]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - kernel/workqueue.c
workqueue: remove the stale comment in pwq_unbound_release_workfn()
[mirror_ubuntu-hirsute-kernel.git] / kernel / workqueue.c
1 /*
2 * kernel/workqueue.c - generic async execution with shared worker pool
3 *
4 * Copyright (C) 2002 Ingo Molnar
5 *
6 * Derived from the taskqueue/keventd code by:
7 * David Woodhouse <dwmw2@infradead.org>
8 * Andrew Morton
9 * Kai Petzke <wpp@marie.physik.tu-berlin.de>
10 * Theodore Ts'o <tytso@mit.edu>
11 *
12 * Made to use alloc_percpu by Christoph Lameter.
13 *
14 * Copyright (C) 2010 SUSE Linux Products GmbH
15 * Copyright (C) 2010 Tejun Heo <tj@kernel.org>
16 *
17 * This is the generic async execution mechanism. Work items as are
18 * executed in process context. The worker pool is shared and
19 * automatically managed. There are two worker pools for each CPU (one for
20 * normal work items and the other for high priority ones) and some extra
21 * pools for workqueues which are not bound to any specific CPU - the
22 * number of these backing pools is dynamic.
23 *
24 * Please read Documentation/workqueue.txt for details.
25 */
26
27 #include <linux/export.h>
28 #include <linux/kernel.h>
29 #include <linux/sched.h>
30 #include <linux/init.h>
31 #include <linux/signal.h>
32 #include <linux/completion.h>
33 #include <linux/workqueue.h>
34 #include <linux/slab.h>
35 #include <linux/cpu.h>
36 #include <linux/notifier.h>
37 #include <linux/kthread.h>
38 #include <linux/hardirq.h>
39 #include <linux/mempolicy.h>
40 #include <linux/freezer.h>
41 #include <linux/kallsyms.h>
42 #include <linux/debug_locks.h>
43 #include <linux/lockdep.h>
44 #include <linux/idr.h>
45 #include <linux/jhash.h>
46 #include <linux/hashtable.h>
47 #include <linux/rculist.h>
48 #include <linux/nodemask.h>
49 #include <linux/moduleparam.h>
50 #include <linux/uaccess.h>
51
52 #include "workqueue_internal.h"
53
54 enum {
55 /*
56 * worker_pool flags
57 *
58 * A bound pool is either associated or disassociated with its CPU.
59 * While associated (!DISASSOCIATED), all workers are bound to the
60 * CPU and none has %WORKER_UNBOUND set and concurrency management
61 * is in effect.
62 *
63 * While DISASSOCIATED, the cpu may be offline and all workers have
64 * %WORKER_UNBOUND set and concurrency management disabled, and may
65 * be executing on any CPU. The pool behaves as an unbound one.
66 *
67 * Note that DISASSOCIATED should be flipped only while holding
68 * attach_mutex to avoid changing binding state while
69 * worker_attach_to_pool() is in progress.
70 */
71 POOL_DISASSOCIATED = 1 << 2, /* cpu can't serve workers */
72
73 /* worker flags */
74 WORKER_DIE = 1 << 1, /* die die die */
75 WORKER_IDLE = 1 << 2, /* is idle */
76 WORKER_PREP = 1 << 3, /* preparing to run works */
77 WORKER_CPU_INTENSIVE = 1 << 6, /* cpu intensive */
78 WORKER_UNBOUND = 1 << 7, /* worker is unbound */
79 WORKER_REBOUND = 1 << 8, /* worker was rebound */
80
81 WORKER_NOT_RUNNING = WORKER_PREP | WORKER_CPU_INTENSIVE |
82 WORKER_UNBOUND | WORKER_REBOUND,
83
84 NR_STD_WORKER_POOLS = 2, /* # standard pools per cpu */
85
86 UNBOUND_POOL_HASH_ORDER = 6, /* hashed by pool->attrs */
87 BUSY_WORKER_HASH_ORDER = 6, /* 64 pointers */
88
89 MAX_IDLE_WORKERS_RATIO = 4, /* 1/4 of busy can be idle */
90 IDLE_WORKER_TIMEOUT = 300 * HZ, /* keep idle ones for 5 mins */
91
92 MAYDAY_INITIAL_TIMEOUT = HZ / 100 >= 2 ? HZ / 100 : 2,
93 /* call for help after 10ms
94 (min two ticks) */
95 MAYDAY_INTERVAL = HZ / 10, /* and then every 100ms */
96 CREATE_COOLDOWN = HZ, /* time to breath after fail */
97
98 /*
99 * Rescue workers are used only on emergencies and shared by
100 * all cpus. Give MIN_NICE.
101 */
102 RESCUER_NICE_LEVEL = MIN_NICE,
103 HIGHPRI_NICE_LEVEL = MIN_NICE,
104
105 WQ_NAME_LEN = 24,
106 };
107
108 /*
109 * Structure fields follow one of the following exclusion rules.
110 *
111 * I: Modifiable by initialization/destruction paths and read-only for
112 * everyone else.
113 *
114 * P: Preemption protected. Disabling preemption is enough and should
115 * only be modified and accessed from the local cpu.
116 *
117 * L: pool->lock protected. Access with pool->lock held.
118 *
119 * X: During normal operation, modification requires pool->lock and should
120 * be done only from local cpu. Either disabling preemption on local
121 * cpu or grabbing pool->lock is enough for read access. If
122 * POOL_DISASSOCIATED is set, it's identical to L.
123 *
124 * A: pool->attach_mutex protected.
125 *
126 * PL: wq_pool_mutex protected.
127 *
128 * PR: wq_pool_mutex protected for writes. Sched-RCU protected for reads.
129 *
130 * WQ: wq->mutex protected.
131 *
132 * WR: wq->mutex protected for writes. Sched-RCU protected for reads.
133 *
134 * MD: wq_mayday_lock protected.
135 */
136
137 /* struct worker is defined in workqueue_internal.h */
138
139 struct worker_pool {
140 spinlock_t lock; /* the pool lock */
141 int cpu; /* I: the associated cpu */
142 int node; /* I: the associated node ID */
143 int id; /* I: pool ID */
144 unsigned int flags; /* X: flags */
145
146 struct list_head worklist; /* L: list of pending works */
147 int nr_workers; /* L: total number of workers */
148
149 /* nr_idle includes the ones off idle_list for rebinding */
150 int nr_idle; /* L: currently idle ones */
151
152 struct list_head idle_list; /* X: list of idle workers */
153 struct timer_list idle_timer; /* L: worker idle timeout */
154 struct timer_list mayday_timer; /* L: SOS timer for workers */
155
156 /* a workers is either on busy_hash or idle_list, or the manager */
157 DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
158 /* L: hash of busy workers */
159
160 /* see manage_workers() for details on the two manager mutexes */
161 struct mutex manager_arb; /* manager arbitration */
162 struct mutex attach_mutex; /* attach/detach exclusion */
163 struct list_head workers; /* A: attached workers */
164 struct completion *detach_completion; /* all workers detached */
165
166 struct ida worker_ida; /* worker IDs for task name */
167
168 struct workqueue_attrs *attrs; /* I: worker attributes */
169 struct hlist_node hash_node; /* PL: unbound_pool_hash node */
170 int refcnt; /* PL: refcnt for unbound pools */
171
172 /*
173 * The current concurrency level. As it's likely to be accessed
174 * from other CPUs during try_to_wake_up(), put it in a separate
175 * cacheline.
176 */
177 atomic_t nr_running ____cacheline_aligned_in_smp;
178
179 /*
180 * Destruction of pool is sched-RCU protected to allow dereferences
181 * from get_work_pool().
182 */
183 struct rcu_head rcu;
184 } ____cacheline_aligned_in_smp;
185
186 /*
187 * The per-pool workqueue. While queued, the lower WORK_STRUCT_FLAG_BITS
188 * of work_struct->data are used for flags and the remaining high bits
189 * point to the pwq; thus, pwqs need to be aligned at two's power of the
190 * number of flag bits.
191 */
192 struct pool_workqueue {
193 struct worker_pool *pool; /* I: the associated pool */
194 struct workqueue_struct *wq; /* I: the owning workqueue */
195 int work_color; /* L: current color */
196 int flush_color; /* L: flushing color */
197 int refcnt; /* L: reference count */
198 int nr_in_flight[WORK_NR_COLORS];
199 /* L: nr of in_flight works */
200 int nr_active; /* L: nr of active works */
201 int max_active; /* L: max active works */
202 struct list_head delayed_works; /* L: delayed works */
203 struct list_head pwqs_node; /* WR: node on wq->pwqs */
204 struct list_head mayday_node; /* MD: node on wq->maydays */
205
206 /*
207 * Release of unbound pwq is punted to system_wq. See put_pwq()
208 * and pwq_unbound_release_workfn() for details. pool_workqueue
209 * itself is also sched-RCU protected so that the first pwq can be
210 * determined without grabbing wq->mutex.
211 */
212 struct work_struct unbound_release_work;
213 struct rcu_head rcu;
214 } __aligned(1 << WORK_STRUCT_FLAG_BITS);
215
216 /*
217 * Structure used to wait for workqueue flush.
218 */
219 struct wq_flusher {
220 struct list_head list; /* WQ: list of flushers */
221 int flush_color; /* WQ: flush color waiting for */
222 struct completion done; /* flush completion */
223 };
224
225 struct wq_device;
226
227 /*
228 * The externally visible workqueue. It relays the issued work items to
229 * the appropriate worker_pool through its pool_workqueues.
230 */
231 struct workqueue_struct {
232 struct list_head pwqs; /* WR: all pwqs of this wq */
233 struct list_head list; /* PL: list of all workqueues */
234
235 struct mutex mutex; /* protects this wq */
236 int work_color; /* WQ: current work color */
237 int flush_color; /* WQ: current flush color */
238 atomic_t nr_pwqs_to_flush; /* flush in progress */
239 struct wq_flusher *first_flusher; /* WQ: first flusher */
240 struct list_head flusher_queue; /* WQ: flush waiters */
241 struct list_head flusher_overflow; /* WQ: flush overflow list */
242
243 struct list_head maydays; /* MD: pwqs requesting rescue */
244 struct worker *rescuer; /* I: rescue worker */
245
246 int nr_drainers; /* WQ: drain in progress */
247 int saved_max_active; /* WQ: saved pwq max_active */
248
249 struct workqueue_attrs *unbound_attrs; /* WQ: only for unbound wqs */
250 struct pool_workqueue *dfl_pwq; /* WQ: only for unbound wqs */
251
252 #ifdef CONFIG_SYSFS
253 struct wq_device *wq_dev; /* I: for sysfs interface */
254 #endif
255 #ifdef CONFIG_LOCKDEP
256 struct lockdep_map lockdep_map;
257 #endif
258 char name[WQ_NAME_LEN]; /* I: workqueue name */
259
260 /* hot fields used during command issue, aligned to cacheline */
261 unsigned int flags ____cacheline_aligned; /* WQ: WQ_* flags */
262 struct pool_workqueue __percpu *cpu_pwqs; /* I: per-cpu pwqs */
263 struct pool_workqueue __rcu *numa_pwq_tbl[]; /* FR: unbound pwqs indexed by node */
264 };
265
266 static struct kmem_cache *pwq_cache;
267
268 static int wq_numa_tbl_len; /* highest possible NUMA node id + 1 */
269 static cpumask_var_t *wq_numa_possible_cpumask;
270 /* possible CPUs of each node */
271
272 static bool wq_disable_numa;
273 module_param_named(disable_numa, wq_disable_numa, bool, 0444);
274
275 /* see the comment above the definition of WQ_POWER_EFFICIENT */
276 #ifdef CONFIG_WQ_POWER_EFFICIENT_DEFAULT
277 static bool wq_power_efficient = true;
278 #else
279 static bool wq_power_efficient;
280 #endif
281
282 module_param_named(power_efficient, wq_power_efficient, bool, 0444);
283
284 static bool wq_numa_enabled; /* unbound NUMA affinity enabled */
285
286 /* buf for wq_update_unbound_numa_attrs(), protected by CPU hotplug exclusion */
287 static struct workqueue_attrs *wq_update_unbound_numa_attrs_buf;
288
289 static DEFINE_MUTEX(wq_pool_mutex); /* protects pools and workqueues list */
290 static DEFINE_SPINLOCK(wq_mayday_lock); /* protects wq->maydays list */
291
292 static LIST_HEAD(workqueues); /* PL: list of all workqueues */
293 static bool workqueue_freezing; /* PL: have wqs started freezing? */
294
295 /* the per-cpu worker pools */
296 static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS],
297 cpu_worker_pools);
298
299 static DEFINE_IDR(worker_pool_idr); /* PR: idr of all pools */
300
301 /* PL: hash of all unbound pools keyed by pool->attrs */
302 static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER);
303
304 /* I: attributes used when instantiating standard unbound pools on demand */
305 static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS];
306
307 /* I: attributes used when instantiating ordered pools on demand */
308 static struct workqueue_attrs *ordered_wq_attrs[NR_STD_WORKER_POOLS];
309
310 struct workqueue_struct *system_wq __read_mostly;
311 EXPORT_SYMBOL(system_wq);
312 struct workqueue_struct *system_highpri_wq __read_mostly;
313 EXPORT_SYMBOL_GPL(system_highpri_wq);
314 struct workqueue_struct *system_long_wq __read_mostly;
315 EXPORT_SYMBOL_GPL(system_long_wq);
316 struct workqueue_struct *system_unbound_wq __read_mostly;
317 EXPORT_SYMBOL_GPL(system_unbound_wq);
318 struct workqueue_struct *system_freezable_wq __read_mostly;
319 EXPORT_SYMBOL_GPL(system_freezable_wq);
320 struct workqueue_struct *system_power_efficient_wq __read_mostly;
321 EXPORT_SYMBOL_GPL(system_power_efficient_wq);
322 struct workqueue_struct *system_freezable_power_efficient_wq __read_mostly;
323 EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq);
324
325 static int worker_thread(void *__worker);
326 static void copy_workqueue_attrs(struct workqueue_attrs *to,
327 const struct workqueue_attrs *from);
328
329 #define CREATE_TRACE_POINTS
330 #include <trace/events/workqueue.h>
331
332 #define assert_rcu_or_pool_mutex() \
333 rcu_lockdep_assert(rcu_read_lock_sched_held() || \
334 lockdep_is_held(&wq_pool_mutex), \
335 "sched RCU or wq_pool_mutex should be held")
336
337 #define assert_rcu_or_wq_mutex(wq) \
338 rcu_lockdep_assert(rcu_read_lock_sched_held() || \
339 lockdep_is_held(&wq->mutex), \
340 "sched RCU or wq->mutex should be held")
341
342 #define for_each_cpu_worker_pool(pool, cpu) \
343 for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0]; \
344 (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
345 (pool)++)
346
347 /**
348 * for_each_pool - iterate through all worker_pools in the system
349 * @pool: iteration cursor
350 * @pi: integer used for iteration
351 *
352 * This must be called either with wq_pool_mutex held or sched RCU read
353 * locked. If the pool needs to be used beyond the locking in effect, the
354 * caller is responsible for guaranteeing that the pool stays online.
355 *
356 * The if/else clause exists only for the lockdep assertion and can be
357 * ignored.
358 */
359 #define for_each_pool(pool, pi) \
360 idr_for_each_entry(&worker_pool_idr, pool, pi) \
361 if (({ assert_rcu_or_pool_mutex(); false; })) { } \
362 else
363
364 /**
365 * for_each_pool_worker - iterate through all workers of a worker_pool
366 * @worker: iteration cursor
367 * @pool: worker_pool to iterate workers of
368 *
369 * This must be called with @pool->attach_mutex.
370 *
371 * The if/else clause exists only for the lockdep assertion and can be
372 * ignored.
373 */
374 #define for_each_pool_worker(worker, pool) \
375 list_for_each_entry((worker), &(pool)->workers, node) \
376 if (({ lockdep_assert_held(&pool->attach_mutex); false; })) { } \
377 else
378
379 /**
380 * for_each_pwq - iterate through all pool_workqueues of the specified workqueue
381 * @pwq: iteration cursor
382 * @wq: the target workqueue
383 *
384 * This must be called either with wq->mutex held or sched RCU read locked.
385 * If the pwq needs to be used beyond the locking in effect, the caller is
386 * responsible for guaranteeing that the pwq stays online.
387 *
388 * The if/else clause exists only for the lockdep assertion and can be
389 * ignored.
390 */
391 #define for_each_pwq(pwq, wq) \
392 list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node) \
393 if (({ assert_rcu_or_wq_mutex(wq); false; })) { } \
394 else
395
396 #ifdef CONFIG_DEBUG_OBJECTS_WORK
397
398 static struct debug_obj_descr work_debug_descr;
399
400 static void *work_debug_hint(void *addr)
401 {
402 return ((struct work_struct *) addr)->func;
403 }
404
405 /*
406 * fixup_init is called when:
407 * - an active object is initialized
408 */
409 static int work_fixup_init(void *addr, enum debug_obj_state state)
410 {
411 struct work_struct *work = addr;
412
413 switch (state) {
414 case ODEBUG_STATE_ACTIVE:
415 cancel_work_sync(work);
416 debug_object_init(work, &work_debug_descr);
417 return 1;
418 default:
419 return 0;
420 }
421 }
422
423 /*
424 * fixup_activate is called when:
425 * - an active object is activated
426 * - an unknown object is activated (might be a statically initialized object)
427 */
428 static int work_fixup_activate(void *addr, enum debug_obj_state state)
429 {
430 struct work_struct *work = addr;
431
432 switch (state) {
433
434 case ODEBUG_STATE_NOTAVAILABLE:
435 /*
436 * This is not really a fixup. The work struct was
437 * statically initialized. We just make sure that it
438 * is tracked in the object tracker.
439 */
440 if (test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work))) {
441 debug_object_init(work, &work_debug_descr);
442 debug_object_activate(work, &work_debug_descr);
443 return 0;
444 }
445 WARN_ON_ONCE(1);
446 return 0;
447
448 case ODEBUG_STATE_ACTIVE:
449 WARN_ON(1);
450
451 default:
452 return 0;
453 }
454 }
455
456 /*
457 * fixup_free is called when:
458 * - an active object is freed
459 */
460 static int work_fixup_free(void *addr, enum debug_obj_state state)
461 {
462 struct work_struct *work = addr;
463
464 switch (state) {
465 case ODEBUG_STATE_ACTIVE:
466 cancel_work_sync(work);
467 debug_object_free(work, &work_debug_descr);
468 return 1;
469 default:
470 return 0;
471 }
472 }
473
474 static struct debug_obj_descr work_debug_descr = {
475 .name = "work_struct",
476 .debug_hint = work_debug_hint,
477 .fixup_init = work_fixup_init,
478 .fixup_activate = work_fixup_activate,
479 .fixup_free = work_fixup_free,
480 };
481
482 static inline void debug_work_activate(struct work_struct *work)
483 {
484 debug_object_activate(work, &work_debug_descr);
485 }
486
487 static inline void debug_work_deactivate(struct work_struct *work)
488 {
489 debug_object_deactivate(work, &work_debug_descr);
490 }
491
492 void __init_work(struct work_struct *work, int onstack)
493 {
494 if (onstack)
495 debug_object_init_on_stack(work, &work_debug_descr);
496 else
497 debug_object_init(work, &work_debug_descr);
498 }
499 EXPORT_SYMBOL_GPL(__init_work);
500
501 void destroy_work_on_stack(struct work_struct *work)
502 {
503 debug_object_free(work, &work_debug_descr);
504 }
505 EXPORT_SYMBOL_GPL(destroy_work_on_stack);
506
507 void destroy_delayed_work_on_stack(struct delayed_work *work)
508 {
509 destroy_timer_on_stack(&work->timer);
510 debug_object_free(&work->work, &work_debug_descr);
511 }
512 EXPORT_SYMBOL_GPL(destroy_delayed_work_on_stack);
513
514 #else
515 static inline void debug_work_activate(struct work_struct *work) { }
516 static inline void debug_work_deactivate(struct work_struct *work) { }
517 #endif
518
519 /**
520 * worker_pool_assign_id - allocate ID and assing it to @pool
521 * @pool: the pool pointer of interest
522 *
523 * Returns 0 if ID in [0, WORK_OFFQ_POOL_NONE) is allocated and assigned
524 * successfully, -errno on failure.
525 */
526 static int worker_pool_assign_id(struct worker_pool *pool)
527 {
528 int ret;
529
530 lockdep_assert_held(&wq_pool_mutex);
531
532 ret = idr_alloc(&worker_pool_idr, pool, 0, WORK_OFFQ_POOL_NONE,
533 GFP_KERNEL);
534 if (ret >= 0) {
535 pool->id = ret;
536 return 0;
537 }
538 return ret;
539 }
540
541 /**
542 * unbound_pwq_by_node - return the unbound pool_workqueue for the given node
543 * @wq: the target workqueue
544 * @node: the node ID
545 *
546 * This must be called either with pwq_lock held or sched RCU read locked.
547 * If the pwq needs to be used beyond the locking in effect, the caller is
548 * responsible for guaranteeing that the pwq stays online.
549 *
550 * Return: The unbound pool_workqueue for @node.
551 */
552 static struct pool_workqueue *unbound_pwq_by_node(struct workqueue_struct *wq,
553 int node)
554 {
555 assert_rcu_or_wq_mutex(wq);
556 return rcu_dereference_raw(wq->numa_pwq_tbl[node]);
557 }
558
559 static unsigned int work_color_to_flags(int color)
560 {
561 return color << WORK_STRUCT_COLOR_SHIFT;
562 }
563
564 static int get_work_color(struct work_struct *work)
565 {
566 return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
567 ((1 << WORK_STRUCT_COLOR_BITS) - 1);
568 }
569
570 static int work_next_color(int color)
571 {
572 return (color + 1) % WORK_NR_COLORS;
573 }
574
575 /*
576 * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
577 * contain the pointer to the queued pwq. Once execution starts, the flag
578 * is cleared and the high bits contain OFFQ flags and pool ID.
579 *
580 * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling()
581 * and clear_work_data() can be used to set the pwq, pool or clear
582 * work->data. These functions should only be called while the work is
583 * owned - ie. while the PENDING bit is set.
584 *
585 * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
586 * corresponding to a work. Pool is available once the work has been
587 * queued anywhere after initialization until it is sync canceled. pwq is
588 * available only while the work item is queued.
589 *
590 * %WORK_OFFQ_CANCELING is used to mark a work item which is being
591 * canceled. While being canceled, a work item may have its PENDING set
592 * but stay off timer and worklist for arbitrarily long and nobody should
593 * try to steal the PENDING bit.
594 */
595 static inline void set_work_data(struct work_struct *work, unsigned long data,
596 unsigned long flags)
597 {
598 WARN_ON_ONCE(!work_pending(work));
599 atomic_long_set(&work->data, data | flags | work_static(work));
600 }
601
602 static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq,
603 unsigned long extra_flags)
604 {
605 set_work_data(work, (unsigned long)pwq,
606 WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags);
607 }
608
609 static void set_work_pool_and_keep_pending(struct work_struct *work,
610 int pool_id)
611 {
612 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT,
613 WORK_STRUCT_PENDING);
614 }
615
616 static void set_work_pool_and_clear_pending(struct work_struct *work,
617 int pool_id)
618 {
619 /*
620 * The following wmb is paired with the implied mb in
621 * test_and_set_bit(PENDING) and ensures all updates to @work made
622 * here are visible to and precede any updates by the next PENDING
623 * owner.
624 */
625 smp_wmb();
626 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0);
627 }
628
629 static void clear_work_data(struct work_struct *work)
630 {
631 smp_wmb(); /* see set_work_pool_and_clear_pending() */
632 set_work_data(work, WORK_STRUCT_NO_POOL, 0);
633 }
634
635 static struct pool_workqueue *get_work_pwq(struct work_struct *work)
636 {
637 unsigned long data = atomic_long_read(&work->data);
638
639 if (data & WORK_STRUCT_PWQ)
640 return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
641 else
642 return NULL;
643 }
644
645 /**
646 * get_work_pool - return the worker_pool a given work was associated with
647 * @work: the work item of interest
648 *
649 * Pools are created and destroyed under wq_pool_mutex, and allows read
650 * access under sched-RCU read lock. As such, this function should be
651 * called under wq_pool_mutex or with preemption disabled.
652 *
653 * All fields of the returned pool are accessible as long as the above
654 * mentioned locking is in effect. If the returned pool needs to be used
655 * beyond the critical section, the caller is responsible for ensuring the
656 * returned pool is and stays online.
657 *
658 * Return: The worker_pool @work was last associated with. %NULL if none.
659 */
660 static struct worker_pool *get_work_pool(struct work_struct *work)
661 {
662 unsigned long data = atomic_long_read(&work->data);
663 int pool_id;
664
665 assert_rcu_or_pool_mutex();
666
667 if (data & WORK_STRUCT_PWQ)
668 return ((struct pool_workqueue *)
669 (data & WORK_STRUCT_WQ_DATA_MASK))->pool;
670
671 pool_id = data >> WORK_OFFQ_POOL_SHIFT;
672 if (pool_id == WORK_OFFQ_POOL_NONE)
673 return NULL;
674
675 return idr_find(&worker_pool_idr, pool_id);
676 }
677
678 /**
679 * get_work_pool_id - return the worker pool ID a given work is associated with
680 * @work: the work item of interest
681 *
682 * Return: The worker_pool ID @work was last associated with.
683 * %WORK_OFFQ_POOL_NONE if none.
684 */
685 static int get_work_pool_id(struct work_struct *work)
686 {
687 unsigned long data = atomic_long_read(&work->data);
688
689 if (data & WORK_STRUCT_PWQ)
690 return ((struct pool_workqueue *)
691 (data & WORK_STRUCT_WQ_DATA_MASK))->pool->id;
692
693 return data >> WORK_OFFQ_POOL_SHIFT;
694 }
695
696 static void mark_work_canceling(struct work_struct *work)
697 {
698 unsigned long pool_id = get_work_pool_id(work);
699
700 pool_id <<= WORK_OFFQ_POOL_SHIFT;
701 set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING);
702 }
703
704 static bool work_is_canceling(struct work_struct *work)
705 {
706 unsigned long data = atomic_long_read(&work->data);
707
708 return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING);
709 }
710
711 /*
712 * Policy functions. These define the policies on how the global worker
713 * pools are managed. Unless noted otherwise, these functions assume that
714 * they're being called with pool->lock held.
715 */
716
717 static bool __need_more_worker(struct worker_pool *pool)
718 {
719 return !atomic_read(&pool->nr_running);
720 }
721
722 /*
723 * Need to wake up a worker? Called from anything but currently
724 * running workers.
725 *
726 * Note that, because unbound workers never contribute to nr_running, this
727 * function will always return %true for unbound pools as long as the
728 * worklist isn't empty.
729 */
730 static bool need_more_worker(struct worker_pool *pool)
731 {
732 return !list_empty(&pool->worklist) && __need_more_worker(pool);
733 }
734
735 /* Can I start working? Called from busy but !running workers. */
736 static bool may_start_working(struct worker_pool *pool)
737 {
738 return pool->nr_idle;
739 }
740
741 /* Do I need to keep working? Called from currently running workers. */
742 static bool keep_working(struct worker_pool *pool)
743 {
744 return !list_empty(&pool->worklist) &&
745 atomic_read(&pool->nr_running) <= 1;
746 }
747
748 /* Do we need a new worker? Called from manager. */
749 static bool need_to_create_worker(struct worker_pool *pool)
750 {
751 return need_more_worker(pool) && !may_start_working(pool);
752 }
753
754 /* Do we have too many workers and should some go away? */
755 static bool too_many_workers(struct worker_pool *pool)
756 {
757 bool managing = mutex_is_locked(&pool->manager_arb);
758 int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
759 int nr_busy = pool->nr_workers - nr_idle;
760
761 return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
762 }
763
764 /*
765 * Wake up functions.
766 */
767
768 /* Return the first idle worker. Safe with preemption disabled */
769 static struct worker *first_idle_worker(struct worker_pool *pool)
770 {
771 if (unlikely(list_empty(&pool->idle_list)))
772 return NULL;
773
774 return list_first_entry(&pool->idle_list, struct worker, entry);
775 }
776
777 /**
778 * wake_up_worker - wake up an idle worker
779 * @pool: worker pool to wake worker from
780 *
781 * Wake up the first idle worker of @pool.
782 *
783 * CONTEXT:
784 * spin_lock_irq(pool->lock).
785 */
786 static void wake_up_worker(struct worker_pool *pool)
787 {
788 struct worker *worker = first_idle_worker(pool);
789
790 if (likely(worker))
791 wake_up_process(worker->task);
792 }
793
794 /**
795 * wq_worker_waking_up - a worker is waking up
796 * @task: task waking up
797 * @cpu: CPU @task is waking up to
798 *
799 * This function is called during try_to_wake_up() when a worker is
800 * being awoken.
801 *
802 * CONTEXT:
803 * spin_lock_irq(rq->lock)
804 */
805 void wq_worker_waking_up(struct task_struct *task, int cpu)
806 {
807 struct worker *worker = kthread_data(task);
808
809 if (!(worker->flags & WORKER_NOT_RUNNING)) {
810 WARN_ON_ONCE(worker->pool->cpu != cpu);
811 atomic_inc(&worker->pool->nr_running);
812 }
813 }
814
815 /**
816 * wq_worker_sleeping - a worker is going to sleep
817 * @task: task going to sleep
818 * @cpu: CPU in question, must be the current CPU number
819 *
820 * This function is called during schedule() when a busy worker is
821 * going to sleep. Worker on the same cpu can be woken up by
822 * returning pointer to its task.
823 *
824 * CONTEXT:
825 * spin_lock_irq(rq->lock)
826 *
827 * Return:
828 * Worker task on @cpu to wake up, %NULL if none.
829 */
830 struct task_struct *wq_worker_sleeping(struct task_struct *task, int cpu)
831 {
832 struct worker *worker = kthread_data(task), *to_wakeup = NULL;
833 struct worker_pool *pool;
834
835 /*
836 * Rescuers, which may not have all the fields set up like normal
837 * workers, also reach here, let's not access anything before
838 * checking NOT_RUNNING.
839 */
840 if (worker->flags & WORKER_NOT_RUNNING)
841 return NULL;
842
843 pool = worker->pool;
844
845 /* this can only happen on the local cpu */
846 if (WARN_ON_ONCE(cpu != raw_smp_processor_id() || pool->cpu != cpu))
847 return NULL;
848
849 /*
850 * The counterpart of the following dec_and_test, implied mb,
851 * worklist not empty test sequence is in insert_work().
852 * Please read comment there.
853 *
854 * NOT_RUNNING is clear. This means that we're bound to and
855 * running on the local cpu w/ rq lock held and preemption
856 * disabled, which in turn means that none else could be
857 * manipulating idle_list, so dereferencing idle_list without pool
858 * lock is safe.
859 */
860 if (atomic_dec_and_test(&pool->nr_running) &&
861 !list_empty(&pool->worklist))
862 to_wakeup = first_idle_worker(pool);
863 return to_wakeup ? to_wakeup->task : NULL;
864 }
865
866 /**
867 * worker_set_flags - set worker flags and adjust nr_running accordingly
868 * @worker: self
869 * @flags: flags to set
870 *
871 * Set @flags in @worker->flags and adjust nr_running accordingly.
872 *
873 * CONTEXT:
874 * spin_lock_irq(pool->lock)
875 */
876 static inline void worker_set_flags(struct worker *worker, unsigned int flags)
877 {
878 struct worker_pool *pool = worker->pool;
879
880 WARN_ON_ONCE(worker->task != current);
881
882 /* If transitioning into NOT_RUNNING, adjust nr_running. */
883 if ((flags & WORKER_NOT_RUNNING) &&
884 !(worker->flags & WORKER_NOT_RUNNING)) {
885 atomic_dec(&pool->nr_running);
886 }
887
888 worker->flags |= flags;
889 }
890
891 /**
892 * worker_clr_flags - clear worker flags and adjust nr_running accordingly
893 * @worker: self
894 * @flags: flags to clear
895 *
896 * Clear @flags in @worker->flags and adjust nr_running accordingly.
897 *
898 * CONTEXT:
899 * spin_lock_irq(pool->lock)
900 */
901 static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
902 {
903 struct worker_pool *pool = worker->pool;
904 unsigned int oflags = worker->flags;
905
906 WARN_ON_ONCE(worker->task != current);
907
908 worker->flags &= ~flags;
909
910 /*
911 * If transitioning out of NOT_RUNNING, increment nr_running. Note
912 * that the nested NOT_RUNNING is not a noop. NOT_RUNNING is mask
913 * of multiple flags, not a single flag.
914 */
915 if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
916 if (!(worker->flags & WORKER_NOT_RUNNING))
917 atomic_inc(&pool->nr_running);
918 }
919
920 /**
921 * find_worker_executing_work - find worker which is executing a work
922 * @pool: pool of interest
923 * @work: work to find worker for
924 *
925 * Find a worker which is executing @work on @pool by searching
926 * @pool->busy_hash which is keyed by the address of @work. For a worker
927 * to match, its current execution should match the address of @work and
928 * its work function. This is to avoid unwanted dependency between
929 * unrelated work executions through a work item being recycled while still
930 * being executed.
931 *
932 * This is a bit tricky. A work item may be freed once its execution
933 * starts and nothing prevents the freed area from being recycled for
934 * another work item. If the same work item address ends up being reused
935 * before the original execution finishes, workqueue will identify the
936 * recycled work item as currently executing and make it wait until the
937 * current execution finishes, introducing an unwanted dependency.
938 *
939 * This function checks the work item address and work function to avoid
940 * false positives. Note that this isn't complete as one may construct a
941 * work function which can introduce dependency onto itself through a
942 * recycled work item. Well, if somebody wants to shoot oneself in the
943 * foot that badly, there's only so much we can do, and if such deadlock
944 * actually occurs, it should be easy to locate the culprit work function.
945 *
946 * CONTEXT:
947 * spin_lock_irq(pool->lock).
948 *
949 * Return:
950 * Pointer to worker which is executing @work if found, %NULL
951 * otherwise.
952 */
953 static struct worker *find_worker_executing_work(struct worker_pool *pool,
954 struct work_struct *work)
955 {
956 struct worker *worker;
957
958 hash_for_each_possible(pool->busy_hash, worker, hentry,
959 (unsigned long)work)
960 if (worker->current_work == work &&
961 worker->current_func == work->func)
962 return worker;
963
964 return NULL;
965 }
966
967 /**
968 * move_linked_works - move linked works to a list
969 * @work: start of series of works to be scheduled
970 * @head: target list to append @work to
971 * @nextp: out paramter for nested worklist walking
972 *
973 * Schedule linked works starting from @work to @head. Work series to
974 * be scheduled starts at @work and includes any consecutive work with
975 * WORK_STRUCT_LINKED set in its predecessor.
976 *
977 * If @nextp is not NULL, it's updated to point to the next work of
978 * the last scheduled work. This allows move_linked_works() to be
979 * nested inside outer list_for_each_entry_safe().
980 *
981 * CONTEXT:
982 * spin_lock_irq(pool->lock).
983 */
984 static void move_linked_works(struct work_struct *work, struct list_head *head,
985 struct work_struct **nextp)
986 {
987 struct work_struct *n;
988
989 /*
990 * Linked worklist will always end before the end of the list,
991 * use NULL for list head.
992 */
993 list_for_each_entry_safe_from(work, n, NULL, entry) {
994 list_move_tail(&work->entry, head);
995 if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
996 break;
997 }
998
999 /*
1000 * If we're already inside safe list traversal and have moved
1001 * multiple works to the scheduled queue, the next position
1002 * needs to be updated.
1003 */
1004 if (nextp)
1005 *nextp = n;
1006 }
1007
1008 /**
1009 * get_pwq - get an extra reference on the specified pool_workqueue
1010 * @pwq: pool_workqueue to get
1011 *
1012 * Obtain an extra reference on @pwq. The caller should guarantee that
1013 * @pwq has positive refcnt and be holding the matching pool->lock.
1014 */
1015 static void get_pwq(struct pool_workqueue *pwq)
1016 {
1017 lockdep_assert_held(&pwq->pool->lock);
1018 WARN_ON_ONCE(pwq->refcnt <= 0);
1019 pwq->refcnt++;
1020 }
1021
1022 /**
1023 * put_pwq - put a pool_workqueue reference
1024 * @pwq: pool_workqueue to put
1025 *
1026 * Drop a reference of @pwq. If its refcnt reaches zero, schedule its
1027 * destruction. The caller should be holding the matching pool->lock.
1028 */
1029 static void put_pwq(struct pool_workqueue *pwq)
1030 {
1031 lockdep_assert_held(&pwq->pool->lock);
1032 if (likely(--pwq->refcnt))
1033 return;
1034 if (WARN_ON_ONCE(!(pwq->wq->flags & WQ_UNBOUND)))
1035 return;
1036 /*
1037 * @pwq can't be released under pool->lock, bounce to
1038 * pwq_unbound_release_workfn(). This never recurses on the same
1039 * pool->lock as this path is taken only for unbound workqueues and
1040 * the release work item is scheduled on a per-cpu workqueue. To
1041 * avoid lockdep warning, unbound pool->locks are given lockdep
1042 * subclass of 1 in get_unbound_pool().
1043 */
1044 schedule_work(&pwq->unbound_release_work);
1045 }
1046
1047 /**
1048 * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock
1049 * @pwq: pool_workqueue to put (can be %NULL)
1050 *
1051 * put_pwq() with locking. This function also allows %NULL @pwq.
1052 */
1053 static void put_pwq_unlocked(struct pool_workqueue *pwq)
1054 {
1055 if (pwq) {
1056 /*
1057 * As both pwqs and pools are sched-RCU protected, the
1058 * following lock operations are safe.
1059 */
1060 spin_lock_irq(&pwq->pool->lock);
1061 put_pwq(pwq);
1062 spin_unlock_irq(&pwq->pool->lock);
1063 }
1064 }
1065
1066 static void pwq_activate_delayed_work(struct work_struct *work)
1067 {
1068 struct pool_workqueue *pwq = get_work_pwq(work);
1069
1070 trace_workqueue_activate_work(work);
1071 move_linked_works(work, &pwq->pool->worklist, NULL);
1072 __clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
1073 pwq->nr_active++;
1074 }
1075
1076 static void pwq_activate_first_delayed(struct pool_workqueue *pwq)
1077 {
1078 struct work_struct *work = list_first_entry(&pwq->delayed_works,
1079 struct work_struct, entry);
1080
1081 pwq_activate_delayed_work(work);
1082 }
1083
1084 /**
1085 * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
1086 * @pwq: pwq of interest
1087 * @color: color of work which left the queue
1088 *
1089 * A work either has completed or is removed from pending queue,
1090 * decrement nr_in_flight of its pwq and handle workqueue flushing.
1091 *
1092 * CONTEXT:
1093 * spin_lock_irq(pool->lock).
1094 */
1095 static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, int color)
1096 {
1097 /* uncolored work items don't participate in flushing or nr_active */
1098 if (color == WORK_NO_COLOR)
1099 goto out_put;
1100
1101 pwq->nr_in_flight[color]--;
1102
1103 pwq->nr_active--;
1104 if (!list_empty(&pwq->delayed_works)) {
1105 /* one down, submit a delayed one */
1106 if (pwq->nr_active < pwq->max_active)
1107 pwq_activate_first_delayed(pwq);
1108 }
1109
1110 /* is flush in progress and are we at the flushing tip? */
1111 if (likely(pwq->flush_color != color))
1112 goto out_put;
1113
1114 /* are there still in-flight works? */
1115 if (pwq->nr_in_flight[color])
1116 goto out_put;
1117
1118 /* this pwq is done, clear flush_color */
1119 pwq->flush_color = -1;
1120
1121 /*
1122 * If this was the last pwq, wake up the first flusher. It
1123 * will handle the rest.
1124 */
1125 if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush))
1126 complete(&pwq->wq->first_flusher->done);
1127 out_put:
1128 put_pwq(pwq);
1129 }
1130
1131 /**
1132 * try_to_grab_pending - steal work item from worklist and disable irq
1133 * @work: work item to steal
1134 * @is_dwork: @work is a delayed_work
1135 * @flags: place to store irq state
1136 *
1137 * Try to grab PENDING bit of @work. This function can handle @work in any
1138 * stable state - idle, on timer or on worklist.
1139 *
1140 * Return:
1141 * 1 if @work was pending and we successfully stole PENDING
1142 * 0 if @work was idle and we claimed PENDING
1143 * -EAGAIN if PENDING couldn't be grabbed at the moment, safe to busy-retry
1144 * -ENOENT if someone else is canceling @work, this state may persist
1145 * for arbitrarily long
1146 *
1147 * Note:
1148 * On >= 0 return, the caller owns @work's PENDING bit. To avoid getting
1149 * interrupted while holding PENDING and @work off queue, irq must be
1150 * disabled on entry. This, combined with delayed_work->timer being
1151 * irqsafe, ensures that we return -EAGAIN for finite short period of time.
1152 *
1153 * On successful return, >= 0, irq is disabled and the caller is
1154 * responsible for releasing it using local_irq_restore(*@flags).
1155 *
1156 * This function is safe to call from any context including IRQ handler.
1157 */
1158 static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
1159 unsigned long *flags)
1160 {
1161 struct worker_pool *pool;
1162 struct pool_workqueue *pwq;
1163
1164 local_irq_save(*flags);
1165
1166 /* try to steal the timer if it exists */
1167 if (is_dwork) {
1168 struct delayed_work *dwork = to_delayed_work(work);
1169
1170 /*
1171 * dwork->timer is irqsafe. If del_timer() fails, it's
1172 * guaranteed that the timer is not queued anywhere and not
1173 * running on the local CPU.
1174 */
1175 if (likely(del_timer(&dwork->timer)))
1176 return 1;
1177 }
1178
1179 /* try to claim PENDING the normal way */
1180 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
1181 return 0;
1182
1183 /*
1184 * The queueing is in progress, or it is already queued. Try to
1185 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
1186 */
1187 pool = get_work_pool(work);
1188 if (!pool)
1189 goto fail;
1190
1191 spin_lock(&pool->lock);
1192 /*
1193 * work->data is guaranteed to point to pwq only while the work
1194 * item is queued on pwq->wq, and both updating work->data to point
1195 * to pwq on queueing and to pool on dequeueing are done under
1196 * pwq->pool->lock. This in turn guarantees that, if work->data
1197 * points to pwq which is associated with a locked pool, the work
1198 * item is currently queued on that pool.
1199 */
1200 pwq = get_work_pwq(work);
1201 if (pwq && pwq->pool == pool) {
1202 debug_work_deactivate(work);
1203
1204 /*
1205 * A delayed work item cannot be grabbed directly because
1206 * it might have linked NO_COLOR work items which, if left
1207 * on the delayed_list, will confuse pwq->nr_active
1208 * management later on and cause stall. Make sure the work
1209 * item is activated before grabbing.
1210 */
1211 if (*work_data_bits(work) & WORK_STRUCT_DELAYED)
1212 pwq_activate_delayed_work(work);
1213
1214 list_del_init(&work->entry);
1215 pwq_dec_nr_in_flight(pwq, get_work_color(work));
1216
1217 /* work->data points to pwq iff queued, point to pool */
1218 set_work_pool_and_keep_pending(work, pool->id);
1219
1220 spin_unlock(&pool->lock);
1221 return 1;
1222 }
1223 spin_unlock(&pool->lock);
1224 fail:
1225 local_irq_restore(*flags);
1226 if (work_is_canceling(work))
1227 return -ENOENT;
1228 cpu_relax();
1229 return -EAGAIN;
1230 }
1231
1232 /**
1233 * insert_work - insert a work into a pool
1234 * @pwq: pwq @work belongs to
1235 * @work: work to insert
1236 * @head: insertion point
1237 * @extra_flags: extra WORK_STRUCT_* flags to set
1238 *
1239 * Insert @work which belongs to @pwq after @head. @extra_flags is or'd to
1240 * work_struct flags.
1241 *
1242 * CONTEXT:
1243 * spin_lock_irq(pool->lock).
1244 */
1245 static void insert_work(struct pool_workqueue *pwq, struct work_struct *work,
1246 struct list_head *head, unsigned int extra_flags)
1247 {
1248 struct worker_pool *pool = pwq->pool;
1249
1250 /* we own @work, set data and link */
1251 set_work_pwq(work, pwq, extra_flags);
1252 list_add_tail(&work->entry, head);
1253 get_pwq(pwq);
1254
1255 /*
1256 * Ensure either wq_worker_sleeping() sees the above
1257 * list_add_tail() or we see zero nr_running to avoid workers lying
1258 * around lazily while there are works to be processed.
1259 */
1260 smp_mb();
1261
1262 if (__need_more_worker(pool))
1263 wake_up_worker(pool);
1264 }
1265
1266 /*
1267 * Test whether @work is being queued from another work executing on the
1268 * same workqueue.
1269 */
1270 static bool is_chained_work(struct workqueue_struct *wq)
1271 {
1272 struct worker *worker;
1273
1274 worker = current_wq_worker();
1275 /*
1276 * Return %true iff I'm a worker execuing a work item on @wq. If
1277 * I'm @worker, it's safe to dereference it without locking.
1278 */
1279 return worker && worker->current_pwq->wq == wq;
1280 }
1281
1282 static void __queue_work(int cpu, struct workqueue_struct *wq,
1283 struct work_struct *work)
1284 {
1285 struct pool_workqueue *pwq;
1286 struct worker_pool *last_pool;
1287 struct list_head *worklist;
1288 unsigned int work_flags;
1289 unsigned int req_cpu = cpu;
1290
1291 /*
1292 * While a work item is PENDING && off queue, a task trying to
1293 * steal the PENDING will busy-loop waiting for it to either get
1294 * queued or lose PENDING. Grabbing PENDING and queueing should
1295 * happen with IRQ disabled.
1296 */
1297 WARN_ON_ONCE(!irqs_disabled());
1298
1299 debug_work_activate(work);
1300
1301 /* if draining, only works from the same workqueue are allowed */
1302 if (unlikely(wq->flags & __WQ_DRAINING) &&
1303 WARN_ON_ONCE(!is_chained_work(wq)))
1304 return;
1305 retry:
1306 if (req_cpu == WORK_CPU_UNBOUND)
1307 cpu = raw_smp_processor_id();
1308
1309 /* pwq which will be used unless @work is executing elsewhere */
1310 if (!(wq->flags & WQ_UNBOUND))
1311 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
1312 else
1313 pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
1314
1315 /*
1316 * If @work was previously on a different pool, it might still be
1317 * running there, in which case the work needs to be queued on that
1318 * pool to guarantee non-reentrancy.
1319 */
1320 last_pool = get_work_pool(work);
1321 if (last_pool && last_pool != pwq->pool) {
1322 struct worker *worker;
1323
1324 spin_lock(&last_pool->lock);
1325
1326 worker = find_worker_executing_work(last_pool, work);
1327
1328 if (worker && worker->current_pwq->wq == wq) {
1329 pwq = worker->current_pwq;
1330 } else {
1331 /* meh... not running there, queue here */
1332 spin_unlock(&last_pool->lock);
1333 spin_lock(&pwq->pool->lock);
1334 }
1335 } else {
1336 spin_lock(&pwq->pool->lock);
1337 }
1338
1339 /*
1340 * pwq is determined and locked. For unbound pools, we could have
1341 * raced with pwq release and it could already be dead. If its
1342 * refcnt is zero, repeat pwq selection. Note that pwqs never die
1343 * without another pwq replacing it in the numa_pwq_tbl or while
1344 * work items are executing on it, so the retrying is guaranteed to
1345 * make forward-progress.
1346 */
1347 if (unlikely(!pwq->refcnt)) {
1348 if (wq->flags & WQ_UNBOUND) {
1349 spin_unlock(&pwq->pool->lock);
1350 cpu_relax();
1351 goto retry;
1352 }
1353 /* oops */
1354 WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt",
1355 wq->name, cpu);
1356 }
1357
1358 /* pwq determined, queue */
1359 trace_workqueue_queue_work(req_cpu, pwq, work);
1360
1361 if (WARN_ON(!list_empty(&work->entry))) {
1362 spin_unlock(&pwq->pool->lock);
1363 return;
1364 }
1365
1366 pwq->nr_in_flight[pwq->work_color]++;
1367 work_flags = work_color_to_flags(pwq->work_color);
1368
1369 if (likely(pwq->nr_active < pwq->max_active)) {
1370 trace_workqueue_activate_work(work);
1371 pwq->nr_active++;
1372 worklist = &pwq->pool->worklist;
1373 } else {
1374 work_flags |= WORK_STRUCT_DELAYED;
1375 worklist = &pwq->delayed_works;
1376 }
1377
1378 insert_work(pwq, work, worklist, work_flags);
1379
1380 spin_unlock(&pwq->pool->lock);
1381 }
1382
1383 /**
1384 * queue_work_on - queue work on specific cpu
1385 * @cpu: CPU number to execute work on
1386 * @wq: workqueue to use
1387 * @work: work to queue
1388 *
1389 * We queue the work to a specific CPU, the caller must ensure it
1390 * can't go away.
1391 *
1392 * Return: %false if @work was already on a queue, %true otherwise.
1393 */
1394 bool queue_work_on(int cpu, struct workqueue_struct *wq,
1395 struct work_struct *work)
1396 {
1397 bool ret = false;
1398 unsigned long flags;
1399
1400 local_irq_save(flags);
1401
1402 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1403 __queue_work(cpu, wq, work);
1404 ret = true;
1405 }
1406
1407 local_irq_restore(flags);
1408 return ret;
1409 }
1410 EXPORT_SYMBOL(queue_work_on);
1411
1412 void delayed_work_timer_fn(unsigned long __data)
1413 {
1414 struct delayed_work *dwork = (struct delayed_work *)__data;
1415
1416 /* should have been called from irqsafe timer with irq already off */
1417 __queue_work(dwork->cpu, dwork->wq, &dwork->work);
1418 }
1419 EXPORT_SYMBOL(delayed_work_timer_fn);
1420
1421 static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
1422 struct delayed_work *dwork, unsigned long delay)
1423 {
1424 struct timer_list *timer = &dwork->timer;
1425 struct work_struct *work = &dwork->work;
1426
1427 WARN_ON_ONCE(timer->function != delayed_work_timer_fn ||
1428 timer->data != (unsigned long)dwork);
1429 WARN_ON_ONCE(timer_pending(timer));
1430 WARN_ON_ONCE(!list_empty(&work->entry));
1431
1432 /*
1433 * If @delay is 0, queue @dwork->work immediately. This is for
1434 * both optimization and correctness. The earliest @timer can
1435 * expire is on the closest next tick and delayed_work users depend
1436 * on that there's no such delay when @delay is 0.
1437 */
1438 if (!delay) {
1439 __queue_work(cpu, wq, &dwork->work);
1440 return;
1441 }
1442
1443 timer_stats_timer_set_start_info(&dwork->timer);
1444
1445 dwork->wq = wq;
1446 dwork->cpu = cpu;
1447 timer->expires = jiffies + delay;
1448
1449 if (unlikely(cpu != WORK_CPU_UNBOUND))
1450 add_timer_on(timer, cpu);
1451 else
1452 add_timer(timer);
1453 }
1454
1455 /**
1456 * queue_delayed_work_on - queue work on specific CPU after delay
1457 * @cpu: CPU number to execute work on
1458 * @wq: workqueue to use
1459 * @dwork: work to queue
1460 * @delay: number of jiffies to wait before queueing
1461 *
1462 * Return: %false if @work was already on a queue, %true otherwise. If
1463 * @delay is zero and @dwork is idle, it will be scheduled for immediate
1464 * execution.
1465 */
1466 bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
1467 struct delayed_work *dwork, unsigned long delay)
1468 {
1469 struct work_struct *work = &dwork->work;
1470 bool ret = false;
1471 unsigned long flags;
1472
1473 /* read the comment in __queue_work() */
1474 local_irq_save(flags);
1475
1476 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1477 __queue_delayed_work(cpu, wq, dwork, delay);
1478 ret = true;
1479 }
1480
1481 local_irq_restore(flags);
1482 return ret;
1483 }
1484 EXPORT_SYMBOL(queue_delayed_work_on);
1485
1486 /**
1487 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
1488 * @cpu: CPU number to execute work on
1489 * @wq: workqueue to use
1490 * @dwork: work to queue
1491 * @delay: number of jiffies to wait before queueing
1492 *
1493 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
1494 * modify @dwork's timer so that it expires after @delay. If @delay is
1495 * zero, @work is guaranteed to be scheduled immediately regardless of its
1496 * current state.
1497 *
1498 * Return: %false if @dwork was idle and queued, %true if @dwork was
1499 * pending and its timer was modified.
1500 *
1501 * This function is safe to call from any context including IRQ handler.
1502 * See try_to_grab_pending() for details.
1503 */
1504 bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
1505 struct delayed_work *dwork, unsigned long delay)
1506 {
1507 unsigned long flags;
1508 int ret;
1509
1510 do {
1511 ret = try_to_grab_pending(&dwork->work, true, &flags);
1512 } while (unlikely(ret == -EAGAIN));
1513
1514 if (likely(ret >= 0)) {
1515 __queue_delayed_work(cpu, wq, dwork, delay);
1516 local_irq_restore(flags);
1517 }
1518
1519 /* -ENOENT from try_to_grab_pending() becomes %true */
1520 return ret;
1521 }
1522 EXPORT_SYMBOL_GPL(mod_delayed_work_on);
1523
1524 /**
1525 * worker_enter_idle - enter idle state
1526 * @worker: worker which is entering idle state
1527 *
1528 * @worker is entering idle state. Update stats and idle timer if
1529 * necessary.
1530 *
1531 * LOCKING:
1532 * spin_lock_irq(pool->lock).
1533 */
1534 static void worker_enter_idle(struct worker *worker)
1535 {
1536 struct worker_pool *pool = worker->pool;
1537
1538 if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) ||
1539 WARN_ON_ONCE(!list_empty(&worker->entry) &&
1540 (worker->hentry.next || worker->hentry.pprev)))
1541 return;
1542
1543 /* can't use worker_set_flags(), also called from create_worker() */
1544 worker->flags |= WORKER_IDLE;
1545 pool->nr_idle++;
1546 worker->last_active = jiffies;
1547
1548 /* idle_list is LIFO */
1549 list_add(&worker->entry, &pool->idle_list);
1550
1551 if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
1552 mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
1553
1554 /*
1555 * Sanity check nr_running. Because wq_unbind_fn() releases
1556 * pool->lock between setting %WORKER_UNBOUND and zapping
1557 * nr_running, the warning may trigger spuriously. Check iff
1558 * unbind is not in progress.
1559 */
1560 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
1561 pool->nr_workers == pool->nr_idle &&
1562 atomic_read(&pool->nr_running));
1563 }
1564
1565 /**
1566 * worker_leave_idle - leave idle state
1567 * @worker: worker which is leaving idle state
1568 *
1569 * @worker is leaving idle state. Update stats.
1570 *
1571 * LOCKING:
1572 * spin_lock_irq(pool->lock).
1573 */
1574 static void worker_leave_idle(struct worker *worker)
1575 {
1576 struct worker_pool *pool = worker->pool;
1577
1578 if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE)))
1579 return;
1580 worker_clr_flags(worker, WORKER_IDLE);
1581 pool->nr_idle--;
1582 list_del_init(&worker->entry);
1583 }
1584
1585 static struct worker *alloc_worker(int node)
1586 {
1587 struct worker *worker;
1588
1589 worker = kzalloc_node(sizeof(*worker), GFP_KERNEL, node);
1590 if (worker) {
1591 INIT_LIST_HEAD(&worker->entry);
1592 INIT_LIST_HEAD(&worker->scheduled);
1593 INIT_LIST_HEAD(&worker->node);
1594 /* on creation a worker is in !idle && prep state */
1595 worker->flags = WORKER_PREP;
1596 }
1597 return worker;
1598 }
1599
1600 /**
1601 * worker_attach_to_pool() - attach a worker to a pool
1602 * @worker: worker to be attached
1603 * @pool: the target pool
1604 *
1605 * Attach @worker to @pool. Once attached, the %WORKER_UNBOUND flag and
1606 * cpu-binding of @worker are kept coordinated with the pool across
1607 * cpu-[un]hotplugs.
1608 */
1609 static void worker_attach_to_pool(struct worker *worker,
1610 struct worker_pool *pool)
1611 {
1612 mutex_lock(&pool->attach_mutex);
1613
1614 /*
1615 * set_cpus_allowed_ptr() will fail if the cpumask doesn't have any
1616 * online CPUs. It'll be re-applied when any of the CPUs come up.
1617 */
1618 set_cpus_allowed_ptr(worker->task, pool->attrs->cpumask);
1619
1620 /*
1621 * The pool->attach_mutex ensures %POOL_DISASSOCIATED remains
1622 * stable across this function. See the comments above the
1623 * flag definition for details.
1624 */
1625 if (pool->flags & POOL_DISASSOCIATED)
1626 worker->flags |= WORKER_UNBOUND;
1627
1628 list_add_tail(&worker->node, &pool->workers);
1629
1630 mutex_unlock(&pool->attach_mutex);
1631 }
1632
1633 /**
1634 * worker_detach_from_pool() - detach a worker from its pool
1635 * @worker: worker which is attached to its pool
1636 * @pool: the pool @worker is attached to
1637 *
1638 * Undo the attaching which had been done in worker_attach_to_pool(). The
1639 * caller worker shouldn't access to the pool after detached except it has
1640 * other reference to the pool.
1641 */
1642 static void worker_detach_from_pool(struct worker *worker,
1643 struct worker_pool *pool)
1644 {
1645 struct completion *detach_completion = NULL;
1646
1647 mutex_lock(&pool->attach_mutex);
1648 list_del(&worker->node);
1649 if (list_empty(&pool->workers))
1650 detach_completion = pool->detach_completion;
1651 mutex_unlock(&pool->attach_mutex);
1652
1653 /* clear leftover flags without pool->lock after it is detached */
1654 worker->flags &= ~(WORKER_UNBOUND | WORKER_REBOUND);
1655
1656 if (detach_completion)
1657 complete(detach_completion);
1658 }
1659
1660 /**
1661 * create_worker - create a new workqueue worker
1662 * @pool: pool the new worker will belong to
1663 *
1664 * Create and start a new worker which is attached to @pool.
1665 *
1666 * CONTEXT:
1667 * Might sleep. Does GFP_KERNEL allocations.
1668 *
1669 * Return:
1670 * Pointer to the newly created worker.
1671 */
1672 static struct worker *create_worker(struct worker_pool *pool)
1673 {
1674 struct worker *worker = NULL;
1675 int id = -1;
1676 char id_buf[16];
1677
1678 /* ID is needed to determine kthread name */
1679 id = ida_simple_get(&pool->worker_ida, 0, 0, GFP_KERNEL);
1680 if (id < 0)
1681 goto fail;
1682
1683 worker = alloc_worker(pool->node);
1684 if (!worker)
1685 goto fail;
1686
1687 worker->pool = pool;
1688 worker->id = id;
1689
1690 if (pool->cpu >= 0)
1691 snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id,
1692 pool->attrs->nice < 0 ? "H" : "");
1693 else
1694 snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id);
1695
1696 worker->task = kthread_create_on_node(worker_thread, worker, pool->node,
1697 "kworker/%s", id_buf);
1698 if (IS_ERR(worker->task))
1699 goto fail;
1700
1701 set_user_nice(worker->task, pool->attrs->nice);
1702
1703 /* prevent userland from meddling with cpumask of workqueue workers */
1704 worker->task->flags |= PF_NO_SETAFFINITY;
1705
1706 /* successful, attach the worker to the pool */
1707 worker_attach_to_pool(worker, pool);
1708
1709 /* start the newly created worker */
1710 spin_lock_irq(&pool->lock);
1711 worker->pool->nr_workers++;
1712 worker_enter_idle(worker);
1713 wake_up_process(worker->task);
1714 spin_unlock_irq(&pool->lock);
1715
1716 return worker;
1717
1718 fail:
1719 if (id >= 0)
1720 ida_simple_remove(&pool->worker_ida, id);
1721 kfree(worker);
1722 return NULL;
1723 }
1724
1725 /**
1726 * destroy_worker - destroy a workqueue worker
1727 * @worker: worker to be destroyed
1728 *
1729 * Destroy @worker and adjust @pool stats accordingly. The worker should
1730 * be idle.
1731 *
1732 * CONTEXT:
1733 * spin_lock_irq(pool->lock).
1734 */
1735 static void destroy_worker(struct worker *worker)
1736 {
1737 struct worker_pool *pool = worker->pool;
1738
1739 lockdep_assert_held(&pool->lock);
1740
1741 /* sanity check frenzy */
1742 if (WARN_ON(worker->current_work) ||
1743 WARN_ON(!list_empty(&worker->scheduled)) ||
1744 WARN_ON(!(worker->flags & WORKER_IDLE)))
1745 return;
1746
1747 pool->nr_workers--;
1748 pool->nr_idle--;
1749
1750 list_del_init(&worker->entry);
1751 worker->flags |= WORKER_DIE;
1752 wake_up_process(worker->task);
1753 }
1754
1755 static void idle_worker_timeout(unsigned long __pool)
1756 {
1757 struct worker_pool *pool = (void *)__pool;
1758
1759 spin_lock_irq(&pool->lock);
1760
1761 while (too_many_workers(pool)) {
1762 struct worker *worker;
1763 unsigned long expires;
1764
1765 /* idle_list is kept in LIFO order, check the last one */
1766 worker = list_entry(pool->idle_list.prev, struct worker, entry);
1767 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
1768
1769 if (time_before(jiffies, expires)) {
1770 mod_timer(&pool->idle_timer, expires);
1771 break;
1772 }
1773
1774 destroy_worker(worker);
1775 }
1776
1777 spin_unlock_irq(&pool->lock);
1778 }
1779
1780 static void send_mayday(struct work_struct *work)
1781 {
1782 struct pool_workqueue *pwq = get_work_pwq(work);
1783 struct workqueue_struct *wq = pwq->wq;
1784
1785 lockdep_assert_held(&wq_mayday_lock);
1786
1787 if (!wq->rescuer)
1788 return;
1789
1790 /* mayday mayday mayday */
1791 if (list_empty(&pwq->mayday_node)) {
1792 /*
1793 * If @pwq is for an unbound wq, its base ref may be put at
1794 * any time due to an attribute change. Pin @pwq until the
1795 * rescuer is done with it.
1796 */
1797 get_pwq(pwq);
1798 list_add_tail(&pwq->mayday_node, &wq->maydays);
1799 wake_up_process(wq->rescuer->task);
1800 }
1801 }
1802
1803 static void pool_mayday_timeout(unsigned long __pool)
1804 {
1805 struct worker_pool *pool = (void *)__pool;
1806 struct work_struct *work;
1807
1808 spin_lock_irq(&wq_mayday_lock); /* for wq->maydays */
1809 spin_lock(&pool->lock);
1810
1811 if (need_to_create_worker(pool)) {
1812 /*
1813 * We've been trying to create a new worker but
1814 * haven't been successful. We might be hitting an
1815 * allocation deadlock. Send distress signals to
1816 * rescuers.
1817 */
1818 list_for_each_entry(work, &pool->worklist, entry)
1819 send_mayday(work);
1820 }
1821
1822 spin_unlock(&pool->lock);
1823 spin_unlock_irq(&wq_mayday_lock);
1824
1825 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
1826 }
1827
1828 /**
1829 * maybe_create_worker - create a new worker if necessary
1830 * @pool: pool to create a new worker for
1831 *
1832 * Create a new worker for @pool if necessary. @pool is guaranteed to
1833 * have at least one idle worker on return from this function. If
1834 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
1835 * sent to all rescuers with works scheduled on @pool to resolve
1836 * possible allocation deadlock.
1837 *
1838 * On return, need_to_create_worker() is guaranteed to be %false and
1839 * may_start_working() %true.
1840 *
1841 * LOCKING:
1842 * spin_lock_irq(pool->lock) which may be released and regrabbed
1843 * multiple times. Does GFP_KERNEL allocations. Called only from
1844 * manager.
1845 *
1846 * Return:
1847 * %false if no action was taken and pool->lock stayed locked, %true
1848 * otherwise.
1849 */
1850 static bool maybe_create_worker(struct worker_pool *pool)
1851 __releases(&pool->lock)
1852 __acquires(&pool->lock)
1853 {
1854 if (!need_to_create_worker(pool))
1855 return false;
1856 restart:
1857 spin_unlock_irq(&pool->lock);
1858
1859 /* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
1860 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
1861
1862 while (true) {
1863 if (create_worker(pool) || !need_to_create_worker(pool))
1864 break;
1865
1866 schedule_timeout_interruptible(CREATE_COOLDOWN);
1867
1868 if (!need_to_create_worker(pool))
1869 break;
1870 }
1871
1872 del_timer_sync(&pool->mayday_timer);
1873 spin_lock_irq(&pool->lock);
1874 /*
1875 * This is necessary even after a new worker was just successfully
1876 * created as @pool->lock was dropped and the new worker might have
1877 * already become busy.
1878 */
1879 if (need_to_create_worker(pool))
1880 goto restart;
1881 return true;
1882 }
1883
1884 /**
1885 * manage_workers - manage worker pool
1886 * @worker: self
1887 *
1888 * Assume the manager role and manage the worker pool @worker belongs
1889 * to. At any given time, there can be only zero or one manager per
1890 * pool. The exclusion is handled automatically by this function.
1891 *
1892 * The caller can safely start processing works on false return. On
1893 * true return, it's guaranteed that need_to_create_worker() is false
1894 * and may_start_working() is true.
1895 *
1896 * CONTEXT:
1897 * spin_lock_irq(pool->lock) which may be released and regrabbed
1898 * multiple times. Does GFP_KERNEL allocations.
1899 *
1900 * Return:
1901 * %false if the pool don't need management and the caller can safely start
1902 * processing works, %true indicates that the function released pool->lock
1903 * and reacquired it to perform some management function and that the
1904 * conditions that the caller verified while holding the lock before
1905 * calling the function might no longer be true.
1906 */
1907 static bool manage_workers(struct worker *worker)
1908 {
1909 struct worker_pool *pool = worker->pool;
1910 bool ret = false;
1911
1912 /*
1913 * Anyone who successfully grabs manager_arb wins the arbitration
1914 * and becomes the manager. mutex_trylock() on pool->manager_arb
1915 * failure while holding pool->lock reliably indicates that someone
1916 * else is managing the pool and the worker which failed trylock
1917 * can proceed to executing work items. This means that anyone
1918 * grabbing manager_arb is responsible for actually performing
1919 * manager duties. If manager_arb is grabbed and released without
1920 * actual management, the pool may stall indefinitely.
1921 */
1922 if (!mutex_trylock(&pool->manager_arb))
1923 return ret;
1924
1925 ret |= maybe_create_worker(pool);
1926
1927 mutex_unlock(&pool->manager_arb);
1928 return ret;
1929 }
1930
1931 /**
1932 * process_one_work - process single work
1933 * @worker: self
1934 * @work: work to process
1935 *
1936 * Process @work. This function contains all the logics necessary to
1937 * process a single work including synchronization against and
1938 * interaction with other workers on the same cpu, queueing and
1939 * flushing. As long as context requirement is met, any worker can
1940 * call this function to process a work.
1941 *
1942 * CONTEXT:
1943 * spin_lock_irq(pool->lock) which is released and regrabbed.
1944 */
1945 static void process_one_work(struct worker *worker, struct work_struct *work)
1946 __releases(&pool->lock)
1947 __acquires(&pool->lock)
1948 {
1949 struct pool_workqueue *pwq = get_work_pwq(work);
1950 struct worker_pool *pool = worker->pool;
1951 bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE;
1952 int work_color;
1953 struct worker *collision;
1954 #ifdef CONFIG_LOCKDEP
1955 /*
1956 * It is permissible to free the struct work_struct from
1957 * inside the function that is called from it, this we need to
1958 * take into account for lockdep too. To avoid bogus "held
1959 * lock freed" warnings as well as problems when looking into
1960 * work->lockdep_map, make a copy and use that here.
1961 */
1962 struct lockdep_map lockdep_map;
1963
1964 lockdep_copy_map(&lockdep_map, &work->lockdep_map);
1965 #endif
1966 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
1967 raw_smp_processor_id() != pool->cpu);
1968
1969 /*
1970 * A single work shouldn't be executed concurrently by
1971 * multiple workers on a single cpu. Check whether anyone is
1972 * already processing the work. If so, defer the work to the
1973 * currently executing one.
1974 */
1975 collision = find_worker_executing_work(pool, work);
1976 if (unlikely(collision)) {
1977 move_linked_works(work, &collision->scheduled, NULL);
1978 return;
1979 }
1980
1981 /* claim and dequeue */
1982 debug_work_deactivate(work);
1983 hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
1984 worker->current_work = work;
1985 worker->current_func = work->func;
1986 worker->current_pwq = pwq;
1987 work_color = get_work_color(work);
1988
1989 list_del_init(&work->entry);
1990
1991 /*
1992 * CPU intensive works don't participate in concurrency management.
1993 * They're the scheduler's responsibility. This takes @worker out
1994 * of concurrency management and the next code block will chain
1995 * execution of the pending work items.
1996 */
1997 if (unlikely(cpu_intensive))
1998 worker_set_flags(worker, WORKER_CPU_INTENSIVE);
1999
2000 /*
2001 * Wake up another worker if necessary. The condition is always
2002 * false for normal per-cpu workers since nr_running would always
2003 * be >= 1 at this point. This is used to chain execution of the
2004 * pending work items for WORKER_NOT_RUNNING workers such as the
2005 * UNBOUND and CPU_INTENSIVE ones.
2006 */
2007 if (need_more_worker(pool))
2008 wake_up_worker(pool);
2009
2010 /*
2011 * Record the last pool and clear PENDING which should be the last
2012 * update to @work. Also, do this inside @pool->lock so that
2013 * PENDING and queued state changes happen together while IRQ is
2014 * disabled.
2015 */
2016 set_work_pool_and_clear_pending(work, pool->id);
2017
2018 spin_unlock_irq(&pool->lock);
2019
2020 lock_map_acquire_read(&pwq->wq->lockdep_map);
2021 lock_map_acquire(&lockdep_map);
2022 trace_workqueue_execute_start(work);
2023 worker->current_func(work);
2024 /*
2025 * While we must be careful to not use "work" after this, the trace
2026 * point will only record its address.
2027 */
2028 trace_workqueue_execute_end(work);
2029 lock_map_release(&lockdep_map);
2030 lock_map_release(&pwq->wq->lockdep_map);
2031
2032 if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
2033 pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
2034 " last function: %pf\n",
2035 current->comm, preempt_count(), task_pid_nr(current),
2036 worker->current_func);
2037 debug_show_held_locks(current);
2038 dump_stack();
2039 }
2040
2041 /*
2042 * The following prevents a kworker from hogging CPU on !PREEMPT
2043 * kernels, where a requeueing work item waiting for something to
2044 * happen could deadlock with stop_machine as such work item could
2045 * indefinitely requeue itself while all other CPUs are trapped in
2046 * stop_machine.
2047 */
2048 cond_resched();
2049
2050 spin_lock_irq(&pool->lock);
2051
2052 /* clear cpu intensive status */
2053 if (unlikely(cpu_intensive))
2054 worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
2055
2056 /* we're done with it, release */
2057 hash_del(&worker->hentry);
2058 worker->current_work = NULL;
2059 worker->current_func = NULL;
2060 worker->current_pwq = NULL;
2061 worker->desc_valid = false;
2062 pwq_dec_nr_in_flight(pwq, work_color);
2063 }
2064
2065 /**
2066 * process_scheduled_works - process scheduled works
2067 * @worker: self
2068 *
2069 * Process all scheduled works. Please note that the scheduled list
2070 * may change while processing a work, so this function repeatedly
2071 * fetches a work from the top and executes it.
2072 *
2073 * CONTEXT:
2074 * spin_lock_irq(pool->lock) which may be released and regrabbed
2075 * multiple times.
2076 */
2077 static void process_scheduled_works(struct worker *worker)
2078 {
2079 while (!list_empty(&worker->scheduled)) {
2080 struct work_struct *work = list_first_entry(&worker->scheduled,
2081 struct work_struct, entry);
2082 process_one_work(worker, work);
2083 }
2084 }
2085
2086 /**
2087 * worker_thread - the worker thread function
2088 * @__worker: self
2089 *
2090 * The worker thread function. All workers belong to a worker_pool -
2091 * either a per-cpu one or dynamic unbound one. These workers process all
2092 * work items regardless of their specific target workqueue. The only
2093 * exception is work items which belong to workqueues with a rescuer which
2094 * will be explained in rescuer_thread().
2095 *
2096 * Return: 0
2097 */
2098 static int worker_thread(void *__worker)
2099 {
2100 struct worker *worker = __worker;
2101 struct worker_pool *pool = worker->pool;
2102
2103 /* tell the scheduler that this is a workqueue worker */
2104 worker->task->flags |= PF_WQ_WORKER;
2105 woke_up:
2106 spin_lock_irq(&pool->lock);
2107
2108 /* am I supposed to die? */
2109 if (unlikely(worker->flags & WORKER_DIE)) {
2110 spin_unlock_irq(&pool->lock);
2111 WARN_ON_ONCE(!list_empty(&worker->entry));
2112 worker->task->flags &= ~PF_WQ_WORKER;
2113
2114 set_task_comm(worker->task, "kworker/dying");
2115 ida_simple_remove(&pool->worker_ida, worker->id);
2116 worker_detach_from_pool(worker, pool);
2117 kfree(worker);
2118 return 0;
2119 }
2120
2121 worker_leave_idle(worker);
2122 recheck:
2123 /* no more worker necessary? */
2124 if (!need_more_worker(pool))
2125 goto sleep;
2126
2127 /* do we need to manage? */
2128 if (unlikely(!may_start_working(pool)) && manage_workers(worker))
2129 goto recheck;
2130
2131 /*
2132 * ->scheduled list can only be filled while a worker is
2133 * preparing to process a work or actually processing it.
2134 * Make sure nobody diddled with it while I was sleeping.
2135 */
2136 WARN_ON_ONCE(!list_empty(&worker->scheduled));
2137
2138 /*
2139 * Finish PREP stage. We're guaranteed to have at least one idle
2140 * worker or that someone else has already assumed the manager
2141 * role. This is where @worker starts participating in concurrency
2142 * management if applicable and concurrency management is restored
2143 * after being rebound. See rebind_workers() for details.
2144 */
2145 worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND);
2146
2147 do {
2148 struct work_struct *work =
2149 list_first_entry(&pool->worklist,
2150 struct work_struct, entry);
2151
2152 if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
2153 /* optimization path, not strictly necessary */
2154 process_one_work(worker, work);
2155 if (unlikely(!list_empty(&worker->scheduled)))
2156 process_scheduled_works(worker);
2157 } else {
2158 move_linked_works(work, &worker->scheduled, NULL);
2159 process_scheduled_works(worker);
2160 }
2161 } while (keep_working(pool));
2162
2163 worker_set_flags(worker, WORKER_PREP);
2164 sleep:
2165 /*
2166 * pool->lock is held and there's no work to process and no need to
2167 * manage, sleep. Workers are woken up only while holding
2168 * pool->lock or from local cpu, so setting the current state
2169 * before releasing pool->lock is enough to prevent losing any
2170 * event.
2171 */
2172 worker_enter_idle(worker);
2173 __set_current_state(TASK_INTERRUPTIBLE);
2174 spin_unlock_irq(&pool->lock);
2175 schedule();
2176 goto woke_up;
2177 }
2178
2179 /**
2180 * rescuer_thread - the rescuer thread function
2181 * @__rescuer: self
2182 *
2183 * Workqueue rescuer thread function. There's one rescuer for each
2184 * workqueue which has WQ_MEM_RECLAIM set.
2185 *
2186 * Regular work processing on a pool may block trying to create a new
2187 * worker which uses GFP_KERNEL allocation which has slight chance of
2188 * developing into deadlock if some works currently on the same queue
2189 * need to be processed to satisfy the GFP_KERNEL allocation. This is
2190 * the problem rescuer solves.
2191 *
2192 * When such condition is possible, the pool summons rescuers of all
2193 * workqueues which have works queued on the pool and let them process
2194 * those works so that forward progress can be guaranteed.
2195 *
2196 * This should happen rarely.
2197 *
2198 * Return: 0
2199 */
2200 static int rescuer_thread(void *__rescuer)
2201 {
2202 struct worker *rescuer = __rescuer;
2203 struct workqueue_struct *wq = rescuer->rescue_wq;
2204 struct list_head *scheduled = &rescuer->scheduled;
2205 bool should_stop;
2206
2207 set_user_nice(current, RESCUER_NICE_LEVEL);
2208
2209 /*
2210 * Mark rescuer as worker too. As WORKER_PREP is never cleared, it
2211 * doesn't participate in concurrency management.
2212 */
2213 rescuer->task->flags |= PF_WQ_WORKER;
2214 repeat:
2215 set_current_state(TASK_INTERRUPTIBLE);
2216
2217 /*
2218 * By the time the rescuer is requested to stop, the workqueue
2219 * shouldn't have any work pending, but @wq->maydays may still have
2220 * pwq(s) queued. This can happen by non-rescuer workers consuming
2221 * all the work items before the rescuer got to them. Go through
2222 * @wq->maydays processing before acting on should_stop so that the
2223 * list is always empty on exit.
2224 */
2225 should_stop = kthread_should_stop();
2226
2227 /* see whether any pwq is asking for help */
2228 spin_lock_irq(&wq_mayday_lock);
2229
2230 while (!list_empty(&wq->maydays)) {
2231 struct pool_workqueue *pwq = list_first_entry(&wq->maydays,
2232 struct pool_workqueue, mayday_node);
2233 struct worker_pool *pool = pwq->pool;
2234 struct work_struct *work, *n;
2235
2236 __set_current_state(TASK_RUNNING);
2237 list_del_init(&pwq->mayday_node);
2238
2239 spin_unlock_irq(&wq_mayday_lock);
2240
2241 worker_attach_to_pool(rescuer, pool);
2242
2243 spin_lock_irq(&pool->lock);
2244 rescuer->pool = pool;
2245
2246 /*
2247 * Slurp in all works issued via this workqueue and
2248 * process'em.
2249 */
2250 WARN_ON_ONCE(!list_empty(&rescuer->scheduled));
2251 list_for_each_entry_safe(work, n, &pool->worklist, entry)
2252 if (get_work_pwq(work) == pwq)
2253 move_linked_works(work, scheduled, &n);
2254
2255 process_scheduled_works(rescuer);
2256
2257 /*
2258 * Put the reference grabbed by send_mayday(). @pool won't
2259 * go away while we're still attached to it.
2260 */
2261 put_pwq(pwq);
2262
2263 /*
2264 * Leave this pool. If need_more_worker() is %true, notify a
2265 * regular worker; otherwise, we end up with 0 concurrency
2266 * and stalling the execution.
2267 */
2268 if (need_more_worker(pool))
2269 wake_up_worker(pool);
2270
2271 rescuer->pool = NULL;
2272 spin_unlock_irq(&pool->lock);
2273
2274 worker_detach_from_pool(rescuer, pool);
2275
2276 spin_lock_irq(&wq_mayday_lock);
2277 }
2278
2279 spin_unlock_irq(&wq_mayday_lock);
2280
2281 if (should_stop) {
2282 __set_current_state(TASK_RUNNING);
2283 rescuer->task->flags &= ~PF_WQ_WORKER;
2284 return 0;
2285 }
2286
2287 /* rescuers should never participate in concurrency management */
2288 WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
2289 schedule();
2290 goto repeat;
2291 }
2292
2293 struct wq_barrier {
2294 struct work_struct work;
2295 struct completion done;
2296 };
2297
2298 static void wq_barrier_func(struct work_struct *work)
2299 {
2300 struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
2301 complete(&barr->done);
2302 }
2303
2304 /**
2305 * insert_wq_barrier - insert a barrier work
2306 * @pwq: pwq to insert barrier into
2307 * @barr: wq_barrier to insert
2308 * @target: target work to attach @barr to
2309 * @worker: worker currently executing @target, NULL if @target is not executing
2310 *
2311 * @barr is linked to @target such that @barr is completed only after
2312 * @target finishes execution. Please note that the ordering
2313 * guarantee is observed only with respect to @target and on the local
2314 * cpu.
2315 *
2316 * Currently, a queued barrier can't be canceled. This is because
2317 * try_to_grab_pending() can't determine whether the work to be
2318 * grabbed is at the head of the queue and thus can't clear LINKED
2319 * flag of the previous work while there must be a valid next work
2320 * after a work with LINKED flag set.
2321 *
2322 * Note that when @worker is non-NULL, @target may be modified
2323 * underneath us, so we can't reliably determine pwq from @target.
2324 *
2325 * CONTEXT:
2326 * spin_lock_irq(pool->lock).
2327 */
2328 static void insert_wq_barrier(struct pool_workqueue *pwq,
2329 struct wq_barrier *barr,
2330 struct work_struct *target, struct worker *worker)
2331 {
2332 struct list_head *head;
2333 unsigned int linked = 0;
2334
2335 /*
2336 * debugobject calls are safe here even with pool->lock locked
2337 * as we know for sure that this will not trigger any of the
2338 * checks and call back into the fixup functions where we
2339 * might deadlock.
2340 */
2341 INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
2342 __set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
2343 init_completion(&barr->done);
2344
2345 /*
2346 * If @target is currently being executed, schedule the
2347 * barrier to the worker; otherwise, put it after @target.
2348 */
2349 if (worker)
2350 head = worker->scheduled.next;
2351 else {
2352 unsigned long *bits = work_data_bits(target);
2353
2354 head = target->entry.next;
2355 /* there can already be other linked works, inherit and set */
2356 linked = *bits & WORK_STRUCT_LINKED;
2357 __set_bit(WORK_STRUCT_LINKED_BIT, bits);
2358 }
2359
2360 debug_work_activate(&barr->work);
2361 insert_work(pwq, &barr->work, head,
2362 work_color_to_flags(WORK_NO_COLOR) | linked);
2363 }
2364
2365 /**
2366 * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing
2367 * @wq: workqueue being flushed
2368 * @flush_color: new flush color, < 0 for no-op
2369 * @work_color: new work color, < 0 for no-op
2370 *
2371 * Prepare pwqs for workqueue flushing.
2372 *
2373 * If @flush_color is non-negative, flush_color on all pwqs should be
2374 * -1. If no pwq has in-flight commands at the specified color, all
2375 * pwq->flush_color's stay at -1 and %false is returned. If any pwq
2376 * has in flight commands, its pwq->flush_color is set to
2377 * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq
2378 * wakeup logic is armed and %true is returned.
2379 *
2380 * The caller should have initialized @wq->first_flusher prior to
2381 * calling this function with non-negative @flush_color. If
2382 * @flush_color is negative, no flush color update is done and %false
2383 * is returned.
2384 *
2385 * If @work_color is non-negative, all pwqs should have the same
2386 * work_color which is previous to @work_color and all will be
2387 * advanced to @work_color.
2388 *
2389 * CONTEXT:
2390 * mutex_lock(wq->mutex).
2391 *
2392 * Return:
2393 * %true if @flush_color >= 0 and there's something to flush. %false
2394 * otherwise.
2395 */
2396 static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq,
2397 int flush_color, int work_color)
2398 {
2399 bool wait = false;
2400 struct pool_workqueue *pwq;
2401
2402 if (flush_color >= 0) {
2403 WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush));
2404 atomic_set(&wq->nr_pwqs_to_flush, 1);
2405 }
2406
2407 for_each_pwq(pwq, wq) {
2408 struct worker_pool *pool = pwq->pool;
2409
2410 spin_lock_irq(&pool->lock);
2411
2412 if (flush_color >= 0) {
2413 WARN_ON_ONCE(pwq->flush_color != -1);
2414
2415 if (pwq->nr_in_flight[flush_color]) {
2416 pwq->flush_color = flush_color;
2417 atomic_inc(&wq->nr_pwqs_to_flush);
2418 wait = true;
2419 }
2420 }
2421
2422 if (work_color >= 0) {
2423 WARN_ON_ONCE(work_color != work_next_color(pwq->work_color));
2424 pwq->work_color = work_color;
2425 }
2426
2427 spin_unlock_irq(&pool->lock);
2428 }
2429
2430 if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush))
2431 complete(&wq->first_flusher->done);
2432
2433 return wait;
2434 }
2435
2436 /**
2437 * flush_workqueue - ensure that any scheduled work has run to completion.
2438 * @wq: workqueue to flush
2439 *
2440 * This function sleeps until all work items which were queued on entry
2441 * have finished execution, but it is not livelocked by new incoming ones.
2442 */
2443 void flush_workqueue(struct workqueue_struct *wq)
2444 {
2445 struct wq_flusher this_flusher = {
2446 .list = LIST_HEAD_INIT(this_flusher.list),
2447 .flush_color = -1,
2448 .done = COMPLETION_INITIALIZER_ONSTACK(this_flusher.done),
2449 };
2450 int next_color;
2451
2452 lock_map_acquire(&wq->lockdep_map);
2453 lock_map_release(&wq->lockdep_map);
2454
2455 mutex_lock(&wq->mutex);
2456
2457 /*
2458 * Start-to-wait phase
2459 */
2460 next_color = work_next_color(wq->work_color);
2461
2462 if (next_color != wq->flush_color) {
2463 /*
2464 * Color space is not full. The current work_color
2465 * becomes our flush_color and work_color is advanced
2466 * by one.
2467 */
2468 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow));
2469 this_flusher.flush_color = wq->work_color;
2470 wq->work_color = next_color;
2471
2472 if (!wq->first_flusher) {
2473 /* no flush in progress, become the first flusher */
2474 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2475
2476 wq->first_flusher = &this_flusher;
2477
2478 if (!flush_workqueue_prep_pwqs(wq, wq->flush_color,
2479 wq->work_color)) {
2480 /* nothing to flush, done */
2481 wq->flush_color = next_color;
2482 wq->first_flusher = NULL;
2483 goto out_unlock;
2484 }
2485 } else {
2486 /* wait in queue */
2487 WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color);
2488 list_add_tail(&this_flusher.list, &wq->flusher_queue);
2489 flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2490 }
2491 } else {
2492 /*
2493 * Oops, color space is full, wait on overflow queue.
2494 * The next flush completion will assign us
2495 * flush_color and transfer to flusher_queue.
2496 */
2497 list_add_tail(&this_flusher.list, &wq->flusher_overflow);
2498 }
2499
2500 mutex_unlock(&wq->mutex);
2501
2502 wait_for_completion(&this_flusher.done);
2503
2504 /*
2505 * Wake-up-and-cascade phase
2506 *
2507 * First flushers are responsible for cascading flushes and
2508 * handling overflow. Non-first flushers can simply return.
2509 */
2510 if (wq->first_flusher != &this_flusher)
2511 return;
2512
2513 mutex_lock(&wq->mutex);
2514
2515 /* we might have raced, check again with mutex held */
2516 if (wq->first_flusher != &this_flusher)
2517 goto out_unlock;
2518
2519 wq->first_flusher = NULL;
2520
2521 WARN_ON_ONCE(!list_empty(&this_flusher.list));
2522 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2523
2524 while (true) {
2525 struct wq_flusher *next, *tmp;
2526
2527 /* complete all the flushers sharing the current flush color */
2528 list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
2529 if (next->flush_color != wq->flush_color)
2530 break;
2531 list_del_init(&next->list);
2532 complete(&next->done);
2533 }
2534
2535 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) &&
2536 wq->flush_color != work_next_color(wq->work_color));
2537
2538 /* this flush_color is finished, advance by one */
2539 wq->flush_color = work_next_color(wq->flush_color);
2540
2541 /* one color has been freed, handle overflow queue */
2542 if (!list_empty(&wq->flusher_overflow)) {
2543 /*
2544 * Assign the same color to all overflowed
2545 * flushers, advance work_color and append to
2546 * flusher_queue. This is the start-to-wait
2547 * phase for these overflowed flushers.
2548 */
2549 list_for_each_entry(tmp, &wq->flusher_overflow, list)
2550 tmp->flush_color = wq->work_color;
2551
2552 wq->work_color = work_next_color(wq->work_color);
2553
2554 list_splice_tail_init(&wq->flusher_overflow,
2555 &wq->flusher_queue);
2556 flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2557 }
2558
2559 if (list_empty(&wq->flusher_queue)) {
2560 WARN_ON_ONCE(wq->flush_color != wq->work_color);
2561 break;
2562 }
2563
2564 /*
2565 * Need to flush more colors. Make the next flusher
2566 * the new first flusher and arm pwqs.
2567 */
2568 WARN_ON_ONCE(wq->flush_color == wq->work_color);
2569 WARN_ON_ONCE(wq->flush_color != next->flush_color);
2570
2571 list_del_init(&next->list);
2572 wq->first_flusher = next;
2573
2574 if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1))
2575 break;
2576
2577 /*
2578 * Meh... this color is already done, clear first
2579 * flusher and repeat cascading.
2580 */
2581 wq->first_flusher = NULL;
2582 }
2583
2584 out_unlock:
2585 mutex_unlock(&wq->mutex);
2586 }
2587 EXPORT_SYMBOL_GPL(flush_workqueue);
2588
2589 /**
2590 * drain_workqueue - drain a workqueue
2591 * @wq: workqueue to drain
2592 *
2593 * Wait until the workqueue becomes empty. While draining is in progress,
2594 * only chain queueing is allowed. IOW, only currently pending or running
2595 * work items on @wq can queue further work items on it. @wq is flushed
2596 * repeatedly until it becomes empty. The number of flushing is detemined
2597 * by the depth of chaining and should be relatively short. Whine if it
2598 * takes too long.
2599 */
2600 void drain_workqueue(struct workqueue_struct *wq)
2601 {
2602 unsigned int flush_cnt = 0;
2603 struct pool_workqueue *pwq;
2604
2605 /*
2606 * __queue_work() needs to test whether there are drainers, is much
2607 * hotter than drain_workqueue() and already looks at @wq->flags.
2608 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers.
2609 */
2610 mutex_lock(&wq->mutex);
2611 if (!wq->nr_drainers++)
2612 wq->flags |= __WQ_DRAINING;
2613 mutex_unlock(&wq->mutex);
2614 reflush:
2615 flush_workqueue(wq);
2616
2617 mutex_lock(&wq->mutex);
2618
2619 for_each_pwq(pwq, wq) {
2620 bool drained;
2621
2622 spin_lock_irq(&pwq->pool->lock);
2623 drained = !pwq->nr_active && list_empty(&pwq->delayed_works);
2624 spin_unlock_irq(&pwq->pool->lock);
2625
2626 if (drained)
2627 continue;
2628
2629 if (++flush_cnt == 10 ||
2630 (flush_cnt % 100 == 0 && flush_cnt <= 1000))
2631 pr_warn("workqueue %s: drain_workqueue() isn't complete after %u tries\n",
2632 wq->name, flush_cnt);
2633
2634 mutex_unlock(&wq->mutex);
2635 goto reflush;
2636 }
2637
2638 if (!--wq->nr_drainers)
2639 wq->flags &= ~__WQ_DRAINING;
2640 mutex_unlock(&wq->mutex);
2641 }
2642 EXPORT_SYMBOL_GPL(drain_workqueue);
2643
2644 static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr)
2645 {
2646 struct worker *worker = NULL;
2647 struct worker_pool *pool;
2648 struct pool_workqueue *pwq;
2649
2650 might_sleep();
2651
2652 local_irq_disable();
2653 pool = get_work_pool(work);
2654 if (!pool) {
2655 local_irq_enable();
2656 return false;
2657 }
2658
2659 spin_lock(&pool->lock);
2660 /* see the comment in try_to_grab_pending() with the same code */
2661 pwq = get_work_pwq(work);
2662 if (pwq) {
2663 if (unlikely(pwq->pool != pool))
2664 goto already_gone;
2665 } else {
2666 worker = find_worker_executing_work(pool, work);
2667 if (!worker)
2668 goto already_gone;
2669 pwq = worker->current_pwq;
2670 }
2671
2672 insert_wq_barrier(pwq, barr, work, worker);
2673 spin_unlock_irq(&pool->lock);
2674
2675 /*
2676 * If @max_active is 1 or rescuer is in use, flushing another work
2677 * item on the same workqueue may lead to deadlock. Make sure the
2678 * flusher is not running on the same workqueue by verifying write
2679 * access.
2680 */
2681 if (pwq->wq->saved_max_active == 1 || pwq->wq->rescuer)
2682 lock_map_acquire(&pwq->wq->lockdep_map);
2683 else
2684 lock_map_acquire_read(&pwq->wq->lockdep_map);
2685 lock_map_release(&pwq->wq->lockdep_map);
2686
2687 return true;
2688 already_gone:
2689 spin_unlock_irq(&pool->lock);
2690 return false;
2691 }
2692
2693 /**
2694 * flush_work - wait for a work to finish executing the last queueing instance
2695 * @work: the work to flush
2696 *
2697 * Wait until @work has finished execution. @work is guaranteed to be idle
2698 * on return if it hasn't been requeued since flush started.
2699 *
2700 * Return:
2701 * %true if flush_work() waited for the work to finish execution,
2702 * %false if it was already idle.
2703 */
2704 bool flush_work(struct work_struct *work)
2705 {
2706 struct wq_barrier barr;
2707
2708 lock_map_acquire(&work->lockdep_map);
2709 lock_map_release(&work->lockdep_map);
2710
2711 if (start_flush_work(work, &barr)) {
2712 wait_for_completion(&barr.done);
2713 destroy_work_on_stack(&barr.work);
2714 return true;
2715 } else {
2716 return false;
2717 }
2718 }
2719 EXPORT_SYMBOL_GPL(flush_work);
2720
2721 static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
2722 {
2723 unsigned long flags;
2724 int ret;
2725
2726 do {
2727 ret = try_to_grab_pending(work, is_dwork, &flags);
2728 /*
2729 * If someone else is canceling, wait for the same event it
2730 * would be waiting for before retrying.
2731 */
2732 if (unlikely(ret == -ENOENT))
2733 flush_work(work);
2734 } while (unlikely(ret < 0));
2735
2736 /* tell other tasks trying to grab @work to back off */
2737 mark_work_canceling(work);
2738 local_irq_restore(flags);
2739
2740 flush_work(work);
2741 clear_work_data(work);
2742 return ret;
2743 }
2744
2745 /**
2746 * cancel_work_sync - cancel a work and wait for it to finish
2747 * @work: the work to cancel
2748 *
2749 * Cancel @work and wait for its execution to finish. This function
2750 * can be used even if the work re-queues itself or migrates to
2751 * another workqueue. On return from this function, @work is
2752 * guaranteed to be not pending or executing on any CPU.
2753 *
2754 * cancel_work_sync(&delayed_work->work) must not be used for
2755 * delayed_work's. Use cancel_delayed_work_sync() instead.
2756 *
2757 * The caller must ensure that the workqueue on which @work was last
2758 * queued can't be destroyed before this function returns.
2759 *
2760 * Return:
2761 * %true if @work was pending, %false otherwise.
2762 */
2763 bool cancel_work_sync(struct work_struct *work)
2764 {
2765 return __cancel_work_timer(work, false);
2766 }
2767 EXPORT_SYMBOL_GPL(cancel_work_sync);
2768
2769 /**
2770 * flush_delayed_work - wait for a dwork to finish executing the last queueing
2771 * @dwork: the delayed work to flush
2772 *
2773 * Delayed timer is cancelled and the pending work is queued for
2774 * immediate execution. Like flush_work(), this function only
2775 * considers the last queueing instance of @dwork.
2776 *
2777 * Return:
2778 * %true if flush_work() waited for the work to finish execution,
2779 * %false if it was already idle.
2780 */
2781 bool flush_delayed_work(struct delayed_work *dwork)
2782 {
2783 local_irq_disable();
2784 if (del_timer_sync(&dwork->timer))
2785 __queue_work(dwork->cpu, dwork->wq, &dwork->work);
2786 local_irq_enable();
2787 return flush_work(&dwork->work);
2788 }
2789 EXPORT_SYMBOL(flush_delayed_work);
2790
2791 /**
2792 * cancel_delayed_work - cancel a delayed work
2793 * @dwork: delayed_work to cancel
2794 *
2795 * Kill off a pending delayed_work.
2796 *
2797 * Return: %true if @dwork was pending and canceled; %false if it wasn't
2798 * pending.
2799 *
2800 * Note:
2801 * The work callback function may still be running on return, unless
2802 * it returns %true and the work doesn't re-arm itself. Explicitly flush or
2803 * use cancel_delayed_work_sync() to wait on it.
2804 *
2805 * This function is safe to call from any context including IRQ handler.
2806 */
2807 bool cancel_delayed_work(struct delayed_work *dwork)
2808 {
2809 unsigned long flags;
2810 int ret;
2811
2812 do {
2813 ret = try_to_grab_pending(&dwork->work, true, &flags);
2814 } while (unlikely(ret == -EAGAIN));
2815
2816 if (unlikely(ret < 0))
2817 return false;
2818
2819 set_work_pool_and_clear_pending(&dwork->work,
2820 get_work_pool_id(&dwork->work));
2821 local_irq_restore(flags);
2822 return ret;
2823 }
2824 EXPORT_SYMBOL(cancel_delayed_work);
2825
2826 /**
2827 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
2828 * @dwork: the delayed work cancel
2829 *
2830 * This is cancel_work_sync() for delayed works.
2831 *
2832 * Return:
2833 * %true if @dwork was pending, %false otherwise.
2834 */
2835 bool cancel_delayed_work_sync(struct delayed_work *dwork)
2836 {
2837 return __cancel_work_timer(&dwork->work, true);
2838 }
2839 EXPORT_SYMBOL(cancel_delayed_work_sync);
2840
2841 /**
2842 * schedule_on_each_cpu - execute a function synchronously on each online CPU
2843 * @func: the function to call
2844 *
2845 * schedule_on_each_cpu() executes @func on each online CPU using the
2846 * system workqueue and blocks until all CPUs have completed.
2847 * schedule_on_each_cpu() is very slow.
2848 *
2849 * Return:
2850 * 0 on success, -errno on failure.
2851 */
2852 int schedule_on_each_cpu(work_func_t func)
2853 {
2854 int cpu;
2855 struct work_struct __percpu *works;
2856
2857 works = alloc_percpu(struct work_struct);
2858 if (!works)
2859 return -ENOMEM;
2860
2861 get_online_cpus();
2862
2863 for_each_online_cpu(cpu) {
2864 struct work_struct *work = per_cpu_ptr(works, cpu);
2865
2866 INIT_WORK(work, func);
2867 schedule_work_on(cpu, work);
2868 }
2869
2870 for_each_online_cpu(cpu)
2871 flush_work(per_cpu_ptr(works, cpu));
2872
2873 put_online_cpus();
2874 free_percpu(works);
2875 return 0;
2876 }
2877
2878 /**
2879 * flush_scheduled_work - ensure that any scheduled work has run to completion.
2880 *
2881 * Forces execution of the kernel-global workqueue and blocks until its
2882 * completion.
2883 *
2884 * Think twice before calling this function! It's very easy to get into
2885 * trouble if you don't take great care. Either of the following situations
2886 * will lead to deadlock:
2887 *
2888 * One of the work items currently on the workqueue needs to acquire
2889 * a lock held by your code or its caller.
2890 *
2891 * Your code is running in the context of a work routine.
2892 *
2893 * They will be detected by lockdep when they occur, but the first might not
2894 * occur very often. It depends on what work items are on the workqueue and
2895 * what locks they need, which you have no control over.
2896 *
2897 * In most situations flushing the entire workqueue is overkill; you merely
2898 * need to know that a particular work item isn't queued and isn't running.
2899 * In such cases you should use cancel_delayed_work_sync() or
2900 * cancel_work_sync() instead.
2901 */
2902 void flush_scheduled_work(void)
2903 {
2904 flush_workqueue(system_wq);
2905 }
2906 EXPORT_SYMBOL(flush_scheduled_work);
2907
2908 /**
2909 * execute_in_process_context - reliably execute the routine with user context
2910 * @fn: the function to execute
2911 * @ew: guaranteed storage for the execute work structure (must
2912 * be available when the work executes)
2913 *
2914 * Executes the function immediately if process context is available,
2915 * otherwise schedules the function for delayed execution.
2916 *
2917 * Return: 0 - function was executed
2918 * 1 - function was scheduled for execution
2919 */
2920 int execute_in_process_context(work_func_t fn, struct execute_work *ew)
2921 {
2922 if (!in_interrupt()) {
2923 fn(&ew->work);
2924 return 0;
2925 }
2926
2927 INIT_WORK(&ew->work, fn);
2928 schedule_work(&ew->work);
2929
2930 return 1;
2931 }
2932 EXPORT_SYMBOL_GPL(execute_in_process_context);
2933
2934 #ifdef CONFIG_SYSFS
2935 /*
2936 * Workqueues with WQ_SYSFS flag set is visible to userland via
2937 * /sys/bus/workqueue/devices/WQ_NAME. All visible workqueues have the
2938 * following attributes.
2939 *
2940 * per_cpu RO bool : whether the workqueue is per-cpu or unbound
2941 * max_active RW int : maximum number of in-flight work items
2942 *
2943 * Unbound workqueues have the following extra attributes.
2944 *
2945 * id RO int : the associated pool ID
2946 * nice RW int : nice value of the workers
2947 * cpumask RW mask : bitmask of allowed CPUs for the workers
2948 */
2949 struct wq_device {
2950 struct workqueue_struct *wq;
2951 struct device dev;
2952 };
2953
2954 static struct workqueue_struct *dev_to_wq(struct device *dev)
2955 {
2956 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
2957
2958 return wq_dev->wq;
2959 }
2960
2961 static ssize_t per_cpu_show(struct device *dev, struct device_attribute *attr,
2962 char *buf)
2963 {
2964 struct workqueue_struct *wq = dev_to_wq(dev);
2965
2966 return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND));
2967 }
2968 static DEVICE_ATTR_RO(per_cpu);
2969
2970 static ssize_t max_active_show(struct device *dev,
2971 struct device_attribute *attr, char *buf)
2972 {
2973 struct workqueue_struct *wq = dev_to_wq(dev);
2974
2975 return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active);
2976 }
2977
2978 static ssize_t max_active_store(struct device *dev,
2979 struct device_attribute *attr, const char *buf,
2980 size_t count)
2981 {
2982 struct workqueue_struct *wq = dev_to_wq(dev);
2983 int val;
2984
2985 if (sscanf(buf, "%d", &val) != 1 || val <= 0)
2986 return -EINVAL;
2987
2988 workqueue_set_max_active(wq, val);
2989 return count;
2990 }
2991 static DEVICE_ATTR_RW(max_active);
2992
2993 static struct attribute *wq_sysfs_attrs[] = {
2994 &dev_attr_per_cpu.attr,
2995 &dev_attr_max_active.attr,
2996 NULL,
2997 };
2998 ATTRIBUTE_GROUPS(wq_sysfs);
2999
3000 static ssize_t wq_pool_ids_show(struct device *dev,
3001 struct device_attribute *attr, char *buf)
3002 {
3003 struct workqueue_struct *wq = dev_to_wq(dev);
3004 const char *delim = "";
3005 int node, written = 0;
3006
3007 rcu_read_lock_sched();
3008 for_each_node(node) {
3009 written += scnprintf(buf + written, PAGE_SIZE - written,
3010 "%s%d:%d", delim, node,
3011 unbound_pwq_by_node(wq, node)->pool->id);
3012 delim = " ";
3013 }
3014 written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
3015 rcu_read_unlock_sched();
3016
3017 return written;
3018 }
3019
3020 static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr,
3021 char *buf)
3022 {
3023 struct workqueue_struct *wq = dev_to_wq(dev);
3024 int written;
3025
3026 mutex_lock(&wq->mutex);
3027 written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice);
3028 mutex_unlock(&wq->mutex);
3029
3030 return written;
3031 }
3032
3033 /* prepare workqueue_attrs for sysfs store operations */
3034 static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq)
3035 {
3036 struct workqueue_attrs *attrs;
3037
3038 attrs = alloc_workqueue_attrs(GFP_KERNEL);
3039 if (!attrs)
3040 return NULL;
3041
3042 mutex_lock(&wq->mutex);
3043 copy_workqueue_attrs(attrs, wq->unbound_attrs);
3044 mutex_unlock(&wq->mutex);
3045 return attrs;
3046 }
3047
3048 static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr,
3049 const char *buf, size_t count)
3050 {
3051 struct workqueue_struct *wq = dev_to_wq(dev);
3052 struct workqueue_attrs *attrs;
3053 int ret;
3054
3055 attrs = wq_sysfs_prep_attrs(wq);
3056 if (!attrs)
3057 return -ENOMEM;
3058
3059 if (sscanf(buf, "%d", &attrs->nice) == 1 &&
3060 attrs->nice >= MIN_NICE && attrs->nice <= MAX_NICE)
3061 ret = apply_workqueue_attrs(wq, attrs);
3062 else
3063 ret = -EINVAL;
3064
3065 free_workqueue_attrs(attrs);
3066 return ret ?: count;
3067 }
3068
3069 static ssize_t wq_cpumask_show(struct device *dev,
3070 struct device_attribute *attr, char *buf)
3071 {
3072 struct workqueue_struct *wq = dev_to_wq(dev);
3073 int written;
3074
3075 mutex_lock(&wq->mutex);
3076 written = cpumask_scnprintf(buf, PAGE_SIZE, wq->unbound_attrs->cpumask);
3077 mutex_unlock(&wq->mutex);
3078
3079 written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
3080 return written;
3081 }
3082
3083 static ssize_t wq_cpumask_store(struct device *dev,
3084 struct device_attribute *attr,
3085 const char *buf, size_t count)
3086 {
3087 struct workqueue_struct *wq = dev_to_wq(dev);
3088 struct workqueue_attrs *attrs;
3089 int ret;
3090
3091 attrs = wq_sysfs_prep_attrs(wq);
3092 if (!attrs)
3093 return -ENOMEM;
3094
3095 ret = cpumask_parse(buf, attrs->cpumask);
3096 if (!ret)
3097 ret = apply_workqueue_attrs(wq, attrs);
3098
3099 free_workqueue_attrs(attrs);
3100 return ret ?: count;
3101 }
3102
3103 static ssize_t wq_numa_show(struct device *dev, struct device_attribute *attr,
3104 char *buf)
3105 {
3106 struct workqueue_struct *wq = dev_to_wq(dev);
3107 int written;
3108
3109 mutex_lock(&wq->mutex);
3110 written = scnprintf(buf, PAGE_SIZE, "%d\n",
3111 !wq->unbound_attrs->no_numa);
3112 mutex_unlock(&wq->mutex);
3113
3114 return written;
3115 }
3116
3117 static ssize_t wq_numa_store(struct device *dev, struct device_attribute *attr,
3118 const char *buf, size_t count)
3119 {
3120 struct workqueue_struct *wq = dev_to_wq(dev);
3121 struct workqueue_attrs *attrs;
3122 int v, ret;
3123
3124 attrs = wq_sysfs_prep_attrs(wq);
3125 if (!attrs)
3126 return -ENOMEM;
3127
3128 ret = -EINVAL;
3129 if (sscanf(buf, "%d", &v) == 1) {
3130 attrs->no_numa = !v;
3131 ret = apply_workqueue_attrs(wq, attrs);
3132 }
3133
3134 free_workqueue_attrs(attrs);
3135 return ret ?: count;
3136 }
3137
3138 static struct device_attribute wq_sysfs_unbound_attrs[] = {
3139 __ATTR(pool_ids, 0444, wq_pool_ids_show, NULL),
3140 __ATTR(nice, 0644, wq_nice_show, wq_nice_store),
3141 __ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store),
3142 __ATTR(numa, 0644, wq_numa_show, wq_numa_store),
3143 __ATTR_NULL,
3144 };
3145
3146 static struct bus_type wq_subsys = {
3147 .name = "workqueue",
3148 .dev_groups = wq_sysfs_groups,
3149 };
3150
3151 static int __init wq_sysfs_init(void)
3152 {
3153 return subsys_virtual_register(&wq_subsys, NULL);
3154 }
3155 core_initcall(wq_sysfs_init);
3156
3157 static void wq_device_release(struct device *dev)
3158 {
3159 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
3160
3161 kfree(wq_dev);
3162 }
3163
3164 /**
3165 * workqueue_sysfs_register - make a workqueue visible in sysfs
3166 * @wq: the workqueue to register
3167 *
3168 * Expose @wq in sysfs under /sys/bus/workqueue/devices.
3169 * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set
3170 * which is the preferred method.
3171 *
3172 * Workqueue user should use this function directly iff it wants to apply
3173 * workqueue_attrs before making the workqueue visible in sysfs; otherwise,
3174 * apply_workqueue_attrs() may race against userland updating the
3175 * attributes.
3176 *
3177 * Return: 0 on success, -errno on failure.
3178 */
3179 int workqueue_sysfs_register(struct workqueue_struct *wq)
3180 {
3181 struct wq_device *wq_dev;
3182 int ret;
3183
3184 /*
3185 * Adjusting max_active or creating new pwqs by applyting
3186 * attributes breaks ordering guarantee. Disallow exposing ordered
3187 * workqueues.
3188 */
3189 if (WARN_ON(wq->flags & __WQ_ORDERED))
3190 return -EINVAL;
3191
3192 wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL);
3193 if (!wq_dev)
3194 return -ENOMEM;
3195
3196 wq_dev->wq = wq;
3197 wq_dev->dev.bus = &wq_subsys;
3198 wq_dev->dev.init_name = wq->name;
3199 wq_dev->dev.release = wq_device_release;
3200
3201 /*
3202 * unbound_attrs are created separately. Suppress uevent until
3203 * everything is ready.
3204 */
3205 dev_set_uevent_suppress(&wq_dev->dev, true);
3206
3207 ret = device_register(&wq_dev->dev);
3208 if (ret) {
3209 kfree(wq_dev);
3210 wq->wq_dev = NULL;
3211 return ret;
3212 }
3213
3214 if (wq->flags & WQ_UNBOUND) {
3215 struct device_attribute *attr;
3216
3217 for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) {
3218 ret = device_create_file(&wq_dev->dev, attr);
3219 if (ret) {
3220 device_unregister(&wq_dev->dev);
3221 wq->wq_dev = NULL;
3222 return ret;
3223 }
3224 }
3225 }
3226
3227 kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD);
3228 return 0;
3229 }
3230
3231 /**
3232 * workqueue_sysfs_unregister - undo workqueue_sysfs_register()
3233 * @wq: the workqueue to unregister
3234 *
3235 * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister.
3236 */
3237 static void workqueue_sysfs_unregister(struct workqueue_struct *wq)
3238 {
3239 struct wq_device *wq_dev = wq->wq_dev;
3240
3241 if (!wq->wq_dev)
3242 return;
3243
3244 wq->wq_dev = NULL;
3245 device_unregister(&wq_dev->dev);
3246 }
3247 #else /* CONFIG_SYSFS */
3248 static void workqueue_sysfs_unregister(struct workqueue_struct *wq) { }
3249 #endif /* CONFIG_SYSFS */
3250
3251 /**
3252 * free_workqueue_attrs - free a workqueue_attrs
3253 * @attrs: workqueue_attrs to free
3254 *
3255 * Undo alloc_workqueue_attrs().
3256 */
3257 void free_workqueue_attrs(struct workqueue_attrs *attrs)
3258 {
3259 if (attrs) {
3260 free_cpumask_var(attrs->cpumask);
3261 kfree(attrs);
3262 }
3263 }
3264
3265 /**
3266 * alloc_workqueue_attrs - allocate a workqueue_attrs
3267 * @gfp_mask: allocation mask to use
3268 *
3269 * Allocate a new workqueue_attrs, initialize with default settings and
3270 * return it.
3271 *
3272 * Return: The allocated new workqueue_attr on success. %NULL on failure.
3273 */
3274 struct workqueue_attrs *alloc_workqueue_attrs(gfp_t gfp_mask)
3275 {
3276 struct workqueue_attrs *attrs;
3277
3278 attrs = kzalloc(sizeof(*attrs), gfp_mask);
3279 if (!attrs)
3280 goto fail;
3281 if (!alloc_cpumask_var(&attrs->cpumask, gfp_mask))
3282 goto fail;
3283
3284 cpumask_copy(attrs->cpumask, cpu_possible_mask);
3285 return attrs;
3286 fail:
3287 free_workqueue_attrs(attrs);
3288 return NULL;
3289 }
3290
3291 static void copy_workqueue_attrs(struct workqueue_attrs *to,
3292 const struct workqueue_attrs *from)
3293 {
3294 to->nice = from->nice;
3295 cpumask_copy(to->cpumask, from->cpumask);
3296 /*
3297 * Unlike hash and equality test, this function doesn't ignore
3298 * ->no_numa as it is used for both pool and wq attrs. Instead,
3299 * get_unbound_pool() explicitly clears ->no_numa after copying.
3300 */
3301 to->no_numa = from->no_numa;
3302 }
3303
3304 /* hash value of the content of @attr */
3305 static u32 wqattrs_hash(const struct workqueue_attrs *attrs)
3306 {
3307 u32 hash = 0;
3308
3309 hash = jhash_1word(attrs->nice, hash);
3310 hash = jhash(cpumask_bits(attrs->cpumask),
3311 BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash);
3312 return hash;
3313 }
3314
3315 /* content equality test */
3316 static bool wqattrs_equal(const struct workqueue_attrs *a,
3317 const struct workqueue_attrs *b)
3318 {
3319 if (a->nice != b->nice)
3320 return false;
3321 if (!cpumask_equal(a->cpumask, b->cpumask))
3322 return false;
3323 return true;
3324 }
3325
3326 /**
3327 * init_worker_pool - initialize a newly zalloc'd worker_pool
3328 * @pool: worker_pool to initialize
3329 *
3330 * Initiailize a newly zalloc'd @pool. It also allocates @pool->attrs.
3331 *
3332 * Return: 0 on success, -errno on failure. Even on failure, all fields
3333 * inside @pool proper are initialized and put_unbound_pool() can be called
3334 * on @pool safely to release it.
3335 */
3336 static int init_worker_pool(struct worker_pool *pool)
3337 {
3338 spin_lock_init(&pool->lock);
3339 pool->id = -1;
3340 pool->cpu = -1;
3341 pool->node = NUMA_NO_NODE;
3342 pool->flags |= POOL_DISASSOCIATED;
3343 INIT_LIST_HEAD(&pool->worklist);
3344 INIT_LIST_HEAD(&pool->idle_list);
3345 hash_init(pool->busy_hash);
3346
3347 init_timer_deferrable(&pool->idle_timer);
3348 pool->idle_timer.function = idle_worker_timeout;
3349 pool->idle_timer.data = (unsigned long)pool;
3350
3351 setup_timer(&pool->mayday_timer, pool_mayday_timeout,
3352 (unsigned long)pool);
3353
3354 mutex_init(&pool->manager_arb);
3355 mutex_init(&pool->attach_mutex);
3356 INIT_LIST_HEAD(&pool->workers);
3357
3358 ida_init(&pool->worker_ida);
3359 INIT_HLIST_NODE(&pool->hash_node);
3360 pool->refcnt = 1;
3361
3362 /* shouldn't fail above this point */
3363 pool->attrs = alloc_workqueue_attrs(GFP_KERNEL);
3364 if (!pool->attrs)
3365 return -ENOMEM;
3366 return 0;
3367 }
3368
3369 static void rcu_free_pool(struct rcu_head *rcu)
3370 {
3371 struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu);
3372
3373 ida_destroy(&pool->worker_ida);
3374 free_workqueue_attrs(pool->attrs);
3375 kfree(pool);
3376 }
3377
3378 /**
3379 * put_unbound_pool - put a worker_pool
3380 * @pool: worker_pool to put
3381 *
3382 * Put @pool. If its refcnt reaches zero, it gets destroyed in sched-RCU
3383 * safe manner. get_unbound_pool() calls this function on its failure path
3384 * and this function should be able to release pools which went through,
3385 * successfully or not, init_worker_pool().
3386 *
3387 * Should be called with wq_pool_mutex held.
3388 */
3389 static void put_unbound_pool(struct worker_pool *pool)
3390 {
3391 DECLARE_COMPLETION_ONSTACK(detach_completion);
3392 struct worker *worker;
3393
3394 lockdep_assert_held(&wq_pool_mutex);
3395
3396 if (--pool->refcnt)
3397 return;
3398
3399 /* sanity checks */
3400 if (WARN_ON(!(pool->cpu < 0)) ||
3401 WARN_ON(!list_empty(&pool->worklist)))
3402 return;
3403
3404 /* release id and unhash */
3405 if (pool->id >= 0)
3406 idr_remove(&worker_pool_idr, pool->id);
3407 hash_del(&pool->hash_node);
3408
3409 /*
3410 * Become the manager and destroy all workers. Grabbing
3411 * manager_arb prevents @pool's workers from blocking on
3412 * attach_mutex.
3413 */
3414 mutex_lock(&pool->manager_arb);
3415
3416 spin_lock_irq(&pool->lock);
3417 while ((worker = first_idle_worker(pool)))
3418 destroy_worker(worker);
3419 WARN_ON(pool->nr_workers || pool->nr_idle);
3420 spin_unlock_irq(&pool->lock);
3421
3422 mutex_lock(&pool->attach_mutex);
3423 if (!list_empty(&pool->workers))
3424 pool->detach_completion = &detach_completion;
3425 mutex_unlock(&pool->attach_mutex);
3426
3427 if (pool->detach_completion)
3428 wait_for_completion(pool->detach_completion);
3429
3430 mutex_unlock(&pool->manager_arb);
3431
3432 /* shut down the timers */
3433 del_timer_sync(&pool->idle_timer);
3434 del_timer_sync(&pool->mayday_timer);
3435
3436 /* sched-RCU protected to allow dereferences from get_work_pool() */
3437 call_rcu_sched(&pool->rcu, rcu_free_pool);
3438 }
3439
3440 /**
3441 * get_unbound_pool - get a worker_pool with the specified attributes
3442 * @attrs: the attributes of the worker_pool to get
3443 *
3444 * Obtain a worker_pool which has the same attributes as @attrs, bump the
3445 * reference count and return it. If there already is a matching
3446 * worker_pool, it will be used; otherwise, this function attempts to
3447 * create a new one.
3448 *
3449 * Should be called with wq_pool_mutex held.
3450 *
3451 * Return: On success, a worker_pool with the same attributes as @attrs.
3452 * On failure, %NULL.
3453 */
3454 static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs)
3455 {
3456 u32 hash = wqattrs_hash(attrs);
3457 struct worker_pool *pool;
3458 int node;
3459
3460 lockdep_assert_held(&wq_pool_mutex);
3461
3462 /* do we already have a matching pool? */
3463 hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) {
3464 if (wqattrs_equal(pool->attrs, attrs)) {
3465 pool->refcnt++;
3466 goto out_unlock;
3467 }
3468 }
3469
3470 /* nope, create a new one */
3471 pool = kzalloc(sizeof(*pool), GFP_KERNEL);
3472 if (!pool || init_worker_pool(pool) < 0)
3473 goto fail;
3474
3475 lockdep_set_subclass(&pool->lock, 1); /* see put_pwq() */
3476 copy_workqueue_attrs(pool->attrs, attrs);
3477
3478 /*
3479 * no_numa isn't a worker_pool attribute, always clear it. See
3480 * 'struct workqueue_attrs' comments for detail.
3481 */
3482 pool->attrs->no_numa = false;
3483
3484 /* if cpumask is contained inside a NUMA node, we belong to that node */
3485 if (wq_numa_enabled) {
3486 for_each_node(node) {
3487 if (cpumask_subset(pool->attrs->cpumask,
3488 wq_numa_possible_cpumask[node])) {
3489 pool->node = node;
3490 break;
3491 }
3492 }
3493 }
3494
3495 if (worker_pool_assign_id(pool) < 0)
3496 goto fail;
3497
3498 /* create and start the initial worker */
3499 if (!create_worker(pool))
3500 goto fail;
3501
3502 /* install */
3503 hash_add(unbound_pool_hash, &pool->hash_node, hash);
3504 out_unlock:
3505 return pool;
3506 fail:
3507 if (pool)
3508 put_unbound_pool(pool);
3509 return NULL;
3510 }
3511
3512 static void rcu_free_pwq(struct rcu_head *rcu)
3513 {
3514 kmem_cache_free(pwq_cache,
3515 container_of(rcu, struct pool_workqueue, rcu));
3516 }
3517
3518 /*
3519 * Scheduled on system_wq by put_pwq() when an unbound pwq hits zero refcnt
3520 * and needs to be destroyed.
3521 */
3522 static void pwq_unbound_release_workfn(struct work_struct *work)
3523 {
3524 struct pool_workqueue *pwq = container_of(work, struct pool_workqueue,
3525 unbound_release_work);
3526 struct workqueue_struct *wq = pwq->wq;
3527 struct worker_pool *pool = pwq->pool;
3528 bool is_last;
3529
3530 if (WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND)))
3531 return;
3532
3533 mutex_lock(&wq->mutex);
3534 list_del_rcu(&pwq->pwqs_node);
3535 is_last = list_empty(&wq->pwqs);
3536 mutex_unlock(&wq->mutex);
3537
3538 mutex_lock(&wq_pool_mutex);
3539 put_unbound_pool(pool);
3540 mutex_unlock(&wq_pool_mutex);
3541
3542 call_rcu_sched(&pwq->rcu, rcu_free_pwq);
3543
3544 /*
3545 * If we're the last pwq going away, @wq is already dead and no one
3546 * is gonna access it anymore. Free it.
3547 */
3548 if (is_last) {
3549 free_workqueue_attrs(wq->unbound_attrs);
3550 kfree(wq);
3551 }
3552 }
3553
3554 /**
3555 * pwq_adjust_max_active - update a pwq's max_active to the current setting
3556 * @pwq: target pool_workqueue
3557 *
3558 * If @pwq isn't freezing, set @pwq->max_active to the associated
3559 * workqueue's saved_max_active and activate delayed work items
3560 * accordingly. If @pwq is freezing, clear @pwq->max_active to zero.
3561 */
3562 static void pwq_adjust_max_active(struct pool_workqueue *pwq)
3563 {
3564 struct workqueue_struct *wq = pwq->wq;
3565 bool freezable = wq->flags & WQ_FREEZABLE;
3566
3567 /* for @wq->saved_max_active */
3568 lockdep_assert_held(&wq->mutex);
3569
3570 /* fast exit for non-freezable wqs */
3571 if (!freezable && pwq->max_active == wq->saved_max_active)
3572 return;
3573
3574 spin_lock_irq(&pwq->pool->lock);
3575
3576 /*
3577 * During [un]freezing, the caller is responsible for ensuring that
3578 * this function is called at least once after @workqueue_freezing
3579 * is updated and visible.
3580 */
3581 if (!freezable || !workqueue_freezing) {
3582 pwq->max_active = wq->saved_max_active;
3583
3584 while (!list_empty(&pwq->delayed_works) &&
3585 pwq->nr_active < pwq->max_active)
3586 pwq_activate_first_delayed(pwq);
3587
3588 /*
3589 * Need to kick a worker after thawed or an unbound wq's
3590 * max_active is bumped. It's a slow path. Do it always.
3591 */
3592 wake_up_worker(pwq->pool);
3593 } else {
3594 pwq->max_active = 0;
3595 }
3596
3597 spin_unlock_irq(&pwq->pool->lock);
3598 }
3599
3600 /* initialize newly alloced @pwq which is associated with @wq and @pool */
3601 static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq,
3602 struct worker_pool *pool)
3603 {
3604 BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK);
3605
3606 memset(pwq, 0, sizeof(*pwq));
3607
3608 pwq->pool = pool;
3609 pwq->wq = wq;
3610 pwq->flush_color = -1;
3611 pwq->refcnt = 1;
3612 INIT_LIST_HEAD(&pwq->delayed_works);
3613 INIT_LIST_HEAD(&pwq->pwqs_node);
3614 INIT_LIST_HEAD(&pwq->mayday_node);
3615 INIT_WORK(&pwq->unbound_release_work, pwq_unbound_release_workfn);
3616 }
3617
3618 /* sync @pwq with the current state of its associated wq and link it */
3619 static void link_pwq(struct pool_workqueue *pwq)
3620 {
3621 struct workqueue_struct *wq = pwq->wq;
3622
3623 lockdep_assert_held(&wq->mutex);
3624
3625 /* may be called multiple times, ignore if already linked */
3626 if (!list_empty(&pwq->pwqs_node))
3627 return;
3628
3629 /* set the matching work_color */
3630 pwq->work_color = wq->work_color;
3631
3632 /* sync max_active to the current setting */
3633 pwq_adjust_max_active(pwq);
3634
3635 /* link in @pwq */
3636 list_add_rcu(&pwq->pwqs_node, &wq->pwqs);
3637 }
3638
3639 /* obtain a pool matching @attr and create a pwq associating the pool and @wq */
3640 static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq,
3641 const struct workqueue_attrs *attrs)
3642 {
3643 struct worker_pool *pool;
3644 struct pool_workqueue *pwq;
3645
3646 lockdep_assert_held(&wq_pool_mutex);
3647
3648 pool = get_unbound_pool(attrs);
3649 if (!pool)
3650 return NULL;
3651
3652 pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node);
3653 if (!pwq) {
3654 put_unbound_pool(pool);
3655 return NULL;
3656 }
3657
3658 init_pwq(pwq, wq, pool);
3659 return pwq;
3660 }
3661
3662 /* undo alloc_unbound_pwq(), used only in the error path */
3663 static void free_unbound_pwq(struct pool_workqueue *pwq)
3664 {
3665 lockdep_assert_held(&wq_pool_mutex);
3666
3667 if (pwq) {
3668 put_unbound_pool(pwq->pool);
3669 kmem_cache_free(pwq_cache, pwq);
3670 }
3671 }
3672
3673 /**
3674 * wq_calc_node_mask - calculate a wq_attrs' cpumask for the specified node
3675 * @attrs: the wq_attrs of interest
3676 * @node: the target NUMA node
3677 * @cpu_going_down: if >= 0, the CPU to consider as offline
3678 * @cpumask: outarg, the resulting cpumask
3679 *
3680 * Calculate the cpumask a workqueue with @attrs should use on @node. If
3681 * @cpu_going_down is >= 0, that cpu is considered offline during
3682 * calculation. The result is stored in @cpumask.
3683 *
3684 * If NUMA affinity is not enabled, @attrs->cpumask is always used. If
3685 * enabled and @node has online CPUs requested by @attrs, the returned
3686 * cpumask is the intersection of the possible CPUs of @node and
3687 * @attrs->cpumask.
3688 *
3689 * The caller is responsible for ensuring that the cpumask of @node stays
3690 * stable.
3691 *
3692 * Return: %true if the resulting @cpumask is different from @attrs->cpumask,
3693 * %false if equal.
3694 */
3695 static bool wq_calc_node_cpumask(const struct workqueue_attrs *attrs, int node,
3696 int cpu_going_down, cpumask_t *cpumask)
3697 {
3698 if (!wq_numa_enabled || attrs->no_numa)
3699 goto use_dfl;
3700
3701 /* does @node have any online CPUs @attrs wants? */
3702 cpumask_and(cpumask, cpumask_of_node(node), attrs->cpumask);
3703 if (cpu_going_down >= 0)
3704 cpumask_clear_cpu(cpu_going_down, cpumask);
3705
3706 if (cpumask_empty(cpumask))
3707 goto use_dfl;
3708
3709 /* yeap, return possible CPUs in @node that @attrs wants */
3710 cpumask_and(cpumask, attrs->cpumask, wq_numa_possible_cpumask[node]);
3711 return !cpumask_equal(cpumask, attrs->cpumask);
3712
3713 use_dfl:
3714 cpumask_copy(cpumask, attrs->cpumask);
3715 return false;
3716 }
3717
3718 /* install @pwq into @wq's numa_pwq_tbl[] for @node and return the old pwq */
3719 static struct pool_workqueue *numa_pwq_tbl_install(struct workqueue_struct *wq,
3720 int node,
3721 struct pool_workqueue *pwq)
3722 {
3723 struct pool_workqueue *old_pwq;
3724
3725 lockdep_assert_held(&wq->mutex);
3726
3727 /* link_pwq() can handle duplicate calls */
3728 link_pwq(pwq);
3729
3730 old_pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
3731 rcu_assign_pointer(wq->numa_pwq_tbl[node], pwq);
3732 return old_pwq;
3733 }
3734
3735 /**
3736 * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue
3737 * @wq: the target workqueue
3738 * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs()
3739 *
3740 * Apply @attrs to an unbound workqueue @wq. Unless disabled, on NUMA
3741 * machines, this function maps a separate pwq to each NUMA node with
3742 * possibles CPUs in @attrs->cpumask so that work items are affine to the
3743 * NUMA node it was issued on. Older pwqs are released as in-flight work
3744 * items finish. Note that a work item which repeatedly requeues itself
3745 * back-to-back will stay on its current pwq.
3746 *
3747 * Performs GFP_KERNEL allocations.
3748 *
3749 * Return: 0 on success and -errno on failure.
3750 */
3751 int apply_workqueue_attrs(struct workqueue_struct *wq,
3752 const struct workqueue_attrs *attrs)
3753 {
3754 struct workqueue_attrs *new_attrs, *tmp_attrs;
3755 struct pool_workqueue **pwq_tbl, *dfl_pwq;
3756 int node, ret;
3757
3758 /* only unbound workqueues can change attributes */
3759 if (WARN_ON(!(wq->flags & WQ_UNBOUND)))
3760 return -EINVAL;
3761
3762 /* creating multiple pwqs breaks ordering guarantee */
3763 if (WARN_ON((wq->flags & __WQ_ORDERED) && !list_empty(&wq->pwqs)))
3764 return -EINVAL;
3765
3766 pwq_tbl = kzalloc(wq_numa_tbl_len * sizeof(pwq_tbl[0]), GFP_KERNEL);
3767 new_attrs = alloc_workqueue_attrs(GFP_KERNEL);
3768 tmp_attrs = alloc_workqueue_attrs(GFP_KERNEL);
3769 if (!pwq_tbl || !new_attrs || !tmp_attrs)
3770 goto enomem;
3771
3772 /* make a copy of @attrs and sanitize it */
3773 copy_workqueue_attrs(new_attrs, attrs);
3774 cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask);
3775
3776 /*
3777 * We may create multiple pwqs with differing cpumasks. Make a
3778 * copy of @new_attrs which will be modified and used to obtain
3779 * pools.
3780 */
3781 copy_workqueue_attrs(tmp_attrs, new_attrs);
3782
3783 /*
3784 * CPUs should stay stable across pwq creations and installations.
3785 * Pin CPUs, determine the target cpumask for each node and create
3786 * pwqs accordingly.
3787 */
3788 get_online_cpus();
3789
3790 mutex_lock(&wq_pool_mutex);
3791
3792 /*
3793 * If something goes wrong during CPU up/down, we'll fall back to
3794 * the default pwq covering whole @attrs->cpumask. Always create
3795 * it even if we don't use it immediately.
3796 */
3797 dfl_pwq = alloc_unbound_pwq(wq, new_attrs);
3798 if (!dfl_pwq)
3799 goto enomem_pwq;
3800
3801 for_each_node(node) {
3802 if (wq_calc_node_cpumask(attrs, node, -1, tmp_attrs->cpumask)) {
3803 pwq_tbl[node] = alloc_unbound_pwq(wq, tmp_attrs);
3804 if (!pwq_tbl[node])
3805 goto enomem_pwq;
3806 } else {
3807 dfl_pwq->refcnt++;
3808 pwq_tbl[node] = dfl_pwq;
3809 }
3810 }
3811
3812 mutex_unlock(&wq_pool_mutex);
3813
3814 /* all pwqs have been created successfully, let's install'em */
3815 mutex_lock(&wq->mutex);
3816
3817 copy_workqueue_attrs(wq->unbound_attrs, new_attrs);
3818
3819 /* save the previous pwq and install the new one */
3820 for_each_node(node)
3821 pwq_tbl[node] = numa_pwq_tbl_install(wq, node, pwq_tbl[node]);
3822
3823 /* @dfl_pwq might not have been used, ensure it's linked */
3824 link_pwq(dfl_pwq);
3825 swap(wq->dfl_pwq, dfl_pwq);
3826
3827 mutex_unlock(&wq->mutex);
3828
3829 /* put the old pwqs */
3830 for_each_node(node)
3831 put_pwq_unlocked(pwq_tbl[node]);
3832 put_pwq_unlocked(dfl_pwq);
3833
3834 put_online_cpus();
3835 ret = 0;
3836 /* fall through */
3837 out_free:
3838 free_workqueue_attrs(tmp_attrs);
3839 free_workqueue_attrs(new_attrs);
3840 kfree(pwq_tbl);
3841 return ret;
3842
3843 enomem_pwq:
3844 free_unbound_pwq(dfl_pwq);
3845 for_each_node(node)
3846 if (pwq_tbl && pwq_tbl[node] != dfl_pwq)
3847 free_unbound_pwq(pwq_tbl[node]);
3848 mutex_unlock(&wq_pool_mutex);
3849 put_online_cpus();
3850 enomem:
3851 ret = -ENOMEM;
3852 goto out_free;
3853 }
3854
3855 /**
3856 * wq_update_unbound_numa - update NUMA affinity of a wq for CPU hot[un]plug
3857 * @wq: the target workqueue
3858 * @cpu: the CPU coming up or going down
3859 * @online: whether @cpu is coming up or going down
3860 *
3861 * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and
3862 * %CPU_DOWN_FAILED. @cpu is being hot[un]plugged, update NUMA affinity of
3863 * @wq accordingly.
3864 *
3865 * If NUMA affinity can't be adjusted due to memory allocation failure, it
3866 * falls back to @wq->dfl_pwq which may not be optimal but is always
3867 * correct.
3868 *
3869 * Note that when the last allowed CPU of a NUMA node goes offline for a
3870 * workqueue with a cpumask spanning multiple nodes, the workers which were
3871 * already executing the work items for the workqueue will lose their CPU
3872 * affinity and may execute on any CPU. This is similar to how per-cpu
3873 * workqueues behave on CPU_DOWN. If a workqueue user wants strict
3874 * affinity, it's the user's responsibility to flush the work item from
3875 * CPU_DOWN_PREPARE.
3876 */
3877 static void wq_update_unbound_numa(struct workqueue_struct *wq, int cpu,
3878 bool online)
3879 {
3880 int node = cpu_to_node(cpu);
3881 int cpu_off = online ? -1 : cpu;
3882 struct pool_workqueue *old_pwq = NULL, *pwq;
3883 struct workqueue_attrs *target_attrs;
3884 cpumask_t *cpumask;
3885
3886 lockdep_assert_held(&wq_pool_mutex);
3887
3888 if (!wq_numa_enabled || !(wq->flags & WQ_UNBOUND))
3889 return;
3890
3891 /*
3892 * We don't wanna alloc/free wq_attrs for each wq for each CPU.
3893 * Let's use a preallocated one. The following buf is protected by
3894 * CPU hotplug exclusion.
3895 */
3896 target_attrs = wq_update_unbound_numa_attrs_buf;
3897 cpumask = target_attrs->cpumask;
3898
3899 mutex_lock(&wq->mutex);
3900 if (wq->unbound_attrs->no_numa)
3901 goto out_unlock;
3902
3903 copy_workqueue_attrs(target_attrs, wq->unbound_attrs);
3904 pwq = unbound_pwq_by_node(wq, node);
3905
3906 /*
3907 * Let's determine what needs to be done. If the target cpumask is
3908 * different from wq's, we need to compare it to @pwq's and create
3909 * a new one if they don't match. If the target cpumask equals
3910 * wq's, the default pwq should be used.
3911 */
3912 if (wq_calc_node_cpumask(wq->unbound_attrs, node, cpu_off, cpumask)) {
3913 if (cpumask_equal(cpumask, pwq->pool->attrs->cpumask))
3914 goto out_unlock;
3915 } else {
3916 goto use_dfl_pwq;
3917 }
3918
3919 mutex_unlock(&wq->mutex);
3920
3921 /* create a new pwq */
3922 pwq = alloc_unbound_pwq(wq, target_attrs);
3923 if (!pwq) {
3924 pr_warn("workqueue: allocation failed while updating NUMA affinity of \"%s\"\n",
3925 wq->name);
3926 mutex_lock(&wq->mutex);
3927 goto use_dfl_pwq;
3928 }
3929
3930 /*
3931 * Install the new pwq. As this function is called only from CPU
3932 * hotplug callbacks and applying a new attrs is wrapped with
3933 * get/put_online_cpus(), @wq->unbound_attrs couldn't have changed
3934 * inbetween.
3935 */
3936 mutex_lock(&wq->mutex);
3937 old_pwq = numa_pwq_tbl_install(wq, node, pwq);
3938 goto out_unlock;
3939
3940 use_dfl_pwq:
3941 spin_lock_irq(&wq->dfl_pwq->pool->lock);
3942 get_pwq(wq->dfl_pwq);
3943 spin_unlock_irq(&wq->dfl_pwq->pool->lock);
3944 old_pwq = numa_pwq_tbl_install(wq, node, wq->dfl_pwq);
3945 out_unlock:
3946 mutex_unlock(&wq->mutex);
3947 put_pwq_unlocked(old_pwq);
3948 }
3949
3950 static int alloc_and_link_pwqs(struct workqueue_struct *wq)
3951 {
3952 bool highpri = wq->flags & WQ_HIGHPRI;
3953 int cpu, ret;
3954
3955 if (!(wq->flags & WQ_UNBOUND)) {
3956 wq->cpu_pwqs = alloc_percpu(struct pool_workqueue);
3957 if (!wq->cpu_pwqs)
3958 return -ENOMEM;
3959
3960 for_each_possible_cpu(cpu) {
3961 struct pool_workqueue *pwq =
3962 per_cpu_ptr(wq->cpu_pwqs, cpu);
3963 struct worker_pool *cpu_pools =
3964 per_cpu(cpu_worker_pools, cpu);
3965
3966 init_pwq(pwq, wq, &cpu_pools[highpri]);
3967
3968 mutex_lock(&wq->mutex);
3969 link_pwq(pwq);
3970 mutex_unlock(&wq->mutex);
3971 }
3972 return 0;
3973 } else if (wq->flags & __WQ_ORDERED) {
3974 ret = apply_workqueue_attrs(wq, ordered_wq_attrs[highpri]);
3975 /* there should only be single pwq for ordering guarantee */
3976 WARN(!ret && (wq->pwqs.next != &wq->dfl_pwq->pwqs_node ||
3977 wq->pwqs.prev != &wq->dfl_pwq->pwqs_node),
3978 "ordering guarantee broken for workqueue %s\n", wq->name);
3979 return ret;
3980 } else {
3981 return apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]);
3982 }
3983 }
3984
3985 static int wq_clamp_max_active(int max_active, unsigned int flags,
3986 const char *name)
3987 {
3988 int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;
3989
3990 if (max_active < 1 || max_active > lim)
3991 pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
3992 max_active, name, 1, lim);
3993
3994 return clamp_val(max_active, 1, lim);
3995 }
3996
3997 struct workqueue_struct *__alloc_workqueue_key(const char *fmt,
3998 unsigned int flags,
3999 int max_active,
4000 struct lock_class_key *key,
4001 const char *lock_name, ...)
4002 {
4003 size_t tbl_size = 0;
4004 va_list args;
4005 struct workqueue_struct *wq;
4006 struct pool_workqueue *pwq;
4007
4008 /* see the comment above the definition of WQ_POWER_EFFICIENT */
4009 if ((flags & WQ_POWER_EFFICIENT) && wq_power_efficient)
4010 flags |= WQ_UNBOUND;
4011
4012 /* allocate wq and format name */
4013 if (flags & WQ_UNBOUND)
4014 tbl_size = wq_numa_tbl_len * sizeof(wq->numa_pwq_tbl[0]);
4015
4016 wq = kzalloc(sizeof(*wq) + tbl_size, GFP_KERNEL);
4017 if (!wq)
4018 return NULL;
4019
4020 if (flags & WQ_UNBOUND) {
4021 wq->unbound_attrs = alloc_workqueue_attrs(GFP_KERNEL);
4022 if (!wq->unbound_attrs)
4023 goto err_free_wq;
4024 }
4025
4026 va_start(args, lock_name);
4027 vsnprintf(wq->name, sizeof(wq->name), fmt, args);
4028 va_end(args);
4029
4030 max_active = max_active ?: WQ_DFL_ACTIVE;
4031 max_active = wq_clamp_max_active(max_active, flags, wq->name);
4032
4033 /* init wq */
4034 wq->flags = flags;
4035 wq->saved_max_active = max_active;
4036 mutex_init(&wq->mutex);
4037 atomic_set(&wq->nr_pwqs_to_flush, 0);
4038 INIT_LIST_HEAD(&wq->pwqs);
4039 INIT_LIST_HEAD(&wq->flusher_queue);
4040 INIT_LIST_HEAD(&wq->flusher_overflow);
4041 INIT_LIST_HEAD(&wq->maydays);
4042
4043 lockdep_init_map(&wq->lockdep_map, lock_name, key, 0);
4044 INIT_LIST_HEAD(&wq->list);
4045
4046 if (alloc_and_link_pwqs(wq) < 0)
4047 goto err_free_wq;
4048
4049 /*
4050 * Workqueues which may be used during memory reclaim should
4051 * have a rescuer to guarantee forward progress.
4052 */
4053 if (flags & WQ_MEM_RECLAIM) {
4054 struct worker *rescuer;
4055
4056 rescuer = alloc_worker(NUMA_NO_NODE);
4057 if (!rescuer)
4058 goto err_destroy;
4059
4060 rescuer->rescue_wq = wq;
4061 rescuer->task = kthread_create(rescuer_thread, rescuer, "%s",
4062 wq->name);
4063 if (IS_ERR(rescuer->task)) {
4064 kfree(rescuer);
4065 goto err_destroy;
4066 }
4067
4068 wq->rescuer = rescuer;
4069 rescuer->task->flags |= PF_NO_SETAFFINITY;
4070 wake_up_process(rescuer->task);
4071 }
4072
4073 if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq))
4074 goto err_destroy;
4075
4076 /*
4077 * wq_pool_mutex protects global freeze state and workqueues list.
4078 * Grab it, adjust max_active and add the new @wq to workqueues
4079 * list.
4080 */
4081 mutex_lock(&wq_pool_mutex);
4082
4083 mutex_lock(&wq->mutex);
4084 for_each_pwq(pwq, wq)
4085 pwq_adjust_max_active(pwq);
4086 mutex_unlock(&wq->mutex);
4087
4088 list_add(&wq->list, &workqueues);
4089
4090 mutex_unlock(&wq_pool_mutex);
4091
4092 return wq;
4093
4094 err_free_wq:
4095 free_workqueue_attrs(wq->unbound_attrs);
4096 kfree(wq);
4097 return NULL;
4098 err_destroy:
4099 destroy_workqueue(wq);
4100 return NULL;
4101 }
4102 EXPORT_SYMBOL_GPL(__alloc_workqueue_key);
4103
4104 /**
4105 * destroy_workqueue - safely terminate a workqueue
4106 * @wq: target workqueue
4107 *
4108 * Safely destroy a workqueue. All work currently pending will be done first.
4109 */
4110 void destroy_workqueue(struct workqueue_struct *wq)
4111 {
4112 struct pool_workqueue *pwq;
4113 int node;
4114
4115 /* drain it before proceeding with destruction */
4116 drain_workqueue(wq);
4117
4118 /* sanity checks */
4119 mutex_lock(&wq->mutex);
4120 for_each_pwq(pwq, wq) {
4121 int i;
4122
4123 for (i = 0; i < WORK_NR_COLORS; i++) {
4124 if (WARN_ON(pwq->nr_in_flight[i])) {
4125 mutex_unlock(&wq->mutex);
4126 return;
4127 }
4128 }
4129
4130 if (WARN_ON((pwq != wq->dfl_pwq) && (pwq->refcnt > 1)) ||
4131 WARN_ON(pwq->nr_active) ||
4132 WARN_ON(!list_empty(&pwq->delayed_works))) {
4133 mutex_unlock(&wq->mutex);
4134 return;
4135 }
4136 }
4137 mutex_unlock(&wq->mutex);
4138
4139 /*
4140 * wq list is used to freeze wq, remove from list after
4141 * flushing is complete in case freeze races us.
4142 */
4143 mutex_lock(&wq_pool_mutex);
4144 list_del_init(&wq->list);
4145 mutex_unlock(&wq_pool_mutex);
4146
4147 workqueue_sysfs_unregister(wq);
4148
4149 if (wq->rescuer) {
4150 kthread_stop(wq->rescuer->task);
4151 kfree(wq->rescuer);
4152 wq->rescuer = NULL;
4153 }
4154
4155 if (!(wq->flags & WQ_UNBOUND)) {
4156 /*
4157 * The base ref is never dropped on per-cpu pwqs. Directly
4158 * free the pwqs and wq.
4159 */
4160 free_percpu(wq->cpu_pwqs);
4161 kfree(wq);
4162 } else {
4163 /*
4164 * We're the sole accessor of @wq at this point. Directly
4165 * access numa_pwq_tbl[] and dfl_pwq to put the base refs.
4166 * @wq will be freed when the last pwq is released.
4167 */
4168 for_each_node(node) {
4169 pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
4170 RCU_INIT_POINTER(wq->numa_pwq_tbl[node], NULL);
4171 put_pwq_unlocked(pwq);
4172 }
4173
4174 /*
4175 * Put dfl_pwq. @wq may be freed any time after dfl_pwq is
4176 * put. Don't access it afterwards.
4177 */
4178 pwq = wq->dfl_pwq;
4179 wq->dfl_pwq = NULL;
4180 put_pwq_unlocked(pwq);
4181 }
4182 }
4183 EXPORT_SYMBOL_GPL(destroy_workqueue);
4184
4185 /**
4186 * workqueue_set_max_active - adjust max_active of a workqueue
4187 * @wq: target workqueue
4188 * @max_active: new max_active value.
4189 *
4190 * Set max_active of @wq to @max_active.
4191 *
4192 * CONTEXT:
4193 * Don't call from IRQ context.
4194 */
4195 void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
4196 {
4197 struct pool_workqueue *pwq;
4198
4199 /* disallow meddling with max_active for ordered workqueues */
4200 if (WARN_ON(wq->flags & __WQ_ORDERED))
4201 return;
4202
4203 max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
4204
4205 mutex_lock(&wq->mutex);
4206
4207 wq->saved_max_active = max_active;
4208
4209 for_each_pwq(pwq, wq)
4210 pwq_adjust_max_active(pwq);
4211
4212 mutex_unlock(&wq->mutex);
4213 }
4214 EXPORT_SYMBOL_GPL(workqueue_set_max_active);
4215
4216 /**
4217 * current_is_workqueue_rescuer - is %current workqueue rescuer?
4218 *
4219 * Determine whether %current is a workqueue rescuer. Can be used from
4220 * work functions to determine whether it's being run off the rescuer task.
4221 *
4222 * Return: %true if %current is a workqueue rescuer. %false otherwise.
4223 */
4224 bool current_is_workqueue_rescuer(void)
4225 {
4226 struct worker *worker = current_wq_worker();
4227
4228 return worker && worker->rescue_wq;
4229 }
4230
4231 /**
4232 * workqueue_congested - test whether a workqueue is congested
4233 * @cpu: CPU in question
4234 * @wq: target workqueue
4235 *
4236 * Test whether @wq's cpu workqueue for @cpu is congested. There is
4237 * no synchronization around this function and the test result is
4238 * unreliable and only useful as advisory hints or for debugging.
4239 *
4240 * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU.
4241 * Note that both per-cpu and unbound workqueues may be associated with
4242 * multiple pool_workqueues which have separate congested states. A
4243 * workqueue being congested on one CPU doesn't mean the workqueue is also
4244 * contested on other CPUs / NUMA nodes.
4245 *
4246 * Return:
4247 * %true if congested, %false otherwise.
4248 */
4249 bool workqueue_congested(int cpu, struct workqueue_struct *wq)
4250 {
4251 struct pool_workqueue *pwq;
4252 bool ret;
4253
4254 rcu_read_lock_sched();
4255
4256 if (cpu == WORK_CPU_UNBOUND)
4257 cpu = smp_processor_id();
4258
4259 if (!(wq->flags & WQ_UNBOUND))
4260 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
4261 else
4262 pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
4263
4264 ret = !list_empty(&pwq->delayed_works);
4265 rcu_read_unlock_sched();
4266
4267 return ret;
4268 }
4269 EXPORT_SYMBOL_GPL(workqueue_congested);
4270
4271 /**
4272 * work_busy - test whether a work is currently pending or running
4273 * @work: the work to be tested
4274 *
4275 * Test whether @work is currently pending or running. There is no
4276 * synchronization around this function and the test result is
4277 * unreliable and only useful as advisory hints or for debugging.
4278 *
4279 * Return:
4280 * OR'd bitmask of WORK_BUSY_* bits.
4281 */
4282 unsigned int work_busy(struct work_struct *work)
4283 {
4284 struct worker_pool *pool;
4285 unsigned long flags;
4286 unsigned int ret = 0;
4287
4288 if (work_pending(work))
4289 ret |= WORK_BUSY_PENDING;
4290
4291 local_irq_save(flags);
4292 pool = get_work_pool(work);
4293 if (pool) {
4294 spin_lock(&pool->lock);
4295 if (find_worker_executing_work(pool, work))
4296 ret |= WORK_BUSY_RUNNING;
4297 spin_unlock(&pool->lock);
4298 }
4299 local_irq_restore(flags);
4300
4301 return ret;
4302 }
4303 EXPORT_SYMBOL_GPL(work_busy);
4304
4305 /**
4306 * set_worker_desc - set description for the current work item
4307 * @fmt: printf-style format string
4308 * @...: arguments for the format string
4309 *
4310 * This function can be called by a running work function to describe what
4311 * the work item is about. If the worker task gets dumped, this
4312 * information will be printed out together to help debugging. The
4313 * description can be at most WORKER_DESC_LEN including the trailing '\0'.
4314 */
4315 void set_worker_desc(const char *fmt, ...)
4316 {
4317 struct worker *worker = current_wq_worker();
4318 va_list args;
4319
4320 if (worker) {
4321 va_start(args, fmt);
4322 vsnprintf(worker->desc, sizeof(worker->desc), fmt, args);
4323 va_end(args);
4324 worker->desc_valid = true;
4325 }
4326 }
4327
4328 /**
4329 * print_worker_info - print out worker information and description
4330 * @log_lvl: the log level to use when printing
4331 * @task: target task
4332 *
4333 * If @task is a worker and currently executing a work item, print out the
4334 * name of the workqueue being serviced and worker description set with
4335 * set_worker_desc() by the currently executing work item.
4336 *
4337 * This function can be safely called on any task as long as the
4338 * task_struct itself is accessible. While safe, this function isn't
4339 * synchronized and may print out mixups or garbages of limited length.
4340 */
4341 void print_worker_info(const char *log_lvl, struct task_struct *task)
4342 {
4343 work_func_t *fn = NULL;
4344 char name[WQ_NAME_LEN] = { };
4345 char desc[WORKER_DESC_LEN] = { };
4346 struct pool_workqueue *pwq = NULL;
4347 struct workqueue_struct *wq = NULL;
4348 bool desc_valid = false;
4349 struct worker *worker;
4350
4351 if (!(task->flags & PF_WQ_WORKER))
4352 return;
4353
4354 /*
4355 * This function is called without any synchronization and @task
4356 * could be in any state. Be careful with dereferences.
4357 */
4358 worker = probe_kthread_data(task);
4359
4360 /*
4361 * Carefully copy the associated workqueue's workfn and name. Keep
4362 * the original last '\0' in case the original contains garbage.
4363 */
4364 probe_kernel_read(&fn, &worker->current_func, sizeof(fn));
4365 probe_kernel_read(&pwq, &worker->current_pwq, sizeof(pwq));
4366 probe_kernel_read(&wq, &pwq->wq, sizeof(wq));
4367 probe_kernel_read(name, wq->name, sizeof(name) - 1);
4368
4369 /* copy worker description */
4370 probe_kernel_read(&desc_valid, &worker->desc_valid, sizeof(desc_valid));
4371 if (desc_valid)
4372 probe_kernel_read(desc, worker->desc, sizeof(desc) - 1);
4373
4374 if (fn || name[0] || desc[0]) {
4375 printk("%sWorkqueue: %s %pf", log_lvl, name, fn);
4376 if (desc[0])
4377 pr_cont(" (%s)", desc);
4378 pr_cont("\n");
4379 }
4380 }
4381
4382 /*
4383 * CPU hotplug.
4384 *
4385 * There are two challenges in supporting CPU hotplug. Firstly, there
4386 * are a lot of assumptions on strong associations among work, pwq and
4387 * pool which make migrating pending and scheduled works very
4388 * difficult to implement without impacting hot paths. Secondly,
4389 * worker pools serve mix of short, long and very long running works making
4390 * blocked draining impractical.
4391 *
4392 * This is solved by allowing the pools to be disassociated from the CPU
4393 * running as an unbound one and allowing it to be reattached later if the
4394 * cpu comes back online.
4395 */
4396
4397 static void wq_unbind_fn(struct work_struct *work)
4398 {
4399 int cpu = smp_processor_id();
4400 struct worker_pool *pool;
4401 struct worker *worker;
4402
4403 for_each_cpu_worker_pool(pool, cpu) {
4404 mutex_lock(&pool->attach_mutex);
4405 spin_lock_irq(&pool->lock);
4406
4407 /*
4408 * We've blocked all attach/detach operations. Make all workers
4409 * unbound and set DISASSOCIATED. Before this, all workers
4410 * except for the ones which are still executing works from
4411 * before the last CPU down must be on the cpu. After
4412 * this, they may become diasporas.
4413 */
4414 for_each_pool_worker(worker, pool)
4415 worker->flags |= WORKER_UNBOUND;
4416
4417 pool->flags |= POOL_DISASSOCIATED;
4418
4419 spin_unlock_irq(&pool->lock);
4420 mutex_unlock(&pool->attach_mutex);
4421
4422 /*
4423 * Call schedule() so that we cross rq->lock and thus can
4424 * guarantee sched callbacks see the %WORKER_UNBOUND flag.
4425 * This is necessary as scheduler callbacks may be invoked
4426 * from other cpus.
4427 */
4428 schedule();
4429
4430 /*
4431 * Sched callbacks are disabled now. Zap nr_running.
4432 * After this, nr_running stays zero and need_more_worker()
4433 * and keep_working() are always true as long as the
4434 * worklist is not empty. This pool now behaves as an
4435 * unbound (in terms of concurrency management) pool which
4436 * are served by workers tied to the pool.
4437 */
4438 atomic_set(&pool->nr_running, 0);
4439
4440 /*
4441 * With concurrency management just turned off, a busy
4442 * worker blocking could lead to lengthy stalls. Kick off
4443 * unbound chain execution of currently pending work items.
4444 */
4445 spin_lock_irq(&pool->lock);
4446 wake_up_worker(pool);
4447 spin_unlock_irq(&pool->lock);
4448 }
4449 }
4450
4451 /**
4452 * rebind_workers - rebind all workers of a pool to the associated CPU
4453 * @pool: pool of interest
4454 *
4455 * @pool->cpu is coming online. Rebind all workers to the CPU.
4456 */
4457 static void rebind_workers(struct worker_pool *pool)
4458 {
4459 struct worker *worker;
4460
4461 lockdep_assert_held(&pool->attach_mutex);
4462
4463 /*
4464 * Restore CPU affinity of all workers. As all idle workers should
4465 * be on the run-queue of the associated CPU before any local
4466 * wake-ups for concurrency management happen, restore CPU affinty
4467 * of all workers first and then clear UNBOUND. As we're called
4468 * from CPU_ONLINE, the following shouldn't fail.
4469 */
4470 for_each_pool_worker(worker, pool)
4471 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
4472 pool->attrs->cpumask) < 0);
4473
4474 spin_lock_irq(&pool->lock);
4475 pool->flags &= ~POOL_DISASSOCIATED;
4476
4477 for_each_pool_worker(worker, pool) {
4478 unsigned int worker_flags = worker->flags;
4479
4480 /*
4481 * A bound idle worker should actually be on the runqueue
4482 * of the associated CPU for local wake-ups targeting it to
4483 * work. Kick all idle workers so that they migrate to the
4484 * associated CPU. Doing this in the same loop as
4485 * replacing UNBOUND with REBOUND is safe as no worker will
4486 * be bound before @pool->lock is released.
4487 */
4488 if (worker_flags & WORKER_IDLE)
4489 wake_up_process(worker->task);
4490
4491 /*
4492 * We want to clear UNBOUND but can't directly call
4493 * worker_clr_flags() or adjust nr_running. Atomically
4494 * replace UNBOUND with another NOT_RUNNING flag REBOUND.
4495 * @worker will clear REBOUND using worker_clr_flags() when
4496 * it initiates the next execution cycle thus restoring
4497 * concurrency management. Note that when or whether
4498 * @worker clears REBOUND doesn't affect correctness.
4499 *
4500 * ACCESS_ONCE() is necessary because @worker->flags may be
4501 * tested without holding any lock in
4502 * wq_worker_waking_up(). Without it, NOT_RUNNING test may
4503 * fail incorrectly leading to premature concurrency
4504 * management operations.
4505 */
4506 WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND));
4507 worker_flags |= WORKER_REBOUND;
4508 worker_flags &= ~WORKER_UNBOUND;
4509 ACCESS_ONCE(worker->flags) = worker_flags;
4510 }
4511
4512 spin_unlock_irq(&pool->lock);
4513 }
4514
4515 /**
4516 * restore_unbound_workers_cpumask - restore cpumask of unbound workers
4517 * @pool: unbound pool of interest
4518 * @cpu: the CPU which is coming up
4519 *
4520 * An unbound pool may end up with a cpumask which doesn't have any online
4521 * CPUs. When a worker of such pool get scheduled, the scheduler resets
4522 * its cpus_allowed. If @cpu is in @pool's cpumask which didn't have any
4523 * online CPU before, cpus_allowed of all its workers should be restored.
4524 */
4525 static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu)
4526 {
4527 static cpumask_t cpumask;
4528 struct worker *worker;
4529
4530 lockdep_assert_held(&pool->attach_mutex);
4531
4532 /* is @cpu allowed for @pool? */
4533 if (!cpumask_test_cpu(cpu, pool->attrs->cpumask))
4534 return;
4535
4536 /* is @cpu the only online CPU? */
4537 cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask);
4538 if (cpumask_weight(&cpumask) != 1)
4539 return;
4540
4541 /* as we're called from CPU_ONLINE, the following shouldn't fail */
4542 for_each_pool_worker(worker, pool)
4543 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
4544 pool->attrs->cpumask) < 0);
4545 }
4546
4547 /*
4548 * Workqueues should be brought up before normal priority CPU notifiers.
4549 * This will be registered high priority CPU notifier.
4550 */
4551 static int workqueue_cpu_up_callback(struct notifier_block *nfb,
4552 unsigned long action,
4553 void *hcpu)
4554 {
4555 int cpu = (unsigned long)hcpu;
4556 struct worker_pool *pool;
4557 struct workqueue_struct *wq;
4558 int pi;
4559
4560 switch (action & ~CPU_TASKS_FROZEN) {
4561 case CPU_UP_PREPARE:
4562 for_each_cpu_worker_pool(pool, cpu) {
4563 if (pool->nr_workers)
4564 continue;
4565 if (!create_worker(pool))
4566 return NOTIFY_BAD;
4567 }
4568 break;
4569
4570 case CPU_DOWN_FAILED:
4571 case CPU_ONLINE:
4572 mutex_lock(&wq_pool_mutex);
4573
4574 for_each_pool(pool, pi) {
4575 mutex_lock(&pool->attach_mutex);
4576
4577 if (pool->cpu == cpu) {
4578 rebind_workers(pool);
4579 } else if (pool->cpu < 0) {
4580 restore_unbound_workers_cpumask(pool, cpu);
4581 }
4582
4583 mutex_unlock(&pool->attach_mutex);
4584 }
4585
4586 /* update NUMA affinity of unbound workqueues */
4587 list_for_each_entry(wq, &workqueues, list)
4588 wq_update_unbound_numa(wq, cpu, true);
4589
4590 mutex_unlock(&wq_pool_mutex);
4591 break;
4592 }
4593 return NOTIFY_OK;
4594 }
4595
4596 /*
4597 * Workqueues should be brought down after normal priority CPU notifiers.
4598 * This will be registered as low priority CPU notifier.
4599 */
4600 static int workqueue_cpu_down_callback(struct notifier_block *nfb,
4601 unsigned long action,
4602 void *hcpu)
4603 {
4604 int cpu = (unsigned long)hcpu;
4605 struct work_struct unbind_work;
4606 struct workqueue_struct *wq;
4607
4608 switch (action & ~CPU_TASKS_FROZEN) {
4609 case CPU_DOWN_PREPARE:
4610 /* unbinding per-cpu workers should happen on the local CPU */
4611 INIT_WORK_ONSTACK(&unbind_work, wq_unbind_fn);
4612 queue_work_on(cpu, system_highpri_wq, &unbind_work);
4613
4614 /* update NUMA affinity of unbound workqueues */
4615 mutex_lock(&wq_pool_mutex);
4616 list_for_each_entry(wq, &workqueues, list)
4617 wq_update_unbound_numa(wq, cpu, false);
4618 mutex_unlock(&wq_pool_mutex);
4619
4620 /* wait for per-cpu unbinding to finish */
4621 flush_work(&unbind_work);
4622 destroy_work_on_stack(&unbind_work);
4623 break;
4624 }
4625 return NOTIFY_OK;
4626 }
4627
4628 #ifdef CONFIG_SMP
4629
4630 struct work_for_cpu {
4631 struct work_struct work;
4632 long (*fn)(void *);
4633 void *arg;
4634 long ret;
4635 };
4636
4637 static void work_for_cpu_fn(struct work_struct *work)
4638 {
4639 struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);
4640
4641 wfc->ret = wfc->fn(wfc->arg);
4642 }
4643
4644 /**
4645 * work_on_cpu - run a function in user context on a particular cpu
4646 * @cpu: the cpu to run on
4647 * @fn: the function to run
4648 * @arg: the function arg
4649 *
4650 * It is up to the caller to ensure that the cpu doesn't go offline.
4651 * The caller must not hold any locks which would prevent @fn from completing.
4652 *
4653 * Return: The value @fn returns.
4654 */
4655 long work_on_cpu(int cpu, long (*fn)(void *), void *arg)
4656 {
4657 struct work_for_cpu wfc = { .fn = fn, .arg = arg };
4658
4659 INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn);
4660 schedule_work_on(cpu, &wfc.work);
4661 flush_work(&wfc.work);
4662 destroy_work_on_stack(&wfc.work);
4663 return wfc.ret;
4664 }
4665 EXPORT_SYMBOL_GPL(work_on_cpu);
4666 #endif /* CONFIG_SMP */
4667
4668 #ifdef CONFIG_FREEZER
4669
4670 /**
4671 * freeze_workqueues_begin - begin freezing workqueues
4672 *
4673 * Start freezing workqueues. After this function returns, all freezable
4674 * workqueues will queue new works to their delayed_works list instead of
4675 * pool->worklist.
4676 *
4677 * CONTEXT:
4678 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
4679 */
4680 void freeze_workqueues_begin(void)
4681 {
4682 struct workqueue_struct *wq;
4683 struct pool_workqueue *pwq;
4684
4685 mutex_lock(&wq_pool_mutex);
4686
4687 WARN_ON_ONCE(workqueue_freezing);
4688 workqueue_freezing = true;
4689
4690 list_for_each_entry(wq, &workqueues, list) {
4691 mutex_lock(&wq->mutex);
4692 for_each_pwq(pwq, wq)
4693 pwq_adjust_max_active(pwq);
4694 mutex_unlock(&wq->mutex);
4695 }
4696
4697 mutex_unlock(&wq_pool_mutex);
4698 }
4699
4700 /**
4701 * freeze_workqueues_busy - are freezable workqueues still busy?
4702 *
4703 * Check whether freezing is complete. This function must be called
4704 * between freeze_workqueues_begin() and thaw_workqueues().
4705 *
4706 * CONTEXT:
4707 * Grabs and releases wq_pool_mutex.
4708 *
4709 * Return:
4710 * %true if some freezable workqueues are still busy. %false if freezing
4711 * is complete.
4712 */
4713 bool freeze_workqueues_busy(void)
4714 {
4715 bool busy = false;
4716 struct workqueue_struct *wq;
4717 struct pool_workqueue *pwq;
4718
4719 mutex_lock(&wq_pool_mutex);
4720
4721 WARN_ON_ONCE(!workqueue_freezing);
4722
4723 list_for_each_entry(wq, &workqueues, list) {
4724 if (!(wq->flags & WQ_FREEZABLE))
4725 continue;
4726 /*
4727 * nr_active is monotonically decreasing. It's safe
4728 * to peek without lock.
4729 */
4730 rcu_read_lock_sched();
4731 for_each_pwq(pwq, wq) {
4732 WARN_ON_ONCE(pwq->nr_active < 0);
4733 if (pwq->nr_active) {
4734 busy = true;
4735 rcu_read_unlock_sched();
4736 goto out_unlock;
4737 }
4738 }
4739 rcu_read_unlock_sched();
4740 }
4741 out_unlock:
4742 mutex_unlock(&wq_pool_mutex);
4743 return busy;
4744 }
4745
4746 /**
4747 * thaw_workqueues - thaw workqueues
4748 *
4749 * Thaw workqueues. Normal queueing is restored and all collected
4750 * frozen works are transferred to their respective pool worklists.
4751 *
4752 * CONTEXT:
4753 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
4754 */
4755 void thaw_workqueues(void)
4756 {
4757 struct workqueue_struct *wq;
4758 struct pool_workqueue *pwq;
4759
4760 mutex_lock(&wq_pool_mutex);
4761
4762 if (!workqueue_freezing)
4763 goto out_unlock;
4764
4765 workqueue_freezing = false;
4766
4767 /* restore max_active and repopulate worklist */
4768 list_for_each_entry(wq, &workqueues, list) {
4769 mutex_lock(&wq->mutex);
4770 for_each_pwq(pwq, wq)
4771 pwq_adjust_max_active(pwq);
4772 mutex_unlock(&wq->mutex);
4773 }
4774
4775 out_unlock:
4776 mutex_unlock(&wq_pool_mutex);
4777 }
4778 #endif /* CONFIG_FREEZER */
4779
4780 static void __init wq_numa_init(void)
4781 {
4782 cpumask_var_t *tbl;
4783 int node, cpu;
4784
4785 /* determine NUMA pwq table len - highest node id + 1 */
4786 for_each_node(node)
4787 wq_numa_tbl_len = max(wq_numa_tbl_len, node + 1);
4788
4789 if (num_possible_nodes() <= 1)
4790 return;
4791
4792 if (wq_disable_numa) {
4793 pr_info("workqueue: NUMA affinity support disabled\n");
4794 return;
4795 }
4796
4797 wq_update_unbound_numa_attrs_buf = alloc_workqueue_attrs(GFP_KERNEL);
4798 BUG_ON(!wq_update_unbound_numa_attrs_buf);
4799
4800 /*
4801 * We want masks of possible CPUs of each node which isn't readily
4802 * available. Build one from cpu_to_node() which should have been
4803 * fully initialized by now.
4804 */
4805 tbl = kzalloc(wq_numa_tbl_len * sizeof(tbl[0]), GFP_KERNEL);
4806 BUG_ON(!tbl);
4807
4808 for_each_node(node)
4809 BUG_ON(!alloc_cpumask_var_node(&tbl[node], GFP_KERNEL,
4810 node_online(node) ? node : NUMA_NO_NODE));
4811
4812 for_each_possible_cpu(cpu) {
4813 node = cpu_to_node(cpu);
4814 if (WARN_ON(node == NUMA_NO_NODE)) {
4815 pr_warn("workqueue: NUMA node mapping not available for cpu%d, disabling NUMA support\n", cpu);
4816 /* happens iff arch is bonkers, let's just proceed */
4817 return;
4818 }
4819 cpumask_set_cpu(cpu, tbl[node]);
4820 }
4821
4822 wq_numa_possible_cpumask = tbl;
4823 wq_numa_enabled = true;
4824 }
4825
4826 static int __init init_workqueues(void)
4827 {
4828 int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL };
4829 int i, cpu;
4830
4831 WARN_ON(__alignof__(struct pool_workqueue) < __alignof__(long long));
4832
4833 pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC);
4834
4835 cpu_notifier(workqueue_cpu_up_callback, CPU_PRI_WORKQUEUE_UP);
4836 hotcpu_notifier(workqueue_cpu_down_callback, CPU_PRI_WORKQUEUE_DOWN);
4837
4838 wq_numa_init();
4839
4840 /* initialize CPU pools */
4841 for_each_possible_cpu(cpu) {
4842 struct worker_pool *pool;
4843
4844 i = 0;
4845 for_each_cpu_worker_pool(pool, cpu) {
4846 BUG_ON(init_worker_pool(pool));
4847 pool->cpu = cpu;
4848 cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu));
4849 pool->attrs->nice = std_nice[i++];
4850 pool->node = cpu_to_node(cpu);
4851
4852 /* alloc pool ID */
4853 mutex_lock(&wq_pool_mutex);
4854 BUG_ON(worker_pool_assign_id(pool));
4855 mutex_unlock(&wq_pool_mutex);
4856 }
4857 }
4858
4859 /* create the initial worker */
4860 for_each_online_cpu(cpu) {
4861 struct worker_pool *pool;
4862
4863 for_each_cpu_worker_pool(pool, cpu) {
4864 pool->flags &= ~POOL_DISASSOCIATED;
4865 BUG_ON(!create_worker(pool));
4866 }
4867 }
4868
4869 /* create default unbound and ordered wq attrs */
4870 for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
4871 struct workqueue_attrs *attrs;
4872
4873 BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
4874 attrs->nice = std_nice[i];
4875 unbound_std_wq_attrs[i] = attrs;
4876
4877 /*
4878 * An ordered wq should have only one pwq as ordering is
4879 * guaranteed by max_active which is enforced by pwqs.
4880 * Turn off NUMA so that dfl_pwq is used for all nodes.
4881 */
4882 BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
4883 attrs->nice = std_nice[i];
4884 attrs->no_numa = true;
4885 ordered_wq_attrs[i] = attrs;
4886 }
4887
4888 system_wq = alloc_workqueue("events", 0, 0);
4889 system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
4890 system_long_wq = alloc_workqueue("events_long", 0, 0);
4891 system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
4892 WQ_UNBOUND_MAX_ACTIVE);
4893 system_freezable_wq = alloc_workqueue("events_freezable",
4894 WQ_FREEZABLE, 0);
4895 system_power_efficient_wq = alloc_workqueue("events_power_efficient",
4896 WQ_POWER_EFFICIENT, 0);
4897 system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_power_efficient",
4898 WQ_FREEZABLE | WQ_POWER_EFFICIENT,
4899 0);
4900 BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
4901 !system_unbound_wq || !system_freezable_wq ||
4902 !system_power_efficient_wq ||
4903 !system_freezable_power_efficient_wq);
4904 return 0;
4905 }
4906 early_initcall(init_workqueues);