_work(work);
1084 move_linked_works(work, &pwq->pool->worklist, NULL);
1085 __clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
1086 pwq->nr_active++;
1087 }
1088
1089 static void pwq_activate_first_delayed(struct pool_workqueue *pwq)
1090 {
1091 struct work_struct *work = list_first_entry(&pwq->delayed_works,
1092 struct work_struct, entry);
1093
1094 pwq_activate_delayed_work(work);
1095 }
1096
1097 /**
1098 * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
1099 * @pwq: pwq of interest
1100 * @color: color of work which left the queue
1101 *
1102 * A work either has completed or is removed from pending queue,
1103 * decrement nr_in_flight of its pwq and handle workqueue flushing.
1104 *
1105 * CONTEXT:
1106 * spin_lock_irq(pool->lock).
1107 */
1108 static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, int color)
1109 {
1110 /* uncolored work items don't participate in flushing or nr_active */
1111 if (color == WORK_NO_COLOR)
1112 goto out_put;
1113
1114 pwq->nr_in_flight[color]--;
1115
1116 pwq->nr_active--;
1117 if (!list_empty(&pwq->delayed_works)) {
1118 /* one down, submit a delayed one */
1119 if (pwq->nr_active < pwq->max_active)
1120 pwq_activate_first_delayed(pwq);
1121 }
1122
1123 /* is flush in progress and are we at the flushing tip? */
1124 if (likely(pwq->flush_color != color))
1125 goto out_put;
1126
1127 /* are there still in-flight works? */
1128 if (pwq->nr_in_flight[color])
1129 goto out_put;
1130
1131 /* this pwq is done, clear flush_color */
1132 pwq->flush_color = -1;
1133
1134 /*
1135 * If this was the last pwq, wake up the first flusher. It
1136 * will handle the rest.
1137 */
1138 if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush))
1139 complete(&pwq->wq->first_flusher->done);
1140 out_put:
1141 put_pwq(pwq);
1142 }
1143
1144 /**
1145 * try_to_grab_pending - steal work item from worklist and disable irq
1146 * @work: work item to steal
1147 * @is_dwork: @work is a delayed_work
1148 * @flags: place to store irq state
1149 *
1150 * Try to grab PENDING bit of @work. This function can handle @work in any
1151 * stable state - idle, on timer or on worklist.
1152 *
1153 * Return:
1154 * 1 if @work was pending and we successfully stole PENDING
1155 * 0 if @work was idle and we claimed PENDING
1156 * -EAGAIN if PENDING couldn't be grabbed at the moment, safe to busy-retry
1157 * -ENOENT if someone else is canceling @work, this state may persist
1158 * for arbitrarily long
1159 *
1160 * Note:
1161 * On >= 0 return, the caller owns @work's PENDING bit. To avoid getting
1162 * interrupted while holding PENDING and @work off queue, irq must be
1163 * disabled on entry. This, combined with delayed_work->timer being
1164 * irqsafe, ensures that we return -EAGAIN for finite short period of time.
1165 *
1166 * On successful return, >= 0, irq is disabled and the caller is
1167 * responsible for releasing it using local_irq_restore(*@flags).
1168 *
1169 * This function is safe to call from any context including IRQ handler.
1170 */
1171 static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
1172 unsigned long *flags)
1173 {
1174 struct worker_pool *pool;
1175 struct pool_workqueue *pwq;
1176
1177 local_irq_save(*flags);
1178
1179 /* try to steal the timer if it exists */
1180 if (is_dwork) {
1181 struct delayed_work *dwork = to_delayed_work(work);
1182
1183 /*
1184 * dwork->timer is irqsafe. If del_timer() fails, it's
1185 * guaranteed that the timer is not queued anywhere and not
1186 * running on the local CPU.
1187 */
1188 if (likely(del_timer(&dwork->timer)))
1189 return 1;
1190 }
1191
1192 /* try to claim PENDING the normal way */
1193 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
1194 return 0;
1195
1196 /*
1197 * The queueing is in progress, or it is already queued. Try to
1198 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
1199 */
1200 pool = get_work_pool(work);
1201 if (!pool)
1202 goto fail;
1203
1204 spin_lock(&pool->lock);
1205 /*
1206 * work->data is guaranteed to point to pwq only while the work
1207 * item is queued on pwq->wq, and both updating work->data to point
1208 * to pwq on queueing and to pool on dequeueing are done under
1209 * pwq->pool->lock. This in turn guarantees that, if work->data
1210 * points to pwq which is associated with a locked pool, the work
1211 * item is currently queued on that pool.
1212 */
1213 pwq = get_work_pwq(work);
1214 if (pwq && pwq->pool == pool) {
1215 debug_work_deactivate(work);
1216
1217 /*
1218 * A delayed work item cannot be grabbed directly because
1219 * it might have linked NO_COLOR work items which, if left
1220 * on the delayed_list, will confuse pwq->nr_active
1221 * management later on and cause stall. Make sure the work
1222 * item is activated before grabbing.
1223 */
1224 if (*work_data_bits(work) & WORK_STRUCT_DELAYED)
1225 pwq_activate_delayed_work(work);
1226
1227 list_del_init(&work->entry);
1228 pwq_dec_nr_in_flight(pwq, get_work_color(work));
1229
1230 /* work->data points to pwq iff queued, point to pool */
1231 set_work_pool_and_keep_pending(work, pool->id);
1232
1233 spin_unlock(&pool->lock);
1234 return 1;
1235 }
1236 spin_unlock(&pool->lock);
1237 fail:
1238 local_irq_restore(*flags);
1239 if (work_is_canceling(work))
1240 return -ENOENT;
1241 cpu_relax();
1242 return -EAGAIN;
1243 }
1244
1245 /**
1246 * insert_work - insert a work into a pool
1247 * @pwq: pwq @work belongs to
1248 * @work: work to insert
1249 * @head: insertion point
1250 * @extra_flags: extra WORK_STRUCT_* flags to set
1251 *
1252 * Insert @work which belongs to @pwq after @head. @extra_flags is or'd to
1253 * work_struct flags.
1254 *
1255 * CONTEXT:
1256 * spin_lock_irq(pool->lock).
1257 */
1258 static void insert_work(struct pool_workqueue *pwq, struct work_struct *work,
1259 struct list_head *head, unsigned int extra_flags)
1260 {
1261 struct worker_pool *pool = pwq->pool;
1262
1263 /* we own @work, set data and link */
1264 set_work_pwq(work, pwq, extra_flags);
1265 list_add_tail(&work->entry, head);
1266 get_pwq(pwq);
1267
1268 /*
1269 * Ensure either wq_worker_sleeping() sees the above
1270 * list_add_tail() or we see zero nr_running to avoid workers lying
1271 * around lazily while there are works to be processed.
1272 */
1273 smp_mb();
1274
1275 if (__need_more_worker(pool))
1276 wake_up_worker(pool);
1277 }
1278
1279 /*
1280 * Test whether @work is being queued from another work executing on the
1281 * same workqueue.
1282 */
1283 static bool is_chained_work(struct workqueue_struct *wq)
1284 {
1285 struct worker *worker;
1286
1287 worker = current_wq_worker();
1288 /*
1289 * Return %true iff I'm a worker execuing a work item on @wq. If
1290 * I'm @worker, it's safe to dereference it without locking.
1291 */
1292 return worker && worker->current_pwq->wq == wq;
1293 }
1294
1295 static void __queue_work(int cpu, struct workqueue_struct *wq,
1296 struct work_struct *work)
1297 {
1298 struct pool_workqueue *pwq;
1299 struct worker_pool *last_pool;
1300 struct list_head *worklist;
1301 unsigned int work_flags;
1302 unsigned int req_cpu = cpu;
1303
1304 /*
1305 * While a work item is PENDING && off queue, a task trying to
1306 * steal the PENDING will busy-loop waiting for it to either get
1307 * queued or lose PENDING. Grabbing PENDING and queueing should
1308 * happen with IRQ disabled.
1309 */
1310 WARN_ON_ONCE(!irqs_disabled());
1311
1312 debug_work_activate(work);
1313
1314 /* if draining, only works from the same workqueue are allowed */
1315 if (unlikely(wq->flags & __WQ_DRAINING) &&
1316 WARN_ON_ONCE(!is_chained_work(wq)))
1317 return;
1318 retry:
1319 if (req_cpu == WORK_CPU_UNBOUND)
1320 cpu = raw_smp_processor_id();
1321
1322 /* pwq which will be used unless @work is executing elsewhere */
1323 if (!(wq->flags & WQ_UNBOUND))
1324 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
1325 else
1326 pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
1327
1328 /*
1329 * If @work was previously on a different pool, it might still be
1330 * running there, in which case the work needs to be queued on that
1331 * pool to guarantee non-reentrancy.
1332 */
1333 last_pool = get_work_pool(work);
1334 if (last_pool && last_pool != pwq->pool) {
1335 struct worker *worker;
1336
1337 spin_lock(&last_pool->lock);
1338
1339 worker = find_worker_executing_work(last_pool, work);
1340
1341 if (worker && worker->current_pwq->wq == wq) {
1342 pwq = worker->current_pwq;
1343 } else {
1344 /* meh... not running there, queue here */
1345 spin_unlock(&last_pool->lock);
1346 spin_lock(&pwq->pool->lock);
1347 }
1348 } else {
1349 spin_lock(&pwq->pool->lock);
1350 }
1351
1352 /*
1353 * pwq is determined and locked. For unbound pools, we could have
1354 * raced with pwq release and it could already be dead. If its
1355 * refcnt is zero, repeat pwq selection. Note that pwqs never die
1356 * without another pwq replacing it in the numa_pwq_tbl or while
1357 * work items are executing on it, so the retrying is guaranteed to
1358 * make forward-progress.
1359 */
1360 if (unlikely(!pwq->refcnt)) {
1361 if (wq->flags & WQ_UNBOUND) {
1362 spin_unlock(&pwq->pool->lock);
1363 cpu_relax();
1364 goto retry;
1365 }
1366 /* oops */
1367 WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt",
1368 wq->name, cpu);
1369 }
1370
1371 /* pwq determined, queue */
1372 trace_workqueue_queue_work(req_cpu, pwq, work);
1373
1374 if (WARN_ON(!list_empty(&work->entry))) {
1375 spin_unlock(&pwq->pool->lock);
1376 return;
1377 }
1378
1379 pwq->nr_in_flight[pwq->work_color]++;
1380 work_flags = work_color_to_flags(pwq->work_color);
1381
1382 if (likely(pwq->nr_active < pwq->max_active)) {
1383 trace_workqueue_activate_work(work);
1384 pwq->nr_active++;
1385 worklist = &pwq->pool->worklist;
1386 } else {
1387 work_flags |= WORK_STRUCT_DELAYED;
1388 worklist = &pwq->delayed_works;
1389 }
1390
1391 insert_work(pwq, work, worklist, work_flags);
1392
1393 spin_unlock(&pwq->pool->lock);
1394 }
1395
1396 /**
1397 * queue_work_on - queue work on specific cpu
1398 * @cpu: CPU number to execute work on
1399 * @wq: workqueue to use
1400 * @work: work to queue
1401 *
1402 * We queue the work to a specific CPU, the caller must ensure it
1403 * can't go away.
1404 *
1405 * Return: %false if @work was already on a queue, %true otherwise.
1406 */
1407 bool queue_work_on(int cpu, struct workqueue_struct *wq,
1408 struct work_struct *work)
1409 {
1410 bool ret = false;
1411 unsigned long flags;
1412
1413 local_irq_save(flags);
1414
1415 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1416 __queue_work(cpu, wq, work);
1417 ret = true;
1418 }
1419
1420 local_irq_restore(flags);
1421 return ret;
1422 }
1423 EXPORT_SYMBOL(queue_work_on);
1424
1425 void delayed_work_timer_fn(unsigned long __data)
1426 {
1427 struct delayed_work *dwork = (struct delayed_work *)__data;
1428
1429 /* should have been called from irqsafe timer with irq already off */
1430 __queue_work(dwork->cpu, dwork->wq, &dwork->work);
1431 }
1432 EXPORT_SYMBOL(delayed_work_timer_fn);
1433
1434 static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
1435 struct delayed_work *dwork, unsigned long delay)
1436 {
1437 struct timer_list *timer = &dwork->timer;
1438 struct work_struct *work = &dwork->work;
1439
1440 WARN_ON_ONCE(timer->function != delayed_work_timer_fn ||
1441 timer->data != (unsigned long)dwork);
1442 WARN_ON_ONCE(timer_pending(timer));
1443 WARN_ON_ONCE(!list_empty(&work->entry));
1444
1445 /*
1446 * If @delay is 0, queue @dwork->work immediately. This is for
1447 * both optimization and correctness. The earliest @timer can
1448 * expire is on the closest next tick and delayed_work users depend
1449 * on that there's no such delay when @delay is 0.
1450 */
1451 if (!delay) {
1452 __queue_work(cpu, wq, &dwork->work);
1453 return;
1454 }
1455
1456 timer_stats_timer_set_start_info(&dwork->timer);
1457
1458 dwork->wq = wq;
1459 dwork->cpu = cpu;
1460 timer->expires = jiffies + delay;
1461
1462 if (unlikely(cpu != WORK_CPU_UNBOUND))
1463 add_timer_on(timer, cpu);
1464 else
1465 add_timer(timer);
1466 }
1467
1468 /**
1469 * queue_delayed_work_on - queue work on specific CPU after delay
1470 * @cpu: CPU number to execute work on
1471 * @wq: workqueue to use
1472 * @dwork: work to queue
1473 * @delay: number of jiffies to wait before queueing
1474 *
1475 * Return: %false if @work was already on a queue, %true otherwise. If
1476 * @delay is zero and @dwork is idle, it will be scheduled for immediate
1477 * execution.
1478 */
1479 bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
1480 struct delayed_work *dwork, unsigned long delay)
1481 {
1482 struct work_struct *work = &dwork->work;
1483 bool ret = false;
1484 unsigned long flags;
1485
1486 /* read the comment in __queue_work() */
1487 local_irq_save(flags);
1488
1489 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1490 __queue_delayed_work(cpu, wq, dwork, delay);
1491 ret = true;
1492 }
1493
1494 local_irq_restore(flags);
1495 return ret;
1496 }
1497 EXPORT_SYMBOL(queue_delayed_work_on);
1498
1499 /**
1500 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
1501 * @cpu: CPU number to execute work on
1502 * @wq: workqueue to use
1503 * @dwork: work to queue
1504 * @delay: number of jiffies to wait before queueing
1505 *
1506 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
1507 * modify @dwork's timer so that it expires after @delay. If @delay is
1508 * zero, @work is guaranteed to be scheduled immediately regardless of its
1509 * current state.
1510 *
1511 * Return: %false if @dwork was idle and queued, %true if @dwork was
1512 * pending and its timer was modified.
1513 *
1514 * This function is safe to call from any context including IRQ handler.
1515 * See try_to_grab_pending() for details.
1516 */
1517 bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
1518 struct delayed_work *dwork, unsigned long delay)
1519 {
1520 unsigned long flags;
1521 int ret;
1522
1523 do {
1524 ret = try_to_grab_pending(&dwork->work, true, &flags);
1525 } while (unlikely(ret == -EAGAIN));
1526
1527 if (likely(ret >= 0)) {
1528 __queue_delayed_work(cpu, wq, dwork, delay);
1529 local_irq_restore(flags);
1530 }
1531
1532 /* -ENOENT from try_to_grab_pending() becomes %true */
1533 return ret;
1534 }
1535 EXPORT_SYMBOL_GPL(mod_delayed_work_on);
1536
1537 /**
1538 * worker_enter_idle - enter idle state
1539 * @worker: worker which is entering idle state
1540 *
1541 * @worker is entering idle state. Update stats and idle timer if
1542 * necessary.
1543 *
1544 * LOCKING:
1545 * spin_lock_irq(pool->lock).
1546 */
1547 static void worker_enter_idle(struct worker *worker)
1548 {
1549 struct worker_pool *pool = worker->pool;
1550
1551 if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) ||
1552 WARN_ON_ONCE(!list_empty(&worker->entry) &&
1553 (worker->hentry.next || worker->hentry.pprev)))
1554 return;
1555
1556 /* can't use worker_set_flags(), also called from start_worker() */
1557 worker->flags |= WORKER_IDLE;
1558 pool->nr_idle++;
1559 worker->last_active = jiffies;
1560
1561 /* idle_list is LIFO */
1562 list_add(&worker->entry, &pool->idle_list);
1563
1564 if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
1565 mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
1566
1567 /*
1568 * Sanity check nr_running. Because wq_unbind_fn() releases
1569 * pool->lock between setting %WORKER_UNBOUND and zapping
1570 * nr_running, the warning may trigger spuriously. Check iff
1571 * unbind is not in progress.
1572 */
1573 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
1574 pool->nr_workers == pool->nr_idle &&
1575 atomic_read(&pool->nr_running));
1576 }
1577
1578 /**
1579 * worker_leave_idle - leave idle state
1580 * @worker: worker which is leaving idle state
1581 *
1582 * @worker is leaving idle state. Update stats.
1583 *
1584 * LOCKING:
1585 * spin_lock_irq(pool->lock).
1586 */
1587 static void worker_leave_idle(struct worker *worker)
1588 {
1589 struct worker_pool *pool = worker->pool;
1590
1591 if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE)))
1592 return;
1593 worker_clr_flags(worker, WORKER_IDLE);
1594 pool->nr_idle--;
1595 list_del_init(&worker->entry);
1596 }
1597
1598 static struct worker *alloc_worker(int node)
1599 {
1600 struct worker *worker;
1601
1602 worker = kzalloc_node(sizeof(*worker), GFP_KERNEL, node);
1603 if (worker) {
1604 INIT_LIST_HEAD(&worker->entry);
1605 INIT_LIST_HEAD(&worker->scheduled);
1606 INIT_LIST_HEAD(&worker->node);
1607 /* on creation a worker is in !idle && prep state */
1608 worker->flags = WORKER_PREP;
1609 }
1610 return worker;
1611 }
1612
1613 /**
1614 * worker_attach_to_pool() - attach a worker to a pool
1615 * @worker: worker to be attached
1616 * @pool: the target pool
1617 *
1618 * Attach @worker to @pool. Once attached, the %WORKER_UNBOUND flag and
1619 * cpu-binding of @worker are kept coordinated with the pool across
1620 * cpu-[un]hotplugs.
1621 */
1622 static void worker_attach_to_pool(struct worker *worker,
1623 struct worker_pool *pool)
1624 {
1625 mutex_lock(&pool->attach_mutex);
1626
1627 /*
1628 * set_cpus_allowed_ptr() will fail if the cpumask doesn't have any
1629 * online CPUs. It'll be re-applied when any of the CPUs come up.
1630 */
1631 set_cpus_allowed_ptr(worker->task, pool->attrs->cpumask);
1632
1633 /*
1634 * The pool->attach_mutex ensures %POOL_DISASSOCIATED remains
1635 * stable across this function. See the comments above the
1636 * flag definition for details.
1637 */
1638 if (pool->flags & POOL_DISASSOCIATED)
1639 worker->flags |= WORKER_UNBOUND;
1640
1641 list_add_tail(&worker->node, &pool->workers);
1642
1643 mutex_unlock(&pool->attach_mutex);
1644 }
1645
1646 /**
1647 * worker_detach_from_pool() - detach a worker from its pool
1648 * @worker: worker which is attached to its pool
1649 * @pool: the pool @worker is attached to
1650 *
1651 * Undo the attaching which had been done in worker_attach_to_pool(). The
1652 * caller worker shouldn't access to the pool after detached except it has
1653 * other reference to the pool.
1654 */
1655 static void worker_detach_from_pool(struct worker *worker,
1656 struct worker_pool *pool)
1657 {
1658 struct completion *detach_completion = NULL;
1659
1660 mutex_lock(&pool->attach_mutex);
1661 list_del(&worker->node);
1662 if (list_empty(&pool->workers))
1663 detach_completion = pool->detach_completion;
1664 mutex_unlock(&pool->attach_mutex);
1665
1666 /* clear leftover flags without pool->lock after it is detached */
1667 worker->flags &= ~(WORKER_UNBOUND | WORKER_REBOUND);
1668
1669 if (detach_completion)
1670 complete(detach_completion);
1671 }
1672
1673 /**
1674 * create_worker - create a new workqueue worker
1675 * @pool: pool the new worker will belong to
1676 *
1677 * Create a new worker which is attached to @pool. The new worker must be
1678 * started by start_worker().
1679 *
1680 * CONTEXT:
1681 * Might sleep. Does GFP_KERNEL allocations.
1682 *
1683 * Return:
1684 * Pointer to the newly created worker.
1685 */
1686 static struct worker *create_worker(struct worker_pool *pool)
1687 {
1688 struct worker *worker = NULL;
1689 int id = -1;
1690 char id_buf[16];
1691
1692 /* ID is needed to determine kthread name */
1693 id = ida_simple_get(&pool->worker_ida, 0, 0, GFP_KERNEL);
1694 if (id < 0)
1695 goto fail;
1696
1697 worker = alloc_worker(pool->node);
1698 if (!worker)
1699 goto fail;
1700
1701 worker->pool = pool;
1702 worker->id = id;
1703
1704 if (pool->cpu >= 0)
1705 snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id,
1706 pool->attrs->nice < 0 ? "H" : "");
1707 else
1708 snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id);
1709
1710 worker->task = kthread_create_on_node(worker_thread, worker, pool->node,
1711 "kworker/%s", id_buf);
1712 if (IS_ERR(worker->task))
1713 goto fail;
1714
1715 set_user_nice(worker->task, pool->attrs->nice);
1716
1717 /* prevent userland from meddling with cpumask of workqueue workers */
1718 worker->task->flags |= PF_NO_SETAFFINITY;
1719
1720 /* successful, attach the worker to the pool */
1721 worker_attach_to_pool(worker, pool);
1722
1723 return worker;
1724
1725 fail:
1726 if (id >= 0)
1727 ida_simple_remove(&pool->worker_ida, id);
1728 kfree(worker);
1729 return NULL;
1730 }
1731
1732 /**
1733 * start_worker - start a newly created worker
1734 * @worker: worker to start
1735 *
1736 * Make the pool aware of @worker and start it.
1737 *
1738 * CONTEXT:
1739 * spin_lock_irq(pool->lock).
1740 */
1741 static void start_worker(struct worker *worker)
1742 {
1743 worker->pool->nr_workers++;
1744 worker_enter_idle(worker);
1745 wake_up_process(worker->task);
1746 }
1747
1748 /**
1749 * create_and_start_worker - create and start a worker for a pool
1750 * @pool: the target pool
1751 *
1752 * Grab the managership of @pool and create and start a new worker for it.
1753 *
1754 * Return: 0 on success. A negative error code otherwise.
1755 */
1756 static int create_and_start_worker(struct worker_pool *pool)
1757 {
1758 struct worker *worker;
1759
1760 worker = create_worker(pool);
1761 if (worker) {
1762 spin_lock_irq(&pool->lock);
1763 start_worker(worker);
1764 spin_unlock_irq(&pool->lock);
1765 }
1766
1767 return worker ? 0 : -ENOMEM;
1768 }
1769
1770 /**
1771 * destroy_worker - destroy a workqueue worker
1772 * @worker: worker to be destroyed
1773 *
1774 * Destroy @worker and adjust @pool stats accordingly. The worker should
1775 * be idle.
1776 *
1777 * CONTEXT:
1778 * spin_lock_irq(pool->lock).
1779 */
1780 static void destroy_worker(struct worker *worker)
1781 {
1782 struct worker_pool *pool = worker->pool;
1783
1784 lockdep_assert_held(&pool->lock);
1785
1786 /* sanity check frenzy */
1787 if (WARN_ON(worker->current_work) ||
1788 WARN_ON(!list_empty(&worker->scheduled)) ||
1789 WARN_ON(!(worker->flags & WORKER_IDLE)))
1790 return;
1791
1792 pool->nr_workers--;
1793 pool->nr_idle--;
1794
1795 list_del_init(&worker->entry);
1796 worker->flags |= WORKER_DIE;
1797 wake_up_process(worker->task);
1798 }
1799
1800 static void idle_worker_timeout(unsigned long __pool)
1801 {
1802 struct worker_pool *pool = (void *)__pool;
1803
1804 spin_lock_irq(&pool->lock);
1805
1806 while (too_many_workers(pool)) {
1807 struct worker *worker;
1808 unsigned long expires;
1809
1810 /* idle_list is kept in LIFO order, check the last one */
1811 worker = list_entry(pool->idle_list.prev, struct worker, entry);
1812 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
1813
1814 if (time_before(jiffies, expires)) {
1815 mod_timer(&pool->idle_timer, expires);
1816 break;
1817 }
1818
1819 destroy_worker(worker);
1820 }
1821
1822 spin_unlock_irq(&pool->lock);
1823 }
1824
1825 static void send_mayday(struct work_struct *work)
1826 {
1827 struct pool_workqueue *pwq = get_work_pwq(work);
1828 struct workqueue_struct *wq = pwq->wq;
1829
1830 lockdep_assert_held(&wq_mayday_lock);
1831
1832 if (!wq->rescuer)
1833 return;
1834
1835 /* mayday mayday mayday */
1836 if (list_empty(&pwq->mayday_node)) {
1837 /*
1838 * If @pwq is for an unbound wq, its base ref may be put at
1839 * any time due to an attribute change. Pin @pwq until the
1840 * rescuer is done with it.
1841 */
1842 get_pwq(pwq);
1843 list_add_tail(&pwq->mayday_node, &wq->maydays);
1844 wake_up_process(wq->rescuer->task);
1845 }
1846 }
1847
1848 static void pool_mayday_timeout(unsigned long __pool)
1849 {
1850 struct worker_pool *pool = (void *)__pool;
1851 struct work_struct *work;
1852
1853 spin_lock_irq(&wq_mayday_lock); /* for wq->maydays */
1854 spin_lock(&pool->lock);
1855
1856 if (need_to_create_worker(pool)) {
1857 /*
1858 * We've been trying to create a new worker but
1859 * haven't been successful. We might be hitting an
1860 * allocation deadlock. Send distress signals to
1861 * rescuers.
1862 */
1863 list_for_each_entry(work, &pool->worklist, entry)
1864 send_mayday(work);
1865 }
1866
1867 spin_unlock(&pool->lock);
1868 spin_unlock_irq(&wq_mayday_lock);
1869
1870 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
1871 }
1872
1873 /**
1874 * maybe_create_worker - create a new worker if necessary
1875 * @pool: pool to create a new worker for
1876 *
1877 * Create a new worker for @pool if necessary. @pool is guaranteed to
1878 * have at least one idle worker on return from this function. If
1879 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
1880 * sent to all rescuers with works scheduled on @pool to resolve
1881 * possible allocation deadlock.
1882 *
1883 * On return, need_to_create_worker() is guaranteed to be %false and
1884 * may_start_working() %true.
1885 *
1886 * LOCKING:
1887 * spin_lock_irq(pool->lock) which may be released and regrabbed
1888 * multiple times. Does GFP_KERNEL allocations. Called only from
1889 * manager.
1890 *
1891 * Return:
1892 * %false if no action was taken and pool->lock stayed locked, %true
1893 * otherwise.
1894 */
1895 static bool maybe_create_worker(struct worker_pool *pool)
1896 __releases(&pool->lock)
1897 __acquires(&pool->lock)
1898 {
1899 if (!need_to_create_worker(pool))
1900 return false;
1901 restart:
1902 spin_unlock_irq(&pool->lock);
1903
1904 /* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
1905 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
1906
1907 while (true) {
1908 struct worker *worker;
1909
1910 worker = create_worker(pool);
1911 if (worker) {
1912 del_timer_sync(&pool->mayday_timer);
1913 spin_lock_irq(&pool->lock);
1914 start_worker(worker);
1915 if (WARN_ON_ONCE(need_to_create_worker(pool)))
1916 goto restart;
1917 return true;
1918 }
1919
1920 if (!need_to_create_worker(pool))
1921 break;
1922
1923 schedule_timeout_interruptible(CREATE_COOLDOWN);
1924
1925 if (!need_to_create_worker(pool))
1926 break;
1927 }
1928
1929 del_timer_sync(&pool->mayday_timer);
1930 spin_lock_irq(&pool->lock);
1931 if (need_to_create_worker(pool))
1932 goto restart;
1933 return true;
1934 }
1935
1936 /**
1937 * manage_workers - manage worker pool
1938 * @worker: self
1939 *
1940 * Assume the manager role and manage the worker pool @worker belongs
1941 * to. At any given time, there can be only zero or one manager per
1942 * pool. The exclusion is handled automatically by this function.
1943 *
1944 * The caller can safely start processing works on false return. On
1945 * true return, it's guaranteed that need_to_create_worker() is false
1946 * and may_start_working() is true.
1947 *
1948 * CONTEXT:
1949 * spin_lock_irq(pool->lock) which may be released and regrabbed
1950 * multiple times. Does GFP_KERNEL allocations.
1951 *
1952 * Return:
1953 * %false if the pool don't need management and the caller can safely start
1954 * processing works, %true indicates that the function released pool->lock
1955 * and reacquired it to perform some management function and that the
1956 * conditions that the caller verified while holding the lock before
1957 * calling the function might no longer be true.
1958 */
1959 static bool manage_workers(struct worker *worker)
1960 {
1961 struct worker_pool *pool = worker->pool;
1962 bool ret = false;
1963
1964 /*
1965 * Anyone who successfully grabs manager_arb wins the arbitration
1966 * and becomes the manager. mutex_trylock() on pool->manager_arb
1967 * failure while holding pool->lock reliably indicates that someone
1968 * else is managing the pool and the worker which failed trylock
1969 * can proceed to executing work items. This means that anyone
1970 * grabbing manager_arb is responsible for actually performing
1971 * manager duties. If manager_arb is grabbed and released without
1972 * actual management, the pool may stall indefinitely.
1973 */
1974 if (!mutex_trylock(&pool->manager_arb))
1975 return ret;
1976
1977 ret |= maybe_create_worker(pool);
1978
1979 mutex_unlock(&pool->manager_arb);
1980 return ret;
1981 }
1982
1983 /**
1984 * process_one_work - process single work
1985 * @worker: self
1986 * @work: work to process
1987 *
1988 * Process @work. This function contains all the logics necessary to
1989 * process a single work including synchronization against and
1990 * interaction with other workers on the same cpu, queueing and
1991 * flushing. As long as context requirement is met, any worker can
1992 * call this function to process a work.
1993 *
1994 * CONTEXT:
1995 * spin_lock_irq(pool->lock) which is released and regrabbed.
1996 */
1997 static void process_one_work(struct worker *worker, struct work_struct *work)
1998 __releases(&pool->lock)
1999 __acquires(&pool->lock)
2000 {
2001 struct pool_workqueue *pwq = get_work_pwq(work);
2002 struct worker_pool *pool = worker->pool;
2003 bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE;
2004 int work_color;
2005 struct worker *collision;
2006 #ifdef CONFIG_LOCKDEP
2007 /*
2008 * It is permissible to free the struct work_struct from
2009 * inside the function that is called from it, this we need to
2010 * take into account for lockdep too. To avoid bogus "held
2011 * lock freed" warnings as well as problems when looking into
2012 * work->lockdep_map, make a copy and use that here.
2013 */
2014 struct lockdep_map lockdep_map;
2015
2016 lockdep_copy_map(&lockdep_map, &work->lockdep_map);
2017 #endif
2018 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
2019 raw_smp_processor_id() != pool->cpu);
2020
2021 /*
2022 * A single work shouldn't be executed concurrently by
2023 * multiple workers on a single cpu. Check whether anyone is
2024 * already processing the work. If so, defer the work to the
2025 * currently executing one.
2026 */
2027 collision = find_worker_executing_work(pool, work);
2028 if (unlikely(collision)) {
2029 move_linked_works(work, &collision->scheduled, NULL);
2030 return;
2031 }
2032
2033 /* claim and dequeue */
2034 debug_work_deactivate(work);
2035 hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
2036 worker->current_work = work;
2037 worker->current_func = work->func;
2038 worker->current_pwq = pwq;
2039 work_color = get_work_color(work);
2040
2041 list_del_init(&work->entry);
2042
2043 /*
2044 * CPU intensive works don't participate in concurrency
2045 * management. They're the scheduler's responsibility.
2046 */
2047 if (unlikely(cpu_intensive))
2048 worker_set_flags(worker, WORKER_CPU_INTENSIVE, true);
2049
2050 /*
2051 * Unbound pool isn't concurrency managed and work items should be
2052 * executed ASAP. Wake up another worker if necessary.
2053 */
2054 if ((worker->flags & WORKER_UNBOUND) && need_more_worker(pool))
2055 wake_up_worker(pool);
2056
2057 /*
2058 * Record the last pool and clear PENDING which should be the last
2059 * update to @work. Also, do this inside @pool->lock so that
2060 * PENDING and queued state changes happen together while IRQ is
2061 * disabled.
2062 */
2063 set_work_pool_and_clear_pending(work, pool->id);
2064
2065 spin_unlock_irq(&pool->lock);
2066
2067 lock_map_acquire_read(&pwq->wq->lockdep_map);
2068 lock_map_acquire(&lockdep_map);
2069 trace_workqueue_execute_start(work);
2070 worker->current_func(work);
2071 /*
2072 * While we must be careful to not use "work" after this, the trace
2073 * point will only record its address.
2074 */
2075 trace_workqueue_execute_end(work);
2076 lock_map_release(&lockdep_map);
2077 lock_map_release(&pwq->wq->lockdep_map);
2078
2079 if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
2080 pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
2081 " last function: %pf\n",
2082 current->comm, preempt_count(), task_pid_nr(current),
2083 worker->current_func);
2084 debug_show_held_locks(current);
2085 dump_stack();
2086 }
2087
2088 /*
2089 * The following prevents a kworker from hogging CPU on !PREEMPT
2090 * kernels, where a requeueing work item waiting for something to
2091 * happen could deadlock with stop_machine as such work item could
2092 * indefinitely requeue itself while all other CPUs are trapped in
2093 * stop_machine.
2094 */
2095 cond_resched();
2096
2097 spin_lock_irq(&pool->lock);
2098
2099 /* clear cpu intensive status */
2100 if (unlikely(cpu_intensive))
2101 worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
2102
2103 /* we're done with it, release */
2104 hash_del(&worker->hentry);
2105 worker->current_work = NULL;
2106 worker->current_func = NULL;
2107 worker->current_pwq = NULL;
2108 worker->desc_valid = false;
2109 pwq_dec_nr_in_flight(pwq, work_color);
2110 }
2111
2112 /**
2113 * process_scheduled_works - process scheduled works
2114 * @worker: self
2115 *
2116 * Process all scheduled works. Please note that the scheduled list
2117 * may change while processing a work, so this function repeatedly
2118 * fetches a work from the top and executes it.
2119 *
2120 * CONTEXT:
2121 * spin_lock_irq(pool->lock) which may be released and regrabbed
2122 * multiple times.
2123 */
2124 static void process_scheduled_works(struct worker *worker)
2125 {
2126 while (!list_empty(&worker->scheduled)) {
2127 struct work_struct *work = list_first_entry(&worker->scheduled,
2128 struct work_struct, entry);
2129 process_one_work(worker, work);
2130 }
2131 }
2132
2133 /**
2134 * worker_thread - the worker thread function
2135 * @__worker: self
2136 *
2137 * The worker thread function. All workers belong to a worker_pool -
2138 * either a per-cpu one or dynamic unbound one. These workers process all
2139 * work items regardless of their specific target workqueue. The only
2140 * exception is work items which belong to workqueues with a rescuer which
2141 * will be explained in rescuer_thread().
2142 *
2143 * Return: 0
2144 */
2145 static int worker_thread(void *__worker)
2146 {
2147 struct worker *worker = __worker;
2148 struct worker_pool *pool = worker->pool;
2149
2150 /* tell the scheduler that this is a workqueue worker */
2151 worker->task->flags |= PF_WQ_WORKER;
2152 woke_up:
2153 spin_lock_irq(&pool->lock);
2154
2155 /* am I supposed to die? */
2156 if (unlikely(worker->flags & WORKER_DIE)) {
2157 spin_unlock_irq(&pool->lock);
2158 WARN_ON_ONCE(!list_empty(&worker->entry));
2159 worker->task->flags &= ~PF_WQ_WORKER;
2160
2161 set_task_comm(worker->task, "kworker/dying");
2162 ida_simple_remove(&pool->worker_ida, worker->id);
2163 worker_detach_from_pool(worker, pool);
2164 kfree(worker);
2165 return 0;
2166 }
2167
2168 worker_leave_idle(worker);
2169 recheck:
2170 /* no more worker necessary? */
2171 if (!need_more_worker(pool))
2172 goto sleep;
2173
2174 /* do we need to manage? */
2175 if (unlikely(!may_start_working(pool)) && manage_workers(worker))
2176 goto recheck;
2177
2178 /*
2179 * ->scheduled list can only be filled while a worker is
2180 * preparing to process a work or actually processing it.
2181 * Make sure nobody diddled with it while I was sleeping.
2182 */
2183 WARN_ON_ONCE(!list_empty(&worker->scheduled));
2184
2185 /*
2186 * Finish PREP stage. We're guaranteed to have at least one idle
2187 * worker or that someone else has already assumed the manager
2188 * role. This is where @worker starts participating in concurrency
2189 * management if applicable and concurrency management is restored
2190 * after being rebound. See rebind_workers() for details.
2191 */
2192 worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND);
2193
2194 do {
2195 struct work_struct *work =
2196 list_first_entry(&pool->worklist,
2197 struct work_struct, entry);
2198
2199 if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
2200 /* optimization path, not strictly necessary */
2201 process_one_work(worker, work);
2202 if (unlikely(!list_empty(&worker->scheduled)))
2203 process_scheduled_works(worker);
2204 } else {
2205 move_linked_works(work, &worker->scheduled, NULL);
2206 process_scheduled_works(worker);
2207 }
2208 } while (keep_working(pool));
2209
2210 worker_set_flags(worker, WORKER_PREP, false);
2211 sleep:
2212 /*
2213 * pool->lock is held and there's no work to process and no need to
2214 * manage, sleep. Workers are woken up only while holding
2215 * pool->lock or from local cpu, so setting the current state
2216 * before releasing pool->lock is enough to prevent losing any
2217 * event.
2218 */
2219 worker_enter_idle(worker);
2220 __set_current_state(TASK_INTERRUPTIBLE);
2221 spin_unlock_irq(&pool->lock);
2222 schedule();
2223 goto woke_up;
2224 }
2225
2226 /**
2227 * rescuer_thread - the rescuer thread function
2228 * @__rescuer: self
2229 *
2230 * Workqueue rescuer thread function. There's one rescuer for each
2231 * workqueue which has WQ_MEM_RECLAIM set.
2232 *
2233 * Regular work processing on a pool may block trying to create a new
2234 * worker which uses GFP_KERNEL allocation which has slight chance of
2235 * developing into deadlock if some works currently on the same queue
2236 * need to be processed to satisfy the GFP_KERNEL allocation. This is
2237 * the problem rescuer solves.
2238 *
2239 * When such condition is possible, the pool summons rescuers of all
2240 * workqueues which have works queued on the pool and let them process
2241 * those works so that forward progress can be guaranteed.
2242 *
2243 * This should happen rarely.
2244 *
2245 * Return: 0
2246 */
2247 static int rescuer_thread(void *__rescuer)
2248 {
2249 struct worker *rescuer = __rescuer;
2250 struct workqueue_struct *wq = rescuer->rescue_wq;
2251 struct list_head *scheduled = &rescuer->scheduled;
2252 bool should_stop;
2253
2254 set_user_nice(current, RESCUER_NICE_LEVEL);
2255
2256 /*
2257 * Mark rescuer as worker too. As WORKER_PREP is never cleared, it
2258 * doesn't participate in concurrency management.
2259 */
2260 rescuer->task->flags |= PF_WQ_WORKER;
2261 repeat:
2262 set_current_state(TASK_INTERRUPTIBLE);
2263
2264 /*
2265 * By the time the rescuer is requested to stop, the workqueue
2266 * shouldn't have any work pending, but @wq->maydays may still have
2267 * pwq(s) queued. This can happen by non-rescuer workers consuming
2268 * all the work items before the rescuer got to them. Go through
2269 * @wq->maydays processing before acting on should_stop so that the
2270 * list is always empty on exit.
2271 */
2272 should_stop = kthread_should_stop();
2273
2274 /* see whether any pwq is asking for help */
2275 spin_lock_irq(&wq_mayday_lock);
2276
2277 while (!list_empty(&wq->maydays)) {
2278 struct pool_workqueue *pwq = list_first_entry(&wq->maydays,
2279 struct pool_workqueue, mayday_node);
2280 struct worker_pool *pool = pwq->pool;
2281 struct work_struct *work, *n;
2282
2283 __set_current_state(TASK_RUNNING);
2284 list_del_init(&pwq->mayday_node);
2285
2286 spin_unlock_irq(&wq_mayday_lock);
2287
2288 worker_attach_to_pool(rescuer, pool);
2289
2290 spin_lock_irq(&pool->lock);
2291 rescuer->pool = pool;
2292
2293 /*
2294 * Slurp in all works issued via this workqueue and
2295 * process'em.
2296 */
2297 WARN_ON_ONCE(!list_empty(&rescuer->scheduled));
2298 list_for_each_entry_safe(work, n, &pool->worklist, entry)
2299 if (get_work_pwq(work) == pwq)
2300 move_linked_works(work, scheduled, &n);
2301
2302 process_scheduled_works(rescuer);
2303 spin_unlock_irq(&pool->lock);
2304
2305 worker_detach_from_pool(rescuer, pool);
2306
2307 spin_lock_irq(&pool->lock);
2308
2309 /*
2310 * Put the reference grabbed by send_mayday(). @pool won't
2311 * go away while we're holding its lock.
2312 */
2313 put_pwq(pwq);
2314
2315 /*
2316 * Leave this pool. If need_more_worker() is %true, notify a
2317 * regular worker; otherwise, we end up with 0 concurrency
2318 * and stalling the execution.
2319 */
2320 if (need_more_worker(pool))
2321 wake_up_worker(pool);
2322
2323 rescuer->pool = NULL;
2324 spin_unlock(&pool->lock);
2325 spin_lock(&wq_mayday_lock);
2326 }
2327
2328 spin_unlock_irq(&wq_mayday_lock);
2329
2330 if (should_stop) {
2331 __set_current_state(TASK_RUNNING);
2332 rescuer->task->flags &= ~PF_WQ_WORKER;
2333 return 0;
2334 }
2335
2336 /* rescuers should never participate in concurrency management */
2337 WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
2338 schedule();
2339 goto repeat;
2340 }
2341
2342 struct wq_barrier {
2343 struct work_struct work;
2344 struct completion done;
2345 };
2346
2347 static void wq_barrier_func(struct work_struct *work)
2348 {
2349 struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
2350 complete(&barr->done);
2351 }
2352
2353 /**
2354 * insert_wq_barrier - insert a barrier work
2355 * @pwq: pwq to insert barrier into
2356 * @barr: wq_barrier to insert
2357 * @target: target work to attach @barr to
2358 * @worker: worker currently executing @target, NULL if @target is not executing
2359 *
2360 * @barr is linked to @target such that @barr is completed only after
2361 * @target finishes execution. Please note that the ordering
2362 * guarantee is observed only with respect to @target and on the local
2363 * cpu.
2364 *
2365 * Currently, a queued barrier can't be canceled. This is because
2366 * try_to_grab_pending() can't determine whether the work to be
2367 * grabbed is at the head of the queue and thus can't clear LINKED
2368 * flag of the previous work while there must be a valid next work
2369 * after a work with LINKED flag set.
2370 *
2371 * Note that when @worker is non-NULL, @target may be modified
2372 * underneath us, so we can't reliably determine pwq from @target.
2373 *
2374 * CONTEXT:
2375 * spin_lock_irq(pool->lock).
2376 */
2377 static void insert_wq_barrier(struct pool_workqueue *pwq,
2378 struct wq_barrier *barr,
2379 struct work_struct *target, struct worker *worker)
2380 {
2381 struct list_head *head;
2382 unsigned int linked = 0;
2383
2384 /*
2385 * debugobject calls are safe here even with pool->lock locked
2386 * as we know for sure that this will not trigger any of the
2387 * checks and call back into the fixup functions where we
2388 * might deadlock.
2389 */
2390 INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
2391 __set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
2392 init_completion(&barr->done);
2393
2394 /*
2395 * If @target is currently being executed, schedule the
2396 * barrier to the worker; otherwise, put it after @target.
2397 */
2398 if (worker)
2399 head = worker->scheduled.next;
2400 else {
2401 unsigned long *bits = work_data_bits(target);
2402
2403 head = target->entry.next;
2404 /* there can already be other linked works, inherit and set */
2405 linked = *bits & WORK_STRUCT_LINKED;
2406 __set_bit(WORK_STRUCT_LINKED_BIT, bits);
2407 }
2408
2409 debug_work_activate(&barr->work);
2410 insert_work(pwq, &barr->work, head,
2411 work_color_to_flags(WORK_NO_COLOR) | linked);
2412 }
2413
2414 /**
2415 * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing
2416 * @wq: workqueue being flushed
2417 * @flush_color: new flush color, < 0 for no-op
2418 * @work_color: new work color, < 0 for no-op
2419 *
2420 * Prepare pwqs for workqueue flushing.
2421 *
2422 * If @flush_color is non-negative, flush_color on all pwqs should be
2423 * -1. If no pwq has in-flight commands at the specified color, all
2424 * pwq->flush_color's stay at -1 and %false is returned. If any pwq
2425 * has in flight commands, its pwq->flush_color is set to
2426 * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq
2427 * wakeup logic is armed and %true is returned.
2428 *
2429 * The caller should have initialized @wq->first_flusher prior to
2430 * calling this function with non-negative @flush_color. If
2431 * @flush_color is negative, no flush color update is done and %false
2432 * is returned.
2433 *
2434 * If @work_color is non-negative, all pwqs should have the same
2435 * work_color which is previous to @work_color and all will be
2436 * advanced to @work_color.
2437 *
2438 * CONTEXT:
2439 * mutex_lock(wq->mutex).
2440 *
2441 * Return:
2442 * %true if @flush_color >= 0 and there's something to flush. %false
2443 * otherwise.
2444 */
2445 static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq,
2446 int flush_color, int work_color)
2447 {
2448 bool wait = false;
2449 struct pool_workqueue *pwq;
2450
2451 if (flush_color >= 0) {
2452 WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush));
2453 atomic_set(&wq->nr_pwqs_to_flush, 1);
2454 }
2455
2456 for_each_pwq(pwq, wq) {
2457 struct worker_pool *pool = pwq->pool;
2458
2459 spin_lock_irq(&pool->lock);
2460
2461 if (flush_color >= 0) {
2462 WARN_ON_ONCE(pwq->flush_color != -1);
2463
2464 if (pwq->nr_in_flight[flush_color]) {
2465 pwq->flush_color = flush_color;
2466 atomic_inc(&wq->nr_pwqs_to_flush);
2467 wait = true;
2468 }
2469 }
2470
2471 if (work_color >= 0) {
2472 WARN_ON_ONCE(work_color != work_next_color(pwq->work_color));
2473 pwq->work_color = work_color;
2474 }
2475
2476 spin_unlock_irq(&pool->lock);
2477 }
2478
2479 if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush))
2480 complete(&wq->first_flusher->done);
2481
2482 return wait;
2483 }
2484
2485 /**
2486 * flush_workqueue - ensure that any scheduled work has run to completion.
2487 * @wq: workqueue to flush
2488 *
2489 * This function sleeps until all work items which were queued on entry
2490 * have finished execution, but it is not livelocked by new incoming ones.
2491 */
2492 void flush_workqueue(struct workqueue_struct *wq)
2493 {
2494 struct wq_flusher this_flusher = {
2495 .list = LIST_HEAD_INIT(this_flusher.list),
2496 .flush_color = -1,
2497 .done = COMPLETION_INITIALIZER_ONSTACK(this_flusher.done),
2498 };
2499 int next_color;
2500
2501 lock_map_acquire(&wq->lockdep_map);
2502 lock_map_release(&wq->lockdep_map);
2503
2504 mutex_lock(&wq->mutex);
2505
2506 /*
2507 * Start-to-wait phase
2508 */
2509 next_color = work_next_color(wq->work_color);
2510
2511 if (next_color != wq->flush_color) {
2512 /*
2513 * Color space is not full. The current work_color
2514 * becomes our flush_color and work_color is advanced
2515 * by one.
2516 */
2517 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow));
2518 this_flusher.flush_color = wq->work_color;
2519 wq->work_color = next_color;
2520
2521 if (!wq->first_flusher) {
2522 /* no flush in progress, become the first flusher */
2523 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2524
2525 wq->first_flusher = &this_flusher;
2526
2527 if (!flush_workqueue_prep_pwqs(wq, wq->flush_color,
2528 wq->work_color)) {
2529 /* nothing to flush, done */
2530 wq->flush_color = next_color;
2531 wq->first_flusher = NULL;
2532 goto out_unlock;
2533 }
2534 } else {
2535 /* wait in queue */
2536 WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color);
2537 list_add_tail(&this_flusher.list, &wq->flusher_queue);
2538 flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2539 }
2540 } else {
2541 /*
2542 * Oops, color space is full, wait on overflow queue.
2543 * The next flush completion will assign us
2544 * flush_color and transfer to flusher_queue.
2545 */
2546 list_add_tail(&this_flusher.list, &wq->flusher_overflow);
2547 }
2548
2549 mutex_unlock(&wq->mutex);
2550
2551 wait_for_completion(&this_flusher.done);
2552
2553 /*
2554 * Wake-up-and-cascade phase
2555 *
2556 * First flushers are responsible for cascading flushes and
2557 * handling overflow. Non-first flushers can simply return.
2558 */
2559 if (wq->first_flusher != &this_flusher)
2560 return;
2561
2562 mutex_lock(&wq->mutex);
2563
2564 /* we might have raced, check again with mutex held */
2565 if (wq->first_flusher != &this_flusher)
2566 goto out_unlock;
2567
2568 wq->first_flusher = NULL;
2569
2570 WARN_ON_ONCE(!list_empty(&this_flusher.list));
2571 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2572
2573 while (true) {
2574 struct wq_flusher *next, *tmp;
2575
2576 /* complete all the flushers sharing the current flush color */
2577 list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
2578 if (next->flush_color != wq->flush_color)
2579 break;
2580 list_del_init(&next->list);
2581 complete(&next->done);
2582 }
2583
2584 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) &&
2585 wq->flush_color != work_next_color(wq->work_color));
2586
2587 /* this flush_color is finished, advance by one */
2588 wq->flush_color = work_next_color(wq->flush_color);
2589
2590 /* one color has been freed, handle overflow queue */
2591 if (!list_empty(&wq->flusher_overflow)) {
2592 /*
2593 * Assign the same color to all overflowed
2594 * flushers, advance work_color and append to
2595 * flusher_queue. This is the start-to-wait
2596 * phase for these overflowed flushers.
2597 */
2598 list_for_each_entry(tmp, &wq->flusher_overflow, list)
2599 tmp->flush_color = wq->work_color;
2600
2601 wq->work_color = work_next_color(wq->work_color);
2602
2603 list_splice_tail_init(&wq->flusher_overflow,
2604 &wq->flusher_queue);
2605 flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2606 }
2607
2608 if (list_empty(&wq->flusher_queue)) {
2609 WARN_ON_ONCE(wq->flush_color != wq->work_color);
2610 break;
2611 }
2612
2613 /*
2614 * Need to flush more colors. Make the next flusher
2615 * the new first flusher and arm pwqs.
2616 */
2617 WARN_ON_ONCE(wq->flush_color == wq->work_color);
2618 WARN_ON_ONCE(wq->flush_color != next->flush_color);
2619
2620 list_del_init(&next->list);
2621 wq->first_flusher = next;
2622
2623 if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1))
2624 break;
2625
2626 /*
2627 * Meh... this color is already done, clear first
2628 * flusher and repeat cascading.
2629 */
2630 wq->first_flusher = NULL;
2631 }
2632
2633 out_unlock:
2634 mutex_unlock(&wq->mutex);
2635 }
2636 EXPORT_SYMBOL_GPL(flush_workqueue);
2637
2638 /**
2639 * drain_workqueue - drain a workqueue
2640 * @wq: workqueue to drain
2641 *
2642 * Wait until the workqueue becomes empty. While draining is in progress,
2643 * only chain queueing is allowed. IOW, only currently pending or running
2644 * work items on @wq can queue further work items on it. @wq is flushed
2645 * repeatedly until it becomes empty. The number of flushing is detemined
2646 * by the depth of chaining and should be relatively short. Whine if it
2647 * takes too long.
2648 */
2649 void drain_workqueue(struct workqueue_struct *wq)
2650 {
2651 unsigned int flush_cnt = 0;
2652 struct pool_workqueue *pwq;
2653
2654 /*
2655 * __queue_work() needs to test whether there are drainers, is much
2656 * hotter than drain_workqueue() and already looks at @wq->flags.
2657 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers.
2658 */
2659 mutex_lock(&wq->mutex);
2660 if (!wq->nr_drainers++)
2661 wq->flags |= __WQ_DRAINING;
2662 mutex_unlock(&wq->mutex);
2663 reflush:
2664 flush_workqueue(wq);
2665
2666 mutex_lock(&wq->mutex);
2667
2668 for_each_pwq(pwq, wq) {
2669 bool drained;
2670
2671 spin_lock_irq(&pwq->pool->lock);
2672 drained = !pwq->nr_active && list_empty(&pwq->delayed_works);
2673 spin_unlock_irq(&pwq->pool->lock);
2674
2675 if (drained)
2676 continue;
2677
2678 if (++flush_cnt == 10 ||
2679 (flush_cnt % 100 == 0 && flush_cnt <= 1000))
2680 pr_warn("workqueue %s: drain_workqueue() isn't complete after %u tries\n",
2681 wq->name, flush_cnt);
2682
2683 mutex_unlock(&wq->mutex);
2684 goto reflush;
2685 }
2686
2687 if (!--wq->nr_drainers)
2688 wq->flags &= ~__WQ_DRAINING;
2689 mutex_unlock(&wq->mutex);
2690 }
2691 EXPORT_SYMBOL_GPL(drain_workqueue);
2692
2693 static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr)
2694 {
2695 struct worker *worker = NULL;
2696 struct worker_pool *pool;
2697 struct pool_workqueue *pwq;
2698
2699 might_sleep();
2700
2701 local_irq_disable();
2702 pool = get_work_pool(work);
2703 if (!pool) {
2704 local_irq_enable();
2705 return false;
2706 }
2707
2708 spin_lock(&pool->lock);
2709 /* see the comment in try_to_grab_pending() with the same code */
2710 pwq = get_work_pwq(work);
2711 if (pwq) {
2712 if (unlikely(pwq->pool != pool))
2713 goto already_gone;
2714 } else {
2715 worker = find_worker_executing_work(pool, work);
2716 if (!worker)
2717 goto already_gone;
2718 pwq = worker->current_pwq;
2719 }
2720
2721 insert_wq_barrier(pwq, barr, work, worker);
2722 spin_unlock_irq(&pool->lock);
2723
2724 /*
2725 * If @max_active is 1 or rescuer is in use, flushing another work
2726 * item on the same workqueue may lead to deadlock. Make sure the
2727 * flusher is not running on the same workqueue by verifying write
2728 * access.
2729 */
2730 if (pwq->wq->saved_max_active == 1 || pwq->wq->rescuer)
2731 lock_map_acquire(&pwq->wq->lockdep_map);
2732 else
2733 lock_map_acquire_read(&pwq->wq->lockdep_map);
2734 lock_map_release(&pwq->wq->lockdep_map);
2735
2736 return true;
2737 already_gone:
2738 spin_unlock_irq(&pool->lock);
2739 return false;
2740 }
2741
2742 /**
2743 * flush_work - wait for a work to finish executing the last queueing instance
2744 * @work: the work to flush
2745 *
2746 * Wait until @work has finished execution. @work is guaranteed to be idle
2747 * on return if it hasn't been requeued since flush started.
2748 *
2749 * Return:
2750 * %true if flush_work() waited for the work to finish execution,
2751 * %false if it was already idle.
2752 */
2753 bool flush_work(struct work_struct *work)
2754 {
2755 struct wq_barrier barr;
2756
2757 lock_map_acquire(&work->lockdep_map);
2758 lock_map_release(&work->lockdep_map);
2759
2760 if (start_flush_work(work, &barr)) {
2761 wait_for_completion(&barr.done);
2762 destroy_work_on_stack(&barr.work);
2763 return true;
2764 } else {
2765 return false;
2766 }
2767 }
2768 EXPORT_SYMBOL_GPL(flush_work);
2769
2770 static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
2771 {
2772 unsigned long flags;
2773 int ret;
2774
2775 do {
2776 ret = try_to_grab_pending(work, is_dwork, &flags);
2777 /*
2778 * If someone else is canceling, wait for the same event it
2779 * would be waiting for before retrying.
2780 */
2781 if (unlikely(ret == -ENOENT))
2782 flush_work(work);
2783 } while (unlikely(ret < 0));
2784
2785 /* tell other tasks trying to grab @work to back off */
2786 mark_work_canceling(work);
2787 local_irq_restore(flags);
2788
2789 flush_work(work);
2790 clear_work_data(work);
2791 return ret;
2792 }
2793
2794 /**
2795 * cancel_work_sync - cancel a work and wait for it to finish
2796 * @work: the work to cancel
2797 *
2798 * Cancel @work and wait for its execution to finish. This function
2799 * can be used even if the work re-queues itself or migrates to
2800 * another workqueue. On return from this function, @work is
2801 * guaranteed to be not pending or executing on any CPU.
2802 *
2803 * cancel_work_sync(&delayed_work->work) must not be used for
2804 * delayed_work's. Use cancel_delayed_work_sync() instead.
2805 *
2806 * The caller must ensure that the workqueue on which @work was last
2807 * queued can't be destroyed before this function returns.
2808 *
2809 * Return:
2810 * %true if @work was pending, %false otherwise.
2811 */
2812 bool cancel_work_sync(struct work_struct *work)
2813 {
2814 return __cancel_work_timer(work, false);
2815 }
2816 EXPORT_SYMBOL_GPL(cancel_work_sync);
2817
2818 /**
2819 * flush_delayed_work - wait for a dwork to finish executing the last queueing
2820 * @dwork: the delayed work to flush
2821 *
2822 * Delayed timer is cancelled and the pending work is queued for
2823 * immediate execution. Like flush_work(), this function only
2824 * considers the last queueing instance of @dwork.
2825 *
2826 * Return:
2827 * %true if flush_work() waited for the work to finish execution,
2828 * %false if it was already idle.
2829 */
2830 bool flush_delayed_work(struct delayed_work *dwork)
2831 {
2832 local_irq_disable();
2833 if (del_timer_sync(&dwork->timer))
2834 __queue_work(dwork->cpu, dwork->wq, &dwork->work);
2835 local_irq_enable();
2836 return flush_work(&dwork->work);
2837 }
2838 EXPORT_SYMBOL(flush_delayed_work);
2839
2840 /**
2841 * cancel_delayed_work - cancel a delayed work
2842 * @dwork: delayed_work to cancel
2843 *
2844 * Kill off a pending delayed_work.
2845 *
2846 * Return: %true if @dwork was pending and canceled; %false if it wasn't
2847 * pending.
2848 *
2849 * Note:
2850 * The work callback function may still be running on return, unless
2851 * it returns %true and the work doesn't re-arm itself. Explicitly flush or
2852 * use cancel_delayed_work_sync() to wait on it.
2853 *
2854 * This function is safe to call from any context including IRQ handler.
2855 */
2856 bool cancel_delayed_work(struct delayed_work *dwork)
2857 {
2858 unsigned long flags;
2859 int ret;
2860
2861 do {
2862 ret = try_to_grab_pending(&dwork->work, true, &flags);
2863 } while (unlikely(ret == -EAGAIN));
2864
2865 if (unlikely(ret < 0))
2866 return false;
2867
2868 set_work_pool_and_clear_pending(&dwork->work,
2869 get_work_pool_id(&dwork->work));
2870 local_irq_restore(flags);
2871 return ret;
2872 }
2873 EXPORT_SYMBOL(cancel_delayed_work);
2874
2875 /**
2876 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
2877 * @dwork: the delayed work cancel
2878 *
2879 * This is cancel_work_sync() for delayed works.
2880 *
2881 * Return:
2882 * %true if @dwork was pending, %false otherwise.
2883 */
2884 bool cancel_delayed_work_sync(struct delayed_work *dwork)
2885 {
2886 return __cancel_work_timer(&dwork->work, true);
2887 }
2888 EXPORT_SYMBOL(cancel_delayed_work_sync);
2889
2890 /**
2891 * schedule_on_each_cpu - execute a function synchronously on each online CPU
2892 * @func: the function to call
2893 *
2894 * schedule_on_each_cpu() executes @func on each online CPU using the
2895 * system workqueue and blocks until all CPUs have completed.
2896 * schedule_on_each_cpu() is very slow.
2897 *
2898 * Return:
2899 * 0 on success, -errno on failure.
2900 */
2901 int schedule_on_each_cpu(work_func_t func)
2902 {
2903 int cpu;
2904 struct work_struct __percpu *works;
2905
2906 works = alloc_percpu(struct work_struct);
2907 if (!works)
2908 return -ENOMEM;
2909
2910 get_online_cpus();
2911
2912 for_each_online_cpu(cpu) {
2913 struct work_struct *work = per_cpu_ptr(works, cpu);
2914
2915 INIT_WORK(work, func);
2916 schedule_work_on(cpu, work);
2917 }
2918
2919 for_each_online_cpu(cpu)
2920 flush_work(per_cpu_ptr(works, cpu));
2921
2922 put_online_cpus();
2923 free_percpu(works);
2924 return 0;
2925 }
2926
2927 /**
2928 * flush_scheduled_work - ensure that any scheduled work has run to completion.
2929 *
2930 * Forces execution of the kernel-global workqueue and blocks until its
2931 * completion.
2932 *
2933 * Think twice before calling this function! It's very easy to get into
2934 * trouble if you don't take great care. Either of the following situations
2935 * will lead to deadlock:
2936 *
2937 * One of the work items currently on the workqueue needs to acquire
2938 * a lock held by your code or its caller.
2939 *
2940 * Your code is running in the context of a work routine.
2941 *
2942 * They will be detected by lockdep when they occur, but the first might not
2943 * occur very often. It depends on what work items are on the workqueue and
2944 * what locks they need, which you have no control over.
2945 *
2946 * In most situations flushing the entire workqueue is overkill; you merely
2947 * need to know that a particular work item isn't queued and isn't running.
2948 * In such cases you should use cancel_delayed_work_sync() or
2949 * cancel_work_sync() instead.
2950 */
2951 void flush_scheduled_work(void)
2952 {
2953 flush_workqueue(system_wq);
2954 }
2955 EXPORT_SYMBOL(flush_scheduled_work);
2956
2957 /**
2958 * execute_in_process_context - reliably execute the routine with user context
2959 * @fn: the function to execute
2960 * @ew: guaranteed storage for the execute work structure (must
2961 * be available when the work executes)
2962 *
2963 * Executes the function immediately if process context is available,
2964 * otherwise schedules the function for delayed execution.
2965 *
2966 * Return: 0 - function was executed
2967 * 1 - function was scheduled for execution
2968 */
2969 int execute_in_process_context(work_func_t fn, struct execute_work *ew)
2970 {
2971 if (!in_interrupt()) {
2972 fn(&ew->work);
2973 return 0;
2974 }
2975
2976 INIT_WORK(&ew->work, fn);
2977 schedule_work(&ew->work);
2978
2979 return 1;
2980 }
2981 EXPORT_SYMBOL_GPL(execute_in_process_context);
2982
2983 #ifdef CONFIG_SYSFS
2984 /*
2985 * Workqueues with WQ_SYSFS flag set is visible to userland via
2986 * /sys/bus/workqueue/devices/WQ_NAME. All visible workqueues have the
2987 * following attributes.
2988 *
2989 * per_cpu RO bool : whether the workqueue is per-cpu or unbound
2990 * max_active RW int : maximum number of in-flight work items
2991 *
2992 * Unbound workqueues have the following extra attributes.
2993 *
2994 * id RO int : the associated pool ID
2995 * nice RW int : nice value of the workers
2996 * cpumask RW mask : bitmask of allowed CPUs for the workers
2997 */
2998 struct wq_device {
2999 struct workqueue_struct *wq;
3000 struct device dev;
3001 };
3002
3003 static struct workqueue_struct *dev_to_wq(struct device *dev)
3004 {
3005 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
3006
3007 return wq_dev->wq;
3008 }
3009
3010 static ssize_t per_cpu_show(struct device *dev, struct device_attribute *attr,
3011 char *buf)
3012 {
3013 struct workqueue_struct *wq = dev_to_wq(dev);
3014
3015 return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND));
3016 }
3017 static DEVICE_ATTR_RO(per_cpu);
3018
3019 static ssize_t max_active_show(struct device *dev,
3020 struct device_attribute *attr, char *buf)
3021 {
3022 struct workqueue_struct *wq = dev_to_wq(dev);
3023
3024 return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active);
3025 }
3026
3027 static ssize_t max_active_store(struct device *dev,
3028 struct device_attribute *attr, const char *buf,
3029 size_t count)
3030 {
3031 struct workqueue_struct *wq = dev_to_wq(dev);
3032 int val;
3033
3034 if (sscanf(buf, "%d", &val) != 1 || val <= 0)
3035 return -EINVAL;
3036
3037 workqueue_set_max_active(wq, val);
3038 return count;
3039 }
3040 static DEVICE_ATTR_RW(max_active);
3041
3042 static struct attribute *wq_sysfs_attrs[] = {
3043 &dev_attr_per_cpu.attr,
3044 &dev_attr_max_active.attr,
3045 NULL,
3046 };
3047 ATTRIBUTE_GROUPS(wq_sysfs);
3048
3049 static ssize_t wq_pool_ids_show(struct device *dev,
3050 struct device_attribute *attr, char *buf)
3051 {
3052 struct workqueue_struct *wq = dev_to_wq(dev);
3053 const char *delim = "";
3054 int node, written = 0;
3055
3056 rcu_read_lock_sched();
3057 for_each_node(node) {
3058 written += scnprintf(buf + written, PAGE_SIZE - written,
3059 "%s%d:%d", delim, node,
3060 unbound_pwq_by_node(wq, node)->pool->id);
3061 delim = " ";
3062 }
3063 written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
3064 rcu_read_unlock_sched();
3065
3066 return written;
3067 }
3068
3069 static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr,
3070 char *buf)
3071 {
3072 struct workqueue_struct *wq = dev_to_wq(dev);
3073 int written;
3074
3075 mutex_lock(&wq->mutex);
3076 written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice);
3077 mutex_unlock(&wq->mutex);
3078
3079 return written;
3080 }
3081
3082 /* prepare workqueue_attrs for sysfs store operations */
3083 static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq)
3084 {
3085 struct workqueue_attrs *attrs;
3086
3087 attrs = alloc_workqueue_attrs(GFP_KERNEL);
3088 if (!attrs)
3089 return NULL;
3090
3091 mutex_lock(&wq->mutex);
3092 copy_workqueue_attrs(attrs, wq->unbound_attrs);
3093 mutex_unlock(&wq->mutex);
3094 return attrs;
3095 }
3096
3097 static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr,
3098 const char *buf, size_t count)
3099 {
3100 struct workqueue_struct *wq = dev_to_wq(dev);
3101 struct workqueue_attrs *attrs;
3102 int ret;
3103
3104 attrs = wq_sysfs_prep_attrs(wq);
3105 if (!attrs)
3106 return -ENOMEM;
3107
3108 if (sscanf(buf, "%d", &attrs->nice) == 1 &&
3109 attrs->nice >= MIN_NICE && attrs->nice <= MAX_NICE)
3110 ret = apply_workqueue_attrs(wq, attrs);
3111 else
3112 ret = -EINVAL;
3113
3114 free_workqueue_attrs(attrs);
3115 return ret ?: count;
3116 }
3117
3118 static ssize_t wq_cpumask_show(struct device *dev,
3119 struct device_attribute *attr, char *buf)
3120 {
3121 struct workqueue_struct *wq = dev_to_wq(dev);
3122 int written;
3123
3124 mutex_lock(&wq->mutex);
3125 written = cpumask_scnprintf(buf, PAGE_SIZE, wq->unbound_attrs->cpumask);
3126 mutex_unlock(&wq->mutex);
3127
3128 written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
3129 return written;
3130 }
3131
3132 static ssize_t wq_cpumask_store(struct device *dev,
3133 struct device_attribute *attr,
3134 const char *buf, size_t count)
3135 {
3136 struct workqueue_struct *wq = dev_to_wq(dev);
3137 struct workqueue_attrs *attrs;
3138 int ret;
3139
3140 attrs = wq_sysfs_prep_attrs(wq);
3141 if (!attrs)
3142 return -ENOMEM;
3143
3144 ret = cpumask_parse(buf, attrs->cpumask);
3145 if (!ret)
3146 ret = apply_workqueue_attrs(wq, attrs);
3147
3148 free_workqueue_attrs(attrs);
3149 return ret ?: count;
3150 }
3151
3152 static ssize_t wq_numa_show(struct device *dev, struct device_attribute *attr,
3153 char *buf)
3154 {
3155 struct workqueue_struct *wq = dev_to_wq(dev);
3156 int written;
3157
3158 mutex_lock(&wq->mutex);
3159 written = scnprintf(buf, PAGE_SIZE, "%d\n",
3160 !wq->unbound_attrs->no_numa);
3161 mutex_unlock(&wq->mutex);
3162
3163 return written;
3164 }
3165
3166 static ssize_t wq_numa_store(struct device *dev, struct device_attribute *attr,
3167 const char *buf, size_t count)
3168 {
3169 struct workqueue_struct *wq = dev_to_wq(dev);
3170 struct workqueue_attrs *attrs;
3171 int v, ret;
3172
3173 attrs = wq_sysfs_prep_attrs(wq);
3174 if (!attrs)
3175 return -ENOMEM;
3176
3177 ret = -EINVAL;
3178 if (sscanf(buf, "%d", &v) == 1) {
3179 attrs->no_numa = !v;
3180 ret = apply_workqueue_attrs(wq, attrs);
3181 }
3182
3183 free_workqueue_attrs(attrs);
3184 return ret ?: count;
3185 }
3186
3187 static struct device_attribute wq_sysfs_unbound_attrs[] = {
3188 __ATTR(pool_ids, 0444, wq_pool_ids_show, NULL),
3189 __ATTR(nice, 0644, wq_nice_show, wq_nice_store),
3190 __ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store),
3191 __ATTR(numa, 0644, wq_numa_show, wq_numa_store),
3192 __ATTR_NULL,
3193 };
3194
3195 static struct bus_type wq_subsys = {
3196 .name = "workqueue",
3197 .dev_groups = wq_sysfs_groups,
3198 };
3199
3200 static int __init wq_sysfs_init(void)
3201 {
3202 return subsys_virtual_register(&wq_subsys, NULL);
3203 }
3204 core_initcall(wq_sysfs_init);
3205
3206 static void wq_device_release(struct device *dev)
3207 {
3208 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
3209
3210 kfree(wq_dev);
3211 }
3212
3213 /**
3214 * workqueue_sysfs_register - make a workqueue visible in sysfs
3215 * @wq: the workqueue to register
3216 *
3217 * Expose @wq in sysfs under /sys/bus/workqueue/devices.
3218 * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set
3219 * which is the preferred method.
3220 *
3221 * Workqueue user should use this function directly iff it wants to apply
3222 * workqueue_attrs before making the workqueue visible in sysfs; otherwise,
3223 * apply_workqueue_attrs() may race against userland updating the
3224 * attributes.
3225 *
3226 * Return: 0 on success, -errno on failure.
3227 */
3228 int workqueue_sysfs_register(struct workqueue_struct *wq)
3229 {
3230 struct wq_device *wq_dev;
3231 int ret;
3232
3233 /*
3234 * Adjusting max_active or creating new pwqs by applyting
3235 * attributes breaks ordering guarantee. Disallow exposing ordered
3236 * workqueues.
3237 */
3238 if (WARN_ON(wq->flags & __WQ_ORDERED))
3239 return -EINVAL;
3240
3241 wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL);
3242 if (!wq_dev)
3243 return -ENOMEM;
3244
3245 wq_dev->wq = wq;
3246 wq_dev->dev.bus = &wq_subsys;
3247 wq_dev->dev.init_name = wq->name;
3248 wq_dev->dev.release = wq_device_release;
3249
3250 /*
3251 * unbound_attrs are created separately. Suppress uevent until
3252 * everything is ready.
3253 */
3254 dev_set_uevent_suppress(&wq_dev->dev, true);
3255
3256 ret = device_register(&wq_dev->dev);
3257 if (ret) {
3258 kfree(wq_dev);
3259 wq->wq_dev = NULL;
3260 return ret;
3261 }
3262
3263 if (wq->flags & WQ_UNBOUND) {
3264 struct device_attribute *attr;
3265
3266 for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) {
3267 ret = device_create_file(&wq_dev->dev, attr);
3268 if (ret) {
3269 device_unregister(&wq_dev->dev);
3270 wq->wq_dev = NULL;
3271 return ret;
3272 }
3273 }
3274 }
3275
3276 kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD);
3277 return 0;
3278 }
3279
3280 /**
3281 * workqueue_sysfs_unregister - undo workqueue_sysfs_register()
3282 * @wq: the workqueue to unregister
3283 *
3284 * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister.
3285 */
3286 static void workqueue_sysfs_unregister(struct workqueue_struct *wq)
3287 {
3288 struct wq_device *wq_dev = wq->wq_dev;
3289
3290 if (!wq->wq_dev)
3291 return;
3292
3293 wq->wq_dev = NULL;
3294 device_unregister(&wq_dev->dev);
3295 }
3296 #else /* CONFIG_SYSFS */
3297 static void workqueue_sysfs_unregister(struct workqueue_struct *wq) { }
3298 #endif /* CONFIG_SYSFS */
3299
3300 /**
3301 * free_workqueue_attrs - free a workqueue_attrs
3302 * @attrs: workqueue_attrs to free
3303 *
3304 * Undo alloc_workqueue_attrs().
3305 */
3306 void free_workqueue_attrs(struct workqueue_attrs *attrs)
3307 {
3308 if (attrs) {
3309 free_cpumask_var(attrs->cpumask);
3310 kfree(attrs);
3311 }
3312 }
3313
3314 /**
3315 * alloc_workqueue_attrs - allocate a workqueue_attrs
3316 * @gfp_mask: allocation mask to use
3317 *
3318 * Allocate a new workqueue_attrs, initialize with default settings and
3319 * return it.
3320 *
3321 * Return: The allocated new workqueue_attr on success. %NULL on failure.
3322 */
3323 struct workqueue_attrs *alloc_workqueue_attrs(gfp_t gfp_mask)
3324 {
3325 struct workqueue_attrs *attrs;
3326
3327 attrs = kzalloc(sizeof(*attrs), gfp_mask);
3328 if (!attrs)
3329 goto fail;
3330 if (!alloc_cpumask_var(&attrs->cpumask, gfp_mask))
3331 goto fail;
3332
3333 cpumask_copy(attrs->cpumask, cpu_possible_mask);
3334 return attrs;
3335 fail:
3336 free_workqueue_attrs(attrs);
3337 return NULL;
3338 }
3339
3340 static void copy_workqueue_attrs(struct workqueue_attrs *to,
3341 const struct workqueue_attrs *from)
3342 {
3343 to->nice = from->nice;
3344 cpumask_copy(to->cpumask, from->cpumask);
3345 /*
3346 * Unlike hash and equality test, this function doesn't ignore
3347 * ->no_numa as it is used for both pool and wq attrs. Instead,
3348 * get_unbound_pool() explicitly clears ->no_numa after copying.
3349 */
3350 to->no_numa = from->no_numa;
3351 }
3352
3353 /* hash value of the content of @attr */
3354 static u32 wqattrs_hash(const struct workqueue_attrs *attrs)
3355 {
3356 u32 hash = 0;
3357
3358 hash = jhash_1word(attrs->nice, hash);
3359 hash = jhash(cpumask_bits(attrs->cpumask),
3360 BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash);
3361 return hash;
3362 }
3363
3364 /* content equality test */
3365 static bool wqattrs_equal(const struct workqueue_attrs *a,
3366 const struct workqueue_attrs *b)
3367 {
3368 if (a->nice != b->nice)
3369 return false;
3370 if (!cpumask_equal(a->cpumask, b->cpumask))
3371 return false;
3372 return true;
3373 }
3374
3375 /**
3376 * init_worker_pool - initialize a newly zalloc'd worker_pool
3377 * @pool: worker_pool to initialize
3378 *
3379 * Initiailize a newly zalloc'd @pool. It also allocates @pool->attrs.
3380 *
3381 * Return: 0 on success, -errno on failure. Even on failure, all fields
3382 * inside @pool proper are initialized and put_unbound_pool() can be called
3383 * on @pool safely to release it.
3384 */
3385 static int init_worker_pool(struct worker_pool *pool)
3386 {
3387 spin_lock_init(&pool->lock);
3388 pool->id = -1;
3389 pool->cpu = -1;
3390 pool->node = NUMA_NO_NODE;
3391 pool->flags |= POOL_DISASSOCIATED;
3392 INIT_LIST_HEAD(&pool->worklist);
3393 INIT_LIST_HEAD(&pool->idle_list);
3394 hash_init(pool->busy_hash);
3395
3396 init_timer_deferrable(&pool->idle_timer);
3397 pool->idle_timer.function = idle_worker_timeout;
3398 pool->idle_timer.data = (unsigned long)pool;
3399
3400 setup_timer(&pool->mayday_timer, pool_mayday_timeout,
3401 (unsigned long)pool);
3402
3403 mutex_init(&pool->manager_arb);
3404 mutex_init(&pool->attach_mutex);
3405 INIT_LIST_HEAD(&pool->workers);
3406
3407 ida_init(&pool->worker_ida);
3408 INIT_HLIST_NODE(&pool->hash_node);
3409 pool->refcnt = 1;
3410
3411 /* shouldn't fail above this point */
3412 pool->attrs = alloc_workqueue_attrs(GFP_KERNEL);
3413 if (!pool->attrs)
3414 return -ENOMEM;
3415 return 0;
3416 }
3417
3418 static void rcu_free_pool(struct rcu_head *rcu)
3419 {
3420 struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu);
3421
3422 ida_destroy(&pool->worker_ida);
3423 free_workqueue_attrs(pool->attrs);
3424 kfree(pool);
3425 }
3426
3427 /**
3428 * put_unbound_pool - put a worker_pool
3429 * @pool: worker_pool to put
3430 *
3431 * Put @pool. If its refcnt reaches zero, it gets destroyed in sched-RCU
3432 * safe manner. get_unbound_pool() calls this function on its failure path
3433 * and this function should be able to release pools which went through,
3434 * successfully or not, init_worker_pool().
3435 *
3436 * Should be called with wq_pool_mutex held.
3437 */
3438 static void put_unbound_pool(struct worker_pool *pool)
3439 {
3440 DECLARE_COMPLETION_ONSTACK(detach_completion);
3441 struct worker *worker;
3442
3443 lockdep_assert_held(&wq_pool_mutex);
3444
3445 if (--pool->refcnt)
3446 return;
3447
3448 /* sanity checks */
3449 if (WARN_ON(!(pool->cpu < 0)) ||
3450 WARN_ON(!list_empty(&pool->worklist)))
3451 return;
3452
3453 /* release id and unhash */
3454 if (pool->id >= 0)
3455 idr_remove(&worker_pool_idr, pool->id);
3456 hash_del(&pool->hash_node);
3457
3458 /*
3459 * Become the manager and destroy all workers. Grabbing
3460 * manager_arb prevents @pool's workers from blocking on
3461 * attach_mutex.
3462 */
3463 mutex_lock(&pool->manager_arb);
3464
3465 spin_lock_irq(&pool->lock);
3466 while ((worker = first_idle_worker(pool)))
3467 destroy_worker(worker);
3468 WARN_ON(pool->nr_workers || pool->nr_idle);
3469 spin_unlock_irq(&pool->lock);
3470
3471 mutex_lock(&pool->attach_mutex);
3472 if (!list_empty(&pool->workers))
3473 pool->detach_completion = &detach_completion;
3474 mutex_unlock(&pool->attach_mutex);
3475
3476 if (pool->detach_completion)
3477 wait_for_completion(pool->detach_completion);
3478
3479 mutex_unlock(&pool->manager_arb);
3480
3481 /* shut down the timers */
3482 del_timer_sync(&pool->idle_timer);
3483 del_timer_sync(&pool->mayday_timer);
3484
3485 /* sched-RCU protected to allow dereferences from get_work_pool() */
3486 call_rcu_sched(&pool->rcu, rcu_free_pool);
3487 }
3488
3489 /**
3490 * get_unbound_pool - get a worker_pool with the specified attributes
3491 * @attrs: the attributes of the worker_pool to get
3492 *
3493 * Obtain a worker_pool which has the same attributes as @attrs, bump the
3494 * reference count and return it. If there already is a matching
3495 * worker_pool, it will be used; otherwise, this function attempts to
3496 * create a new one.
3497 *
3498 * Should be called with wq_pool_mutex held.
3499 *
3500 * Return: On success, a worker_pool with the same attributes as @attrs.
3501 * On failure, %NULL.
3502 */
3503 static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs)
3504 {
3505 u32 hash = wqattrs_hash(attrs);
3506 struct worker_pool *pool;
3507 int node;
3508
3509 lockdep_assert_held(&wq_pool_mutex);
3510
3511 /* do we already have a matching pool? */
3512 hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) {
3513 if (wqattrs_equal(pool->attrs, attrs)) {
3514 pool->refcnt++;
3515 goto out_unlock;
3516 }
3517 }
3518
3519 /* nope, create a new one */
3520 pool = kzalloc(sizeof(*pool), GFP_KERNEL);
3521 if (!pool || init_worker_pool(pool) < 0)
3522 goto fail;
3523
3524 lockdep_set_subclass(&pool->lock, 1); /* see put_pwq() */
3525 copy_workqueue_attrs(pool->attrs, attrs);
3526
3527 /*
3528 * no_numa isn't a worker_pool attribute, always clear it. See
3529 * 'struct workqueue_attrs' comments for detail.
3530 */
3531 pool->attrs->no_numa = false;
3532
3533 /* if cpumask is contained inside a NUMA node, we belong to that node */
3534 if (wq_numa_enabled) {
3535 for_each_node(node) {
3536 if (cpumask_subset(pool->attrs->cpumask,
3537 wq_numa_possible_cpumask[node])) {
3538 pool->node = node;
3539 break;
3540 }
3541 }
3542 }
3543
3544 if (worker_pool_assign_id(pool) < 0)
3545 goto fail;
3546
3547 /* create and start the initial worker */
3548 if (create_and_start_worker(pool) < 0)
3549 goto fail;
3550
3551 /* install */
3552 hash_add(unbound_pool_hash, &pool->hash_node, hash);
3553 out_unlock:
3554 return pool;
3555 fail:
3556 if (pool)
3557 put_unbound_pool(pool);
3558 return NULL;
3559 }
3560
3561 static void rcu_free_pwq(struct rcu_head *rcu)
3562 {
3563 kmem_cache_free(pwq_cache,
3564 container_of(rcu, struct pool_workqueue, rcu));
3565 }
3566
3567 /*
3568 * Scheduled on system_wq by put_pwq() when an unbound pwq hits zero refcnt
3569 * and needs to be destroyed.
3570 */
3571 static void pwq_unbound_release_workfn(struct work_struct *work)
3572 {
3573 struct pool_workqueue *pwq = container_of(work, struct pool_workqueue,
3574 unbound_release_work);
3575 struct workqueue_struct *wq = pwq->wq;
3576 struct worker_pool *pool = pwq->pool;
3577 bool is_last;
3578
3579 if (WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND)))
3580 return;
3581
3582 /*
3583 * Unlink @pwq. Synchronization against wq->mutex isn't strictly
3584 * necessary on release but do it anyway. It's easier to verify
3585 * and consistent with the linking path.
3586 */
3587 mutex_lock(&wq->mutex);
3588 list_del_rcu(&pwq->pwqs_node);
3589 is_last = list_empty(&wq->pwqs);
3590 mutex_unlock(&wq->mutex);
3591
3592 mutex_lock(&wq_pool_mutex);
3593 put_unbound_pool(pool);
3594 mutex_unlock(&wq_pool_mutex);
3595
3596 call_rcu_sched(&pwq->rcu, rcu_free_pwq);
3597
3598 /*
3599 * If we're the last pwq going away, @wq is already dead and no one
3600 * is gonna access it anymore. Free it.
3601 */
3602 if (is_last) {
3603 free_workqueue_attrs(wq->unbound_attrs);
3604 kfree(wq);
3605 }
3606 }
3607
3608 /**
3609 * pwq_adjust_max_active - update a pwq's max_active to the current setting
3610 * @pwq: target pool_workqueue
3611 *
3612 * If @pwq isn't freezing, set @pwq->max_active to the associated
3613 * workqueue's saved_max_active and activate delayed work items
3614 * accordingly. If @pwq is freezing, clear @pwq->max_active to zero.
3615 */
3616 static void pwq_adjust_max_active(struct pool_workqueue *pwq)
3617 {
3618 struct workqueue_struct *wq = pwq->wq;
3619 bool freezable = wq->flags & WQ_FREEZABLE;
3620
3621 /* for @wq->saved_max_active */
3622 lockdep_assert_held(&wq->mutex);
3623
3624 /* fast exit for non-freezable wqs */
3625 if (!freezable && pwq->max_active == wq->saved_max_active)
3626 return;
3627
3628 spin_lock_irq(&pwq->pool->lock);
3629
3630 /*
3631 * During [un]freezing, the caller is responsible for ensuring that
3632 * this function is called at least once after @workqueue_freezing
3633 * is updated and visible.
3634 */
3635 if (!freezable || !workqueue_freezing) {
3636 pwq->max_active = wq->saved_max_active;
3637
3638 while (!list_empty(&pwq->delayed_works) &&
3639 pwq->nr_active < pwq->max_active)
3640 pwq_activate_first_delayed(pwq);
3641
3642 /*
3643 * Need to kick a worker after thawed or an unbound wq's
3644 * max_active is bumped. It's a slow path. Do it always.
3645 */
3646 wake_up_worker(pwq->pool);
3647 } else {
3648 pwq->max_active = 0;
3649 }
3650
3651 spin_unlock_irq(&pwq->pool->lock);
3652 }
3653
3654 /* initialize newly alloced @pwq which is associated with @wq and @pool */
3655 static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq,
3656 struct worker_pool *pool)
3657 {
3658 BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK);
3659
3660 memset(pwq, 0, sizeof(*pwq));
3661
3662 pwq->pool = pool;
3663 pwq->wq = wq;
3664 pwq->flush_color = -1;
3665 pwq->refcnt = 1;
3666 INIT_LIST_HEAD(&pwq->delayed_works);
3667 INIT_LIST_HEAD(&pwq->pwqs_node);
3668 INIT_LIST_HEAD(&pwq->mayday_node);
3669 INIT_WORK(&pwq->unbound_release_work, pwq_unbound_release_workfn);
3670 }
3671
3672 /* sync @pwq with the current state of its associated wq and link it */
3673 static void link_pwq(struct pool_workqueue *pwq)
3674 {
3675 struct workqueue_struct *wq = pwq->wq;
3676
3677 lockdep_assert_held(&wq->mutex);
3678
3679 /* may be called multiple times, ignore if already linked */
3680 if (!list_empty(&pwq->pwqs_node))
3681 return;
3682
3683 /*
3684 * Set the matching work_color. This is synchronized with
3685 * wq->mutex to avoid confusing flush_workqueue().
3686 */
3687 pwq->work_color = wq->work_color;
3688
3689 /* sync max_active to the current setting */
3690 pwq_adjust_max_active(pwq);
3691
3692 /* link in @pwq */
3693 list_add_rcu(&pwq->pwqs_node, &wq->pwqs);
3694 }
3695
3696 /* obtain a pool matching @attr and create a pwq associating the pool and @wq */
3697 static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq,
3698 const struct workqueue_attrs *attrs)
3699 {
3700 struct worker_pool *pool;
3701 struct pool_workqueue *pwq;
3702
3703 lockdep_assert_held(&wq_pool_mutex);
3704
3705 pool = get_unbound_pool(attrs);
3706 if (!pool)
3707 return NULL;
3708
3709 pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node);
3710 if (!pwq) {
3711 put_unbound_pool(pool);
3712 return NULL;
3713 }
3714
3715 init_pwq(pwq, wq, pool);
3716 return pwq;
3717 }
3718
3719 /* undo alloc_unbound_pwq(), used only in the error path */
3720 static void free_unbound_pwq(struct pool_workqueue *pwq)
3721 {
3722 lockdep_assert_held(&wq_pool_mutex);
3723
3724 if (pwq) {
3725 put_unbound_pool(pwq->pool);
3726 kmem_cache_free(pwq_cache, pwq);
3727 }
3728 }
3729
3730 /**
3731 * wq_calc_node_mask - calculate a wq_attrs' cpumask for the specified node
3732 * @attrs: the wq_attrs of interest
3733 * @node: the target NUMA node
3734 * @cpu_going_down: if >= 0, the CPU to consider as offline
3735 * @cpumask: outarg, the resulting cpumask
3736 *
3737 * Calculate the cpumask a workqueue with @attrs should use on @node. If
3738 * @cpu_going_down is >= 0, that cpu is considered offline during
3739 * calculation. The result is stored in @cpumask.
3740 *
3741 * If NUMA affinity is not enabled, @attrs->cpumask is always used. If
3742 * enabled and @node has online CPUs requested by @attrs, the returned
3743 * cpumask is the intersection of the possible CPUs of @node and
3744 * @attrs->cpumask.
3745 *
3746 * The caller is responsible for ensuring that the cpumask of @node stays
3747 * stable.
3748 *
3749 * Return: %true if the resulting @cpumask is different from @attrs->cpumask,
3750 * %false if equal.
3751 */
3752 static bool wq_calc_node_cpumask(const struct workqueue_attrs *attrs, int node,
3753 int cpu_going_down, cpumask_t *cpumask)
3754 {
3755 if (!wq_numa_enabled || attrs->no_numa)
3756 goto use_dfl;
3757
3758 /* does @node have any online CPUs @attrs wants? */
3759 cpumask_and(cpumask, cpumask_of_node(node), attrs->cpumask);
3760 if (cpu_going_down >= 0)
3761 cpumask_clear_cpu(cpu_going_down, cpumask);
3762
3763 if (cpumask_empty(cpumask))
3764 goto use_dfl;
3765
3766 /* yeap, return possible CPUs in @node that @attrs wants */
3767 cpumask_and(cpumask, attrs->cpumask, wq_numa_possible_cpumask[node]);
3768 return !cpumask_equal(cpumask, attrs->cpumask);
3769
3770 use_dfl:
3771 cpumask_copy(cpumask, attrs->cpumask);
3772 return false;
3773 }
3774
3775 /* install @pwq into @wq's numa_pwq_tbl[] for @node and return the old pwq */
3776 static struct pool_workqueue *numa_pwq_tbl_install(struct workqueue_struct *wq,
3777 int node,
3778 struct pool_workqueue *pwq)
3779 {
3780 struct pool_workqueue *old_pwq;
3781
3782 lockdep_assert_held(&wq->mutex);
3783
3784 /* link_pwq() can handle duplicate calls */
3785 link_pwq(pwq);
3786
3787 old_pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
3788 rcu_assign_pointer(wq->numa_pwq_tbl[node], pwq);
3789 return old_pwq;
3790 }
3791
3792 /**
3793 * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue
3794 * @wq: the target workqueue
3795 * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs()
3796 *
3797 * Apply @attrs to an unbound workqueue @wq. Unless disabled, on NUMA
3798 * machines, this function maps a separate pwq to each NUMA node with
3799 * possibles CPUs in @attrs->cpumask so that work items are affine to the
3800 * NUMA node it was issued on. Older pwqs are released as in-flight work
3801 * items finish. Note that a work item which repeatedly requeues itself
3802 * back-to-back will stay on its current pwq.
3803 *
3804 * Performs GFP_KERNEL allocations.
3805 *
3806 * Return: 0 on success and -errno on failure.
3807 */
3808 int apply_workqueue_attrs(struct workqueue_struct *wq,
3809 const struct workqueue_attrs *attrs)
3810 {
3811 struct workqueue_attrs *new_attrs, *tmp_attrs;
3812 struct pool_workqueue **pwq_tbl, *dfl_pwq;
3813 int node, ret;
3814
3815 /* only unbound workqueues can change attributes */
3816 if (WARN_ON(!(wq->flags & WQ_UNBOUND)))
3817 return -EINVAL;
3818
3819 /* creating multiple pwqs breaks ordering guarantee */
3820 if (WARN_ON((wq->flags & __WQ_ORDERED) && !list_empty(&wq->pwqs)))
3821 return -EINVAL;
3822
3823 pwq_tbl = kzalloc(wq_numa_tbl_len * sizeof(pwq_tbl[0]), GFP_KERNEL);
3824 new_attrs = alloc_workqueue_attrs(GFP_KERNEL);
3825 tmp_attrs = alloc_workqueue_attrs(GFP_KERNEL);
3826 if (!pwq_tbl || !new_attrs || !tmp_attrs)
3827 goto enomem;
3828
3829 /* make a copy of @attrs and sanitize it */
3830 copy_workqueue_attrs(new_attrs, attrs);
3831 cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask);
3832
3833 /*
3834 * We may create multiple pwqs with differing cpumasks. Make a
3835 * copy of @new_attrs which will be modified and used to obtain
3836 * pools.
3837 */
3838 copy_workqueue_attrs(tmp_attrs, new_attrs);
3839
3840 /*
3841 * CPUs should stay stable across pwq creations and installations.
3842 * Pin CPUs, determine the target cpumask for each node and create
3843 * pwqs accordingly.
3844 */
3845 get_online_cpus();
3846
3847 mutex_lock(&wq_pool_mutex);
3848
3849 /*
3850 * If something goes wrong during CPU up/down, we'll fall back to
3851 * the default pwq covering whole @attrs->cpumask. Always create
3852 * it even if we don't use it immediately.
3853 */
3854 dfl_pwq = alloc_unbound_pwq(wq, new_attrs);
3855 if (!dfl_pwq)
3856 goto enomem_pwq;
3857
3858 for_each_node(node) {
3859 if (wq_calc_node_cpumask(attrs, node, -1, tmp_attrs->cpumask)) {
3860 pwq_tbl[node] = alloc_unbound_pwq(wq, tmp_attrs);
3861 if (!pwq_tbl[node])
3862 goto enomem_pwq;
3863 } else {
3864 dfl_pwq->refcnt++;
3865 pwq_tbl[node] = dfl_pwq;
3866 }
3867 }
3868
3869 mutex_unlock(&wq_pool_mutex);
3870
3871 /* all pwqs have been created successfully, let's install'em */
3872 mutex_lock(&wq->mutex);
3873
3874 copy_workqueue_attrs(wq->unbound_attrs, new_attrs);
3875
3876 /* save the previous pwq and install the new one */
3877 for_each_node(node)
3878 pwq_tbl[node] = numa_pwq_tbl_install(wq, node, pwq_tbl[node]);
3879
3880 /* @dfl_pwq might not have been used, ensure it's linked */
3881 link_pwq(dfl_pwq);
3882 swap(wq->dfl_pwq, dfl_pwq);
3883
3884 mutex_unlock(&wq->mutex);
3885
3886 /* put the old pwqs */
3887 for_each_node(node)
3888 put_pwq_unlocked(pwq_tbl[node]);
3889 put_pwq_unlocked(dfl_pwq);
3890
3891 put_online_cpus();
3892 ret = 0;
3893 /* fall through */
3894 out_free:
3895 free_workqueue_attrs(tmp_attrs);
3896 free_workqueue_attrs(new_attrs);
3897 kfree(pwq_tbl);
3898 return ret;
3899
3900 enomem_pwq:
3901 free_unbound_pwq(dfl_pwq);
3902 for_each_node(node)
3903 if (pwq_tbl && pwq_tbl[node] != dfl_pwq)
3904 free_unbound_pwq(pwq_tbl[node]);
3905 mutex_unlock(&wq_pool_mutex);
3906 put_online_cpus();
3907 enomem:
3908 ret = -ENOMEM;
3909 goto out_free;
3910 }
3911
3912 /**
3913 * wq_update_unbound_numa - update NUMA affinity of a wq for CPU hot[un]plug
3914 * @wq: the target workqueue
3915 * @cpu: the CPU coming up or going down
3916 * @online: whether @cpu is coming up or going down
3917 *
3918 * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and
3919 * %CPU_DOWN_FAILED. @cpu is being hot[un]plugged, update NUMA affinity of
3920 * @wq accordingly.
3921 *
3922 * If NUMA affinity can't be adjusted due to memory allocation failure, it
3923 * falls back to @wq->dfl_pwq which may not be optimal but is always
3924 * correct.
3925 *
3926 * Note that when the last allowed CPU of a NUMA node goes offline for a
3927 * workqueue with a cpumask spanning multiple nodes, the workers which were
3928 * already executing the work items for the workqueue will lose their CPU
3929 * affinity and may execute on any CPU. This is similar to how per-cpu
3930 * workqueues behave on CPU_DOWN. If a workqueue user wants strict
3931 * affinity, it's the user's responsibility to flush the work item from
3932 * CPU_DOWN_PREPARE.
3933 */
3934 static void wq_update_unbound_numa(struct workqueue_struct *wq, int cpu,
3935 bool online)
3936 {
3937 int node = cpu_to_node(cpu);
3938 int cpu_off = online ? -1 : cpu;
3939 struct pool_workqueue *old_pwq = NULL, *pwq;
3940 struct workqueue_attrs *target_attrs;
3941 cpumask_t *cpumask;
3942
3943 lockdep_assert_held(&wq_pool_mutex);
3944
3945 if (!wq_numa_enabled || !(wq->flags & WQ_UNBOUND))
3946 return;
3947
3948 /*
3949 * We don't wanna alloc/free wq_attrs for each wq for each CPU.
3950 * Let's use a preallocated one. The following buf is protected by
3951 * CPU hotplug exclusion.
3952 */
3953 target_attrs = wq_update_unbound_numa_attrs_buf;
3954 cpumask = target_attrs->cpumask;
3955
3956 mutex_lock(&wq->mutex);
3957 if (wq->unbound_attrs->no_numa)
3958 goto out_unlock;
3959
3960 copy_workqueue_attrs(target_attrs, wq->unbound_attrs);
3961 pwq = unbound_pwq_by_node(wq, node);
3962
3963 /*
3964 * Let's determine what needs to be done. If the target cpumask is
3965 * different from wq's, we need to compare it to @pwq's and create
3966 * a new one if they don't match. If the target cpumask equals
3967 * wq's, the default pwq should be used.
3968 */
3969 if (wq_calc_node_cpumask(wq->unbound_attrs, node, cpu_off, cpumask)) {
3970 if (cpumask_equal(cpumask, pwq->pool->attrs->cpumask))
3971 goto out_unlock;
3972 } else {
3973 goto use_dfl_pwq;
3974 }
3975
3976 mutex_unlock(&wq->mutex);
3977
3978 /* create a new pwq */
3979 pwq = alloc_unbound_pwq(wq, target_attrs);
3980 if (!pwq) {
3981 pr_warn("workqueue: allocation failed while updating NUMA affinity of \"%s\"\n",
3982 wq->name);
3983 mutex_lock(&wq->mutex);
3984 goto use_dfl_pwq;
3985 }
3986
3987 /*
3988 * Install the new pwq. As this function is called only from CPU
3989 * hotplug callbacks and applying a new attrs is wrapped with
3990 * get/put_online_cpus(), @wq->unbound_attrs couldn't have changed
3991 * inbetween.
3992 */
3993 mutex_lock(&wq->mutex);
3994 old_pwq = numa_pwq_tbl_install(wq, node, pwq);
3995 goto out_unlock;
3996
3997 use_dfl_pwq:
3998 spin_lock_irq(&wq->dfl_pwq->pool->lock);
3999 get_pwq(wq->dfl_pwq);
4000 spin_unlock_irq(&wq->dfl_pwq->pool->lock);
4001 old_pwq = numa_pwq_tbl_install(wq, node, wq->dfl_pwq);
4002 out_unlock:
4003 mutex_unlock(&wq->mutex);
4004 put_pwq_unlocked(old_pwq);
4005 }
4006
4007 static int alloc_and_link_pwqs(struct workqueue_struct *wq)
4008 {
4009 bool highpri = wq->flags & WQ_HIGHPRI;
4010 int cpu, ret;
4011
4012 if (!(wq->flags & WQ_UNBOUND)) {
4013 wq->cpu_pwqs = alloc_percpu(struct pool_workqueue);
4014 if (!wq->cpu_pwqs)
4015 return -ENOMEM;
4016
4017 for_each_possible_cpu(cpu) {
4018 struct pool_workqueue *pwq =
4019 per_cpu_ptr(wq->cpu_pwqs, cpu);
4020 struct worker_pool *cpu_pools =
4021 per_cpu(cpu_worker_pools, cpu);
4022
4023 init_pwq(pwq, wq, &cpu_pools[highpri]);
4024
4025 mutex_lock(&wq->mutex);
4026 link_pwq(pwq);
4027 mutex_unlock(&wq->mutex);
4028 }
4029 return 0;
4030 } else if (wq->flags & __WQ_ORDERED) {
4031 ret = apply_workqueue_attrs(wq, ordered_wq_attrs[highpri]);
4032 /* there should only be single pwq for ordering guarantee */
4033 WARN(!ret && (wq->pwqs.next != &wq->dfl_pwq->pwqs_node ||
4034 wq->pwqs.prev != &wq->dfl_pwq->pwqs_node),
4035 "ordering guarantee broken for workqueue %s\n", wq->name);
4036 return ret;
4037 } else {
4038 return apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]);
4039 }
4040 }
4041
4042 static int wq_clamp_max_active(int max_active, unsigned int flags,
4043 const char *name)
4044 {
4045 int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;
4046
4047 if (max_active < 1 || max_active > lim)
4048 pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
4049 max_active, name, 1, lim);
4050
4051 return clamp_val(max_active, 1, lim);
4052 }
4053
4054 struct workqueue_struct *__alloc_workqueue_key(const char *fmt,
4055 unsigned int flags,
4056 int max_active,
4057 struct lock_class_key *key,
4058 const char *lock_name, ...)
4059 {
4060 size_t tbl_size = 0;
4061 va_list args;
4062 struct workqueue_struct *wq;
4063 struct pool_workqueue *pwq;
4064
4065 /* see the comment above the definition of WQ_POWER_EFFICIENT */
4066 if ((flags & WQ_POWER_EFFICIENT) && wq_power_efficient)
4067 flags |= WQ_UNBOUND;
4068
4069 /* allocate wq and format name */
4070 if (flags & WQ_UNBOUND)
4071 tbl_size = wq_numa_tbl_len * sizeof(wq->numa_pwq_tbl[0]);
4072
4073 wq = kzalloc(sizeof(*wq) + tbl_size, GFP_KERNEL);
4074 if (!wq)
4075 return NULL;
4076
4077 if (flags & WQ_UNBOUND) {
4078 wq->unbound_attrs = alloc_workqueue_attrs(GFP_KERNEL);
4079 if (!wq->unbound_attrs)
4080 goto err_free_wq;
4081 }
4082
4083 va_start(args, lock_name);
4084 vsnprintf(wq->name, sizeof(wq->name), fmt, args);
4085 va_end(args);
4086
4087 max_active = max_active ?: WQ_DFL_ACTIVE;
4088 max_active = wq_clamp_max_active(max_active, flags, wq->name);
4089
4090 /* init wq */
4091 wq->flags = flags;
4092 wq->saved_max_active = max_active;
4093 mutex_init(&wq->mutex);
4094 atomic_set(&wq->nr_pwqs_to_flush, 0);
4095 INIT_LIST_HEAD(&wq->pwqs);
4096 INIT_LIST_HEAD(&wq->flusher_queue);
4097 INIT_LIST_HEAD(&wq->flusher_overflow);
4098 INIT_LIST_HEAD(&wq->maydays);
4099
4100 lockdep_init_map(&wq->lockdep_map, lock_name, key, 0);
4101 INIT_LIST_HEAD(&wq->list);
4102
4103 if (alloc_and_link_pwqs(wq) < 0)
4104 goto err_free_wq;
4105
4106 /*
4107 * Workqueues which may be used during memory reclaim should
4108 * have a rescuer to guarantee forward progress.
4109 */
4110 if (flags & WQ_MEM_RECLAIM) {
4111 struct worker *rescuer;
4112
4113 rescuer = alloc_worker(NUMA_NO_NODE);
4114 if (!rescuer)
4115 goto err_destroy;
4116
4117 rescuer->rescue_wq = wq;
4118 rescuer->task = kthread_create(rescuer_thread, rescuer, "%s",
4119 wq->name);
4120 if (IS_ERR(rescuer->task)) {
4121 kfree(rescuer);
4122 goto err_destroy;
4123 }
4124
4125 wq->rescuer = rescuer;
4126 rescuer->task->flags |= PF_NO_SETAFFINITY;
4127 wake_up_process(rescuer->task);
4128 }
4129
4130 if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq))
4131 goto err_destroy;
4132
4133 /*
4134 * wq_pool_mutex protects global freeze state and workqueues list.
4135 * Grab it, adjust max_active and add the new @wq to workqueues
4136 * list.
4137 */
4138 mutex_lock(&wq_pool_mutex);
4139
4140 mutex_lock(&wq->mutex);
4141 for_each_pwq(pwq, wq)
4142 pwq_adjust_max_active(pwq);
4143 mutex_unlock(&wq->mutex);
4144
4145 list_add(&wq->list, &workqueues);
4146
4147 mutex_unlock(&wq_pool_mutex);
4148
4149 return wq;
4150
4151 err_free_wq:
4152 free_workqueue_attrs(wq->unbound_attrs);
4153 kfree(wq);
4154 return NULL;
4155 err_destroy:
4156 destroy_workqueue(wq);
4157 return NULL;
4158 }
4159 EXPORT_SYMBOL_GPL(__alloc_workqueue_key);
4160
4161 /**
4162 * destroy_workqueue - safely terminate a workqueue
4163 * @wq: target workqueue
4164 *
4165 * Safely destroy a workqueue. All work currently pending will be done first.
4166 */
4167 void destroy_workqueue(struct workqueue_struct *wq)
4168 {
4169 struct pool_workqueue *pwq;
4170 int node;
4171
4172 /* drain it before proceeding with destruction */
4173 drain_workqueue(wq);
4174
4175 /* sanity checks */
4176 mutex_lock(&wq->mutex);
4177 for_each_pwq(pwq, wq) {
4178 int i;
4179
4180 for (i = 0; i < WORK_NR_COLORS; i++) {
4181 if (WARN_ON(pwq->nr_in_flight[i])) {
4182 mutex_unlock(&wq->mutex);
4183 return;
4184 }
4185 }
4186
4187 if (WARN_ON((pwq != wq->dfl_pwq) && (pwq->refcnt > 1)) ||
4188 WARN_ON(pwq->nr_active) ||
4189 WARN_ON(!list_empty(&pwq->delayed_works))) {
4190 mutex_unlock(&wq->mutex);
4191 return;
4192 }
4193 }
4194 mutex_unlock(&wq->mutex);
4195
4196 /*
4197 * wq list is used to freeze wq, remove from list after
4198 * flushing is complete in case freeze races us.
4199 */
4200 mutex_lock(&wq_pool_mutex);
4201 list_del_init(&wq->list);
4202 mutex_unlock(&wq_pool_mutex);
4203
4204 workqueue_sysfs_unregister(wq);
4205
4206 if (wq->rescuer) {
4207 kthread_stop(wq->rescuer->task);
4208 kfree(wq->rescuer);
4209 wq->rescuer = NULL;
4210 }
4211
4212 if (!(wq->flags & WQ_UNBOUND)) {
4213 /*
4214 * The base ref is never dropped on per-cpu pwqs. Directly
4215 * free the pwqs and wq.
4216 */
4217 free_percpu(wq->cpu_pwqs);
4218 kfree(wq);
4219 } else {
4220 /*
4221 * We're the sole accessor of @wq at this point. Directly
4222 * access numa_pwq_tbl[] and dfl_pwq to put the base refs.
4223 * @wq will be freed when the last pwq is released.
4224 */
4225 for_each_node(node) {
4226 pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
4227 RCU_INIT_POINTER(wq->numa_pwq_tbl[node], NULL);
4228 put_pwq_unlocked(pwq);
4229 }
4230
4231 /*
4232 * Put dfl_pwq. @wq may be freed any time after dfl_pwq is
4233 * put. Don't access it afterwards.
4234 */
4235 pwq = wq->dfl_pwq;
4236 wq->dfl_pwq = NULL;
4237 put_pwq_unlocked(pwq);
4238 }
4239 }
4240 EXPORT_SYMBOL_GPL(destroy_workqueue);
4241
4242 /**
4243 * workqueue_set_max_active - adjust max_active of a workqueue
4244 * @wq: target workqueue
4245 * @max_active: new max_active value.
4246 *
4247 * Set max_active of @wq to @max_active.
4248 *
4249 * CONTEXT:
4250 * Don't call from IRQ context.
4251 */
4252 void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
4253 {
4254 struct pool_workqueue *pwq;
4255
4256 /* disallow meddling with max_active for ordered workqueues */
4257 if (WARN_ON(wq->flags & __WQ_ORDERED))
4258 return;
4259
4260 max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
4261
4262 mutex_lock(&wq->mutex);
4263
4264 wq->saved_max_active = max_active;
4265
4266 for_each_pwq(pwq, wq)
4267 pwq_adjust_max_active(pwq);
4268
4269 mutex_unlock(&wq->mutex);
4270 }
4271 EXPORT_SYMBOL_GPL(workqueue_set_max_active);
4272
4273 /**
4274 * current_is_workqueue_rescuer - is %current workqueue rescuer?
4275 *
4276 * Determine whether %current is a workqueue rescuer. Can be used from
4277 * work functions to determine whether it's being run off the rescuer task.
4278 *
4279 * Return: %true if %current is a workqueue rescuer. %false otherwise.
4280 */
4281 bool current_is_workqueue_rescuer(void)
4282 {
4283 struct worker *worker = current_wq_worker();
4284
4285 return worker && worker->rescue_wq;
4286 }
4287
4288 /**
4289 * workqueue_congested - test whether a workqueue is congested
4290 * @cpu: CPU in question
4291 * @wq: target workqueue
4292 *
4293 * Test whether @wq's cpu workqueue for @cpu is congested. There is
4294 * no synchronization around this function and the test result is
4295 * unreliable and only useful as advisory hints or for debugging.
4296 *
4297 * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU.
4298 * Note that both per-cpu and unbound workqueues may be associated with
4299 * multiple pool_workqueues which have separate congested states. A
4300 * workqueue being congested on one CPU doesn't mean the workqueue is also
4301 * contested on other CPUs / NUMA nodes.
4302 *
4303 * Return:
4304 * %true if congested, %false otherwise.
4305 */
4306 bool workqueue_congested(int cpu, struct workqueue_struct *wq)
4307 {
4308 struct pool_workqueue *pwq;
4309 bool ret;
4310
4311 rcu_read_lock_sched();
4312
4313 if (cpu == WORK_CPU_UNBOUND)
4314 cpu = smp_processor_id();
4315
4316 if (!(wq->flags & WQ_UNBOUND))
4317 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
4318 else
4319 pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
4320
4321 ret = !list_empty(&pwq->delayed_works);
4322 rcu_read_unlock_sched();
4323
4324 return ret;
4325 }
4326 EXPORT_SYMBOL_GPL(workqueue_congested);
4327
4328 /**
4329 * work_busy - test whether a work is currently pending or running
4330 * @work: the work to be tested
4331 *
4332 * Test whether @work is currently pending or running. There is no
4333 * synchronization around this function and the test result is
4334 * unreliable and only useful as advisory hints or for debugging.
4335 *
4336 * Return:
4337 * OR'd bitmask of WORK_BUSY_* bits.
4338 */
4339 unsigned int work_busy(struct work_struct *work)
4340 {
4341 struct worker_pool *pool;
4342 unsigned long flags;
4343 unsigned int ret = 0;
4344
4345 if (work_pending(work))
4346 ret |= WORK_BUSY_PENDING;
4347
4348 local_irq_save(flags);
4349 pool = get_work_pool(work);
4350 if (pool) {
4351 spin_lock(&pool->lock);
4352 if (find_worker_executing_work(pool, work))
4353 ret |= WORK_BUSY_RUNNING;
4354 spin_unlock(&pool->lock);
4355 }
4356 local_irq_restore(flags);
4357
4358 return ret;
4359 }
4360 EXPORT_SYMBOL_GPL(work_busy);
4361
4362 /**
4363 * set_worker_desc - set description for the current work item
4364 * @fmt: printf-style format string
4365 * @...: arguments for the format string
4366 *
4367 * This function can be called by a running work function to describe what
4368 * the work item is about. If the worker task gets dumped, this
4369 * information will be printed out together to help debugging. The
4370 * description can be at most WORKER_DESC_LEN including the trailing '\0'.
4371 */
4372 void set_worker_desc(const char *fmt, ...)
4373 {
4374 struct worker *worker = current_wq_worker();
4375 va_list args;
4376
4377 if (worker) {
4378 va_start(args, fmt);
4379 vsnprintf(worker->desc, sizeof(worker->desc), fmt, args);
4380 va_end(args);
4381 worker->desc_valid = true;
4382 }
4383 }
4384
4385 /**
4386 * print_worker_info - print out worker information and description
4387 * @log_lvl: the log level to use when printing
4388 * @task: target task
4389 *
4390 * If @task is a worker and currently executing a work item, print out the
4391 * name of the workqueue being serviced and worker description set with
4392 * set_worker_desc() by the currently executing work item.
4393 *
4394 * This function can be safely called on any task as long as the
4395 * task_struct itself is accessible. While safe, this function isn't
4396 * synchronized and may print out mixups or garbages of limited length.
4397 */
4398 void print_worker_info(const char *log_lvl, struct task_struct *task)
4399 {
4400 work_func_t *fn = NULL;
4401 char name[WQ_NAME_LEN] = { };
4402 char desc[WORKER_DESC_LEN] = { };
4403 struct pool_workqueue *pwq = NULL;
4404 struct workqueue_struct *wq = NULL;
4405 bool desc_valid = false;
4406 struct worker *worker;
4407
4408 if (!(task->flags & PF_WQ_WORKER))
4409 return;
4410
4411 /*
4412 * This function is called without any synchronization and @task
4413 * could be in any state. Be careful with dereferences.
4414 */
4415 worker = probe_kthread_data(task);
4416
4417 /*
4418 * Carefully copy the associated workqueue's workfn and name. Keep
4419 * the original last '\0' in case the original contains garbage.
4420 */
4421 probe_kernel_read(&fn, &worker->current_func, sizeof(fn));
4422 probe_kernel_read(&pwq, &worker->current_pwq, sizeof(pwq));
4423 probe_kernel_read(&wq, &pwq->wq, sizeof(wq));
4424 probe_kernel_read(name, wq->name, sizeof(name) - 1);
4425
4426 /* copy worker description */
4427 probe_kernel_read(&desc_valid, &worker->desc_valid, sizeof(desc_valid));
4428 if (desc_valid)
4429 probe_kernel_read(desc, worker->desc, sizeof(desc) - 1);
4430
4431 if (fn || name[0] || desc[0]) {
4432 printk("%sWorkqueue: %s %pf", log_lvl, name, fn);
4433 if (desc[0])
4434 pr_cont(" (%s)", desc);
4435 pr_cont("\n");
4436 }
4437 }
4438
4439 /*
4440 * CPU hotplug.
4441 *
4442 * There are two challenges in supporting CPU hotplug. Firstly, there
4443 * are a lot of assumptions on strong associations among work, pwq and
4444 * pool which make migrating pending and scheduled works very
4445 * difficult to implement without impacting hot paths. Secondly,
4446 * worker pools serve mix of short, long and very long running works making
4447 * blocked draining impractical.
4448 *
4449 * This is solved by allowing the pools to be disassociated from the CPU
4450 * running as an unbound one and allowing it to be reattached later if the
4451 * cpu comes back online.
4452 */
4453
4454 static void wq_unbind_fn(struct work_struct *work)
4455 {
4456 int cpu = smp_processor_id();
4457 struct worker_pool *pool;
4458 struct worker *worker;
4459
4460 for_each_cpu_worker_pool(pool, cpu) {
4461 mutex_lock(&pool->attach_mutex);
4462 spin_lock_irq(&pool->lock);
4463
4464 /*
4465 * We've blocked all attach/detach operations. Make all workers
4466 * unbound and set DISASSOCIATED. Before this, all workers
4467 * except for the ones which are still executing works from
4468 * before the last CPU down must be on the cpu. After
4469 * this, they may become diasporas.
4470 */
4471 for_each_pool_worker(worker, pool)
4472 worker->flags |= WORKER_UNBOUND;
4473
4474 pool->flags |= POOL_DISASSOCIATED;
4475
4476 spin_unlock_irq(&pool->lock);
4477 mutex_unlock(&pool->attach_mutex);
4478
4479 /*
4480 * Call schedule() so that we cross rq->lock and thus can
4481 * guarantee sched callbacks see the %WORKER_UNBOUND flag.
4482 * This is necessary as scheduler callbacks may be invoked
4483 * from other cpus.
4484 */
4485 schedule();
4486
4487 /*
4488 * Sched callbacks are disabled now. Zap nr_running.
4489 * After this, nr_running stays zero and need_more_worker()
4490 * and keep_working() are always true as long as the
4491 * worklist is not empty. This pool now behaves as an
4492 * unbound (in terms of concurrency management) pool which
4493 * are served by workers tied to the pool.
4494 */
4495 atomic_set(&pool->nr_running, 0);
4496
4497 /*
4498 * With concurrency management just turned off, a busy
4499 * worker blocking could lead to lengthy stalls. Kick off
4500 * unbound chain execution of currently pending work items.
4501 */
4502 spin_lock_irq(&pool->lock);
4503 wake_up_worker(pool);
4504 spin_unlock_irq(&pool->lock);
4505 }
4506 }
4507
4508 /**
4509 * rebind_workers - rebind all workers of a pool to the associated CPU
4510 * @pool: pool of interest
4511 *
4512 * @pool->cpu is coming online. Rebind all workers to the CPU.
4513 */
4514 static void rebind_workers(struct worker_pool *pool)
4515 {
4516 struct worker *worker;
4517
4518 lockdep_assert_held(&pool->attach_mutex);
4519
4520 /*
4521 * Restore CPU affinity of all workers. As all idle workers should
4522 * be on the run-queue of the associated CPU before any local
4523 * wake-ups for concurrency management happen, restore CPU affinty
4524 * of all workers first and then clear UNBOUND. As we're called
4525 * from CPU_ONLINE, the following shouldn't fail.
4526 */
4527 for_each_pool_worker(worker, pool)
4528 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
4529 pool->attrs->cpumask) < 0);
4530
4531 spin_lock_irq(&pool->lock);
4532 pool->flags &= ~POOL_DISASSOCIATED;
4533
4534 for_each_pool_worker(worker, pool) {
4535 unsigned int worker_flags = worker->flags;
4536
4537 /*
4538 * A bound idle worker should actually be on the runqueue
4539 * of the associated CPU for local wake-ups targeting it to
4540 * work. Kick all idle workers so that they migrate to the
4541 * associated CPU. Doing this in the same loop as
4542 * replacing UNBOUND with REBOUND is safe as no worker will
4543 * be bound before @pool->lock is released.
4544 */
4545 if (worker_flags & WORKER_IDLE)
4546 wake_up_process(worker->task);
4547
4548 /*
4549 * We want to clear UNBOUND but can't directly call
4550 * worker_clr_flags() or adjust nr_running. Atomically
4551 * replace UNBOUND with another NOT_RUNNING flag REBOUND.
4552 * @worker will clear REBOUND using worker_clr_flags() when
4553 * it initiates the next execution cycle thus restoring
4554 * concurrency management. Note that when or whether
4555 * @worker clears REBOUND doesn't affect correctness.
4556 *
4557 * ACCESS_ONCE() is necessary because @worker->flags may be
4558 * tested without holding any lock in
4559 * wq_worker_waking_up(). Without it, NOT_RUNNING test may
4560 * fail incorrectly leading to premature concurrency
4561 * management operations.
4562 */
4563 WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND));
4564 worker_flags |= WORKER_REBOUND;
4565 worker_flags &= ~WORKER_UNBOUND;
4566 ACCESS_ONCE(worker->flags) = worker_flags;
4567 }
4568
4569 spin_unlock_irq(&pool->lock);
4570 }
4571
4572 /**
4573 * restore_unbound_workers_cpumask - restore cpumask of unbound workers
4574 * @pool: unbound pool of interest
4575 * @cpu: the CPU which is coming up
4576 *
4577 * An unbound pool may end up with a cpumask which doesn't have any online
4578 * CPUs. When a worker of such pool get scheduled, the scheduler resets
4579 * its cpus_allowed. If @cpu is in @pool's cpumask which didn't have any
4580 * online CPU before, cpus_allowed of all its workers should be restored.
4581 */
4582 static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu)
4583 {
4584 static cpumask_t cpumask;
4585 struct worker *worker;
4586
4587 lockdep_assert_held(&pool->attach_mutex);
4588
4589 /* is @cpu allowed for @pool? */
4590 if (!cpumask_test_cpu(cpu, pool->attrs->cpumask))
4591 return;
4592
4593 /* is @cpu the only online CPU? */
4594 cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask);
4595 if (cpumask_weight(&cpumask) != 1)
4596 return;
4597
4598 /* as we're called from CPU_ONLINE, the following shouldn't fail */
4599 for_each_pool_worker(worker, pool)
4600 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
4601 pool->attrs->cpumask) < 0);
4602 }
4603
4604 /*
4605 * Workqueues should be brought up before normal priority CPU notifiers.
4606 * This will be registered high priority CPU notifier.
4607 */
4608 static int workqueue_cpu_up_callback(struct notifier_block *nfb,
4609 unsigned long action,
4610 void *hcpu)
4611 {
4612 int cpu = (unsigned long)hcpu;
4613 struct worker_pool *pool;
4614 struct workqueue_struct *wq;
4615 int pi;
4616
4617 switch (action & ~CPU_TASKS_FROZEN) {
4618 case CPU_UP_PREPARE:
4619 for_each_cpu_worker_pool(pool, cpu) {
4620 if (pool->nr_workers)
4621 continue;
4622 if (create_and_start_worker(pool) < 0)
4623 return NOTIFY_BAD;
4624 }
4625 break;
4626
4627 case CPU_DOWN_FAILED:
4628 case CPU_ONLINE:
4629 mutex_lock(&wq_pool_mutex);
4630
4631 for_each_pool(pool, pi) {
4632 mutex_lock(&pool->attach_mutex);
4633
4634 if (pool->cpu == cpu) {
4635 rebind_workers(pool);
4636 } else if (pool->cpu < 0) {
4637 restore_unbound_workers_cpumask(pool, cpu);
4638 }
4639
4640 mutex_unlock(&pool->attach_mutex);
4641 }
4642
4643 /* update NUMA affinity of unbound workqueues */
4644 list_for_each_entry(wq, &workqueues, list)
4645 wq_update_unbound_numa(wq, cpu, true);
4646
4647 mutex_unlock(&wq_pool_mutex);
4648 break;
4649 }
4650 return NOTIFY_OK;
4651 }
4652
4653 /*
4654 * Workqueues should be brought down after normal priority CPU notifiers.
4655 * This will be registered as low priority CPU notifier.
4656 */
4657 static int workqueue_cpu_down_callback(struct notifier_block *nfb,
4658 unsigned long action,
4659 void *hcpu)
4660 {
4661 int cpu = (unsigned long)hcpu;
4662 struct work_struct unbind_work;
4663 struct workqueue_struct *wq;
4664
4665 switch (action & ~CPU_TASKS_FROZEN) {
4666 case CPU_DOWN_PREPARE:
4667 /* unbinding per-cpu workers should happen on the local CPU */
4668 INIT_WORK_ONSTACK(&unbind_work, wq_unbind_fn);
4669 queue_work_on(cpu, system_highpri_wq, &unbind_work);
4670
4671 /* update NUMA affinity of unbound workqueues */
4672 mutex_lock(&wq_pool_mutex);
4673 list_for_each_entry(wq, &workqueues, list)
4674 wq_update_unbound_numa(wq, cpu, false);
4675 mutex_unlock(&wq_pool_mutex);
4676
4677 /* wait for per-cpu unbinding to finish */
4678 flush_work(&unbind_work);
4679 destroy_work_on_stack(&unbind_work);
4680 break;
4681 }
4682 return NOTIFY_OK;
4683 }
4684
4685 #ifdef CONFIG_SMP
4686
4687 struct work_for_cpu {
4688 struct work_struct work;
4689 long (*fn)(void *);
4690 void *arg;
4691 long ret;
4692 };
4693
4694 static void work_for_cpu_fn(struct work_struct *work)
4695 {
4696 struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);
4697
4698 wfc->ret = wfc->fn(wfc->arg);
4699 }
4700
4701 /**
4702 * work_on_cpu - run a function in user context on a particular cpu
4703 * @cpu: the cpu to run on
4704 * @fn: the function to run
4705 * @arg: the function arg
4706 *
4707 * It is up to the caller to ensure that the cpu doesn't go offline.
4708 * The caller must not hold any locks which would prevent @fn from completing.
4709 *
4710 * Return: The value @fn returns.
4711 */
4712 long work_on_cpu(int cpu, long (*fn)(void *), void *arg)
4713 {
4714 struct work_for_cpu wfc = { .fn = fn, .arg = arg };
4715
4716 INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn);
4717 schedule_work_on(cpu, &wfc.work);
4718 flush_work(&wfc.work);
4719 destroy_work_on_stack(&wfc.work);
4720 return wfc.ret;
4721 }
4722 EXPORT_SYMBOL_GPL(work_on_cpu);
4723 #endif /* CONFIG_SMP */
4724
4725 #ifdef CONFIG_FREEZER
4726
4727 /**
4728 * freeze_workqueues_begin - begin freezing workqueues
4729 *
4730 * Start freezing workqueues. After this function returns, all freezable
4731 * workqueues will queue new works to their delayed_works list instead of
4732 * pool->worklist.
4733 *
4734 * CONTEXT:
4735 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
4736 */
4737 void freeze_workqueues_begin(void)
4738 {
4739 struct workqueue_struct *wq;
4740 struct pool_workqueue *pwq;
4741
4742 mutex_lock(&wq_pool_mutex);
4743
4744 WARN_ON_ONCE(workqueue_freezing);
4745 workqueue_freezing = true;
4746
4747 list_for_each_entry(wq, &workqueues, list) {
4748 mutex_lock(&wq->mutex);
4749 for_each_pwq(pwq, wq)
4750 pwq_adjust_max_active(pwq);
4751 mutex_unlock(&wq->mutex);
4752 }
4753
4754 mutex_unlock(&wq_pool_mutex);
4755 }
4756
4757 /**
4758 * freeze_workqueues_busy - are freezable workqueues still busy?
4759 *
4760 * Check whether freezing is complete. This function must be called
4761 * between freeze_workqueues_begin() and thaw_workqueues().
4762 *
4763 * CONTEXT:
4764 * Grabs and releases wq_pool_mutex.
4765 *
4766 * Return:
4767 * %true if some freezable workqueues are still busy. %false if freezing
4768 * is complete.
4769 */
4770 bool freeze_workqueues_busy(void)
4771 {
4772 bool busy = false;
4773 struct workqueue_struct *wq;
4774 struct pool_workqueue *pwq;
4775
4776 mutex_lock(&wq_pool_mutex);
4777
4778 WARN_ON_ONCE(!workqueue_freezing);
4779
4780 list_for_each_entry(wq, &workqueues, list) {
4781 if (!(wq->flags & WQ_FREEZABLE))
4782 continue;
4783 /*
4784 * nr_active is monotonically decreasing. It's safe
4785 * to peek without lock.
4786 */
4787 rcu_read_lock_sched();
4788 for_each_pwq(pwq, wq) {
4789 WARN_ON_ONCE(pwq->nr_active < 0);
4790 if (pwq->nr_active) {
4791 busy = true;
4792 rcu_read_unlock_sched();
4793 goto out_unlock;
4794 }
4795 }
4796 rcu_read_unlock_sched();
4797 }
4798 out_unlock:
4799 mutex_unlock(&wq_pool_mutex);
4800 return busy;
4801 }
4802
4803 /**
4804 * thaw_workqueues - thaw workqueues
4805 *
4806 * Thaw workqueues. Normal queueing is restored and all collected
4807 * frozen works are transferred to their respective pool worklists.
4808 *
4809 * CONTEXT:
4810 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
4811 */
4812 void thaw_workqueues(void)
4813 {
4814 struct workqueue_struct *wq;
4815 struct pool_workqueue *pwq;
4816
4817 mutex_lock(&wq_pool_mutex);
4818
4819 if (!workqueue_freezing)
4820 goto out_unlock;
4821
4822 workqueue_freezing = false;
4823
4824 /* restore max_active and repopulate worklist */
4825 list_for_each_entry(wq, &workqueues, list) {
4826 mutex_lock(&wq->mutex);
4827 for_each_pwq(pwq, wq)
4828 pwq_adjust_max_active(pwq);
4829 mutex_unlock(&wq->mutex);
4830 }
4831
4832 out_unlock:
4833 mutex_unlock(&wq_pool_mutex);
4834 }
4835 #endif /* CONFIG_FREEZER */
4836
4837 static void __init wq_numa_init(void)
4838 {
4839 cpumask_var_t *tbl;
4840 int node, cpu;
4841
4842 /* determine NUMA pwq table len - highest node id + 1 */
4843 for_each_node(node)
4844 wq_numa_tbl_len = max(wq_numa_tbl_len, node + 1);
4845
4846 if (num_possible_nodes() <= 1)
4847 return;
4848
4849 if (wq_disable_numa) {
4850 pr_info("workqueue: NUMA affinity support disabled\n");
4851 return;
4852 }
4853
4854 wq_update_unbound_numa_attrs_buf = alloc_workqueue_attrs(GFP_KERNEL);
4855 BUG_ON(!wq_update_unbound_numa_attrs_buf);
4856
4857 /*
4858 * We want masks of possible CPUs of each node which isn't readily
4859 * available. Build one from cpu_to_node() which should have been
4860 * fully initialized by now.
4861 */
4862 tbl = kzalloc(wq_numa_tbl_len * sizeof(tbl[0]), GFP_KERNEL);
4863 BUG_ON(!tbl);
4864
4865 for_each_node(node)
4866 BUG_ON(!alloc_cpumask_var_node(&tbl[node], GFP_KERNEL,
4867 node_online(node) ? node : NUMA_NO_NODE));
4868
4869 for_each_possible_cpu(cpu) {
4870 node = cpu_to_node(cpu);
4871 if (WARN_ON(node == NUMA_NO_NODE)) {
4872 pr_warn("workqueue: NUMA node mapping not available for cpu%d, disabling NUMA support\n", cpu);
4873 /* happens iff arch is bonkers, let's just proceed */
4874 return;
4875 }
4876 cpumask_set_cpu(cpu, tbl[node]);
4877 }
4878
4879 wq_numa_possible_cpumask = tbl;
4880 wq_numa_enabled = true;
4881 }
4882
4883 static int __init init_workqueues(void)
4884 {
4885 int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL };
4886 int i, cpu;
4887
4888 WARN_ON(__alignof__(struct pool_workqueue) < __alignof__(long long));
4889
4890 pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC);
4891
4892 cpu_notifier(workqueue_cpu_up_callback, CPU_PRI_WORKQUEUE_UP);
4893 hotcpu_notifier(workqueue_cpu_down_callback, CPU_PRI_WORKQUEUE_DOWN);
4894
4895 wq_numa_init();
4896
4897 /* initialize CPU pools */
4898 for_each_possible_cpu(cpu) {
4899 struct worker_pool *pool;
4900
4901 i = 0;
4902 for_each_cpu_worker_pool(pool, cpu) {
4903 BUG_ON(init_worker_pool(pool));
4904 pool->cpu = cpu;
4905 cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu));
4906 pool->attrs->nice = std_nice[i++];
4907 pool->node = cpu_to_node(cpu);
4908
4909 /* alloc pool ID */
4910 mutex_lock(&wq_pool_mutex);
4911 BUG_ON(worker_pool_assign_id(pool));
4912 mutex_unlock(&wq_pool_mutex);
4913 }
4914 }
4915
4916 /* create the initial worker */
4917 for_each_online_cpu(cpu) {
4918 struct worker_pool *pool;
4919
4920 for_each_cpu_worker_pool(pool, cpu) {
4921 pool->flags &= ~POOL_DISASSOCIATED;
4922 BUG_ON(create_and_start_worker(pool) < 0);
4923 }
4924 }
4925
4926 /* create default unbound and ordered wq attrs */
4927 for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
4928 struct workqueue_attrs *attrs;
4929
4930 BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
4931 attrs->nice = std_nice[i];
4932 unbound_std_wq_attrs[i] = attrs;
4933
4934 /*
4935 * An ordered wq should have only one pwq as ordering is
4936 * guaranteed by max_active which is enforced by pwqs.
4937 * Turn off NUMA so that dfl_pwq is used for all nodes.
4938 */
4939 BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
4940 attrs->nice = std_nice[i];
4941 attrs->no_numa = true;
4942 ordered_wq_attrs[i] = attrs;
4943 }
4944
4945 system_wq = alloc_workqueue("events", 0, 0);
4946 system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
4947 system_long_wq = alloc_workqueue("events_long", 0, 0);
4948 system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
4949 WQ_UNBOUND_MAX_ACTIVE);
4950 system_freezable_wq = alloc_workqueue("events_freezable",
4951 WQ_FREEZABLE, 0);
4952 system_power_efficient_wq = alloc_workqueue("events_power_efficient",
4953 WQ_POWER_EFFICIENT, 0);
4954 system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_power_efficient",
4955 WQ_FREEZABLE | WQ_POWER_EFFICIENT,
4956 0);
4957 BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
4958 !system_unbound_wq || !system_freezable_wq ||
4959 !system_power_efficient_wq ||
4960 !system_freezable_power_efficient_wq);
4961 return 0;
4962 }
4963 early_initcall(init_workqueues);