]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - kernel/workqueue.c
unify flush_work/flush_work_keventd and rename it to cancel_work_sync
[mirror_ubuntu-bionic-kernel.git] / kernel / workqueue.c
1 /*
2 * linux/kernel/workqueue.c
3 *
4 * Generic mechanism for defining kernel helper threads for running
5 * arbitrary tasks in process context.
6 *
7 * Started by Ingo Molnar, Copyright (C) 2002
8 *
9 * Derived from the taskqueue/keventd code by:
10 *
11 * David Woodhouse <dwmw2@infradead.org>
12 * Andrew Morton <andrewm@uow.edu.au>
13 * Kai Petzke <wpp@marie.physik.tu-berlin.de>
14 * Theodore Ts'o <tytso@mit.edu>
15 *
16 * Made to use alloc_percpu by Christoph Lameter <clameter@sgi.com>.
17 */
18
19 #include <linux/module.h>
20 #include <linux/kernel.h>
21 #include <linux/sched.h>
22 #include <linux/init.h>
23 #include <linux/signal.h>
24 #include <linux/completion.h>
25 #include <linux/workqueue.h>
26 #include <linux/slab.h>
27 #include <linux/cpu.h>
28 #include <linux/notifier.h>
29 #include <linux/kthread.h>
30 #include <linux/hardirq.h>
31 #include <linux/mempolicy.h>
32 #include <linux/freezer.h>
33 #include <linux/kallsyms.h>
34 #include <linux/debug_locks.h>
35
36 /*
37 * The per-CPU workqueue (if single thread, we always use the first
38 * possible cpu).
39 */
40 struct cpu_workqueue_struct {
41
42 spinlock_t lock;
43
44 struct list_head worklist;
45 wait_queue_head_t more_work;
46 struct work_struct *current_work;
47
48 struct workqueue_struct *wq;
49 struct task_struct *thread;
50 int should_stop;
51
52 int run_depth; /* Detect run_workqueue() recursion depth */
53 } ____cacheline_aligned;
54
55 /*
56 * The externally visible workqueue abstraction is an array of
57 * per-CPU workqueues:
58 */
59 struct workqueue_struct {
60 struct cpu_workqueue_struct *cpu_wq;
61 struct list_head list;
62 const char *name;
63 int singlethread;
64 int freezeable; /* Freeze threads during suspend */
65 };
66
67 /* All the per-cpu workqueues on the system, for hotplug cpu to add/remove
68 threads to each one as cpus come/go. */
69 static DEFINE_MUTEX(workqueue_mutex);
70 static LIST_HEAD(workqueues);
71
72 static int singlethread_cpu __read_mostly;
73 static cpumask_t cpu_singlethread_map __read_mostly;
74 /* optimization, we could use cpu_possible_map */
75 static cpumask_t cpu_populated_map __read_mostly;
76
77 /* If it's single threaded, it isn't in the list of workqueues. */
78 static inline int is_single_threaded(struct workqueue_struct *wq)
79 {
80 return wq->singlethread;
81 }
82
83 static const cpumask_t *wq_cpu_map(struct workqueue_struct *wq)
84 {
85 return is_single_threaded(wq)
86 ? &cpu_singlethread_map : &cpu_populated_map;
87 }
88
89 static
90 struct cpu_workqueue_struct *wq_per_cpu(struct workqueue_struct *wq, int cpu)
91 {
92 if (unlikely(is_single_threaded(wq)))
93 cpu = singlethread_cpu;
94 return per_cpu_ptr(wq->cpu_wq, cpu);
95 }
96
97 /*
98 * Set the workqueue on which a work item is to be run
99 * - Must *only* be called if the pending flag is set
100 */
101 static inline void set_wq_data(struct work_struct *work,
102 struct cpu_workqueue_struct *cwq)
103 {
104 unsigned long new;
105
106 BUG_ON(!work_pending(work));
107
108 new = (unsigned long) cwq | (1UL << WORK_STRUCT_PENDING);
109 new |= WORK_STRUCT_FLAG_MASK & *work_data_bits(work);
110 atomic_long_set(&work->data, new);
111 }
112
113 static inline
114 struct cpu_workqueue_struct *get_wq_data(struct work_struct *work)
115 {
116 return (void *) (atomic_long_read(&work->data) & WORK_STRUCT_WQ_DATA_MASK);
117 }
118
119 static void insert_work(struct cpu_workqueue_struct *cwq,
120 struct work_struct *work, int tail)
121 {
122 set_wq_data(work, cwq);
123 if (tail)
124 list_add_tail(&work->entry, &cwq->worklist);
125 else
126 list_add(&work->entry, &cwq->worklist);
127 wake_up(&cwq->more_work);
128 }
129
130 /* Preempt must be disabled. */
131 static void __queue_work(struct cpu_workqueue_struct *cwq,
132 struct work_struct *work)
133 {
134 unsigned long flags;
135
136 spin_lock_irqsave(&cwq->lock, flags);
137 insert_work(cwq, work, 1);
138 spin_unlock_irqrestore(&cwq->lock, flags);
139 }
140
141 /**
142 * queue_work - queue work on a workqueue
143 * @wq: workqueue to use
144 * @work: work to queue
145 *
146 * Returns 0 if @work was already on a queue, non-zero otherwise.
147 *
148 * We queue the work to the CPU it was submitted, but there is no
149 * guarantee that it will be processed by that CPU.
150 */
151 int fastcall queue_work(struct workqueue_struct *wq, struct work_struct *work)
152 {
153 int ret = 0;
154
155 if (!test_and_set_bit(WORK_STRUCT_PENDING, work_data_bits(work))) {
156 BUG_ON(!list_empty(&work->entry));
157 __queue_work(wq_per_cpu(wq, get_cpu()), work);
158 put_cpu();
159 ret = 1;
160 }
161 return ret;
162 }
163 EXPORT_SYMBOL_GPL(queue_work);
164
165 void delayed_work_timer_fn(unsigned long __data)
166 {
167 struct delayed_work *dwork = (struct delayed_work *)__data;
168 struct cpu_workqueue_struct *cwq = get_wq_data(&dwork->work);
169 struct workqueue_struct *wq = cwq->wq;
170
171 __queue_work(wq_per_cpu(wq, smp_processor_id()), &dwork->work);
172 }
173
174 /**
175 * queue_delayed_work - queue work on a workqueue after delay
176 * @wq: workqueue to use
177 * @dwork: delayable work to queue
178 * @delay: number of jiffies to wait before queueing
179 *
180 * Returns 0 if @work was already on a queue, non-zero otherwise.
181 */
182 int fastcall queue_delayed_work(struct workqueue_struct *wq,
183 struct delayed_work *dwork, unsigned long delay)
184 {
185 timer_stats_timer_set_start_info(&dwork->timer);
186 if (delay == 0)
187 return queue_work(wq, &dwork->work);
188
189 return queue_delayed_work_on(-1, wq, dwork, delay);
190 }
191 EXPORT_SYMBOL_GPL(queue_delayed_work);
192
193 /**
194 * queue_delayed_work_on - queue work on specific CPU after delay
195 * @cpu: CPU number to execute work on
196 * @wq: workqueue to use
197 * @dwork: work to queue
198 * @delay: number of jiffies to wait before queueing
199 *
200 * Returns 0 if @work was already on a queue, non-zero otherwise.
201 */
202 int queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
203 struct delayed_work *dwork, unsigned long delay)
204 {
205 int ret = 0;
206 struct timer_list *timer = &dwork->timer;
207 struct work_struct *work = &dwork->work;
208
209 if (!test_and_set_bit(WORK_STRUCT_PENDING, work_data_bits(work))) {
210 BUG_ON(timer_pending(timer));
211 BUG_ON(!list_empty(&work->entry));
212
213 /* This stores cwq for the moment, for the timer_fn */
214 set_wq_data(work, wq_per_cpu(wq, raw_smp_processor_id()));
215 timer->expires = jiffies + delay;
216 timer->data = (unsigned long)dwork;
217 timer->function = delayed_work_timer_fn;
218
219 if (unlikely(cpu >= 0))
220 add_timer_on(timer, cpu);
221 else
222 add_timer(timer);
223 ret = 1;
224 }
225 return ret;
226 }
227 EXPORT_SYMBOL_GPL(queue_delayed_work_on);
228
229 static void run_workqueue(struct cpu_workqueue_struct *cwq)
230 {
231 spin_lock_irq(&cwq->lock);
232 cwq->run_depth++;
233 if (cwq->run_depth > 3) {
234 /* morton gets to eat his hat */
235 printk("%s: recursion depth exceeded: %d\n",
236 __FUNCTION__, cwq->run_depth);
237 dump_stack();
238 }
239 while (!list_empty(&cwq->worklist)) {
240 struct work_struct *work = list_entry(cwq->worklist.next,
241 struct work_struct, entry);
242 work_func_t f = work->func;
243
244 cwq->current_work = work;
245 list_del_init(cwq->worklist.next);
246 spin_unlock_irq(&cwq->lock);
247
248 BUG_ON(get_wq_data(work) != cwq);
249 work_clear_pending(work);
250 f(work);
251
252 if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
253 printk(KERN_ERR "BUG: workqueue leaked lock or atomic: "
254 "%s/0x%08x/%d\n",
255 current->comm, preempt_count(),
256 current->pid);
257 printk(KERN_ERR " last function: ");
258 print_symbol("%s\n", (unsigned long)f);
259 debug_show_held_locks(current);
260 dump_stack();
261 }
262
263 spin_lock_irq(&cwq->lock);
264 cwq->current_work = NULL;
265 }
266 cwq->run_depth--;
267 spin_unlock_irq(&cwq->lock);
268 }
269
270 /*
271 * NOTE: the caller must not touch *cwq if this func returns true
272 */
273 static int cwq_should_stop(struct cpu_workqueue_struct *cwq)
274 {
275 int should_stop = cwq->should_stop;
276
277 if (unlikely(should_stop)) {
278 spin_lock_irq(&cwq->lock);
279 should_stop = cwq->should_stop && list_empty(&cwq->worklist);
280 if (should_stop)
281 cwq->thread = NULL;
282 spin_unlock_irq(&cwq->lock);
283 }
284
285 return should_stop;
286 }
287
288 static int worker_thread(void *__cwq)
289 {
290 struct cpu_workqueue_struct *cwq = __cwq;
291 DEFINE_WAIT(wait);
292 struct k_sigaction sa;
293
294 if (!cwq->wq->freezeable)
295 current->flags |= PF_NOFREEZE;
296
297 set_user_nice(current, -5);
298 /*
299 * We inherited MPOL_INTERLEAVE from the booting kernel.
300 * Set MPOL_DEFAULT to insure node local allocations.
301 */
302 numa_default_policy();
303
304 /* SIG_IGN makes children autoreap: see do_notify_parent(). */
305 sa.sa.sa_handler = SIG_IGN;
306 sa.sa.sa_flags = 0;
307 siginitset(&sa.sa.sa_mask, sigmask(SIGCHLD));
308 do_sigaction(SIGCHLD, &sa, (struct k_sigaction *)0);
309
310 for (;;) {
311 prepare_to_wait(&cwq->more_work, &wait, TASK_INTERRUPTIBLE);
312 if (!freezing(current) && !cwq->should_stop
313 && list_empty(&cwq->worklist))
314 schedule();
315 finish_wait(&cwq->more_work, &wait);
316
317 try_to_freeze();
318
319 if (cwq_should_stop(cwq))
320 break;
321
322 run_workqueue(cwq);
323 }
324
325 return 0;
326 }
327
328 struct wq_barrier {
329 struct work_struct work;
330 struct completion done;
331 };
332
333 static void wq_barrier_func(struct work_struct *work)
334 {
335 struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
336 complete(&barr->done);
337 }
338
339 static void insert_wq_barrier(struct cpu_workqueue_struct *cwq,
340 struct wq_barrier *barr, int tail)
341 {
342 INIT_WORK(&barr->work, wq_barrier_func);
343 __set_bit(WORK_STRUCT_PENDING, work_data_bits(&barr->work));
344
345 init_completion(&barr->done);
346
347 insert_work(cwq, &barr->work, tail);
348 }
349
350 static void flush_cpu_workqueue(struct cpu_workqueue_struct *cwq)
351 {
352 if (cwq->thread == current) {
353 /*
354 * Probably keventd trying to flush its own queue. So simply run
355 * it by hand rather than deadlocking.
356 */
357 run_workqueue(cwq);
358 } else {
359 struct wq_barrier barr;
360 int active = 0;
361
362 spin_lock_irq(&cwq->lock);
363 if (!list_empty(&cwq->worklist) || cwq->current_work != NULL) {
364 insert_wq_barrier(cwq, &barr, 1);
365 active = 1;
366 }
367 spin_unlock_irq(&cwq->lock);
368
369 if (active)
370 wait_for_completion(&barr.done);
371 }
372 }
373
374 /**
375 * flush_workqueue - ensure that any scheduled work has run to completion.
376 * @wq: workqueue to flush
377 *
378 * Forces execution of the workqueue and blocks until its completion.
379 * This is typically used in driver shutdown handlers.
380 *
381 * We sleep until all works which were queued on entry have been handled,
382 * but we are not livelocked by new incoming ones.
383 *
384 * This function used to run the workqueues itself. Now we just wait for the
385 * helper threads to do it.
386 */
387 void fastcall flush_workqueue(struct workqueue_struct *wq)
388 {
389 const cpumask_t *cpu_map = wq_cpu_map(wq);
390 int cpu;
391
392 might_sleep();
393 for_each_cpu_mask(cpu, *cpu_map)
394 flush_cpu_workqueue(per_cpu_ptr(wq->cpu_wq, cpu));
395 }
396 EXPORT_SYMBOL_GPL(flush_workqueue);
397
398 static void wait_on_work(struct cpu_workqueue_struct *cwq,
399 struct work_struct *work)
400 {
401 struct wq_barrier barr;
402 int running = 0;
403
404 spin_lock_irq(&cwq->lock);
405 if (unlikely(cwq->current_work == work)) {
406 insert_wq_barrier(cwq, &barr, 0);
407 running = 1;
408 }
409 spin_unlock_irq(&cwq->lock);
410
411 if (unlikely(running))
412 wait_for_completion(&barr.done);
413 }
414
415 /**
416 * cancel_work_sync - block until a work_struct's callback has terminated
417 * @work: the work which is to be flushed
418 *
419 * cancel_work_sync() will attempt to cancel the work if it is queued. If the
420 * work's callback appears to be running, cancel_work_sync() will block until
421 * it has completed.
422 *
423 * cancel_work_sync() is designed to be used when the caller is tearing down
424 * data structures which the callback function operates upon. It is expected
425 * that, prior to calling cancel_work_sync(), the caller has arranged for the
426 * work to not be requeued.
427 */
428 void cancel_work_sync(struct work_struct *work)
429 {
430 struct cpu_workqueue_struct *cwq;
431 struct workqueue_struct *wq;
432 const cpumask_t *cpu_map;
433 int cpu;
434
435 might_sleep();
436
437 cwq = get_wq_data(work);
438 /* Was it ever queued ? */
439 if (!cwq)
440 return;
441
442 /*
443 * This work can't be re-queued, no need to re-check that
444 * get_wq_data() is still the same when we take cwq->lock.
445 */
446 spin_lock_irq(&cwq->lock);
447 list_del_init(&work->entry);
448 work_clear_pending(work);
449 spin_unlock_irq(&cwq->lock);
450
451 wq = cwq->wq;
452 cpu_map = wq_cpu_map(wq);
453
454 for_each_cpu_mask(cpu, *cpu_map)
455 wait_on_work(per_cpu_ptr(wq->cpu_wq, cpu), work);
456 }
457 EXPORT_SYMBOL_GPL(cancel_work_sync);
458
459
460 static struct workqueue_struct *keventd_wq;
461
462 /**
463 * schedule_work - put work task in global workqueue
464 * @work: job to be done
465 *
466 * This puts a job in the kernel-global workqueue.
467 */
468 int fastcall schedule_work(struct work_struct *work)
469 {
470 return queue_work(keventd_wq, work);
471 }
472 EXPORT_SYMBOL(schedule_work);
473
474 /**
475 * schedule_delayed_work - put work task in global workqueue after delay
476 * @dwork: job to be done
477 * @delay: number of jiffies to wait or 0 for immediate execution
478 *
479 * After waiting for a given time this puts a job in the kernel-global
480 * workqueue.
481 */
482 int fastcall schedule_delayed_work(struct delayed_work *dwork,
483 unsigned long delay)
484 {
485 timer_stats_timer_set_start_info(&dwork->timer);
486 return queue_delayed_work(keventd_wq, dwork, delay);
487 }
488 EXPORT_SYMBOL(schedule_delayed_work);
489
490 /**
491 * schedule_delayed_work_on - queue work in global workqueue on CPU after delay
492 * @cpu: cpu to use
493 * @dwork: job to be done
494 * @delay: number of jiffies to wait
495 *
496 * After waiting for a given time this puts a job in the kernel-global
497 * workqueue on the specified CPU.
498 */
499 int schedule_delayed_work_on(int cpu,
500 struct delayed_work *dwork, unsigned long delay)
501 {
502 return queue_delayed_work_on(cpu, keventd_wq, dwork, delay);
503 }
504 EXPORT_SYMBOL(schedule_delayed_work_on);
505
506 /**
507 * schedule_on_each_cpu - call a function on each online CPU from keventd
508 * @func: the function to call
509 *
510 * Returns zero on success.
511 * Returns -ve errno on failure.
512 *
513 * Appears to be racy against CPU hotplug.
514 *
515 * schedule_on_each_cpu() is very slow.
516 */
517 int schedule_on_each_cpu(work_func_t func)
518 {
519 int cpu;
520 struct work_struct *works;
521
522 works = alloc_percpu(struct work_struct);
523 if (!works)
524 return -ENOMEM;
525
526 preempt_disable(); /* CPU hotplug */
527 for_each_online_cpu(cpu) {
528 struct work_struct *work = per_cpu_ptr(works, cpu);
529
530 INIT_WORK(work, func);
531 set_bit(WORK_STRUCT_PENDING, work_data_bits(work));
532 __queue_work(per_cpu_ptr(keventd_wq->cpu_wq, cpu), work);
533 }
534 preempt_enable();
535 flush_workqueue(keventd_wq);
536 free_percpu(works);
537 return 0;
538 }
539
540 void flush_scheduled_work(void)
541 {
542 flush_workqueue(keventd_wq);
543 }
544 EXPORT_SYMBOL(flush_scheduled_work);
545
546 /**
547 * cancel_rearming_delayed_work - kill off a delayed work whose handler rearms the delayed work.
548 * @dwork: the delayed work struct
549 *
550 * Note that the work callback function may still be running on return from
551 * cancel_delayed_work(). Run flush_workqueue() or cancel_work_sync() to wait
552 * on it.
553 */
554 void cancel_rearming_delayed_work(struct delayed_work *dwork)
555 {
556 struct cpu_workqueue_struct *cwq = get_wq_data(&dwork->work);
557
558 /* Was it ever queued ? */
559 if (cwq != NULL) {
560 struct workqueue_struct *wq = cwq->wq;
561
562 while (!cancel_delayed_work(dwork))
563 flush_workqueue(wq);
564 }
565 }
566 EXPORT_SYMBOL(cancel_rearming_delayed_work);
567
568 /**
569 * execute_in_process_context - reliably execute the routine with user context
570 * @fn: the function to execute
571 * @ew: guaranteed storage for the execute work structure (must
572 * be available when the work executes)
573 *
574 * Executes the function immediately if process context is available,
575 * otherwise schedules the function for delayed execution.
576 *
577 * Returns: 0 - function was executed
578 * 1 - function was scheduled for execution
579 */
580 int execute_in_process_context(work_func_t fn, struct execute_work *ew)
581 {
582 if (!in_interrupt()) {
583 fn(&ew->work);
584 return 0;
585 }
586
587 INIT_WORK(&ew->work, fn);
588 schedule_work(&ew->work);
589
590 return 1;
591 }
592 EXPORT_SYMBOL_GPL(execute_in_process_context);
593
594 int keventd_up(void)
595 {
596 return keventd_wq != NULL;
597 }
598
599 int current_is_keventd(void)
600 {
601 struct cpu_workqueue_struct *cwq;
602 int cpu = smp_processor_id(); /* preempt-safe: keventd is per-cpu */
603 int ret = 0;
604
605 BUG_ON(!keventd_wq);
606
607 cwq = per_cpu_ptr(keventd_wq->cpu_wq, cpu);
608 if (current == cwq->thread)
609 ret = 1;
610
611 return ret;
612
613 }
614
615 static struct cpu_workqueue_struct *
616 init_cpu_workqueue(struct workqueue_struct *wq, int cpu)
617 {
618 struct cpu_workqueue_struct *cwq = per_cpu_ptr(wq->cpu_wq, cpu);
619
620 cwq->wq = wq;
621 spin_lock_init(&cwq->lock);
622 INIT_LIST_HEAD(&cwq->worklist);
623 init_waitqueue_head(&cwq->more_work);
624
625 return cwq;
626 }
627
628 static int create_workqueue_thread(struct cpu_workqueue_struct *cwq, int cpu)
629 {
630 struct workqueue_struct *wq = cwq->wq;
631 const char *fmt = is_single_threaded(wq) ? "%s" : "%s/%d";
632 struct task_struct *p;
633
634 p = kthread_create(worker_thread, cwq, fmt, wq->name, cpu);
635 /*
636 * Nobody can add the work_struct to this cwq,
637 * if (caller is __create_workqueue)
638 * nobody should see this wq
639 * else // caller is CPU_UP_PREPARE
640 * cpu is not on cpu_online_map
641 * so we can abort safely.
642 */
643 if (IS_ERR(p))
644 return PTR_ERR(p);
645
646 cwq->thread = p;
647 cwq->should_stop = 0;
648
649 return 0;
650 }
651
652 static void start_workqueue_thread(struct cpu_workqueue_struct *cwq, int cpu)
653 {
654 struct task_struct *p = cwq->thread;
655
656 if (p != NULL) {
657 if (cpu >= 0)
658 kthread_bind(p, cpu);
659 wake_up_process(p);
660 }
661 }
662
663 struct workqueue_struct *__create_workqueue(const char *name,
664 int singlethread, int freezeable)
665 {
666 struct workqueue_struct *wq;
667 struct cpu_workqueue_struct *cwq;
668 int err = 0, cpu;
669
670 wq = kzalloc(sizeof(*wq), GFP_KERNEL);
671 if (!wq)
672 return NULL;
673
674 wq->cpu_wq = alloc_percpu(struct cpu_workqueue_struct);
675 if (!wq->cpu_wq) {
676 kfree(wq);
677 return NULL;
678 }
679
680 wq->name = name;
681 wq->singlethread = singlethread;
682 wq->freezeable = freezeable;
683 INIT_LIST_HEAD(&wq->list);
684
685 if (singlethread) {
686 cwq = init_cpu_workqueue(wq, singlethread_cpu);
687 err = create_workqueue_thread(cwq, singlethread_cpu);
688 start_workqueue_thread(cwq, -1);
689 } else {
690 mutex_lock(&workqueue_mutex);
691 list_add(&wq->list, &workqueues);
692
693 for_each_possible_cpu(cpu) {
694 cwq = init_cpu_workqueue(wq, cpu);
695 if (err || !cpu_online(cpu))
696 continue;
697 err = create_workqueue_thread(cwq, cpu);
698 start_workqueue_thread(cwq, cpu);
699 }
700 mutex_unlock(&workqueue_mutex);
701 }
702
703 if (err) {
704 destroy_workqueue(wq);
705 wq = NULL;
706 }
707 return wq;
708 }
709 EXPORT_SYMBOL_GPL(__create_workqueue);
710
711 static void cleanup_workqueue_thread(struct cpu_workqueue_struct *cwq, int cpu)
712 {
713 struct wq_barrier barr;
714 int alive = 0;
715
716 spin_lock_irq(&cwq->lock);
717 if (cwq->thread != NULL) {
718 insert_wq_barrier(cwq, &barr, 1);
719 cwq->should_stop = 1;
720 alive = 1;
721 }
722 spin_unlock_irq(&cwq->lock);
723
724 if (alive) {
725 wait_for_completion(&barr.done);
726
727 while (unlikely(cwq->thread != NULL))
728 cpu_relax();
729 /*
730 * Wait until cwq->thread unlocks cwq->lock,
731 * it won't touch *cwq after that.
732 */
733 smp_rmb();
734 spin_unlock_wait(&cwq->lock);
735 }
736 }
737
738 /**
739 * destroy_workqueue - safely terminate a workqueue
740 * @wq: target workqueue
741 *
742 * Safely destroy a workqueue. All work currently pending will be done first.
743 */
744 void destroy_workqueue(struct workqueue_struct *wq)
745 {
746 const cpumask_t *cpu_map = wq_cpu_map(wq);
747 struct cpu_workqueue_struct *cwq;
748 int cpu;
749
750 mutex_lock(&workqueue_mutex);
751 list_del(&wq->list);
752 mutex_unlock(&workqueue_mutex);
753
754 for_each_cpu_mask(cpu, *cpu_map) {
755 cwq = per_cpu_ptr(wq->cpu_wq, cpu);
756 cleanup_workqueue_thread(cwq, cpu);
757 }
758
759 free_percpu(wq->cpu_wq);
760 kfree(wq);
761 }
762 EXPORT_SYMBOL_GPL(destroy_workqueue);
763
764 static int __devinit workqueue_cpu_callback(struct notifier_block *nfb,
765 unsigned long action,
766 void *hcpu)
767 {
768 unsigned int cpu = (unsigned long)hcpu;
769 struct cpu_workqueue_struct *cwq;
770 struct workqueue_struct *wq;
771
772 switch (action) {
773 case CPU_LOCK_ACQUIRE:
774 mutex_lock(&workqueue_mutex);
775 return NOTIFY_OK;
776
777 case CPU_LOCK_RELEASE:
778 mutex_unlock(&workqueue_mutex);
779 return NOTIFY_OK;
780
781 case CPU_UP_PREPARE:
782 cpu_set(cpu, cpu_populated_map);
783 }
784
785 list_for_each_entry(wq, &workqueues, list) {
786 cwq = per_cpu_ptr(wq->cpu_wq, cpu);
787
788 switch (action) {
789 case CPU_UP_PREPARE:
790 if (!create_workqueue_thread(cwq, cpu))
791 break;
792 printk(KERN_ERR "workqueue for %i failed\n", cpu);
793 return NOTIFY_BAD;
794
795 case CPU_ONLINE:
796 start_workqueue_thread(cwq, cpu);
797 break;
798
799 case CPU_UP_CANCELED:
800 start_workqueue_thread(cwq, -1);
801 case CPU_DEAD:
802 cleanup_workqueue_thread(cwq, cpu);
803 break;
804 }
805 }
806
807 return NOTIFY_OK;
808 }
809
810 void __init init_workqueues(void)
811 {
812 cpu_populated_map = cpu_online_map;
813 singlethread_cpu = first_cpu(cpu_possible_map);
814 cpu_singlethread_map = cpumask_of_cpu(singlethread_cpu);
815 hotcpu_notifier(workqueue_cpu_callback, 0);
816 keventd_wq = create_workqueue("events");
817 BUG_ON(!keventd_wq);
818 }