]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - kernel/workqueue.c
slub: make ->cpu_partial unsigned int
[mirror_ubuntu-bionic-kernel.git] / kernel / workqueue.c
1 /*
2 * kernel/workqueue.c - generic async execution with shared worker pool
3 *
4 * Copyright (C) 2002 Ingo Molnar
5 *
6 * Derived from the taskqueue/keventd code by:
7 * David Woodhouse <dwmw2@infradead.org>
8 * Andrew Morton
9 * Kai Petzke <wpp@marie.physik.tu-berlin.de>
10 * Theodore Ts'o <tytso@mit.edu>
11 *
12 * Made to use alloc_percpu by Christoph Lameter.
13 *
14 * Copyright (C) 2010 SUSE Linux Products GmbH
15 * Copyright (C) 2010 Tejun Heo <tj@kernel.org>
16 *
17 * This is the generic async execution mechanism. Work items as are
18 * executed in process context. The worker pool is shared and
19 * automatically managed. There are two worker pools for each CPU (one for
20 * normal work items and the other for high priority ones) and some extra
21 * pools for workqueues which are not bound to any specific CPU - the
22 * number of these backing pools is dynamic.
23 *
24 * Please read Documentation/core-api/workqueue.rst for details.
25 */
26
27 #include <linux/export.h>
28 #include <linux/kernel.h>
29 #include <linux/sched.h>
30 #include <linux/init.h>
31 #include <linux/signal.h>
32 #include <linux/completion.h>
33 #include <linux/workqueue.h>
34 #include <linux/slab.h>
35 #include <linux/cpu.h>
36 #include <linux/notifier.h>
37 #include <linux/kthread.h>
38 #include <linux/hardirq.h>
39 #include <linux/mempolicy.h>
40 #include <linux/freezer.h>
41 #include <linux/debug_locks.h>
42 #include <linux/lockdep.h>
43 #include <linux/idr.h>
44 #include <linux/jhash.h>
45 #include <linux/hashtable.h>
46 #include <linux/rculist.h>
47 #include <linux/nodemask.h>
48 #include <linux/moduleparam.h>
49 #include <linux/uaccess.h>
50 #include <linux/sched/isolation.h>
51 #include <linux/nmi.h>
52
53 #include "workqueue_internal.h"
54
55 enum {
56 /*
57 * worker_pool flags
58 *
59 * A bound pool is either associated or disassociated with its CPU.
60 * While associated (!DISASSOCIATED), all workers are bound to the
61 * CPU and none has %WORKER_UNBOUND set and concurrency management
62 * is in effect.
63 *
64 * While DISASSOCIATED, the cpu may be offline and all workers have
65 * %WORKER_UNBOUND set and concurrency management disabled, and may
66 * be executing on any CPU. The pool behaves as an unbound one.
67 *
68 * Note that DISASSOCIATED should be flipped only while holding
69 * attach_mutex to avoid changing binding state while
70 * worker_attach_to_pool() is in progress.
71 */
72 POOL_MANAGER_ACTIVE = 1 << 0, /* being managed */
73 POOL_DISASSOCIATED = 1 << 2, /* cpu can't serve workers */
74
75 /* worker flags */
76 WORKER_DIE = 1 << 1, /* die die die */
77 WORKER_IDLE = 1 << 2, /* is idle */
78 WORKER_PREP = 1 << 3, /* preparing to run works */
79 WORKER_CPU_INTENSIVE = 1 << 6, /* cpu intensive */
80 WORKER_UNBOUND = 1 << 7, /* worker is unbound */
81 WORKER_REBOUND = 1 << 8, /* worker was rebound */
82
83 WORKER_NOT_RUNNING = WORKER_PREP | WORKER_CPU_INTENSIVE |
84 WORKER_UNBOUND | WORKER_REBOUND,
85
86 NR_STD_WORKER_POOLS = 2, /* # standard pools per cpu */
87
88 UNBOUND_POOL_HASH_ORDER = 6, /* hashed by pool->attrs */
89 BUSY_WORKER_HASH_ORDER = 6, /* 64 pointers */
90
91 MAX_IDLE_WORKERS_RATIO = 4, /* 1/4 of busy can be idle */
92 IDLE_WORKER_TIMEOUT = 300 * HZ, /* keep idle ones for 5 mins */
93
94 MAYDAY_INITIAL_TIMEOUT = HZ / 100 >= 2 ? HZ / 100 : 2,
95 /* call for help after 10ms
96 (min two ticks) */
97 MAYDAY_INTERVAL = HZ / 10, /* and then every 100ms */
98 CREATE_COOLDOWN = HZ, /* time to breath after fail */
99
100 /*
101 * Rescue workers are used only on emergencies and shared by
102 * all cpus. Give MIN_NICE.
103 */
104 RESCUER_NICE_LEVEL = MIN_NICE,
105 HIGHPRI_NICE_LEVEL = MIN_NICE,
106
107 WQ_NAME_LEN = 24,
108 };
109
110 /*
111 * Structure fields follow one of the following exclusion rules.
112 *
113 * I: Modifiable by initialization/destruction paths and read-only for
114 * everyone else.
115 *
116 * P: Preemption protected. Disabling preemption is enough and should
117 * only be modified and accessed from the local cpu.
118 *
119 * L: pool->lock protected. Access with pool->lock held.
120 *
121 * X: During normal operation, modification requires pool->lock and should
122 * be done only from local cpu. Either disabling preemption on local
123 * cpu or grabbing pool->lock is enough for read access. If
124 * POOL_DISASSOCIATED is set, it's identical to L.
125 *
126 * A: pool->attach_mutex protected.
127 *
128 * PL: wq_pool_mutex protected.
129 *
130 * PR: wq_pool_mutex protected for writes. Sched-RCU protected for reads.
131 *
132 * PW: wq_pool_mutex and wq->mutex protected for writes. Either for reads.
133 *
134 * PWR: wq_pool_mutex and wq->mutex protected for writes. Either or
135 * sched-RCU for reads.
136 *
137 * WQ: wq->mutex protected.
138 *
139 * WR: wq->mutex protected for writes. Sched-RCU protected for reads.
140 *
141 * MD: wq_mayday_lock protected.
142 */
143
144 /* struct worker is defined in workqueue_internal.h */
145
146 struct worker_pool {
147 spinlock_t lock; /* the pool lock */
148 int cpu; /* I: the associated cpu */
149 int node; /* I: the associated node ID */
150 int id; /* I: pool ID */
151 unsigned int flags; /* X: flags */
152
153 unsigned long watchdog_ts; /* L: watchdog timestamp */
154
155 struct list_head worklist; /* L: list of pending works */
156 int nr_workers; /* L: total number of workers */
157
158 /* nr_idle includes the ones off idle_list for rebinding */
159 int nr_idle; /* L: currently idle ones */
160
161 struct list_head idle_list; /* X: list of idle workers */
162 struct timer_list idle_timer; /* L: worker idle timeout */
163 struct timer_list mayday_timer; /* L: SOS timer for workers */
164
165 /* a workers is either on busy_hash or idle_list, or the manager */
166 DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
167 /* L: hash of busy workers */
168
169 /* see manage_workers() for details on the two manager mutexes */
170 struct worker *manager; /* L: purely informational */
171 struct mutex attach_mutex; /* attach/detach exclusion */
172 struct list_head workers; /* A: attached workers */
173 struct completion *detach_completion; /* all workers detached */
174
175 struct ida worker_ida; /* worker IDs for task name */
176
177 struct workqueue_attrs *attrs; /* I: worker attributes */
178 struct hlist_node hash_node; /* PL: unbound_pool_hash node */
179 int refcnt; /* PL: refcnt for unbound pools */
180
181 /*
182 * The current concurrency level. As it's likely to be accessed
183 * from other CPUs during try_to_wake_up(), put it in a separate
184 * cacheline.
185 */
186 atomic_t nr_running ____cacheline_aligned_in_smp;
187
188 /*
189 * Destruction of pool is sched-RCU protected to allow dereferences
190 * from get_work_pool().
191 */
192 struct rcu_head rcu;
193 } ____cacheline_aligned_in_smp;
194
195 /*
196 * The per-pool workqueue. While queued, the lower WORK_STRUCT_FLAG_BITS
197 * of work_struct->data are used for flags and the remaining high bits
198 * point to the pwq; thus, pwqs need to be aligned at two's power of the
199 * number of flag bits.
200 */
201 struct pool_workqueue {
202 struct worker_pool *pool; /* I: the associated pool */
203 struct workqueue_struct *wq; /* I: the owning workqueue */
204 int work_color; /* L: current color */
205 int flush_color; /* L: flushing color */
206 int refcnt; /* L: reference count */
207 int nr_in_flight[WORK_NR_COLORS];
208 /* L: nr of in_flight works */
209 int nr_active; /* L: nr of active works */
210 int max_active; /* L: max active works */
211 struct list_head delayed_works; /* L: delayed works */
212 struct list_head pwqs_node; /* WR: node on wq->pwqs */
213 struct list_head mayday_node; /* MD: node on wq->maydays */
214
215 /*
216 * Release of unbound pwq is punted to system_wq. See put_pwq()
217 * and pwq_unbound_release_workfn() for details. pool_workqueue
218 * itself is also sched-RCU protected so that the first pwq can be
219 * determined without grabbing wq->mutex.
220 */
221 struct work_struct unbound_release_work;
222 struct rcu_head rcu;
223 } __aligned(1 << WORK_STRUCT_FLAG_BITS);
224
225 /*
226 * Structure used to wait for workqueue flush.
227 */
228 struct wq_flusher {
229 struct list_head list; /* WQ: list of flushers */
230 int flush_color; /* WQ: flush color waiting for */
231 struct completion done; /* flush completion */
232 };
233
234 struct wq_device;
235
236 /*
237 * The externally visible workqueue. It relays the issued work items to
238 * the appropriate worker_pool through its pool_workqueues.
239 */
240 struct workqueue_struct {
241 struct list_head pwqs; /* WR: all pwqs of this wq */
242 struct list_head list; /* PR: list of all workqueues */
243
244 struct mutex mutex; /* protects this wq */
245 int work_color; /* WQ: current work color */
246 int flush_color; /* WQ: current flush color */
247 atomic_t nr_pwqs_to_flush; /* flush in progress */
248 struct wq_flusher *first_flusher; /* WQ: first flusher */
249 struct list_head flusher_queue; /* WQ: flush waiters */
250 struct list_head flusher_overflow; /* WQ: flush overflow list */
251
252 struct list_head maydays; /* MD: pwqs requesting rescue */
253 struct worker *rescuer; /* I: rescue worker */
254
255 int nr_drainers; /* WQ: drain in progress */
256 int saved_max_active; /* WQ: saved pwq max_active */
257
258 struct workqueue_attrs *unbound_attrs; /* PW: only for unbound wqs */
259 struct pool_workqueue *dfl_pwq; /* PW: only for unbound wqs */
260
261 #ifdef CONFIG_SYSFS
262 struct wq_device *wq_dev; /* I: for sysfs interface */
263 #endif
264 #ifdef CONFIG_LOCKDEP
265 struct lockdep_map lockdep_map;
266 #endif
267 char name[WQ_NAME_LEN]; /* I: workqueue name */
268
269 /*
270 * Destruction of workqueue_struct is sched-RCU protected to allow
271 * walking the workqueues list without grabbing wq_pool_mutex.
272 * This is used to dump all workqueues from sysrq.
273 */
274 struct rcu_head rcu;
275
276 /* hot fields used during command issue, aligned to cacheline */
277 unsigned int flags ____cacheline_aligned; /* WQ: WQ_* flags */
278 struct pool_workqueue __percpu *cpu_pwqs; /* I: per-cpu pwqs */
279 struct pool_workqueue __rcu *numa_pwq_tbl[]; /* PWR: unbound pwqs indexed by node */
280 };
281
282 static struct kmem_cache *pwq_cache;
283
284 static cpumask_var_t *wq_numa_possible_cpumask;
285 /* possible CPUs of each node */
286
287 static bool wq_disable_numa;
288 module_param_named(disable_numa, wq_disable_numa, bool, 0444);
289
290 /* see the comment above the definition of WQ_POWER_EFFICIENT */
291 static bool wq_power_efficient = IS_ENABLED(CONFIG_WQ_POWER_EFFICIENT_DEFAULT);
292 module_param_named(power_efficient, wq_power_efficient, bool, 0444);
293
294 static bool wq_online; /* can kworkers be created yet? */
295
296 static bool wq_numa_enabled; /* unbound NUMA affinity enabled */
297
298 /* buf for wq_update_unbound_numa_attrs(), protected by CPU hotplug exclusion */
299 static struct workqueue_attrs *wq_update_unbound_numa_attrs_buf;
300
301 static DEFINE_MUTEX(wq_pool_mutex); /* protects pools and workqueues list */
302 static DEFINE_SPINLOCK(wq_mayday_lock); /* protects wq->maydays list */
303 static DECLARE_WAIT_QUEUE_HEAD(wq_manager_wait); /* wait for manager to go away */
304
305 static LIST_HEAD(workqueues); /* PR: list of all workqueues */
306 static bool workqueue_freezing; /* PL: have wqs started freezing? */
307
308 /* PL: allowable cpus for unbound wqs and work items */
309 static cpumask_var_t wq_unbound_cpumask;
310
311 /* CPU where unbound work was last round robin scheduled from this CPU */
312 static DEFINE_PER_CPU(int, wq_rr_cpu_last);
313
314 /*
315 * Local execution of unbound work items is no longer guaranteed. The
316 * following always forces round-robin CPU selection on unbound work items
317 * to uncover usages which depend on it.
318 */
319 #ifdef CONFIG_DEBUG_WQ_FORCE_RR_CPU
320 static bool wq_debug_force_rr_cpu = true;
321 #else
322 static bool wq_debug_force_rr_cpu = false;
323 #endif
324 module_param_named(debug_force_rr_cpu, wq_debug_force_rr_cpu, bool, 0644);
325
326 /* the per-cpu worker pools */
327 static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS], cpu_worker_pools);
328
329 static DEFINE_IDR(worker_pool_idr); /* PR: idr of all pools */
330
331 /* PL: hash of all unbound pools keyed by pool->attrs */
332 static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER);
333
334 /* I: attributes used when instantiating standard unbound pools on demand */
335 static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS];
336
337 /* I: attributes used when instantiating ordered pools on demand */
338 static struct workqueue_attrs *ordered_wq_attrs[NR_STD_WORKER_POOLS];
339
340 struct workqueue_struct *system_wq __read_mostly;
341 EXPORT_SYMBOL(system_wq);
342 struct workqueue_struct *system_highpri_wq __read_mostly;
343 EXPORT_SYMBOL_GPL(system_highpri_wq);
344 struct workqueue_struct *system_long_wq __read_mostly;
345 EXPORT_SYMBOL_GPL(system_long_wq);
346 struct workqueue_struct *system_unbound_wq __read_mostly;
347 EXPORT_SYMBOL_GPL(system_unbound_wq);
348 struct workqueue_struct *system_freezable_wq __read_mostly;
349 EXPORT_SYMBOL_GPL(system_freezable_wq);
350 struct workqueue_struct *system_power_efficient_wq __read_mostly;
351 EXPORT_SYMBOL_GPL(system_power_efficient_wq);
352 struct workqueue_struct *system_freezable_power_efficient_wq __read_mostly;
353 EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq);
354
355 static int worker_thread(void *__worker);
356 static void workqueue_sysfs_unregister(struct workqueue_struct *wq);
357
358 #define CREATE_TRACE_POINTS
359 #include <trace/events/workqueue.h>
360
361 #define assert_rcu_or_pool_mutex() \
362 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held() && \
363 !lockdep_is_held(&wq_pool_mutex), \
364 "sched RCU or wq_pool_mutex should be held")
365
366 #define assert_rcu_or_wq_mutex(wq) \
367 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held() && \
368 !lockdep_is_held(&wq->mutex), \
369 "sched RCU or wq->mutex should be held")
370
371 #define assert_rcu_or_wq_mutex_or_pool_mutex(wq) \
372 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held() && \
373 !lockdep_is_held(&wq->mutex) && \
374 !lockdep_is_held(&wq_pool_mutex), \
375 "sched RCU, wq->mutex or wq_pool_mutex should be held")
376
377 #define for_each_cpu_worker_pool(pool, cpu) \
378 for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0]; \
379 (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
380 (pool)++)
381
382 /**
383 * for_each_pool - iterate through all worker_pools in the system
384 * @pool: iteration cursor
385 * @pi: integer used for iteration
386 *
387 * This must be called either with wq_pool_mutex held or sched RCU read
388 * locked. If the pool needs to be used beyond the locking in effect, the
389 * caller is responsible for guaranteeing that the pool stays online.
390 *
391 * The if/else clause exists only for the lockdep assertion and can be
392 * ignored.
393 */
394 #define for_each_pool(pool, pi) \
395 idr_for_each_entry(&worker_pool_idr, pool, pi) \
396 if (({ assert_rcu_or_pool_mutex(); false; })) { } \
397 else
398
399 /**
400 * for_each_pool_worker - iterate through all workers of a worker_pool
401 * @worker: iteration cursor
402 * @pool: worker_pool to iterate workers of
403 *
404 * This must be called with @pool->attach_mutex.
405 *
406 * The if/else clause exists only for the lockdep assertion and can be
407 * ignored.
408 */
409 #define for_each_pool_worker(worker, pool) \
410 list_for_each_entry((worker), &(pool)->workers, node) \
411 if (({ lockdep_assert_held(&pool->attach_mutex); false; })) { } \
412 else
413
414 /**
415 * for_each_pwq - iterate through all pool_workqueues of the specified workqueue
416 * @pwq: iteration cursor
417 * @wq: the target workqueue
418 *
419 * This must be called either with wq->mutex held or sched RCU read locked.
420 * If the pwq needs to be used beyond the locking in effect, the caller is
421 * responsible for guaranteeing that the pwq stays online.
422 *
423 * The if/else clause exists only for the lockdep assertion and can be
424 * ignored.
425 */
426 #define for_each_pwq(pwq, wq) \
427 list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node) \
428 if (({ assert_rcu_or_wq_mutex(wq); false; })) { } \
429 else
430
431 #ifdef CONFIG_DEBUG_OBJECTS_WORK
432
433 static struct debug_obj_descr work_debug_descr;
434
435 static void *work_debug_hint(void *addr)
436 {
437 return ((struct work_struct *) addr)->func;
438 }
439
440 static bool work_is_static_object(void *addr)
441 {
442 struct work_struct *work = addr;
443
444 return test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work));
445 }
446
447 /*
448 * fixup_init is called when:
449 * - an active object is initialized
450 */
451 static bool work_fixup_init(void *addr, enum debug_obj_state state)
452 {
453 struct work_struct *work = addr;
454
455 switch (state) {
456 case ODEBUG_STATE_ACTIVE:
457 cancel_work_sync(work);
458 debug_object_init(work, &work_debug_descr);
459 return true;
460 default:
461 return false;
462 }
463 }
464
465 /*
466 * fixup_free is called when:
467 * - an active object is freed
468 */
469 static bool work_fixup_free(void *addr, enum debug_obj_state state)
470 {
471 struct work_struct *work = addr;
472
473 switch (state) {
474 case ODEBUG_STATE_ACTIVE:
475 cancel_work_sync(work);
476 debug_object_free(work, &work_debug_descr);
477 return true;
478 default:
479 return false;
480 }
481 }
482
483 static struct debug_obj_descr work_debug_descr = {
484 .name = "work_struct",
485 .debug_hint = work_debug_hint,
486 .is_static_object = work_is_static_object,
487 .fixup_init = work_fixup_init,
488 .fixup_free = work_fixup_free,
489 };
490
491 static inline void debug_work_activate(struct work_struct *work)
492 {
493 debug_object_activate(work, &work_debug_descr);
494 }
495
496 static inline void debug_work_deactivate(struct work_struct *work)
497 {
498 debug_object_deactivate(work, &work_debug_descr);
499 }
500
501 void __init_work(struct work_struct *work, int onstack)
502 {
503 if (onstack)
504 debug_object_init_on_stack(work, &work_debug_descr);
505 else
506 debug_object_init(work, &work_debug_descr);
507 }
508 EXPORT_SYMBOL_GPL(__init_work);
509
510 void destroy_work_on_stack(struct work_struct *work)
511 {
512 debug_object_free(work, &work_debug_descr);
513 }
514 EXPORT_SYMBOL_GPL(destroy_work_on_stack);
515
516 void destroy_delayed_work_on_stack(struct delayed_work *work)
517 {
518 destroy_timer_on_stack(&work->timer);
519 debug_object_free(&work->work, &work_debug_descr);
520 }
521 EXPORT_SYMBOL_GPL(destroy_delayed_work_on_stack);
522
523 #else
524 static inline void debug_work_activate(struct work_struct *work) { }
525 static inline void debug_work_deactivate(struct work_struct *work) { }
526 #endif
527
528 /**
529 * worker_pool_assign_id - allocate ID and assing it to @pool
530 * @pool: the pool pointer of interest
531 *
532 * Returns 0 if ID in [0, WORK_OFFQ_POOL_NONE) is allocated and assigned
533 * successfully, -errno on failure.
534 */
535 static int worker_pool_assign_id(struct worker_pool *pool)
536 {
537 int ret;
538
539 lockdep_assert_held(&wq_pool_mutex);
540
541 ret = idr_alloc(&worker_pool_idr, pool, 0, WORK_OFFQ_POOL_NONE,
542 GFP_KERNEL);
543 if (ret >= 0) {
544 pool->id = ret;
545 return 0;
546 }
547 return ret;
548 }
549
550 /**
551 * unbound_pwq_by_node - return the unbound pool_workqueue for the given node
552 * @wq: the target workqueue
553 * @node: the node ID
554 *
555 * This must be called with any of wq_pool_mutex, wq->mutex or sched RCU
556 * read locked.
557 * If the pwq needs to be used beyond the locking in effect, the caller is
558 * responsible for guaranteeing that the pwq stays online.
559 *
560 * Return: The unbound pool_workqueue for @node.
561 */
562 static struct pool_workqueue *unbound_pwq_by_node(struct workqueue_struct *wq,
563 int node)
564 {
565 assert_rcu_or_wq_mutex_or_pool_mutex(wq);
566
567 /*
568 * XXX: @node can be NUMA_NO_NODE if CPU goes offline while a
569 * delayed item is pending. The plan is to keep CPU -> NODE
570 * mapping valid and stable across CPU on/offlines. Once that
571 * happens, this workaround can be removed.
572 */
573 if (unlikely(node == NUMA_NO_NODE))
574 return wq->dfl_pwq;
575
576 return rcu_dereference_raw(wq->numa_pwq_tbl[node]);
577 }
578
579 static unsigned int work_color_to_flags(int color)
580 {
581 return color << WORK_STRUCT_COLOR_SHIFT;
582 }
583
584 static int get_work_color(struct work_struct *work)
585 {
586 return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
587 ((1 << WORK_STRUCT_COLOR_BITS) - 1);
588 }
589
590 static int work_next_color(int color)
591 {
592 return (color + 1) % WORK_NR_COLORS;
593 }
594
595 /*
596 * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
597 * contain the pointer to the queued pwq. Once execution starts, the flag
598 * is cleared and the high bits contain OFFQ flags and pool ID.
599 *
600 * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling()
601 * and clear_work_data() can be used to set the pwq, pool or clear
602 * work->data. These functions should only be called while the work is
603 * owned - ie. while the PENDING bit is set.
604 *
605 * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
606 * corresponding to a work. Pool is available once the work has been
607 * queued anywhere after initialization until it is sync canceled. pwq is
608 * available only while the work item is queued.
609 *
610 * %WORK_OFFQ_CANCELING is used to mark a work item which is being
611 * canceled. While being canceled, a work item may have its PENDING set
612 * but stay off timer and worklist for arbitrarily long and nobody should
613 * try to steal the PENDING bit.
614 */
615 static inline void set_work_data(struct work_struct *work, unsigned long data,
616 unsigned long flags)
617 {
618 WARN_ON_ONCE(!work_pending(work));
619 atomic_long_set(&work->data, data | flags | work_static(work));
620 }
621
622 static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq,
623 unsigned long extra_flags)
624 {
625 set_work_data(work, (unsigned long)pwq,
626 WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags);
627 }
628
629 static void set_work_pool_and_keep_pending(struct work_struct *work,
630 int pool_id)
631 {
632 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT,
633 WORK_STRUCT_PENDING);
634 }
635
636 static void set_work_pool_and_clear_pending(struct work_struct *work,
637 int pool_id)
638 {
639 /*
640 * The following wmb is paired with the implied mb in
641 * test_and_set_bit(PENDING) and ensures all updates to @work made
642 * here are visible to and precede any updates by the next PENDING
643 * owner.
644 */
645 smp_wmb();
646 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0);
647 /*
648 * The following mb guarantees that previous clear of a PENDING bit
649 * will not be reordered with any speculative LOADS or STORES from
650 * work->current_func, which is executed afterwards. This possible
651 * reordering can lead to a missed execution on attempt to qeueue
652 * the same @work. E.g. consider this case:
653 *
654 * CPU#0 CPU#1
655 * ---------------------------- --------------------------------
656 *
657 * 1 STORE event_indicated
658 * 2 queue_work_on() {
659 * 3 test_and_set_bit(PENDING)
660 * 4 } set_..._and_clear_pending() {
661 * 5 set_work_data() # clear bit
662 * 6 smp_mb()
663 * 7 work->current_func() {
664 * 8 LOAD event_indicated
665 * }
666 *
667 * Without an explicit full barrier speculative LOAD on line 8 can
668 * be executed before CPU#0 does STORE on line 1. If that happens,
669 * CPU#0 observes the PENDING bit is still set and new execution of
670 * a @work is not queued in a hope, that CPU#1 will eventually
671 * finish the queued @work. Meanwhile CPU#1 does not see
672 * event_indicated is set, because speculative LOAD was executed
673 * before actual STORE.
674 */
675 smp_mb();
676 }
677
678 static void clear_work_data(struct work_struct *work)
679 {
680 smp_wmb(); /* see set_work_pool_and_clear_pending() */
681 set_work_data(work, WORK_STRUCT_NO_POOL, 0);
682 }
683
684 static struct pool_workqueue *get_work_pwq(struct work_struct *work)
685 {
686 unsigned long data = atomic_long_read(&work->data);
687
688 if (data & WORK_STRUCT_PWQ)
689 return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
690 else
691 return NULL;
692 }
693
694 /**
695 * get_work_pool - return the worker_pool a given work was associated with
696 * @work: the work item of interest
697 *
698 * Pools are created and destroyed under wq_pool_mutex, and allows read
699 * access under sched-RCU read lock. As such, this function should be
700 * called under wq_pool_mutex or with preemption disabled.
701 *
702 * All fields of the returned pool are accessible as long as the above
703 * mentioned locking is in effect. If the returned pool needs to be used
704 * beyond the critical section, the caller is responsible for ensuring the
705 * returned pool is and stays online.
706 *
707 * Return: The worker_pool @work was last associated with. %NULL if none.
708 */
709 static struct worker_pool *get_work_pool(struct work_struct *work)
710 {
711 unsigned long data = atomic_long_read(&work->data);
712 int pool_id;
713
714 assert_rcu_or_pool_mutex();
715
716 if (data & WORK_STRUCT_PWQ)
717 return ((struct pool_workqueue *)
718 (data & WORK_STRUCT_WQ_DATA_MASK))->pool;
719
720 pool_id = data >> WORK_OFFQ_POOL_SHIFT;
721 if (pool_id == WORK_OFFQ_POOL_NONE)
722 return NULL;
723
724 return idr_find(&worker_pool_idr, pool_id);
725 }
726
727 /**
728 * get_work_pool_id - return the worker pool ID a given work is associated with
729 * @work: the work item of interest
730 *
731 * Return: The worker_pool ID @work was last associated with.
732 * %WORK_OFFQ_POOL_NONE if none.
733 */
734 static int get_work_pool_id(struct work_struct *work)
735 {
736 unsigned long data = atomic_long_read(&work->data);
737
738 if (data & WORK_STRUCT_PWQ)
739 return ((struct pool_workqueue *)
740 (data & WORK_STRUCT_WQ_DATA_MASK))->pool->id;
741
742 return data >> WORK_OFFQ_POOL_SHIFT;
743 }
744
745 static void mark_work_canceling(struct work_struct *work)
746 {
747 unsigned long pool_id = get_work_pool_id(work);
748
749 pool_id <<= WORK_OFFQ_POOL_SHIFT;
750 set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING);
751 }
752
753 static bool work_is_canceling(struct work_struct *work)
754 {
755 unsigned long data = atomic_long_read(&work->data);
756
757 return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING);
758 }
759
760 /*
761 * Policy functions. These define the policies on how the global worker
762 * pools are managed. Unless noted otherwise, these functions assume that
763 * they're being called with pool->lock held.
764 */
765
766 static bool __need_more_worker(struct worker_pool *pool)
767 {
768 return !atomic_read(&pool->nr_running);
769 }
770
771 /*
772 * Need to wake up a worker? Called from anything but currently
773 * running workers.
774 *
775 * Note that, because unbound workers never contribute to nr_running, this
776 * function will always return %true for unbound pools as long as the
777 * worklist isn't empty.
778 */
779 static bool need_more_worker(struct worker_pool *pool)
780 {
781 return !list_empty(&pool->worklist) && __need_more_worker(pool);
782 }
783
784 /* Can I start working? Called from busy but !running workers. */
785 static bool may_start_working(struct worker_pool *pool)
786 {
787 return pool->nr_idle;
788 }
789
790 /* Do I need to keep working? Called from currently running workers. */
791 static bool keep_working(struct worker_pool *pool)
792 {
793 return !list_empty(&pool->worklist) &&
794 atomic_read(&pool->nr_running) <= 1;
795 }
796
797 /* Do we need a new worker? Called from manager. */
798 static bool need_to_create_worker(struct worker_pool *pool)
799 {
800 return need_more_worker(pool) && !may_start_working(pool);
801 }
802
803 /* Do we have too many workers and should some go away? */
804 static bool too_many_workers(struct worker_pool *pool)
805 {
806 bool managing = pool->flags & POOL_MANAGER_ACTIVE;
807 int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
808 int nr_busy = pool->nr_workers - nr_idle;
809
810 return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
811 }
812
813 /*
814 * Wake up functions.
815 */
816
817 /* Return the first idle worker. Safe with preemption disabled */
818 static struct worker *first_idle_worker(struct worker_pool *pool)
819 {
820 if (unlikely(list_empty(&pool->idle_list)))
821 return NULL;
822
823 return list_first_entry(&pool->idle_list, struct worker, entry);
824 }
825
826 /**
827 * wake_up_worker - wake up an idle worker
828 * @pool: worker pool to wake worker from
829 *
830 * Wake up the first idle worker of @pool.
831 *
832 * CONTEXT:
833 * spin_lock_irq(pool->lock).
834 */
835 static void wake_up_worker(struct worker_pool *pool)
836 {
837 struct worker *worker = first_idle_worker(pool);
838
839 if (likely(worker))
840 wake_up_process(worker->task);
841 }
842
843 /**
844 * wq_worker_waking_up - a worker is waking up
845 * @task: task waking up
846 * @cpu: CPU @task is waking up to
847 *
848 * This function is called during try_to_wake_up() when a worker is
849 * being awoken.
850 *
851 * CONTEXT:
852 * spin_lock_irq(rq->lock)
853 */
854 void wq_worker_waking_up(struct task_struct *task, int cpu)
855 {
856 struct worker *worker = kthread_data(task);
857
858 if (!(worker->flags & WORKER_NOT_RUNNING)) {
859 WARN_ON_ONCE(worker->pool->cpu != cpu);
860 atomic_inc(&worker->pool->nr_running);
861 }
862 }
863
864 /**
865 * wq_worker_sleeping - a worker is going to sleep
866 * @task: task going to sleep
867 *
868 * This function is called during schedule() when a busy worker is
869 * going to sleep. Worker on the same cpu can be woken up by
870 * returning pointer to its task.
871 *
872 * CONTEXT:
873 * spin_lock_irq(rq->lock)
874 *
875 * Return:
876 * Worker task on @cpu to wake up, %NULL if none.
877 */
878 struct task_struct *wq_worker_sleeping(struct task_struct *task)
879 {
880 struct worker *worker = kthread_data(task), *to_wakeup = NULL;
881 struct worker_pool *pool;
882
883 /*
884 * Rescuers, which may not have all the fields set up like normal
885 * workers, also reach here, let's not access anything before
886 * checking NOT_RUNNING.
887 */
888 if (worker->flags & WORKER_NOT_RUNNING)
889 return NULL;
890
891 pool = worker->pool;
892
893 /* this can only happen on the local cpu */
894 if (WARN_ON_ONCE(pool->cpu != raw_smp_processor_id()))
895 return NULL;
896
897 /*
898 * The counterpart of the following dec_and_test, implied mb,
899 * worklist not empty test sequence is in insert_work().
900 * Please read comment there.
901 *
902 * NOT_RUNNING is clear. This means that we're bound to and
903 * running on the local cpu w/ rq lock held and preemption
904 * disabled, which in turn means that none else could be
905 * manipulating idle_list, so dereferencing idle_list without pool
906 * lock is safe.
907 */
908 if (atomic_dec_and_test(&pool->nr_running) &&
909 !list_empty(&pool->worklist))
910 to_wakeup = first_idle_worker(pool);
911 return to_wakeup ? to_wakeup->task : NULL;
912 }
913
914 /**
915 * worker_set_flags - set worker flags and adjust nr_running accordingly
916 * @worker: self
917 * @flags: flags to set
918 *
919 * Set @flags in @worker->flags and adjust nr_running accordingly.
920 *
921 * CONTEXT:
922 * spin_lock_irq(pool->lock)
923 */
924 static inline void worker_set_flags(struct worker *worker, unsigned int flags)
925 {
926 struct worker_pool *pool = worker->pool;
927
928 WARN_ON_ONCE(worker->task != current);
929
930 /* If transitioning into NOT_RUNNING, adjust nr_running. */
931 if ((flags & WORKER_NOT_RUNNING) &&
932 !(worker->flags & WORKER_NOT_RUNNING)) {
933 atomic_dec(&pool->nr_running);
934 }
935
936 worker->flags |= flags;
937 }
938
939 /**
940 * worker_clr_flags - clear worker flags and adjust nr_running accordingly
941 * @worker: self
942 * @flags: flags to clear
943 *
944 * Clear @flags in @worker->flags and adjust nr_running accordingly.
945 *
946 * CONTEXT:
947 * spin_lock_irq(pool->lock)
948 */
949 static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
950 {
951 struct worker_pool *pool = worker->pool;
952 unsigned int oflags = worker->flags;
953
954 WARN_ON_ONCE(worker->task != current);
955
956 worker->flags &= ~flags;
957
958 /*
959 * If transitioning out of NOT_RUNNING, increment nr_running. Note
960 * that the nested NOT_RUNNING is not a noop. NOT_RUNNING is mask
961 * of multiple flags, not a single flag.
962 */
963 if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
964 if (!(worker->flags & WORKER_NOT_RUNNING))
965 atomic_inc(&pool->nr_running);
966 }
967
968 /**
969 * find_worker_executing_work - find worker which is executing a work
970 * @pool: pool of interest
971 * @work: work to find worker for
972 *
973 * Find a worker which is executing @work on @pool by searching
974 * @pool->busy_hash which is keyed by the address of @work. For a worker
975 * to match, its current execution should match the address of @work and
976 * its work function. This is to avoid unwanted dependency between
977 * unrelated work executions through a work item being recycled while still
978 * being executed.
979 *
980 * This is a bit tricky. A work item may be freed once its execution
981 * starts and nothing prevents the freed area from being recycled for
982 * another work item. If the same work item address ends up being reused
983 * before the original execution finishes, workqueue will identify the
984 * recycled work item as currently executing and make it wait until the
985 * current execution finishes, introducing an unwanted dependency.
986 *
987 * This function checks the work item address and work function to avoid
988 * false positives. Note that this isn't complete as one may construct a
989 * work function which can introduce dependency onto itself through a
990 * recycled work item. Well, if somebody wants to shoot oneself in the
991 * foot that badly, there's only so much we can do, and if such deadlock
992 * actually occurs, it should be easy to locate the culprit work function.
993 *
994 * CONTEXT:
995 * spin_lock_irq(pool->lock).
996 *
997 * Return:
998 * Pointer to worker which is executing @work if found, %NULL
999 * otherwise.
1000 */
1001 static struct worker *find_worker_executing_work(struct worker_pool *pool,
1002 struct work_struct *work)
1003 {
1004 struct worker *worker;
1005
1006 hash_for_each_possible(pool->busy_hash, worker, hentry,
1007 (unsigned long)work)
1008 if (worker->current_work == work &&
1009 worker->current_func == work->func)
1010 return worker;
1011
1012 return NULL;
1013 }
1014
1015 /**
1016 * move_linked_works - move linked works to a list
1017 * @work: start of series of works to be scheduled
1018 * @head: target list to append @work to
1019 * @nextp: out parameter for nested worklist walking
1020 *
1021 * Schedule linked works starting from @work to @head. Work series to
1022 * be scheduled starts at @work and includes any consecutive work with
1023 * WORK_STRUCT_LINKED set in its predecessor.
1024 *
1025 * If @nextp is not NULL, it's updated to point to the next work of
1026 * the last scheduled work. This allows move_linked_works() to be
1027 * nested inside outer list_for_each_entry_safe().
1028 *
1029 * CONTEXT:
1030 * spin_lock_irq(pool->lock).
1031 */
1032 static void move_linked_works(struct work_struct *work, struct list_head *head,
1033 struct work_struct **nextp)
1034 {
1035 struct work_struct *n;
1036
1037 /*
1038 * Linked worklist will always end before the end of the list,
1039 * use NULL for list head.
1040 */
1041 list_for_each_entry_safe_from(work, n, NULL, entry) {
1042 list_move_tail(&work->entry, head);
1043 if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
1044 break;
1045 }
1046
1047 /*
1048 * If we're already inside safe list traversal and have moved
1049 * multiple works to the scheduled queue, the next position
1050 * needs to be updated.
1051 */
1052 if (nextp)
1053 *nextp = n;
1054 }
1055
1056 /**
1057 * get_pwq - get an extra reference on the specified pool_workqueue
1058 * @pwq: pool_workqueue to get
1059 *
1060 * Obtain an extra reference on @pwq. The caller should guarantee that
1061 * @pwq has positive refcnt and be holding the matching pool->lock.
1062 */
1063 static void get_pwq(struct pool_workqueue *pwq)
1064 {
1065 lockdep_assert_held(&pwq->pool->lock);
1066 WARN_ON_ONCE(pwq->refcnt <= 0);
1067 pwq->refcnt++;
1068 }
1069
1070 /**
1071 * put_pwq - put a pool_workqueue reference
1072 * @pwq: pool_workqueue to put
1073 *
1074 * Drop a reference of @pwq. If its refcnt reaches zero, schedule its
1075 * destruction. The caller should be holding the matching pool->lock.
1076 */
1077 static void put_pwq(struct pool_workqueue *pwq)
1078 {
1079 lockdep_assert_held(&pwq->pool->lock);
1080 if (likely(--pwq->refcnt))
1081 return;
1082 if (WARN_ON_ONCE(!(pwq->wq->flags & WQ_UNBOUND)))
1083 return;
1084 /*
1085 * @pwq can't be released under pool->lock, bounce to
1086 * pwq_unbound_release_workfn(). This never recurses on the same
1087 * pool->lock as this path is taken only for unbound workqueues and
1088 * the release work item is scheduled on a per-cpu workqueue. To
1089 * avoid lockdep warning, unbound pool->locks are given lockdep
1090 * subclass of 1 in get_unbound_pool().
1091 */
1092 schedule_work(&pwq->unbound_release_work);
1093 }
1094
1095 /**
1096 * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock
1097 * @pwq: pool_workqueue to put (can be %NULL)
1098 *
1099 * put_pwq() with locking. This function also allows %NULL @pwq.
1100 */
1101 static void put_pwq_unlocked(struct pool_workqueue *pwq)
1102 {
1103 if (pwq) {
1104 /*
1105 * As both pwqs and pools are sched-RCU protected, the
1106 * following lock operations are safe.
1107 */
1108 spin_lock_irq(&pwq->pool->lock);
1109 put_pwq(pwq);
1110 spin_unlock_irq(&pwq->pool->lock);
1111 }
1112 }
1113
1114 static void pwq_activate_delayed_work(struct work_struct *work)
1115 {
1116 struct pool_workqueue *pwq = get_work_pwq(work);
1117
1118 trace_workqueue_activate_work(work);
1119 if (list_empty(&pwq->pool->worklist))
1120 pwq->pool->watchdog_ts = jiffies;
1121 move_linked_works(work, &pwq->pool->worklist, NULL);
1122 __clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
1123 pwq->nr_active++;
1124 }
1125
1126 static void pwq_activate_first_delayed(struct pool_workqueue *pwq)
1127 {
1128 struct work_struct *work = list_first_entry(&pwq->delayed_works,
1129 struct work_struct, entry);
1130
1131 pwq_activate_delayed_work(work);
1132 }
1133
1134 /**
1135 * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
1136 * @pwq: pwq of interest
1137 * @color: color of work which left the queue
1138 *
1139 * A work either has completed or is removed from pending queue,
1140 * decrement nr_in_flight of its pwq and handle workqueue flushing.
1141 *
1142 * CONTEXT:
1143 * spin_lock_irq(pool->lock).
1144 */
1145 static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, int color)
1146 {
1147 /* uncolored work items don't participate in flushing or nr_active */
1148 if (color == WORK_NO_COLOR)
1149 goto out_put;
1150
1151 pwq->nr_in_flight[color]--;
1152
1153 pwq->nr_active--;
1154 if (!list_empty(&pwq->delayed_works)) {
1155 /* one down, submit a delayed one */
1156 if (pwq->nr_active < pwq->max_active)
1157 pwq_activate_first_delayed(pwq);
1158 }
1159
1160 /* is flush in progress and are we at the flushing tip? */
1161 if (likely(pwq->flush_color != color))
1162 goto out_put;
1163
1164 /* are there still in-flight works? */
1165 if (pwq->nr_in_flight[color])
1166 goto out_put;
1167
1168 /* this pwq is done, clear flush_color */
1169 pwq->flush_color = -1;
1170
1171 /*
1172 * If this was the last pwq, wake up the first flusher. It
1173 * will handle the rest.
1174 */
1175 if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush))
1176 complete(&pwq->wq->first_flusher->done);
1177 out_put:
1178 put_pwq(pwq);
1179 }
1180
1181 /**
1182 * try_to_grab_pending - steal work item from worklist and disable irq
1183 * @work: work item to steal
1184 * @is_dwork: @work is a delayed_work
1185 * @flags: place to store irq state
1186 *
1187 * Try to grab PENDING bit of @work. This function can handle @work in any
1188 * stable state - idle, on timer or on worklist.
1189 *
1190 * Return:
1191 * 1 if @work was pending and we successfully stole PENDING
1192 * 0 if @work was idle and we claimed PENDING
1193 * -EAGAIN if PENDING couldn't be grabbed at the moment, safe to busy-retry
1194 * -ENOENT if someone else is canceling @work, this state may persist
1195 * for arbitrarily long
1196 *
1197 * Note:
1198 * On >= 0 return, the caller owns @work's PENDING bit. To avoid getting
1199 * interrupted while holding PENDING and @work off queue, irq must be
1200 * disabled on entry. This, combined with delayed_work->timer being
1201 * irqsafe, ensures that we return -EAGAIN for finite short period of time.
1202 *
1203 * On successful return, >= 0, irq is disabled and the caller is
1204 * responsible for releasing it using local_irq_restore(*@flags).
1205 *
1206 * This function is safe to call from any context including IRQ handler.
1207 */
1208 static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
1209 unsigned long *flags)
1210 {
1211 struct worker_pool *pool;
1212 struct pool_workqueue *pwq;
1213
1214 local_irq_save(*flags);
1215
1216 /* try to steal the timer if it exists */
1217 if (is_dwork) {
1218 struct delayed_work *dwork = to_delayed_work(work);
1219
1220 /*
1221 * dwork->timer is irqsafe. If del_timer() fails, it's
1222 * guaranteed that the timer is not queued anywhere and not
1223 * running on the local CPU.
1224 */
1225 if (likely(del_timer(&dwork->timer)))
1226 return 1;
1227 }
1228
1229 /* try to claim PENDING the normal way */
1230 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
1231 return 0;
1232
1233 /*
1234 * The queueing is in progress, or it is already queued. Try to
1235 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
1236 */
1237 pool = get_work_pool(work);
1238 if (!pool)
1239 goto fail;
1240
1241 spin_lock(&pool->lock);
1242 /*
1243 * work->data is guaranteed to point to pwq only while the work
1244 * item is queued on pwq->wq, and both updating work->data to point
1245 * to pwq on queueing and to pool on dequeueing are done under
1246 * pwq->pool->lock. This in turn guarantees that, if work->data
1247 * points to pwq which is associated with a locked pool, the work
1248 * item is currently queued on that pool.
1249 */
1250 pwq = get_work_pwq(work);
1251 if (pwq && pwq->pool == pool) {
1252 debug_work_deactivate(work);
1253
1254 /*
1255 * A delayed work item cannot be grabbed directly because
1256 * it might have linked NO_COLOR work items which, if left
1257 * on the delayed_list, will confuse pwq->nr_active
1258 * management later on and cause stall. Make sure the work
1259 * item is activated before grabbing.
1260 */
1261 if (*work_data_bits(work) & WORK_STRUCT_DELAYED)
1262 pwq_activate_delayed_work(work);
1263
1264 list_del_init(&work->entry);
1265 pwq_dec_nr_in_flight(pwq, get_work_color(work));
1266
1267 /* work->data points to pwq iff queued, point to pool */
1268 set_work_pool_and_keep_pending(work, pool->id);
1269
1270 spin_unlock(&pool->lock);
1271 return 1;
1272 }
1273 spin_unlock(&pool->lock);
1274 fail:
1275 local_irq_restore(*flags);
1276 if (work_is_canceling(work))
1277 return -ENOENT;
1278 cpu_relax();
1279 return -EAGAIN;
1280 }
1281
1282 /**
1283 * insert_work - insert a work into a pool
1284 * @pwq: pwq @work belongs to
1285 * @work: work to insert
1286 * @head: insertion point
1287 * @extra_flags: extra WORK_STRUCT_* flags to set
1288 *
1289 * Insert @work which belongs to @pwq after @head. @extra_flags is or'd to
1290 * work_struct flags.
1291 *
1292 * CONTEXT:
1293 * spin_lock_irq(pool->lock).
1294 */
1295 static void insert_work(struct pool_workqueue *pwq, struct work_struct *work,
1296 struct list_head *head, unsigned int extra_flags)
1297 {
1298 struct worker_pool *pool = pwq->pool;
1299
1300 /* we own @work, set data and link */
1301 set_work_pwq(work, pwq, extra_flags);
1302 list_add_tail(&work->entry, head);
1303 get_pwq(pwq);
1304
1305 /*
1306 * Ensure either wq_worker_sleeping() sees the above
1307 * list_add_tail() or we see zero nr_running to avoid workers lying
1308 * around lazily while there are works to be processed.
1309 */
1310 smp_mb();
1311
1312 if (__need_more_worker(pool))
1313 wake_up_worker(pool);
1314 }
1315
1316 /*
1317 * Test whether @work is being queued from another work executing on the
1318 * same workqueue.
1319 */
1320 static bool is_chained_work(struct workqueue_struct *wq)
1321 {
1322 struct worker *worker;
1323
1324 worker = current_wq_worker();
1325 /*
1326 * Return %true iff I'm a worker execuing a work item on @wq. If
1327 * I'm @worker, it's safe to dereference it without locking.
1328 */
1329 return worker && worker->current_pwq->wq == wq;
1330 }
1331
1332 /*
1333 * When queueing an unbound work item to a wq, prefer local CPU if allowed
1334 * by wq_unbound_cpumask. Otherwise, round robin among the allowed ones to
1335 * avoid perturbing sensitive tasks.
1336 */
1337 static int wq_select_unbound_cpu(int cpu)
1338 {
1339 static bool printed_dbg_warning;
1340 int new_cpu;
1341
1342 if (likely(!wq_debug_force_rr_cpu)) {
1343 if (cpumask_test_cpu(cpu, wq_unbound_cpumask))
1344 return cpu;
1345 } else if (!printed_dbg_warning) {
1346 pr_warn("workqueue: round-robin CPU selection forced, expect performance impact\n");
1347 printed_dbg_warning = true;
1348 }
1349
1350 if (cpumask_empty(wq_unbound_cpumask))
1351 return cpu;
1352
1353 new_cpu = __this_cpu_read(wq_rr_cpu_last);
1354 new_cpu = cpumask_next_and(new_cpu, wq_unbound_cpumask, cpu_online_mask);
1355 if (unlikely(new_cpu >= nr_cpu_ids)) {
1356 new_cpu = cpumask_first_and(wq_unbound_cpumask, cpu_online_mask);
1357 if (unlikely(new_cpu >= nr_cpu_ids))
1358 return cpu;
1359 }
1360 __this_cpu_write(wq_rr_cpu_last, new_cpu);
1361
1362 return new_cpu;
1363 }
1364
1365 static void __queue_work(int cpu, struct workqueue_struct *wq,
1366 struct work_struct *work)
1367 {
1368 struct pool_workqueue *pwq;
1369 struct worker_pool *last_pool;
1370 struct list_head *worklist;
1371 unsigned int work_flags;
1372 unsigned int req_cpu = cpu;
1373
1374 /*
1375 * While a work item is PENDING && off queue, a task trying to
1376 * steal the PENDING will busy-loop waiting for it to either get
1377 * queued or lose PENDING. Grabbing PENDING and queueing should
1378 * happen with IRQ disabled.
1379 */
1380 lockdep_assert_irqs_disabled();
1381
1382 debug_work_activate(work);
1383
1384 /* if draining, only works from the same workqueue are allowed */
1385 if (unlikely(wq->flags & __WQ_DRAINING) &&
1386 WARN_ON_ONCE(!is_chained_work(wq)))
1387 return;
1388 retry:
1389 if (req_cpu == WORK_CPU_UNBOUND)
1390 cpu = wq_select_unbound_cpu(raw_smp_processor_id());
1391
1392 /* pwq which will be used unless @work is executing elsewhere */
1393 if (!(wq->flags & WQ_UNBOUND))
1394 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
1395 else
1396 pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
1397
1398 /*
1399 * If @work was previously on a different pool, it might still be
1400 * running there, in which case the work needs to be queued on that
1401 * pool to guarantee non-reentrancy.
1402 */
1403 last_pool = get_work_pool(work);
1404 if (last_pool && last_pool != pwq->pool) {
1405 struct worker *worker;
1406
1407 spin_lock(&last_pool->lock);
1408
1409 worker = find_worker_executing_work(last_pool, work);
1410
1411 if (worker && worker->current_pwq->wq == wq) {
1412 pwq = worker->current_pwq;
1413 } else {
1414 /* meh... not running there, queue here */
1415 spin_unlock(&last_pool->lock);
1416 spin_lock(&pwq->pool->lock);
1417 }
1418 } else {
1419 spin_lock(&pwq->pool->lock);
1420 }
1421
1422 /*
1423 * pwq is determined and locked. For unbound pools, we could have
1424 * raced with pwq release and it could already be dead. If its
1425 * refcnt is zero, repeat pwq selection. Note that pwqs never die
1426 * without another pwq replacing it in the numa_pwq_tbl or while
1427 * work items are executing on it, so the retrying is guaranteed to
1428 * make forward-progress.
1429 */
1430 if (unlikely(!pwq->refcnt)) {
1431 if (wq->flags & WQ_UNBOUND) {
1432 spin_unlock(&pwq->pool->lock);
1433 cpu_relax();
1434 goto retry;
1435 }
1436 /* oops */
1437 WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt",
1438 wq->name, cpu);
1439 }
1440
1441 /* pwq determined, queue */
1442 trace_workqueue_queue_work(req_cpu, pwq, work);
1443
1444 if (WARN_ON(!list_empty(&work->entry))) {
1445 spin_unlock(&pwq->pool->lock);
1446 return;
1447 }
1448
1449 pwq->nr_in_flight[pwq->work_color]++;
1450 work_flags = work_color_to_flags(pwq->work_color);
1451
1452 if (likely(pwq->nr_active < pwq->max_active)) {
1453 trace_workqueue_activate_work(work);
1454 pwq->nr_active++;
1455 worklist = &pwq->pool->worklist;
1456 if (list_empty(worklist))
1457 pwq->pool->watchdog_ts = jiffies;
1458 } else {
1459 work_flags |= WORK_STRUCT_DELAYED;
1460 worklist = &pwq->delayed_works;
1461 }
1462
1463 insert_work(pwq, work, worklist, work_flags);
1464
1465 spin_unlock(&pwq->pool->lock);
1466 }
1467
1468 /**
1469 * queue_work_on - queue work on specific cpu
1470 * @cpu: CPU number to execute work on
1471 * @wq: workqueue to use
1472 * @work: work to queue
1473 *
1474 * We queue the work to a specific CPU, the caller must ensure it
1475 * can't go away.
1476 *
1477 * Return: %false if @work was already on a queue, %true otherwise.
1478 */
1479 bool queue_work_on(int cpu, struct workqueue_struct *wq,
1480 struct work_struct *work)
1481 {
1482 bool ret = false;
1483 unsigned long flags;
1484
1485 local_irq_save(flags);
1486
1487 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1488 __queue_work(cpu, wq, work);
1489 ret = true;
1490 }
1491
1492 local_irq_restore(flags);
1493 return ret;
1494 }
1495 EXPORT_SYMBOL(queue_work_on);
1496
1497 void delayed_work_timer_fn(struct timer_list *t)
1498 {
1499 struct delayed_work *dwork = from_timer(dwork, t, timer);
1500
1501 /* should have been called from irqsafe timer with irq already off */
1502 __queue_work(dwork->cpu, dwork->wq, &dwork->work);
1503 }
1504 EXPORT_SYMBOL(delayed_work_timer_fn);
1505
1506 static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
1507 struct delayed_work *dwork, unsigned long delay)
1508 {
1509 struct timer_list *timer = &dwork->timer;
1510 struct work_struct *work = &dwork->work;
1511
1512 WARN_ON_ONCE(!wq);
1513 WARN_ON_ONCE(timer->function != delayed_work_timer_fn);
1514 WARN_ON_ONCE(timer_pending(timer));
1515 WARN_ON_ONCE(!list_empty(&work->entry));
1516
1517 /*
1518 * If @delay is 0, queue @dwork->work immediately. This is for
1519 * both optimization and correctness. The earliest @timer can
1520 * expire is on the closest next tick and delayed_work users depend
1521 * on that there's no such delay when @delay is 0.
1522 */
1523 if (!delay) {
1524 __queue_work(cpu, wq, &dwork->work);
1525 return;
1526 }
1527
1528 dwork->wq = wq;
1529 dwork->cpu = cpu;
1530 timer->expires = jiffies + delay;
1531
1532 if (unlikely(cpu != WORK_CPU_UNBOUND))
1533 add_timer_on(timer, cpu);
1534 else
1535 add_timer(timer);
1536 }
1537
1538 /**
1539 * queue_delayed_work_on - queue work on specific CPU after delay
1540 * @cpu: CPU number to execute work on
1541 * @wq: workqueue to use
1542 * @dwork: work to queue
1543 * @delay: number of jiffies to wait before queueing
1544 *
1545 * Return: %false if @work was already on a queue, %true otherwise. If
1546 * @delay is zero and @dwork is idle, it will be scheduled for immediate
1547 * execution.
1548 */
1549 bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
1550 struct delayed_work *dwork, unsigned long delay)
1551 {
1552 struct work_struct *work = &dwork->work;
1553 bool ret = false;
1554 unsigned long flags;
1555
1556 /* read the comment in __queue_work() */
1557 local_irq_save(flags);
1558
1559 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1560 __queue_delayed_work(cpu, wq, dwork, delay);
1561 ret = true;
1562 }
1563
1564 local_irq_restore(flags);
1565 return ret;
1566 }
1567 EXPORT_SYMBOL(queue_delayed_work_on);
1568
1569 /**
1570 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
1571 * @cpu: CPU number to execute work on
1572 * @wq: workqueue to use
1573 * @dwork: work to queue
1574 * @delay: number of jiffies to wait before queueing
1575 *
1576 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
1577 * modify @dwork's timer so that it expires after @delay. If @delay is
1578 * zero, @work is guaranteed to be scheduled immediately regardless of its
1579 * current state.
1580 *
1581 * Return: %false if @dwork was idle and queued, %true if @dwork was
1582 * pending and its timer was modified.
1583 *
1584 * This function is safe to call from any context including IRQ handler.
1585 * See try_to_grab_pending() for details.
1586 */
1587 bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
1588 struct delayed_work *dwork, unsigned long delay)
1589 {
1590 unsigned long flags;
1591 int ret;
1592
1593 do {
1594 ret = try_to_grab_pending(&dwork->work, true, &flags);
1595 } while (unlikely(ret == -EAGAIN));
1596
1597 if (likely(ret >= 0)) {
1598 __queue_delayed_work(cpu, wq, dwork, delay);
1599 local_irq_restore(flags);
1600 }
1601
1602 /* -ENOENT from try_to_grab_pending() becomes %true */
1603 return ret;
1604 }
1605 EXPORT_SYMBOL_GPL(mod_delayed_work_on);
1606
1607 static void rcu_work_rcufn(struct rcu_head *rcu)
1608 {
1609 struct rcu_work *rwork = container_of(rcu, struct rcu_work, rcu);
1610
1611 /* read the comment in __queue_work() */
1612 local_irq_disable();
1613 __queue_work(WORK_CPU_UNBOUND, rwork->wq, &rwork->work);
1614 local_irq_enable();
1615 }
1616
1617 /**
1618 * queue_rcu_work - queue work after a RCU grace period
1619 * @wq: workqueue to use
1620 * @rwork: work to queue
1621 *
1622 * Return: %false if @rwork was already pending, %true otherwise. Note
1623 * that a full RCU grace period is guaranteed only after a %true return.
1624 * While @rwork is guarnateed to be executed after a %false return, the
1625 * execution may happen before a full RCU grace period has passed.
1626 */
1627 bool queue_rcu_work(struct workqueue_struct *wq, struct rcu_work *rwork)
1628 {
1629 struct work_struct *work = &rwork->work;
1630
1631 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1632 rwork->wq = wq;
1633 call_rcu(&rwork->rcu, rcu_work_rcufn);
1634 return true;
1635 }
1636
1637 return false;
1638 }
1639 EXPORT_SYMBOL(queue_rcu_work);
1640
1641 /**
1642 * worker_enter_idle - enter idle state
1643 * @worker: worker which is entering idle state
1644 *
1645 * @worker is entering idle state. Update stats and idle timer if
1646 * necessary.
1647 *
1648 * LOCKING:
1649 * spin_lock_irq(pool->lock).
1650 */
1651 static void worker_enter_idle(struct worker *worker)
1652 {
1653 struct worker_pool *pool = worker->pool;
1654
1655 if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) ||
1656 WARN_ON_ONCE(!list_empty(&worker->entry) &&
1657 (worker->hentry.next || worker->hentry.pprev)))
1658 return;
1659
1660 /* can't use worker_set_flags(), also called from create_worker() */
1661 worker->flags |= WORKER_IDLE;
1662 pool->nr_idle++;
1663 worker->last_active = jiffies;
1664
1665 /* idle_list is LIFO */
1666 list_add(&worker->entry, &pool->idle_list);
1667
1668 if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
1669 mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
1670
1671 /*
1672 * Sanity check nr_running. Because unbind_workers() releases
1673 * pool->lock between setting %WORKER_UNBOUND and zapping
1674 * nr_running, the warning may trigger spuriously. Check iff
1675 * unbind is not in progress.
1676 */
1677 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
1678 pool->nr_workers == pool->nr_idle &&
1679 atomic_read(&pool->nr_running));
1680 }
1681
1682 /**
1683 * worker_leave_idle - leave idle state
1684 * @worker: worker which is leaving idle state
1685 *
1686 * @worker is leaving idle state. Update stats.
1687 *
1688 * LOCKING:
1689 * spin_lock_irq(pool->lock).
1690 */
1691 static void worker_leave_idle(struct worker *worker)
1692 {
1693 struct worker_pool *pool = worker->pool;
1694
1695 if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE)))
1696 return;
1697 worker_clr_flags(worker, WORKER_IDLE);
1698 pool->nr_idle--;
1699 list_del_init(&worker->entry);
1700 }
1701
1702 static struct worker *alloc_worker(int node)
1703 {
1704 struct worker *worker;
1705
1706 worker = kzalloc_node(sizeof(*worker), GFP_KERNEL, node);
1707 if (worker) {
1708 INIT_LIST_HEAD(&worker->entry);
1709 INIT_LIST_HEAD(&worker->scheduled);
1710 INIT_LIST_HEAD(&worker->node);
1711 /* on creation a worker is in !idle && prep state */
1712 worker->flags = WORKER_PREP;
1713 }
1714 return worker;
1715 }
1716
1717 /**
1718 * worker_attach_to_pool() - attach a worker to a pool
1719 * @worker: worker to be attached
1720 * @pool: the target pool
1721 *
1722 * Attach @worker to @pool. Once attached, the %WORKER_UNBOUND flag and
1723 * cpu-binding of @worker are kept coordinated with the pool across
1724 * cpu-[un]hotplugs.
1725 */
1726 static void worker_attach_to_pool(struct worker *worker,
1727 struct worker_pool *pool)
1728 {
1729 mutex_lock(&pool->attach_mutex);
1730
1731 /*
1732 * set_cpus_allowed_ptr() will fail if the cpumask doesn't have any
1733 * online CPUs. It'll be re-applied when any of the CPUs come up.
1734 */
1735 set_cpus_allowed_ptr(worker->task, pool->attrs->cpumask);
1736
1737 /*
1738 * The pool->attach_mutex ensures %POOL_DISASSOCIATED remains
1739 * stable across this function. See the comments above the
1740 * flag definition for details.
1741 */
1742 if (pool->flags & POOL_DISASSOCIATED)
1743 worker->flags |= WORKER_UNBOUND;
1744
1745 list_add_tail(&worker->node, &pool->workers);
1746
1747 mutex_unlock(&pool->attach_mutex);
1748 }
1749
1750 /**
1751 * worker_detach_from_pool() - detach a worker from its pool
1752 * @worker: worker which is attached to its pool
1753 * @pool: the pool @worker is attached to
1754 *
1755 * Undo the attaching which had been done in worker_attach_to_pool(). The
1756 * caller worker shouldn't access to the pool after detached except it has
1757 * other reference to the pool.
1758 */
1759 static void worker_detach_from_pool(struct worker *worker,
1760 struct worker_pool *pool)
1761 {
1762 struct completion *detach_completion = NULL;
1763
1764 mutex_lock(&pool->attach_mutex);
1765 list_del(&worker->node);
1766 if (list_empty(&pool->workers))
1767 detach_completion = pool->detach_completion;
1768 mutex_unlock(&pool->attach_mutex);
1769
1770 /* clear leftover flags without pool->lock after it is detached */
1771 worker->flags &= ~(WORKER_UNBOUND | WORKER_REBOUND);
1772
1773 if (detach_completion)
1774 complete(detach_completion);
1775 }
1776
1777 /**
1778 * create_worker - create a new workqueue worker
1779 * @pool: pool the new worker will belong to
1780 *
1781 * Create and start a new worker which is attached to @pool.
1782 *
1783 * CONTEXT:
1784 * Might sleep. Does GFP_KERNEL allocations.
1785 *
1786 * Return:
1787 * Pointer to the newly created worker.
1788 */
1789 static struct worker *create_worker(struct worker_pool *pool)
1790 {
1791 struct worker *worker = NULL;
1792 int id = -1;
1793 char id_buf[16];
1794
1795 /* ID is needed to determine kthread name */
1796 id = ida_simple_get(&pool->worker_ida, 0, 0, GFP_KERNEL);
1797 if (id < 0)
1798 goto fail;
1799
1800 worker = alloc_worker(pool->node);
1801 if (!worker)
1802 goto fail;
1803
1804 worker->pool = pool;
1805 worker->id = id;
1806
1807 if (pool->cpu >= 0)
1808 snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id,
1809 pool->attrs->nice < 0 ? "H" : "");
1810 else
1811 snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id);
1812
1813 worker->task = kthread_create_on_node(worker_thread, worker, pool->node,
1814 "kworker/%s", id_buf);
1815 if (IS_ERR(worker->task))
1816 goto fail;
1817
1818 set_user_nice(worker->task, pool->attrs->nice);
1819 kthread_bind_mask(worker->task, pool->attrs->cpumask);
1820
1821 /* successful, attach the worker to the pool */
1822 worker_attach_to_pool(worker, pool);
1823
1824 /* start the newly created worker */
1825 spin_lock_irq(&pool->lock);
1826 worker->pool->nr_workers++;
1827 worker_enter_idle(worker);
1828 wake_up_process(worker->task);
1829 spin_unlock_irq(&pool->lock);
1830
1831 return worker;
1832
1833 fail:
1834 if (id >= 0)
1835 ida_simple_remove(&pool->worker_ida, id);
1836 kfree(worker);
1837 return NULL;
1838 }
1839
1840 /**
1841 * destroy_worker - destroy a workqueue worker
1842 * @worker: worker to be destroyed
1843 *
1844 * Destroy @worker and adjust @pool stats accordingly. The worker should
1845 * be idle.
1846 *
1847 * CONTEXT:
1848 * spin_lock_irq(pool->lock).
1849 */
1850 static void destroy_worker(struct worker *worker)
1851 {
1852 struct worker_pool *pool = worker->pool;
1853
1854 lockdep_assert_held(&pool->lock);
1855
1856 /* sanity check frenzy */
1857 if (WARN_ON(worker->current_work) ||
1858 WARN_ON(!list_empty(&worker->scheduled)) ||
1859 WARN_ON(!(worker->flags & WORKER_IDLE)))
1860 return;
1861
1862 pool->nr_workers--;
1863 pool->nr_idle--;
1864
1865 list_del_init(&worker->entry);
1866 worker->flags |= WORKER_DIE;
1867 wake_up_process(worker->task);
1868 }
1869
1870 static void idle_worker_timeout(struct timer_list *t)
1871 {
1872 struct worker_pool *pool = from_timer(pool, t, idle_timer);
1873
1874 spin_lock_irq(&pool->lock);
1875
1876 while (too_many_workers(pool)) {
1877 struct worker *worker;
1878 unsigned long expires;
1879
1880 /* idle_list is kept in LIFO order, check the last one */
1881 worker = list_entry(pool->idle_list.prev, struct worker, entry);
1882 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
1883
1884 if (time_before(jiffies, expires)) {
1885 mod_timer(&pool->idle_timer, expires);
1886 break;
1887 }
1888
1889 destroy_worker(worker);
1890 }
1891
1892 spin_unlock_irq(&pool->lock);
1893 }
1894
1895 static void send_mayday(struct work_struct *work)
1896 {
1897 struct pool_workqueue *pwq = get_work_pwq(work);
1898 struct workqueue_struct *wq = pwq->wq;
1899
1900 lockdep_assert_held(&wq_mayday_lock);
1901
1902 if (!wq->rescuer)
1903 return;
1904
1905 /* mayday mayday mayday */
1906 if (list_empty(&pwq->mayday_node)) {
1907 /*
1908 * If @pwq is for an unbound wq, its base ref may be put at
1909 * any time due to an attribute change. Pin @pwq until the
1910 * rescuer is done with it.
1911 */
1912 get_pwq(pwq);
1913 list_add_tail(&pwq->mayday_node, &wq->maydays);
1914 wake_up_process(wq->rescuer->task);
1915 }
1916 }
1917
1918 static void pool_mayday_timeout(struct timer_list *t)
1919 {
1920 struct worker_pool *pool = from_timer(pool, t, mayday_timer);
1921 struct work_struct *work;
1922
1923 spin_lock_irq(&pool->lock);
1924 spin_lock(&wq_mayday_lock); /* for wq->maydays */
1925
1926 if (need_to_create_worker(pool)) {
1927 /*
1928 * We've been trying to create a new worker but
1929 * haven't been successful. We might be hitting an
1930 * allocation deadlock. Send distress signals to
1931 * rescuers.
1932 */
1933 list_for_each_entry(work, &pool->worklist, entry)
1934 send_mayday(work);
1935 }
1936
1937 spin_unlock(&wq_mayday_lock);
1938 spin_unlock_irq(&pool->lock);
1939
1940 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
1941 }
1942
1943 /**
1944 * maybe_create_worker - create a new worker if necessary
1945 * @pool: pool to create a new worker for
1946 *
1947 * Create a new worker for @pool if necessary. @pool is guaranteed to
1948 * have at least one idle worker on return from this function. If
1949 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
1950 * sent to all rescuers with works scheduled on @pool to resolve
1951 * possible allocation deadlock.
1952 *
1953 * On return, need_to_create_worker() is guaranteed to be %false and
1954 * may_start_working() %true.
1955 *
1956 * LOCKING:
1957 * spin_lock_irq(pool->lock) which may be released and regrabbed
1958 * multiple times. Does GFP_KERNEL allocations. Called only from
1959 * manager.
1960 */
1961 static void maybe_create_worker(struct worker_pool *pool)
1962 __releases(&pool->lock)
1963 __acquires(&pool->lock)
1964 {
1965 restart:
1966 spin_unlock_irq(&pool->lock);
1967
1968 /* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
1969 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
1970
1971 while (true) {
1972 if (create_worker(pool) || !need_to_create_worker(pool))
1973 break;
1974
1975 schedule_timeout_interruptible(CREATE_COOLDOWN);
1976
1977 if (!need_to_create_worker(pool))
1978 break;
1979 }
1980
1981 del_timer_sync(&pool->mayday_timer);
1982 spin_lock_irq(&pool->lock);
1983 /*
1984 * This is necessary even after a new worker was just successfully
1985 * created as @pool->lock was dropped and the new worker might have
1986 * already become busy.
1987 */
1988 if (need_to_create_worker(pool))
1989 goto restart;
1990 }
1991
1992 /**
1993 * manage_workers - manage worker pool
1994 * @worker: self
1995 *
1996 * Assume the manager role and manage the worker pool @worker belongs
1997 * to. At any given time, there can be only zero or one manager per
1998 * pool. The exclusion is handled automatically by this function.
1999 *
2000 * The caller can safely start processing works on false return. On
2001 * true return, it's guaranteed that need_to_create_worker() is false
2002 * and may_start_working() is true.
2003 *
2004 * CONTEXT:
2005 * spin_lock_irq(pool->lock) which may be released and regrabbed
2006 * multiple times. Does GFP_KERNEL allocations.
2007 *
2008 * Return:
2009 * %false if the pool doesn't need management and the caller can safely
2010 * start processing works, %true if management function was performed and
2011 * the conditions that the caller verified before calling the function may
2012 * no longer be true.
2013 */
2014 static bool manage_workers(struct worker *worker)
2015 {
2016 struct worker_pool *pool = worker->pool;
2017
2018 if (pool->flags & POOL_MANAGER_ACTIVE)
2019 return false;
2020
2021 pool->flags |= POOL_MANAGER_ACTIVE;
2022 pool->manager = worker;
2023
2024 maybe_create_worker(pool);
2025
2026 pool->manager = NULL;
2027 pool->flags &= ~POOL_MANAGER_ACTIVE;
2028 wake_up(&wq_manager_wait);
2029 return true;
2030 }
2031
2032 /**
2033 * process_one_work - process single work
2034 * @worker: self
2035 * @work: work to process
2036 *
2037 * Process @work. This function contains all the logics necessary to
2038 * process a single work including synchronization against and
2039 * interaction with other workers on the same cpu, queueing and
2040 * flushing. As long as context requirement is met, any worker can
2041 * call this function to process a work.
2042 *
2043 * CONTEXT:
2044 * spin_lock_irq(pool->lock) which is released and regrabbed.
2045 */
2046 static void process_one_work(struct worker *worker, struct work_struct *work)
2047 __releases(&pool->lock)
2048 __acquires(&pool->lock)
2049 {
2050 struct pool_workqueue *pwq = get_work_pwq(work);
2051 struct worker_pool *pool = worker->pool;
2052 bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE;
2053 int work_color;
2054 struct worker *collision;
2055 #ifdef CONFIG_LOCKDEP
2056 /*
2057 * It is permissible to free the struct work_struct from
2058 * inside the function that is called from it, this we need to
2059 * take into account for lockdep too. To avoid bogus "held
2060 * lock freed" warnings as well as problems when looking into
2061 * work->lockdep_map, make a copy and use that here.
2062 */
2063 struct lockdep_map lockdep_map;
2064
2065 lockdep_copy_map(&lockdep_map, &work->lockdep_map);
2066 #endif
2067 /* ensure we're on the correct CPU */
2068 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
2069 raw_smp_processor_id() != pool->cpu);
2070
2071 /*
2072 * A single work shouldn't be executed concurrently by
2073 * multiple workers on a single cpu. Check whether anyone is
2074 * already processing the work. If so, defer the work to the
2075 * currently executing one.
2076 */
2077 collision = find_worker_executing_work(pool, work);
2078 if (unlikely(collision)) {
2079 move_linked_works(work, &collision->scheduled, NULL);
2080 return;
2081 }
2082
2083 /* claim and dequeue */
2084 debug_work_deactivate(work);
2085 hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
2086 worker->current_work = work;
2087 worker->current_func = work->func;
2088 worker->current_pwq = pwq;
2089 work_color = get_work_color(work);
2090
2091 list_del_init(&work->entry);
2092
2093 /*
2094 * CPU intensive works don't participate in concurrency management.
2095 * They're the scheduler's responsibility. This takes @worker out
2096 * of concurrency management and the next code block will chain
2097 * execution of the pending work items.
2098 */
2099 if (unlikely(cpu_intensive))
2100 worker_set_flags(worker, WORKER_CPU_INTENSIVE);
2101
2102 /*
2103 * Wake up another worker if necessary. The condition is always
2104 * false for normal per-cpu workers since nr_running would always
2105 * be >= 1 at this point. This is used to chain execution of the
2106 * pending work items for WORKER_NOT_RUNNING workers such as the
2107 * UNBOUND and CPU_INTENSIVE ones.
2108 */
2109 if (need_more_worker(pool))
2110 wake_up_worker(pool);
2111
2112 /*
2113 * Record the last pool and clear PENDING which should be the last
2114 * update to @work. Also, do this inside @pool->lock so that
2115 * PENDING and queued state changes happen together while IRQ is
2116 * disabled.
2117 */
2118 set_work_pool_and_clear_pending(work, pool->id);
2119
2120 spin_unlock_irq(&pool->lock);
2121
2122 lock_map_acquire(&pwq->wq->lockdep_map);
2123 lock_map_acquire(&lockdep_map);
2124 /*
2125 * Strictly speaking we should mark the invariant state without holding
2126 * any locks, that is, before these two lock_map_acquire()'s.
2127 *
2128 * However, that would result in:
2129 *
2130 * A(W1)
2131 * WFC(C)
2132 * A(W1)
2133 * C(C)
2134 *
2135 * Which would create W1->C->W1 dependencies, even though there is no
2136 * actual deadlock possible. There are two solutions, using a
2137 * read-recursive acquire on the work(queue) 'locks', but this will then
2138 * hit the lockdep limitation on recursive locks, or simply discard
2139 * these locks.
2140 *
2141 * AFAICT there is no possible deadlock scenario between the
2142 * flush_work() and complete() primitives (except for single-threaded
2143 * workqueues), so hiding them isn't a problem.
2144 */
2145 lockdep_invariant_state(true);
2146 trace_workqueue_execute_start(work);
2147 worker->current_func(work);
2148 /*
2149 * While we must be careful to not use "work" after this, the trace
2150 * point will only record its address.
2151 */
2152 trace_workqueue_execute_end(work);
2153 lock_map_release(&lockdep_map);
2154 lock_map_release(&pwq->wq->lockdep_map);
2155
2156 if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
2157 pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
2158 " last function: %pf\n",
2159 current->comm, preempt_count(), task_pid_nr(current),
2160 worker->current_func);
2161 debug_show_held_locks(current);
2162 dump_stack();
2163 }
2164
2165 /*
2166 * The following prevents a kworker from hogging CPU on !PREEMPT
2167 * kernels, where a requeueing work item waiting for something to
2168 * happen could deadlock with stop_machine as such work item could
2169 * indefinitely requeue itself while all other CPUs are trapped in
2170 * stop_machine. At the same time, report a quiescent RCU state so
2171 * the same condition doesn't freeze RCU.
2172 */
2173 cond_resched_rcu_qs();
2174
2175 spin_lock_irq(&pool->lock);
2176
2177 /* clear cpu intensive status */
2178 if (unlikely(cpu_intensive))
2179 worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
2180
2181 /* we're done with it, release */
2182 hash_del(&worker->hentry);
2183 worker->current_work = NULL;
2184 worker->current_func = NULL;
2185 worker->current_pwq = NULL;
2186 worker->desc_valid = false;
2187 pwq_dec_nr_in_flight(pwq, work_color);
2188 }
2189
2190 /**
2191 * process_scheduled_works - process scheduled works
2192 * @worker: self
2193 *
2194 * Process all scheduled works. Please note that the scheduled list
2195 * may change while processing a work, so this function repeatedly
2196 * fetches a work from the top and executes it.
2197 *
2198 * CONTEXT:
2199 * spin_lock_irq(pool->lock) which may be released and regrabbed
2200 * multiple times.
2201 */
2202 static void process_scheduled_works(struct worker *worker)
2203 {
2204 while (!list_empty(&worker->scheduled)) {
2205 struct work_struct *work = list_first_entry(&worker->scheduled,
2206 struct work_struct, entry);
2207 process_one_work(worker, work);
2208 }
2209 }
2210
2211 /**
2212 * worker_thread - the worker thread function
2213 * @__worker: self
2214 *
2215 * The worker thread function. All workers belong to a worker_pool -
2216 * either a per-cpu one or dynamic unbound one. These workers process all
2217 * work items regardless of their specific target workqueue. The only
2218 * exception is work items which belong to workqueues with a rescuer which
2219 * will be explained in rescuer_thread().
2220 *
2221 * Return: 0
2222 */
2223 static int worker_thread(void *__worker)
2224 {
2225 struct worker *worker = __worker;
2226 struct worker_pool *pool = worker->pool;
2227
2228 /* tell the scheduler that this is a workqueue worker */
2229 worker->task->flags |= PF_WQ_WORKER;
2230 woke_up:
2231 spin_lock_irq(&pool->lock);
2232
2233 /* am I supposed to die? */
2234 if (unlikely(worker->flags & WORKER_DIE)) {
2235 spin_unlock_irq(&pool->lock);
2236 WARN_ON_ONCE(!list_empty(&worker->entry));
2237 worker->task->flags &= ~PF_WQ_WORKER;
2238
2239 set_task_comm(worker->task, "kworker/dying");
2240 ida_simple_remove(&pool->worker_ida, worker->id);
2241 worker_detach_from_pool(worker, pool);
2242 kfree(worker);
2243 return 0;
2244 }
2245
2246 worker_leave_idle(worker);
2247 recheck:
2248 /* no more worker necessary? */
2249 if (!need_more_worker(pool))
2250 goto sleep;
2251
2252 /* do we need to manage? */
2253 if (unlikely(!may_start_working(pool)) && manage_workers(worker))
2254 goto recheck;
2255
2256 /*
2257 * ->scheduled list can only be filled while a worker is
2258 * preparing to process a work or actually processing it.
2259 * Make sure nobody diddled with it while I was sleeping.
2260 */
2261 WARN_ON_ONCE(!list_empty(&worker->scheduled));
2262
2263 /*
2264 * Finish PREP stage. We're guaranteed to have at least one idle
2265 * worker or that someone else has already assumed the manager
2266 * role. This is where @worker starts participating in concurrency
2267 * management if applicable and concurrency management is restored
2268 * after being rebound. See rebind_workers() for details.
2269 */
2270 worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND);
2271
2272 do {
2273 struct work_struct *work =
2274 list_first_entry(&pool->worklist,
2275 struct work_struct, entry);
2276
2277 pool->watchdog_ts = jiffies;
2278
2279 if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
2280 /* optimization path, not strictly necessary */
2281 process_one_work(worker, work);
2282 if (unlikely(!list_empty(&worker->scheduled)))
2283 process_scheduled_works(worker);
2284 } else {
2285 move_linked_works(work, &worker->scheduled, NULL);
2286 process_scheduled_works(worker);
2287 }
2288 } while (keep_working(pool));
2289
2290 worker_set_flags(worker, WORKER_PREP);
2291 sleep:
2292 /*
2293 * pool->lock is held and there's no work to process and no need to
2294 * manage, sleep. Workers are woken up only while holding
2295 * pool->lock or from local cpu, so setting the current state
2296 * before releasing pool->lock is enough to prevent losing any
2297 * event.
2298 */
2299 worker_enter_idle(worker);
2300 __set_current_state(TASK_IDLE);
2301 spin_unlock_irq(&pool->lock);
2302 schedule();
2303 goto woke_up;
2304 }
2305
2306 /**
2307 * rescuer_thread - the rescuer thread function
2308 * @__rescuer: self
2309 *
2310 * Workqueue rescuer thread function. There's one rescuer for each
2311 * workqueue which has WQ_MEM_RECLAIM set.
2312 *
2313 * Regular work processing on a pool may block trying to create a new
2314 * worker which uses GFP_KERNEL allocation which has slight chance of
2315 * developing into deadlock if some works currently on the same queue
2316 * need to be processed to satisfy the GFP_KERNEL allocation. This is
2317 * the problem rescuer solves.
2318 *
2319 * When such condition is possible, the pool summons rescuers of all
2320 * workqueues which have works queued on the pool and let them process
2321 * those works so that forward progress can be guaranteed.
2322 *
2323 * This should happen rarely.
2324 *
2325 * Return: 0
2326 */
2327 static int rescuer_thread(void *__rescuer)
2328 {
2329 struct worker *rescuer = __rescuer;
2330 struct workqueue_struct *wq = rescuer->rescue_wq;
2331 struct list_head *scheduled = &rescuer->scheduled;
2332 bool should_stop;
2333
2334 set_user_nice(current, RESCUER_NICE_LEVEL);
2335
2336 /*
2337 * Mark rescuer as worker too. As WORKER_PREP is never cleared, it
2338 * doesn't participate in concurrency management.
2339 */
2340 rescuer->task->flags |= PF_WQ_WORKER;
2341 repeat:
2342 set_current_state(TASK_IDLE);
2343
2344 /*
2345 * By the time the rescuer is requested to stop, the workqueue
2346 * shouldn't have any work pending, but @wq->maydays may still have
2347 * pwq(s) queued. This can happen by non-rescuer workers consuming
2348 * all the work items before the rescuer got to them. Go through
2349 * @wq->maydays processing before acting on should_stop so that the
2350 * list is always empty on exit.
2351 */
2352 should_stop = kthread_should_stop();
2353
2354 /* see whether any pwq is asking for help */
2355 spin_lock_irq(&wq_mayday_lock);
2356
2357 while (!list_empty(&wq->maydays)) {
2358 struct pool_workqueue *pwq = list_first_entry(&wq->maydays,
2359 struct pool_workqueue, mayday_node);
2360 struct worker_pool *pool = pwq->pool;
2361 struct work_struct *work, *n;
2362 bool first = true;
2363
2364 __set_current_state(TASK_RUNNING);
2365 list_del_init(&pwq->mayday_node);
2366
2367 spin_unlock_irq(&wq_mayday_lock);
2368
2369 worker_attach_to_pool(rescuer, pool);
2370
2371 spin_lock_irq(&pool->lock);
2372 rescuer->pool = pool;
2373
2374 /*
2375 * Slurp in all works issued via this workqueue and
2376 * process'em.
2377 */
2378 WARN_ON_ONCE(!list_empty(scheduled));
2379 list_for_each_entry_safe(work, n, &pool->worklist, entry) {
2380 if (get_work_pwq(work) == pwq) {
2381 if (first)
2382 pool->watchdog_ts = jiffies;
2383 move_linked_works(work, scheduled, &n);
2384 }
2385 first = false;
2386 }
2387
2388 if (!list_empty(scheduled)) {
2389 process_scheduled_works(rescuer);
2390
2391 /*
2392 * The above execution of rescued work items could
2393 * have created more to rescue through
2394 * pwq_activate_first_delayed() or chained
2395 * queueing. Let's put @pwq back on mayday list so
2396 * that such back-to-back work items, which may be
2397 * being used to relieve memory pressure, don't
2398 * incur MAYDAY_INTERVAL delay inbetween.
2399 */
2400 if (need_to_create_worker(pool)) {
2401 spin_lock(&wq_mayday_lock);
2402 get_pwq(pwq);
2403 list_move_tail(&pwq->mayday_node, &wq->maydays);
2404 spin_unlock(&wq_mayday_lock);
2405 }
2406 }
2407
2408 /*
2409 * Put the reference grabbed by send_mayday(). @pool won't
2410 * go away while we're still attached to it.
2411 */
2412 put_pwq(pwq);
2413
2414 /*
2415 * Leave this pool. If need_more_worker() is %true, notify a
2416 * regular worker; otherwise, we end up with 0 concurrency
2417 * and stalling the execution.
2418 */
2419 if (need_more_worker(pool))
2420 wake_up_worker(pool);
2421
2422 rescuer->pool = NULL;
2423 spin_unlock_irq(&pool->lock);
2424
2425 worker_detach_from_pool(rescuer, pool);
2426
2427 spin_lock_irq(&wq_mayday_lock);
2428 }
2429
2430 spin_unlock_irq(&wq_mayday_lock);
2431
2432 if (should_stop) {
2433 __set_current_state(TASK_RUNNING);
2434 rescuer->task->flags &= ~PF_WQ_WORKER;
2435 return 0;
2436 }
2437
2438 /* rescuers should never participate in concurrency management */
2439 WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
2440 schedule();
2441 goto repeat;
2442 }
2443
2444 /**
2445 * check_flush_dependency - check for flush dependency sanity
2446 * @target_wq: workqueue being flushed
2447 * @target_work: work item being flushed (NULL for workqueue flushes)
2448 *
2449 * %current is trying to flush the whole @target_wq or @target_work on it.
2450 * If @target_wq doesn't have %WQ_MEM_RECLAIM, verify that %current is not
2451 * reclaiming memory or running on a workqueue which doesn't have
2452 * %WQ_MEM_RECLAIM as that can break forward-progress guarantee leading to
2453 * a deadlock.
2454 */
2455 static void check_flush_dependency(struct workqueue_struct *target_wq,
2456 struct work_struct *target_work)
2457 {
2458 work_func_t target_func = target_work ? target_work->func : NULL;
2459 struct worker *worker;
2460
2461 if (target_wq->flags & WQ_MEM_RECLAIM)
2462 return;
2463
2464 worker = current_wq_worker();
2465
2466 WARN_ONCE(current->flags & PF_MEMALLOC,
2467 "workqueue: PF_MEMALLOC task %d(%s) is flushing !WQ_MEM_RECLAIM %s:%pf",
2468 current->pid, current->comm, target_wq->name, target_func);
2469 WARN_ONCE(worker && ((worker->current_pwq->wq->flags &
2470 (WQ_MEM_RECLAIM | __WQ_LEGACY)) == WQ_MEM_RECLAIM),
2471 "workqueue: WQ_MEM_RECLAIM %s:%pf is flushing !WQ_MEM_RECLAIM %s:%pf",
2472 worker->current_pwq->wq->name, worker->current_func,
2473 target_wq->name, target_func);
2474 }
2475
2476 struct wq_barrier {
2477 struct work_struct work;
2478 struct completion done;
2479 struct task_struct *task; /* purely informational */
2480 };
2481
2482 static void wq_barrier_func(struct work_struct *work)
2483 {
2484 struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
2485 complete(&barr->done);
2486 }
2487
2488 /**
2489 * insert_wq_barrier - insert a barrier work
2490 * @pwq: pwq to insert barrier into
2491 * @barr: wq_barrier to insert
2492 * @target: target work to attach @barr to
2493 * @worker: worker currently executing @target, NULL if @target is not executing
2494 *
2495 * @barr is linked to @target such that @barr is completed only after
2496 * @target finishes execution. Please note that the ordering
2497 * guarantee is observed only with respect to @target and on the local
2498 * cpu.
2499 *
2500 * Currently, a queued barrier can't be canceled. This is because
2501 * try_to_grab_pending() can't determine whether the work to be
2502 * grabbed is at the head of the queue and thus can't clear LINKED
2503 * flag of the previous work while there must be a valid next work
2504 * after a work with LINKED flag set.
2505 *
2506 * Note that when @worker is non-NULL, @target may be modified
2507 * underneath us, so we can't reliably determine pwq from @target.
2508 *
2509 * CONTEXT:
2510 * spin_lock_irq(pool->lock).
2511 */
2512 static void insert_wq_barrier(struct pool_workqueue *pwq,
2513 struct wq_barrier *barr,
2514 struct work_struct *target, struct worker *worker)
2515 {
2516 struct list_head *head;
2517 unsigned int linked = 0;
2518
2519 /*
2520 * debugobject calls are safe here even with pool->lock locked
2521 * as we know for sure that this will not trigger any of the
2522 * checks and call back into the fixup functions where we
2523 * might deadlock.
2524 */
2525 INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
2526 __set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
2527
2528 init_completion_map(&barr->done, &target->lockdep_map);
2529
2530 barr->task = current;
2531
2532 /*
2533 * If @target is currently being executed, schedule the
2534 * barrier to the worker; otherwise, put it after @target.
2535 */
2536 if (worker)
2537 head = worker->scheduled.next;
2538 else {
2539 unsigned long *bits = work_data_bits(target);
2540
2541 head = target->entry.next;
2542 /* there can already be other linked works, inherit and set */
2543 linked = *bits & WORK_STRUCT_LINKED;
2544 __set_bit(WORK_STRUCT_LINKED_BIT, bits);
2545 }
2546
2547 debug_work_activate(&barr->work);
2548 insert_work(pwq, &barr->work, head,
2549 work_color_to_flags(WORK_NO_COLOR) | linked);
2550 }
2551
2552 /**
2553 * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing
2554 * @wq: workqueue being flushed
2555 * @flush_color: new flush color, < 0 for no-op
2556 * @work_color: new work color, < 0 for no-op
2557 *
2558 * Prepare pwqs for workqueue flushing.
2559 *
2560 * If @flush_color is non-negative, flush_color on all pwqs should be
2561 * -1. If no pwq has in-flight commands at the specified color, all
2562 * pwq->flush_color's stay at -1 and %false is returned. If any pwq
2563 * has in flight commands, its pwq->flush_color is set to
2564 * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq
2565 * wakeup logic is armed and %true is returned.
2566 *
2567 * The caller should have initialized @wq->first_flusher prior to
2568 * calling this function with non-negative @flush_color. If
2569 * @flush_color is negative, no flush color update is done and %false
2570 * is returned.
2571 *
2572 * If @work_color is non-negative, all pwqs should have the same
2573 * work_color which is previous to @work_color and all will be
2574 * advanced to @work_color.
2575 *
2576 * CONTEXT:
2577 * mutex_lock(wq->mutex).
2578 *
2579 * Return:
2580 * %true if @flush_color >= 0 and there's something to flush. %false
2581 * otherwise.
2582 */
2583 static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq,
2584 int flush_color, int work_color)
2585 {
2586 bool wait = false;
2587 struct pool_workqueue *pwq;
2588
2589 if (flush_color >= 0) {
2590 WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush));
2591 atomic_set(&wq->nr_pwqs_to_flush, 1);
2592 }
2593
2594 for_each_pwq(pwq, wq) {
2595 struct worker_pool *pool = pwq->pool;
2596
2597 spin_lock_irq(&pool->lock);
2598
2599 if (flush_color >= 0) {
2600 WARN_ON_ONCE(pwq->flush_color != -1);
2601
2602 if (pwq->nr_in_flight[flush_color]) {
2603 pwq->flush_color = flush_color;
2604 atomic_inc(&wq->nr_pwqs_to_flush);
2605 wait = true;
2606 }
2607 }
2608
2609 if (work_color >= 0) {
2610 WARN_ON_ONCE(work_color != work_next_color(pwq->work_color));
2611 pwq->work_color = work_color;
2612 }
2613
2614 spin_unlock_irq(&pool->lock);
2615 }
2616
2617 if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush))
2618 complete(&wq->first_flusher->done);
2619
2620 return wait;
2621 }
2622
2623 /**
2624 * flush_workqueue - ensure that any scheduled work has run to completion.
2625 * @wq: workqueue to flush
2626 *
2627 * This function sleeps until all work items which were queued on entry
2628 * have finished execution, but it is not livelocked by new incoming ones.
2629 */
2630 void flush_workqueue(struct workqueue_struct *wq)
2631 {
2632 struct wq_flusher this_flusher = {
2633 .list = LIST_HEAD_INIT(this_flusher.list),
2634 .flush_color = -1,
2635 .done = COMPLETION_INITIALIZER_ONSTACK_MAP(this_flusher.done, wq->lockdep_map),
2636 };
2637 int next_color;
2638
2639 if (WARN_ON(!wq_online))
2640 return;
2641
2642 lock_map_acquire(&wq->lockdep_map);
2643 lock_map_release(&wq->lockdep_map);
2644
2645 mutex_lock(&wq->mutex);
2646
2647 /*
2648 * Start-to-wait phase
2649 */
2650 next_color = work_next_color(wq->work_color);
2651
2652 if (next_color != wq->flush_color) {
2653 /*
2654 * Color space is not full. The current work_color
2655 * becomes our flush_color and work_color is advanced
2656 * by one.
2657 */
2658 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow));
2659 this_flusher.flush_color = wq->work_color;
2660 wq->work_color = next_color;
2661
2662 if (!wq->first_flusher) {
2663 /* no flush in progress, become the first flusher */
2664 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2665
2666 wq->first_flusher = &this_flusher;
2667
2668 if (!flush_workqueue_prep_pwqs(wq, wq->flush_color,
2669 wq->work_color)) {
2670 /* nothing to flush, done */
2671 wq->flush_color = next_color;
2672 wq->first_flusher = NULL;
2673 goto out_unlock;
2674 }
2675 } else {
2676 /* wait in queue */
2677 WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color);
2678 list_add_tail(&this_flusher.list, &wq->flusher_queue);
2679 flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2680 }
2681 } else {
2682 /*
2683 * Oops, color space is full, wait on overflow queue.
2684 * The next flush completion will assign us
2685 * flush_color and transfer to flusher_queue.
2686 */
2687 list_add_tail(&this_flusher.list, &wq->flusher_overflow);
2688 }
2689
2690 check_flush_dependency(wq, NULL);
2691
2692 mutex_unlock(&wq->mutex);
2693
2694 wait_for_completion(&this_flusher.done);
2695
2696 /*
2697 * Wake-up-and-cascade phase
2698 *
2699 * First flushers are responsible for cascading flushes and
2700 * handling overflow. Non-first flushers can simply return.
2701 */
2702 if (wq->first_flusher != &this_flusher)
2703 return;
2704
2705 mutex_lock(&wq->mutex);
2706
2707 /* we might have raced, check again with mutex held */
2708 if (wq->first_flusher != &this_flusher)
2709 goto out_unlock;
2710
2711 wq->first_flusher = NULL;
2712
2713 WARN_ON_ONCE(!list_empty(&this_flusher.list));
2714 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2715
2716 while (true) {
2717 struct wq_flusher *next, *tmp;
2718
2719 /* complete all the flushers sharing the current flush color */
2720 list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
2721 if (next->flush_color != wq->flush_color)
2722 break;
2723 list_del_init(&next->list);
2724 complete(&next->done);
2725 }
2726
2727 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) &&
2728 wq->flush_color != work_next_color(wq->work_color));
2729
2730 /* this flush_color is finished, advance by one */
2731 wq->flush_color = work_next_color(wq->flush_color);
2732
2733 /* one color has been freed, handle overflow queue */
2734 if (!list_empty(&wq->flusher_overflow)) {
2735 /*
2736 * Assign the same color to all overflowed
2737 * flushers, advance work_color and append to
2738 * flusher_queue. This is the start-to-wait
2739 * phase for these overflowed flushers.
2740 */
2741 list_for_each_entry(tmp, &wq->flusher_overflow, list)
2742 tmp->flush_color = wq->work_color;
2743
2744 wq->work_color = work_next_color(wq->work_color);
2745
2746 list_splice_tail_init(&wq->flusher_overflow,
2747 &wq->flusher_queue);
2748 flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2749 }
2750
2751 if (list_empty(&wq->flusher_queue)) {
2752 WARN_ON_ONCE(wq->flush_color != wq->work_color);
2753 break;
2754 }
2755
2756 /*
2757 * Need to flush more colors. Make the next flusher
2758 * the new first flusher and arm pwqs.
2759 */
2760 WARN_ON_ONCE(wq->flush_color == wq->work_color);
2761 WARN_ON_ONCE(wq->flush_color != next->flush_color);
2762
2763 list_del_init(&next->list);
2764 wq->first_flusher = next;
2765
2766 if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1))
2767 break;
2768
2769 /*
2770 * Meh... this color is already done, clear first
2771 * flusher and repeat cascading.
2772 */
2773 wq->first_flusher = NULL;
2774 }
2775
2776 out_unlock:
2777 mutex_unlock(&wq->mutex);
2778 }
2779 EXPORT_SYMBOL(flush_workqueue);
2780
2781 /**
2782 * drain_workqueue - drain a workqueue
2783 * @wq: workqueue to drain
2784 *
2785 * Wait until the workqueue becomes empty. While draining is in progress,
2786 * only chain queueing is allowed. IOW, only currently pending or running
2787 * work items on @wq can queue further work items on it. @wq is flushed
2788 * repeatedly until it becomes empty. The number of flushing is determined
2789 * by the depth of chaining and should be relatively short. Whine if it
2790 * takes too long.
2791 */
2792 void drain_workqueue(struct workqueue_struct *wq)
2793 {
2794 unsigned int flush_cnt = 0;
2795 struct pool_workqueue *pwq;
2796
2797 /*
2798 * __queue_work() needs to test whether there are drainers, is much
2799 * hotter than drain_workqueue() and already looks at @wq->flags.
2800 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers.
2801 */
2802 mutex_lock(&wq->mutex);
2803 if (!wq->nr_drainers++)
2804 wq->flags |= __WQ_DRAINING;
2805 mutex_unlock(&wq->mutex);
2806 reflush:
2807 flush_workqueue(wq);
2808
2809 mutex_lock(&wq->mutex);
2810
2811 for_each_pwq(pwq, wq) {
2812 bool drained;
2813
2814 spin_lock_irq(&pwq->pool->lock);
2815 drained = !pwq->nr_active && list_empty(&pwq->delayed_works);
2816 spin_unlock_irq(&pwq->pool->lock);
2817
2818 if (drained)
2819 continue;
2820
2821 if (++flush_cnt == 10 ||
2822 (flush_cnt % 100 == 0 && flush_cnt <= 1000))
2823 pr_warn("workqueue %s: drain_workqueue() isn't complete after %u tries\n",
2824 wq->name, flush_cnt);
2825
2826 mutex_unlock(&wq->mutex);
2827 goto reflush;
2828 }
2829
2830 if (!--wq->nr_drainers)
2831 wq->flags &= ~__WQ_DRAINING;
2832 mutex_unlock(&wq->mutex);
2833 }
2834 EXPORT_SYMBOL_GPL(drain_workqueue);
2835
2836 static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr,
2837 bool from_cancel)
2838 {
2839 struct worker *worker = NULL;
2840 struct worker_pool *pool;
2841 struct pool_workqueue *pwq;
2842
2843 might_sleep();
2844
2845 local_irq_disable();
2846 pool = get_work_pool(work);
2847 if (!pool) {
2848 local_irq_enable();
2849 return false;
2850 }
2851
2852 spin_lock(&pool->lock);
2853 /* see the comment in try_to_grab_pending() with the same code */
2854 pwq = get_work_pwq(work);
2855 if (pwq) {
2856 if (unlikely(pwq->pool != pool))
2857 goto already_gone;
2858 } else {
2859 worker = find_worker_executing_work(pool, work);
2860 if (!worker)
2861 goto already_gone;
2862 pwq = worker->current_pwq;
2863 }
2864
2865 check_flush_dependency(pwq->wq, work);
2866
2867 insert_wq_barrier(pwq, barr, work, worker);
2868 spin_unlock_irq(&pool->lock);
2869
2870 /*
2871 * Force a lock recursion deadlock when using flush_work() inside a
2872 * single-threaded or rescuer equipped workqueue.
2873 *
2874 * For single threaded workqueues the deadlock happens when the work
2875 * is after the work issuing the flush_work(). For rescuer equipped
2876 * workqueues the deadlock happens when the rescuer stalls, blocking
2877 * forward progress.
2878 */
2879 if (!from_cancel &&
2880 (pwq->wq->saved_max_active == 1 || pwq->wq->rescuer)) {
2881 lock_map_acquire(&pwq->wq->lockdep_map);
2882 lock_map_release(&pwq->wq->lockdep_map);
2883 }
2884
2885 return true;
2886 already_gone:
2887 spin_unlock_irq(&pool->lock);
2888 return false;
2889 }
2890
2891 static bool __flush_work(struct work_struct *work, bool from_cancel)
2892 {
2893 struct wq_barrier barr;
2894
2895 if (WARN_ON(!wq_online))
2896 return false;
2897
2898 if (!from_cancel) {
2899 lock_map_acquire(&work->lockdep_map);
2900 lock_map_release(&work->lockdep_map);
2901 }
2902
2903 if (start_flush_work(work, &barr, from_cancel)) {
2904 wait_for_completion(&barr.done);
2905 destroy_work_on_stack(&barr.work);
2906 return true;
2907 } else {
2908 return false;
2909 }
2910 }
2911
2912 /**
2913 * flush_work - wait for a work to finish executing the last queueing instance
2914 * @work: the work to flush
2915 *
2916 * Wait until @work has finished execution. @work is guaranteed to be idle
2917 * on return if it hasn't been requeued since flush started.
2918 *
2919 * Return:
2920 * %true if flush_work() waited for the work to finish execution,
2921 * %false if it was already idle.
2922 */
2923 bool flush_work(struct work_struct *work)
2924 {
2925 return __flush_work(work, false);
2926 }
2927 EXPORT_SYMBOL_GPL(flush_work);
2928
2929 struct cwt_wait {
2930 wait_queue_entry_t wait;
2931 struct work_struct *work;
2932 };
2933
2934 static int cwt_wakefn(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
2935 {
2936 struct cwt_wait *cwait = container_of(wait, struct cwt_wait, wait);
2937
2938 if (cwait->work != key)
2939 return 0;
2940 return autoremove_wake_function(wait, mode, sync, key);
2941 }
2942
2943 static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
2944 {
2945 static DECLARE_WAIT_QUEUE_HEAD(cancel_waitq);
2946 unsigned long flags;
2947 int ret;
2948
2949 do {
2950 ret = try_to_grab_pending(work, is_dwork, &flags);
2951 /*
2952 * If someone else is already canceling, wait for it to
2953 * finish. flush_work() doesn't work for PREEMPT_NONE
2954 * because we may get scheduled between @work's completion
2955 * and the other canceling task resuming and clearing
2956 * CANCELING - flush_work() will return false immediately
2957 * as @work is no longer busy, try_to_grab_pending() will
2958 * return -ENOENT as @work is still being canceled and the
2959 * other canceling task won't be able to clear CANCELING as
2960 * we're hogging the CPU.
2961 *
2962 * Let's wait for completion using a waitqueue. As this
2963 * may lead to the thundering herd problem, use a custom
2964 * wake function which matches @work along with exclusive
2965 * wait and wakeup.
2966 */
2967 if (unlikely(ret == -ENOENT)) {
2968 struct cwt_wait cwait;
2969
2970 init_wait(&cwait.wait);
2971 cwait.wait.func = cwt_wakefn;
2972 cwait.work = work;
2973
2974 prepare_to_wait_exclusive(&cancel_waitq, &cwait.wait,
2975 TASK_UNINTERRUPTIBLE);
2976 if (work_is_canceling(work))
2977 schedule();
2978 finish_wait(&cancel_waitq, &cwait.wait);
2979 }
2980 } while (unlikely(ret < 0));
2981
2982 /* tell other tasks trying to grab @work to back off */
2983 mark_work_canceling(work);
2984 local_irq_restore(flags);
2985
2986 /*
2987 * This allows canceling during early boot. We know that @work
2988 * isn't executing.
2989 */
2990 if (wq_online)
2991 __flush_work(work, true);
2992
2993 clear_work_data(work);
2994
2995 /*
2996 * Paired with prepare_to_wait() above so that either
2997 * waitqueue_active() is visible here or !work_is_canceling() is
2998 * visible there.
2999 */
3000 smp_mb();
3001 if (waitqueue_active(&cancel_waitq))
3002 __wake_up(&cancel_waitq, TASK_NORMAL, 1, work);
3003
3004 return ret;
3005 }
3006
3007 /**
3008 * cancel_work_sync - cancel a work and wait for it to finish
3009 * @work: the work to cancel
3010 *
3011 * Cancel @work and wait for its execution to finish. This function
3012 * can be used even if the work re-queues itself or migrates to
3013 * another workqueue. On return from this function, @work is
3014 * guaranteed to be not pending or executing on any CPU.
3015 *
3016 * cancel_work_sync(&delayed_work->work) must not be used for
3017 * delayed_work's. Use cancel_delayed_work_sync() instead.
3018 *
3019 * The caller must ensure that the workqueue on which @work was last
3020 * queued can't be destroyed before this function returns.
3021 *
3022 * Return:
3023 * %true if @work was pending, %false otherwise.
3024 */
3025 bool cancel_work_sync(struct work_struct *work)
3026 {
3027 return __cancel_work_timer(work, false);
3028 }
3029 EXPORT_SYMBOL_GPL(cancel_work_sync);
3030
3031 /**
3032 * flush_delayed_work - wait for a dwork to finish executing the last queueing
3033 * @dwork: the delayed work to flush
3034 *
3035 * Delayed timer is cancelled and the pending work is queued for
3036 * immediate execution. Like flush_work(), this function only
3037 * considers the last queueing instance of @dwork.
3038 *
3039 * Return:
3040 * %true if flush_work() waited for the work to finish execution,
3041 * %false if it was already idle.
3042 */
3043 bool flush_delayed_work(struct delayed_work *dwork)
3044 {
3045 local_irq_disable();
3046 if (del_timer_sync(&dwork->timer))
3047 __queue_work(dwork->cpu, dwork->wq, &dwork->work);
3048 local_irq_enable();
3049 return flush_work(&dwork->work);
3050 }
3051 EXPORT_SYMBOL(flush_delayed_work);
3052
3053 /**
3054 * flush_rcu_work - wait for a rwork to finish executing the last queueing
3055 * @rwork: the rcu work to flush
3056 *
3057 * Return:
3058 * %true if flush_rcu_work() waited for the work to finish execution,
3059 * %false if it was already idle.
3060 */
3061 bool flush_rcu_work(struct rcu_work *rwork)
3062 {
3063 if (test_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&rwork->work))) {
3064 rcu_barrier();
3065 flush_work(&rwork->work);
3066 return true;
3067 } else {
3068 return flush_work(&rwork->work);
3069 }
3070 }
3071 EXPORT_SYMBOL(flush_rcu_work);
3072
3073 static bool __cancel_work(struct work_struct *work, bool is_dwork)
3074 {
3075 unsigned long flags;
3076 int ret;
3077
3078 do {
3079 ret = try_to_grab_pending(work, is_dwork, &flags);
3080 } while (unlikely(ret == -EAGAIN));
3081
3082 if (unlikely(ret < 0))
3083 return false;
3084
3085 set_work_pool_and_clear_pending(work, get_work_pool_id(work));
3086 local_irq_restore(flags);
3087 return ret;
3088 }
3089
3090 /*
3091 * See cancel_delayed_work()
3092 */
3093 bool cancel_work(struct work_struct *work)
3094 {
3095 return __cancel_work(work, false);
3096 }
3097
3098 /**
3099 * cancel_delayed_work - cancel a delayed work
3100 * @dwork: delayed_work to cancel
3101 *
3102 * Kill off a pending delayed_work.
3103 *
3104 * Return: %true if @dwork was pending and canceled; %false if it wasn't
3105 * pending.
3106 *
3107 * Note:
3108 * The work callback function may still be running on return, unless
3109 * it returns %true and the work doesn't re-arm itself. Explicitly flush or
3110 * use cancel_delayed_work_sync() to wait on it.
3111 *
3112 * This function is safe to call from any context including IRQ handler.
3113 */
3114 bool cancel_delayed_work(struct delayed_work *dwork)
3115 {
3116 return __cancel_work(&dwork->work, true);
3117 }
3118 EXPORT_SYMBOL(cancel_delayed_work);
3119
3120 /**
3121 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
3122 * @dwork: the delayed work cancel
3123 *
3124 * This is cancel_work_sync() for delayed works.
3125 *
3126 * Return:
3127 * %true if @dwork was pending, %false otherwise.
3128 */
3129 bool cancel_delayed_work_sync(struct delayed_work *dwork)
3130 {
3131 return __cancel_work_timer(&dwork->work, true);
3132 }
3133 EXPORT_SYMBOL(cancel_delayed_work_sync);
3134
3135 /**
3136 * schedule_on_each_cpu - execute a function synchronously on each online CPU
3137 * @func: the function to call
3138 *
3139 * schedule_on_each_cpu() executes @func on each online CPU using the
3140 * system workqueue and blocks until all CPUs have completed.
3141 * schedule_on_each_cpu() is very slow.
3142 *
3143 * Return:
3144 * 0 on success, -errno on failure.
3145 */
3146 int schedule_on_each_cpu(work_func_t func)
3147 {
3148 int cpu;
3149 struct work_struct __percpu *works;
3150
3151 works = alloc_percpu(struct work_struct);
3152 if (!works)
3153 return -ENOMEM;
3154
3155 get_online_cpus();
3156
3157 for_each_online_cpu(cpu) {
3158 struct work_struct *work = per_cpu_ptr(works, cpu);
3159
3160 INIT_WORK(work, func);
3161 schedule_work_on(cpu, work);
3162 }
3163
3164 for_each_online_cpu(cpu)
3165 flush_work(per_cpu_ptr(works, cpu));
3166
3167 put_online_cpus();
3168 free_percpu(works);
3169 return 0;
3170 }
3171
3172 /**
3173 * execute_in_process_context - reliably execute the routine with user context
3174 * @fn: the function to execute
3175 * @ew: guaranteed storage for the execute work structure (must
3176 * be available when the work executes)
3177 *
3178 * Executes the function immediately if process context is available,
3179 * otherwise schedules the function for delayed execution.
3180 *
3181 * Return: 0 - function was executed
3182 * 1 - function was scheduled for execution
3183 */
3184 int execute_in_process_context(work_func_t fn, struct execute_work *ew)
3185 {
3186 if (!in_interrupt()) {
3187 fn(&ew->work);
3188 return 0;
3189 }
3190
3191 INIT_WORK(&ew->work, fn);
3192 schedule_work(&ew->work);
3193
3194 return 1;
3195 }
3196 EXPORT_SYMBOL_GPL(execute_in_process_context);
3197
3198 /**
3199 * free_workqueue_attrs - free a workqueue_attrs
3200 * @attrs: workqueue_attrs to free
3201 *
3202 * Undo alloc_workqueue_attrs().
3203 */
3204 void free_workqueue_attrs(struct workqueue_attrs *attrs)
3205 {
3206 if (attrs) {
3207 free_cpumask_var(attrs->cpumask);
3208 kfree(attrs);
3209 }
3210 }
3211
3212 /**
3213 * alloc_workqueue_attrs - allocate a workqueue_attrs
3214 * @gfp_mask: allocation mask to use
3215 *
3216 * Allocate a new workqueue_attrs, initialize with default settings and
3217 * return it.
3218 *
3219 * Return: The allocated new workqueue_attr on success. %NULL on failure.
3220 */
3221 struct workqueue_attrs *alloc_workqueue_attrs(gfp_t gfp_mask)
3222 {
3223 struct workqueue_attrs *attrs;
3224
3225 attrs = kzalloc(sizeof(*attrs), gfp_mask);
3226 if (!attrs)
3227 goto fail;
3228 if (!alloc_cpumask_var(&attrs->cpumask, gfp_mask))
3229 goto fail;
3230
3231 cpumask_copy(attrs->cpumask, cpu_possible_mask);
3232 return attrs;
3233 fail:
3234 free_workqueue_attrs(attrs);
3235 return NULL;
3236 }
3237
3238 static void copy_workqueue_attrs(struct workqueue_attrs *to,
3239 const struct workqueue_attrs *from)
3240 {
3241 to->nice = from->nice;
3242 cpumask_copy(to->cpumask, from->cpumask);
3243 /*
3244 * Unlike hash and equality test, this function doesn't ignore
3245 * ->no_numa as it is used for both pool and wq attrs. Instead,
3246 * get_unbound_pool() explicitly clears ->no_numa after copying.
3247 */
3248 to->no_numa = from->no_numa;
3249 }
3250
3251 /* hash value of the content of @attr */
3252 static u32 wqattrs_hash(const struct workqueue_attrs *attrs)
3253 {
3254 u32 hash = 0;
3255
3256 hash = jhash_1word(attrs->nice, hash);
3257 hash = jhash(cpumask_bits(attrs->cpumask),
3258 BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash);
3259 return hash;
3260 }
3261
3262 /* content equality test */
3263 static bool wqattrs_equal(const struct workqueue_attrs *a,
3264 const struct workqueue_attrs *b)
3265 {
3266 if (a->nice != b->nice)
3267 return false;
3268 if (!cpumask_equal(a->cpumask, b->cpumask))
3269 return false;
3270 return true;
3271 }
3272
3273 /**
3274 * init_worker_pool - initialize a newly zalloc'd worker_pool
3275 * @pool: worker_pool to initialize
3276 *
3277 * Initialize a newly zalloc'd @pool. It also allocates @pool->attrs.
3278 *
3279 * Return: 0 on success, -errno on failure. Even on failure, all fields
3280 * inside @pool proper are initialized and put_unbound_pool() can be called
3281 * on @pool safely to release it.
3282 */
3283 static int init_worker_pool(struct worker_pool *pool)
3284 {
3285 spin_lock_init(&pool->lock);
3286 pool->id = -1;
3287 pool->cpu = -1;
3288 pool->node = NUMA_NO_NODE;
3289 pool->flags |= POOL_DISASSOCIATED;
3290 pool->watchdog_ts = jiffies;
3291 INIT_LIST_HEAD(&pool->worklist);
3292 INIT_LIST_HEAD(&pool->idle_list);
3293 hash_init(pool->busy_hash);
3294
3295 timer_setup(&pool->idle_timer, idle_worker_timeout, TIMER_DEFERRABLE);
3296
3297 timer_setup(&pool->mayday_timer, pool_mayday_timeout, 0);
3298
3299 mutex_init(&pool->attach_mutex);
3300 INIT_LIST_HEAD(&pool->workers);
3301
3302 ida_init(&pool->worker_ida);
3303 INIT_HLIST_NODE(&pool->hash_node);
3304 pool->refcnt = 1;
3305
3306 /* shouldn't fail above this point */
3307 pool->attrs = alloc_workqueue_attrs(GFP_KERNEL);
3308 if (!pool->attrs)
3309 return -ENOMEM;
3310 return 0;
3311 }
3312
3313 static void rcu_free_wq(struct rcu_head *rcu)
3314 {
3315 struct workqueue_struct *wq =
3316 container_of(rcu, struct workqueue_struct, rcu);
3317
3318 if (!(wq->flags & WQ_UNBOUND))
3319 free_percpu(wq->cpu_pwqs);
3320 else
3321 free_workqueue_attrs(wq->unbound_attrs);
3322
3323 kfree(wq->rescuer);
3324 kfree(wq);
3325 }
3326
3327 static void rcu_free_pool(struct rcu_head *rcu)
3328 {
3329 struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu);
3330
3331 ida_destroy(&pool->worker_ida);
3332 free_workqueue_attrs(pool->attrs);
3333 kfree(pool);
3334 }
3335
3336 /**
3337 * put_unbound_pool - put a worker_pool
3338 * @pool: worker_pool to put
3339 *
3340 * Put @pool. If its refcnt reaches zero, it gets destroyed in sched-RCU
3341 * safe manner. get_unbound_pool() calls this function on its failure path
3342 * and this function should be able to release pools which went through,
3343 * successfully or not, init_worker_pool().
3344 *
3345 * Should be called with wq_pool_mutex held.
3346 */
3347 static void put_unbound_pool(struct worker_pool *pool)
3348 {
3349 DECLARE_COMPLETION_ONSTACK(detach_completion);
3350 struct worker *worker;
3351
3352 lockdep_assert_held(&wq_pool_mutex);
3353
3354 if (--pool->refcnt)
3355 return;
3356
3357 /* sanity checks */
3358 if (WARN_ON(!(pool->cpu < 0)) ||
3359 WARN_ON(!list_empty(&pool->worklist)))
3360 return;
3361
3362 /* release id and unhash */
3363 if (pool->id >= 0)
3364 idr_remove(&worker_pool_idr, pool->id);
3365 hash_del(&pool->hash_node);
3366
3367 /*
3368 * Become the manager and destroy all workers. This prevents
3369 * @pool's workers from blocking on attach_mutex. We're the last
3370 * manager and @pool gets freed with the flag set.
3371 */
3372 spin_lock_irq(&pool->lock);
3373 wait_event_lock_irq(wq_manager_wait,
3374 !(pool->flags & POOL_MANAGER_ACTIVE), pool->lock);
3375 pool->flags |= POOL_MANAGER_ACTIVE;
3376
3377 while ((worker = first_idle_worker(pool)))
3378 destroy_worker(worker);
3379 WARN_ON(pool->nr_workers || pool->nr_idle);
3380 spin_unlock_irq(&pool->lock);
3381
3382 mutex_lock(&pool->attach_mutex);
3383 if (!list_empty(&pool->workers))
3384 pool->detach_completion = &detach_completion;
3385 mutex_unlock(&pool->attach_mutex);
3386
3387 if (pool->detach_completion)
3388 wait_for_completion(pool->detach_completion);
3389
3390 /* shut down the timers */
3391 del_timer_sync(&pool->idle_timer);
3392 del_timer_sync(&pool->mayday_timer);
3393
3394 /* sched-RCU protected to allow dereferences from get_work_pool() */
3395 call_rcu_sched(&pool->rcu, rcu_free_pool);
3396 }
3397
3398 /**
3399 * get_unbound_pool - get a worker_pool with the specified attributes
3400 * @attrs: the attributes of the worker_pool to get
3401 *
3402 * Obtain a worker_pool which has the same attributes as @attrs, bump the
3403 * reference count and return it. If there already is a matching
3404 * worker_pool, it will be used; otherwise, this function attempts to
3405 * create a new one.
3406 *
3407 * Should be called with wq_pool_mutex held.
3408 *
3409 * Return: On success, a worker_pool with the same attributes as @attrs.
3410 * On failure, %NULL.
3411 */
3412 static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs)
3413 {
3414 u32 hash = wqattrs_hash(attrs);
3415 struct worker_pool *pool;
3416 int node;
3417 int target_node = NUMA_NO_NODE;
3418
3419 lockdep_assert_held(&wq_pool_mutex);
3420
3421 /* do we already have a matching pool? */
3422 hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) {
3423 if (wqattrs_equal(pool->attrs, attrs)) {
3424 pool->refcnt++;
3425 return pool;
3426 }
3427 }
3428
3429 /* if cpumask is contained inside a NUMA node, we belong to that node */
3430 if (wq_numa_enabled) {
3431 for_each_node(node) {
3432 if (cpumask_subset(attrs->cpumask,
3433 wq_numa_possible_cpumask[node])) {
3434 target_node = node;
3435 break;
3436 }
3437 }
3438 }
3439
3440 /* nope, create a new one */
3441 pool = kzalloc_node(sizeof(*pool), GFP_KERNEL, target_node);
3442 if (!pool || init_worker_pool(pool) < 0)
3443 goto fail;
3444
3445 lockdep_set_subclass(&pool->lock, 1); /* see put_pwq() */
3446 copy_workqueue_attrs(pool->attrs, attrs);
3447 pool->node = target_node;
3448
3449 /*
3450 * no_numa isn't a worker_pool attribute, always clear it. See
3451 * 'struct workqueue_attrs' comments for detail.
3452 */
3453 pool->attrs->no_numa = false;
3454
3455 if (worker_pool_assign_id(pool) < 0)
3456 goto fail;
3457
3458 /* create and start the initial worker */
3459 if (wq_online && !create_worker(pool))
3460 goto fail;
3461
3462 /* install */
3463 hash_add(unbound_pool_hash, &pool->hash_node, hash);
3464
3465 return pool;
3466 fail:
3467 if (pool)
3468 put_unbound_pool(pool);
3469 return NULL;
3470 }
3471
3472 static void rcu_free_pwq(struct rcu_head *rcu)
3473 {
3474 kmem_cache_free(pwq_cache,
3475 container_of(rcu, struct pool_workqueue, rcu));
3476 }
3477
3478 /*
3479 * Scheduled on system_wq by put_pwq() when an unbound pwq hits zero refcnt
3480 * and needs to be destroyed.
3481 */
3482 static void pwq_unbound_release_workfn(struct work_struct *work)
3483 {
3484 struct pool_workqueue *pwq = container_of(work, struct pool_workqueue,
3485 unbound_release_work);
3486 struct workqueue_struct *wq = pwq->wq;
3487 struct worker_pool *pool = pwq->pool;
3488 bool is_last;
3489
3490 if (WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND)))
3491 return;
3492
3493 mutex_lock(&wq->mutex);
3494 list_del_rcu(&pwq->pwqs_node);
3495 is_last = list_empty(&wq->pwqs);
3496 mutex_unlock(&wq->mutex);
3497
3498 mutex_lock(&wq_pool_mutex);
3499 put_unbound_pool(pool);
3500 mutex_unlock(&wq_pool_mutex);
3501
3502 call_rcu_sched(&pwq->rcu, rcu_free_pwq);
3503
3504 /*
3505 * If we're the last pwq going away, @wq is already dead and no one
3506 * is gonna access it anymore. Schedule RCU free.
3507 */
3508 if (is_last)
3509 call_rcu_sched(&wq->rcu, rcu_free_wq);
3510 }
3511
3512 /**
3513 * pwq_adjust_max_active - update a pwq's max_active to the current setting
3514 * @pwq: target pool_workqueue
3515 *
3516 * If @pwq isn't freezing, set @pwq->max_active to the associated
3517 * workqueue's saved_max_active and activate delayed work items
3518 * accordingly. If @pwq is freezing, clear @pwq->max_active to zero.
3519 */
3520 static void pwq_adjust_max_active(struct pool_workqueue *pwq)
3521 {
3522 struct workqueue_struct *wq = pwq->wq;
3523 bool freezable = wq->flags & WQ_FREEZABLE;
3524 unsigned long flags;
3525
3526 /* for @wq->saved_max_active */
3527 lockdep_assert_held(&wq->mutex);
3528
3529 /* fast exit for non-freezable wqs */
3530 if (!freezable && pwq->max_active == wq->saved_max_active)
3531 return;
3532
3533 /* this function can be called during early boot w/ irq disabled */
3534 spin_lock_irqsave(&pwq->pool->lock, flags);
3535
3536 /*
3537 * During [un]freezing, the caller is responsible for ensuring that
3538 * this function is called at least once after @workqueue_freezing
3539 * is updated and visible.
3540 */
3541 if (!freezable || !workqueue_freezing) {
3542 pwq->max_active = wq->saved_max_active;
3543
3544 while (!list_empty(&pwq->delayed_works) &&
3545 pwq->nr_active < pwq->max_active)
3546 pwq_activate_first_delayed(pwq);
3547
3548 /*
3549 * Need to kick a worker after thawed or an unbound wq's
3550 * max_active is bumped. It's a slow path. Do it always.
3551 */
3552 wake_up_worker(pwq->pool);
3553 } else {
3554 pwq->max_active = 0;
3555 }
3556
3557 spin_unlock_irqrestore(&pwq->pool->lock, flags);
3558 }
3559
3560 /* initialize newly alloced @pwq which is associated with @wq and @pool */
3561 static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq,
3562 struct worker_pool *pool)
3563 {
3564 BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK);
3565
3566 memset(pwq, 0, sizeof(*pwq));
3567
3568 pwq->pool = pool;
3569 pwq->wq = wq;
3570 pwq->flush_color = -1;
3571 pwq->refcnt = 1;
3572 INIT_LIST_HEAD(&pwq->delayed_works);
3573 INIT_LIST_HEAD(&pwq->pwqs_node);
3574 INIT_LIST_HEAD(&pwq->mayday_node);
3575 INIT_WORK(&pwq->unbound_release_work, pwq_unbound_release_workfn);
3576 }
3577
3578 /* sync @pwq with the current state of its associated wq and link it */
3579 static void link_pwq(struct pool_workqueue *pwq)
3580 {
3581 struct workqueue_struct *wq = pwq->wq;
3582
3583 lockdep_assert_held(&wq->mutex);
3584
3585 /* may be called multiple times, ignore if already linked */
3586 if (!list_empty(&pwq->pwqs_node))
3587 return;
3588
3589 /* set the matching work_color */
3590 pwq->work_color = wq->work_color;
3591
3592 /* sync max_active to the current setting */
3593 pwq_adjust_max_active(pwq);
3594
3595 /* link in @pwq */
3596 list_add_rcu(&pwq->pwqs_node, &wq->pwqs);
3597 }
3598
3599 /* obtain a pool matching @attr and create a pwq associating the pool and @wq */
3600 static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq,
3601 const struct workqueue_attrs *attrs)
3602 {
3603 struct worker_pool *pool;
3604 struct pool_workqueue *pwq;
3605
3606 lockdep_assert_held(&wq_pool_mutex);
3607
3608 pool = get_unbound_pool(attrs);
3609 if (!pool)
3610 return NULL;
3611
3612 pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node);
3613 if (!pwq) {
3614 put_unbound_pool(pool);
3615 return NULL;
3616 }
3617
3618 init_pwq(pwq, wq, pool);
3619 return pwq;
3620 }
3621
3622 /**
3623 * wq_calc_node_cpumask - calculate a wq_attrs' cpumask for the specified node
3624 * @attrs: the wq_attrs of the default pwq of the target workqueue
3625 * @node: the target NUMA node
3626 * @cpu_going_down: if >= 0, the CPU to consider as offline
3627 * @cpumask: outarg, the resulting cpumask
3628 *
3629 * Calculate the cpumask a workqueue with @attrs should use on @node. If
3630 * @cpu_going_down is >= 0, that cpu is considered offline during
3631 * calculation. The result is stored in @cpumask.
3632 *
3633 * If NUMA affinity is not enabled, @attrs->cpumask is always used. If
3634 * enabled and @node has online CPUs requested by @attrs, the returned
3635 * cpumask is the intersection of the possible CPUs of @node and
3636 * @attrs->cpumask.
3637 *
3638 * The caller is responsible for ensuring that the cpumask of @node stays
3639 * stable.
3640 *
3641 * Return: %true if the resulting @cpumask is different from @attrs->cpumask,
3642 * %false if equal.
3643 */
3644 static bool wq_calc_node_cpumask(const struct workqueue_attrs *attrs, int node,
3645 int cpu_going_down, cpumask_t *cpumask)
3646 {
3647 if (!wq_numa_enabled || attrs->no_numa)
3648 goto use_dfl;
3649
3650 /* does @node have any online CPUs @attrs wants? */
3651 cpumask_and(cpumask, cpumask_of_node(node), attrs->cpumask);
3652 if (cpu_going_down >= 0)
3653 cpumask_clear_cpu(cpu_going_down, cpumask);
3654
3655 if (cpumask_empty(cpumask))
3656 goto use_dfl;
3657
3658 /* yeap, return possible CPUs in @node that @attrs wants */
3659 cpumask_and(cpumask, attrs->cpumask, wq_numa_possible_cpumask[node]);
3660
3661 if (cpumask_empty(cpumask)) {
3662 pr_warn_once("WARNING: workqueue cpumask: online intersect > "
3663 "possible intersect\n");
3664 return false;
3665 }
3666
3667 return !cpumask_equal(cpumask, attrs->cpumask);
3668
3669 use_dfl:
3670 cpumask_copy(cpumask, attrs->cpumask);
3671 return false;
3672 }
3673
3674 /* install @pwq into @wq's numa_pwq_tbl[] for @node and return the old pwq */
3675 static struct pool_workqueue *numa_pwq_tbl_install(struct workqueue_struct *wq,
3676 int node,
3677 struct pool_workqueue *pwq)
3678 {
3679 struct pool_workqueue *old_pwq;
3680
3681 lockdep_assert_held(&wq_pool_mutex);
3682 lockdep_assert_held(&wq->mutex);
3683
3684 /* link_pwq() can handle duplicate calls */
3685 link_pwq(pwq);
3686
3687 old_pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
3688 rcu_assign_pointer(wq->numa_pwq_tbl[node], pwq);
3689 return old_pwq;
3690 }
3691
3692 /* context to store the prepared attrs & pwqs before applying */
3693 struct apply_wqattrs_ctx {
3694 struct workqueue_struct *wq; /* target workqueue */
3695 struct workqueue_attrs *attrs; /* attrs to apply */
3696 struct list_head list; /* queued for batching commit */
3697 struct pool_workqueue *dfl_pwq;
3698 struct pool_workqueue *pwq_tbl[];
3699 };
3700
3701 /* free the resources after success or abort */
3702 static void apply_wqattrs_cleanup(struct apply_wqattrs_ctx *ctx)
3703 {
3704 if (ctx) {
3705 int node;
3706
3707 for_each_node(node)
3708 put_pwq_unlocked(ctx->pwq_tbl[node]);
3709 put_pwq_unlocked(ctx->dfl_pwq);
3710
3711 free_workqueue_attrs(ctx->attrs);
3712
3713 kfree(ctx);
3714 }
3715 }
3716
3717 /* allocate the attrs and pwqs for later installation */
3718 static struct apply_wqattrs_ctx *
3719 apply_wqattrs_prepare(struct workqueue_struct *wq,
3720 const struct workqueue_attrs *attrs)
3721 {
3722 struct apply_wqattrs_ctx *ctx;
3723 struct workqueue_attrs *new_attrs, *tmp_attrs;
3724 int node;
3725
3726 lockdep_assert_held(&wq_pool_mutex);
3727
3728 ctx = kzalloc(sizeof(*ctx) + nr_node_ids * sizeof(ctx->pwq_tbl[0]),
3729 GFP_KERNEL);
3730
3731 new_attrs = alloc_workqueue_attrs(GFP_KERNEL);
3732 tmp_attrs = alloc_workqueue_attrs(GFP_KERNEL);
3733 if (!ctx || !new_attrs || !tmp_attrs)
3734 goto out_free;
3735
3736 /*
3737 * Calculate the attrs of the default pwq.
3738 * If the user configured cpumask doesn't overlap with the
3739 * wq_unbound_cpumask, we fallback to the wq_unbound_cpumask.
3740 */
3741 copy_workqueue_attrs(new_attrs, attrs);
3742 cpumask_and(new_attrs->cpumask, new_attrs->cpumask, wq_unbound_cpumask);
3743 if (unlikely(cpumask_empty(new_attrs->cpumask)))
3744 cpumask_copy(new_attrs->cpumask, wq_unbound_cpumask);
3745
3746 /*
3747 * We may create multiple pwqs with differing cpumasks. Make a
3748 * copy of @new_attrs which will be modified and used to obtain
3749 * pools.
3750 */
3751 copy_workqueue_attrs(tmp_attrs, new_attrs);
3752
3753 /*
3754 * If something goes wrong during CPU up/down, we'll fall back to
3755 * the default pwq covering whole @attrs->cpumask. Always create
3756 * it even if we don't use it immediately.
3757 */
3758 ctx->dfl_pwq = alloc_unbound_pwq(wq, new_attrs);
3759 if (!ctx->dfl_pwq)
3760 goto out_free;
3761
3762 for_each_node(node) {
3763 if (wq_calc_node_cpumask(new_attrs, node, -1, tmp_attrs->cpumask)) {
3764 ctx->pwq_tbl[node] = alloc_unbound_pwq(wq, tmp_attrs);
3765 if (!ctx->pwq_tbl[node])
3766 goto out_free;
3767 } else {
3768 ctx->dfl_pwq->refcnt++;
3769 ctx->pwq_tbl[node] = ctx->dfl_pwq;
3770 }
3771 }
3772
3773 /* save the user configured attrs and sanitize it. */
3774 copy_workqueue_attrs(new_attrs, attrs);
3775 cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask);
3776 ctx->attrs = new_attrs;
3777
3778 ctx->wq = wq;
3779 free_workqueue_attrs(tmp_attrs);
3780 return ctx;
3781
3782 out_free:
3783 free_workqueue_attrs(tmp_attrs);
3784 free_workqueue_attrs(new_attrs);
3785 apply_wqattrs_cleanup(ctx);
3786 return NULL;
3787 }
3788
3789 /* set attrs and install prepared pwqs, @ctx points to old pwqs on return */
3790 static void apply_wqattrs_commit(struct apply_wqattrs_ctx *ctx)
3791 {
3792 int node;
3793
3794 /* all pwqs have been created successfully, let's install'em */
3795 mutex_lock(&ctx->wq->mutex);
3796
3797 copy_workqueue_attrs(ctx->wq->unbound_attrs, ctx->attrs);
3798
3799 /* save the previous pwq and install the new one */
3800 for_each_node(node)
3801 ctx->pwq_tbl[node] = numa_pwq_tbl_install(ctx->wq, node,
3802 ctx->pwq_tbl[node]);
3803
3804 /* @dfl_pwq might not have been used, ensure it's linked */
3805 link_pwq(ctx->dfl_pwq);
3806 swap(ctx->wq->dfl_pwq, ctx->dfl_pwq);
3807
3808 mutex_unlock(&ctx->wq->mutex);
3809 }
3810
3811 static void apply_wqattrs_lock(void)
3812 {
3813 /* CPUs should stay stable across pwq creations and installations */
3814 get_online_cpus();
3815 mutex_lock(&wq_pool_mutex);
3816 }
3817
3818 static void apply_wqattrs_unlock(void)
3819 {
3820 mutex_unlock(&wq_pool_mutex);
3821 put_online_cpus();
3822 }
3823
3824 static int apply_workqueue_attrs_locked(struct workqueue_struct *wq,
3825 const struct workqueue_attrs *attrs)
3826 {
3827 struct apply_wqattrs_ctx *ctx;
3828
3829 /* only unbound workqueues can change attributes */
3830 if (WARN_ON(!(wq->flags & WQ_UNBOUND)))
3831 return -EINVAL;
3832
3833 /* creating multiple pwqs breaks ordering guarantee */
3834 if (!list_empty(&wq->pwqs)) {
3835 if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
3836 return -EINVAL;
3837
3838 wq->flags &= ~__WQ_ORDERED;
3839 }
3840
3841 ctx = apply_wqattrs_prepare(wq, attrs);
3842 if (!ctx)
3843 return -ENOMEM;
3844
3845 /* the ctx has been prepared successfully, let's commit it */
3846 apply_wqattrs_commit(ctx);
3847 apply_wqattrs_cleanup(ctx);
3848
3849 return 0;
3850 }
3851
3852 /**
3853 * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue
3854 * @wq: the target workqueue
3855 * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs()
3856 *
3857 * Apply @attrs to an unbound workqueue @wq. Unless disabled, on NUMA
3858 * machines, this function maps a separate pwq to each NUMA node with
3859 * possibles CPUs in @attrs->cpumask so that work items are affine to the
3860 * NUMA node it was issued on. Older pwqs are released as in-flight work
3861 * items finish. Note that a work item which repeatedly requeues itself
3862 * back-to-back will stay on its current pwq.
3863 *
3864 * Performs GFP_KERNEL allocations.
3865 *
3866 * Return: 0 on success and -errno on failure.
3867 */
3868 int apply_workqueue_attrs(struct workqueue_struct *wq,
3869 const struct workqueue_attrs *attrs)
3870 {
3871 int ret;
3872
3873 apply_wqattrs_lock();
3874 ret = apply_workqueue_attrs_locked(wq, attrs);
3875 apply_wqattrs_unlock();
3876
3877 return ret;
3878 }
3879
3880 /**
3881 * wq_update_unbound_numa - update NUMA affinity of a wq for CPU hot[un]plug
3882 * @wq: the target workqueue
3883 * @cpu: the CPU coming up or going down
3884 * @online: whether @cpu is coming up or going down
3885 *
3886 * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and
3887 * %CPU_DOWN_FAILED. @cpu is being hot[un]plugged, update NUMA affinity of
3888 * @wq accordingly.
3889 *
3890 * If NUMA affinity can't be adjusted due to memory allocation failure, it
3891 * falls back to @wq->dfl_pwq which may not be optimal but is always
3892 * correct.
3893 *
3894 * Note that when the last allowed CPU of a NUMA node goes offline for a
3895 * workqueue with a cpumask spanning multiple nodes, the workers which were
3896 * already executing the work items for the workqueue will lose their CPU
3897 * affinity and may execute on any CPU. This is similar to how per-cpu
3898 * workqueues behave on CPU_DOWN. If a workqueue user wants strict
3899 * affinity, it's the user's responsibility to flush the work item from
3900 * CPU_DOWN_PREPARE.
3901 */
3902 static void wq_update_unbound_numa(struct workqueue_struct *wq, int cpu,
3903 bool online)
3904 {
3905 int node = cpu_to_node(cpu);
3906 int cpu_off = online ? -1 : cpu;
3907 struct pool_workqueue *old_pwq = NULL, *pwq;
3908 struct workqueue_attrs *target_attrs;
3909 cpumask_t *cpumask;
3910
3911 lockdep_assert_held(&wq_pool_mutex);
3912
3913 if (!wq_numa_enabled || !(wq->flags & WQ_UNBOUND) ||
3914 wq->unbound_attrs->no_numa)
3915 return;
3916
3917 /*
3918 * We don't wanna alloc/free wq_attrs for each wq for each CPU.
3919 * Let's use a preallocated one. The following buf is protected by
3920 * CPU hotplug exclusion.
3921 */
3922 target_attrs = wq_update_unbound_numa_attrs_buf;
3923 cpumask = target_attrs->cpumask;
3924
3925 copy_workqueue_attrs(target_attrs, wq->unbound_attrs);
3926 pwq = unbound_pwq_by_node(wq, node);
3927
3928 /*
3929 * Let's determine what needs to be done. If the target cpumask is
3930 * different from the default pwq's, we need to compare it to @pwq's
3931 * and create a new one if they don't match. If the target cpumask
3932 * equals the default pwq's, the default pwq should be used.
3933 */
3934 if (wq_calc_node_cpumask(wq->dfl_pwq->pool->attrs, node, cpu_off, cpumask)) {
3935 if (cpumask_equal(cpumask, pwq->pool->attrs->cpumask))
3936 return;
3937 } else {
3938 goto use_dfl_pwq;
3939 }
3940
3941 /* create a new pwq */
3942 pwq = alloc_unbound_pwq(wq, target_attrs);
3943 if (!pwq) {
3944 pr_warn("workqueue: allocation failed while updating NUMA affinity of \"%s\"\n",
3945 wq->name);
3946 goto use_dfl_pwq;
3947 }
3948
3949 /* Install the new pwq. */
3950 mutex_lock(&wq->mutex);
3951 old_pwq = numa_pwq_tbl_install(wq, node, pwq);
3952 goto out_unlock;
3953
3954 use_dfl_pwq:
3955 mutex_lock(&wq->mutex);
3956 spin_lock_irq(&wq->dfl_pwq->pool->lock);
3957 get_pwq(wq->dfl_pwq);
3958 spin_unlock_irq(&wq->dfl_pwq->pool->lock);
3959 old_pwq = numa_pwq_tbl_install(wq, node, wq->dfl_pwq);
3960 out_unlock:
3961 mutex_unlock(&wq->mutex);
3962 put_pwq_unlocked(old_pwq);
3963 }
3964
3965 static int alloc_and_link_pwqs(struct workqueue_struct *wq)
3966 {
3967 bool highpri = wq->flags & WQ_HIGHPRI;
3968 int cpu, ret;
3969
3970 if (!(wq->flags & WQ_UNBOUND)) {
3971 wq->cpu_pwqs = alloc_percpu(struct pool_workqueue);
3972 if (!wq->cpu_pwqs)
3973 return -ENOMEM;
3974
3975 for_each_possible_cpu(cpu) {
3976 struct pool_workqueue *pwq =
3977 per_cpu_ptr(wq->cpu_pwqs, cpu);
3978 struct worker_pool *cpu_pools =
3979 per_cpu(cpu_worker_pools, cpu);
3980
3981 init_pwq(pwq, wq, &cpu_pools[highpri]);
3982
3983 mutex_lock(&wq->mutex);
3984 link_pwq(pwq);
3985 mutex_unlock(&wq->mutex);
3986 }
3987 return 0;
3988 } else if (wq->flags & __WQ_ORDERED) {
3989 ret = apply_workqueue_attrs(wq, ordered_wq_attrs[highpri]);
3990 /* there should only be single pwq for ordering guarantee */
3991 WARN(!ret && (wq->pwqs.next != &wq->dfl_pwq->pwqs_node ||
3992 wq->pwqs.prev != &wq->dfl_pwq->pwqs_node),
3993 "ordering guarantee broken for workqueue %s\n", wq->name);
3994 return ret;
3995 } else {
3996 return apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]);
3997 }
3998 }
3999
4000 static int wq_clamp_max_active(int max_active, unsigned int flags,
4001 const char *name)
4002 {
4003 int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;
4004
4005 if (max_active < 1 || max_active > lim)
4006 pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
4007 max_active, name, 1, lim);
4008
4009 return clamp_val(max_active, 1, lim);
4010 }
4011
4012 struct workqueue_struct *__alloc_workqueue_key(const char *fmt,
4013 unsigned int flags,
4014 int max_active,
4015 struct lock_class_key *key,
4016 const char *lock_name, ...)
4017 {
4018 size_t tbl_size = 0;
4019 va_list args;
4020 struct workqueue_struct *wq;
4021 struct pool_workqueue *pwq;
4022
4023 /*
4024 * Unbound && max_active == 1 used to imply ordered, which is no
4025 * longer the case on NUMA machines due to per-node pools. While
4026 * alloc_ordered_workqueue() is the right way to create an ordered
4027 * workqueue, keep the previous behavior to avoid subtle breakages
4028 * on NUMA.
4029 */
4030 if ((flags & WQ_UNBOUND) && max_active == 1)
4031 flags |= __WQ_ORDERED;
4032
4033 /* see the comment above the definition of WQ_POWER_EFFICIENT */
4034 if ((flags & WQ_POWER_EFFICIENT) && wq_power_efficient)
4035 flags |= WQ_UNBOUND;
4036
4037 /* allocate wq and format name */
4038 if (flags & WQ_UNBOUND)
4039 tbl_size = nr_node_ids * sizeof(wq->numa_pwq_tbl[0]);
4040
4041 wq = kzalloc(sizeof(*wq) + tbl_size, GFP_KERNEL);
4042 if (!wq)
4043 return NULL;
4044
4045 if (flags & WQ_UNBOUND) {
4046 wq->unbound_attrs = alloc_workqueue_attrs(GFP_KERNEL);
4047 if (!wq->unbound_attrs)
4048 goto err_free_wq;
4049 }
4050
4051 va_start(args, lock_name);
4052 vsnprintf(wq->name, sizeof(wq->name), fmt, args);
4053 va_end(args);
4054
4055 max_active = max_active ?: WQ_DFL_ACTIVE;
4056 max_active = wq_clamp_max_active(max_active, flags, wq->name);
4057
4058 /* init wq */
4059 wq->flags = flags;
4060 wq->saved_max_active = max_active;
4061 mutex_init(&wq->mutex);
4062 atomic_set(&wq->nr_pwqs_to_flush, 0);
4063 INIT_LIST_HEAD(&wq->pwqs);
4064 INIT_LIST_HEAD(&wq->flusher_queue);
4065 INIT_LIST_HEAD(&wq->flusher_overflow);
4066 INIT_LIST_HEAD(&wq->maydays);
4067
4068 lockdep_init_map(&wq->lockdep_map, lock_name, key, 0);
4069 INIT_LIST_HEAD(&wq->list);
4070
4071 if (alloc_and_link_pwqs(wq) < 0)
4072 goto err_free_wq;
4073
4074 /*
4075 * Workqueues which may be used during memory reclaim should
4076 * have a rescuer to guarantee forward progress.
4077 */
4078 if (flags & WQ_MEM_RECLAIM) {
4079 struct worker *rescuer;
4080
4081 rescuer = alloc_worker(NUMA_NO_NODE);
4082 if (!rescuer)
4083 goto err_destroy;
4084
4085 rescuer->rescue_wq = wq;
4086 rescuer->task = kthread_create(rescuer_thread, rescuer, "%s",
4087 wq->name);
4088 if (IS_ERR(rescuer->task)) {
4089 kfree(rescuer);
4090 goto err_destroy;
4091 }
4092
4093 wq->rescuer = rescuer;
4094 kthread_bind_mask(rescuer->task, cpu_possible_mask);
4095 wake_up_process(rescuer->task);
4096 }
4097
4098 if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq))
4099 goto err_destroy;
4100
4101 /*
4102 * wq_pool_mutex protects global freeze state and workqueues list.
4103 * Grab it, adjust max_active and add the new @wq to workqueues
4104 * list.
4105 */
4106 mutex_lock(&wq_pool_mutex);
4107
4108 mutex_lock(&wq->mutex);
4109 for_each_pwq(pwq, wq)
4110 pwq_adjust_max_active(pwq);
4111 mutex_unlock(&wq->mutex);
4112
4113 list_add_tail_rcu(&wq->list, &workqueues);
4114
4115 mutex_unlock(&wq_pool_mutex);
4116
4117 return wq;
4118
4119 err_free_wq:
4120 free_workqueue_attrs(wq->unbound_attrs);
4121 kfree(wq);
4122 return NULL;
4123 err_destroy:
4124 destroy_workqueue(wq);
4125 return NULL;
4126 }
4127 EXPORT_SYMBOL_GPL(__alloc_workqueue_key);
4128
4129 /**
4130 * destroy_workqueue - safely terminate a workqueue
4131 * @wq: target workqueue
4132 *
4133 * Safely destroy a workqueue. All work currently pending will be done first.
4134 */
4135 void destroy_workqueue(struct workqueue_struct *wq)
4136 {
4137 struct pool_workqueue *pwq;
4138 int node;
4139
4140 /* drain it before proceeding with destruction */
4141 drain_workqueue(wq);
4142
4143 /* sanity checks */
4144 mutex_lock(&wq->mutex);
4145 for_each_pwq(pwq, wq) {
4146 int i;
4147
4148 for (i = 0; i < WORK_NR_COLORS; i++) {
4149 if (WARN_ON(pwq->nr_in_flight[i])) {
4150 mutex_unlock(&wq->mutex);
4151 show_workqueue_state();
4152 return;
4153 }
4154 }
4155
4156 if (WARN_ON((pwq != wq->dfl_pwq) && (pwq->refcnt > 1)) ||
4157 WARN_ON(pwq->nr_active) ||
4158 WARN_ON(!list_empty(&pwq->delayed_works))) {
4159 mutex_unlock(&wq->mutex);
4160 show_workqueue_state();
4161 return;
4162 }
4163 }
4164 mutex_unlock(&wq->mutex);
4165
4166 /*
4167 * wq list is used to freeze wq, remove from list after
4168 * flushing is complete in case freeze races us.
4169 */
4170 mutex_lock(&wq_pool_mutex);
4171 list_del_rcu(&wq->list);
4172 mutex_unlock(&wq_pool_mutex);
4173
4174 workqueue_sysfs_unregister(wq);
4175
4176 if (wq->rescuer)
4177 kthread_stop(wq->rescuer->task);
4178
4179 if (!(wq->flags & WQ_UNBOUND)) {
4180 /*
4181 * The base ref is never dropped on per-cpu pwqs. Directly
4182 * schedule RCU free.
4183 */
4184 call_rcu_sched(&wq->rcu, rcu_free_wq);
4185 } else {
4186 /*
4187 * We're the sole accessor of @wq at this point. Directly
4188 * access numa_pwq_tbl[] and dfl_pwq to put the base refs.
4189 * @wq will be freed when the last pwq is released.
4190 */
4191 for_each_node(node) {
4192 pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
4193 RCU_INIT_POINTER(wq->numa_pwq_tbl[node], NULL);
4194 put_pwq_unlocked(pwq);
4195 }
4196
4197 /*
4198 * Put dfl_pwq. @wq may be freed any time after dfl_pwq is
4199 * put. Don't access it afterwards.
4200 */
4201 pwq = wq->dfl_pwq;
4202 wq->dfl_pwq = NULL;
4203 put_pwq_unlocked(pwq);
4204 }
4205 }
4206 EXPORT_SYMBOL_GPL(destroy_workqueue);
4207
4208 /**
4209 * workqueue_set_max_active - adjust max_active of a workqueue
4210 * @wq: target workqueue
4211 * @max_active: new max_active value.
4212 *
4213 * Set max_active of @wq to @max_active.
4214 *
4215 * CONTEXT:
4216 * Don't call from IRQ context.
4217 */
4218 void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
4219 {
4220 struct pool_workqueue *pwq;
4221
4222 /* disallow meddling with max_active for ordered workqueues */
4223 if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
4224 return;
4225
4226 max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
4227
4228 mutex_lock(&wq->mutex);
4229
4230 wq->flags &= ~__WQ_ORDERED;
4231 wq->saved_max_active = max_active;
4232
4233 for_each_pwq(pwq, wq)
4234 pwq_adjust_max_active(pwq);
4235
4236 mutex_unlock(&wq->mutex);
4237 }
4238 EXPORT_SYMBOL_GPL(workqueue_set_max_active);
4239
4240 /**
4241 * current_work - retrieve %current task's work struct
4242 *
4243 * Determine if %current task is a workqueue worker and what it's working on.
4244 * Useful to find out the context that the %current task is running in.
4245 *
4246 * Return: work struct if %current task is a workqueue worker, %NULL otherwise.
4247 */
4248 struct work_struct *current_work(void)
4249 {
4250 struct worker *worker = current_wq_worker();
4251
4252 return worker ? worker->current_work : NULL;
4253 }
4254 EXPORT_SYMBOL(current_work);
4255
4256 /**
4257 * current_is_workqueue_rescuer - is %current workqueue rescuer?
4258 *
4259 * Determine whether %current is a workqueue rescuer. Can be used from
4260 * work functions to determine whether it's being run off the rescuer task.
4261 *
4262 * Return: %true if %current is a workqueue rescuer. %false otherwise.
4263 */
4264 bool current_is_workqueue_rescuer(void)
4265 {
4266 struct worker *worker = current_wq_worker();
4267
4268 return worker && worker->rescue_wq;
4269 }
4270
4271 /**
4272 * workqueue_congested - test whether a workqueue is congested
4273 * @cpu: CPU in question
4274 * @wq: target workqueue
4275 *
4276 * Test whether @wq's cpu workqueue for @cpu is congested. There is
4277 * no synchronization around this function and the test result is
4278 * unreliable and only useful as advisory hints or for debugging.
4279 *
4280 * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU.
4281 * Note that both per-cpu and unbound workqueues may be associated with
4282 * multiple pool_workqueues which have separate congested states. A
4283 * workqueue being congested on one CPU doesn't mean the workqueue is also
4284 * contested on other CPUs / NUMA nodes.
4285 *
4286 * Return:
4287 * %true if congested, %false otherwise.
4288 */
4289 bool workqueue_congested(int cpu, struct workqueue_struct *wq)
4290 {
4291 struct pool_workqueue *pwq;
4292 bool ret;
4293
4294 rcu_read_lock_sched();
4295
4296 if (cpu == WORK_CPU_UNBOUND)
4297 cpu = smp_processor_id();
4298
4299 if (!(wq->flags & WQ_UNBOUND))
4300 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
4301 else
4302 pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
4303
4304 ret = !list_empty(&pwq->delayed_works);
4305 rcu_read_unlock_sched();
4306
4307 return ret;
4308 }
4309 EXPORT_SYMBOL_GPL(workqueue_congested);
4310
4311 /**
4312 * work_busy - test whether a work is currently pending or running
4313 * @work: the work to be tested
4314 *
4315 * Test whether @work is currently pending or running. There is no
4316 * synchronization around this function and the test result is
4317 * unreliable and only useful as advisory hints or for debugging.
4318 *
4319 * Return:
4320 * OR'd bitmask of WORK_BUSY_* bits.
4321 */
4322 unsigned int work_busy(struct work_struct *work)
4323 {
4324 struct worker_pool *pool;
4325 unsigned long flags;
4326 unsigned int ret = 0;
4327
4328 if (work_pending(work))
4329 ret |= WORK_BUSY_PENDING;
4330
4331 local_irq_save(flags);
4332 pool = get_work_pool(work);
4333 if (pool) {
4334 spin_lock(&pool->lock);
4335 if (find_worker_executing_work(pool, work))
4336 ret |= WORK_BUSY_RUNNING;
4337 spin_unlock(&pool->lock);
4338 }
4339 local_irq_restore(flags);
4340
4341 return ret;
4342 }
4343 EXPORT_SYMBOL_GPL(work_busy);
4344
4345 /**
4346 * set_worker_desc - set description for the current work item
4347 * @fmt: printf-style format string
4348 * @...: arguments for the format string
4349 *
4350 * This function can be called by a running work function to describe what
4351 * the work item is about. If the worker task gets dumped, this
4352 * information will be printed out together to help debugging. The
4353 * description can be at most WORKER_DESC_LEN including the trailing '\0'.
4354 */
4355 void set_worker_desc(const char *fmt, ...)
4356 {
4357 struct worker *worker = current_wq_worker();
4358 va_list args;
4359
4360 if (worker) {
4361 va_start(args, fmt);
4362 vsnprintf(worker->desc, sizeof(worker->desc), fmt, args);
4363 va_end(args);
4364 worker->desc_valid = true;
4365 }
4366 }
4367
4368 /**
4369 * print_worker_info - print out worker information and description
4370 * @log_lvl: the log level to use when printing
4371 * @task: target task
4372 *
4373 * If @task is a worker and currently executing a work item, print out the
4374 * name of the workqueue being serviced and worker description set with
4375 * set_worker_desc() by the currently executing work item.
4376 *
4377 * This function can be safely called on any task as long as the
4378 * task_struct itself is accessible. While safe, this function isn't
4379 * synchronized and may print out mixups or garbages of limited length.
4380 */
4381 void print_worker_info(const char *log_lvl, struct task_struct *task)
4382 {
4383 work_func_t *fn = NULL;
4384 char name[WQ_NAME_LEN] = { };
4385 char desc[WORKER_DESC_LEN] = { };
4386 struct pool_workqueue *pwq = NULL;
4387 struct workqueue_struct *wq = NULL;
4388 bool desc_valid = false;
4389 struct worker *worker;
4390
4391 if (!(task->flags & PF_WQ_WORKER))
4392 return;
4393
4394 /*
4395 * This function is called without any synchronization and @task
4396 * could be in any state. Be careful with dereferences.
4397 */
4398 worker = kthread_probe_data(task);
4399
4400 /*
4401 * Carefully copy the associated workqueue's workfn and name. Keep
4402 * the original last '\0' in case the original contains garbage.
4403 */
4404 probe_kernel_read(&fn, &worker->current_func, sizeof(fn));
4405 probe_kernel_read(&pwq, &worker->current_pwq, sizeof(pwq));
4406 probe_kernel_read(&wq, &pwq->wq, sizeof(wq));
4407 probe_kernel_read(name, wq->name, sizeof(name) - 1);
4408
4409 /* copy worker description */
4410 probe_kernel_read(&desc_valid, &worker->desc_valid, sizeof(desc_valid));
4411 if (desc_valid)
4412 probe_kernel_read(desc, worker->desc, sizeof(desc) - 1);
4413
4414 if (fn || name[0] || desc[0]) {
4415 printk("%sWorkqueue: %s %pf", log_lvl, name, fn);
4416 if (desc[0])
4417 pr_cont(" (%s)", desc);
4418 pr_cont("\n");
4419 }
4420 }
4421
4422 static void pr_cont_pool_info(struct worker_pool *pool)
4423 {
4424 pr_cont(" cpus=%*pbl", nr_cpumask_bits, pool->attrs->cpumask);
4425 if (pool->node != NUMA_NO_NODE)
4426 pr_cont(" node=%d", pool->node);
4427 pr_cont(" flags=0x%x nice=%d", pool->flags, pool->attrs->nice);
4428 }
4429
4430 static void pr_cont_work(bool comma, struct work_struct *work)
4431 {
4432 if (work->func == wq_barrier_func) {
4433 struct wq_barrier *barr;
4434
4435 barr = container_of(work, struct wq_barrier, work);
4436
4437 pr_cont("%s BAR(%d)", comma ? "," : "",
4438 task_pid_nr(barr->task));
4439 } else {
4440 pr_cont("%s %pf", comma ? "," : "", work->func);
4441 }
4442 }
4443
4444 static void show_pwq(struct pool_workqueue *pwq)
4445 {
4446 struct worker_pool *pool = pwq->pool;
4447 struct work_struct *work;
4448 struct worker *worker;
4449 bool has_in_flight = false, has_pending = false;
4450 int bkt;
4451
4452 pr_info(" pwq %d:", pool->id);
4453 pr_cont_pool_info(pool);
4454
4455 pr_cont(" active=%d/%d%s\n", pwq->nr_active, pwq->max_active,
4456 !list_empty(&pwq->mayday_node) ? " MAYDAY" : "");
4457
4458 hash_for_each(pool->busy_hash, bkt, worker, hentry) {
4459 if (worker->current_pwq == pwq) {
4460 has_in_flight = true;
4461 break;
4462 }
4463 }
4464 if (has_in_flight) {
4465 bool comma = false;
4466
4467 pr_info(" in-flight:");
4468 hash_for_each(pool->busy_hash, bkt, worker, hentry) {
4469 if (worker->current_pwq != pwq)
4470 continue;
4471
4472 pr_cont("%s %d%s:%pf", comma ? "," : "",
4473 task_pid_nr(worker->task),
4474 worker == pwq->wq->rescuer ? "(RESCUER)" : "",
4475 worker->current_func);
4476 list_for_each_entry(work, &worker->scheduled, entry)
4477 pr_cont_work(false, work);
4478 comma = true;
4479 }
4480 pr_cont("\n");
4481 }
4482
4483 list_for_each_entry(work, &pool->worklist, entry) {
4484 if (get_work_pwq(work) == pwq) {
4485 has_pending = true;
4486 break;
4487 }
4488 }
4489 if (has_pending) {
4490 bool comma = false;
4491
4492 pr_info(" pending:");
4493 list_for_each_entry(work, &pool->worklist, entry) {
4494 if (get_work_pwq(work) != pwq)
4495 continue;
4496
4497 pr_cont_work(comma, work);
4498 comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
4499 }
4500 pr_cont("\n");
4501 }
4502
4503 if (!list_empty(&pwq->delayed_works)) {
4504 bool comma = false;
4505
4506 pr_info(" delayed:");
4507 list_for_each_entry(work, &pwq->delayed_works, entry) {
4508 pr_cont_work(comma, work);
4509 comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
4510 }
4511 pr_cont("\n");
4512 }
4513 }
4514
4515 /**
4516 * show_workqueue_state - dump workqueue state
4517 *
4518 * Called from a sysrq handler or try_to_freeze_tasks() and prints out
4519 * all busy workqueues and pools.
4520 */
4521 void show_workqueue_state(void)
4522 {
4523 struct workqueue_struct *wq;
4524 struct worker_pool *pool;
4525 unsigned long flags;
4526 int pi;
4527
4528 rcu_read_lock_sched();
4529
4530 pr_info("Showing busy workqueues and worker pools:\n");
4531
4532 list_for_each_entry_rcu(wq, &workqueues, list) {
4533 struct pool_workqueue *pwq;
4534 bool idle = true;
4535
4536 for_each_pwq(pwq, wq) {
4537 if (pwq->nr_active || !list_empty(&pwq->delayed_works)) {
4538 idle = false;
4539 break;
4540 }
4541 }
4542 if (idle)
4543 continue;
4544
4545 pr_info("workqueue %s: flags=0x%x\n", wq->name, wq->flags);
4546
4547 for_each_pwq(pwq, wq) {
4548 spin_lock_irqsave(&pwq->pool->lock, flags);
4549 if (pwq->nr_active || !list_empty(&pwq->delayed_works))
4550 show_pwq(pwq);
4551 spin_unlock_irqrestore(&pwq->pool->lock, flags);
4552 /*
4553 * We could be printing a lot from atomic context, e.g.
4554 * sysrq-t -> show_workqueue_state(). Avoid triggering
4555 * hard lockup.
4556 */
4557 touch_nmi_watchdog();
4558 }
4559 }
4560
4561 for_each_pool(pool, pi) {
4562 struct worker *worker;
4563 bool first = true;
4564
4565 spin_lock_irqsave(&pool->lock, flags);
4566 if (pool->nr_workers == pool->nr_idle)
4567 goto next_pool;
4568
4569 pr_info("pool %d:", pool->id);
4570 pr_cont_pool_info(pool);
4571 pr_cont(" hung=%us workers=%d",
4572 jiffies_to_msecs(jiffies - pool->watchdog_ts) / 1000,
4573 pool->nr_workers);
4574 if (pool->manager)
4575 pr_cont(" manager: %d",
4576 task_pid_nr(pool->manager->task));
4577 list_for_each_entry(worker, &pool->idle_list, entry) {
4578 pr_cont(" %s%d", first ? "idle: " : "",
4579 task_pid_nr(worker->task));
4580 first = false;
4581 }
4582 pr_cont("\n");
4583 next_pool:
4584 spin_unlock_irqrestore(&pool->lock, flags);
4585 /*
4586 * We could be printing a lot from atomic context, e.g.
4587 * sysrq-t -> show_workqueue_state(). Avoid triggering
4588 * hard lockup.
4589 */
4590 touch_nmi_watchdog();
4591 }
4592
4593 rcu_read_unlock_sched();
4594 }
4595
4596 /*
4597 * CPU hotplug.
4598 *
4599 * There are two challenges in supporting CPU hotplug. Firstly, there
4600 * are a lot of assumptions on strong associations among work, pwq and
4601 * pool which make migrating pending and scheduled works very
4602 * difficult to implement without impacting hot paths. Secondly,
4603 * worker pools serve mix of short, long and very long running works making
4604 * blocked draining impractical.
4605 *
4606 * This is solved by allowing the pools to be disassociated from the CPU
4607 * running as an unbound one and allowing it to be reattached later if the
4608 * cpu comes back online.
4609 */
4610
4611 static void unbind_workers(int cpu)
4612 {
4613 struct worker_pool *pool;
4614 struct worker *worker;
4615
4616 for_each_cpu_worker_pool(pool, cpu) {
4617 mutex_lock(&pool->attach_mutex);
4618 spin_lock_irq(&pool->lock);
4619
4620 /*
4621 * We've blocked all attach/detach operations. Make all workers
4622 * unbound and set DISASSOCIATED. Before this, all workers
4623 * except for the ones which are still executing works from
4624 * before the last CPU down must be on the cpu. After
4625 * this, they may become diasporas.
4626 */
4627 for_each_pool_worker(worker, pool)
4628 worker->flags |= WORKER_UNBOUND;
4629
4630 pool->flags |= POOL_DISASSOCIATED;
4631
4632 spin_unlock_irq(&pool->lock);
4633 mutex_unlock(&pool->attach_mutex);
4634
4635 /*
4636 * Call schedule() so that we cross rq->lock and thus can
4637 * guarantee sched callbacks see the %WORKER_UNBOUND flag.
4638 * This is necessary as scheduler callbacks may be invoked
4639 * from other cpus.
4640 */
4641 schedule();
4642
4643 /*
4644 * Sched callbacks are disabled now. Zap nr_running.
4645 * After this, nr_running stays zero and need_more_worker()
4646 * and keep_working() are always true as long as the
4647 * worklist is not empty. This pool now behaves as an
4648 * unbound (in terms of concurrency management) pool which
4649 * are served by workers tied to the pool.
4650 */
4651 atomic_set(&pool->nr_running, 0);
4652
4653 /*
4654 * With concurrency management just turned off, a busy
4655 * worker blocking could lead to lengthy stalls. Kick off
4656 * unbound chain execution of currently pending work items.
4657 */
4658 spin_lock_irq(&pool->lock);
4659 wake_up_worker(pool);
4660 spin_unlock_irq(&pool->lock);
4661 }
4662 }
4663
4664 /**
4665 * rebind_workers - rebind all workers of a pool to the associated CPU
4666 * @pool: pool of interest
4667 *
4668 * @pool->cpu is coming online. Rebind all workers to the CPU.
4669 */
4670 static void rebind_workers(struct worker_pool *pool)
4671 {
4672 struct worker *worker;
4673
4674 lockdep_assert_held(&pool->attach_mutex);
4675
4676 /*
4677 * Restore CPU affinity of all workers. As all idle workers should
4678 * be on the run-queue of the associated CPU before any local
4679 * wake-ups for concurrency management happen, restore CPU affinity
4680 * of all workers first and then clear UNBOUND. As we're called
4681 * from CPU_ONLINE, the following shouldn't fail.
4682 */
4683 for_each_pool_worker(worker, pool)
4684 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
4685 pool->attrs->cpumask) < 0);
4686
4687 spin_lock_irq(&pool->lock);
4688
4689 pool->flags &= ~POOL_DISASSOCIATED;
4690
4691 for_each_pool_worker(worker, pool) {
4692 unsigned int worker_flags = worker->flags;
4693
4694 /*
4695 * A bound idle worker should actually be on the runqueue
4696 * of the associated CPU for local wake-ups targeting it to
4697 * work. Kick all idle workers so that they migrate to the
4698 * associated CPU. Doing this in the same loop as
4699 * replacing UNBOUND with REBOUND is safe as no worker will
4700 * be bound before @pool->lock is released.
4701 */
4702 if (worker_flags & WORKER_IDLE)
4703 wake_up_process(worker->task);
4704
4705 /*
4706 * We want to clear UNBOUND but can't directly call
4707 * worker_clr_flags() or adjust nr_running. Atomically
4708 * replace UNBOUND with another NOT_RUNNING flag REBOUND.
4709 * @worker will clear REBOUND using worker_clr_flags() when
4710 * it initiates the next execution cycle thus restoring
4711 * concurrency management. Note that when or whether
4712 * @worker clears REBOUND doesn't affect correctness.
4713 *
4714 * WRITE_ONCE() is necessary because @worker->flags may be
4715 * tested without holding any lock in
4716 * wq_worker_waking_up(). Without it, NOT_RUNNING test may
4717 * fail incorrectly leading to premature concurrency
4718 * management operations.
4719 */
4720 WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND));
4721 worker_flags |= WORKER_REBOUND;
4722 worker_flags &= ~WORKER_UNBOUND;
4723 WRITE_ONCE(worker->flags, worker_flags);
4724 }
4725
4726 spin_unlock_irq(&pool->lock);
4727 }
4728
4729 /**
4730 * restore_unbound_workers_cpumask - restore cpumask of unbound workers
4731 * @pool: unbound pool of interest
4732 * @cpu: the CPU which is coming up
4733 *
4734 * An unbound pool may end up with a cpumask which doesn't have any online
4735 * CPUs. When a worker of such pool get scheduled, the scheduler resets
4736 * its cpus_allowed. If @cpu is in @pool's cpumask which didn't have any
4737 * online CPU before, cpus_allowed of all its workers should be restored.
4738 */
4739 static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu)
4740 {
4741 static cpumask_t cpumask;
4742 struct worker *worker;
4743
4744 lockdep_assert_held(&pool->attach_mutex);
4745
4746 /* is @cpu allowed for @pool? */
4747 if (!cpumask_test_cpu(cpu, pool->attrs->cpumask))
4748 return;
4749
4750 cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask);
4751
4752 /* as we're called from CPU_ONLINE, the following shouldn't fail */
4753 for_each_pool_worker(worker, pool)
4754 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, &cpumask) < 0);
4755 }
4756
4757 int workqueue_prepare_cpu(unsigned int cpu)
4758 {
4759 struct worker_pool *pool;
4760
4761 for_each_cpu_worker_pool(pool, cpu) {
4762 if (pool->nr_workers)
4763 continue;
4764 if (!create_worker(pool))
4765 return -ENOMEM;
4766 }
4767 return 0;
4768 }
4769
4770 int workqueue_online_cpu(unsigned int cpu)
4771 {
4772 struct worker_pool *pool;
4773 struct workqueue_struct *wq;
4774 int pi;
4775
4776 mutex_lock(&wq_pool_mutex);
4777
4778 for_each_pool(pool, pi) {
4779 mutex_lock(&pool->attach_mutex);
4780
4781 if (pool->cpu == cpu)
4782 rebind_workers(pool);
4783 else if (pool->cpu < 0)
4784 restore_unbound_workers_cpumask(pool, cpu);
4785
4786 mutex_unlock(&pool->attach_mutex);
4787 }
4788
4789 /* update NUMA affinity of unbound workqueues */
4790 list_for_each_entry(wq, &workqueues, list)
4791 wq_update_unbound_numa(wq, cpu, true);
4792
4793 mutex_unlock(&wq_pool_mutex);
4794 return 0;
4795 }
4796
4797 int workqueue_offline_cpu(unsigned int cpu)
4798 {
4799 struct workqueue_struct *wq;
4800
4801 /* unbinding per-cpu workers should happen on the local CPU */
4802 if (WARN_ON(cpu != smp_processor_id()))
4803 return -1;
4804
4805 unbind_workers(cpu);
4806
4807 /* update NUMA affinity of unbound workqueues */
4808 mutex_lock(&wq_pool_mutex);
4809 list_for_each_entry(wq, &workqueues, list)
4810 wq_update_unbound_numa(wq, cpu, false);
4811 mutex_unlock(&wq_pool_mutex);
4812
4813 return 0;
4814 }
4815
4816 #ifdef CONFIG_SMP
4817
4818 struct work_for_cpu {
4819 struct work_struct work;
4820 long (*fn)(void *);
4821 void *arg;
4822 long ret;
4823 };
4824
4825 static void work_for_cpu_fn(struct work_struct *work)
4826 {
4827 struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);
4828
4829 wfc->ret = wfc->fn(wfc->arg);
4830 }
4831
4832 /**
4833 * work_on_cpu - run a function in thread context on a particular cpu
4834 * @cpu: the cpu to run on
4835 * @fn: the function to run
4836 * @arg: the function arg
4837 *
4838 * It is up to the caller to ensure that the cpu doesn't go offline.
4839 * The caller must not hold any locks which would prevent @fn from completing.
4840 *
4841 * Return: The value @fn returns.
4842 */
4843 long work_on_cpu(int cpu, long (*fn)(void *), void *arg)
4844 {
4845 struct work_for_cpu wfc = { .fn = fn, .arg = arg };
4846
4847 INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn);
4848 schedule_work_on(cpu, &wfc.work);
4849 flush_work(&wfc.work);
4850 destroy_work_on_stack(&wfc.work);
4851 return wfc.ret;
4852 }
4853 EXPORT_SYMBOL_GPL(work_on_cpu);
4854
4855 /**
4856 * work_on_cpu_safe - run a function in thread context on a particular cpu
4857 * @cpu: the cpu to run on
4858 * @fn: the function to run
4859 * @arg: the function argument
4860 *
4861 * Disables CPU hotplug and calls work_on_cpu(). The caller must not hold
4862 * any locks which would prevent @fn from completing.
4863 *
4864 * Return: The value @fn returns.
4865 */
4866 long work_on_cpu_safe(int cpu, long (*fn)(void *), void *arg)
4867 {
4868 long ret = -ENODEV;
4869
4870 get_online_cpus();
4871 if (cpu_online(cpu))
4872 ret = work_on_cpu(cpu, fn, arg);
4873 put_online_cpus();
4874 return ret;
4875 }
4876 EXPORT_SYMBOL_GPL(work_on_cpu_safe);
4877 #endif /* CONFIG_SMP */
4878
4879 #ifdef CONFIG_FREEZER
4880
4881 /**
4882 * freeze_workqueues_begin - begin freezing workqueues
4883 *
4884 * Start freezing workqueues. After this function returns, all freezable
4885 * workqueues will queue new works to their delayed_works list instead of
4886 * pool->worklist.
4887 *
4888 * CONTEXT:
4889 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
4890 */
4891 void freeze_workqueues_begin(void)
4892 {
4893 struct workqueue_struct *wq;
4894 struct pool_workqueue *pwq;
4895
4896 mutex_lock(&wq_pool_mutex);
4897
4898 WARN_ON_ONCE(workqueue_freezing);
4899 workqueue_freezing = true;
4900
4901 list_for_each_entry(wq, &workqueues, list) {
4902 mutex_lock(&wq->mutex);
4903 for_each_pwq(pwq, wq)
4904 pwq_adjust_max_active(pwq);
4905 mutex_unlock(&wq->mutex);
4906 }
4907
4908 mutex_unlock(&wq_pool_mutex);
4909 }
4910
4911 /**
4912 * freeze_workqueues_busy - are freezable workqueues still busy?
4913 *
4914 * Check whether freezing is complete. This function must be called
4915 * between freeze_workqueues_begin() and thaw_workqueues().
4916 *
4917 * CONTEXT:
4918 * Grabs and releases wq_pool_mutex.
4919 *
4920 * Return:
4921 * %true if some freezable workqueues are still busy. %false if freezing
4922 * is complete.
4923 */
4924 bool freeze_workqueues_busy(void)
4925 {
4926 bool busy = false;
4927 struct workqueue_struct *wq;
4928 struct pool_workqueue *pwq;
4929
4930 mutex_lock(&wq_pool_mutex);
4931
4932 WARN_ON_ONCE(!workqueue_freezing);
4933
4934 list_for_each_entry(wq, &workqueues, list) {
4935 if (!(wq->flags & WQ_FREEZABLE))
4936 continue;
4937 /*
4938 * nr_active is monotonically decreasing. It's safe
4939 * to peek without lock.
4940 */
4941 rcu_read_lock_sched();
4942 for_each_pwq(pwq, wq) {
4943 WARN_ON_ONCE(pwq->nr_active < 0);
4944 if (pwq->nr_active) {
4945 busy = true;
4946 rcu_read_unlock_sched();
4947 goto out_unlock;
4948 }
4949 }
4950 rcu_read_unlock_sched();
4951 }
4952 out_unlock:
4953 mutex_unlock(&wq_pool_mutex);
4954 return busy;
4955 }
4956
4957 /**
4958 * thaw_workqueues - thaw workqueues
4959 *
4960 * Thaw workqueues. Normal queueing is restored and all collected
4961 * frozen works are transferred to their respective pool worklists.
4962 *
4963 * CONTEXT:
4964 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
4965 */
4966 void thaw_workqueues(void)
4967 {
4968 struct workqueue_struct *wq;
4969 struct pool_workqueue *pwq;
4970
4971 mutex_lock(&wq_pool_mutex);
4972
4973 if (!workqueue_freezing)
4974 goto out_unlock;
4975
4976 workqueue_freezing = false;
4977
4978 /* restore max_active and repopulate worklist */
4979 list_for_each_entry(wq, &workqueues, list) {
4980 mutex_lock(&wq->mutex);
4981 for_each_pwq(pwq, wq)
4982 pwq_adjust_max_active(pwq);
4983 mutex_unlock(&wq->mutex);
4984 }
4985
4986 out_unlock:
4987 mutex_unlock(&wq_pool_mutex);
4988 }
4989 #endif /* CONFIG_FREEZER */
4990
4991 static int workqueue_apply_unbound_cpumask(void)
4992 {
4993 LIST_HEAD(ctxs);
4994 int ret = 0;
4995 struct workqueue_struct *wq;
4996 struct apply_wqattrs_ctx *ctx, *n;
4997
4998 lockdep_assert_held(&wq_pool_mutex);
4999
5000 list_for_each_entry(wq, &workqueues, list) {
5001 if (!(wq->flags & WQ_UNBOUND))
5002 continue;
5003 /* creating multiple pwqs breaks ordering guarantee */
5004 if (wq->flags & __WQ_ORDERED)
5005 continue;
5006
5007 ctx = apply_wqattrs_prepare(wq, wq->unbound_attrs);
5008 if (!ctx) {
5009 ret = -ENOMEM;
5010 break;
5011 }
5012
5013 list_add_tail(&ctx->list, &ctxs);
5014 }
5015
5016 list_for_each_entry_safe(ctx, n, &ctxs, list) {
5017 if (!ret)
5018 apply_wqattrs_commit(ctx);
5019 apply_wqattrs_cleanup(ctx);
5020 }
5021
5022 return ret;
5023 }
5024
5025 /**
5026 * workqueue_set_unbound_cpumask - Set the low-level unbound cpumask
5027 * @cpumask: the cpumask to set
5028 *
5029 * The low-level workqueues cpumask is a global cpumask that limits
5030 * the affinity of all unbound workqueues. This function check the @cpumask
5031 * and apply it to all unbound workqueues and updates all pwqs of them.
5032 *
5033 * Retun: 0 - Success
5034 * -EINVAL - Invalid @cpumask
5035 * -ENOMEM - Failed to allocate memory for attrs or pwqs.
5036 */
5037 int workqueue_set_unbound_cpumask(cpumask_var_t cpumask)
5038 {
5039 int ret = -EINVAL;
5040 cpumask_var_t saved_cpumask;
5041
5042 if (!zalloc_cpumask_var(&saved_cpumask, GFP_KERNEL))
5043 return -ENOMEM;
5044
5045 /*
5046 * Not excluding isolated cpus on purpose.
5047 * If the user wishes to include them, we allow that.
5048 */
5049 cpumask_and(cpumask, cpumask, cpu_possible_mask);
5050 if (!cpumask_empty(cpumask)) {
5051 apply_wqattrs_lock();
5052
5053 /* save the old wq_unbound_cpumask. */
5054 cpumask_copy(saved_cpumask, wq_unbound_cpumask);
5055
5056 /* update wq_unbound_cpumask at first and apply it to wqs. */
5057 cpumask_copy(wq_unbound_cpumask, cpumask);
5058 ret = workqueue_apply_unbound_cpumask();
5059
5060 /* restore the wq_unbound_cpumask when failed. */
5061 if (ret < 0)
5062 cpumask_copy(wq_unbound_cpumask, saved_cpumask);
5063
5064 apply_wqattrs_unlock();
5065 }
5066
5067 free_cpumask_var(saved_cpumask);
5068 return ret;
5069 }
5070
5071 #ifdef CONFIG_SYSFS
5072 /*
5073 * Workqueues with WQ_SYSFS flag set is visible to userland via
5074 * /sys/bus/workqueue/devices/WQ_NAME. All visible workqueues have the
5075 * following attributes.
5076 *
5077 * per_cpu RO bool : whether the workqueue is per-cpu or unbound
5078 * max_active RW int : maximum number of in-flight work items
5079 *
5080 * Unbound workqueues have the following extra attributes.
5081 *
5082 * pool_ids RO int : the associated pool IDs for each node
5083 * nice RW int : nice value of the workers
5084 * cpumask RW mask : bitmask of allowed CPUs for the workers
5085 * numa RW bool : whether enable NUMA affinity
5086 */
5087 struct wq_device {
5088 struct workqueue_struct *wq;
5089 struct device dev;
5090 };
5091
5092 static struct workqueue_struct *dev_to_wq(struct device *dev)
5093 {
5094 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
5095
5096 return wq_dev->wq;
5097 }
5098
5099 static ssize_t per_cpu_show(struct device *dev, struct device_attribute *attr,
5100 char *buf)
5101 {
5102 struct workqueue_struct *wq = dev_to_wq(dev);
5103
5104 return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND));
5105 }
5106 static DEVICE_ATTR_RO(per_cpu);
5107
5108 static ssize_t max_active_show(struct device *dev,
5109 struct device_attribute *attr, char *buf)
5110 {
5111 struct workqueue_struct *wq = dev_to_wq(dev);
5112
5113 return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active);
5114 }
5115
5116 static ssize_t max_active_store(struct device *dev,
5117 struct device_attribute *attr, const char *buf,
5118 size_t count)
5119 {
5120 struct workqueue_struct *wq = dev_to_wq(dev);
5121 int val;
5122
5123 if (sscanf(buf, "%d", &val) != 1 || val <= 0)
5124 return -EINVAL;
5125
5126 workqueue_set_max_active(wq, val);
5127 return count;
5128 }
5129 static DEVICE_ATTR_RW(max_active);
5130
5131 static struct attribute *wq_sysfs_attrs[] = {
5132 &dev_attr_per_cpu.attr,
5133 &dev_attr_max_active.attr,
5134 NULL,
5135 };
5136 ATTRIBUTE_GROUPS(wq_sysfs);
5137
5138 static ssize_t wq_pool_ids_show(struct device *dev,
5139 struct device_attribute *attr, char *buf)
5140 {
5141 struct workqueue_struct *wq = dev_to_wq(dev);
5142 const char *delim = "";
5143 int node, written = 0;
5144
5145 rcu_read_lock_sched();
5146 for_each_node(node) {
5147 written += scnprintf(buf + written, PAGE_SIZE - written,
5148 "%s%d:%d", delim, node,
5149 unbound_pwq_by_node(wq, node)->pool->id);
5150 delim = " ";
5151 }
5152 written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
5153 rcu_read_unlock_sched();
5154
5155 return written;
5156 }
5157
5158 static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr,
5159 char *buf)
5160 {
5161 struct workqueue_struct *wq = dev_to_wq(dev);
5162 int written;
5163
5164 mutex_lock(&wq->mutex);
5165 written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice);
5166 mutex_unlock(&wq->mutex);
5167
5168 return written;
5169 }
5170
5171 /* prepare workqueue_attrs for sysfs store operations */
5172 static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq)
5173 {
5174 struct workqueue_attrs *attrs;
5175
5176 lockdep_assert_held(&wq_pool_mutex);
5177
5178 attrs = alloc_workqueue_attrs(GFP_KERNEL);
5179 if (!attrs)
5180 return NULL;
5181
5182 copy_workqueue_attrs(attrs, wq->unbound_attrs);
5183 return attrs;
5184 }
5185
5186 static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr,
5187 const char *buf, size_t count)
5188 {
5189 struct workqueue_struct *wq = dev_to_wq(dev);
5190 struct workqueue_attrs *attrs;
5191 int ret = -ENOMEM;
5192
5193 apply_wqattrs_lock();
5194
5195 attrs = wq_sysfs_prep_attrs(wq);
5196 if (!attrs)
5197 goto out_unlock;
5198
5199 if (sscanf(buf, "%d", &attrs->nice) == 1 &&
5200 attrs->nice >= MIN_NICE && attrs->nice <= MAX_NICE)
5201 ret = apply_workqueue_attrs_locked(wq, attrs);
5202 else
5203 ret = -EINVAL;
5204
5205 out_unlock:
5206 apply_wqattrs_unlock();
5207 free_workqueue_attrs(attrs);
5208 return ret ?: count;
5209 }
5210
5211 static ssize_t wq_cpumask_show(struct device *dev,
5212 struct device_attribute *attr, char *buf)
5213 {
5214 struct workqueue_struct *wq = dev_to_wq(dev);
5215 int written;
5216
5217 mutex_lock(&wq->mutex);
5218 written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
5219 cpumask_pr_args(wq->unbound_attrs->cpumask));
5220 mutex_unlock(&wq->mutex);
5221 return written;
5222 }
5223
5224 static ssize_t wq_cpumask_store(struct device *dev,
5225 struct device_attribute *attr,
5226 const char *buf, size_t count)
5227 {
5228 struct workqueue_struct *wq = dev_to_wq(dev);
5229 struct workqueue_attrs *attrs;
5230 int ret = -ENOMEM;
5231
5232 apply_wqattrs_lock();
5233
5234 attrs = wq_sysfs_prep_attrs(wq);
5235 if (!attrs)
5236 goto out_unlock;
5237
5238 ret = cpumask_parse(buf, attrs->cpumask);
5239 if (!ret)
5240 ret = apply_workqueue_attrs_locked(wq, attrs);
5241
5242 out_unlock:
5243 apply_wqattrs_unlock();
5244 free_workqueue_attrs(attrs);
5245 return ret ?: count;
5246 }
5247
5248 static ssize_t wq_numa_show(struct device *dev, struct device_attribute *attr,
5249 char *buf)
5250 {
5251 struct workqueue_struct *wq = dev_to_wq(dev);
5252 int written;
5253
5254 mutex_lock(&wq->mutex);
5255 written = scnprintf(buf, PAGE_SIZE, "%d\n",
5256 !wq->unbound_attrs->no_numa);
5257 mutex_unlock(&wq->mutex);
5258
5259 return written;
5260 }
5261
5262 static ssize_t wq_numa_store(struct device *dev, struct device_attribute *attr,
5263 const char *buf, size_t count)
5264 {
5265 struct workqueue_struct *wq = dev_to_wq(dev);
5266 struct workqueue_attrs *attrs;
5267 int v, ret = -ENOMEM;
5268
5269 apply_wqattrs_lock();
5270
5271 attrs = wq_sysfs_prep_attrs(wq);
5272 if (!attrs)
5273 goto out_unlock;
5274
5275 ret = -EINVAL;
5276 if (sscanf(buf, "%d", &v) == 1) {
5277 attrs->no_numa = !v;
5278 ret = apply_workqueue_attrs_locked(wq, attrs);
5279 }
5280
5281 out_unlock:
5282 apply_wqattrs_unlock();
5283 free_workqueue_attrs(attrs);
5284 return ret ?: count;
5285 }
5286
5287 static struct device_attribute wq_sysfs_unbound_attrs[] = {
5288 __ATTR(pool_ids, 0444, wq_pool_ids_show, NULL),
5289 __ATTR(nice, 0644, wq_nice_show, wq_nice_store),
5290 __ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store),
5291 __ATTR(numa, 0644, wq_numa_show, wq_numa_store),
5292 __ATTR_NULL,
5293 };
5294
5295 static struct bus_type wq_subsys = {
5296 .name = "workqueue",
5297 .dev_groups = wq_sysfs_groups,
5298 };
5299
5300 static ssize_t wq_unbound_cpumask_show(struct device *dev,
5301 struct device_attribute *attr, char *buf)
5302 {
5303 int written;
5304
5305 mutex_lock(&wq_pool_mutex);
5306 written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
5307 cpumask_pr_args(wq_unbound_cpumask));
5308 mutex_unlock(&wq_pool_mutex);
5309
5310 return written;
5311 }
5312
5313 static ssize_t wq_unbound_cpumask_store(struct device *dev,
5314 struct device_attribute *attr, const char *buf, size_t count)
5315 {
5316 cpumask_var_t cpumask;
5317 int ret;
5318
5319 if (!zalloc_cpumask_var(&cpumask, GFP_KERNEL))
5320 return -ENOMEM;
5321
5322 ret = cpumask_parse(buf, cpumask);
5323 if (!ret)
5324 ret = workqueue_set_unbound_cpumask(cpumask);
5325
5326 free_cpumask_var(cpumask);
5327 return ret ? ret : count;
5328 }
5329
5330 static struct device_attribute wq_sysfs_cpumask_attr =
5331 __ATTR(cpumask, 0644, wq_unbound_cpumask_show,
5332 wq_unbound_cpumask_store);
5333
5334 static int __init wq_sysfs_init(void)
5335 {
5336 int err;
5337
5338 err = subsys_virtual_register(&wq_subsys, NULL);
5339 if (err)
5340 return err;
5341
5342 return device_create_file(wq_subsys.dev_root, &wq_sysfs_cpumask_attr);
5343 }
5344 core_initcall(wq_sysfs_init);
5345
5346 static void wq_device_release(struct device *dev)
5347 {
5348 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
5349
5350 kfree(wq_dev);
5351 }
5352
5353 /**
5354 * workqueue_sysfs_register - make a workqueue visible in sysfs
5355 * @wq: the workqueue to register
5356 *
5357 * Expose @wq in sysfs under /sys/bus/workqueue/devices.
5358 * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set
5359 * which is the preferred method.
5360 *
5361 * Workqueue user should use this function directly iff it wants to apply
5362 * workqueue_attrs before making the workqueue visible in sysfs; otherwise,
5363 * apply_workqueue_attrs() may race against userland updating the
5364 * attributes.
5365 *
5366 * Return: 0 on success, -errno on failure.
5367 */
5368 int workqueue_sysfs_register(struct workqueue_struct *wq)
5369 {
5370 struct wq_device *wq_dev;
5371 int ret;
5372
5373 /*
5374 * Adjusting max_active or creating new pwqs by applying
5375 * attributes breaks ordering guarantee. Disallow exposing ordered
5376 * workqueues.
5377 */
5378 if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
5379 return -EINVAL;
5380
5381 wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL);
5382 if (!wq_dev)
5383 return -ENOMEM;
5384
5385 wq_dev->wq = wq;
5386 wq_dev->dev.bus = &wq_subsys;
5387 wq_dev->dev.release = wq_device_release;
5388 dev_set_name(&wq_dev->dev, "%s", wq->name);
5389
5390 /*
5391 * unbound_attrs are created separately. Suppress uevent until
5392 * everything is ready.
5393 */
5394 dev_set_uevent_suppress(&wq_dev->dev, true);
5395
5396 ret = device_register(&wq_dev->dev);
5397 if (ret) {
5398 put_device(&wq_dev->dev);
5399 wq->wq_dev = NULL;
5400 return ret;
5401 }
5402
5403 if (wq->flags & WQ_UNBOUND) {
5404 struct device_attribute *attr;
5405
5406 for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) {
5407 ret = device_create_file(&wq_dev->dev, attr);
5408 if (ret) {
5409 device_unregister(&wq_dev->dev);
5410 wq->wq_dev = NULL;
5411 return ret;
5412 }
5413 }
5414 }
5415
5416 dev_set_uevent_suppress(&wq_dev->dev, false);
5417 kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD);
5418 return 0;
5419 }
5420
5421 /**
5422 * workqueue_sysfs_unregister - undo workqueue_sysfs_register()
5423 * @wq: the workqueue to unregister
5424 *
5425 * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister.
5426 */
5427 static void workqueue_sysfs_unregister(struct workqueue_struct *wq)
5428 {
5429 struct wq_device *wq_dev = wq->wq_dev;
5430
5431 if (!wq->wq_dev)
5432 return;
5433
5434 wq->wq_dev = NULL;
5435 device_unregister(&wq_dev->dev);
5436 }
5437 #else /* CONFIG_SYSFS */
5438 static void workqueue_sysfs_unregister(struct workqueue_struct *wq) { }
5439 #endif /* CONFIG_SYSFS */
5440
5441 /*
5442 * Workqueue watchdog.
5443 *
5444 * Stall may be caused by various bugs - missing WQ_MEM_RECLAIM, illegal
5445 * flush dependency, a concurrency managed work item which stays RUNNING
5446 * indefinitely. Workqueue stalls can be very difficult to debug as the
5447 * usual warning mechanisms don't trigger and internal workqueue state is
5448 * largely opaque.
5449 *
5450 * Workqueue watchdog monitors all worker pools periodically and dumps
5451 * state if some pools failed to make forward progress for a while where
5452 * forward progress is defined as the first item on ->worklist changing.
5453 *
5454 * This mechanism is controlled through the kernel parameter
5455 * "workqueue.watchdog_thresh" which can be updated at runtime through the
5456 * corresponding sysfs parameter file.
5457 */
5458 #ifdef CONFIG_WQ_WATCHDOG
5459
5460 static unsigned long wq_watchdog_thresh = 30;
5461 static struct timer_list wq_watchdog_timer;
5462
5463 static unsigned long wq_watchdog_touched = INITIAL_JIFFIES;
5464 static DEFINE_PER_CPU(unsigned long, wq_watchdog_touched_cpu) = INITIAL_JIFFIES;
5465
5466 static void wq_watchdog_reset_touched(void)
5467 {
5468 int cpu;
5469
5470 wq_watchdog_touched = jiffies;
5471 for_each_possible_cpu(cpu)
5472 per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
5473 }
5474
5475 static void wq_watchdog_timer_fn(struct timer_list *unused)
5476 {
5477 unsigned long thresh = READ_ONCE(wq_watchdog_thresh) * HZ;
5478 bool lockup_detected = false;
5479 struct worker_pool *pool;
5480 int pi;
5481
5482 if (!thresh)
5483 return;
5484
5485 rcu_read_lock();
5486
5487 for_each_pool(pool, pi) {
5488 unsigned long pool_ts, touched, ts;
5489
5490 if (list_empty(&pool->worklist))
5491 continue;
5492
5493 /* get the latest of pool and touched timestamps */
5494 pool_ts = READ_ONCE(pool->watchdog_ts);
5495 touched = READ_ONCE(wq_watchdog_touched);
5496
5497 if (time_after(pool_ts, touched))
5498 ts = pool_ts;
5499 else
5500 ts = touched;
5501
5502 if (pool->cpu >= 0) {
5503 unsigned long cpu_touched =
5504 READ_ONCE(per_cpu(wq_watchdog_touched_cpu,
5505 pool->cpu));
5506 if (time_after(cpu_touched, ts))
5507 ts = cpu_touched;
5508 }
5509
5510 /* did we stall? */
5511 if (time_after(jiffies, ts + thresh)) {
5512 lockup_detected = true;
5513 pr_emerg("BUG: workqueue lockup - pool");
5514 pr_cont_pool_info(pool);
5515 pr_cont(" stuck for %us!\n",
5516 jiffies_to_msecs(jiffies - pool_ts) / 1000);
5517 }
5518 }
5519
5520 rcu_read_unlock();
5521
5522 if (lockup_detected)
5523 show_workqueue_state();
5524
5525 wq_watchdog_reset_touched();
5526 mod_timer(&wq_watchdog_timer, jiffies + thresh);
5527 }
5528
5529 notrace void wq_watchdog_touch(int cpu)
5530 {
5531 if (cpu >= 0)
5532 per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
5533 else
5534 wq_watchdog_touched = jiffies;
5535 }
5536
5537 static void wq_watchdog_set_thresh(unsigned long thresh)
5538 {
5539 wq_watchdog_thresh = 0;
5540 del_timer_sync(&wq_watchdog_timer);
5541
5542 if (thresh) {
5543 wq_watchdog_thresh = thresh;
5544 wq_watchdog_reset_touched();
5545 mod_timer(&wq_watchdog_timer, jiffies + thresh * HZ);
5546 }
5547 }
5548
5549 static int wq_watchdog_param_set_thresh(const char *val,
5550 const struct kernel_param *kp)
5551 {
5552 unsigned long thresh;
5553 int ret;
5554
5555 ret = kstrtoul(val, 0, &thresh);
5556 if (ret)
5557 return ret;
5558
5559 if (system_wq)
5560 wq_watchdog_set_thresh(thresh);
5561 else
5562 wq_watchdog_thresh = thresh;
5563
5564 return 0;
5565 }
5566
5567 static const struct kernel_param_ops wq_watchdog_thresh_ops = {
5568 .set = wq_watchdog_param_set_thresh,
5569 .get = param_get_ulong,
5570 };
5571
5572 module_param_cb(watchdog_thresh, &wq_watchdog_thresh_ops, &wq_watchdog_thresh,
5573 0644);
5574
5575 static void wq_watchdog_init(void)
5576 {
5577 timer_setup(&wq_watchdog_timer, wq_watchdog_timer_fn, TIMER_DEFERRABLE);
5578 wq_watchdog_set_thresh(wq_watchdog_thresh);
5579 }
5580
5581 #else /* CONFIG_WQ_WATCHDOG */
5582
5583 static inline void wq_watchdog_init(void) { }
5584
5585 #endif /* CONFIG_WQ_WATCHDOG */
5586
5587 static void __init wq_numa_init(void)
5588 {
5589 cpumask_var_t *tbl;
5590 int node, cpu;
5591
5592 if (num_possible_nodes() <= 1)
5593 return;
5594
5595 if (wq_disable_numa) {
5596 pr_info("workqueue: NUMA affinity support disabled\n");
5597 return;
5598 }
5599
5600 wq_update_unbound_numa_attrs_buf = alloc_workqueue_attrs(GFP_KERNEL);
5601 BUG_ON(!wq_update_unbound_numa_attrs_buf);
5602
5603 /*
5604 * We want masks of possible CPUs of each node which isn't readily
5605 * available. Build one from cpu_to_node() which should have been
5606 * fully initialized by now.
5607 */
5608 tbl = kzalloc(nr_node_ids * sizeof(tbl[0]), GFP_KERNEL);
5609 BUG_ON(!tbl);
5610
5611 for_each_node(node)
5612 BUG_ON(!zalloc_cpumask_var_node(&tbl[node], GFP_KERNEL,
5613 node_online(node) ? node : NUMA_NO_NODE));
5614
5615 for_each_possible_cpu(cpu) {
5616 node = cpu_to_node(cpu);
5617 if (WARN_ON(node == NUMA_NO_NODE)) {
5618 pr_warn("workqueue: NUMA node mapping not available for cpu%d, disabling NUMA support\n", cpu);
5619 /* happens iff arch is bonkers, let's just proceed */
5620 return;
5621 }
5622 cpumask_set_cpu(cpu, tbl[node]);
5623 }
5624
5625 wq_numa_possible_cpumask = tbl;
5626 wq_numa_enabled = true;
5627 }
5628
5629 /**
5630 * workqueue_init_early - early init for workqueue subsystem
5631 *
5632 * This is the first half of two-staged workqueue subsystem initialization
5633 * and invoked as soon as the bare basics - memory allocation, cpumasks and
5634 * idr are up. It sets up all the data structures and system workqueues
5635 * and allows early boot code to create workqueues and queue/cancel work
5636 * items. Actual work item execution starts only after kthreads can be
5637 * created and scheduled right before early initcalls.
5638 */
5639 int __init workqueue_init_early(void)
5640 {
5641 int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL };
5642 int i, cpu;
5643
5644 WARN_ON(__alignof__(struct pool_workqueue) < __alignof__(long long));
5645
5646 BUG_ON(!alloc_cpumask_var(&wq_unbound_cpumask, GFP_KERNEL));
5647 cpumask_copy(wq_unbound_cpumask, housekeeping_cpumask(HK_FLAG_DOMAIN));
5648
5649 pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC);
5650
5651 /* initialize CPU pools */
5652 for_each_possible_cpu(cpu) {
5653 struct worker_pool *pool;
5654
5655 i = 0;
5656 for_each_cpu_worker_pool(pool, cpu) {
5657 BUG_ON(init_worker_pool(pool));
5658 pool->cpu = cpu;
5659 cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu));
5660 pool->attrs->nice = std_nice[i++];
5661 pool->node = cpu_to_node(cpu);
5662
5663 /* alloc pool ID */
5664 mutex_lock(&wq_pool_mutex);
5665 BUG_ON(worker_pool_assign_id(pool));
5666 mutex_unlock(&wq_pool_mutex);
5667 }
5668 }
5669
5670 /* create default unbound and ordered wq attrs */
5671 for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
5672 struct workqueue_attrs *attrs;
5673
5674 BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
5675 attrs->nice = std_nice[i];
5676 unbound_std_wq_attrs[i] = attrs;
5677
5678 /*
5679 * An ordered wq should have only one pwq as ordering is
5680 * guaranteed by max_active which is enforced by pwqs.
5681 * Turn off NUMA so that dfl_pwq is used for all nodes.
5682 */
5683 BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
5684 attrs->nice = std_nice[i];
5685 attrs->no_numa = true;
5686 ordered_wq_attrs[i] = attrs;
5687 }
5688
5689 system_wq = alloc_workqueue("events", 0, 0);
5690 system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
5691 system_long_wq = alloc_workqueue("events_long", 0, 0);
5692 system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
5693 WQ_UNBOUND_MAX_ACTIVE);
5694 system_freezable_wq = alloc_workqueue("events_freezable",
5695 WQ_FREEZABLE, 0);
5696 system_power_efficient_wq = alloc_workqueue("events_power_efficient",
5697 WQ_POWER_EFFICIENT, 0);
5698 system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_power_efficient",
5699 WQ_FREEZABLE | WQ_POWER_EFFICIENT,
5700 0);
5701 BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
5702 !system_unbound_wq || !system_freezable_wq ||
5703 !system_power_efficient_wq ||
5704 !system_freezable_power_efficient_wq);
5705
5706 return 0;
5707 }
5708
5709 /**
5710 * workqueue_init - bring workqueue subsystem fully online
5711 *
5712 * This is the latter half of two-staged workqueue subsystem initialization
5713 * and invoked as soon as kthreads can be created and scheduled.
5714 * Workqueues have been created and work items queued on them, but there
5715 * are no kworkers executing the work items yet. Populate the worker pools
5716 * with the initial workers and enable future kworker creations.
5717 */
5718 int __init workqueue_init(void)
5719 {
5720 struct workqueue_struct *wq;
5721 struct worker_pool *pool;
5722 int cpu, bkt;
5723
5724 /*
5725 * It'd be simpler to initialize NUMA in workqueue_init_early() but
5726 * CPU to node mapping may not be available that early on some
5727 * archs such as power and arm64. As per-cpu pools created
5728 * previously could be missing node hint and unbound pools NUMA
5729 * affinity, fix them up.
5730 */
5731 wq_numa_init();
5732
5733 mutex_lock(&wq_pool_mutex);
5734
5735 for_each_possible_cpu(cpu) {
5736 for_each_cpu_worker_pool(pool, cpu) {
5737 pool->node = cpu_to_node(cpu);
5738 }
5739 }
5740
5741 list_for_each_entry(wq, &workqueues, list)
5742 wq_update_unbound_numa(wq, smp_processor_id(), true);
5743
5744 mutex_unlock(&wq_pool_mutex);
5745
5746 /* create the initial workers */
5747 for_each_online_cpu(cpu) {
5748 for_each_cpu_worker_pool(pool, cpu) {
5749 pool->flags &= ~POOL_DISASSOCIATED;
5750 BUG_ON(!create_worker(pool));
5751 }
5752 }
5753
5754 hash_for_each(unbound_pool_hash, bkt, pool, hash_node)
5755 BUG_ON(!create_worker(pool));
5756
5757 wq_online = true;
5758 wq_watchdog_init();
5759
5760 return 0;
5761 }