]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - kernel/workqueue.c
xen-netfront: Fix NULL sring after live migration
[mirror_ubuntu-jammy-kernel.git] / kernel / workqueue.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * kernel/workqueue.c - generic async execution with shared worker pool
4 *
5 * Copyright (C) 2002 Ingo Molnar
6 *
7 * Derived from the taskqueue/keventd code by:
8 * David Woodhouse <dwmw2@infradead.org>
9 * Andrew Morton
10 * Kai Petzke <wpp@marie.physik.tu-berlin.de>
11 * Theodore Ts'o <tytso@mit.edu>
12 *
13 * Made to use alloc_percpu by Christoph Lameter.
14 *
15 * Copyright (C) 2010 SUSE Linux Products GmbH
16 * Copyright (C) 2010 Tejun Heo <tj@kernel.org>
17 *
18 * This is the generic async execution mechanism. Work items as are
19 * executed in process context. The worker pool is shared and
20 * automatically managed. There are two worker pools for each CPU (one for
21 * normal work items and the other for high priority ones) and some extra
22 * pools for workqueues which are not bound to any specific CPU - the
23 * number of these backing pools is dynamic.
24 *
25 * Please read Documentation/core-api/workqueue.rst for details.
26 */
27
28 #include <linux/export.h>
29 #include <linux/kernel.h>
30 #include <linux/sched.h>
31 #include <linux/init.h>
32 #include <linux/signal.h>
33 #include <linux/completion.h>
34 #include <linux/workqueue.h>
35 #include <linux/slab.h>
36 #include <linux/cpu.h>
37 #include <linux/notifier.h>
38 #include <linux/kthread.h>
39 #include <linux/hardirq.h>
40 #include <linux/mempolicy.h>
41 #include <linux/freezer.h>
42 #include <linux/debug_locks.h>
43 #include <linux/lockdep.h>
44 #include <linux/idr.h>
45 #include <linux/jhash.h>
46 #include <linux/hashtable.h>
47 #include <linux/rculist.h>
48 #include <linux/nodemask.h>
49 #include <linux/moduleparam.h>
50 #include <linux/uaccess.h>
51 #include <linux/sched/isolation.h>
52 #include <linux/nmi.h>
53 #include <linux/kvm_para.h>
54
55 #include "workqueue_internal.h"
56
57 enum {
58 /*
59 * worker_pool flags
60 *
61 * A bound pool is either associated or disassociated with its CPU.
62 * While associated (!DISASSOCIATED), all workers are bound to the
63 * CPU and none has %WORKER_UNBOUND set and concurrency management
64 * is in effect.
65 *
66 * While DISASSOCIATED, the cpu may be offline and all workers have
67 * %WORKER_UNBOUND set and concurrency management disabled, and may
68 * be executing on any CPU. The pool behaves as an unbound one.
69 *
70 * Note that DISASSOCIATED should be flipped only while holding
71 * wq_pool_attach_mutex to avoid changing binding state while
72 * worker_attach_to_pool() is in progress.
73 */
74 POOL_MANAGER_ACTIVE = 1 << 0, /* being managed */
75 POOL_DISASSOCIATED = 1 << 2, /* cpu can't serve workers */
76
77 /* worker flags */
78 WORKER_DIE = 1 << 1, /* die die die */
79 WORKER_IDLE = 1 << 2, /* is idle */
80 WORKER_PREP = 1 << 3, /* preparing to run works */
81 WORKER_CPU_INTENSIVE = 1 << 6, /* cpu intensive */
82 WORKER_UNBOUND = 1 << 7, /* worker is unbound */
83 WORKER_REBOUND = 1 << 8, /* worker was rebound */
84
85 WORKER_NOT_RUNNING = WORKER_PREP | WORKER_CPU_INTENSIVE |
86 WORKER_UNBOUND | WORKER_REBOUND,
87
88 NR_STD_WORKER_POOLS = 2, /* # standard pools per cpu */
89
90 UNBOUND_POOL_HASH_ORDER = 6, /* hashed by pool->attrs */
91 BUSY_WORKER_HASH_ORDER = 6, /* 64 pointers */
92
93 MAX_IDLE_WORKERS_RATIO = 4, /* 1/4 of busy can be idle */
94 IDLE_WORKER_TIMEOUT = 300 * HZ, /* keep idle ones for 5 mins */
95
96 MAYDAY_INITIAL_TIMEOUT = HZ / 100 >= 2 ? HZ / 100 : 2,
97 /* call for help after 10ms
98 (min two ticks) */
99 MAYDAY_INTERVAL = HZ / 10, /* and then every 100ms */
100 CREATE_COOLDOWN = HZ, /* time to breath after fail */
101
102 /*
103 * Rescue workers are used only on emergencies and shared by
104 * all cpus. Give MIN_NICE.
105 */
106 RESCUER_NICE_LEVEL = MIN_NICE,
107 HIGHPRI_NICE_LEVEL = MIN_NICE,
108
109 WQ_NAME_LEN = 24,
110 };
111
112 /*
113 * Structure fields follow one of the following exclusion rules.
114 *
115 * I: Modifiable by initialization/destruction paths and read-only for
116 * everyone else.
117 *
118 * P: Preemption protected. Disabling preemption is enough and should
119 * only be modified and accessed from the local cpu.
120 *
121 * L: pool->lock protected. Access with pool->lock held.
122 *
123 * X: During normal operation, modification requires pool->lock and should
124 * be done only from local cpu. Either disabling preemption on local
125 * cpu or grabbing pool->lock is enough for read access. If
126 * POOL_DISASSOCIATED is set, it's identical to L.
127 *
128 * A: wq_pool_attach_mutex protected.
129 *
130 * PL: wq_pool_mutex protected.
131 *
132 * PR: wq_pool_mutex protected for writes. RCU protected for reads.
133 *
134 * PW: wq_pool_mutex and wq->mutex protected for writes. Either for reads.
135 *
136 * PWR: wq_pool_mutex and wq->mutex protected for writes. Either or
137 * RCU for reads.
138 *
139 * WQ: wq->mutex protected.
140 *
141 * WR: wq->mutex protected for writes. RCU protected for reads.
142 *
143 * MD: wq_mayday_lock protected.
144 */
145
146 /* struct worker is defined in workqueue_internal.h */
147
148 struct worker_pool {
149 raw_spinlock_t lock; /* the pool lock */
150 int cpu; /* I: the associated cpu */
151 int node; /* I: the associated node ID */
152 int id; /* I: pool ID */
153 unsigned int flags; /* X: flags */
154
155 unsigned long watchdog_ts; /* L: watchdog timestamp */
156
157 struct list_head worklist; /* L: list of pending works */
158
159 int nr_workers; /* L: total number of workers */
160 int nr_idle; /* L: currently idle workers */
161
162 struct list_head idle_list; /* X: list of idle workers */
163 struct timer_list idle_timer; /* L: worker idle timeout */
164 struct timer_list mayday_timer; /* L: SOS timer for workers */
165
166 /* a workers is either on busy_hash or idle_list, or the manager */
167 DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
168 /* L: hash of busy workers */
169
170 struct worker *manager; /* L: purely informational */
171 struct list_head workers; /* A: attached workers */
172 struct completion *detach_completion; /* all workers detached */
173
174 struct ida worker_ida; /* worker IDs for task name */
175
176 struct workqueue_attrs *attrs; /* I: worker attributes */
177 struct hlist_node hash_node; /* PL: unbound_pool_hash node */
178 int refcnt; /* PL: refcnt for unbound pools */
179
180 /*
181 * The current concurrency level. As it's likely to be accessed
182 * from other CPUs during try_to_wake_up(), put it in a separate
183 * cacheline.
184 */
185 atomic_t nr_running ____cacheline_aligned_in_smp;
186
187 /*
188 * Destruction of pool is RCU protected to allow dereferences
189 * from get_work_pool().
190 */
191 struct rcu_head rcu;
192 } ____cacheline_aligned_in_smp;
193
194 /*
195 * The per-pool workqueue. While queued, the lower WORK_STRUCT_FLAG_BITS
196 * of work_struct->data are used for flags and the remaining high bits
197 * point to the pwq; thus, pwqs need to be aligned at two's power of the
198 * number of flag bits.
199 */
200 struct pool_workqueue {
201 struct worker_pool *pool; /* I: the associated pool */
202 struct workqueue_struct *wq; /* I: the owning workqueue */
203 int work_color; /* L: current color */
204 int flush_color; /* L: flushing color */
205 int refcnt; /* L: reference count */
206 int nr_in_flight[WORK_NR_COLORS];
207 /* L: nr of in_flight works */
208
209 /*
210 * nr_active management and WORK_STRUCT_INACTIVE:
211 *
212 * When pwq->nr_active >= max_active, new work item is queued to
213 * pwq->inactive_works instead of pool->worklist and marked with
214 * WORK_STRUCT_INACTIVE.
215 *
216 * All work items marked with WORK_STRUCT_INACTIVE do not participate
217 * in pwq->nr_active and all work items in pwq->inactive_works are
218 * marked with WORK_STRUCT_INACTIVE. But not all WORK_STRUCT_INACTIVE
219 * work items are in pwq->inactive_works. Some of them are ready to
220 * run in pool->worklist or worker->scheduled. Those work itmes are
221 * only struct wq_barrier which is used for flush_work() and should
222 * not participate in pwq->nr_active. For non-barrier work item, it
223 * is marked with WORK_STRUCT_INACTIVE iff it is in pwq->inactive_works.
224 */
225 int nr_active; /* L: nr of active works */
226 int max_active; /* L: max active works */
227 struct list_head inactive_works; /* L: inactive works */
228 struct list_head pwqs_node; /* WR: node on wq->pwqs */
229 struct list_head mayday_node; /* MD: node on wq->maydays */
230
231 /*
232 * Release of unbound pwq is punted to system_wq. See put_pwq()
233 * and pwq_unbound_release_workfn() for details. pool_workqueue
234 * itself is also RCU protected so that the first pwq can be
235 * determined without grabbing wq->mutex.
236 */
237 struct work_struct unbound_release_work;
238 struct rcu_head rcu;
239 } __aligned(1 << WORK_STRUCT_FLAG_BITS);
240
241 /*
242 * Structure used to wait for workqueue flush.
243 */
244 struct wq_flusher {
245 struct list_head list; /* WQ: list of flushers */
246 int flush_color; /* WQ: flush color waiting for */
247 struct completion done; /* flush completion */
248 };
249
250 struct wq_device;
251
252 /*
253 * The externally visible workqueue. It relays the issued work items to
254 * the appropriate worker_pool through its pool_workqueues.
255 */
256 struct workqueue_struct {
257 struct list_head pwqs; /* WR: all pwqs of this wq */
258 struct list_head list; /* PR: list of all workqueues */
259
260 struct mutex mutex; /* protects this wq */
261 int work_color; /* WQ: current work color */
262 int flush_color; /* WQ: current flush color */
263 atomic_t nr_pwqs_to_flush; /* flush in progress */
264 struct wq_flusher *first_flusher; /* WQ: first flusher */
265 struct list_head flusher_queue; /* WQ: flush waiters */
266 struct list_head flusher_overflow; /* WQ: flush overflow list */
267
268 struct list_head maydays; /* MD: pwqs requesting rescue */
269 struct worker *rescuer; /* MD: rescue worker */
270
271 int nr_drainers; /* WQ: drain in progress */
272 int saved_max_active; /* WQ: saved pwq max_active */
273
274 struct workqueue_attrs *unbound_attrs; /* PW: only for unbound wqs */
275 struct pool_workqueue *dfl_pwq; /* PW: only for unbound wqs */
276
277 #ifdef CONFIG_SYSFS
278 struct wq_device *wq_dev; /* I: for sysfs interface */
279 #endif
280 #ifdef CONFIG_LOCKDEP
281 char *lock_name;
282 struct lock_class_key key;
283 struct lockdep_map lockdep_map;
284 #endif
285 char name[WQ_NAME_LEN]; /* I: workqueue name */
286
287 /*
288 * Destruction of workqueue_struct is RCU protected to allow walking
289 * the workqueues list without grabbing wq_pool_mutex.
290 * This is used to dump all workqueues from sysrq.
291 */
292 struct rcu_head rcu;
293
294 /* hot fields used during command issue, aligned to cacheline */
295 unsigned int flags ____cacheline_aligned; /* WQ: WQ_* flags */
296 struct pool_workqueue __percpu *cpu_pwqs; /* I: per-cpu pwqs */
297 struct pool_workqueue __rcu *numa_pwq_tbl[]; /* PWR: unbound pwqs indexed by node */
298 };
299
300 static struct kmem_cache *pwq_cache;
301
302 static cpumask_var_t *wq_numa_possible_cpumask;
303 /* possible CPUs of each node */
304
305 static bool wq_disable_numa;
306 module_param_named(disable_numa, wq_disable_numa, bool, 0444);
307
308 /* see the comment above the definition of WQ_POWER_EFFICIENT */
309 static bool wq_power_efficient = IS_ENABLED(CONFIG_WQ_POWER_EFFICIENT_DEFAULT);
310 module_param_named(power_efficient, wq_power_efficient, bool, 0444);
311
312 static bool wq_online; /* can kworkers be created yet? */
313
314 static bool wq_numa_enabled; /* unbound NUMA affinity enabled */
315
316 /* buf for wq_update_unbound_numa_attrs(), protected by CPU hotplug exclusion */
317 static struct workqueue_attrs *wq_update_unbound_numa_attrs_buf;
318
319 static DEFINE_MUTEX(wq_pool_mutex); /* protects pools and workqueues list */
320 static DEFINE_MUTEX(wq_pool_attach_mutex); /* protects worker attach/detach */
321 static DEFINE_RAW_SPINLOCK(wq_mayday_lock); /* protects wq->maydays list */
322 /* wait for manager to go away */
323 static struct rcuwait manager_wait = __RCUWAIT_INITIALIZER(manager_wait);
324
325 static LIST_HEAD(workqueues); /* PR: list of all workqueues */
326 static bool workqueue_freezing; /* PL: have wqs started freezing? */
327
328 /* PL: allowable cpus for unbound wqs and work items */
329 static cpumask_var_t wq_unbound_cpumask;
330
331 /* CPU where unbound work was last round robin scheduled from this CPU */
332 static DEFINE_PER_CPU(int, wq_rr_cpu_last);
333
334 /*
335 * Local execution of unbound work items is no longer guaranteed. The
336 * following always forces round-robin CPU selection on unbound work items
337 * to uncover usages which depend on it.
338 */
339 #ifdef CONFIG_DEBUG_WQ_FORCE_RR_CPU
340 static bool wq_debug_force_rr_cpu = true;
341 #else
342 static bool wq_debug_force_rr_cpu = false;
343 #endif
344 module_param_named(debug_force_rr_cpu, wq_debug_force_rr_cpu, bool, 0644);
345
346 /* the per-cpu worker pools */
347 static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS], cpu_worker_pools);
348
349 static DEFINE_IDR(worker_pool_idr); /* PR: idr of all pools */
350
351 /* PL: hash of all unbound pools keyed by pool->attrs */
352 static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER);
353
354 /* I: attributes used when instantiating standard unbound pools on demand */
355 static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS];
356
357 /* I: attributes used when instantiating ordered pools on demand */
358 static struct workqueue_attrs *ordered_wq_attrs[NR_STD_WORKER_POOLS];
359
360 struct workqueue_struct *system_wq __read_mostly;
361 EXPORT_SYMBOL(system_wq);
362 struct workqueue_struct *system_highpri_wq __read_mostly;
363 EXPORT_SYMBOL_GPL(system_highpri_wq);
364 struct workqueue_struct *system_long_wq __read_mostly;
365 EXPORT_SYMBOL_GPL(system_long_wq);
366 struct workqueue_struct *system_unbound_wq __read_mostly;
367 EXPORT_SYMBOL_GPL(system_unbound_wq);
368 struct workqueue_struct *system_freezable_wq __read_mostly;
369 EXPORT_SYMBOL_GPL(system_freezable_wq);
370 struct workqueue_struct *system_power_efficient_wq __read_mostly;
371 EXPORT_SYMBOL_GPL(system_power_efficient_wq);
372 struct workqueue_struct *system_freezable_power_efficient_wq __read_mostly;
373 EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq);
374
375 static int worker_thread(void *__worker);
376 static void workqueue_sysfs_unregister(struct workqueue_struct *wq);
377 static void show_pwq(struct pool_workqueue *pwq);
378
379 #define CREATE_TRACE_POINTS
380 #include <trace/events/workqueue.h>
381
382 #define assert_rcu_or_pool_mutex() \
383 RCU_LOCKDEP_WARN(!rcu_read_lock_held() && \
384 !lockdep_is_held(&wq_pool_mutex), \
385 "RCU or wq_pool_mutex should be held")
386
387 #define assert_rcu_or_wq_mutex_or_pool_mutex(wq) \
388 RCU_LOCKDEP_WARN(!rcu_read_lock_held() && \
389 !lockdep_is_held(&wq->mutex) && \
390 !lockdep_is_held(&wq_pool_mutex), \
391 "RCU, wq->mutex or wq_pool_mutex should be held")
392
393 #define for_each_cpu_worker_pool(pool, cpu) \
394 for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0]; \
395 (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
396 (pool)++)
397
398 /**
399 * for_each_pool - iterate through all worker_pools in the system
400 * @pool: iteration cursor
401 * @pi: integer used for iteration
402 *
403 * This must be called either with wq_pool_mutex held or RCU read
404 * locked. If the pool needs to be used beyond the locking in effect, the
405 * caller is responsible for guaranteeing that the pool stays online.
406 *
407 * The if/else clause exists only for the lockdep assertion and can be
408 * ignored.
409 */
410 #define for_each_pool(pool, pi) \
411 idr_for_each_entry(&worker_pool_idr, pool, pi) \
412 if (({ assert_rcu_or_pool_mutex(); false; })) { } \
413 else
414
415 /**
416 * for_each_pool_worker - iterate through all workers of a worker_pool
417 * @worker: iteration cursor
418 * @pool: worker_pool to iterate workers of
419 *
420 * This must be called with wq_pool_attach_mutex.
421 *
422 * The if/else clause exists only for the lockdep assertion and can be
423 * ignored.
424 */
425 #define for_each_pool_worker(worker, pool) \
426 list_for_each_entry((worker), &(pool)->workers, node) \
427 if (({ lockdep_assert_held(&wq_pool_attach_mutex); false; })) { } \
428 else
429
430 /**
431 * for_each_pwq - iterate through all pool_workqueues of the specified workqueue
432 * @pwq: iteration cursor
433 * @wq: the target workqueue
434 *
435 * This must be called either with wq->mutex held or RCU read locked.
436 * If the pwq needs to be used beyond the locking in effect, the caller is
437 * responsible for guaranteeing that the pwq stays online.
438 *
439 * The if/else clause exists only for the lockdep assertion and can be
440 * ignored.
441 */
442 #define for_each_pwq(pwq, wq) \
443 list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node, \
444 lockdep_is_held(&(wq->mutex)))
445
446 #ifdef CONFIG_DEBUG_OBJECTS_WORK
447
448 static const struct debug_obj_descr work_debug_descr;
449
450 static void *work_debug_hint(void *addr)
451 {
452 return ((struct work_struct *) addr)->func;
453 }
454
455 static bool work_is_static_object(void *addr)
456 {
457 struct work_struct *work = addr;
458
459 return test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work));
460 }
461
462 /*
463 * fixup_init is called when:
464 * - an active object is initialized
465 */
466 static bool work_fixup_init(void *addr, enum debug_obj_state state)
467 {
468 struct work_struct *work = addr;
469
470 switch (state) {
471 case ODEBUG_STATE_ACTIVE:
472 cancel_work_sync(work);
473 debug_object_init(work, &work_debug_descr);
474 return true;
475 default:
476 return false;
477 }
478 }
479
480 /*
481 * fixup_free is called when:
482 * - an active object is freed
483 */
484 static bool work_fixup_free(void *addr, enum debug_obj_state state)
485 {
486 struct work_struct *work = addr;
487
488 switch (state) {
489 case ODEBUG_STATE_ACTIVE:
490 cancel_work_sync(work);
491 debug_object_free(work, &work_debug_descr);
492 return true;
493 default:
494 return false;
495 }
496 }
497
498 static const struct debug_obj_descr work_debug_descr = {
499 .name = "work_struct",
500 .debug_hint = work_debug_hint,
501 .is_static_object = work_is_static_object,
502 .fixup_init = work_fixup_init,
503 .fixup_free = work_fixup_free,
504 };
505
506 static inline void debug_work_activate(struct work_struct *work)
507 {
508 debug_object_activate(work, &work_debug_descr);
509 }
510
511 static inline void debug_work_deactivate(struct work_struct *work)
512 {
513 debug_object_deactivate(work, &work_debug_descr);
514 }
515
516 void __init_work(struct work_struct *work, int onstack)
517 {
518 if (onstack)
519 debug_object_init_on_stack(work, &work_debug_descr);
520 else
521 debug_object_init(work, &work_debug_descr);
522 }
523 EXPORT_SYMBOL_GPL(__init_work);
524
525 void destroy_work_on_stack(struct work_struct *work)
526 {
527 debug_object_free(work, &work_debug_descr);
528 }
529 EXPORT_SYMBOL_GPL(destroy_work_on_stack);
530
531 void destroy_delayed_work_on_stack(struct delayed_work *work)
532 {
533 destroy_timer_on_stack(&work->timer);
534 debug_object_free(&work->work, &work_debug_descr);
535 }
536 EXPORT_SYMBOL_GPL(destroy_delayed_work_on_stack);
537
538 #else
539 static inline void debug_work_activate(struct work_struct *work) { }
540 static inline void debug_work_deactivate(struct work_struct *work) { }
541 #endif
542
543 /**
544 * worker_pool_assign_id - allocate ID and assign it to @pool
545 * @pool: the pool pointer of interest
546 *
547 * Returns 0 if ID in [0, WORK_OFFQ_POOL_NONE) is allocated and assigned
548 * successfully, -errno on failure.
549 */
550 static int worker_pool_assign_id(struct worker_pool *pool)
551 {
552 int ret;
553
554 lockdep_assert_held(&wq_pool_mutex);
555
556 ret = idr_alloc(&worker_pool_idr, pool, 0, WORK_OFFQ_POOL_NONE,
557 GFP_KERNEL);
558 if (ret >= 0) {
559 pool->id = ret;
560 return 0;
561 }
562 return ret;
563 }
564
565 /**
566 * unbound_pwq_by_node - return the unbound pool_workqueue for the given node
567 * @wq: the target workqueue
568 * @node: the node ID
569 *
570 * This must be called with any of wq_pool_mutex, wq->mutex or RCU
571 * read locked.
572 * If the pwq needs to be used beyond the locking in effect, the caller is
573 * responsible for guaranteeing that the pwq stays online.
574 *
575 * Return: The unbound pool_workqueue for @node.
576 */
577 static struct pool_workqueue *unbound_pwq_by_node(struct workqueue_struct *wq,
578 int node)
579 {
580 assert_rcu_or_wq_mutex_or_pool_mutex(wq);
581
582 /*
583 * XXX: @node can be NUMA_NO_NODE if CPU goes offline while a
584 * delayed item is pending. The plan is to keep CPU -> NODE
585 * mapping valid and stable across CPU on/offlines. Once that
586 * happens, this workaround can be removed.
587 */
588 if (unlikely(node == NUMA_NO_NODE))
589 return wq->dfl_pwq;
590
591 return rcu_dereference_raw(wq->numa_pwq_tbl[node]);
592 }
593
594 static unsigned int work_color_to_flags(int color)
595 {
596 return color << WORK_STRUCT_COLOR_SHIFT;
597 }
598
599 static int get_work_color(unsigned long work_data)
600 {
601 return (work_data >> WORK_STRUCT_COLOR_SHIFT) &
602 ((1 << WORK_STRUCT_COLOR_BITS) - 1);
603 }
604
605 static int work_next_color(int color)
606 {
607 return (color + 1) % WORK_NR_COLORS;
608 }
609
610 /*
611 * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
612 * contain the pointer to the queued pwq. Once execution starts, the flag
613 * is cleared and the high bits contain OFFQ flags and pool ID.
614 *
615 * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling()
616 * and clear_work_data() can be used to set the pwq, pool or clear
617 * work->data. These functions should only be called while the work is
618 * owned - ie. while the PENDING bit is set.
619 *
620 * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
621 * corresponding to a work. Pool is available once the work has been
622 * queued anywhere after initialization until it is sync canceled. pwq is
623 * available only while the work item is queued.
624 *
625 * %WORK_OFFQ_CANCELING is used to mark a work item which is being
626 * canceled. While being canceled, a work item may have its PENDING set
627 * but stay off timer and worklist for arbitrarily long and nobody should
628 * try to steal the PENDING bit.
629 */
630 static inline void set_work_data(struct work_struct *work, unsigned long data,
631 unsigned long flags)
632 {
633 WARN_ON_ONCE(!work_pending(work));
634 atomic_long_set(&work->data, data | flags | work_static(work));
635 }
636
637 static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq,
638 unsigned long extra_flags)
639 {
640 set_work_data(work, (unsigned long)pwq,
641 WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags);
642 }
643
644 static void set_work_pool_and_keep_pending(struct work_struct *work,
645 int pool_id)
646 {
647 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT,
648 WORK_STRUCT_PENDING);
649 }
650
651 static void set_work_pool_and_clear_pending(struct work_struct *work,
652 int pool_id)
653 {
654 /*
655 * The following wmb is paired with the implied mb in
656 * test_and_set_bit(PENDING) and ensures all updates to @work made
657 * here are visible to and precede any updates by the next PENDING
658 * owner.
659 */
660 smp_wmb();
661 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0);
662 /*
663 * The following mb guarantees that previous clear of a PENDING bit
664 * will not be reordered with any speculative LOADS or STORES from
665 * work->current_func, which is executed afterwards. This possible
666 * reordering can lead to a missed execution on attempt to queue
667 * the same @work. E.g. consider this case:
668 *
669 * CPU#0 CPU#1
670 * ---------------------------- --------------------------------
671 *
672 * 1 STORE event_indicated
673 * 2 queue_work_on() {
674 * 3 test_and_set_bit(PENDING)
675 * 4 } set_..._and_clear_pending() {
676 * 5 set_work_data() # clear bit
677 * 6 smp_mb()
678 * 7 work->current_func() {
679 * 8 LOAD event_indicated
680 * }
681 *
682 * Without an explicit full barrier speculative LOAD on line 8 can
683 * be executed before CPU#0 does STORE on line 1. If that happens,
684 * CPU#0 observes the PENDING bit is still set and new execution of
685 * a @work is not queued in a hope, that CPU#1 will eventually
686 * finish the queued @work. Meanwhile CPU#1 does not see
687 * event_indicated is set, because speculative LOAD was executed
688 * before actual STORE.
689 */
690 smp_mb();
691 }
692
693 static void clear_work_data(struct work_struct *work)
694 {
695 smp_wmb(); /* see set_work_pool_and_clear_pending() */
696 set_work_data(work, WORK_STRUCT_NO_POOL, 0);
697 }
698
699 static struct pool_workqueue *get_work_pwq(struct work_struct *work)
700 {
701 unsigned long data = atomic_long_read(&work->data);
702
703 if (data & WORK_STRUCT_PWQ)
704 return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
705 else
706 return NULL;
707 }
708
709 /**
710 * get_work_pool - return the worker_pool a given work was associated with
711 * @work: the work item of interest
712 *
713 * Pools are created and destroyed under wq_pool_mutex, and allows read
714 * access under RCU read lock. As such, this function should be
715 * called under wq_pool_mutex or inside of a rcu_read_lock() region.
716 *
717 * All fields of the returned pool are accessible as long as the above
718 * mentioned locking is in effect. If the returned pool needs to be used
719 * beyond the critical section, the caller is responsible for ensuring the
720 * returned pool is and stays online.
721 *
722 * Return: The worker_pool @work was last associated with. %NULL if none.
723 */
724 static struct worker_pool *get_work_pool(struct work_struct *work)
725 {
726 unsigned long data = atomic_long_read(&work->data);
727 int pool_id;
728
729 assert_rcu_or_pool_mutex();
730
731 if (data & WORK_STRUCT_PWQ)
732 return ((struct pool_workqueue *)
733 (data & WORK_STRUCT_WQ_DATA_MASK))->pool;
734
735 pool_id = data >> WORK_OFFQ_POOL_SHIFT;
736 if (pool_id == WORK_OFFQ_POOL_NONE)
737 return NULL;
738
739 return idr_find(&worker_pool_idr, pool_id);
740 }
741
742 /**
743 * get_work_pool_id - return the worker pool ID a given work is associated with
744 * @work: the work item of interest
745 *
746 * Return: The worker_pool ID @work was last associated with.
747 * %WORK_OFFQ_POOL_NONE if none.
748 */
749 static int get_work_pool_id(struct work_struct *work)
750 {
751 unsigned long data = atomic_long_read(&work->data);
752
753 if (data & WORK_STRUCT_PWQ)
754 return ((struct pool_workqueue *)
755 (data & WORK_STRUCT_WQ_DATA_MASK))->pool->id;
756
757 return data >> WORK_OFFQ_POOL_SHIFT;
758 }
759
760 static void mark_work_canceling(struct work_struct *work)
761 {
762 unsigned long pool_id = get_work_pool_id(work);
763
764 pool_id <<= WORK_OFFQ_POOL_SHIFT;
765 set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING);
766 }
767
768 static bool work_is_canceling(struct work_struct *work)
769 {
770 unsigned long data = atomic_long_read(&work->data);
771
772 return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING);
773 }
774
775 /*
776 * Policy functions. These define the policies on how the global worker
777 * pools are managed. Unless noted otherwise, these functions assume that
778 * they're being called with pool->lock held.
779 */
780
781 static bool __need_more_worker(struct worker_pool *pool)
782 {
783 return !atomic_read(&pool->nr_running);
784 }
785
786 /*
787 * Need to wake up a worker? Called from anything but currently
788 * running workers.
789 *
790 * Note that, because unbound workers never contribute to nr_running, this
791 * function will always return %true for unbound pools as long as the
792 * worklist isn't empty.
793 */
794 static bool need_more_worker(struct worker_pool *pool)
795 {
796 return !list_empty(&pool->worklist) && __need_more_worker(pool);
797 }
798
799 /* Can I start working? Called from busy but !running workers. */
800 static bool may_start_working(struct worker_pool *pool)
801 {
802 return pool->nr_idle;
803 }
804
805 /* Do I need to keep working? Called from currently running workers. */
806 static bool keep_working(struct worker_pool *pool)
807 {
808 return !list_empty(&pool->worklist) &&
809 atomic_read(&pool->nr_running) <= 1;
810 }
811
812 /* Do we need a new worker? Called from manager. */
813 static bool need_to_create_worker(struct worker_pool *pool)
814 {
815 return need_more_worker(pool) && !may_start_working(pool);
816 }
817
818 /* Do we have too many workers and should some go away? */
819 static bool too_many_workers(struct worker_pool *pool)
820 {
821 bool managing = pool->flags & POOL_MANAGER_ACTIVE;
822 int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
823 int nr_busy = pool->nr_workers - nr_idle;
824
825 return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
826 }
827
828 /*
829 * Wake up functions.
830 */
831
832 /* Return the first idle worker. Safe with preemption disabled */
833 static struct worker *first_idle_worker(struct worker_pool *pool)
834 {
835 if (unlikely(list_empty(&pool->idle_list)))
836 return NULL;
837
838 return list_first_entry(&pool->idle_list, struct worker, entry);
839 }
840
841 /**
842 * wake_up_worker - wake up an idle worker
843 * @pool: worker pool to wake worker from
844 *
845 * Wake up the first idle worker of @pool.
846 *
847 * CONTEXT:
848 * raw_spin_lock_irq(pool->lock).
849 */
850 static void wake_up_worker(struct worker_pool *pool)
851 {
852 struct worker *worker = first_idle_worker(pool);
853
854 if (likely(worker))
855 wake_up_process(worker->task);
856 }
857
858 /**
859 * wq_worker_running - a worker is running again
860 * @task: task waking up
861 *
862 * This function is called when a worker returns from schedule()
863 */
864 void wq_worker_running(struct task_struct *task)
865 {
866 struct worker *worker = kthread_data(task);
867
868 if (!worker->sleeping)
869 return;
870
871 /*
872 * If preempted by unbind_workers() between the WORKER_NOT_RUNNING check
873 * and the nr_running increment below, we may ruin the nr_running reset
874 * and leave with an unexpected pool->nr_running == 1 on the newly unbound
875 * pool. Protect against such race.
876 */
877 preempt_disable();
878 if (!(worker->flags & WORKER_NOT_RUNNING))
879 atomic_inc(&worker->pool->nr_running);
880 preempt_enable();
881 worker->sleeping = 0;
882 }
883
884 /**
885 * wq_worker_sleeping - a worker is going to sleep
886 * @task: task going to sleep
887 *
888 * This function is called from schedule() when a busy worker is
889 * going to sleep. Preemption needs to be disabled to protect ->sleeping
890 * assignment.
891 */
892 void wq_worker_sleeping(struct task_struct *task)
893 {
894 struct worker *next, *worker = kthread_data(task);
895 struct worker_pool *pool;
896
897 /*
898 * Rescuers, which may not have all the fields set up like normal
899 * workers, also reach here, let's not access anything before
900 * checking NOT_RUNNING.
901 */
902 if (worker->flags & WORKER_NOT_RUNNING)
903 return;
904
905 pool = worker->pool;
906
907 /* Return if preempted before wq_worker_running() was reached */
908 if (worker->sleeping)
909 return;
910
911 worker->sleeping = 1;
912 raw_spin_lock_irq(&pool->lock);
913
914 /*
915 * The counterpart of the following dec_and_test, implied mb,
916 * worklist not empty test sequence is in insert_work().
917 * Please read comment there.
918 *
919 * NOT_RUNNING is clear. This means that we're bound to and
920 * running on the local cpu w/ rq lock held and preemption
921 * disabled, which in turn means that none else could be
922 * manipulating idle_list, so dereferencing idle_list without pool
923 * lock is safe.
924 */
925 if (atomic_dec_and_test(&pool->nr_running) &&
926 !list_empty(&pool->worklist)) {
927 next = first_idle_worker(pool);
928 if (next)
929 wake_up_process(next->task);
930 }
931 raw_spin_unlock_irq(&pool->lock);
932 }
933
934 /**
935 * wq_worker_last_func - retrieve worker's last work function
936 * @task: Task to retrieve last work function of.
937 *
938 * Determine the last function a worker executed. This is called from
939 * the scheduler to get a worker's last known identity.
940 *
941 * CONTEXT:
942 * raw_spin_lock_irq(rq->lock)
943 *
944 * This function is called during schedule() when a kworker is going
945 * to sleep. It's used by psi to identify aggregation workers during
946 * dequeuing, to allow periodic aggregation to shut-off when that
947 * worker is the last task in the system or cgroup to go to sleep.
948 *
949 * As this function doesn't involve any workqueue-related locking, it
950 * only returns stable values when called from inside the scheduler's
951 * queuing and dequeuing paths, when @task, which must be a kworker,
952 * is guaranteed to not be processing any works.
953 *
954 * Return:
955 * The last work function %current executed as a worker, NULL if it
956 * hasn't executed any work yet.
957 */
958 work_func_t wq_worker_last_func(struct task_struct *task)
959 {
960 struct worker *worker = kthread_data(task);
961
962 return worker->last_func;
963 }
964
965 /**
966 * worker_set_flags - set worker flags and adjust nr_running accordingly
967 * @worker: self
968 * @flags: flags to set
969 *
970 * Set @flags in @worker->flags and adjust nr_running accordingly.
971 *
972 * CONTEXT:
973 * raw_spin_lock_irq(pool->lock)
974 */
975 static inline void worker_set_flags(struct worker *worker, unsigned int flags)
976 {
977 struct worker_pool *pool = worker->pool;
978
979 WARN_ON_ONCE(worker->task != current);
980
981 /* If transitioning into NOT_RUNNING, adjust nr_running. */
982 if ((flags & WORKER_NOT_RUNNING) &&
983 !(worker->flags & WORKER_NOT_RUNNING)) {
984 atomic_dec(&pool->nr_running);
985 }
986
987 worker->flags |= flags;
988 }
989
990 /**
991 * worker_clr_flags - clear worker flags and adjust nr_running accordingly
992 * @worker: self
993 * @flags: flags to clear
994 *
995 * Clear @flags in @worker->flags and adjust nr_running accordingly.
996 *
997 * CONTEXT:
998 * raw_spin_lock_irq(pool->lock)
999 */
1000 static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
1001 {
1002 struct worker_pool *pool = worker->pool;
1003 unsigned int oflags = worker->flags;
1004
1005 WARN_ON_ONCE(worker->task != current);
1006
1007 worker->flags &= ~flags;
1008
1009 /*
1010 * If transitioning out of NOT_RUNNING, increment nr_running. Note
1011 * that the nested NOT_RUNNING is not a noop. NOT_RUNNING is mask
1012 * of multiple flags, not a single flag.
1013 */
1014 if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
1015 if (!(worker->flags & WORKER_NOT_RUNNING))
1016 atomic_inc(&pool->nr_running);
1017 }
1018
1019 /**
1020 * find_worker_executing_work - find worker which is executing a work
1021 * @pool: pool of interest
1022 * @work: work to find worker for
1023 *
1024 * Find a worker which is executing @work on @pool by searching
1025 * @pool->busy_hash which is keyed by the address of @work. For a worker
1026 * to match, its current execution should match the address of @work and
1027 * its work function. This is to avoid unwanted dependency between
1028 * unrelated work executions through a work item being recycled while still
1029 * being executed.
1030 *
1031 * This is a bit tricky. A work item may be freed once its execution
1032 * starts and nothing prevents the freed area from being recycled for
1033 * another work item. If the same work item address ends up being reused
1034 * before the original execution finishes, workqueue will identify the
1035 * recycled work item as currently executing and make it wait until the
1036 * current execution finishes, introducing an unwanted dependency.
1037 *
1038 * This function checks the work item address and work function to avoid
1039 * false positives. Note that this isn't complete as one may construct a
1040 * work function which can introduce dependency onto itself through a
1041 * recycled work item. Well, if somebody wants to shoot oneself in the
1042 * foot that badly, there's only so much we can do, and if such deadlock
1043 * actually occurs, it should be easy to locate the culprit work function.
1044 *
1045 * CONTEXT:
1046 * raw_spin_lock_irq(pool->lock).
1047 *
1048 * Return:
1049 * Pointer to worker which is executing @work if found, %NULL
1050 * otherwise.
1051 */
1052 static struct worker *find_worker_executing_work(struct worker_pool *pool,
1053 struct work_struct *work)
1054 {
1055 struct worker *worker;
1056
1057 hash_for_each_possible(pool->busy_hash, worker, hentry,
1058 (unsigned long)work)
1059 if (worker->current_work == work &&
1060 worker->current_func == work->func)
1061 return worker;
1062
1063 return NULL;
1064 }
1065
1066 /**
1067 * move_linked_works - move linked works to a list
1068 * @work: start of series of works to be scheduled
1069 * @head: target list to append @work to
1070 * @nextp: out parameter for nested worklist walking
1071 *
1072 * Schedule linked works starting from @work to @head. Work series to
1073 * be scheduled starts at @work and includes any consecutive work with
1074 * WORK_STRUCT_LINKED set in its predecessor.
1075 *
1076 * If @nextp is not NULL, it's updated to point to the next work of
1077 * the last scheduled work. This allows move_linked_works() to be
1078 * nested inside outer list_for_each_entry_safe().
1079 *
1080 * CONTEXT:
1081 * raw_spin_lock_irq(pool->lock).
1082 */
1083 static void move_linked_works(struct work_struct *work, struct list_head *head,
1084 struct work_struct **nextp)
1085 {
1086 struct work_struct *n;
1087
1088 /*
1089 * Linked worklist will always end before the end of the list,
1090 * use NULL for list head.
1091 */
1092 list_for_each_entry_safe_from(work, n, NULL, entry) {
1093 list_move_tail(&work->entry, head);
1094 if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
1095 break;
1096 }
1097
1098 /*
1099 * If we're already inside safe list traversal and have moved
1100 * multiple works to the scheduled queue, the next position
1101 * needs to be updated.
1102 */
1103 if (nextp)
1104 *nextp = n;
1105 }
1106
1107 /**
1108 * get_pwq - get an extra reference on the specified pool_workqueue
1109 * @pwq: pool_workqueue to get
1110 *
1111 * Obtain an extra reference on @pwq. The caller should guarantee that
1112 * @pwq has positive refcnt and be holding the matching pool->lock.
1113 */
1114 static void get_pwq(struct pool_workqueue *pwq)
1115 {
1116 lockdep_assert_held(&pwq->pool->lock);
1117 WARN_ON_ONCE(pwq->refcnt <= 0);
1118 pwq->refcnt++;
1119 }
1120
1121 /**
1122 * put_pwq - put a pool_workqueue reference
1123 * @pwq: pool_workqueue to put
1124 *
1125 * Drop a reference of @pwq. If its refcnt reaches zero, schedule its
1126 * destruction. The caller should be holding the matching pool->lock.
1127 */
1128 static void put_pwq(struct pool_workqueue *pwq)
1129 {
1130 lockdep_assert_held(&pwq->pool->lock);
1131 if (likely(--pwq->refcnt))
1132 return;
1133 if (WARN_ON_ONCE(!(pwq->wq->flags & WQ_UNBOUND)))
1134 return;
1135 /*
1136 * @pwq can't be released under pool->lock, bounce to
1137 * pwq_unbound_release_workfn(). This never recurses on the same
1138 * pool->lock as this path is taken only for unbound workqueues and
1139 * the release work item is scheduled on a per-cpu workqueue. To
1140 * avoid lockdep warning, unbound pool->locks are given lockdep
1141 * subclass of 1 in get_unbound_pool().
1142 */
1143 schedule_work(&pwq->unbound_release_work);
1144 }
1145
1146 /**
1147 * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock
1148 * @pwq: pool_workqueue to put (can be %NULL)
1149 *
1150 * put_pwq() with locking. This function also allows %NULL @pwq.
1151 */
1152 static void put_pwq_unlocked(struct pool_workqueue *pwq)
1153 {
1154 if (pwq) {
1155 /*
1156 * As both pwqs and pools are RCU protected, the
1157 * following lock operations are safe.
1158 */
1159 raw_spin_lock_irq(&pwq->pool->lock);
1160 put_pwq(pwq);
1161 raw_spin_unlock_irq(&pwq->pool->lock);
1162 }
1163 }
1164
1165 static void pwq_activate_inactive_work(struct work_struct *work)
1166 {
1167 struct pool_workqueue *pwq = get_work_pwq(work);
1168
1169 trace_workqueue_activate_work(work);
1170 if (list_empty(&pwq->pool->worklist))
1171 pwq->pool->watchdog_ts = jiffies;
1172 move_linked_works(work, &pwq->pool->worklist, NULL);
1173 __clear_bit(WORK_STRUCT_INACTIVE_BIT, work_data_bits(work));
1174 pwq->nr_active++;
1175 }
1176
1177 static void pwq_activate_first_inactive(struct pool_workqueue *pwq)
1178 {
1179 struct work_struct *work = list_first_entry(&pwq->inactive_works,
1180 struct work_struct, entry);
1181
1182 pwq_activate_inactive_work(work);
1183 }
1184
1185 /**
1186 * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
1187 * @pwq: pwq of interest
1188 * @work_data: work_data of work which left the queue
1189 *
1190 * A work either has completed or is removed from pending queue,
1191 * decrement nr_in_flight of its pwq and handle workqueue flushing.
1192 *
1193 * CONTEXT:
1194 * raw_spin_lock_irq(pool->lock).
1195 */
1196 static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, unsigned long work_data)
1197 {
1198 int color = get_work_color(work_data);
1199
1200 if (!(work_data & WORK_STRUCT_INACTIVE)) {
1201 pwq->nr_active--;
1202 if (!list_empty(&pwq->inactive_works)) {
1203 /* one down, submit an inactive one */
1204 if (pwq->nr_active < pwq->max_active)
1205 pwq_activate_first_inactive(pwq);
1206 }
1207 }
1208
1209 pwq->nr_in_flight[color]--;
1210
1211 /* is flush in progress and are we at the flushing tip? */
1212 if (likely(pwq->flush_color != color))
1213 goto out_put;
1214
1215 /* are there still in-flight works? */
1216 if (pwq->nr_in_flight[color])
1217 goto out_put;
1218
1219 /* this pwq is done, clear flush_color */
1220 pwq->flush_color = -1;
1221
1222 /*
1223 * If this was the last pwq, wake up the first flusher. It
1224 * will handle the rest.
1225 */
1226 if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush))
1227 complete(&pwq->wq->first_flusher->done);
1228 out_put:
1229 put_pwq(pwq);
1230 }
1231
1232 /**
1233 * try_to_grab_pending - steal work item from worklist and disable irq
1234 * @work: work item to steal
1235 * @is_dwork: @work is a delayed_work
1236 * @flags: place to store irq state
1237 *
1238 * Try to grab PENDING bit of @work. This function can handle @work in any
1239 * stable state - idle, on timer or on worklist.
1240 *
1241 * Return:
1242 *
1243 * ======== ================================================================
1244 * 1 if @work was pending and we successfully stole PENDING
1245 * 0 if @work was idle and we claimed PENDING
1246 * -EAGAIN if PENDING couldn't be grabbed at the moment, safe to busy-retry
1247 * -ENOENT if someone else is canceling @work, this state may persist
1248 * for arbitrarily long
1249 * ======== ================================================================
1250 *
1251 * Note:
1252 * On >= 0 return, the caller owns @work's PENDING bit. To avoid getting
1253 * interrupted while holding PENDING and @work off queue, irq must be
1254 * disabled on entry. This, combined with delayed_work->timer being
1255 * irqsafe, ensures that we return -EAGAIN for finite short period of time.
1256 *
1257 * On successful return, >= 0, irq is disabled and the caller is
1258 * responsible for releasing it using local_irq_restore(*@flags).
1259 *
1260 * This function is safe to call from any context including IRQ handler.
1261 */
1262 static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
1263 unsigned long *flags)
1264 {
1265 struct worker_pool *pool;
1266 struct pool_workqueue *pwq;
1267
1268 local_irq_save(*flags);
1269
1270 /* try to steal the timer if it exists */
1271 if (is_dwork) {
1272 struct delayed_work *dwork = to_delayed_work(work);
1273
1274 /*
1275 * dwork->timer is irqsafe. If del_timer() fails, it's
1276 * guaranteed that the timer is not queued anywhere and not
1277 * running on the local CPU.
1278 */
1279 if (likely(del_timer(&dwork->timer)))
1280 return 1;
1281 }
1282
1283 /* try to claim PENDING the normal way */
1284 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
1285 return 0;
1286
1287 rcu_read_lock();
1288 /*
1289 * The queueing is in progress, or it is already queued. Try to
1290 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
1291 */
1292 pool = get_work_pool(work);
1293 if (!pool)
1294 goto fail;
1295
1296 raw_spin_lock(&pool->lock);
1297 /*
1298 * work->data is guaranteed to point to pwq only while the work
1299 * item is queued on pwq->wq, and both updating work->data to point
1300 * to pwq on queueing and to pool on dequeueing are done under
1301 * pwq->pool->lock. This in turn guarantees that, if work->data
1302 * points to pwq which is associated with a locked pool, the work
1303 * item is currently queued on that pool.
1304 */
1305 pwq = get_work_pwq(work);
1306 if (pwq && pwq->pool == pool) {
1307 debug_work_deactivate(work);
1308
1309 /*
1310 * A cancelable inactive work item must be in the
1311 * pwq->inactive_works since a queued barrier can't be
1312 * canceled (see the comments in insert_wq_barrier()).
1313 *
1314 * An inactive work item cannot be grabbed directly because
1315 * it might have linked barrier work items which, if left
1316 * on the inactive_works list, will confuse pwq->nr_active
1317 * management later on and cause stall. Make sure the work
1318 * item is activated before grabbing.
1319 */
1320 if (*work_data_bits(work) & WORK_STRUCT_INACTIVE)
1321 pwq_activate_inactive_work(work);
1322
1323 list_del_init(&work->entry);
1324 pwq_dec_nr_in_flight(pwq, *work_data_bits(work));
1325
1326 /* work->data points to pwq iff queued, point to pool */
1327 set_work_pool_and_keep_pending(work, pool->id);
1328
1329 raw_spin_unlock(&pool->lock);
1330 rcu_read_unlock();
1331 return 1;
1332 }
1333 raw_spin_unlock(&pool->lock);
1334 fail:
1335 rcu_read_unlock();
1336 local_irq_restore(*flags);
1337 if (work_is_canceling(work))
1338 return -ENOENT;
1339 cpu_relax();
1340 return -EAGAIN;
1341 }
1342
1343 /**
1344 * insert_work - insert a work into a pool
1345 * @pwq: pwq @work belongs to
1346 * @work: work to insert
1347 * @head: insertion point
1348 * @extra_flags: extra WORK_STRUCT_* flags to set
1349 *
1350 * Insert @work which belongs to @pwq after @head. @extra_flags is or'd to
1351 * work_struct flags.
1352 *
1353 * CONTEXT:
1354 * raw_spin_lock_irq(pool->lock).
1355 */
1356 static void insert_work(struct pool_workqueue *pwq, struct work_struct *work,
1357 struct list_head *head, unsigned int extra_flags)
1358 {
1359 struct worker_pool *pool = pwq->pool;
1360
1361 /* record the work call stack in order to print it in KASAN reports */
1362 kasan_record_aux_stack(work);
1363
1364 /* we own @work, set data and link */
1365 set_work_pwq(work, pwq, extra_flags);
1366 list_add_tail(&work->entry, head);
1367 get_pwq(pwq);
1368
1369 /*
1370 * Ensure either wq_worker_sleeping() sees the above
1371 * list_add_tail() or we see zero nr_running to avoid workers lying
1372 * around lazily while there are works to be processed.
1373 */
1374 smp_mb();
1375
1376 if (__need_more_worker(pool))
1377 wake_up_worker(pool);
1378 }
1379
1380 /*
1381 * Test whether @work is being queued from another work executing on the
1382 * same workqueue.
1383 */
1384 static bool is_chained_work(struct workqueue_struct *wq)
1385 {
1386 struct worker *worker;
1387
1388 worker = current_wq_worker();
1389 /*
1390 * Return %true iff I'm a worker executing a work item on @wq. If
1391 * I'm @worker, it's safe to dereference it without locking.
1392 */
1393 return worker && worker->current_pwq->wq == wq;
1394 }
1395
1396 /*
1397 * When queueing an unbound work item to a wq, prefer local CPU if allowed
1398 * by wq_unbound_cpumask. Otherwise, round robin among the allowed ones to
1399 * avoid perturbing sensitive tasks.
1400 */
1401 static int wq_select_unbound_cpu(int cpu)
1402 {
1403 static bool printed_dbg_warning;
1404 int new_cpu;
1405
1406 if (likely(!wq_debug_force_rr_cpu)) {
1407 if (cpumask_test_cpu(cpu, wq_unbound_cpumask))
1408 return cpu;
1409 } else if (!printed_dbg_warning) {
1410 pr_warn("workqueue: round-robin CPU selection forced, expect performance impact\n");
1411 printed_dbg_warning = true;
1412 }
1413
1414 if (cpumask_empty(wq_unbound_cpumask))
1415 return cpu;
1416
1417 new_cpu = __this_cpu_read(wq_rr_cpu_last);
1418 new_cpu = cpumask_next_and(new_cpu, wq_unbound_cpumask, cpu_online_mask);
1419 if (unlikely(new_cpu >= nr_cpu_ids)) {
1420 new_cpu = cpumask_first_and(wq_unbound_cpumask, cpu_online_mask);
1421 if (unlikely(new_cpu >= nr_cpu_ids))
1422 return cpu;
1423 }
1424 __this_cpu_write(wq_rr_cpu_last, new_cpu);
1425
1426 return new_cpu;
1427 }
1428
1429 static void __queue_work(int cpu, struct workqueue_struct *wq,
1430 struct work_struct *work)
1431 {
1432 struct pool_workqueue *pwq;
1433 struct worker_pool *last_pool;
1434 struct list_head *worklist;
1435 unsigned int work_flags;
1436 unsigned int req_cpu = cpu;
1437
1438 /*
1439 * While a work item is PENDING && off queue, a task trying to
1440 * steal the PENDING will busy-loop waiting for it to either get
1441 * queued or lose PENDING. Grabbing PENDING and queueing should
1442 * happen with IRQ disabled.
1443 */
1444 lockdep_assert_irqs_disabled();
1445
1446
1447 /* if draining, only works from the same workqueue are allowed */
1448 if (unlikely(wq->flags & __WQ_DRAINING) &&
1449 WARN_ON_ONCE(!is_chained_work(wq)))
1450 return;
1451 rcu_read_lock();
1452 retry:
1453 /* pwq which will be used unless @work is executing elsewhere */
1454 if (wq->flags & WQ_UNBOUND) {
1455 if (req_cpu == WORK_CPU_UNBOUND)
1456 cpu = wq_select_unbound_cpu(raw_smp_processor_id());
1457 pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
1458 } else {
1459 if (req_cpu == WORK_CPU_UNBOUND)
1460 cpu = raw_smp_processor_id();
1461 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
1462 }
1463
1464 /*
1465 * If @work was previously on a different pool, it might still be
1466 * running there, in which case the work needs to be queued on that
1467 * pool to guarantee non-reentrancy.
1468 */
1469 last_pool = get_work_pool(work);
1470 if (last_pool && last_pool != pwq->pool) {
1471 struct worker *worker;
1472
1473 raw_spin_lock(&last_pool->lock);
1474
1475 worker = find_worker_executing_work(last_pool, work);
1476
1477 if (worker && worker->current_pwq->wq == wq) {
1478 pwq = worker->current_pwq;
1479 } else {
1480 /* meh... not running there, queue here */
1481 raw_spin_unlock(&last_pool->lock);
1482 raw_spin_lock(&pwq->pool->lock);
1483 }
1484 } else {
1485 raw_spin_lock(&pwq->pool->lock);
1486 }
1487
1488 /*
1489 * pwq is determined and locked. For unbound pools, we could have
1490 * raced with pwq release and it could already be dead. If its
1491 * refcnt is zero, repeat pwq selection. Note that pwqs never die
1492 * without another pwq replacing it in the numa_pwq_tbl or while
1493 * work items are executing on it, so the retrying is guaranteed to
1494 * make forward-progress.
1495 */
1496 if (unlikely(!pwq->refcnt)) {
1497 if (wq->flags & WQ_UNBOUND) {
1498 raw_spin_unlock(&pwq->pool->lock);
1499 cpu_relax();
1500 goto retry;
1501 }
1502 /* oops */
1503 WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt",
1504 wq->name, cpu);
1505 }
1506
1507 /* pwq determined, queue */
1508 trace_workqueue_queue_work(req_cpu, pwq, work);
1509
1510 if (WARN_ON(!list_empty(&work->entry)))
1511 goto out;
1512
1513 pwq->nr_in_flight[pwq->work_color]++;
1514 work_flags = work_color_to_flags(pwq->work_color);
1515
1516 if (likely(pwq->nr_active < pwq->max_active)) {
1517 trace_workqueue_activate_work(work);
1518 pwq->nr_active++;
1519 worklist = &pwq->pool->worklist;
1520 if (list_empty(worklist))
1521 pwq->pool->watchdog_ts = jiffies;
1522 } else {
1523 work_flags |= WORK_STRUCT_INACTIVE;
1524 worklist = &pwq->inactive_works;
1525 }
1526
1527 debug_work_activate(work);
1528 insert_work(pwq, work, worklist, work_flags);
1529
1530 out:
1531 raw_spin_unlock(&pwq->pool->lock);
1532 rcu_read_unlock();
1533 }
1534
1535 /**
1536 * queue_work_on - queue work on specific cpu
1537 * @cpu: CPU number to execute work on
1538 * @wq: workqueue to use
1539 * @work: work to queue
1540 *
1541 * We queue the work to a specific CPU, the caller must ensure it
1542 * can't go away.
1543 *
1544 * Return: %false if @work was already on a queue, %true otherwise.
1545 */
1546 bool queue_work_on(int cpu, struct workqueue_struct *wq,
1547 struct work_struct *work)
1548 {
1549 bool ret = false;
1550 unsigned long flags;
1551
1552 local_irq_save(flags);
1553
1554 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1555 __queue_work(cpu, wq, work);
1556 ret = true;
1557 }
1558
1559 local_irq_restore(flags);
1560 return ret;
1561 }
1562 EXPORT_SYMBOL(queue_work_on);
1563
1564 /**
1565 * workqueue_select_cpu_near - Select a CPU based on NUMA node
1566 * @node: NUMA node ID that we want to select a CPU from
1567 *
1568 * This function will attempt to find a "random" cpu available on a given
1569 * node. If there are no CPUs available on the given node it will return
1570 * WORK_CPU_UNBOUND indicating that we should just schedule to any
1571 * available CPU if we need to schedule this work.
1572 */
1573 static int workqueue_select_cpu_near(int node)
1574 {
1575 int cpu;
1576
1577 /* No point in doing this if NUMA isn't enabled for workqueues */
1578 if (!wq_numa_enabled)
1579 return WORK_CPU_UNBOUND;
1580
1581 /* Delay binding to CPU if node is not valid or online */
1582 if (node < 0 || node >= MAX_NUMNODES || !node_online(node))
1583 return WORK_CPU_UNBOUND;
1584
1585 /* Use local node/cpu if we are already there */
1586 cpu = raw_smp_processor_id();
1587 if (node == cpu_to_node(cpu))
1588 return cpu;
1589
1590 /* Use "random" otherwise know as "first" online CPU of node */
1591 cpu = cpumask_any_and(cpumask_of_node(node), cpu_online_mask);
1592
1593 /* If CPU is valid return that, otherwise just defer */
1594 return cpu < nr_cpu_ids ? cpu : WORK_CPU_UNBOUND;
1595 }
1596
1597 /**
1598 * queue_work_node - queue work on a "random" cpu for a given NUMA node
1599 * @node: NUMA node that we are targeting the work for
1600 * @wq: workqueue to use
1601 * @work: work to queue
1602 *
1603 * We queue the work to a "random" CPU within a given NUMA node. The basic
1604 * idea here is to provide a way to somehow associate work with a given
1605 * NUMA node.
1606 *
1607 * This function will only make a best effort attempt at getting this onto
1608 * the right NUMA node. If no node is requested or the requested node is
1609 * offline then we just fall back to standard queue_work behavior.
1610 *
1611 * Currently the "random" CPU ends up being the first available CPU in the
1612 * intersection of cpu_online_mask and the cpumask of the node, unless we
1613 * are running on the node. In that case we just use the current CPU.
1614 *
1615 * Return: %false if @work was already on a queue, %true otherwise.
1616 */
1617 bool queue_work_node(int node, struct workqueue_struct *wq,
1618 struct work_struct *work)
1619 {
1620 unsigned long flags;
1621 bool ret = false;
1622
1623 /*
1624 * This current implementation is specific to unbound workqueues.
1625 * Specifically we only return the first available CPU for a given
1626 * node instead of cycling through individual CPUs within the node.
1627 *
1628 * If this is used with a per-cpu workqueue then the logic in
1629 * workqueue_select_cpu_near would need to be updated to allow for
1630 * some round robin type logic.
1631 */
1632 WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND));
1633
1634 local_irq_save(flags);
1635
1636 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1637 int cpu = workqueue_select_cpu_near(node);
1638
1639 __queue_work(cpu, wq, work);
1640 ret = true;
1641 }
1642
1643 local_irq_restore(flags);
1644 return ret;
1645 }
1646 EXPORT_SYMBOL_GPL(queue_work_node);
1647
1648 void delayed_work_timer_fn(struct timer_list *t)
1649 {
1650 struct delayed_work *dwork = from_timer(dwork, t, timer);
1651
1652 /* should have been called from irqsafe timer with irq already off */
1653 __queue_work(dwork->cpu, dwork->wq, &dwork->work);
1654 }
1655 EXPORT_SYMBOL(delayed_work_timer_fn);
1656
1657 static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
1658 struct delayed_work *dwork, unsigned long delay)
1659 {
1660 struct timer_list *timer = &dwork->timer;
1661 struct work_struct *work = &dwork->work;
1662
1663 WARN_ON_ONCE(!wq);
1664 WARN_ON_FUNCTION_MISMATCH(timer->function, delayed_work_timer_fn);
1665 WARN_ON_ONCE(timer_pending(timer));
1666 WARN_ON_ONCE(!list_empty(&work->entry));
1667
1668 /*
1669 * If @delay is 0, queue @dwork->work immediately. This is for
1670 * both optimization and correctness. The earliest @timer can
1671 * expire is on the closest next tick and delayed_work users depend
1672 * on that there's no such delay when @delay is 0.
1673 */
1674 if (!delay) {
1675 __queue_work(cpu, wq, &dwork->work);
1676 return;
1677 }
1678
1679 dwork->wq = wq;
1680 dwork->cpu = cpu;
1681 timer->expires = jiffies + delay;
1682
1683 if (unlikely(cpu != WORK_CPU_UNBOUND))
1684 add_timer_on(timer, cpu);
1685 else
1686 add_timer(timer);
1687 }
1688
1689 /**
1690 * queue_delayed_work_on - queue work on specific CPU after delay
1691 * @cpu: CPU number to execute work on
1692 * @wq: workqueue to use
1693 * @dwork: work to queue
1694 * @delay: number of jiffies to wait before queueing
1695 *
1696 * Return: %false if @work was already on a queue, %true otherwise. If
1697 * @delay is zero and @dwork is idle, it will be scheduled for immediate
1698 * execution.
1699 */
1700 bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
1701 struct delayed_work *dwork, unsigned long delay)
1702 {
1703 struct work_struct *work = &dwork->work;
1704 bool ret = false;
1705 unsigned long flags;
1706
1707 /* read the comment in __queue_work() */
1708 local_irq_save(flags);
1709
1710 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1711 __queue_delayed_work(cpu, wq, dwork, delay);
1712 ret = true;
1713 }
1714
1715 local_irq_restore(flags);
1716 return ret;
1717 }
1718 EXPORT_SYMBOL(queue_delayed_work_on);
1719
1720 /**
1721 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
1722 * @cpu: CPU number to execute work on
1723 * @wq: workqueue to use
1724 * @dwork: work to queue
1725 * @delay: number of jiffies to wait before queueing
1726 *
1727 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
1728 * modify @dwork's timer so that it expires after @delay. If @delay is
1729 * zero, @work is guaranteed to be scheduled immediately regardless of its
1730 * current state.
1731 *
1732 * Return: %false if @dwork was idle and queued, %true if @dwork was
1733 * pending and its timer was modified.
1734 *
1735 * This function is safe to call from any context including IRQ handler.
1736 * See try_to_grab_pending() for details.
1737 */
1738 bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
1739 struct delayed_work *dwork, unsigned long delay)
1740 {
1741 unsigned long flags;
1742 int ret;
1743
1744 do {
1745 ret = try_to_grab_pending(&dwork->work, true, &flags);
1746 } while (unlikely(ret == -EAGAIN));
1747
1748 if (likely(ret >= 0)) {
1749 __queue_delayed_work(cpu, wq, dwork, delay);
1750 local_irq_restore(flags);
1751 }
1752
1753 /* -ENOENT from try_to_grab_pending() becomes %true */
1754 return ret;
1755 }
1756 EXPORT_SYMBOL_GPL(mod_delayed_work_on);
1757
1758 static void rcu_work_rcufn(struct rcu_head *rcu)
1759 {
1760 struct rcu_work *rwork = container_of(rcu, struct rcu_work, rcu);
1761
1762 /* read the comment in __queue_work() */
1763 local_irq_disable();
1764 __queue_work(WORK_CPU_UNBOUND, rwork->wq, &rwork->work);
1765 local_irq_enable();
1766 }
1767
1768 /**
1769 * queue_rcu_work - queue work after a RCU grace period
1770 * @wq: workqueue to use
1771 * @rwork: work to queue
1772 *
1773 * Return: %false if @rwork was already pending, %true otherwise. Note
1774 * that a full RCU grace period is guaranteed only after a %true return.
1775 * While @rwork is guaranteed to be executed after a %false return, the
1776 * execution may happen before a full RCU grace period has passed.
1777 */
1778 bool queue_rcu_work(struct workqueue_struct *wq, struct rcu_work *rwork)
1779 {
1780 struct work_struct *work = &rwork->work;
1781
1782 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1783 rwork->wq = wq;
1784 call_rcu(&rwork->rcu, rcu_work_rcufn);
1785 return true;
1786 }
1787
1788 return false;
1789 }
1790 EXPORT_SYMBOL(queue_rcu_work);
1791
1792 /**
1793 * worker_enter_idle - enter idle state
1794 * @worker: worker which is entering idle state
1795 *
1796 * @worker is entering idle state. Update stats and idle timer if
1797 * necessary.
1798 *
1799 * LOCKING:
1800 * raw_spin_lock_irq(pool->lock).
1801 */
1802 static void worker_enter_idle(struct worker *worker)
1803 {
1804 struct worker_pool *pool = worker->pool;
1805
1806 if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) ||
1807 WARN_ON_ONCE(!list_empty(&worker->entry) &&
1808 (worker->hentry.next || worker->hentry.pprev)))
1809 return;
1810
1811 /* can't use worker_set_flags(), also called from create_worker() */
1812 worker->flags |= WORKER_IDLE;
1813 pool->nr_idle++;
1814 worker->last_active = jiffies;
1815
1816 /* idle_list is LIFO */
1817 list_add(&worker->entry, &pool->idle_list);
1818
1819 if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
1820 mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
1821
1822 /*
1823 * Sanity check nr_running. Because unbind_workers() releases
1824 * pool->lock between setting %WORKER_UNBOUND and zapping
1825 * nr_running, the warning may trigger spuriously. Check iff
1826 * unbind is not in progress.
1827 */
1828 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
1829 pool->nr_workers == pool->nr_idle &&
1830 atomic_read(&pool->nr_running));
1831 }
1832
1833 /**
1834 * worker_leave_idle - leave idle state
1835 * @worker: worker which is leaving idle state
1836 *
1837 * @worker is leaving idle state. Update stats.
1838 *
1839 * LOCKING:
1840 * raw_spin_lock_irq(pool->lock).
1841 */
1842 static void worker_leave_idle(struct worker *worker)
1843 {
1844 struct worker_pool *pool = worker->pool;
1845
1846 if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE)))
1847 return;
1848 worker_clr_flags(worker, WORKER_IDLE);
1849 pool->nr_idle--;
1850 list_del_init(&worker->entry);
1851 }
1852
1853 static struct worker *alloc_worker(int node)
1854 {
1855 struct worker *worker;
1856
1857 worker = kzalloc_node(sizeof(*worker), GFP_KERNEL, node);
1858 if (worker) {
1859 INIT_LIST_HEAD(&worker->entry);
1860 INIT_LIST_HEAD(&worker->scheduled);
1861 INIT_LIST_HEAD(&worker->node);
1862 /* on creation a worker is in !idle && prep state */
1863 worker->flags = WORKER_PREP;
1864 }
1865 return worker;
1866 }
1867
1868 /**
1869 * worker_attach_to_pool() - attach a worker to a pool
1870 * @worker: worker to be attached
1871 * @pool: the target pool
1872 *
1873 * Attach @worker to @pool. Once attached, the %WORKER_UNBOUND flag and
1874 * cpu-binding of @worker are kept coordinated with the pool across
1875 * cpu-[un]hotplugs.
1876 */
1877 static void worker_attach_to_pool(struct worker *worker,
1878 struct worker_pool *pool)
1879 {
1880 mutex_lock(&wq_pool_attach_mutex);
1881
1882 /*
1883 * The wq_pool_attach_mutex ensures %POOL_DISASSOCIATED remains
1884 * stable across this function. See the comments above the flag
1885 * definition for details.
1886 */
1887 if (pool->flags & POOL_DISASSOCIATED)
1888 worker->flags |= WORKER_UNBOUND;
1889 else
1890 kthread_set_per_cpu(worker->task, pool->cpu);
1891
1892 if (worker->rescue_wq)
1893 set_cpus_allowed_ptr(worker->task, pool->attrs->cpumask);
1894
1895 list_add_tail(&worker->node, &pool->workers);
1896 worker->pool = pool;
1897
1898 mutex_unlock(&wq_pool_attach_mutex);
1899 }
1900
1901 /**
1902 * worker_detach_from_pool() - detach a worker from its pool
1903 * @worker: worker which is attached to its pool
1904 *
1905 * Undo the attaching which had been done in worker_attach_to_pool(). The
1906 * caller worker shouldn't access to the pool after detached except it has
1907 * other reference to the pool.
1908 */
1909 static void worker_detach_from_pool(struct worker *worker)
1910 {
1911 struct worker_pool *pool = worker->pool;
1912 struct completion *detach_completion = NULL;
1913
1914 mutex_lock(&wq_pool_attach_mutex);
1915
1916 kthread_set_per_cpu(worker->task, -1);
1917 list_del(&worker->node);
1918 worker->pool = NULL;
1919
1920 if (list_empty(&pool->workers))
1921 detach_completion = pool->detach_completion;
1922 mutex_unlock(&wq_pool_attach_mutex);
1923
1924 /* clear leftover flags without pool->lock after it is detached */
1925 worker->flags &= ~(WORKER_UNBOUND | WORKER_REBOUND);
1926
1927 if (detach_completion)
1928 complete(detach_completion);
1929 }
1930
1931 /**
1932 * create_worker - create a new workqueue worker
1933 * @pool: pool the new worker will belong to
1934 *
1935 * Create and start a new worker which is attached to @pool.
1936 *
1937 * CONTEXT:
1938 * Might sleep. Does GFP_KERNEL allocations.
1939 *
1940 * Return:
1941 * Pointer to the newly created worker.
1942 */
1943 static struct worker *create_worker(struct worker_pool *pool)
1944 {
1945 struct worker *worker;
1946 int id;
1947 char id_buf[16];
1948
1949 /* ID is needed to determine kthread name */
1950 id = ida_alloc(&pool->worker_ida, GFP_KERNEL);
1951 if (id < 0)
1952 return NULL;
1953
1954 worker = alloc_worker(pool->node);
1955 if (!worker)
1956 goto fail;
1957
1958 worker->id = id;
1959
1960 if (pool->cpu >= 0)
1961 snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id,
1962 pool->attrs->nice < 0 ? "H" : "");
1963 else
1964 snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id);
1965
1966 worker->task = kthread_create_on_node(worker_thread, worker, pool->node,
1967 "kworker/%s", id_buf);
1968 if (IS_ERR(worker->task))
1969 goto fail;
1970
1971 set_user_nice(worker->task, pool->attrs->nice);
1972 kthread_bind_mask(worker->task, pool->attrs->cpumask);
1973
1974 /* successful, attach the worker to the pool */
1975 worker_attach_to_pool(worker, pool);
1976
1977 /* start the newly created worker */
1978 raw_spin_lock_irq(&pool->lock);
1979 worker->pool->nr_workers++;
1980 worker_enter_idle(worker);
1981 wake_up_process(worker->task);
1982 raw_spin_unlock_irq(&pool->lock);
1983
1984 return worker;
1985
1986 fail:
1987 ida_free(&pool->worker_ida, id);
1988 kfree(worker);
1989 return NULL;
1990 }
1991
1992 /**
1993 * destroy_worker - destroy a workqueue worker
1994 * @worker: worker to be destroyed
1995 *
1996 * Destroy @worker and adjust @pool stats accordingly. The worker should
1997 * be idle.
1998 *
1999 * CONTEXT:
2000 * raw_spin_lock_irq(pool->lock).
2001 */
2002 static void destroy_worker(struct worker *worker)
2003 {
2004 struct worker_pool *pool = worker->pool;
2005
2006 lockdep_assert_held(&pool->lock);
2007
2008 /* sanity check frenzy */
2009 if (WARN_ON(worker->current_work) ||
2010 WARN_ON(!list_empty(&worker->scheduled)) ||
2011 WARN_ON(!(worker->flags & WORKER_IDLE)))
2012 return;
2013
2014 pool->nr_workers--;
2015 pool->nr_idle--;
2016
2017 list_del_init(&worker->entry);
2018 worker->flags |= WORKER_DIE;
2019 wake_up_process(worker->task);
2020 }
2021
2022 static void idle_worker_timeout(struct timer_list *t)
2023 {
2024 struct worker_pool *pool = from_timer(pool, t, idle_timer);
2025
2026 raw_spin_lock_irq(&pool->lock);
2027
2028 while (too_many_workers(pool)) {
2029 struct worker *worker;
2030 unsigned long expires;
2031
2032 /* idle_list is kept in LIFO order, check the last one */
2033 worker = list_entry(pool->idle_list.prev, struct worker, entry);
2034 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
2035
2036 if (time_before(jiffies, expires)) {
2037 mod_timer(&pool->idle_timer, expires);
2038 break;
2039 }
2040
2041 destroy_worker(worker);
2042 }
2043
2044 raw_spin_unlock_irq(&pool->lock);
2045 }
2046
2047 static void send_mayday(struct work_struct *work)
2048 {
2049 struct pool_workqueue *pwq = get_work_pwq(work);
2050 struct workqueue_struct *wq = pwq->wq;
2051
2052 lockdep_assert_held(&wq_mayday_lock);
2053
2054 if (!wq->rescuer)
2055 return;
2056
2057 /* mayday mayday mayday */
2058 if (list_empty(&pwq->mayday_node)) {
2059 /*
2060 * If @pwq is for an unbound wq, its base ref may be put at
2061 * any time due to an attribute change. Pin @pwq until the
2062 * rescuer is done with it.
2063 */
2064 get_pwq(pwq);
2065 list_add_tail(&pwq->mayday_node, &wq->maydays);
2066 wake_up_process(wq->rescuer->task);
2067 }
2068 }
2069
2070 static void pool_mayday_timeout(struct timer_list *t)
2071 {
2072 struct worker_pool *pool = from_timer(pool, t, mayday_timer);
2073 struct work_struct *work;
2074
2075 raw_spin_lock_irq(&pool->lock);
2076 raw_spin_lock(&wq_mayday_lock); /* for wq->maydays */
2077
2078 if (need_to_create_worker(pool)) {
2079 /*
2080 * We've been trying to create a new worker but
2081 * haven't been successful. We might be hitting an
2082 * allocation deadlock. Send distress signals to
2083 * rescuers.
2084 */
2085 list_for_each_entry(work, &pool->worklist, entry)
2086 send_mayday(work);
2087 }
2088
2089 raw_spin_unlock(&wq_mayday_lock);
2090 raw_spin_unlock_irq(&pool->lock);
2091
2092 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
2093 }
2094
2095 /**
2096 * maybe_create_worker - create a new worker if necessary
2097 * @pool: pool to create a new worker for
2098 *
2099 * Create a new worker for @pool if necessary. @pool is guaranteed to
2100 * have at least one idle worker on return from this function. If
2101 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
2102 * sent to all rescuers with works scheduled on @pool to resolve
2103 * possible allocation deadlock.
2104 *
2105 * On return, need_to_create_worker() is guaranteed to be %false and
2106 * may_start_working() %true.
2107 *
2108 * LOCKING:
2109 * raw_spin_lock_irq(pool->lock) which may be released and regrabbed
2110 * multiple times. Does GFP_KERNEL allocations. Called only from
2111 * manager.
2112 */
2113 static void maybe_create_worker(struct worker_pool *pool)
2114 __releases(&pool->lock)
2115 __acquires(&pool->lock)
2116 {
2117 restart:
2118 raw_spin_unlock_irq(&pool->lock);
2119
2120 /* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
2121 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
2122
2123 while (true) {
2124 if (create_worker(pool) || !need_to_create_worker(pool))
2125 break;
2126
2127 schedule_timeout_interruptible(CREATE_COOLDOWN);
2128
2129 if (!need_to_create_worker(pool))
2130 break;
2131 }
2132
2133 del_timer_sync(&pool->mayday_timer);
2134 raw_spin_lock_irq(&pool->lock);
2135 /*
2136 * This is necessary even after a new worker was just successfully
2137 * created as @pool->lock was dropped and the new worker might have
2138 * already become busy.
2139 */
2140 if (need_to_create_worker(pool))
2141 goto restart;
2142 }
2143
2144 /**
2145 * manage_workers - manage worker pool
2146 * @worker: self
2147 *
2148 * Assume the manager role and manage the worker pool @worker belongs
2149 * to. At any given time, there can be only zero or one manager per
2150 * pool. The exclusion is handled automatically by this function.
2151 *
2152 * The caller can safely start processing works on false return. On
2153 * true return, it's guaranteed that need_to_create_worker() is false
2154 * and may_start_working() is true.
2155 *
2156 * CONTEXT:
2157 * raw_spin_lock_irq(pool->lock) which may be released and regrabbed
2158 * multiple times. Does GFP_KERNEL allocations.
2159 *
2160 * Return:
2161 * %false if the pool doesn't need management and the caller can safely
2162 * start processing works, %true if management function was performed and
2163 * the conditions that the caller verified before calling the function may
2164 * no longer be true.
2165 */
2166 static bool manage_workers(struct worker *worker)
2167 {
2168 struct worker_pool *pool = worker->pool;
2169
2170 if (pool->flags & POOL_MANAGER_ACTIVE)
2171 return false;
2172
2173 pool->flags |= POOL_MANAGER_ACTIVE;
2174 pool->manager = worker;
2175
2176 maybe_create_worker(pool);
2177
2178 pool->manager = NULL;
2179 pool->flags &= ~POOL_MANAGER_ACTIVE;
2180 rcuwait_wake_up(&manager_wait);
2181 return true;
2182 }
2183
2184 /**
2185 * process_one_work - process single work
2186 * @worker: self
2187 * @work: work to process
2188 *
2189 * Process @work. This function contains all the logics necessary to
2190 * process a single work including synchronization against and
2191 * interaction with other workers on the same cpu, queueing and
2192 * flushing. As long as context requirement is met, any worker can
2193 * call this function to process a work.
2194 *
2195 * CONTEXT:
2196 * raw_spin_lock_irq(pool->lock) which is released and regrabbed.
2197 */
2198 static void process_one_work(struct worker *worker, struct work_struct *work)
2199 __releases(&pool->lock)
2200 __acquires(&pool->lock)
2201 {
2202 struct pool_workqueue *pwq = get_work_pwq(work);
2203 struct worker_pool *pool = worker->pool;
2204 bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE;
2205 unsigned long work_data;
2206 struct worker *collision;
2207 #ifdef CONFIG_LOCKDEP
2208 /*
2209 * It is permissible to free the struct work_struct from
2210 * inside the function that is called from it, this we need to
2211 * take into account for lockdep too. To avoid bogus "held
2212 * lock freed" warnings as well as problems when looking into
2213 * work->lockdep_map, make a copy and use that here.
2214 */
2215 struct lockdep_map lockdep_map;
2216
2217 lockdep_copy_map(&lockdep_map, &work->lockdep_map);
2218 #endif
2219 /* ensure we're on the correct CPU */
2220 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
2221 raw_smp_processor_id() != pool->cpu);
2222
2223 /*
2224 * A single work shouldn't be executed concurrently by
2225 * multiple workers on a single cpu. Check whether anyone is
2226 * already processing the work. If so, defer the work to the
2227 * currently executing one.
2228 */
2229 collision = find_worker_executing_work(pool, work);
2230 if (unlikely(collision)) {
2231 move_linked_works(work, &collision->scheduled, NULL);
2232 return;
2233 }
2234
2235 /* claim and dequeue */
2236 debug_work_deactivate(work);
2237 hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
2238 worker->current_work = work;
2239 worker->current_func = work->func;
2240 worker->current_pwq = pwq;
2241 work_data = *work_data_bits(work);
2242 worker->current_color = get_work_color(work_data);
2243
2244 /*
2245 * Record wq name for cmdline and debug reporting, may get
2246 * overridden through set_worker_desc().
2247 */
2248 strscpy(worker->desc, pwq->wq->name, WORKER_DESC_LEN);
2249
2250 list_del_init(&work->entry);
2251
2252 /*
2253 * CPU intensive works don't participate in concurrency management.
2254 * They're the scheduler's responsibility. This takes @worker out
2255 * of concurrency management and the next code block will chain
2256 * execution of the pending work items.
2257 */
2258 if (unlikely(cpu_intensive))
2259 worker_set_flags(worker, WORKER_CPU_INTENSIVE);
2260
2261 /*
2262 * Wake up another worker if necessary. The condition is always
2263 * false for normal per-cpu workers since nr_running would always
2264 * be >= 1 at this point. This is used to chain execution of the
2265 * pending work items for WORKER_NOT_RUNNING workers such as the
2266 * UNBOUND and CPU_INTENSIVE ones.
2267 */
2268 if (need_more_worker(pool))
2269 wake_up_worker(pool);
2270
2271 /*
2272 * Record the last pool and clear PENDING which should be the last
2273 * update to @work. Also, do this inside @pool->lock so that
2274 * PENDING and queued state changes happen together while IRQ is
2275 * disabled.
2276 */
2277 set_work_pool_and_clear_pending(work, pool->id);
2278
2279 raw_spin_unlock_irq(&pool->lock);
2280
2281 lock_map_acquire(&pwq->wq->lockdep_map);
2282 lock_map_acquire(&lockdep_map);
2283 /*
2284 * Strictly speaking we should mark the invariant state without holding
2285 * any locks, that is, before these two lock_map_acquire()'s.
2286 *
2287 * However, that would result in:
2288 *
2289 * A(W1)
2290 * WFC(C)
2291 * A(W1)
2292 * C(C)
2293 *
2294 * Which would create W1->C->W1 dependencies, even though there is no
2295 * actual deadlock possible. There are two solutions, using a
2296 * read-recursive acquire on the work(queue) 'locks', but this will then
2297 * hit the lockdep limitation on recursive locks, or simply discard
2298 * these locks.
2299 *
2300 * AFAICT there is no possible deadlock scenario between the
2301 * flush_work() and complete() primitives (except for single-threaded
2302 * workqueues), so hiding them isn't a problem.
2303 */
2304 lockdep_invariant_state(true);
2305 trace_workqueue_execute_start(work);
2306 worker->current_func(work);
2307 /*
2308 * While we must be careful to not use "work" after this, the trace
2309 * point will only record its address.
2310 */
2311 trace_workqueue_execute_end(work, worker->current_func);
2312 lock_map_release(&lockdep_map);
2313 lock_map_release(&pwq->wq->lockdep_map);
2314
2315 if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
2316 pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
2317 " last function: %ps\n",
2318 current->comm, preempt_count(), task_pid_nr(current),
2319 worker->current_func);
2320 debug_show_held_locks(current);
2321 dump_stack();
2322 }
2323
2324 /*
2325 * The following prevents a kworker from hogging CPU on !PREEMPTION
2326 * kernels, where a requeueing work item waiting for something to
2327 * happen could deadlock with stop_machine as such work item could
2328 * indefinitely requeue itself while all other CPUs are trapped in
2329 * stop_machine. At the same time, report a quiescent RCU state so
2330 * the same condition doesn't freeze RCU.
2331 */
2332 cond_resched();
2333
2334 raw_spin_lock_irq(&pool->lock);
2335
2336 /* clear cpu intensive status */
2337 if (unlikely(cpu_intensive))
2338 worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
2339
2340 /* tag the worker for identification in schedule() */
2341 worker->last_func = worker->current_func;
2342
2343 /* we're done with it, release */
2344 hash_del(&worker->hentry);
2345 worker->current_work = NULL;
2346 worker->current_func = NULL;
2347 worker->current_pwq = NULL;
2348 worker->current_color = INT_MAX;
2349 pwq_dec_nr_in_flight(pwq, work_data);
2350 }
2351
2352 /**
2353 * process_scheduled_works - process scheduled works
2354 * @worker: self
2355 *
2356 * Process all scheduled works. Please note that the scheduled list
2357 * may change while processing a work, so this function repeatedly
2358 * fetches a work from the top and executes it.
2359 *
2360 * CONTEXT:
2361 * raw_spin_lock_irq(pool->lock) which may be released and regrabbed
2362 * multiple times.
2363 */
2364 static void process_scheduled_works(struct worker *worker)
2365 {
2366 while (!list_empty(&worker->scheduled)) {
2367 struct work_struct *work = list_first_entry(&worker->scheduled,
2368 struct work_struct, entry);
2369 process_one_work(worker, work);
2370 }
2371 }
2372
2373 static void set_pf_worker(bool val)
2374 {
2375 mutex_lock(&wq_pool_attach_mutex);
2376 if (val)
2377 current->flags |= PF_WQ_WORKER;
2378 else
2379 current->flags &= ~PF_WQ_WORKER;
2380 mutex_unlock(&wq_pool_attach_mutex);
2381 }
2382
2383 /**
2384 * worker_thread - the worker thread function
2385 * @__worker: self
2386 *
2387 * The worker thread function. All workers belong to a worker_pool -
2388 * either a per-cpu one or dynamic unbound one. These workers process all
2389 * work items regardless of their specific target workqueue. The only
2390 * exception is work items which belong to workqueues with a rescuer which
2391 * will be explained in rescuer_thread().
2392 *
2393 * Return: 0
2394 */
2395 static int worker_thread(void *__worker)
2396 {
2397 struct worker *worker = __worker;
2398 struct worker_pool *pool = worker->pool;
2399
2400 /* tell the scheduler that this is a workqueue worker */
2401 set_pf_worker(true);
2402 woke_up:
2403 raw_spin_lock_irq(&pool->lock);
2404
2405 /* am I supposed to die? */
2406 if (unlikely(worker->flags & WORKER_DIE)) {
2407 raw_spin_unlock_irq(&pool->lock);
2408 WARN_ON_ONCE(!list_empty(&worker->entry));
2409 set_pf_worker(false);
2410
2411 set_task_comm(worker->task, "kworker/dying");
2412 ida_free(&pool->worker_ida, worker->id);
2413 worker_detach_from_pool(worker);
2414 kfree(worker);
2415 return 0;
2416 }
2417
2418 worker_leave_idle(worker);
2419 recheck:
2420 /* no more worker necessary? */
2421 if (!need_more_worker(pool))
2422 goto sleep;
2423
2424 /* do we need to manage? */
2425 if (unlikely(!may_start_working(pool)) && manage_workers(worker))
2426 goto recheck;
2427
2428 /*
2429 * ->scheduled list can only be filled while a worker is
2430 * preparing to process a work or actually processing it.
2431 * Make sure nobody diddled with it while I was sleeping.
2432 */
2433 WARN_ON_ONCE(!list_empty(&worker->scheduled));
2434
2435 /*
2436 * Finish PREP stage. We're guaranteed to have at least one idle
2437 * worker or that someone else has already assumed the manager
2438 * role. This is where @worker starts participating in concurrency
2439 * management if applicable and concurrency management is restored
2440 * after being rebound. See rebind_workers() for details.
2441 */
2442 worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND);
2443
2444 do {
2445 struct work_struct *work =
2446 list_first_entry(&pool->worklist,
2447 struct work_struct, entry);
2448
2449 pool->watchdog_ts = jiffies;
2450
2451 if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
2452 /* optimization path, not strictly necessary */
2453 process_one_work(worker, work);
2454 if (unlikely(!list_empty(&worker->scheduled)))
2455 process_scheduled_works(worker);
2456 } else {
2457 move_linked_works(work, &worker->scheduled, NULL);
2458 process_scheduled_works(worker);
2459 }
2460 } while (keep_working(pool));
2461
2462 worker_set_flags(worker, WORKER_PREP);
2463 sleep:
2464 /*
2465 * pool->lock is held and there's no work to process and no need to
2466 * manage, sleep. Workers are woken up only while holding
2467 * pool->lock or from local cpu, so setting the current state
2468 * before releasing pool->lock is enough to prevent losing any
2469 * event.
2470 */
2471 worker_enter_idle(worker);
2472 __set_current_state(TASK_IDLE);
2473 raw_spin_unlock_irq(&pool->lock);
2474 schedule();
2475 goto woke_up;
2476 }
2477
2478 /**
2479 * rescuer_thread - the rescuer thread function
2480 * @__rescuer: self
2481 *
2482 * Workqueue rescuer thread function. There's one rescuer for each
2483 * workqueue which has WQ_MEM_RECLAIM set.
2484 *
2485 * Regular work processing on a pool may block trying to create a new
2486 * worker which uses GFP_KERNEL allocation which has slight chance of
2487 * developing into deadlock if some works currently on the same queue
2488 * need to be processed to satisfy the GFP_KERNEL allocation. This is
2489 * the problem rescuer solves.
2490 *
2491 * When such condition is possible, the pool summons rescuers of all
2492 * workqueues which have works queued on the pool and let them process
2493 * those works so that forward progress can be guaranteed.
2494 *
2495 * This should happen rarely.
2496 *
2497 * Return: 0
2498 */
2499 static int rescuer_thread(void *__rescuer)
2500 {
2501 struct worker *rescuer = __rescuer;
2502 struct workqueue_struct *wq = rescuer->rescue_wq;
2503 struct list_head *scheduled = &rescuer->scheduled;
2504 bool should_stop;
2505
2506 set_user_nice(current, RESCUER_NICE_LEVEL);
2507
2508 /*
2509 * Mark rescuer as worker too. As WORKER_PREP is never cleared, it
2510 * doesn't participate in concurrency management.
2511 */
2512 set_pf_worker(true);
2513 repeat:
2514 set_current_state(TASK_IDLE);
2515
2516 /*
2517 * By the time the rescuer is requested to stop, the workqueue
2518 * shouldn't have any work pending, but @wq->maydays may still have
2519 * pwq(s) queued. This can happen by non-rescuer workers consuming
2520 * all the work items before the rescuer got to them. Go through
2521 * @wq->maydays processing before acting on should_stop so that the
2522 * list is always empty on exit.
2523 */
2524 should_stop = kthread_should_stop();
2525
2526 /* see whether any pwq is asking for help */
2527 raw_spin_lock_irq(&wq_mayday_lock);
2528
2529 while (!list_empty(&wq->maydays)) {
2530 struct pool_workqueue *pwq = list_first_entry(&wq->maydays,
2531 struct pool_workqueue, mayday_node);
2532 struct worker_pool *pool = pwq->pool;
2533 struct work_struct *work, *n;
2534 bool first = true;
2535
2536 __set_current_state(TASK_RUNNING);
2537 list_del_init(&pwq->mayday_node);
2538
2539 raw_spin_unlock_irq(&wq_mayday_lock);
2540
2541 worker_attach_to_pool(rescuer, pool);
2542
2543 raw_spin_lock_irq(&pool->lock);
2544
2545 /*
2546 * Slurp in all works issued via this workqueue and
2547 * process'em.
2548 */
2549 WARN_ON_ONCE(!list_empty(scheduled));
2550 list_for_each_entry_safe(work, n, &pool->worklist, entry) {
2551 if (get_work_pwq(work) == pwq) {
2552 if (first)
2553 pool->watchdog_ts = jiffies;
2554 move_linked_works(work, scheduled, &n);
2555 }
2556 first = false;
2557 }
2558
2559 if (!list_empty(scheduled)) {
2560 process_scheduled_works(rescuer);
2561
2562 /*
2563 * The above execution of rescued work items could
2564 * have created more to rescue through
2565 * pwq_activate_first_inactive() or chained
2566 * queueing. Let's put @pwq back on mayday list so
2567 * that such back-to-back work items, which may be
2568 * being used to relieve memory pressure, don't
2569 * incur MAYDAY_INTERVAL delay inbetween.
2570 */
2571 if (pwq->nr_active && need_to_create_worker(pool)) {
2572 raw_spin_lock(&wq_mayday_lock);
2573 /*
2574 * Queue iff we aren't racing destruction
2575 * and somebody else hasn't queued it already.
2576 */
2577 if (wq->rescuer && list_empty(&pwq->mayday_node)) {
2578 get_pwq(pwq);
2579 list_add_tail(&pwq->mayday_node, &wq->maydays);
2580 }
2581 raw_spin_unlock(&wq_mayday_lock);
2582 }
2583 }
2584
2585 /*
2586 * Put the reference grabbed by send_mayday(). @pool won't
2587 * go away while we're still attached to it.
2588 */
2589 put_pwq(pwq);
2590
2591 /*
2592 * Leave this pool. If need_more_worker() is %true, notify a
2593 * regular worker; otherwise, we end up with 0 concurrency
2594 * and stalling the execution.
2595 */
2596 if (need_more_worker(pool))
2597 wake_up_worker(pool);
2598
2599 raw_spin_unlock_irq(&pool->lock);
2600
2601 worker_detach_from_pool(rescuer);
2602
2603 raw_spin_lock_irq(&wq_mayday_lock);
2604 }
2605
2606 raw_spin_unlock_irq(&wq_mayday_lock);
2607
2608 if (should_stop) {
2609 __set_current_state(TASK_RUNNING);
2610 set_pf_worker(false);
2611 return 0;
2612 }
2613
2614 /* rescuers should never participate in concurrency management */
2615 WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
2616 schedule();
2617 goto repeat;
2618 }
2619
2620 /**
2621 * check_flush_dependency - check for flush dependency sanity
2622 * @target_wq: workqueue being flushed
2623 * @target_work: work item being flushed (NULL for workqueue flushes)
2624 *
2625 * %current is trying to flush the whole @target_wq or @target_work on it.
2626 * If @target_wq doesn't have %WQ_MEM_RECLAIM, verify that %current is not
2627 * reclaiming memory or running on a workqueue which doesn't have
2628 * %WQ_MEM_RECLAIM as that can break forward-progress guarantee leading to
2629 * a deadlock.
2630 */
2631 static void check_flush_dependency(struct workqueue_struct *target_wq,
2632 struct work_struct *target_work)
2633 {
2634 work_func_t target_func = target_work ? target_work->func : NULL;
2635 struct worker *worker;
2636
2637 if (target_wq->flags & WQ_MEM_RECLAIM)
2638 return;
2639
2640 worker = current_wq_worker();
2641
2642 WARN_ONCE(current->flags & PF_MEMALLOC,
2643 "workqueue: PF_MEMALLOC task %d(%s) is flushing !WQ_MEM_RECLAIM %s:%ps",
2644 current->pid, current->comm, target_wq->name, target_func);
2645 WARN_ONCE(worker && ((worker->current_pwq->wq->flags &
2646 (WQ_MEM_RECLAIM | __WQ_LEGACY)) == WQ_MEM_RECLAIM),
2647 "workqueue: WQ_MEM_RECLAIM %s:%ps is flushing !WQ_MEM_RECLAIM %s:%ps",
2648 worker->current_pwq->wq->name, worker->current_func,
2649 target_wq->name, target_func);
2650 }
2651
2652 struct wq_barrier {
2653 struct work_struct work;
2654 struct completion done;
2655 struct task_struct *task; /* purely informational */
2656 };
2657
2658 static void wq_barrier_func(struct work_struct *work)
2659 {
2660 struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
2661 complete(&barr->done);
2662 }
2663
2664 /**
2665 * insert_wq_barrier - insert a barrier work
2666 * @pwq: pwq to insert barrier into
2667 * @barr: wq_barrier to insert
2668 * @target: target work to attach @barr to
2669 * @worker: worker currently executing @target, NULL if @target is not executing
2670 *
2671 * @barr is linked to @target such that @barr is completed only after
2672 * @target finishes execution. Please note that the ordering
2673 * guarantee is observed only with respect to @target and on the local
2674 * cpu.
2675 *
2676 * Currently, a queued barrier can't be canceled. This is because
2677 * try_to_grab_pending() can't determine whether the work to be
2678 * grabbed is at the head of the queue and thus can't clear LINKED
2679 * flag of the previous work while there must be a valid next work
2680 * after a work with LINKED flag set.
2681 *
2682 * Note that when @worker is non-NULL, @target may be modified
2683 * underneath us, so we can't reliably determine pwq from @target.
2684 *
2685 * CONTEXT:
2686 * raw_spin_lock_irq(pool->lock).
2687 */
2688 static void insert_wq_barrier(struct pool_workqueue *pwq,
2689 struct wq_barrier *barr,
2690 struct work_struct *target, struct worker *worker)
2691 {
2692 unsigned int work_flags = 0;
2693 unsigned int work_color;
2694 struct list_head *head;
2695
2696 /*
2697 * debugobject calls are safe here even with pool->lock locked
2698 * as we know for sure that this will not trigger any of the
2699 * checks and call back into the fixup functions where we
2700 * might deadlock.
2701 */
2702 INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
2703 __set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
2704
2705 init_completion_map(&barr->done, &target->lockdep_map);
2706
2707 barr->task = current;
2708
2709 /* The barrier work item does not participate in pwq->nr_active. */
2710 work_flags |= WORK_STRUCT_INACTIVE;
2711
2712 /*
2713 * If @target is currently being executed, schedule the
2714 * barrier to the worker; otherwise, put it after @target.
2715 */
2716 if (worker) {
2717 head = worker->scheduled.next;
2718 work_color = worker->current_color;
2719 } else {
2720 unsigned long *bits = work_data_bits(target);
2721
2722 head = target->entry.next;
2723 /* there can already be other linked works, inherit and set */
2724 work_flags |= *bits & WORK_STRUCT_LINKED;
2725 work_color = get_work_color(*bits);
2726 __set_bit(WORK_STRUCT_LINKED_BIT, bits);
2727 }
2728
2729 pwq->nr_in_flight[work_color]++;
2730 work_flags |= work_color_to_flags(work_color);
2731
2732 debug_work_activate(&barr->work);
2733 insert_work(pwq, &barr->work, head, work_flags);
2734 }
2735
2736 /**
2737 * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing
2738 * @wq: workqueue being flushed
2739 * @flush_color: new flush color, < 0 for no-op
2740 * @work_color: new work color, < 0 for no-op
2741 *
2742 * Prepare pwqs for workqueue flushing.
2743 *
2744 * If @flush_color is non-negative, flush_color on all pwqs should be
2745 * -1. If no pwq has in-flight commands at the specified color, all
2746 * pwq->flush_color's stay at -1 and %false is returned. If any pwq
2747 * has in flight commands, its pwq->flush_color is set to
2748 * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq
2749 * wakeup logic is armed and %true is returned.
2750 *
2751 * The caller should have initialized @wq->first_flusher prior to
2752 * calling this function with non-negative @flush_color. If
2753 * @flush_color is negative, no flush color update is done and %false
2754 * is returned.
2755 *
2756 * If @work_color is non-negative, all pwqs should have the same
2757 * work_color which is previous to @work_color and all will be
2758 * advanced to @work_color.
2759 *
2760 * CONTEXT:
2761 * mutex_lock(wq->mutex).
2762 *
2763 * Return:
2764 * %true if @flush_color >= 0 and there's something to flush. %false
2765 * otherwise.
2766 */
2767 static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq,
2768 int flush_color, int work_color)
2769 {
2770 bool wait = false;
2771 struct pool_workqueue *pwq;
2772
2773 if (flush_color >= 0) {
2774 WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush));
2775 atomic_set(&wq->nr_pwqs_to_flush, 1);
2776 }
2777
2778 for_each_pwq(pwq, wq) {
2779 struct worker_pool *pool = pwq->pool;
2780
2781 raw_spin_lock_irq(&pool->lock);
2782
2783 if (flush_color >= 0) {
2784 WARN_ON_ONCE(pwq->flush_color != -1);
2785
2786 if (pwq->nr_in_flight[flush_color]) {
2787 pwq->flush_color = flush_color;
2788 atomic_inc(&wq->nr_pwqs_to_flush);
2789 wait = true;
2790 }
2791 }
2792
2793 if (work_color >= 0) {
2794 WARN_ON_ONCE(work_color != work_next_color(pwq->work_color));
2795 pwq->work_color = work_color;
2796 }
2797
2798 raw_spin_unlock_irq(&pool->lock);
2799 }
2800
2801 if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush))
2802 complete(&wq->first_flusher->done);
2803
2804 return wait;
2805 }
2806
2807 /**
2808 * flush_workqueue - ensure that any scheduled work has run to completion.
2809 * @wq: workqueue to flush
2810 *
2811 * This function sleeps until all work items which were queued on entry
2812 * have finished execution, but it is not livelocked by new incoming ones.
2813 */
2814 void flush_workqueue(struct workqueue_struct *wq)
2815 {
2816 struct wq_flusher this_flusher = {
2817 .list = LIST_HEAD_INIT(this_flusher.list),
2818 .flush_color = -1,
2819 .done = COMPLETION_INITIALIZER_ONSTACK_MAP(this_flusher.done, wq->lockdep_map),
2820 };
2821 int next_color;
2822
2823 if (WARN_ON(!wq_online))
2824 return;
2825
2826 lock_map_acquire(&wq->lockdep_map);
2827 lock_map_release(&wq->lockdep_map);
2828
2829 mutex_lock(&wq->mutex);
2830
2831 /*
2832 * Start-to-wait phase
2833 */
2834 next_color = work_next_color(wq->work_color);
2835
2836 if (next_color != wq->flush_color) {
2837 /*
2838 * Color space is not full. The current work_color
2839 * becomes our flush_color and work_color is advanced
2840 * by one.
2841 */
2842 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow));
2843 this_flusher.flush_color = wq->work_color;
2844 wq->work_color = next_color;
2845
2846 if (!wq->first_flusher) {
2847 /* no flush in progress, become the first flusher */
2848 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2849
2850 wq->first_flusher = &this_flusher;
2851
2852 if (!flush_workqueue_prep_pwqs(wq, wq->flush_color,
2853 wq->work_color)) {
2854 /* nothing to flush, done */
2855 wq->flush_color = next_color;
2856 wq->first_flusher = NULL;
2857 goto out_unlock;
2858 }
2859 } else {
2860 /* wait in queue */
2861 WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color);
2862 list_add_tail(&this_flusher.list, &wq->flusher_queue);
2863 flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2864 }
2865 } else {
2866 /*
2867 * Oops, color space is full, wait on overflow queue.
2868 * The next flush completion will assign us
2869 * flush_color and transfer to flusher_queue.
2870 */
2871 list_add_tail(&this_flusher.list, &wq->flusher_overflow);
2872 }
2873
2874 check_flush_dependency(wq, NULL);
2875
2876 mutex_unlock(&wq->mutex);
2877
2878 wait_for_completion(&this_flusher.done);
2879
2880 /*
2881 * Wake-up-and-cascade phase
2882 *
2883 * First flushers are responsible for cascading flushes and
2884 * handling overflow. Non-first flushers can simply return.
2885 */
2886 if (READ_ONCE(wq->first_flusher) != &this_flusher)
2887 return;
2888
2889 mutex_lock(&wq->mutex);
2890
2891 /* we might have raced, check again with mutex held */
2892 if (wq->first_flusher != &this_flusher)
2893 goto out_unlock;
2894
2895 WRITE_ONCE(wq->first_flusher, NULL);
2896
2897 WARN_ON_ONCE(!list_empty(&this_flusher.list));
2898 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2899
2900 while (true) {
2901 struct wq_flusher *next, *tmp;
2902
2903 /* complete all the flushers sharing the current flush color */
2904 list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
2905 if (next->flush_color != wq->flush_color)
2906 break;
2907 list_del_init(&next->list);
2908 complete(&next->done);
2909 }
2910
2911 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) &&
2912 wq->flush_color != work_next_color(wq->work_color));
2913
2914 /* this flush_color is finished, advance by one */
2915 wq->flush_color = work_next_color(wq->flush_color);
2916
2917 /* one color has been freed, handle overflow queue */
2918 if (!list_empty(&wq->flusher_overflow)) {
2919 /*
2920 * Assign the same color to all overflowed
2921 * flushers, advance work_color and append to
2922 * flusher_queue. This is the start-to-wait
2923 * phase for these overflowed flushers.
2924 */
2925 list_for_each_entry(tmp, &wq->flusher_overflow, list)
2926 tmp->flush_color = wq->work_color;
2927
2928 wq->work_color = work_next_color(wq->work_color);
2929
2930 list_splice_tail_init(&wq->flusher_overflow,
2931 &wq->flusher_queue);
2932 flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2933 }
2934
2935 if (list_empty(&wq->flusher_queue)) {
2936 WARN_ON_ONCE(wq->flush_color != wq->work_color);
2937 break;
2938 }
2939
2940 /*
2941 * Need to flush more colors. Make the next flusher
2942 * the new first flusher and arm pwqs.
2943 */
2944 WARN_ON_ONCE(wq->flush_color == wq->work_color);
2945 WARN_ON_ONCE(wq->flush_color != next->flush_color);
2946
2947 list_del_init(&next->list);
2948 wq->first_flusher = next;
2949
2950 if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1))
2951 break;
2952
2953 /*
2954 * Meh... this color is already done, clear first
2955 * flusher and repeat cascading.
2956 */
2957 wq->first_flusher = NULL;
2958 }
2959
2960 out_unlock:
2961 mutex_unlock(&wq->mutex);
2962 }
2963 EXPORT_SYMBOL(flush_workqueue);
2964
2965 /**
2966 * drain_workqueue - drain a workqueue
2967 * @wq: workqueue to drain
2968 *
2969 * Wait until the workqueue becomes empty. While draining is in progress,
2970 * only chain queueing is allowed. IOW, only currently pending or running
2971 * work items on @wq can queue further work items on it. @wq is flushed
2972 * repeatedly until it becomes empty. The number of flushing is determined
2973 * by the depth of chaining and should be relatively short. Whine if it
2974 * takes too long.
2975 */
2976 void drain_workqueue(struct workqueue_struct *wq)
2977 {
2978 unsigned int flush_cnt = 0;
2979 struct pool_workqueue *pwq;
2980
2981 /*
2982 * __queue_work() needs to test whether there are drainers, is much
2983 * hotter than drain_workqueue() and already looks at @wq->flags.
2984 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers.
2985 */
2986 mutex_lock(&wq->mutex);
2987 if (!wq->nr_drainers++)
2988 wq->flags |= __WQ_DRAINING;
2989 mutex_unlock(&wq->mutex);
2990 reflush:
2991 flush_workqueue(wq);
2992
2993 mutex_lock(&wq->mutex);
2994
2995 for_each_pwq(pwq, wq) {
2996 bool drained;
2997
2998 raw_spin_lock_irq(&pwq->pool->lock);
2999 drained = !pwq->nr_active && list_empty(&pwq->inactive_works);
3000 raw_spin_unlock_irq(&pwq->pool->lock);
3001
3002 if (drained)
3003 continue;
3004
3005 if (++flush_cnt == 10 ||
3006 (flush_cnt % 100 == 0 && flush_cnt <= 1000))
3007 pr_warn("workqueue %s: %s() isn't complete after %u tries\n",
3008 wq->name, __func__, flush_cnt);
3009
3010 mutex_unlock(&wq->mutex);
3011 goto reflush;
3012 }
3013
3014 if (!--wq->nr_drainers)
3015 wq->flags &= ~__WQ_DRAINING;
3016 mutex_unlock(&wq->mutex);
3017 }
3018 EXPORT_SYMBOL_GPL(drain_workqueue);
3019
3020 static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr,
3021 bool from_cancel)
3022 {
3023 struct worker *worker = NULL;
3024 struct worker_pool *pool;
3025 struct pool_workqueue *pwq;
3026
3027 might_sleep();
3028
3029 rcu_read_lock();
3030 pool = get_work_pool(work);
3031 if (!pool) {
3032 rcu_read_unlock();
3033 return false;
3034 }
3035
3036 raw_spin_lock_irq(&pool->lock);
3037 /* see the comment in try_to_grab_pending() with the same code */
3038 pwq = get_work_pwq(work);
3039 if (pwq) {
3040 if (unlikely(pwq->pool != pool))
3041 goto already_gone;
3042 } else {
3043 worker = find_worker_executing_work(pool, work);
3044 if (!worker)
3045 goto already_gone;
3046 pwq = worker->current_pwq;
3047 }
3048
3049 check_flush_dependency(pwq->wq, work);
3050
3051 insert_wq_barrier(pwq, barr, work, worker);
3052 raw_spin_unlock_irq(&pool->lock);
3053
3054 /*
3055 * Force a lock recursion deadlock when using flush_work() inside a
3056 * single-threaded or rescuer equipped workqueue.
3057 *
3058 * For single threaded workqueues the deadlock happens when the work
3059 * is after the work issuing the flush_work(). For rescuer equipped
3060 * workqueues the deadlock happens when the rescuer stalls, blocking
3061 * forward progress.
3062 */
3063 if (!from_cancel &&
3064 (pwq->wq->saved_max_active == 1 || pwq->wq->rescuer)) {
3065 lock_map_acquire(&pwq->wq->lockdep_map);
3066 lock_map_release(&pwq->wq->lockdep_map);
3067 }
3068 rcu_read_unlock();
3069 return true;
3070 already_gone:
3071 raw_spin_unlock_irq(&pool->lock);
3072 rcu_read_unlock();
3073 return false;
3074 }
3075
3076 static bool __flush_work(struct work_struct *work, bool from_cancel)
3077 {
3078 struct wq_barrier barr;
3079
3080 if (WARN_ON(!wq_online))
3081 return false;
3082
3083 if (WARN_ON(!work->func))
3084 return false;
3085
3086 lock_map_acquire(&work->lockdep_map);
3087 lock_map_release(&work->lockdep_map);
3088
3089 if (start_flush_work(work, &barr, from_cancel)) {
3090 wait_for_completion(&barr.done);
3091 destroy_work_on_stack(&barr.work);
3092 return true;
3093 } else {
3094 return false;
3095 }
3096 }
3097
3098 /**
3099 * flush_work - wait for a work to finish executing the last queueing instance
3100 * @work: the work to flush
3101 *
3102 * Wait until @work has finished execution. @work is guaranteed to be idle
3103 * on return if it hasn't been requeued since flush started.
3104 *
3105 * Return:
3106 * %true if flush_work() waited for the work to finish execution,
3107 * %false if it was already idle.
3108 */
3109 bool flush_work(struct work_struct *work)
3110 {
3111 return __flush_work(work, false);
3112 }
3113 EXPORT_SYMBOL_GPL(flush_work);
3114
3115 struct cwt_wait {
3116 wait_queue_entry_t wait;
3117 struct work_struct *work;
3118 };
3119
3120 static int cwt_wakefn(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
3121 {
3122 struct cwt_wait *cwait = container_of(wait, struct cwt_wait, wait);
3123
3124 if (cwait->work != key)
3125 return 0;
3126 return autoremove_wake_function(wait, mode, sync, key);
3127 }
3128
3129 static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
3130 {
3131 static DECLARE_WAIT_QUEUE_HEAD(cancel_waitq);
3132 unsigned long flags;
3133 int ret;
3134
3135 do {
3136 ret = try_to_grab_pending(work, is_dwork, &flags);
3137 /*
3138 * If someone else is already canceling, wait for it to
3139 * finish. flush_work() doesn't work for PREEMPT_NONE
3140 * because we may get scheduled between @work's completion
3141 * and the other canceling task resuming and clearing
3142 * CANCELING - flush_work() will return false immediately
3143 * as @work is no longer busy, try_to_grab_pending() will
3144 * return -ENOENT as @work is still being canceled and the
3145 * other canceling task won't be able to clear CANCELING as
3146 * we're hogging the CPU.
3147 *
3148 * Let's wait for completion using a waitqueue. As this
3149 * may lead to the thundering herd problem, use a custom
3150 * wake function which matches @work along with exclusive
3151 * wait and wakeup.
3152 */
3153 if (unlikely(ret == -ENOENT)) {
3154 struct cwt_wait cwait;
3155
3156 init_wait(&cwait.wait);
3157 cwait.wait.func = cwt_wakefn;
3158 cwait.work = work;
3159
3160 prepare_to_wait_exclusive(&cancel_waitq, &cwait.wait,
3161 TASK_UNINTERRUPTIBLE);
3162 if (work_is_canceling(work))
3163 schedule();
3164 finish_wait(&cancel_waitq, &cwait.wait);
3165 }
3166 } while (unlikely(ret < 0));
3167
3168 /* tell other tasks trying to grab @work to back off */
3169 mark_work_canceling(work);
3170 local_irq_restore(flags);
3171
3172 /*
3173 * This allows canceling during early boot. We know that @work
3174 * isn't executing.
3175 */
3176 if (wq_online)
3177 __flush_work(work, true);
3178
3179 clear_work_data(work);
3180
3181 /*
3182 * Paired with prepare_to_wait() above so that either
3183 * waitqueue_active() is visible here or !work_is_canceling() is
3184 * visible there.
3185 */
3186 smp_mb();
3187 if (waitqueue_active(&cancel_waitq))
3188 __wake_up(&cancel_waitq, TASK_NORMAL, 1, work);
3189
3190 return ret;
3191 }
3192
3193 /**
3194 * cancel_work_sync - cancel a work and wait for it to finish
3195 * @work: the work to cancel
3196 *
3197 * Cancel @work and wait for its execution to finish. This function
3198 * can be used even if the work re-queues itself or migrates to
3199 * another workqueue. On return from this function, @work is
3200 * guaranteed to be not pending or executing on any CPU.
3201 *
3202 * cancel_work_sync(&delayed_work->work) must not be used for
3203 * delayed_work's. Use cancel_delayed_work_sync() instead.
3204 *
3205 * The caller must ensure that the workqueue on which @work was last
3206 * queued can't be destroyed before this function returns.
3207 *
3208 * Return:
3209 * %true if @work was pending, %false otherwise.
3210 */
3211 bool cancel_work_sync(struct work_struct *work)
3212 {
3213 return __cancel_work_timer(work, false);
3214 }
3215 EXPORT_SYMBOL_GPL(cancel_work_sync);
3216
3217 /**
3218 * flush_delayed_work - wait for a dwork to finish executing the last queueing
3219 * @dwork: the delayed work to flush
3220 *
3221 * Delayed timer is cancelled and the pending work is queued for
3222 * immediate execution. Like flush_work(), this function only
3223 * considers the last queueing instance of @dwork.
3224 *
3225 * Return:
3226 * %true if flush_work() waited for the work to finish execution,
3227 * %false if it was already idle.
3228 */
3229 bool flush_delayed_work(struct delayed_work *dwork)
3230 {
3231 local_irq_disable();
3232 if (del_timer_sync(&dwork->timer))
3233 __queue_work(dwork->cpu, dwork->wq, &dwork->work);
3234 local_irq_enable();
3235 return flush_work(&dwork->work);
3236 }
3237 EXPORT_SYMBOL(flush_delayed_work);
3238
3239 /**
3240 * flush_rcu_work - wait for a rwork to finish executing the last queueing
3241 * @rwork: the rcu work to flush
3242 *
3243 * Return:
3244 * %true if flush_rcu_work() waited for the work to finish execution,
3245 * %false if it was already idle.
3246 */
3247 bool flush_rcu_work(struct rcu_work *rwork)
3248 {
3249 if (test_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&rwork->work))) {
3250 rcu_barrier();
3251 flush_work(&rwork->work);
3252 return true;
3253 } else {
3254 return flush_work(&rwork->work);
3255 }
3256 }
3257 EXPORT_SYMBOL(flush_rcu_work);
3258
3259 static bool __cancel_work(struct work_struct *work, bool is_dwork)
3260 {
3261 unsigned long flags;
3262 int ret;
3263
3264 do {
3265 ret = try_to_grab_pending(work, is_dwork, &flags);
3266 } while (unlikely(ret == -EAGAIN));
3267
3268 if (unlikely(ret < 0))
3269 return false;
3270
3271 set_work_pool_and_clear_pending(work, get_work_pool_id(work));
3272 local_irq_restore(flags);
3273 return ret;
3274 }
3275
3276 /**
3277 * cancel_delayed_work - cancel a delayed work
3278 * @dwork: delayed_work to cancel
3279 *
3280 * Kill off a pending delayed_work.
3281 *
3282 * Return: %true if @dwork was pending and canceled; %false if it wasn't
3283 * pending.
3284 *
3285 * Note:
3286 * The work callback function may still be running on return, unless
3287 * it returns %true and the work doesn't re-arm itself. Explicitly flush or
3288 * use cancel_delayed_work_sync() to wait on it.
3289 *
3290 * This function is safe to call from any context including IRQ handler.
3291 */
3292 bool cancel_delayed_work(struct delayed_work *dwork)
3293 {
3294 return __cancel_work(&dwork->work, true);
3295 }
3296 EXPORT_SYMBOL(cancel_delayed_work);
3297
3298 /**
3299 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
3300 * @dwork: the delayed work cancel
3301 *
3302 * This is cancel_work_sync() for delayed works.
3303 *
3304 * Return:
3305 * %true if @dwork was pending, %false otherwise.
3306 */
3307 bool cancel_delayed_work_sync(struct delayed_work *dwork)
3308 {
3309 return __cancel_work_timer(&dwork->work, true);
3310 }
3311 EXPORT_SYMBOL(cancel_delayed_work_sync);
3312
3313 /**
3314 * schedule_on_each_cpu - execute a function synchronously on each online CPU
3315 * @func: the function to call
3316 *
3317 * schedule_on_each_cpu() executes @func on each online CPU using the
3318 * system workqueue and blocks until all CPUs have completed.
3319 * schedule_on_each_cpu() is very slow.
3320 *
3321 * Return:
3322 * 0 on success, -errno on failure.
3323 */
3324 int schedule_on_each_cpu(work_func_t func)
3325 {
3326 int cpu;
3327 struct work_struct __percpu *works;
3328
3329 works = alloc_percpu(struct work_struct);
3330 if (!works)
3331 return -ENOMEM;
3332
3333 cpus_read_lock();
3334
3335 for_each_online_cpu(cpu) {
3336 struct work_struct *work = per_cpu_ptr(works, cpu);
3337
3338 INIT_WORK(work, func);
3339 schedule_work_on(cpu, work);
3340 }
3341
3342 for_each_online_cpu(cpu)
3343 flush_work(per_cpu_ptr(works, cpu));
3344
3345 cpus_read_unlock();
3346 free_percpu(works);
3347 return 0;
3348 }
3349
3350 /**
3351 * execute_in_process_context - reliably execute the routine with user context
3352 * @fn: the function to execute
3353 * @ew: guaranteed storage for the execute work structure (must
3354 * be available when the work executes)
3355 *
3356 * Executes the function immediately if process context is available,
3357 * otherwise schedules the function for delayed execution.
3358 *
3359 * Return: 0 - function was executed
3360 * 1 - function was scheduled for execution
3361 */
3362 int execute_in_process_context(work_func_t fn, struct execute_work *ew)
3363 {
3364 if (!in_interrupt()) {
3365 fn(&ew->work);
3366 return 0;
3367 }
3368
3369 INIT_WORK(&ew->work, fn);
3370 schedule_work(&ew->work);
3371
3372 return 1;
3373 }
3374 EXPORT_SYMBOL_GPL(execute_in_process_context);
3375
3376 /**
3377 * free_workqueue_attrs - free a workqueue_attrs
3378 * @attrs: workqueue_attrs to free
3379 *
3380 * Undo alloc_workqueue_attrs().
3381 */
3382 void free_workqueue_attrs(struct workqueue_attrs *attrs)
3383 {
3384 if (attrs) {
3385 free_cpumask_var(attrs->cpumask);
3386 kfree(attrs);
3387 }
3388 }
3389
3390 /**
3391 * alloc_workqueue_attrs - allocate a workqueue_attrs
3392 *
3393 * Allocate a new workqueue_attrs, initialize with default settings and
3394 * return it.
3395 *
3396 * Return: The allocated new workqueue_attr on success. %NULL on failure.
3397 */
3398 struct workqueue_attrs *alloc_workqueue_attrs(void)
3399 {
3400 struct workqueue_attrs *attrs;
3401
3402 attrs = kzalloc(sizeof(*attrs), GFP_KERNEL);
3403 if (!attrs)
3404 goto fail;
3405 if (!alloc_cpumask_var(&attrs->cpumask, GFP_KERNEL))
3406 goto fail;
3407
3408 cpumask_copy(attrs->cpumask, cpu_possible_mask);
3409 return attrs;
3410 fail:
3411 free_workqueue_attrs(attrs);
3412 return NULL;
3413 }
3414
3415 static void copy_workqueue_attrs(struct workqueue_attrs *to,
3416 const struct workqueue_attrs *from)
3417 {
3418 to->nice = from->nice;
3419 cpumask_copy(to->cpumask, from->cpumask);
3420 /*
3421 * Unlike hash and equality test, this function doesn't ignore
3422 * ->no_numa as it is used for both pool and wq attrs. Instead,
3423 * get_unbound_pool() explicitly clears ->no_numa after copying.
3424 */
3425 to->no_numa = from->no_numa;
3426 }
3427
3428 /* hash value of the content of @attr */
3429 static u32 wqattrs_hash(const struct workqueue_attrs *attrs)
3430 {
3431 u32 hash = 0;
3432
3433 hash = jhash_1word(attrs->nice, hash);
3434 hash = jhash(cpumask_bits(attrs->cpumask),
3435 BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash);
3436 return hash;
3437 }
3438
3439 /* content equality test */
3440 static bool wqattrs_equal(const struct workqueue_attrs *a,
3441 const struct workqueue_attrs *b)
3442 {
3443 if (a->nice != b->nice)
3444 return false;
3445 if (!cpumask_equal(a->cpumask, b->cpumask))
3446 return false;
3447 return true;
3448 }
3449
3450 /**
3451 * init_worker_pool - initialize a newly zalloc'd worker_pool
3452 * @pool: worker_pool to initialize
3453 *
3454 * Initialize a newly zalloc'd @pool. It also allocates @pool->attrs.
3455 *
3456 * Return: 0 on success, -errno on failure. Even on failure, all fields
3457 * inside @pool proper are initialized and put_unbound_pool() can be called
3458 * on @pool safely to release it.
3459 */
3460 static int init_worker_pool(struct worker_pool *pool)
3461 {
3462 raw_spin_lock_init(&pool->lock);
3463 pool->id = -1;
3464 pool->cpu = -1;
3465 pool->node = NUMA_NO_NODE;
3466 pool->flags |= POOL_DISASSOCIATED;
3467 pool->watchdog_ts = jiffies;
3468 INIT_LIST_HEAD(&pool->worklist);
3469 INIT_LIST_HEAD(&pool->idle_list);
3470 hash_init(pool->busy_hash);
3471
3472 timer_setup(&pool->idle_timer, idle_worker_timeout, TIMER_DEFERRABLE);
3473
3474 timer_setup(&pool->mayday_timer, pool_mayday_timeout, 0);
3475
3476 INIT_LIST_HEAD(&pool->workers);
3477
3478 ida_init(&pool->worker_ida);
3479 INIT_HLIST_NODE(&pool->hash_node);
3480 pool->refcnt = 1;
3481
3482 /* shouldn't fail above this point */
3483 pool->attrs = alloc_workqueue_attrs();
3484 if (!pool->attrs)
3485 return -ENOMEM;
3486 return 0;
3487 }
3488
3489 #ifdef CONFIG_LOCKDEP
3490 static void wq_init_lockdep(struct workqueue_struct *wq)
3491 {
3492 char *lock_name;
3493
3494 lockdep_register_key(&wq->key);
3495 lock_name = kasprintf(GFP_KERNEL, "%s%s", "(wq_completion)", wq->name);
3496 if (!lock_name)
3497 lock_name = wq->name;
3498
3499 wq->lock_name = lock_name;
3500 lockdep_init_map(&wq->lockdep_map, lock_name, &wq->key, 0);
3501 }
3502
3503 static void wq_unregister_lockdep(struct workqueue_struct *wq)
3504 {
3505 lockdep_unregister_key(&wq->key);
3506 }
3507
3508 static void wq_free_lockdep(struct workqueue_struct *wq)
3509 {
3510 if (wq->lock_name != wq->name)
3511 kfree(wq->lock_name);
3512 }
3513 #else
3514 static void wq_init_lockdep(struct workqueue_struct *wq)
3515 {
3516 }
3517
3518 static void wq_unregister_lockdep(struct workqueue_struct *wq)
3519 {
3520 }
3521
3522 static void wq_free_lockdep(struct workqueue_struct *wq)
3523 {
3524 }
3525 #endif
3526
3527 static void rcu_free_wq(struct rcu_head *rcu)
3528 {
3529 struct workqueue_struct *wq =
3530 container_of(rcu, struct workqueue_struct, rcu);
3531
3532 wq_free_lockdep(wq);
3533
3534 if (!(wq->flags & WQ_UNBOUND))
3535 free_percpu(wq->cpu_pwqs);
3536 else
3537 free_workqueue_attrs(wq->unbound_attrs);
3538
3539 kfree(wq);
3540 }
3541
3542 static void rcu_free_pool(struct rcu_head *rcu)
3543 {
3544 struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu);
3545
3546 ida_destroy(&pool->worker_ida);
3547 free_workqueue_attrs(pool->attrs);
3548 kfree(pool);
3549 }
3550
3551 /* This returns with the lock held on success (pool manager is inactive). */
3552 static bool wq_manager_inactive(struct worker_pool *pool)
3553 {
3554 raw_spin_lock_irq(&pool->lock);
3555
3556 if (pool->flags & POOL_MANAGER_ACTIVE) {
3557 raw_spin_unlock_irq(&pool->lock);
3558 return false;
3559 }
3560 return true;
3561 }
3562
3563 /**
3564 * put_unbound_pool - put a worker_pool
3565 * @pool: worker_pool to put
3566 *
3567 * Put @pool. If its refcnt reaches zero, it gets destroyed in RCU
3568 * safe manner. get_unbound_pool() calls this function on its failure path
3569 * and this function should be able to release pools which went through,
3570 * successfully or not, init_worker_pool().
3571 *
3572 * Should be called with wq_pool_mutex held.
3573 */
3574 static void put_unbound_pool(struct worker_pool *pool)
3575 {
3576 DECLARE_COMPLETION_ONSTACK(detach_completion);
3577 struct worker *worker;
3578
3579 lockdep_assert_held(&wq_pool_mutex);
3580
3581 if (--pool->refcnt)
3582 return;
3583
3584 /* sanity checks */
3585 if (WARN_ON(!(pool->cpu < 0)) ||
3586 WARN_ON(!list_empty(&pool->worklist)))
3587 return;
3588
3589 /* release id and unhash */
3590 if (pool->id >= 0)
3591 idr_remove(&worker_pool_idr, pool->id);
3592 hash_del(&pool->hash_node);
3593
3594 /*
3595 * Become the manager and destroy all workers. This prevents
3596 * @pool's workers from blocking on attach_mutex. We're the last
3597 * manager and @pool gets freed with the flag set.
3598 * Because of how wq_manager_inactive() works, we will hold the
3599 * spinlock after a successful wait.
3600 */
3601 rcuwait_wait_event(&manager_wait, wq_manager_inactive(pool),
3602 TASK_UNINTERRUPTIBLE);
3603 pool->flags |= POOL_MANAGER_ACTIVE;
3604
3605 while ((worker = first_idle_worker(pool)))
3606 destroy_worker(worker);
3607 WARN_ON(pool->nr_workers || pool->nr_idle);
3608 raw_spin_unlock_irq(&pool->lock);
3609
3610 mutex_lock(&wq_pool_attach_mutex);
3611 if (!list_empty(&pool->workers))
3612 pool->detach_completion = &detach_completion;
3613 mutex_unlock(&wq_pool_attach_mutex);
3614
3615 if (pool->detach_completion)
3616 wait_for_completion(pool->detach_completion);
3617
3618 /* shut down the timers */
3619 del_timer_sync(&pool->idle_timer);
3620 del_timer_sync(&pool->mayday_timer);
3621
3622 /* RCU protected to allow dereferences from get_work_pool() */
3623 call_rcu(&pool->rcu, rcu_free_pool);
3624 }
3625
3626 /**
3627 * get_unbound_pool - get a worker_pool with the specified attributes
3628 * @attrs: the attributes of the worker_pool to get
3629 *
3630 * Obtain a worker_pool which has the same attributes as @attrs, bump the
3631 * reference count and return it. If there already is a matching
3632 * worker_pool, it will be used; otherwise, this function attempts to
3633 * create a new one.
3634 *
3635 * Should be called with wq_pool_mutex held.
3636 *
3637 * Return: On success, a worker_pool with the same attributes as @attrs.
3638 * On failure, %NULL.
3639 */
3640 static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs)
3641 {
3642 u32 hash = wqattrs_hash(attrs);
3643 struct worker_pool *pool;
3644 int node;
3645 int target_node = NUMA_NO_NODE;
3646
3647 lockdep_assert_held(&wq_pool_mutex);
3648
3649 /* do we already have a matching pool? */
3650 hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) {
3651 if (wqattrs_equal(pool->attrs, attrs)) {
3652 pool->refcnt++;
3653 return pool;
3654 }
3655 }
3656
3657 /* if cpumask is contained inside a NUMA node, we belong to that node */
3658 if (wq_numa_enabled) {
3659 for_each_node(node) {
3660 if (cpumask_subset(attrs->cpumask,
3661 wq_numa_possible_cpumask[node])) {
3662 target_node = node;
3663 break;
3664 }
3665 }
3666 }
3667
3668 /* nope, create a new one */
3669 pool = kzalloc_node(sizeof(*pool), GFP_KERNEL, target_node);
3670 if (!pool || init_worker_pool(pool) < 0)
3671 goto fail;
3672
3673 lockdep_set_subclass(&pool->lock, 1); /* see put_pwq() */
3674 copy_workqueue_attrs(pool->attrs, attrs);
3675 pool->node = target_node;
3676
3677 /*
3678 * no_numa isn't a worker_pool attribute, always clear it. See
3679 * 'struct workqueue_attrs' comments for detail.
3680 */
3681 pool->attrs->no_numa = false;
3682
3683 if (worker_pool_assign_id(pool) < 0)
3684 goto fail;
3685
3686 /* create and start the initial worker */
3687 if (wq_online && !create_worker(pool))
3688 goto fail;
3689
3690 /* install */
3691 hash_add(unbound_pool_hash, &pool->hash_node, hash);
3692
3693 return pool;
3694 fail:
3695 if (pool)
3696 put_unbound_pool(pool);
3697 return NULL;
3698 }
3699
3700 static void rcu_free_pwq(struct rcu_head *rcu)
3701 {
3702 kmem_cache_free(pwq_cache,
3703 container_of(rcu, struct pool_workqueue, rcu));
3704 }
3705
3706 /*
3707 * Scheduled on system_wq by put_pwq() when an unbound pwq hits zero refcnt
3708 * and needs to be destroyed.
3709 */
3710 static void pwq_unbound_release_workfn(struct work_struct *work)
3711 {
3712 struct pool_workqueue *pwq = container_of(work, struct pool_workqueue,
3713 unbound_release_work);
3714 struct workqueue_struct *wq = pwq->wq;
3715 struct worker_pool *pool = pwq->pool;
3716 bool is_last = false;
3717
3718 /*
3719 * when @pwq is not linked, it doesn't hold any reference to the
3720 * @wq, and @wq is invalid to access.
3721 */
3722 if (!list_empty(&pwq->pwqs_node)) {
3723 if (WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND)))
3724 return;
3725
3726 mutex_lock(&wq->mutex);
3727 list_del_rcu(&pwq->pwqs_node);
3728 is_last = list_empty(&wq->pwqs);
3729 mutex_unlock(&wq->mutex);
3730 }
3731
3732 mutex_lock(&wq_pool_mutex);
3733 put_unbound_pool(pool);
3734 mutex_unlock(&wq_pool_mutex);
3735
3736 call_rcu(&pwq->rcu, rcu_free_pwq);
3737
3738 /*
3739 * If we're the last pwq going away, @wq is already dead and no one
3740 * is gonna access it anymore. Schedule RCU free.
3741 */
3742 if (is_last) {
3743 wq_unregister_lockdep(wq);
3744 call_rcu(&wq->rcu, rcu_free_wq);
3745 }
3746 }
3747
3748 /**
3749 * pwq_adjust_max_active - update a pwq's max_active to the current setting
3750 * @pwq: target pool_workqueue
3751 *
3752 * If @pwq isn't freezing, set @pwq->max_active to the associated
3753 * workqueue's saved_max_active and activate inactive work items
3754 * accordingly. If @pwq is freezing, clear @pwq->max_active to zero.
3755 */
3756 static void pwq_adjust_max_active(struct pool_workqueue *pwq)
3757 {
3758 struct workqueue_struct *wq = pwq->wq;
3759 bool freezable = wq->flags & WQ_FREEZABLE;
3760 unsigned long flags;
3761
3762 /* for @wq->saved_max_active */
3763 lockdep_assert_held(&wq->mutex);
3764
3765 /* fast exit for non-freezable wqs */
3766 if (!freezable && pwq->max_active == wq->saved_max_active)
3767 return;
3768
3769 /* this function can be called during early boot w/ irq disabled */
3770 raw_spin_lock_irqsave(&pwq->pool->lock, flags);
3771
3772 /*
3773 * During [un]freezing, the caller is responsible for ensuring that
3774 * this function is called at least once after @workqueue_freezing
3775 * is updated and visible.
3776 */
3777 if (!freezable || !workqueue_freezing) {
3778 bool kick = false;
3779
3780 pwq->max_active = wq->saved_max_active;
3781
3782 while (!list_empty(&pwq->inactive_works) &&
3783 pwq->nr_active < pwq->max_active) {
3784 pwq_activate_first_inactive(pwq);
3785 kick = true;
3786 }
3787
3788 /*
3789 * Need to kick a worker after thawed or an unbound wq's
3790 * max_active is bumped. In realtime scenarios, always kicking a
3791 * worker will cause interference on the isolated cpu cores, so
3792 * let's kick iff work items were activated.
3793 */
3794 if (kick)
3795 wake_up_worker(pwq->pool);
3796 } else {
3797 pwq->max_active = 0;
3798 }
3799
3800 raw_spin_unlock_irqrestore(&pwq->pool->lock, flags);
3801 }
3802
3803 /* initialize newly allocated @pwq which is associated with @wq and @pool */
3804 static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq,
3805 struct worker_pool *pool)
3806 {
3807 BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK);
3808
3809 memset(pwq, 0, sizeof(*pwq));
3810
3811 pwq->pool = pool;
3812 pwq->wq = wq;
3813 pwq->flush_color = -1;
3814 pwq->refcnt = 1;
3815 INIT_LIST_HEAD(&pwq->inactive_works);
3816 INIT_LIST_HEAD(&pwq->pwqs_node);
3817 INIT_LIST_HEAD(&pwq->mayday_node);
3818 INIT_WORK(&pwq->unbound_release_work, pwq_unbound_release_workfn);
3819 }
3820
3821 /* sync @pwq with the current state of its associated wq and link it */
3822 static void link_pwq(struct pool_workqueue *pwq)
3823 {
3824 struct workqueue_struct *wq = pwq->wq;
3825
3826 lockdep_assert_held(&wq->mutex);
3827
3828 /* may be called multiple times, ignore if already linked */
3829 if (!list_empty(&pwq->pwqs_node))
3830 return;
3831
3832 /* set the matching work_color */
3833 pwq->work_color = wq->work_color;
3834
3835 /* sync max_active to the current setting */
3836 pwq_adjust_max_active(pwq);
3837
3838 /* link in @pwq */
3839 list_add_rcu(&pwq->pwqs_node, &wq->pwqs);
3840 }
3841
3842 /* obtain a pool matching @attr and create a pwq associating the pool and @wq */
3843 static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq,
3844 const struct workqueue_attrs *attrs)
3845 {
3846 struct worker_pool *pool;
3847 struct pool_workqueue *pwq;
3848
3849 lockdep_assert_held(&wq_pool_mutex);
3850
3851 pool = get_unbound_pool(attrs);
3852 if (!pool)
3853 return NULL;
3854
3855 pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node);
3856 if (!pwq) {
3857 put_unbound_pool(pool);
3858 return NULL;
3859 }
3860
3861 init_pwq(pwq, wq, pool);
3862 return pwq;
3863 }
3864
3865 /**
3866 * wq_calc_node_cpumask - calculate a wq_attrs' cpumask for the specified node
3867 * @attrs: the wq_attrs of the default pwq of the target workqueue
3868 * @node: the target NUMA node
3869 * @cpu_going_down: if >= 0, the CPU to consider as offline
3870 * @cpumask: outarg, the resulting cpumask
3871 *
3872 * Calculate the cpumask a workqueue with @attrs should use on @node. If
3873 * @cpu_going_down is >= 0, that cpu is considered offline during
3874 * calculation. The result is stored in @cpumask.
3875 *
3876 * If NUMA affinity is not enabled, @attrs->cpumask is always used. If
3877 * enabled and @node has online CPUs requested by @attrs, the returned
3878 * cpumask is the intersection of the possible CPUs of @node and
3879 * @attrs->cpumask.
3880 *
3881 * The caller is responsible for ensuring that the cpumask of @node stays
3882 * stable.
3883 *
3884 * Return: %true if the resulting @cpumask is different from @attrs->cpumask,
3885 * %false if equal.
3886 */
3887 static bool wq_calc_node_cpumask(const struct workqueue_attrs *attrs, int node,
3888 int cpu_going_down, cpumask_t *cpumask)
3889 {
3890 if (!wq_numa_enabled || attrs->no_numa)
3891 goto use_dfl;
3892
3893 /* does @node have any online CPUs @attrs wants? */
3894 cpumask_and(cpumask, cpumask_of_node(node), attrs->cpumask);
3895 if (cpu_going_down >= 0)
3896 cpumask_clear_cpu(cpu_going_down, cpumask);
3897
3898 if (cpumask_empty(cpumask))
3899 goto use_dfl;
3900
3901 /* yeap, return possible CPUs in @node that @attrs wants */
3902 cpumask_and(cpumask, attrs->cpumask, wq_numa_possible_cpumask[node]);
3903
3904 if (cpumask_empty(cpumask)) {
3905 pr_warn_once("WARNING: workqueue cpumask: online intersect > "
3906 "possible intersect\n");
3907 return false;
3908 }
3909
3910 return !cpumask_equal(cpumask, attrs->cpumask);
3911
3912 use_dfl:
3913 cpumask_copy(cpumask, attrs->cpumask);
3914 return false;
3915 }
3916
3917 /* install @pwq into @wq's numa_pwq_tbl[] for @node and return the old pwq */
3918 static struct pool_workqueue *numa_pwq_tbl_install(struct workqueue_struct *wq,
3919 int node,
3920 struct pool_workqueue *pwq)
3921 {
3922 struct pool_workqueue *old_pwq;
3923
3924 lockdep_assert_held(&wq_pool_mutex);
3925 lockdep_assert_held(&wq->mutex);
3926
3927 /* link_pwq() can handle duplicate calls */
3928 link_pwq(pwq);
3929
3930 old_pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
3931 rcu_assign_pointer(wq->numa_pwq_tbl[node], pwq);
3932 return old_pwq;
3933 }
3934
3935 /* context to store the prepared attrs & pwqs before applying */
3936 struct apply_wqattrs_ctx {
3937 struct workqueue_struct *wq; /* target workqueue */
3938 struct workqueue_attrs *attrs; /* attrs to apply */
3939 struct list_head list; /* queued for batching commit */
3940 struct pool_workqueue *dfl_pwq;
3941 struct pool_workqueue *pwq_tbl[];
3942 };
3943
3944 /* free the resources after success or abort */
3945 static void apply_wqattrs_cleanup(struct apply_wqattrs_ctx *ctx)
3946 {
3947 if (ctx) {
3948 int node;
3949
3950 for_each_node(node)
3951 put_pwq_unlocked(ctx->pwq_tbl[node]);
3952 put_pwq_unlocked(ctx->dfl_pwq);
3953
3954 free_workqueue_attrs(ctx->attrs);
3955
3956 kfree(ctx);
3957 }
3958 }
3959
3960 /* allocate the attrs and pwqs for later installation */
3961 static struct apply_wqattrs_ctx *
3962 apply_wqattrs_prepare(struct workqueue_struct *wq,
3963 const struct workqueue_attrs *attrs)
3964 {
3965 struct apply_wqattrs_ctx *ctx;
3966 struct workqueue_attrs *new_attrs, *tmp_attrs;
3967 int node;
3968
3969 lockdep_assert_held(&wq_pool_mutex);
3970
3971 ctx = kzalloc(struct_size(ctx, pwq_tbl, nr_node_ids), GFP_KERNEL);
3972
3973 new_attrs = alloc_workqueue_attrs();
3974 tmp_attrs = alloc_workqueue_attrs();
3975 if (!ctx || !new_attrs || !tmp_attrs)
3976 goto out_free;
3977
3978 /*
3979 * Calculate the attrs of the default pwq.
3980 * If the user configured cpumask doesn't overlap with the
3981 * wq_unbound_cpumask, we fallback to the wq_unbound_cpumask.
3982 */
3983 copy_workqueue_attrs(new_attrs, attrs);
3984 cpumask_and(new_attrs->cpumask, new_attrs->cpumask, wq_unbound_cpumask);
3985 if (unlikely(cpumask_empty(new_attrs->cpumask)))
3986 cpumask_copy(new_attrs->cpumask, wq_unbound_cpumask);
3987
3988 /*
3989 * We may create multiple pwqs with differing cpumasks. Make a
3990 * copy of @new_attrs which will be modified and used to obtain
3991 * pools.
3992 */
3993 copy_workqueue_attrs(tmp_attrs, new_attrs);
3994
3995 /*
3996 * If something goes wrong during CPU up/down, we'll fall back to
3997 * the default pwq covering whole @attrs->cpumask. Always create
3998 * it even if we don't use it immediately.
3999 */
4000 ctx->dfl_pwq = alloc_unbound_pwq(wq, new_attrs);
4001 if (!ctx->dfl_pwq)
4002 goto out_free;
4003
4004 for_each_node(node) {
4005 if (wq_calc_node_cpumask(new_attrs, node, -1, tmp_attrs->cpumask)) {
4006 ctx->pwq_tbl[node] = alloc_unbound_pwq(wq, tmp_attrs);
4007 if (!ctx->pwq_tbl[node])
4008 goto out_free;
4009 } else {
4010 ctx->dfl_pwq->refcnt++;
4011 ctx->pwq_tbl[node] = ctx->dfl_pwq;
4012 }
4013 }
4014
4015 /* save the user configured attrs and sanitize it. */
4016 copy_workqueue_attrs(new_attrs, attrs);
4017 cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask);
4018 ctx->attrs = new_attrs;
4019
4020 ctx->wq = wq;
4021 free_workqueue_attrs(tmp_attrs);
4022 return ctx;
4023
4024 out_free:
4025 free_workqueue_attrs(tmp_attrs);
4026 free_workqueue_attrs(new_attrs);
4027 apply_wqattrs_cleanup(ctx);
4028 return NULL;
4029 }
4030
4031 /* set attrs and install prepared pwqs, @ctx points to old pwqs on return */
4032 static void apply_wqattrs_commit(struct apply_wqattrs_ctx *ctx)
4033 {
4034 int node;
4035
4036 /* all pwqs have been created successfully, let's install'em */
4037 mutex_lock(&ctx->wq->mutex);
4038
4039 copy_workqueue_attrs(ctx->wq->unbound_attrs, ctx->attrs);
4040
4041 /* save the previous pwq and install the new one */
4042 for_each_node(node)
4043 ctx->pwq_tbl[node] = numa_pwq_tbl_install(ctx->wq, node,
4044 ctx->pwq_tbl[node]);
4045
4046 /* @dfl_pwq might not have been used, ensure it's linked */
4047 link_pwq(ctx->dfl_pwq);
4048 swap(ctx->wq->dfl_pwq, ctx->dfl_pwq);
4049
4050 mutex_unlock(&ctx->wq->mutex);
4051 }
4052
4053 static void apply_wqattrs_lock(void)
4054 {
4055 /* CPUs should stay stable across pwq creations and installations */
4056 cpus_read_lock();
4057 mutex_lock(&wq_pool_mutex);
4058 }
4059
4060 static void apply_wqattrs_unlock(void)
4061 {
4062 mutex_unlock(&wq_pool_mutex);
4063 cpus_read_unlock();
4064 }
4065
4066 static int apply_workqueue_attrs_locked(struct workqueue_struct *wq,
4067 const struct workqueue_attrs *attrs)
4068 {
4069 struct apply_wqattrs_ctx *ctx;
4070
4071 /* only unbound workqueues can change attributes */
4072 if (WARN_ON(!(wq->flags & WQ_UNBOUND)))
4073 return -EINVAL;
4074
4075 /* creating multiple pwqs breaks ordering guarantee */
4076 if (!list_empty(&wq->pwqs)) {
4077 if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
4078 return -EINVAL;
4079
4080 wq->flags &= ~__WQ_ORDERED;
4081 }
4082
4083 ctx = apply_wqattrs_prepare(wq, attrs);
4084 if (!ctx)
4085 return -ENOMEM;
4086
4087 /* the ctx has been prepared successfully, let's commit it */
4088 apply_wqattrs_commit(ctx);
4089 apply_wqattrs_cleanup(ctx);
4090
4091 return 0;
4092 }
4093
4094 /**
4095 * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue
4096 * @wq: the target workqueue
4097 * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs()
4098 *
4099 * Apply @attrs to an unbound workqueue @wq. Unless disabled, on NUMA
4100 * machines, this function maps a separate pwq to each NUMA node with
4101 * possibles CPUs in @attrs->cpumask so that work items are affine to the
4102 * NUMA node it was issued on. Older pwqs are released as in-flight work
4103 * items finish. Note that a work item which repeatedly requeues itself
4104 * back-to-back will stay on its current pwq.
4105 *
4106 * Performs GFP_KERNEL allocations.
4107 *
4108 * Assumes caller has CPU hotplug read exclusion, i.e. cpus_read_lock().
4109 *
4110 * Return: 0 on success and -errno on failure.
4111 */
4112 int apply_workqueue_attrs(struct workqueue_struct *wq,
4113 const struct workqueue_attrs *attrs)
4114 {
4115 int ret;
4116
4117 lockdep_assert_cpus_held();
4118
4119 mutex_lock(&wq_pool_mutex);
4120 ret = apply_workqueue_attrs_locked(wq, attrs);
4121 mutex_unlock(&wq_pool_mutex);
4122
4123 return ret;
4124 }
4125
4126 /**
4127 * wq_update_unbound_numa - update NUMA affinity of a wq for CPU hot[un]plug
4128 * @wq: the target workqueue
4129 * @cpu: the CPU coming up or going down
4130 * @online: whether @cpu is coming up or going down
4131 *
4132 * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and
4133 * %CPU_DOWN_FAILED. @cpu is being hot[un]plugged, update NUMA affinity of
4134 * @wq accordingly.
4135 *
4136 * If NUMA affinity can't be adjusted due to memory allocation failure, it
4137 * falls back to @wq->dfl_pwq which may not be optimal but is always
4138 * correct.
4139 *
4140 * Note that when the last allowed CPU of a NUMA node goes offline for a
4141 * workqueue with a cpumask spanning multiple nodes, the workers which were
4142 * already executing the work items for the workqueue will lose their CPU
4143 * affinity and may execute on any CPU. This is similar to how per-cpu
4144 * workqueues behave on CPU_DOWN. If a workqueue user wants strict
4145 * affinity, it's the user's responsibility to flush the work item from
4146 * CPU_DOWN_PREPARE.
4147 */
4148 static void wq_update_unbound_numa(struct workqueue_struct *wq, int cpu,
4149 bool online)
4150 {
4151 int node = cpu_to_node(cpu);
4152 int cpu_off = online ? -1 : cpu;
4153 struct pool_workqueue *old_pwq = NULL, *pwq;
4154 struct workqueue_attrs *target_attrs;
4155 cpumask_t *cpumask;
4156
4157 lockdep_assert_held(&wq_pool_mutex);
4158
4159 if (!wq_numa_enabled || !(wq->flags & WQ_UNBOUND) ||
4160 wq->unbound_attrs->no_numa)
4161 return;
4162
4163 /*
4164 * We don't wanna alloc/free wq_attrs for each wq for each CPU.
4165 * Let's use a preallocated one. The following buf is protected by
4166 * CPU hotplug exclusion.
4167 */
4168 target_attrs = wq_update_unbound_numa_attrs_buf;
4169 cpumask = target_attrs->cpumask;
4170
4171 copy_workqueue_attrs(target_attrs, wq->unbound_attrs);
4172 pwq = unbound_pwq_by_node(wq, node);
4173
4174 /*
4175 * Let's determine what needs to be done. If the target cpumask is
4176 * different from the default pwq's, we need to compare it to @pwq's
4177 * and create a new one if they don't match. If the target cpumask
4178 * equals the default pwq's, the default pwq should be used.
4179 */
4180 if (wq_calc_node_cpumask(wq->dfl_pwq->pool->attrs, node, cpu_off, cpumask)) {
4181 if (cpumask_equal(cpumask, pwq->pool->attrs->cpumask))
4182 return;
4183 } else {
4184 goto use_dfl_pwq;
4185 }
4186
4187 /* create a new pwq */
4188 pwq = alloc_unbound_pwq(wq, target_attrs);
4189 if (!pwq) {
4190 pr_warn("workqueue: allocation failed while updating NUMA affinity of \"%s\"\n",
4191 wq->name);
4192 goto use_dfl_pwq;
4193 }
4194
4195 /* Install the new pwq. */
4196 mutex_lock(&wq->mutex);
4197 old_pwq = numa_pwq_tbl_install(wq, node, pwq);
4198 goto out_unlock;
4199
4200 use_dfl_pwq:
4201 mutex_lock(&wq->mutex);
4202 raw_spin_lock_irq(&wq->dfl_pwq->pool->lock);
4203 get_pwq(wq->dfl_pwq);
4204 raw_spin_unlock_irq(&wq->dfl_pwq->pool->lock);
4205 old_pwq = numa_pwq_tbl_install(wq, node, wq->dfl_pwq);
4206 out_unlock:
4207 mutex_unlock(&wq->mutex);
4208 put_pwq_unlocked(old_pwq);
4209 }
4210
4211 static int alloc_and_link_pwqs(struct workqueue_struct *wq)
4212 {
4213 bool highpri = wq->flags & WQ_HIGHPRI;
4214 int cpu, ret;
4215
4216 if (!(wq->flags & WQ_UNBOUND)) {
4217 wq->cpu_pwqs = alloc_percpu(struct pool_workqueue);
4218 if (!wq->cpu_pwqs)
4219 return -ENOMEM;
4220
4221 for_each_possible_cpu(cpu) {
4222 struct pool_workqueue *pwq =
4223 per_cpu_ptr(wq->cpu_pwqs, cpu);
4224 struct worker_pool *cpu_pools =
4225 per_cpu(cpu_worker_pools, cpu);
4226
4227 init_pwq(pwq, wq, &cpu_pools[highpri]);
4228
4229 mutex_lock(&wq->mutex);
4230 link_pwq(pwq);
4231 mutex_unlock(&wq->mutex);
4232 }
4233 return 0;
4234 }
4235
4236 cpus_read_lock();
4237 if (wq->flags & __WQ_ORDERED) {
4238 ret = apply_workqueue_attrs(wq, ordered_wq_attrs[highpri]);
4239 /* there should only be single pwq for ordering guarantee */
4240 WARN(!ret && (wq->pwqs.next != &wq->dfl_pwq->pwqs_node ||
4241 wq->pwqs.prev != &wq->dfl_pwq->pwqs_node),
4242 "ordering guarantee broken for workqueue %s\n", wq->name);
4243 } else {
4244 ret = apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]);
4245 }
4246 cpus_read_unlock();
4247
4248 return ret;
4249 }
4250
4251 static int wq_clamp_max_active(int max_active, unsigned int flags,
4252 const char *name)
4253 {
4254 int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;
4255
4256 if (max_active < 1 || max_active > lim)
4257 pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
4258 max_active, name, 1, lim);
4259
4260 return clamp_val(max_active, 1, lim);
4261 }
4262
4263 /*
4264 * Workqueues which may be used during memory reclaim should have a rescuer
4265 * to guarantee forward progress.
4266 */
4267 static int init_rescuer(struct workqueue_struct *wq)
4268 {
4269 struct worker *rescuer;
4270 int ret;
4271
4272 if (!(wq->flags & WQ_MEM_RECLAIM))
4273 return 0;
4274
4275 rescuer = alloc_worker(NUMA_NO_NODE);
4276 if (!rescuer)
4277 return -ENOMEM;
4278
4279 rescuer->rescue_wq = wq;
4280 rescuer->task = kthread_create(rescuer_thread, rescuer, "%s", wq->name);
4281 if (IS_ERR(rescuer->task)) {
4282 ret = PTR_ERR(rescuer->task);
4283 kfree(rescuer);
4284 return ret;
4285 }
4286
4287 wq->rescuer = rescuer;
4288 kthread_bind_mask(rescuer->task, cpu_possible_mask);
4289 wake_up_process(rescuer->task);
4290
4291 return 0;
4292 }
4293
4294 __printf(1, 4)
4295 struct workqueue_struct *alloc_workqueue(const char *fmt,
4296 unsigned int flags,
4297 int max_active, ...)
4298 {
4299 size_t tbl_size = 0;
4300 va_list args;
4301 struct workqueue_struct *wq;
4302 struct pool_workqueue *pwq;
4303
4304 /*
4305 * Unbound && max_active == 1 used to imply ordered, which is no
4306 * longer the case on NUMA machines due to per-node pools. While
4307 * alloc_ordered_workqueue() is the right way to create an ordered
4308 * workqueue, keep the previous behavior to avoid subtle breakages
4309 * on NUMA.
4310 */
4311 if ((flags & WQ_UNBOUND) && max_active == 1)
4312 flags |= __WQ_ORDERED;
4313
4314 /* see the comment above the definition of WQ_POWER_EFFICIENT */
4315 if ((flags & WQ_POWER_EFFICIENT) && wq_power_efficient)
4316 flags |= WQ_UNBOUND;
4317
4318 /* allocate wq and format name */
4319 if (flags & WQ_UNBOUND)
4320 tbl_size = nr_node_ids * sizeof(wq->numa_pwq_tbl[0]);
4321
4322 wq = kzalloc(sizeof(*wq) + tbl_size, GFP_KERNEL);
4323 if (!wq)
4324 return NULL;
4325
4326 if (flags & WQ_UNBOUND) {
4327 wq->unbound_attrs = alloc_workqueue_attrs();
4328 if (!wq->unbound_attrs)
4329 goto err_free_wq;
4330 }
4331
4332 va_start(args, max_active);
4333 vsnprintf(wq->name, sizeof(wq->name), fmt, args);
4334 va_end(args);
4335
4336 max_active = max_active ?: WQ_DFL_ACTIVE;
4337 max_active = wq_clamp_max_active(max_active, flags, wq->name);
4338
4339 /* init wq */
4340 wq->flags = flags;
4341 wq->saved_max_active = max_active;
4342 mutex_init(&wq->mutex);
4343 atomic_set(&wq->nr_pwqs_to_flush, 0);
4344 INIT_LIST_HEAD(&wq->pwqs);
4345 INIT_LIST_HEAD(&wq->flusher_queue);
4346 INIT_LIST_HEAD(&wq->flusher_overflow);
4347 INIT_LIST_HEAD(&wq->maydays);
4348
4349 wq_init_lockdep(wq);
4350 INIT_LIST_HEAD(&wq->list);
4351
4352 if (alloc_and_link_pwqs(wq) < 0)
4353 goto err_unreg_lockdep;
4354
4355 if (wq_online && init_rescuer(wq) < 0)
4356 goto err_destroy;
4357
4358 if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq))
4359 goto err_destroy;
4360
4361 /*
4362 * wq_pool_mutex protects global freeze state and workqueues list.
4363 * Grab it, adjust max_active and add the new @wq to workqueues
4364 * list.
4365 */
4366 mutex_lock(&wq_pool_mutex);
4367
4368 mutex_lock(&wq->mutex);
4369 for_each_pwq(pwq, wq)
4370 pwq_adjust_max_active(pwq);
4371 mutex_unlock(&wq->mutex);
4372
4373 list_add_tail_rcu(&wq->list, &workqueues);
4374
4375 mutex_unlock(&wq_pool_mutex);
4376
4377 return wq;
4378
4379 err_unreg_lockdep:
4380 wq_unregister_lockdep(wq);
4381 wq_free_lockdep(wq);
4382 err_free_wq:
4383 free_workqueue_attrs(wq->unbound_attrs);
4384 kfree(wq);
4385 return NULL;
4386 err_destroy:
4387 destroy_workqueue(wq);
4388 return NULL;
4389 }
4390 EXPORT_SYMBOL_GPL(alloc_workqueue);
4391
4392 static bool pwq_busy(struct pool_workqueue *pwq)
4393 {
4394 int i;
4395
4396 for (i = 0; i < WORK_NR_COLORS; i++)
4397 if (pwq->nr_in_flight[i])
4398 return true;
4399
4400 if ((pwq != pwq->wq->dfl_pwq) && (pwq->refcnt > 1))
4401 return true;
4402 if (pwq->nr_active || !list_empty(&pwq->inactive_works))
4403 return true;
4404
4405 return false;
4406 }
4407
4408 /**
4409 * destroy_workqueue - safely terminate a workqueue
4410 * @wq: target workqueue
4411 *
4412 * Safely destroy a workqueue. All work currently pending will be done first.
4413 */
4414 void destroy_workqueue(struct workqueue_struct *wq)
4415 {
4416 struct pool_workqueue *pwq;
4417 int node;
4418
4419 /*
4420 * Remove it from sysfs first so that sanity check failure doesn't
4421 * lead to sysfs name conflicts.
4422 */
4423 workqueue_sysfs_unregister(wq);
4424
4425 /* drain it before proceeding with destruction */
4426 drain_workqueue(wq);
4427
4428 /* kill rescuer, if sanity checks fail, leave it w/o rescuer */
4429 if (wq->rescuer) {
4430 struct worker *rescuer = wq->rescuer;
4431
4432 /* this prevents new queueing */
4433 raw_spin_lock_irq(&wq_mayday_lock);
4434 wq->rescuer = NULL;
4435 raw_spin_unlock_irq(&wq_mayday_lock);
4436
4437 /* rescuer will empty maydays list before exiting */
4438 kthread_stop(rescuer->task);
4439 kfree(rescuer);
4440 }
4441
4442 /*
4443 * Sanity checks - grab all the locks so that we wait for all
4444 * in-flight operations which may do put_pwq().
4445 */
4446 mutex_lock(&wq_pool_mutex);
4447 mutex_lock(&wq->mutex);
4448 for_each_pwq(pwq, wq) {
4449 raw_spin_lock_irq(&pwq->pool->lock);
4450 if (WARN_ON(pwq_busy(pwq))) {
4451 pr_warn("%s: %s has the following busy pwq\n",
4452 __func__, wq->name);
4453 show_pwq(pwq);
4454 raw_spin_unlock_irq(&pwq->pool->lock);
4455 mutex_unlock(&wq->mutex);
4456 mutex_unlock(&wq_pool_mutex);
4457 show_workqueue_state();
4458 return;
4459 }
4460 raw_spin_unlock_irq(&pwq->pool->lock);
4461 }
4462 mutex_unlock(&wq->mutex);
4463
4464 /*
4465 * wq list is used to freeze wq, remove from list after
4466 * flushing is complete in case freeze races us.
4467 */
4468 list_del_rcu(&wq->list);
4469 mutex_unlock(&wq_pool_mutex);
4470
4471 if (!(wq->flags & WQ_UNBOUND)) {
4472 wq_unregister_lockdep(wq);
4473 /*
4474 * The base ref is never dropped on per-cpu pwqs. Directly
4475 * schedule RCU free.
4476 */
4477 call_rcu(&wq->rcu, rcu_free_wq);
4478 } else {
4479 /*
4480 * We're the sole accessor of @wq at this point. Directly
4481 * access numa_pwq_tbl[] and dfl_pwq to put the base refs.
4482 * @wq will be freed when the last pwq is released.
4483 */
4484 for_each_node(node) {
4485 pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
4486 RCU_INIT_POINTER(wq->numa_pwq_tbl[node], NULL);
4487 put_pwq_unlocked(pwq);
4488 }
4489
4490 /*
4491 * Put dfl_pwq. @wq may be freed any time after dfl_pwq is
4492 * put. Don't access it afterwards.
4493 */
4494 pwq = wq->dfl_pwq;
4495 wq->dfl_pwq = NULL;
4496 put_pwq_unlocked(pwq);
4497 }
4498 }
4499 EXPORT_SYMBOL_GPL(destroy_workqueue);
4500
4501 /**
4502 * workqueue_set_max_active - adjust max_active of a workqueue
4503 * @wq: target workqueue
4504 * @max_active: new max_active value.
4505 *
4506 * Set max_active of @wq to @max_active.
4507 *
4508 * CONTEXT:
4509 * Don't call from IRQ context.
4510 */
4511 void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
4512 {
4513 struct pool_workqueue *pwq;
4514
4515 /* disallow meddling with max_active for ordered workqueues */
4516 if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
4517 return;
4518
4519 max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
4520
4521 mutex_lock(&wq->mutex);
4522
4523 wq->flags &= ~__WQ_ORDERED;
4524 wq->saved_max_active = max_active;
4525
4526 for_each_pwq(pwq, wq)
4527 pwq_adjust_max_active(pwq);
4528
4529 mutex_unlock(&wq->mutex);
4530 }
4531 EXPORT_SYMBOL_GPL(workqueue_set_max_active);
4532
4533 /**
4534 * current_work - retrieve %current task's work struct
4535 *
4536 * Determine if %current task is a workqueue worker and what it's working on.
4537 * Useful to find out the context that the %current task is running in.
4538 *
4539 * Return: work struct if %current task is a workqueue worker, %NULL otherwise.
4540 */
4541 struct work_struct *current_work(void)
4542 {
4543 struct worker *worker = current_wq_worker();
4544
4545 return worker ? worker->current_work : NULL;
4546 }
4547 EXPORT_SYMBOL(current_work);
4548
4549 /**
4550 * current_is_workqueue_rescuer - is %current workqueue rescuer?
4551 *
4552 * Determine whether %current is a workqueue rescuer. Can be used from
4553 * work functions to determine whether it's being run off the rescuer task.
4554 *
4555 * Return: %true if %current is a workqueue rescuer. %false otherwise.
4556 */
4557 bool current_is_workqueue_rescuer(void)
4558 {
4559 struct worker *worker = current_wq_worker();
4560
4561 return worker && worker->rescue_wq;
4562 }
4563
4564 /**
4565 * workqueue_congested - test whether a workqueue is congested
4566 * @cpu: CPU in question
4567 * @wq: target workqueue
4568 *
4569 * Test whether @wq's cpu workqueue for @cpu is congested. There is
4570 * no synchronization around this function and the test result is
4571 * unreliable and only useful as advisory hints or for debugging.
4572 *
4573 * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU.
4574 * Note that both per-cpu and unbound workqueues may be associated with
4575 * multiple pool_workqueues which have separate congested states. A
4576 * workqueue being congested on one CPU doesn't mean the workqueue is also
4577 * contested on other CPUs / NUMA nodes.
4578 *
4579 * Return:
4580 * %true if congested, %false otherwise.
4581 */
4582 bool workqueue_congested(int cpu, struct workqueue_struct *wq)
4583 {
4584 struct pool_workqueue *pwq;
4585 bool ret;
4586
4587 rcu_read_lock();
4588 preempt_disable();
4589
4590 if (cpu == WORK_CPU_UNBOUND)
4591 cpu = smp_processor_id();
4592
4593 if (!(wq->flags & WQ_UNBOUND))
4594 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
4595 else
4596 pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
4597
4598 ret = !list_empty(&pwq->inactive_works);
4599 preempt_enable();
4600 rcu_read_unlock();
4601
4602 return ret;
4603 }
4604 EXPORT_SYMBOL_GPL(workqueue_congested);
4605
4606 /**
4607 * work_busy - test whether a work is currently pending or running
4608 * @work: the work to be tested
4609 *
4610 * Test whether @work is currently pending or running. There is no
4611 * synchronization around this function and the test result is
4612 * unreliable and only useful as advisory hints or for debugging.
4613 *
4614 * Return:
4615 * OR'd bitmask of WORK_BUSY_* bits.
4616 */
4617 unsigned int work_busy(struct work_struct *work)
4618 {
4619 struct worker_pool *pool;
4620 unsigned long flags;
4621 unsigned int ret = 0;
4622
4623 if (work_pending(work))
4624 ret |= WORK_BUSY_PENDING;
4625
4626 rcu_read_lock();
4627 pool = get_work_pool(work);
4628 if (pool) {
4629 raw_spin_lock_irqsave(&pool->lock, flags);
4630 if (find_worker_executing_work(pool, work))
4631 ret |= WORK_BUSY_RUNNING;
4632 raw_spin_unlock_irqrestore(&pool->lock, flags);
4633 }
4634 rcu_read_unlock();
4635
4636 return ret;
4637 }
4638 EXPORT_SYMBOL_GPL(work_busy);
4639
4640 /**
4641 * set_worker_desc - set description for the current work item
4642 * @fmt: printf-style format string
4643 * @...: arguments for the format string
4644 *
4645 * This function can be called by a running work function to describe what
4646 * the work item is about. If the worker task gets dumped, this
4647 * information will be printed out together to help debugging. The
4648 * description can be at most WORKER_DESC_LEN including the trailing '\0'.
4649 */
4650 void set_worker_desc(const char *fmt, ...)
4651 {
4652 struct worker *worker = current_wq_worker();
4653 va_list args;
4654
4655 if (worker) {
4656 va_start(args, fmt);
4657 vsnprintf(worker->desc, sizeof(worker->desc), fmt, args);
4658 va_end(args);
4659 }
4660 }
4661 EXPORT_SYMBOL_GPL(set_worker_desc);
4662
4663 /**
4664 * print_worker_info - print out worker information and description
4665 * @log_lvl: the log level to use when printing
4666 * @task: target task
4667 *
4668 * If @task is a worker and currently executing a work item, print out the
4669 * name of the workqueue being serviced and worker description set with
4670 * set_worker_desc() by the currently executing work item.
4671 *
4672 * This function can be safely called on any task as long as the
4673 * task_struct itself is accessible. While safe, this function isn't
4674 * synchronized and may print out mixups or garbages of limited length.
4675 */
4676 void print_worker_info(const char *log_lvl, struct task_struct *task)
4677 {
4678 work_func_t *fn = NULL;
4679 char name[WQ_NAME_LEN] = { };
4680 char desc[WORKER_DESC_LEN] = { };
4681 struct pool_workqueue *pwq = NULL;
4682 struct workqueue_struct *wq = NULL;
4683 struct worker *worker;
4684
4685 if (!(task->flags & PF_WQ_WORKER))
4686 return;
4687
4688 /*
4689 * This function is called without any synchronization and @task
4690 * could be in any state. Be careful with dereferences.
4691 */
4692 worker = kthread_probe_data(task);
4693
4694 /*
4695 * Carefully copy the associated workqueue's workfn, name and desc.
4696 * Keep the original last '\0' in case the original is garbage.
4697 */
4698 copy_from_kernel_nofault(&fn, &worker->current_func, sizeof(fn));
4699 copy_from_kernel_nofault(&pwq, &worker->current_pwq, sizeof(pwq));
4700 copy_from_kernel_nofault(&wq, &pwq->wq, sizeof(wq));
4701 copy_from_kernel_nofault(name, wq->name, sizeof(name) - 1);
4702 copy_from_kernel_nofault(desc, worker->desc, sizeof(desc) - 1);
4703
4704 if (fn || name[0] || desc[0]) {
4705 printk("%sWorkqueue: %s %ps", log_lvl, name, fn);
4706 if (strcmp(name, desc))
4707 pr_cont(" (%s)", desc);
4708 pr_cont("\n");
4709 }
4710 }
4711
4712 static void pr_cont_pool_info(struct worker_pool *pool)
4713 {
4714 pr_cont(" cpus=%*pbl", nr_cpumask_bits, pool->attrs->cpumask);
4715 if (pool->node != NUMA_NO_NODE)
4716 pr_cont(" node=%d", pool->node);
4717 pr_cont(" flags=0x%x nice=%d", pool->flags, pool->attrs->nice);
4718 }
4719
4720 static void pr_cont_work(bool comma, struct work_struct *work)
4721 {
4722 if (work->func == wq_barrier_func) {
4723 struct wq_barrier *barr;
4724
4725 barr = container_of(work, struct wq_barrier, work);
4726
4727 pr_cont("%s BAR(%d)", comma ? "," : "",
4728 task_pid_nr(barr->task));
4729 } else {
4730 pr_cont("%s %ps", comma ? "," : "", work->func);
4731 }
4732 }
4733
4734 static void show_pwq(struct pool_workqueue *pwq)
4735 {
4736 struct worker_pool *pool = pwq->pool;
4737 struct work_struct *work;
4738 struct worker *worker;
4739 bool has_in_flight = false, has_pending = false;
4740 int bkt;
4741
4742 pr_info(" pwq %d:", pool->id);
4743 pr_cont_pool_info(pool);
4744
4745 pr_cont(" active=%d/%d refcnt=%d%s\n",
4746 pwq->nr_active, pwq->max_active, pwq->refcnt,
4747 !list_empty(&pwq->mayday_node) ? " MAYDAY" : "");
4748
4749 hash_for_each(pool->busy_hash, bkt, worker, hentry) {
4750 if (worker->current_pwq == pwq) {
4751 has_in_flight = true;
4752 break;
4753 }
4754 }
4755 if (has_in_flight) {
4756 bool comma = false;
4757
4758 pr_info(" in-flight:");
4759 hash_for_each(pool->busy_hash, bkt, worker, hentry) {
4760 if (worker->current_pwq != pwq)
4761 continue;
4762
4763 pr_cont("%s %d%s:%ps", comma ? "," : "",
4764 task_pid_nr(worker->task),
4765 worker->rescue_wq ? "(RESCUER)" : "",
4766 worker->current_func);
4767 list_for_each_entry(work, &worker->scheduled, entry)
4768 pr_cont_work(false, work);
4769 comma = true;
4770 }
4771 pr_cont("\n");
4772 }
4773
4774 list_for_each_entry(work, &pool->worklist, entry) {
4775 if (get_work_pwq(work) == pwq) {
4776 has_pending = true;
4777 break;
4778 }
4779 }
4780 if (has_pending) {
4781 bool comma = false;
4782
4783 pr_info(" pending:");
4784 list_for_each_entry(work, &pool->worklist, entry) {
4785 if (get_work_pwq(work) != pwq)
4786 continue;
4787
4788 pr_cont_work(comma, work);
4789 comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
4790 }
4791 pr_cont("\n");
4792 }
4793
4794 if (!list_empty(&pwq->inactive_works)) {
4795 bool comma = false;
4796
4797 pr_info(" inactive:");
4798 list_for_each_entry(work, &pwq->inactive_works, entry) {
4799 pr_cont_work(comma, work);
4800 comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
4801 }
4802 pr_cont("\n");
4803 }
4804 }
4805
4806 /**
4807 * show_workqueue_state - dump workqueue state
4808 *
4809 * Called from a sysrq handler or try_to_freeze_tasks() and prints out
4810 * all busy workqueues and pools.
4811 */
4812 void show_workqueue_state(void)
4813 {
4814 struct workqueue_struct *wq;
4815 struct worker_pool *pool;
4816 unsigned long flags;
4817 int pi;
4818
4819 rcu_read_lock();
4820
4821 pr_info("Showing busy workqueues and worker pools:\n");
4822
4823 list_for_each_entry_rcu(wq, &workqueues, list) {
4824 struct pool_workqueue *pwq;
4825 bool idle = true;
4826
4827 for_each_pwq(pwq, wq) {
4828 if (pwq->nr_active || !list_empty(&pwq->inactive_works)) {
4829 idle = false;
4830 break;
4831 }
4832 }
4833 if (idle)
4834 continue;
4835
4836 pr_info("workqueue %s: flags=0x%x\n", wq->name, wq->flags);
4837
4838 for_each_pwq(pwq, wq) {
4839 raw_spin_lock_irqsave(&pwq->pool->lock, flags);
4840 if (pwq->nr_active || !list_empty(&pwq->inactive_works)) {
4841 /*
4842 * Defer printing to avoid deadlocks in console
4843 * drivers that queue work while holding locks
4844 * also taken in their write paths.
4845 */
4846 printk_deferred_enter();
4847 show_pwq(pwq);
4848 printk_deferred_exit();
4849 }
4850 raw_spin_unlock_irqrestore(&pwq->pool->lock, flags);
4851 /*
4852 * We could be printing a lot from atomic context, e.g.
4853 * sysrq-t -> show_workqueue_state(). Avoid triggering
4854 * hard lockup.
4855 */
4856 touch_nmi_watchdog();
4857 }
4858 }
4859
4860 for_each_pool(pool, pi) {
4861 struct worker *worker;
4862 bool first = true;
4863
4864 raw_spin_lock_irqsave(&pool->lock, flags);
4865 if (pool->nr_workers == pool->nr_idle)
4866 goto next_pool;
4867 /*
4868 * Defer printing to avoid deadlocks in console drivers that
4869 * queue work while holding locks also taken in their write
4870 * paths.
4871 */
4872 printk_deferred_enter();
4873 pr_info("pool %d:", pool->id);
4874 pr_cont_pool_info(pool);
4875 pr_cont(" hung=%us workers=%d",
4876 jiffies_to_msecs(jiffies - pool->watchdog_ts) / 1000,
4877 pool->nr_workers);
4878 if (pool->manager)
4879 pr_cont(" manager: %d",
4880 task_pid_nr(pool->manager->task));
4881 list_for_each_entry(worker, &pool->idle_list, entry) {
4882 pr_cont(" %s%d", first ? "idle: " : "",
4883 task_pid_nr(worker->task));
4884 first = false;
4885 }
4886 pr_cont("\n");
4887 printk_deferred_exit();
4888 next_pool:
4889 raw_spin_unlock_irqrestore(&pool->lock, flags);
4890 /*
4891 * We could be printing a lot from atomic context, e.g.
4892 * sysrq-t -> show_workqueue_state(). Avoid triggering
4893 * hard lockup.
4894 */
4895 touch_nmi_watchdog();
4896 }
4897
4898 rcu_read_unlock();
4899 }
4900
4901 /* used to show worker information through /proc/PID/{comm,stat,status} */
4902 void wq_worker_comm(char *buf, size_t size, struct task_struct *task)
4903 {
4904 int off;
4905
4906 /* always show the actual comm */
4907 off = strscpy(buf, task->comm, size);
4908 if (off < 0)
4909 return;
4910
4911 /* stabilize PF_WQ_WORKER and worker pool association */
4912 mutex_lock(&wq_pool_attach_mutex);
4913
4914 if (task->flags & PF_WQ_WORKER) {
4915 struct worker *worker = kthread_data(task);
4916 struct worker_pool *pool = worker->pool;
4917
4918 if (pool) {
4919 raw_spin_lock_irq(&pool->lock);
4920 /*
4921 * ->desc tracks information (wq name or
4922 * set_worker_desc()) for the latest execution. If
4923 * current, prepend '+', otherwise '-'.
4924 */
4925 if (worker->desc[0] != '\0') {
4926 if (worker->current_work)
4927 scnprintf(buf + off, size - off, "+%s",
4928 worker->desc);
4929 else
4930 scnprintf(buf + off, size - off, "-%s",
4931 worker->desc);
4932 }
4933 raw_spin_unlock_irq(&pool->lock);
4934 }
4935 }
4936
4937 mutex_unlock(&wq_pool_attach_mutex);
4938 }
4939
4940 #ifdef CONFIG_SMP
4941
4942 /*
4943 * CPU hotplug.
4944 *
4945 * There are two challenges in supporting CPU hotplug. Firstly, there
4946 * are a lot of assumptions on strong associations among work, pwq and
4947 * pool which make migrating pending and scheduled works very
4948 * difficult to implement without impacting hot paths. Secondly,
4949 * worker pools serve mix of short, long and very long running works making
4950 * blocked draining impractical.
4951 *
4952 * This is solved by allowing the pools to be disassociated from the CPU
4953 * running as an unbound one and allowing it to be reattached later if the
4954 * cpu comes back online.
4955 */
4956
4957 static void unbind_workers(int cpu)
4958 {
4959 struct worker_pool *pool;
4960 struct worker *worker;
4961
4962 for_each_cpu_worker_pool(pool, cpu) {
4963 mutex_lock(&wq_pool_attach_mutex);
4964 raw_spin_lock_irq(&pool->lock);
4965
4966 /*
4967 * We've blocked all attach/detach operations. Make all workers
4968 * unbound and set DISASSOCIATED. Before this, all workers
4969 * except for the ones which are still executing works from
4970 * before the last CPU down must be on the cpu. After
4971 * this, they may become diasporas.
4972 */
4973 for_each_pool_worker(worker, pool)
4974 worker->flags |= WORKER_UNBOUND;
4975
4976 pool->flags |= POOL_DISASSOCIATED;
4977
4978 raw_spin_unlock_irq(&pool->lock);
4979
4980 for_each_pool_worker(worker, pool) {
4981 kthread_set_per_cpu(worker->task, -1);
4982 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, cpu_possible_mask) < 0);
4983 }
4984
4985 mutex_unlock(&wq_pool_attach_mutex);
4986
4987 /*
4988 * Call schedule() so that we cross rq->lock and thus can
4989 * guarantee sched callbacks see the %WORKER_UNBOUND flag.
4990 * This is necessary as scheduler callbacks may be invoked
4991 * from other cpus.
4992 */
4993 schedule();
4994
4995 /*
4996 * Sched callbacks are disabled now. Zap nr_running.
4997 * After this, nr_running stays zero and need_more_worker()
4998 * and keep_working() are always true as long as the
4999 * worklist is not empty. This pool now behaves as an
5000 * unbound (in terms of concurrency management) pool which
5001 * are served by workers tied to the pool.
5002 */
5003 atomic_set(&pool->nr_running, 0);
5004
5005 /*
5006 * With concurrency management just turned off, a busy
5007 * worker blocking could lead to lengthy stalls. Kick off
5008 * unbound chain execution of currently pending work items.
5009 */
5010 raw_spin_lock_irq(&pool->lock);
5011 wake_up_worker(pool);
5012 raw_spin_unlock_irq(&pool->lock);
5013 }
5014 }
5015
5016 /**
5017 * rebind_workers - rebind all workers of a pool to the associated CPU
5018 * @pool: pool of interest
5019 *
5020 * @pool->cpu is coming online. Rebind all workers to the CPU.
5021 */
5022 static void rebind_workers(struct worker_pool *pool)
5023 {
5024 struct worker *worker;
5025
5026 lockdep_assert_held(&wq_pool_attach_mutex);
5027
5028 /*
5029 * Restore CPU affinity of all workers. As all idle workers should
5030 * be on the run-queue of the associated CPU before any local
5031 * wake-ups for concurrency management happen, restore CPU affinity
5032 * of all workers first and then clear UNBOUND. As we're called
5033 * from CPU_ONLINE, the following shouldn't fail.
5034 */
5035 for_each_pool_worker(worker, pool) {
5036 kthread_set_per_cpu(worker->task, pool->cpu);
5037 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
5038 pool->attrs->cpumask) < 0);
5039 }
5040
5041 raw_spin_lock_irq(&pool->lock);
5042
5043 pool->flags &= ~POOL_DISASSOCIATED;
5044
5045 for_each_pool_worker(worker, pool) {
5046 unsigned int worker_flags = worker->flags;
5047
5048 /*
5049 * A bound idle worker should actually be on the runqueue
5050 * of the associated CPU for local wake-ups targeting it to
5051 * work. Kick all idle workers so that they migrate to the
5052 * associated CPU. Doing this in the same loop as
5053 * replacing UNBOUND with REBOUND is safe as no worker will
5054 * be bound before @pool->lock is released.
5055 */
5056 if (worker_flags & WORKER_IDLE)
5057 wake_up_process(worker->task);
5058
5059 /*
5060 * We want to clear UNBOUND but can't directly call
5061 * worker_clr_flags() or adjust nr_running. Atomically
5062 * replace UNBOUND with another NOT_RUNNING flag REBOUND.
5063 * @worker will clear REBOUND using worker_clr_flags() when
5064 * it initiates the next execution cycle thus restoring
5065 * concurrency management. Note that when or whether
5066 * @worker clears REBOUND doesn't affect correctness.
5067 *
5068 * WRITE_ONCE() is necessary because @worker->flags may be
5069 * tested without holding any lock in
5070 * wq_worker_running(). Without it, NOT_RUNNING test may
5071 * fail incorrectly leading to premature concurrency
5072 * management operations.
5073 */
5074 WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND));
5075 worker_flags |= WORKER_REBOUND;
5076 worker_flags &= ~WORKER_UNBOUND;
5077 WRITE_ONCE(worker->flags, worker_flags);
5078 }
5079
5080 raw_spin_unlock_irq(&pool->lock);
5081 }
5082
5083 /**
5084 * restore_unbound_workers_cpumask - restore cpumask of unbound workers
5085 * @pool: unbound pool of interest
5086 * @cpu: the CPU which is coming up
5087 *
5088 * An unbound pool may end up with a cpumask which doesn't have any online
5089 * CPUs. When a worker of such pool get scheduled, the scheduler resets
5090 * its cpus_allowed. If @cpu is in @pool's cpumask which didn't have any
5091 * online CPU before, cpus_allowed of all its workers should be restored.
5092 */
5093 static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu)
5094 {
5095 static cpumask_t cpumask;
5096 struct worker *worker;
5097
5098 lockdep_assert_held(&wq_pool_attach_mutex);
5099
5100 /* is @cpu allowed for @pool? */
5101 if (!cpumask_test_cpu(cpu, pool->attrs->cpumask))
5102 return;
5103
5104 cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask);
5105
5106 /* as we're called from CPU_ONLINE, the following shouldn't fail */
5107 for_each_pool_worker(worker, pool)
5108 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, &cpumask) < 0);
5109 }
5110
5111 int workqueue_prepare_cpu(unsigned int cpu)
5112 {
5113 struct worker_pool *pool;
5114
5115 for_each_cpu_worker_pool(pool, cpu) {
5116 if (pool->nr_workers)
5117 continue;
5118 if (!create_worker(pool))
5119 return -ENOMEM;
5120 }
5121 return 0;
5122 }
5123
5124 int workqueue_online_cpu(unsigned int cpu)
5125 {
5126 struct worker_pool *pool;
5127 struct workqueue_struct *wq;
5128 int pi;
5129
5130 mutex_lock(&wq_pool_mutex);
5131
5132 for_each_pool(pool, pi) {
5133 mutex_lock(&wq_pool_attach_mutex);
5134
5135 if (pool->cpu == cpu)
5136 rebind_workers(pool);
5137 else if (pool->cpu < 0)
5138 restore_unbound_workers_cpumask(pool, cpu);
5139
5140 mutex_unlock(&wq_pool_attach_mutex);
5141 }
5142
5143 /* update NUMA affinity of unbound workqueues */
5144 list_for_each_entry(wq, &workqueues, list)
5145 wq_update_unbound_numa(wq, cpu, true);
5146
5147 mutex_unlock(&wq_pool_mutex);
5148 return 0;
5149 }
5150
5151 int workqueue_offline_cpu(unsigned int cpu)
5152 {
5153 struct workqueue_struct *wq;
5154
5155 /* unbinding per-cpu workers should happen on the local CPU */
5156 if (WARN_ON(cpu != smp_processor_id()))
5157 return -1;
5158
5159 unbind_workers(cpu);
5160
5161 /* update NUMA affinity of unbound workqueues */
5162 mutex_lock(&wq_pool_mutex);
5163 list_for_each_entry(wq, &workqueues, list)
5164 wq_update_unbound_numa(wq, cpu, false);
5165 mutex_unlock(&wq_pool_mutex);
5166
5167 return 0;
5168 }
5169
5170 struct work_for_cpu {
5171 struct work_struct work;
5172 long (*fn)(void *);
5173 void *arg;
5174 long ret;
5175 };
5176
5177 static void work_for_cpu_fn(struct work_struct *work)
5178 {
5179 struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);
5180
5181 wfc->ret = wfc->fn(wfc->arg);
5182 }
5183
5184 /**
5185 * work_on_cpu - run a function in thread context on a particular cpu
5186 * @cpu: the cpu to run on
5187 * @fn: the function to run
5188 * @arg: the function arg
5189 *
5190 * It is up to the caller to ensure that the cpu doesn't go offline.
5191 * The caller must not hold any locks which would prevent @fn from completing.
5192 *
5193 * Return: The value @fn returns.
5194 */
5195 long work_on_cpu(int cpu, long (*fn)(void *), void *arg)
5196 {
5197 struct work_for_cpu wfc = { .fn = fn, .arg = arg };
5198
5199 INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn);
5200 schedule_work_on(cpu, &wfc.work);
5201 flush_work(&wfc.work);
5202 destroy_work_on_stack(&wfc.work);
5203 return wfc.ret;
5204 }
5205 EXPORT_SYMBOL_GPL(work_on_cpu);
5206
5207 /**
5208 * work_on_cpu_safe - run a function in thread context on a particular cpu
5209 * @cpu: the cpu to run on
5210 * @fn: the function to run
5211 * @arg: the function argument
5212 *
5213 * Disables CPU hotplug and calls work_on_cpu(). The caller must not hold
5214 * any locks which would prevent @fn from completing.
5215 *
5216 * Return: The value @fn returns.
5217 */
5218 long work_on_cpu_safe(int cpu, long (*fn)(void *), void *arg)
5219 {
5220 long ret = -ENODEV;
5221
5222 cpus_read_lock();
5223 if (cpu_online(cpu))
5224 ret = work_on_cpu(cpu, fn, arg);
5225 cpus_read_unlock();
5226 return ret;
5227 }
5228 EXPORT_SYMBOL_GPL(work_on_cpu_safe);
5229 #endif /* CONFIG_SMP */
5230
5231 #ifdef CONFIG_FREEZER
5232
5233 /**
5234 * freeze_workqueues_begin - begin freezing workqueues
5235 *
5236 * Start freezing workqueues. After this function returns, all freezable
5237 * workqueues will queue new works to their inactive_works list instead of
5238 * pool->worklist.
5239 *
5240 * CONTEXT:
5241 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
5242 */
5243 void freeze_workqueues_begin(void)
5244 {
5245 struct workqueue_struct *wq;
5246 struct pool_workqueue *pwq;
5247
5248 mutex_lock(&wq_pool_mutex);
5249
5250 WARN_ON_ONCE(workqueue_freezing);
5251 workqueue_freezing = true;
5252
5253 list_for_each_entry(wq, &workqueues, list) {
5254 mutex_lock(&wq->mutex);
5255 for_each_pwq(pwq, wq)
5256 pwq_adjust_max_active(pwq);
5257 mutex_unlock(&wq->mutex);
5258 }
5259
5260 mutex_unlock(&wq_pool_mutex);
5261 }
5262
5263 /**
5264 * freeze_workqueues_busy - are freezable workqueues still busy?
5265 *
5266 * Check whether freezing is complete. This function must be called
5267 * between freeze_workqueues_begin() and thaw_workqueues().
5268 *
5269 * CONTEXT:
5270 * Grabs and releases wq_pool_mutex.
5271 *
5272 * Return:
5273 * %true if some freezable workqueues are still busy. %false if freezing
5274 * is complete.
5275 */
5276 bool freeze_workqueues_busy(void)
5277 {
5278 bool busy = false;
5279 struct workqueue_struct *wq;
5280 struct pool_workqueue *pwq;
5281
5282 mutex_lock(&wq_pool_mutex);
5283
5284 WARN_ON_ONCE(!workqueue_freezing);
5285
5286 list_for_each_entry(wq, &workqueues, list) {
5287 if (!(wq->flags & WQ_FREEZABLE))
5288 continue;
5289 /*
5290 * nr_active is monotonically decreasing. It's safe
5291 * to peek without lock.
5292 */
5293 rcu_read_lock();
5294 for_each_pwq(pwq, wq) {
5295 WARN_ON_ONCE(pwq->nr_active < 0);
5296 if (pwq->nr_active) {
5297 busy = true;
5298 rcu_read_unlock();
5299 goto out_unlock;
5300 }
5301 }
5302 rcu_read_unlock();
5303 }
5304 out_unlock:
5305 mutex_unlock(&wq_pool_mutex);
5306 return busy;
5307 }
5308
5309 /**
5310 * thaw_workqueues - thaw workqueues
5311 *
5312 * Thaw workqueues. Normal queueing is restored and all collected
5313 * frozen works are transferred to their respective pool worklists.
5314 *
5315 * CONTEXT:
5316 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
5317 */
5318 void thaw_workqueues(void)
5319 {
5320 struct workqueue_struct *wq;
5321 struct pool_workqueue *pwq;
5322
5323 mutex_lock(&wq_pool_mutex);
5324
5325 if (!workqueue_freezing)
5326 goto out_unlock;
5327
5328 workqueue_freezing = false;
5329
5330 /* restore max_active and repopulate worklist */
5331 list_for_each_entry(wq, &workqueues, list) {
5332 mutex_lock(&wq->mutex);
5333 for_each_pwq(pwq, wq)
5334 pwq_adjust_max_active(pwq);
5335 mutex_unlock(&wq->mutex);
5336 }
5337
5338 out_unlock:
5339 mutex_unlock(&wq_pool_mutex);
5340 }
5341 #endif /* CONFIG_FREEZER */
5342
5343 static int workqueue_apply_unbound_cpumask(void)
5344 {
5345 LIST_HEAD(ctxs);
5346 int ret = 0;
5347 struct workqueue_struct *wq;
5348 struct apply_wqattrs_ctx *ctx, *n;
5349
5350 lockdep_assert_held(&wq_pool_mutex);
5351
5352 list_for_each_entry(wq, &workqueues, list) {
5353 if (!(wq->flags & WQ_UNBOUND))
5354 continue;
5355 /* creating multiple pwqs breaks ordering guarantee */
5356 if (wq->flags & __WQ_ORDERED)
5357 continue;
5358
5359 ctx = apply_wqattrs_prepare(wq, wq->unbound_attrs);
5360 if (!ctx) {
5361 ret = -ENOMEM;
5362 break;
5363 }
5364
5365 list_add_tail(&ctx->list, &ctxs);
5366 }
5367
5368 list_for_each_entry_safe(ctx, n, &ctxs, list) {
5369 if (!ret)
5370 apply_wqattrs_commit(ctx);
5371 apply_wqattrs_cleanup(ctx);
5372 }
5373
5374 return ret;
5375 }
5376
5377 /**
5378 * workqueue_set_unbound_cpumask - Set the low-level unbound cpumask
5379 * @cpumask: the cpumask to set
5380 *
5381 * The low-level workqueues cpumask is a global cpumask that limits
5382 * the affinity of all unbound workqueues. This function check the @cpumask
5383 * and apply it to all unbound workqueues and updates all pwqs of them.
5384 *
5385 * Return: 0 - Success
5386 * -EINVAL - Invalid @cpumask
5387 * -ENOMEM - Failed to allocate memory for attrs or pwqs.
5388 */
5389 int workqueue_set_unbound_cpumask(cpumask_var_t cpumask)
5390 {
5391 int ret = -EINVAL;
5392 cpumask_var_t saved_cpumask;
5393
5394 /*
5395 * Not excluding isolated cpus on purpose.
5396 * If the user wishes to include them, we allow that.
5397 */
5398 cpumask_and(cpumask, cpumask, cpu_possible_mask);
5399 if (!cpumask_empty(cpumask)) {
5400 apply_wqattrs_lock();
5401 if (cpumask_equal(cpumask, wq_unbound_cpumask)) {
5402 ret = 0;
5403 goto out_unlock;
5404 }
5405
5406 if (!zalloc_cpumask_var(&saved_cpumask, GFP_KERNEL)) {
5407 ret = -ENOMEM;
5408 goto out_unlock;
5409 }
5410
5411 /* save the old wq_unbound_cpumask. */
5412 cpumask_copy(saved_cpumask, wq_unbound_cpumask);
5413
5414 /* update wq_unbound_cpumask at first and apply it to wqs. */
5415 cpumask_copy(wq_unbound_cpumask, cpumask);
5416 ret = workqueue_apply_unbound_cpumask();
5417
5418 /* restore the wq_unbound_cpumask when failed. */
5419 if (ret < 0)
5420 cpumask_copy(wq_unbound_cpumask, saved_cpumask);
5421
5422 free_cpumask_var(saved_cpumask);
5423 out_unlock:
5424 apply_wqattrs_unlock();
5425 }
5426
5427 return ret;
5428 }
5429
5430 #ifdef CONFIG_SYSFS
5431 /*
5432 * Workqueues with WQ_SYSFS flag set is visible to userland via
5433 * /sys/bus/workqueue/devices/WQ_NAME. All visible workqueues have the
5434 * following attributes.
5435 *
5436 * per_cpu RO bool : whether the workqueue is per-cpu or unbound
5437 * max_active RW int : maximum number of in-flight work items
5438 *
5439 * Unbound workqueues have the following extra attributes.
5440 *
5441 * pool_ids RO int : the associated pool IDs for each node
5442 * nice RW int : nice value of the workers
5443 * cpumask RW mask : bitmask of allowed CPUs for the workers
5444 * numa RW bool : whether enable NUMA affinity
5445 */
5446 struct wq_device {
5447 struct workqueue_struct *wq;
5448 struct device dev;
5449 };
5450
5451 static struct workqueue_struct *dev_to_wq(struct device *dev)
5452 {
5453 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
5454
5455 return wq_dev->wq;
5456 }
5457
5458 static ssize_t per_cpu_show(struct device *dev, struct device_attribute *attr,
5459 char *buf)
5460 {
5461 struct workqueue_struct *wq = dev_to_wq(dev);
5462
5463 return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND));
5464 }
5465 static DEVICE_ATTR_RO(per_cpu);
5466
5467 static ssize_t max_active_show(struct device *dev,
5468 struct device_attribute *attr, char *buf)
5469 {
5470 struct workqueue_struct *wq = dev_to_wq(dev);
5471
5472 return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active);
5473 }
5474
5475 static ssize_t max_active_store(struct device *dev,
5476 struct device_attribute *attr, const char *buf,
5477 size_t count)
5478 {
5479 struct workqueue_struct *wq = dev_to_wq(dev);
5480 int val;
5481
5482 if (sscanf(buf, "%d", &val) != 1 || val <= 0)
5483 return -EINVAL;
5484
5485 workqueue_set_max_active(wq, val);
5486 return count;
5487 }
5488 static DEVICE_ATTR_RW(max_active);
5489
5490 static struct attribute *wq_sysfs_attrs[] = {
5491 &dev_attr_per_cpu.attr,
5492 &dev_attr_max_active.attr,
5493 NULL,
5494 };
5495 ATTRIBUTE_GROUPS(wq_sysfs);
5496
5497 static ssize_t wq_pool_ids_show(struct device *dev,
5498 struct device_attribute *attr, char *buf)
5499 {
5500 struct workqueue_struct *wq = dev_to_wq(dev);
5501 const char *delim = "";
5502 int node, written = 0;
5503
5504 cpus_read_lock();
5505 rcu_read_lock();
5506 for_each_node(node) {
5507 written += scnprintf(buf + written, PAGE_SIZE - written,
5508 "%s%d:%d", delim, node,
5509 unbound_pwq_by_node(wq, node)->pool->id);
5510 delim = " ";
5511 }
5512 written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
5513 rcu_read_unlock();
5514 cpus_read_unlock();
5515
5516 return written;
5517 }
5518
5519 static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr,
5520 char *buf)
5521 {
5522 struct workqueue_struct *wq = dev_to_wq(dev);
5523 int written;
5524
5525 mutex_lock(&wq->mutex);
5526 written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice);
5527 mutex_unlock(&wq->mutex);
5528
5529 return written;
5530 }
5531
5532 /* prepare workqueue_attrs for sysfs store operations */
5533 static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq)
5534 {
5535 struct workqueue_attrs *attrs;
5536
5537 lockdep_assert_held(&wq_pool_mutex);
5538
5539 attrs = alloc_workqueue_attrs();
5540 if (!attrs)
5541 return NULL;
5542
5543 copy_workqueue_attrs(attrs, wq->unbound_attrs);
5544 return attrs;
5545 }
5546
5547 static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr,
5548 const char *buf, size_t count)
5549 {
5550 struct workqueue_struct *wq = dev_to_wq(dev);
5551 struct workqueue_attrs *attrs;
5552 int ret = -ENOMEM;
5553
5554 apply_wqattrs_lock();
5555
5556 attrs = wq_sysfs_prep_attrs(wq);
5557 if (!attrs)
5558 goto out_unlock;
5559
5560 if (sscanf(buf, "%d", &attrs->nice) == 1 &&
5561 attrs->nice >= MIN_NICE && attrs->nice <= MAX_NICE)
5562 ret = apply_workqueue_attrs_locked(wq, attrs);
5563 else
5564 ret = -EINVAL;
5565
5566 out_unlock:
5567 apply_wqattrs_unlock();
5568 free_workqueue_attrs(attrs);
5569 return ret ?: count;
5570 }
5571
5572 static ssize_t wq_cpumask_show(struct device *dev,
5573 struct device_attribute *attr, char *buf)
5574 {
5575 struct workqueue_struct *wq = dev_to_wq(dev);
5576 int written;
5577
5578 mutex_lock(&wq->mutex);
5579 written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
5580 cpumask_pr_args(wq->unbound_attrs->cpumask));
5581 mutex_unlock(&wq->mutex);
5582 return written;
5583 }
5584
5585 static ssize_t wq_cpumask_store(struct device *dev,
5586 struct device_attribute *attr,
5587 const char *buf, size_t count)
5588 {
5589 struct workqueue_struct *wq = dev_to_wq(dev);
5590 struct workqueue_attrs *attrs;
5591 int ret = -ENOMEM;
5592
5593 apply_wqattrs_lock();
5594
5595 attrs = wq_sysfs_prep_attrs(wq);
5596 if (!attrs)
5597 goto out_unlock;
5598
5599 ret = cpumask_parse(buf, attrs->cpumask);
5600 if (!ret)
5601 ret = apply_workqueue_attrs_locked(wq, attrs);
5602
5603 out_unlock:
5604 apply_wqattrs_unlock();
5605 free_workqueue_attrs(attrs);
5606 return ret ?: count;
5607 }
5608
5609 static ssize_t wq_numa_show(struct device *dev, struct device_attribute *attr,
5610 char *buf)
5611 {
5612 struct workqueue_struct *wq = dev_to_wq(dev);
5613 int written;
5614
5615 mutex_lock(&wq->mutex);
5616 written = scnprintf(buf, PAGE_SIZE, "%d\n",
5617 !wq->unbound_attrs->no_numa);
5618 mutex_unlock(&wq->mutex);
5619
5620 return written;
5621 }
5622
5623 static ssize_t wq_numa_store(struct device *dev, struct device_attribute *attr,
5624 const char *buf, size_t count)
5625 {
5626 struct workqueue_struct *wq = dev_to_wq(dev);
5627 struct workqueue_attrs *attrs;
5628 int v, ret = -ENOMEM;
5629
5630 apply_wqattrs_lock();
5631
5632 attrs = wq_sysfs_prep_attrs(wq);
5633 if (!attrs)
5634 goto out_unlock;
5635
5636 ret = -EINVAL;
5637 if (sscanf(buf, "%d", &v) == 1) {
5638 attrs->no_numa = !v;
5639 ret = apply_workqueue_attrs_locked(wq, attrs);
5640 }
5641
5642 out_unlock:
5643 apply_wqattrs_unlock();
5644 free_workqueue_attrs(attrs);
5645 return ret ?: count;
5646 }
5647
5648 static struct device_attribute wq_sysfs_unbound_attrs[] = {
5649 __ATTR(pool_ids, 0444, wq_pool_ids_show, NULL),
5650 __ATTR(nice, 0644, wq_nice_show, wq_nice_store),
5651 __ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store),
5652 __ATTR(numa, 0644, wq_numa_show, wq_numa_store),
5653 __ATTR_NULL,
5654 };
5655
5656 static struct bus_type wq_subsys = {
5657 .name = "workqueue",
5658 .dev_groups = wq_sysfs_groups,
5659 };
5660
5661 static ssize_t wq_unbound_cpumask_show(struct device *dev,
5662 struct device_attribute *attr, char *buf)
5663 {
5664 int written;
5665
5666 mutex_lock(&wq_pool_mutex);
5667 written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
5668 cpumask_pr_args(wq_unbound_cpumask));
5669 mutex_unlock(&wq_pool_mutex);
5670
5671 return written;
5672 }
5673
5674 static ssize_t wq_unbound_cpumask_store(struct device *dev,
5675 struct device_attribute *attr, const char *buf, size_t count)
5676 {
5677 cpumask_var_t cpumask;
5678 int ret;
5679
5680 if (!zalloc_cpumask_var(&cpumask, GFP_KERNEL))
5681 return -ENOMEM;
5682
5683 ret = cpumask_parse(buf, cpumask);
5684 if (!ret)
5685 ret = workqueue_set_unbound_cpumask(cpumask);
5686
5687 free_cpumask_var(cpumask);
5688 return ret ? ret : count;
5689 }
5690
5691 static struct device_attribute wq_sysfs_cpumask_attr =
5692 __ATTR(cpumask, 0644, wq_unbound_cpumask_show,
5693 wq_unbound_cpumask_store);
5694
5695 static int __init wq_sysfs_init(void)
5696 {
5697 int err;
5698
5699 err = subsys_virtual_register(&wq_subsys, NULL);
5700 if (err)
5701 return err;
5702
5703 return device_create_file(wq_subsys.dev_root, &wq_sysfs_cpumask_attr);
5704 }
5705 core_initcall(wq_sysfs_init);
5706
5707 static void wq_device_release(struct device *dev)
5708 {
5709 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
5710
5711 kfree(wq_dev);
5712 }
5713
5714 /**
5715 * workqueue_sysfs_register - make a workqueue visible in sysfs
5716 * @wq: the workqueue to register
5717 *
5718 * Expose @wq in sysfs under /sys/bus/workqueue/devices.
5719 * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set
5720 * which is the preferred method.
5721 *
5722 * Workqueue user should use this function directly iff it wants to apply
5723 * workqueue_attrs before making the workqueue visible in sysfs; otherwise,
5724 * apply_workqueue_attrs() may race against userland updating the
5725 * attributes.
5726 *
5727 * Return: 0 on success, -errno on failure.
5728 */
5729 int workqueue_sysfs_register(struct workqueue_struct *wq)
5730 {
5731 struct wq_device *wq_dev;
5732 int ret;
5733
5734 /*
5735 * Adjusting max_active or creating new pwqs by applying
5736 * attributes breaks ordering guarantee. Disallow exposing ordered
5737 * workqueues.
5738 */
5739 if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
5740 return -EINVAL;
5741
5742 wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL);
5743 if (!wq_dev)
5744 return -ENOMEM;
5745
5746 wq_dev->wq = wq;
5747 wq_dev->dev.bus = &wq_subsys;
5748 wq_dev->dev.release = wq_device_release;
5749 dev_set_name(&wq_dev->dev, "%s", wq->name);
5750
5751 /*
5752 * unbound_attrs are created separately. Suppress uevent until
5753 * everything is ready.
5754 */
5755 dev_set_uevent_suppress(&wq_dev->dev, true);
5756
5757 ret = device_register(&wq_dev->dev);
5758 if (ret) {
5759 put_device(&wq_dev->dev);
5760 wq->wq_dev = NULL;
5761 return ret;
5762 }
5763
5764 if (wq->flags & WQ_UNBOUND) {
5765 struct device_attribute *attr;
5766
5767 for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) {
5768 ret = device_create_file(&wq_dev->dev, attr);
5769 if (ret) {
5770 device_unregister(&wq_dev->dev);
5771 wq->wq_dev = NULL;
5772 return ret;
5773 }
5774 }
5775 }
5776
5777 dev_set_uevent_suppress(&wq_dev->dev, false);
5778 kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD);
5779 return 0;
5780 }
5781
5782 /**
5783 * workqueue_sysfs_unregister - undo workqueue_sysfs_register()
5784 * @wq: the workqueue to unregister
5785 *
5786 * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister.
5787 */
5788 static void workqueue_sysfs_unregister(struct workqueue_struct *wq)
5789 {
5790 struct wq_device *wq_dev = wq->wq_dev;
5791
5792 if (!wq->wq_dev)
5793 return;
5794
5795 wq->wq_dev = NULL;
5796 device_unregister(&wq_dev->dev);
5797 }
5798 #else /* CONFIG_SYSFS */
5799 static void workqueue_sysfs_unregister(struct workqueue_struct *wq) { }
5800 #endif /* CONFIG_SYSFS */
5801
5802 /*
5803 * Workqueue watchdog.
5804 *
5805 * Stall may be caused by various bugs - missing WQ_MEM_RECLAIM, illegal
5806 * flush dependency, a concurrency managed work item which stays RUNNING
5807 * indefinitely. Workqueue stalls can be very difficult to debug as the
5808 * usual warning mechanisms don't trigger and internal workqueue state is
5809 * largely opaque.
5810 *
5811 * Workqueue watchdog monitors all worker pools periodically and dumps
5812 * state if some pools failed to make forward progress for a while where
5813 * forward progress is defined as the first item on ->worklist changing.
5814 *
5815 * This mechanism is controlled through the kernel parameter
5816 * "workqueue.watchdog_thresh" which can be updated at runtime through the
5817 * corresponding sysfs parameter file.
5818 */
5819 #ifdef CONFIG_WQ_WATCHDOG
5820
5821 static unsigned long wq_watchdog_thresh = 30;
5822 static struct timer_list wq_watchdog_timer;
5823
5824 static unsigned long wq_watchdog_touched = INITIAL_JIFFIES;
5825 static DEFINE_PER_CPU(unsigned long, wq_watchdog_touched_cpu) = INITIAL_JIFFIES;
5826
5827 static void wq_watchdog_reset_touched(void)
5828 {
5829 int cpu;
5830
5831 wq_watchdog_touched = jiffies;
5832 for_each_possible_cpu(cpu)
5833 per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
5834 }
5835
5836 static void wq_watchdog_timer_fn(struct timer_list *unused)
5837 {
5838 unsigned long thresh = READ_ONCE(wq_watchdog_thresh) * HZ;
5839 bool lockup_detected = false;
5840 unsigned long now = jiffies;
5841 struct worker_pool *pool;
5842 int pi;
5843
5844 if (!thresh)
5845 return;
5846
5847 rcu_read_lock();
5848
5849 for_each_pool(pool, pi) {
5850 unsigned long pool_ts, touched, ts;
5851
5852 if (list_empty(&pool->worklist))
5853 continue;
5854
5855 /*
5856 * If a virtual machine is stopped by the host it can look to
5857 * the watchdog like a stall.
5858 */
5859 kvm_check_and_clear_guest_paused();
5860
5861 /* get the latest of pool and touched timestamps */
5862 if (pool->cpu >= 0)
5863 touched = READ_ONCE(per_cpu(wq_watchdog_touched_cpu, pool->cpu));
5864 else
5865 touched = READ_ONCE(wq_watchdog_touched);
5866 pool_ts = READ_ONCE(pool->watchdog_ts);
5867
5868 if (time_after(pool_ts, touched))
5869 ts = pool_ts;
5870 else
5871 ts = touched;
5872
5873 /* did we stall? */
5874 if (time_after(now, ts + thresh)) {
5875 lockup_detected = true;
5876 pr_emerg("BUG: workqueue lockup - pool");
5877 pr_cont_pool_info(pool);
5878 pr_cont(" stuck for %us!\n",
5879 jiffies_to_msecs(now - pool_ts) / 1000);
5880 }
5881 }
5882
5883 rcu_read_unlock();
5884
5885 if (lockup_detected)
5886 show_workqueue_state();
5887
5888 wq_watchdog_reset_touched();
5889 mod_timer(&wq_watchdog_timer, jiffies + thresh);
5890 }
5891
5892 notrace void wq_watchdog_touch(int cpu)
5893 {
5894 if (cpu >= 0)
5895 per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
5896
5897 wq_watchdog_touched = jiffies;
5898 }
5899
5900 static void wq_watchdog_set_thresh(unsigned long thresh)
5901 {
5902 wq_watchdog_thresh = 0;
5903 del_timer_sync(&wq_watchdog_timer);
5904
5905 if (thresh) {
5906 wq_watchdog_thresh = thresh;
5907 wq_watchdog_reset_touched();
5908 mod_timer(&wq_watchdog_timer, jiffies + thresh * HZ);
5909 }
5910 }
5911
5912 static int wq_watchdog_param_set_thresh(const char *val,
5913 const struct kernel_param *kp)
5914 {
5915 unsigned long thresh;
5916 int ret;
5917
5918 ret = kstrtoul(val, 0, &thresh);
5919 if (ret)
5920 return ret;
5921
5922 if (system_wq)
5923 wq_watchdog_set_thresh(thresh);
5924 else
5925 wq_watchdog_thresh = thresh;
5926
5927 return 0;
5928 }
5929
5930 static const struct kernel_param_ops wq_watchdog_thresh_ops = {
5931 .set = wq_watchdog_param_set_thresh,
5932 .get = param_get_ulong,
5933 };
5934
5935 module_param_cb(watchdog_thresh, &wq_watchdog_thresh_ops, &wq_watchdog_thresh,
5936 0644);
5937
5938 static void wq_watchdog_init(void)
5939 {
5940 timer_setup(&wq_watchdog_timer, wq_watchdog_timer_fn, TIMER_DEFERRABLE);
5941 wq_watchdog_set_thresh(wq_watchdog_thresh);
5942 }
5943
5944 #else /* CONFIG_WQ_WATCHDOG */
5945
5946 static inline void wq_watchdog_init(void) { }
5947
5948 #endif /* CONFIG_WQ_WATCHDOG */
5949
5950 static void __init wq_numa_init(void)
5951 {
5952 cpumask_var_t *tbl;
5953 int node, cpu;
5954
5955 if (num_possible_nodes() <= 1)
5956 return;
5957
5958 if (wq_disable_numa) {
5959 pr_info("workqueue: NUMA affinity support disabled\n");
5960 return;
5961 }
5962
5963 for_each_possible_cpu(cpu) {
5964 if (WARN_ON(cpu_to_node(cpu) == NUMA_NO_NODE)) {
5965 pr_warn("workqueue: NUMA node mapping not available for cpu%d, disabling NUMA support\n", cpu);
5966 return;
5967 }
5968 }
5969
5970 wq_update_unbound_numa_attrs_buf = alloc_workqueue_attrs();
5971 BUG_ON(!wq_update_unbound_numa_attrs_buf);
5972
5973 /*
5974 * We want masks of possible CPUs of each node which isn't readily
5975 * available. Build one from cpu_to_node() which should have been
5976 * fully initialized by now.
5977 */
5978 tbl = kcalloc(nr_node_ids, sizeof(tbl[0]), GFP_KERNEL);
5979 BUG_ON(!tbl);
5980
5981 for_each_node(node)
5982 BUG_ON(!zalloc_cpumask_var_node(&tbl[node], GFP_KERNEL,
5983 node_online(node) ? node : NUMA_NO_NODE));
5984
5985 for_each_possible_cpu(cpu) {
5986 node = cpu_to_node(cpu);
5987 cpumask_set_cpu(cpu, tbl[node]);
5988 }
5989
5990 wq_numa_possible_cpumask = tbl;
5991 wq_numa_enabled = true;
5992 }
5993
5994 /**
5995 * workqueue_init_early - early init for workqueue subsystem
5996 *
5997 * This is the first half of two-staged workqueue subsystem initialization
5998 * and invoked as soon as the bare basics - memory allocation, cpumasks and
5999 * idr are up. It sets up all the data structures and system workqueues
6000 * and allows early boot code to create workqueues and queue/cancel work
6001 * items. Actual work item execution starts only after kthreads can be
6002 * created and scheduled right before early initcalls.
6003 */
6004 void __init workqueue_init_early(void)
6005 {
6006 int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL };
6007 int hk_flags = HK_FLAG_DOMAIN | HK_FLAG_WQ;
6008 int i, cpu;
6009
6010 BUILD_BUG_ON(__alignof__(struct pool_workqueue) < __alignof__(long long));
6011
6012 BUG_ON(!alloc_cpumask_var(&wq_unbound_cpumask, GFP_KERNEL));
6013 cpumask_copy(wq_unbound_cpumask, housekeeping_cpumask(hk_flags));
6014
6015 pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC);
6016
6017 /* initialize CPU pools */
6018 for_each_possible_cpu(cpu) {
6019 struct worker_pool *pool;
6020
6021 i = 0;
6022 for_each_cpu_worker_pool(pool, cpu) {
6023 BUG_ON(init_worker_pool(pool));
6024 pool->cpu = cpu;
6025 cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu));
6026 pool->attrs->nice = std_nice[i++];
6027 pool->node = cpu_to_node(cpu);
6028
6029 /* alloc pool ID */
6030 mutex_lock(&wq_pool_mutex);
6031 BUG_ON(worker_pool_assign_id(pool));
6032 mutex_unlock(&wq_pool_mutex);
6033 }
6034 }
6035
6036 /* create default unbound and ordered wq attrs */
6037 for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
6038 struct workqueue_attrs *attrs;
6039
6040 BUG_ON(!(attrs = alloc_workqueue_attrs()));
6041 attrs->nice = std_nice[i];
6042 unbound_std_wq_attrs[i] = attrs;
6043
6044 /*
6045 * An ordered wq should have only one pwq as ordering is
6046 * guaranteed by max_active which is enforced by pwqs.
6047 * Turn off NUMA so that dfl_pwq is used for all nodes.
6048 */
6049 BUG_ON(!(attrs = alloc_workqueue_attrs()));
6050 attrs->nice = std_nice[i];
6051 attrs->no_numa = true;
6052 ordered_wq_attrs[i] = attrs;
6053 }
6054
6055 system_wq = alloc_workqueue("events", 0, 0);
6056 system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
6057 system_long_wq = alloc_workqueue("events_long", 0, 0);
6058 system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
6059 WQ_UNBOUND_MAX_ACTIVE);
6060 system_freezable_wq = alloc_workqueue("events_freezable",
6061 WQ_FREEZABLE, 0);
6062 system_power_efficient_wq = alloc_workqueue("events_power_efficient",
6063 WQ_POWER_EFFICIENT, 0);
6064 system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_power_efficient",
6065 WQ_FREEZABLE | WQ_POWER_EFFICIENT,
6066 0);
6067 BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
6068 !system_unbound_wq || !system_freezable_wq ||
6069 !system_power_efficient_wq ||
6070 !system_freezable_power_efficient_wq);
6071 }
6072
6073 /**
6074 * workqueue_init - bring workqueue subsystem fully online
6075 *
6076 * This is the latter half of two-staged workqueue subsystem initialization
6077 * and invoked as soon as kthreads can be created and scheduled.
6078 * Workqueues have been created and work items queued on them, but there
6079 * are no kworkers executing the work items yet. Populate the worker pools
6080 * with the initial workers and enable future kworker creations.
6081 */
6082 void __init workqueue_init(void)
6083 {
6084 struct workqueue_struct *wq;
6085 struct worker_pool *pool;
6086 int cpu, bkt;
6087
6088 /*
6089 * It'd be simpler to initialize NUMA in workqueue_init_early() but
6090 * CPU to node mapping may not be available that early on some
6091 * archs such as power and arm64. As per-cpu pools created
6092 * previously could be missing node hint and unbound pools NUMA
6093 * affinity, fix them up.
6094 *
6095 * Also, while iterating workqueues, create rescuers if requested.
6096 */
6097 wq_numa_init();
6098
6099 mutex_lock(&wq_pool_mutex);
6100
6101 for_each_possible_cpu(cpu) {
6102 for_each_cpu_worker_pool(pool, cpu) {
6103 pool->node = cpu_to_node(cpu);
6104 }
6105 }
6106
6107 list_for_each_entry(wq, &workqueues, list) {
6108 wq_update_unbound_numa(wq, smp_processor_id(), true);
6109 WARN(init_rescuer(wq),
6110 "workqueue: failed to create early rescuer for %s",
6111 wq->name);
6112 }
6113
6114 mutex_unlock(&wq_pool_mutex);
6115
6116 /* create the initial workers */
6117 for_each_online_cpu(cpu) {
6118 for_each_cpu_worker_pool(pool, cpu) {
6119 pool->flags &= ~POOL_DISASSOCIATED;
6120 BUG_ON(!create_worker(pool));
6121 }
6122 }
6123
6124 hash_for_each(unbound_pool_hash, bkt, pool, hash_node)
6125 BUG_ON(!create_worker(pool));
6126
6127 wq_online = true;
6128 wq_watchdog_init();
6129 }