]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - kernel/workqueue.c
workqueue: fix ghost PENDING flag while doing MQ IO
[mirror_ubuntu-bionic-kernel.git] / kernel / workqueue.c
1 /*
2 * kernel/workqueue.c - generic async execution with shared worker pool
3 *
4 * Copyright (C) 2002 Ingo Molnar
5 *
6 * Derived from the taskqueue/keventd code by:
7 * David Woodhouse <dwmw2@infradead.org>
8 * Andrew Morton
9 * Kai Petzke <wpp@marie.physik.tu-berlin.de>
10 * Theodore Ts'o <tytso@mit.edu>
11 *
12 * Made to use alloc_percpu by Christoph Lameter.
13 *
14 * Copyright (C) 2010 SUSE Linux Products GmbH
15 * Copyright (C) 2010 Tejun Heo <tj@kernel.org>
16 *
17 * This is the generic async execution mechanism. Work items as are
18 * executed in process context. The worker pool is shared and
19 * automatically managed. There are two worker pools for each CPU (one for
20 * normal work items and the other for high priority ones) and some extra
21 * pools for workqueues which are not bound to any specific CPU - the
22 * number of these backing pools is dynamic.
23 *
24 * Please read Documentation/workqueue.txt for details.
25 */
26
27 #include <linux/export.h>
28 #include <linux/kernel.h>
29 #include <linux/sched.h>
30 #include <linux/init.h>
31 #include <linux/signal.h>
32 #include <linux/completion.h>
33 #include <linux/workqueue.h>
34 #include <linux/slab.h>
35 #include <linux/cpu.h>
36 #include <linux/notifier.h>
37 #include <linux/kthread.h>
38 #include <linux/hardirq.h>
39 #include <linux/mempolicy.h>
40 #include <linux/freezer.h>
41 #include <linux/kallsyms.h>
42 #include <linux/debug_locks.h>
43 #include <linux/lockdep.h>
44 #include <linux/idr.h>
45 #include <linux/jhash.h>
46 #include <linux/hashtable.h>
47 #include <linux/rculist.h>
48 #include <linux/nodemask.h>
49 #include <linux/moduleparam.h>
50 #include <linux/uaccess.h>
51
52 #include "workqueue_internal.h"
53
54 enum {
55 /*
56 * worker_pool flags
57 *
58 * A bound pool is either associated or disassociated with its CPU.
59 * While associated (!DISASSOCIATED), all workers are bound to the
60 * CPU and none has %WORKER_UNBOUND set and concurrency management
61 * is in effect.
62 *
63 * While DISASSOCIATED, the cpu may be offline and all workers have
64 * %WORKER_UNBOUND set and concurrency management disabled, and may
65 * be executing on any CPU. The pool behaves as an unbound one.
66 *
67 * Note that DISASSOCIATED should be flipped only while holding
68 * attach_mutex to avoid changing binding state while
69 * worker_attach_to_pool() is in progress.
70 */
71 POOL_DISASSOCIATED = 1 << 2, /* cpu can't serve workers */
72
73 /* worker flags */
74 WORKER_DIE = 1 << 1, /* die die die */
75 WORKER_IDLE = 1 << 2, /* is idle */
76 WORKER_PREP = 1 << 3, /* preparing to run works */
77 WORKER_CPU_INTENSIVE = 1 << 6, /* cpu intensive */
78 WORKER_UNBOUND = 1 << 7, /* worker is unbound */
79 WORKER_REBOUND = 1 << 8, /* worker was rebound */
80
81 WORKER_NOT_RUNNING = WORKER_PREP | WORKER_CPU_INTENSIVE |
82 WORKER_UNBOUND | WORKER_REBOUND,
83
84 NR_STD_WORKER_POOLS = 2, /* # standard pools per cpu */
85
86 UNBOUND_POOL_HASH_ORDER = 6, /* hashed by pool->attrs */
87 BUSY_WORKER_HASH_ORDER = 6, /* 64 pointers */
88
89 MAX_IDLE_WORKERS_RATIO = 4, /* 1/4 of busy can be idle */
90 IDLE_WORKER_TIMEOUT = 300 * HZ, /* keep idle ones for 5 mins */
91
92 MAYDAY_INITIAL_TIMEOUT = HZ / 100 >= 2 ? HZ / 100 : 2,
93 /* call for help after 10ms
94 (min two ticks) */
95 MAYDAY_INTERVAL = HZ / 10, /* and then every 100ms */
96 CREATE_COOLDOWN = HZ, /* time to breath after fail */
97
98 /*
99 * Rescue workers are used only on emergencies and shared by
100 * all cpus. Give MIN_NICE.
101 */
102 RESCUER_NICE_LEVEL = MIN_NICE,
103 HIGHPRI_NICE_LEVEL = MIN_NICE,
104
105 WQ_NAME_LEN = 24,
106 };
107
108 /*
109 * Structure fields follow one of the following exclusion rules.
110 *
111 * I: Modifiable by initialization/destruction paths and read-only for
112 * everyone else.
113 *
114 * P: Preemption protected. Disabling preemption is enough and should
115 * only be modified and accessed from the local cpu.
116 *
117 * L: pool->lock protected. Access with pool->lock held.
118 *
119 * X: During normal operation, modification requires pool->lock and should
120 * be done only from local cpu. Either disabling preemption on local
121 * cpu or grabbing pool->lock is enough for read access. If
122 * POOL_DISASSOCIATED is set, it's identical to L.
123 *
124 * A: pool->attach_mutex protected.
125 *
126 * PL: wq_pool_mutex protected.
127 *
128 * PR: wq_pool_mutex protected for writes. Sched-RCU protected for reads.
129 *
130 * PW: wq_pool_mutex and wq->mutex protected for writes. Either for reads.
131 *
132 * PWR: wq_pool_mutex and wq->mutex protected for writes. Either or
133 * sched-RCU for reads.
134 *
135 * WQ: wq->mutex protected.
136 *
137 * WR: wq->mutex protected for writes. Sched-RCU protected for reads.
138 *
139 * MD: wq_mayday_lock protected.
140 */
141
142 /* struct worker is defined in workqueue_internal.h */
143
144 struct worker_pool {
145 spinlock_t lock; /* the pool lock */
146 int cpu; /* I: the associated cpu */
147 int node; /* I: the associated node ID */
148 int id; /* I: pool ID */
149 unsigned int flags; /* X: flags */
150
151 unsigned long watchdog_ts; /* L: watchdog timestamp */
152
153 struct list_head worklist; /* L: list of pending works */
154 int nr_workers; /* L: total number of workers */
155
156 /* nr_idle includes the ones off idle_list for rebinding */
157 int nr_idle; /* L: currently idle ones */
158
159 struct list_head idle_list; /* X: list of idle workers */
160 struct timer_list idle_timer; /* L: worker idle timeout */
161 struct timer_list mayday_timer; /* L: SOS timer for workers */
162
163 /* a workers is either on busy_hash or idle_list, or the manager */
164 DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
165 /* L: hash of busy workers */
166
167 /* see manage_workers() for details on the two manager mutexes */
168 struct mutex manager_arb; /* manager arbitration */
169 struct worker *manager; /* L: purely informational */
170 struct mutex attach_mutex; /* attach/detach exclusion */
171 struct list_head workers; /* A: attached workers */
172 struct completion *detach_completion; /* all workers detached */
173
174 struct ida worker_ida; /* worker IDs for task name */
175
176 struct workqueue_attrs *attrs; /* I: worker attributes */
177 struct hlist_node hash_node; /* PL: unbound_pool_hash node */
178 int refcnt; /* PL: refcnt for unbound pools */
179
180 /*
181 * The current concurrency level. As it's likely to be accessed
182 * from other CPUs during try_to_wake_up(), put it in a separate
183 * cacheline.
184 */
185 atomic_t nr_running ____cacheline_aligned_in_smp;
186
187 /*
188 * Destruction of pool is sched-RCU protected to allow dereferences
189 * from get_work_pool().
190 */
191 struct rcu_head rcu;
192 } ____cacheline_aligned_in_smp;
193
194 /*
195 * The per-pool workqueue. While queued, the lower WORK_STRUCT_FLAG_BITS
196 * of work_struct->data are used for flags and the remaining high bits
197 * point to the pwq; thus, pwqs need to be aligned at two's power of the
198 * number of flag bits.
199 */
200 struct pool_workqueue {
201 struct worker_pool *pool; /* I: the associated pool */
202 struct workqueue_struct *wq; /* I: the owning workqueue */
203 int work_color; /* L: current color */
204 int flush_color; /* L: flushing color */
205 int refcnt; /* L: reference count */
206 int nr_in_flight[WORK_NR_COLORS];
207 /* L: nr of in_flight works */
208 int nr_active; /* L: nr of active works */
209 int max_active; /* L: max active works */
210 struct list_head delayed_works; /* L: delayed works */
211 struct list_head pwqs_node; /* WR: node on wq->pwqs */
212 struct list_head mayday_node; /* MD: node on wq->maydays */
213
214 /*
215 * Release of unbound pwq is punted to system_wq. See put_pwq()
216 * and pwq_unbound_release_workfn() for details. pool_workqueue
217 * itself is also sched-RCU protected so that the first pwq can be
218 * determined without grabbing wq->mutex.
219 */
220 struct work_struct unbound_release_work;
221 struct rcu_head rcu;
222 } __aligned(1 << WORK_STRUCT_FLAG_BITS);
223
224 /*
225 * Structure used to wait for workqueue flush.
226 */
227 struct wq_flusher {
228 struct list_head list; /* WQ: list of flushers */
229 int flush_color; /* WQ: flush color waiting for */
230 struct completion done; /* flush completion */
231 };
232
233 struct wq_device;
234
235 /*
236 * The externally visible workqueue. It relays the issued work items to
237 * the appropriate worker_pool through its pool_workqueues.
238 */
239 struct workqueue_struct {
240 struct list_head pwqs; /* WR: all pwqs of this wq */
241 struct list_head list; /* PR: list of all workqueues */
242
243 struct mutex mutex; /* protects this wq */
244 int work_color; /* WQ: current work color */
245 int flush_color; /* WQ: current flush color */
246 atomic_t nr_pwqs_to_flush; /* flush in progress */
247 struct wq_flusher *first_flusher; /* WQ: first flusher */
248 struct list_head flusher_queue; /* WQ: flush waiters */
249 struct list_head flusher_overflow; /* WQ: flush overflow list */
250
251 struct list_head maydays; /* MD: pwqs requesting rescue */
252 struct worker *rescuer; /* I: rescue worker */
253
254 int nr_drainers; /* WQ: drain in progress */
255 int saved_max_active; /* WQ: saved pwq max_active */
256
257 struct workqueue_attrs *unbound_attrs; /* PW: only for unbound wqs */
258 struct pool_workqueue *dfl_pwq; /* PW: only for unbound wqs */
259
260 #ifdef CONFIG_SYSFS
261 struct wq_device *wq_dev; /* I: for sysfs interface */
262 #endif
263 #ifdef CONFIG_LOCKDEP
264 struct lockdep_map lockdep_map;
265 #endif
266 char name[WQ_NAME_LEN]; /* I: workqueue name */
267
268 /*
269 * Destruction of workqueue_struct is sched-RCU protected to allow
270 * walking the workqueues list without grabbing wq_pool_mutex.
271 * This is used to dump all workqueues from sysrq.
272 */
273 struct rcu_head rcu;
274
275 /* hot fields used during command issue, aligned to cacheline */
276 unsigned int flags ____cacheline_aligned; /* WQ: WQ_* flags */
277 struct pool_workqueue __percpu *cpu_pwqs; /* I: per-cpu pwqs */
278 struct pool_workqueue __rcu *numa_pwq_tbl[]; /* PWR: unbound pwqs indexed by node */
279 };
280
281 static struct kmem_cache *pwq_cache;
282
283 static cpumask_var_t *wq_numa_possible_cpumask;
284 /* possible CPUs of each node */
285
286 static bool wq_disable_numa;
287 module_param_named(disable_numa, wq_disable_numa, bool, 0444);
288
289 /* see the comment above the definition of WQ_POWER_EFFICIENT */
290 static bool wq_power_efficient = IS_ENABLED(CONFIG_WQ_POWER_EFFICIENT_DEFAULT);
291 module_param_named(power_efficient, wq_power_efficient, bool, 0444);
292
293 static bool wq_numa_enabled; /* unbound NUMA affinity enabled */
294
295 /* buf for wq_update_unbound_numa_attrs(), protected by CPU hotplug exclusion */
296 static struct workqueue_attrs *wq_update_unbound_numa_attrs_buf;
297
298 static DEFINE_MUTEX(wq_pool_mutex); /* protects pools and workqueues list */
299 static DEFINE_SPINLOCK(wq_mayday_lock); /* protects wq->maydays list */
300
301 static LIST_HEAD(workqueues); /* PR: list of all workqueues */
302 static bool workqueue_freezing; /* PL: have wqs started freezing? */
303
304 /* PL: allowable cpus for unbound wqs and work items */
305 static cpumask_var_t wq_unbound_cpumask;
306
307 /* CPU where unbound work was last round robin scheduled from this CPU */
308 static DEFINE_PER_CPU(int, wq_rr_cpu_last);
309
310 /*
311 * Local execution of unbound work items is no longer guaranteed. The
312 * following always forces round-robin CPU selection on unbound work items
313 * to uncover usages which depend on it.
314 */
315 #ifdef CONFIG_DEBUG_WQ_FORCE_RR_CPU
316 static bool wq_debug_force_rr_cpu = true;
317 #else
318 static bool wq_debug_force_rr_cpu = false;
319 #endif
320 module_param_named(debug_force_rr_cpu, wq_debug_force_rr_cpu, bool, 0644);
321
322 /* the per-cpu worker pools */
323 static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS], cpu_worker_pools);
324
325 static DEFINE_IDR(worker_pool_idr); /* PR: idr of all pools */
326
327 /* PL: hash of all unbound pools keyed by pool->attrs */
328 static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER);
329
330 /* I: attributes used when instantiating standard unbound pools on demand */
331 static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS];
332
333 /* I: attributes used when instantiating ordered pools on demand */
334 static struct workqueue_attrs *ordered_wq_attrs[NR_STD_WORKER_POOLS];
335
336 struct workqueue_struct *system_wq __read_mostly;
337 EXPORT_SYMBOL(system_wq);
338 struct workqueue_struct *system_highpri_wq __read_mostly;
339 EXPORT_SYMBOL_GPL(system_highpri_wq);
340 struct workqueue_struct *system_long_wq __read_mostly;
341 EXPORT_SYMBOL_GPL(system_long_wq);
342 struct workqueue_struct *system_unbound_wq __read_mostly;
343 EXPORT_SYMBOL_GPL(system_unbound_wq);
344 struct workqueue_struct *system_freezable_wq __read_mostly;
345 EXPORT_SYMBOL_GPL(system_freezable_wq);
346 struct workqueue_struct *system_power_efficient_wq __read_mostly;
347 EXPORT_SYMBOL_GPL(system_power_efficient_wq);
348 struct workqueue_struct *system_freezable_power_efficient_wq __read_mostly;
349 EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq);
350
351 static int worker_thread(void *__worker);
352 static void workqueue_sysfs_unregister(struct workqueue_struct *wq);
353
354 #define CREATE_TRACE_POINTS
355 #include <trace/events/workqueue.h>
356
357 #define assert_rcu_or_pool_mutex() \
358 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held() && \
359 !lockdep_is_held(&wq_pool_mutex), \
360 "sched RCU or wq_pool_mutex should be held")
361
362 #define assert_rcu_or_wq_mutex(wq) \
363 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held() && \
364 !lockdep_is_held(&wq->mutex), \
365 "sched RCU or wq->mutex should be held")
366
367 #define assert_rcu_or_wq_mutex_or_pool_mutex(wq) \
368 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held() && \
369 !lockdep_is_held(&wq->mutex) && \
370 !lockdep_is_held(&wq_pool_mutex), \
371 "sched RCU, wq->mutex or wq_pool_mutex should be held")
372
373 #define for_each_cpu_worker_pool(pool, cpu) \
374 for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0]; \
375 (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
376 (pool)++)
377
378 /**
379 * for_each_pool - iterate through all worker_pools in the system
380 * @pool: iteration cursor
381 * @pi: integer used for iteration
382 *
383 * This must be called either with wq_pool_mutex held or sched RCU read
384 * locked. If the pool needs to be used beyond the locking in effect, the
385 * caller is responsible for guaranteeing that the pool stays online.
386 *
387 * The if/else clause exists only for the lockdep assertion and can be
388 * ignored.
389 */
390 #define for_each_pool(pool, pi) \
391 idr_for_each_entry(&worker_pool_idr, pool, pi) \
392 if (({ assert_rcu_or_pool_mutex(); false; })) { } \
393 else
394
395 /**
396 * for_each_pool_worker - iterate through all workers of a worker_pool
397 * @worker: iteration cursor
398 * @pool: worker_pool to iterate workers of
399 *
400 * This must be called with @pool->attach_mutex.
401 *
402 * The if/else clause exists only for the lockdep assertion and can be
403 * ignored.
404 */
405 #define for_each_pool_worker(worker, pool) \
406 list_for_each_entry((worker), &(pool)->workers, node) \
407 if (({ lockdep_assert_held(&pool->attach_mutex); false; })) { } \
408 else
409
410 /**
411 * for_each_pwq - iterate through all pool_workqueues of the specified workqueue
412 * @pwq: iteration cursor
413 * @wq: the target workqueue
414 *
415 * This must be called either with wq->mutex held or sched RCU read locked.
416 * If the pwq needs to be used beyond the locking in effect, the caller is
417 * responsible for guaranteeing that the pwq stays online.
418 *
419 * The if/else clause exists only for the lockdep assertion and can be
420 * ignored.
421 */
422 #define for_each_pwq(pwq, wq) \
423 list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node) \
424 if (({ assert_rcu_or_wq_mutex(wq); false; })) { } \
425 else
426
427 #ifdef CONFIG_DEBUG_OBJECTS_WORK
428
429 static struct debug_obj_descr work_debug_descr;
430
431 static void *work_debug_hint(void *addr)
432 {
433 return ((struct work_struct *) addr)->func;
434 }
435
436 /*
437 * fixup_init is called when:
438 * - an active object is initialized
439 */
440 static int work_fixup_init(void *addr, enum debug_obj_state state)
441 {
442 struct work_struct *work = addr;
443
444 switch (state) {
445 case ODEBUG_STATE_ACTIVE:
446 cancel_work_sync(work);
447 debug_object_init(work, &work_debug_descr);
448 return 1;
449 default:
450 return 0;
451 }
452 }
453
454 /*
455 * fixup_activate is called when:
456 * - an active object is activated
457 * - an unknown object is activated (might be a statically initialized object)
458 */
459 static int work_fixup_activate(void *addr, enum debug_obj_state state)
460 {
461 struct work_struct *work = addr;
462
463 switch (state) {
464
465 case ODEBUG_STATE_NOTAVAILABLE:
466 /*
467 * This is not really a fixup. The work struct was
468 * statically initialized. We just make sure that it
469 * is tracked in the object tracker.
470 */
471 if (test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work))) {
472 debug_object_init(work, &work_debug_descr);
473 debug_object_activate(work, &work_debug_descr);
474 return 0;
475 }
476 WARN_ON_ONCE(1);
477 return 0;
478
479 case ODEBUG_STATE_ACTIVE:
480 WARN_ON(1);
481
482 default:
483 return 0;
484 }
485 }
486
487 /*
488 * fixup_free is called when:
489 * - an active object is freed
490 */
491 static int work_fixup_free(void *addr, enum debug_obj_state state)
492 {
493 struct work_struct *work = addr;
494
495 switch (state) {
496 case ODEBUG_STATE_ACTIVE:
497 cancel_work_sync(work);
498 debug_object_free(work, &work_debug_descr);
499 return 1;
500 default:
501 return 0;
502 }
503 }
504
505 static struct debug_obj_descr work_debug_descr = {
506 .name = "work_struct",
507 .debug_hint = work_debug_hint,
508 .fixup_init = work_fixup_init,
509 .fixup_activate = work_fixup_activate,
510 .fixup_free = work_fixup_free,
511 };
512
513 static inline void debug_work_activate(struct work_struct *work)
514 {
515 debug_object_activate(work, &work_debug_descr);
516 }
517
518 static inline void debug_work_deactivate(struct work_struct *work)
519 {
520 debug_object_deactivate(work, &work_debug_descr);
521 }
522
523 void __init_work(struct work_struct *work, int onstack)
524 {
525 if (onstack)
526 debug_object_init_on_stack(work, &work_debug_descr);
527 else
528 debug_object_init(work, &work_debug_descr);
529 }
530 EXPORT_SYMBOL_GPL(__init_work);
531
532 void destroy_work_on_stack(struct work_struct *work)
533 {
534 debug_object_free(work, &work_debug_descr);
535 }
536 EXPORT_SYMBOL_GPL(destroy_work_on_stack);
537
538 void destroy_delayed_work_on_stack(struct delayed_work *work)
539 {
540 destroy_timer_on_stack(&work->timer);
541 debug_object_free(&work->work, &work_debug_descr);
542 }
543 EXPORT_SYMBOL_GPL(destroy_delayed_work_on_stack);
544
545 #else
546 static inline void debug_work_activate(struct work_struct *work) { }
547 static inline void debug_work_deactivate(struct work_struct *work) { }
548 #endif
549
550 /**
551 * worker_pool_assign_id - allocate ID and assing it to @pool
552 * @pool: the pool pointer of interest
553 *
554 * Returns 0 if ID in [0, WORK_OFFQ_POOL_NONE) is allocated and assigned
555 * successfully, -errno on failure.
556 */
557 static int worker_pool_assign_id(struct worker_pool *pool)
558 {
559 int ret;
560
561 lockdep_assert_held(&wq_pool_mutex);
562
563 ret = idr_alloc(&worker_pool_idr, pool, 0, WORK_OFFQ_POOL_NONE,
564 GFP_KERNEL);
565 if (ret >= 0) {
566 pool->id = ret;
567 return 0;
568 }
569 return ret;
570 }
571
572 /**
573 * unbound_pwq_by_node - return the unbound pool_workqueue for the given node
574 * @wq: the target workqueue
575 * @node: the node ID
576 *
577 * This must be called with any of wq_pool_mutex, wq->mutex or sched RCU
578 * read locked.
579 * If the pwq needs to be used beyond the locking in effect, the caller is
580 * responsible for guaranteeing that the pwq stays online.
581 *
582 * Return: The unbound pool_workqueue for @node.
583 */
584 static struct pool_workqueue *unbound_pwq_by_node(struct workqueue_struct *wq,
585 int node)
586 {
587 assert_rcu_or_wq_mutex_or_pool_mutex(wq);
588
589 /*
590 * XXX: @node can be NUMA_NO_NODE if CPU goes offline while a
591 * delayed item is pending. The plan is to keep CPU -> NODE
592 * mapping valid and stable across CPU on/offlines. Once that
593 * happens, this workaround can be removed.
594 */
595 if (unlikely(node == NUMA_NO_NODE))
596 return wq->dfl_pwq;
597
598 return rcu_dereference_raw(wq->numa_pwq_tbl[node]);
599 }
600
601 static unsigned int work_color_to_flags(int color)
602 {
603 return color << WORK_STRUCT_COLOR_SHIFT;
604 }
605
606 static int get_work_color(struct work_struct *work)
607 {
608 return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
609 ((1 << WORK_STRUCT_COLOR_BITS) - 1);
610 }
611
612 static int work_next_color(int color)
613 {
614 return (color + 1) % WORK_NR_COLORS;
615 }
616
617 /*
618 * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
619 * contain the pointer to the queued pwq. Once execution starts, the flag
620 * is cleared and the high bits contain OFFQ flags and pool ID.
621 *
622 * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling()
623 * and clear_work_data() can be used to set the pwq, pool or clear
624 * work->data. These functions should only be called while the work is
625 * owned - ie. while the PENDING bit is set.
626 *
627 * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
628 * corresponding to a work. Pool is available once the work has been
629 * queued anywhere after initialization until it is sync canceled. pwq is
630 * available only while the work item is queued.
631 *
632 * %WORK_OFFQ_CANCELING is used to mark a work item which is being
633 * canceled. While being canceled, a work item may have its PENDING set
634 * but stay off timer and worklist for arbitrarily long and nobody should
635 * try to steal the PENDING bit.
636 */
637 static inline void set_work_data(struct work_struct *work, unsigned long data,
638 unsigned long flags)
639 {
640 WARN_ON_ONCE(!work_pending(work));
641 atomic_long_set(&work->data, data | flags | work_static(work));
642 }
643
644 static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq,
645 unsigned long extra_flags)
646 {
647 set_work_data(work, (unsigned long)pwq,
648 WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags);
649 }
650
651 static void set_work_pool_and_keep_pending(struct work_struct *work,
652 int pool_id)
653 {
654 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT,
655 WORK_STRUCT_PENDING);
656 }
657
658 static void set_work_pool_and_clear_pending(struct work_struct *work,
659 int pool_id)
660 {
661 /*
662 * The following wmb is paired with the implied mb in
663 * test_and_set_bit(PENDING) and ensures all updates to @work made
664 * here are visible to and precede any updates by the next PENDING
665 * owner.
666 */
667 smp_wmb();
668 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0);
669 /*
670 * The following mb guarantees that previous clear of a PENDING bit
671 * will not be reordered with any speculative LOADS or STORES from
672 * work->current_func, which is executed afterwards. This possible
673 * reordering can lead to a missed execution on attempt to qeueue
674 * the same @work. E.g. consider this case:
675 *
676 * CPU#0 CPU#1
677 * ---------------------------- --------------------------------
678 *
679 * 1 STORE event_indicated
680 * 2 queue_work_on() {
681 * 3 test_and_set_bit(PENDING)
682 * 4 } set_..._and_clear_pending() {
683 * 5 set_work_data() # clear bit
684 * 6 smp_mb()
685 * 7 work->current_func() {
686 * 8 LOAD event_indicated
687 * }
688 *
689 * Without an explicit full barrier speculative LOAD on line 8 can
690 * be executed before CPU#0 does STORE on line 1. If that happens,
691 * CPU#0 observes the PENDING bit is still set and new execution of
692 * a @work is not queued in a hope, that CPU#1 will eventually
693 * finish the queued @work. Meanwhile CPU#1 does not see
694 * event_indicated is set, because speculative LOAD was executed
695 * before actual STORE.
696 */
697 smp_mb();
698 }
699
700 static void clear_work_data(struct work_struct *work)
701 {
702 smp_wmb(); /* see set_work_pool_and_clear_pending() */
703 set_work_data(work, WORK_STRUCT_NO_POOL, 0);
704 }
705
706 static struct pool_workqueue *get_work_pwq(struct work_struct *work)
707 {
708 unsigned long data = atomic_long_read(&work->data);
709
710 if (data & WORK_STRUCT_PWQ)
711 return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
712 else
713 return NULL;
714 }
715
716 /**
717 * get_work_pool - return the worker_pool a given work was associated with
718 * @work: the work item of interest
719 *
720 * Pools are created and destroyed under wq_pool_mutex, and allows read
721 * access under sched-RCU read lock. As such, this function should be
722 * called under wq_pool_mutex or with preemption disabled.
723 *
724 * All fields of the returned pool are accessible as long as the above
725 * mentioned locking is in effect. If the returned pool needs to be used
726 * beyond the critical section, the caller is responsible for ensuring the
727 * returned pool is and stays online.
728 *
729 * Return: The worker_pool @work was last associated with. %NULL if none.
730 */
731 static struct worker_pool *get_work_pool(struct work_struct *work)
732 {
733 unsigned long data = atomic_long_read(&work->data);
734 int pool_id;
735
736 assert_rcu_or_pool_mutex();
737
738 if (data & WORK_STRUCT_PWQ)
739 return ((struct pool_workqueue *)
740 (data & WORK_STRUCT_WQ_DATA_MASK))->pool;
741
742 pool_id = data >> WORK_OFFQ_POOL_SHIFT;
743 if (pool_id == WORK_OFFQ_POOL_NONE)
744 return NULL;
745
746 return idr_find(&worker_pool_idr, pool_id);
747 }
748
749 /**
750 * get_work_pool_id - return the worker pool ID a given work is associated with
751 * @work: the work item of interest
752 *
753 * Return: The worker_pool ID @work was last associated with.
754 * %WORK_OFFQ_POOL_NONE if none.
755 */
756 static int get_work_pool_id(struct work_struct *work)
757 {
758 unsigned long data = atomic_long_read(&work->data);
759
760 if (data & WORK_STRUCT_PWQ)
761 return ((struct pool_workqueue *)
762 (data & WORK_STRUCT_WQ_DATA_MASK))->pool->id;
763
764 return data >> WORK_OFFQ_POOL_SHIFT;
765 }
766
767 static void mark_work_canceling(struct work_struct *work)
768 {
769 unsigned long pool_id = get_work_pool_id(work);
770
771 pool_id <<= WORK_OFFQ_POOL_SHIFT;
772 set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING);
773 }
774
775 static bool work_is_canceling(struct work_struct *work)
776 {
777 unsigned long data = atomic_long_read(&work->data);
778
779 return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING);
780 }
781
782 /*
783 * Policy functions. These define the policies on how the global worker
784 * pools are managed. Unless noted otherwise, these functions assume that
785 * they're being called with pool->lock held.
786 */
787
788 static bool __need_more_worker(struct worker_pool *pool)
789 {
790 return !atomic_read(&pool->nr_running);
791 }
792
793 /*
794 * Need to wake up a worker? Called from anything but currently
795 * running workers.
796 *
797 * Note that, because unbound workers never contribute to nr_running, this
798 * function will always return %true for unbound pools as long as the
799 * worklist isn't empty.
800 */
801 static bool need_more_worker(struct worker_pool *pool)
802 {
803 return !list_empty(&pool->worklist) && __need_more_worker(pool);
804 }
805
806 /* Can I start working? Called from busy but !running workers. */
807 static bool may_start_working(struct worker_pool *pool)
808 {
809 return pool->nr_idle;
810 }
811
812 /* Do I need to keep working? Called from currently running workers. */
813 static bool keep_working(struct worker_pool *pool)
814 {
815 return !list_empty(&pool->worklist) &&
816 atomic_read(&pool->nr_running) <= 1;
817 }
818
819 /* Do we need a new worker? Called from manager. */
820 static bool need_to_create_worker(struct worker_pool *pool)
821 {
822 return need_more_worker(pool) && !may_start_working(pool);
823 }
824
825 /* Do we have too many workers and should some go away? */
826 static bool too_many_workers(struct worker_pool *pool)
827 {
828 bool managing = mutex_is_locked(&pool->manager_arb);
829 int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
830 int nr_busy = pool->nr_workers - nr_idle;
831
832 return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
833 }
834
835 /*
836 * Wake up functions.
837 */
838
839 /* Return the first idle worker. Safe with preemption disabled */
840 static struct worker *first_idle_worker(struct worker_pool *pool)
841 {
842 if (unlikely(list_empty(&pool->idle_list)))
843 return NULL;
844
845 return list_first_entry(&pool->idle_list, struct worker, entry);
846 }
847
848 /**
849 * wake_up_worker - wake up an idle worker
850 * @pool: worker pool to wake worker from
851 *
852 * Wake up the first idle worker of @pool.
853 *
854 * CONTEXT:
855 * spin_lock_irq(pool->lock).
856 */
857 static void wake_up_worker(struct worker_pool *pool)
858 {
859 struct worker *worker = first_idle_worker(pool);
860
861 if (likely(worker))
862 wake_up_process(worker->task);
863 }
864
865 /**
866 * wq_worker_waking_up - a worker is waking up
867 * @task: task waking up
868 * @cpu: CPU @task is waking up to
869 *
870 * This function is called during try_to_wake_up() when a worker is
871 * being awoken.
872 *
873 * CONTEXT:
874 * spin_lock_irq(rq->lock)
875 */
876 void wq_worker_waking_up(struct task_struct *task, int cpu)
877 {
878 struct worker *worker = kthread_data(task);
879
880 if (!(worker->flags & WORKER_NOT_RUNNING)) {
881 WARN_ON_ONCE(worker->pool->cpu != cpu);
882 atomic_inc(&worker->pool->nr_running);
883 }
884 }
885
886 /**
887 * wq_worker_sleeping - a worker is going to sleep
888 * @task: task going to sleep
889 * @cpu: CPU in question, must be the current CPU number
890 *
891 * This function is called during schedule() when a busy worker is
892 * going to sleep. Worker on the same cpu can be woken up by
893 * returning pointer to its task.
894 *
895 * CONTEXT:
896 * spin_lock_irq(rq->lock)
897 *
898 * Return:
899 * Worker task on @cpu to wake up, %NULL if none.
900 */
901 struct task_struct *wq_worker_sleeping(struct task_struct *task, int cpu)
902 {
903 struct worker *worker = kthread_data(task), *to_wakeup = NULL;
904 struct worker_pool *pool;
905
906 /*
907 * Rescuers, which may not have all the fields set up like normal
908 * workers, also reach here, let's not access anything before
909 * checking NOT_RUNNING.
910 */
911 if (worker->flags & WORKER_NOT_RUNNING)
912 return NULL;
913
914 pool = worker->pool;
915
916 /* this can only happen on the local cpu */
917 if (WARN_ON_ONCE(cpu != raw_smp_processor_id() || pool->cpu != cpu))
918 return NULL;
919
920 /*
921 * The counterpart of the following dec_and_test, implied mb,
922 * worklist not empty test sequence is in insert_work().
923 * Please read comment there.
924 *
925 * NOT_RUNNING is clear. This means that we're bound to and
926 * running on the local cpu w/ rq lock held and preemption
927 * disabled, which in turn means that none else could be
928 * manipulating idle_list, so dereferencing idle_list without pool
929 * lock is safe.
930 */
931 if (atomic_dec_and_test(&pool->nr_running) &&
932 !list_empty(&pool->worklist))
933 to_wakeup = first_idle_worker(pool);
934 return to_wakeup ? to_wakeup->task : NULL;
935 }
936
937 /**
938 * worker_set_flags - set worker flags and adjust nr_running accordingly
939 * @worker: self
940 * @flags: flags to set
941 *
942 * Set @flags in @worker->flags and adjust nr_running accordingly.
943 *
944 * CONTEXT:
945 * spin_lock_irq(pool->lock)
946 */
947 static inline void worker_set_flags(struct worker *worker, unsigned int flags)
948 {
949 struct worker_pool *pool = worker->pool;
950
951 WARN_ON_ONCE(worker->task != current);
952
953 /* If transitioning into NOT_RUNNING, adjust nr_running. */
954 if ((flags & WORKER_NOT_RUNNING) &&
955 !(worker->flags & WORKER_NOT_RUNNING)) {
956 atomic_dec(&pool->nr_running);
957 }
958
959 worker->flags |= flags;
960 }
961
962 /**
963 * worker_clr_flags - clear worker flags and adjust nr_running accordingly
964 * @worker: self
965 * @flags: flags to clear
966 *
967 * Clear @flags in @worker->flags and adjust nr_running accordingly.
968 *
969 * CONTEXT:
970 * spin_lock_irq(pool->lock)
971 */
972 static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
973 {
974 struct worker_pool *pool = worker->pool;
975 unsigned int oflags = worker->flags;
976
977 WARN_ON_ONCE(worker->task != current);
978
979 worker->flags &= ~flags;
980
981 /*
982 * If transitioning out of NOT_RUNNING, increment nr_running. Note
983 * that the nested NOT_RUNNING is not a noop. NOT_RUNNING is mask
984 * of multiple flags, not a single flag.
985 */
986 if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
987 if (!(worker->flags & WORKER_NOT_RUNNING))
988 atomic_inc(&pool->nr_running);
989 }
990
991 /**
992 * find_worker_executing_work - find worker which is executing a work
993 * @pool: pool of interest
994 * @work: work to find worker for
995 *
996 * Find a worker which is executing @work on @pool by searching
997 * @pool->busy_hash which is keyed by the address of @work. For a worker
998 * to match, its current execution should match the address of @work and
999 * its work function. This is to avoid unwanted dependency between
1000 * unrelated work executions through a work item being recycled while still
1001 * being executed.
1002 *
1003 * This is a bit tricky. A work item may be freed once its execution
1004 * starts and nothing prevents the freed area from being recycled for
1005 * another work item. If the same work item address ends up being reused
1006 * before the original execution finishes, workqueue will identify the
1007 * recycled work item as currently executing and make it wait until the
1008 * current execution finishes, introducing an unwanted dependency.
1009 *
1010 * This function checks the work item address and work function to avoid
1011 * false positives. Note that this isn't complete as one may construct a
1012 * work function which can introduce dependency onto itself through a
1013 * recycled work item. Well, if somebody wants to shoot oneself in the
1014 * foot that badly, there's only so much we can do, and if such deadlock
1015 * actually occurs, it should be easy to locate the culprit work function.
1016 *
1017 * CONTEXT:
1018 * spin_lock_irq(pool->lock).
1019 *
1020 * Return:
1021 * Pointer to worker which is executing @work if found, %NULL
1022 * otherwise.
1023 */
1024 static struct worker *find_worker_executing_work(struct worker_pool *pool,
1025 struct work_struct *work)
1026 {
1027 struct worker *worker;
1028
1029 hash_for_each_possible(pool->busy_hash, worker, hentry,
1030 (unsigned long)work)
1031 if (worker->current_work == work &&
1032 worker->current_func == work->func)
1033 return worker;
1034
1035 return NULL;
1036 }
1037
1038 /**
1039 * move_linked_works - move linked works to a list
1040 * @work: start of series of works to be scheduled
1041 * @head: target list to append @work to
1042 * @nextp: out parameter for nested worklist walking
1043 *
1044 * Schedule linked works starting from @work to @head. Work series to
1045 * be scheduled starts at @work and includes any consecutive work with
1046 * WORK_STRUCT_LINKED set in its predecessor.
1047 *
1048 * If @nextp is not NULL, it's updated to point to the next work of
1049 * the last scheduled work. This allows move_linked_works() to be
1050 * nested inside outer list_for_each_entry_safe().
1051 *
1052 * CONTEXT:
1053 * spin_lock_irq(pool->lock).
1054 */
1055 static void move_linked_works(struct work_struct *work, struct list_head *head,
1056 struct work_struct **nextp)
1057 {
1058 struct work_struct *n;
1059
1060 /*
1061 * Linked worklist will always end before the end of the list,
1062 * use NULL for list head.
1063 */
1064 list_for_each_entry_safe_from(work, n, NULL, entry) {
1065 list_move_tail(&work->entry, head);
1066 if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
1067 break;
1068 }
1069
1070 /*
1071 * If we're already inside safe list traversal and have moved
1072 * multiple works to the scheduled queue, the next position
1073 * needs to be updated.
1074 */
1075 if (nextp)
1076 *nextp = n;
1077 }
1078
1079 /**
1080 * get_pwq - get an extra reference on the specified pool_workqueue
1081 * @pwq: pool_workqueue to get
1082 *
1083 * Obtain an extra reference on @pwq. The caller should guarantee that
1084 * @pwq has positive refcnt and be holding the matching pool->lock.
1085 */
1086 static void get_pwq(struct pool_workqueue *pwq)
1087 {
1088 lockdep_assert_held(&pwq->pool->lock);
1089 WARN_ON_ONCE(pwq->refcnt <= 0);
1090 pwq->refcnt++;
1091 }
1092
1093 /**
1094 * put_pwq - put a pool_workqueue reference
1095 * @pwq: pool_workqueue to put
1096 *
1097 * Drop a reference of @pwq. If its refcnt reaches zero, schedule its
1098 * destruction. The caller should be holding the matching pool->lock.
1099 */
1100 static void put_pwq(struct pool_workqueue *pwq)
1101 {
1102 lockdep_assert_held(&pwq->pool->lock);
1103 if (likely(--pwq->refcnt))
1104 return;
1105 if (WARN_ON_ONCE(!(pwq->wq->flags & WQ_UNBOUND)))
1106 return;
1107 /*
1108 * @pwq can't be released under pool->lock, bounce to
1109 * pwq_unbound_release_workfn(). This never recurses on the same
1110 * pool->lock as this path is taken only for unbound workqueues and
1111 * the release work item is scheduled on a per-cpu workqueue. To
1112 * avoid lockdep warning, unbound pool->locks are given lockdep
1113 * subclass of 1 in get_unbound_pool().
1114 */
1115 schedule_work(&pwq->unbound_release_work);
1116 }
1117
1118 /**
1119 * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock
1120 * @pwq: pool_workqueue to put (can be %NULL)
1121 *
1122 * put_pwq() with locking. This function also allows %NULL @pwq.
1123 */
1124 static void put_pwq_unlocked(struct pool_workqueue *pwq)
1125 {
1126 if (pwq) {
1127 /*
1128 * As both pwqs and pools are sched-RCU protected, the
1129 * following lock operations are safe.
1130 */
1131 spin_lock_irq(&pwq->pool->lock);
1132 put_pwq(pwq);
1133 spin_unlock_irq(&pwq->pool->lock);
1134 }
1135 }
1136
1137 static void pwq_activate_delayed_work(struct work_struct *work)
1138 {
1139 struct pool_workqueue *pwq = get_work_pwq(work);
1140
1141 trace_workqueue_activate_work(work);
1142 if (list_empty(&pwq->pool->worklist))
1143 pwq->pool->watchdog_ts = jiffies;
1144 move_linked_works(work, &pwq->pool->worklist, NULL);
1145 __clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
1146 pwq->nr_active++;
1147 }
1148
1149 static void pwq_activate_first_delayed(struct pool_workqueue *pwq)
1150 {
1151 struct work_struct *work = list_first_entry(&pwq->delayed_works,
1152 struct work_struct, entry);
1153
1154 pwq_activate_delayed_work(work);
1155 }
1156
1157 /**
1158 * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
1159 * @pwq: pwq of interest
1160 * @color: color of work which left the queue
1161 *
1162 * A work either has completed or is removed from pending queue,
1163 * decrement nr_in_flight of its pwq and handle workqueue flushing.
1164 *
1165 * CONTEXT:
1166 * spin_lock_irq(pool->lock).
1167 */
1168 static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, int color)
1169 {
1170 /* uncolored work items don't participate in flushing or nr_active */
1171 if (color == WORK_NO_COLOR)
1172 goto out_put;
1173
1174 pwq->nr_in_flight[color]--;
1175
1176 pwq->nr_active--;
1177 if (!list_empty(&pwq->delayed_works)) {
1178 /* one down, submit a delayed one */
1179 if (pwq->nr_active < pwq->max_active)
1180 pwq_activate_first_delayed(pwq);
1181 }
1182
1183 /* is flush in progress and are we at the flushing tip? */
1184 if (likely(pwq->flush_color != color))
1185 goto out_put;
1186
1187 /* are there still in-flight works? */
1188 if (pwq->nr_in_flight[color])
1189 goto out_put;
1190
1191 /* this pwq is done, clear flush_color */
1192 pwq->flush_color = -1;
1193
1194 /*
1195 * If this was the last pwq, wake up the first flusher. It
1196 * will handle the rest.
1197 */
1198 if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush))
1199 complete(&pwq->wq->first_flusher->done);
1200 out_put:
1201 put_pwq(pwq);
1202 }
1203
1204 /**
1205 * try_to_grab_pending - steal work item from worklist and disable irq
1206 * @work: work item to steal
1207 * @is_dwork: @work is a delayed_work
1208 * @flags: place to store irq state
1209 *
1210 * Try to grab PENDING bit of @work. This function can handle @work in any
1211 * stable state - idle, on timer or on worklist.
1212 *
1213 * Return:
1214 * 1 if @work was pending and we successfully stole PENDING
1215 * 0 if @work was idle and we claimed PENDING
1216 * -EAGAIN if PENDING couldn't be grabbed at the moment, safe to busy-retry
1217 * -ENOENT if someone else is canceling @work, this state may persist
1218 * for arbitrarily long
1219 *
1220 * Note:
1221 * On >= 0 return, the caller owns @work's PENDING bit. To avoid getting
1222 * interrupted while holding PENDING and @work off queue, irq must be
1223 * disabled on entry. This, combined with delayed_work->timer being
1224 * irqsafe, ensures that we return -EAGAIN for finite short period of time.
1225 *
1226 * On successful return, >= 0, irq is disabled and the caller is
1227 * responsible for releasing it using local_irq_restore(*@flags).
1228 *
1229 * This function is safe to call from any context including IRQ handler.
1230 */
1231 static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
1232 unsigned long *flags)
1233 {
1234 struct worker_pool *pool;
1235 struct pool_workqueue *pwq;
1236
1237 local_irq_save(*flags);
1238
1239 /* try to steal the timer if it exists */
1240 if (is_dwork) {
1241 struct delayed_work *dwork = to_delayed_work(work);
1242
1243 /*
1244 * dwork->timer is irqsafe. If del_timer() fails, it's
1245 * guaranteed that the timer is not queued anywhere and not
1246 * running on the local CPU.
1247 */
1248 if (likely(del_timer(&dwork->timer)))
1249 return 1;
1250 }
1251
1252 /* try to claim PENDING the normal way */
1253 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
1254 return 0;
1255
1256 /*
1257 * The queueing is in progress, or it is already queued. Try to
1258 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
1259 */
1260 pool = get_work_pool(work);
1261 if (!pool)
1262 goto fail;
1263
1264 spin_lock(&pool->lock);
1265 /*
1266 * work->data is guaranteed to point to pwq only while the work
1267 * item is queued on pwq->wq, and both updating work->data to point
1268 * to pwq on queueing and to pool on dequeueing are done under
1269 * pwq->pool->lock. This in turn guarantees that, if work->data
1270 * points to pwq which is associated with a locked pool, the work
1271 * item is currently queued on that pool.
1272 */
1273 pwq = get_work_pwq(work);
1274 if (pwq && pwq->pool == pool) {
1275 debug_work_deactivate(work);
1276
1277 /*
1278 * A delayed work item cannot be grabbed directly because
1279 * it might have linked NO_COLOR work items which, if left
1280 * on the delayed_list, will confuse pwq->nr_active
1281 * management later on and cause stall. Make sure the work
1282 * item is activated before grabbing.
1283 */
1284 if (*work_data_bits(work) & WORK_STRUCT_DELAYED)
1285 pwq_activate_delayed_work(work);
1286
1287 list_del_init(&work->entry);
1288 pwq_dec_nr_in_flight(pwq, get_work_color(work));
1289
1290 /* work->data points to pwq iff queued, point to pool */
1291 set_work_pool_and_keep_pending(work, pool->id);
1292
1293 spin_unlock(&pool->lock);
1294 return 1;
1295 }
1296 spin_unlock(&pool->lock);
1297 fail:
1298 local_irq_restore(*flags);
1299 if (work_is_canceling(work))
1300 return -ENOENT;
1301 cpu_relax();
1302 return -EAGAIN;
1303 }
1304
1305 /**
1306 * insert_work - insert a work into a pool
1307 * @pwq: pwq @work belongs to
1308 * @work: work to insert
1309 * @head: insertion point
1310 * @extra_flags: extra WORK_STRUCT_* flags to set
1311 *
1312 * Insert @work which belongs to @pwq after @head. @extra_flags is or'd to
1313 * work_struct flags.
1314 *
1315 * CONTEXT:
1316 * spin_lock_irq(pool->lock).
1317 */
1318 static void insert_work(struct pool_workqueue *pwq, struct work_struct *work,
1319 struct list_head *head, unsigned int extra_flags)
1320 {
1321 struct worker_pool *pool = pwq->pool;
1322
1323 /* we own @work, set data and link */
1324 set_work_pwq(work, pwq, extra_flags);
1325 list_add_tail(&work->entry, head);
1326 get_pwq(pwq);
1327
1328 /*
1329 * Ensure either wq_worker_sleeping() sees the above
1330 * list_add_tail() or we see zero nr_running to avoid workers lying
1331 * around lazily while there are works to be processed.
1332 */
1333 smp_mb();
1334
1335 if (__need_more_worker(pool))
1336 wake_up_worker(pool);
1337 }
1338
1339 /*
1340 * Test whether @work is being queued from another work executing on the
1341 * same workqueue.
1342 */
1343 static bool is_chained_work(struct workqueue_struct *wq)
1344 {
1345 struct worker *worker;
1346
1347 worker = current_wq_worker();
1348 /*
1349 * Return %true iff I'm a worker execuing a work item on @wq. If
1350 * I'm @worker, it's safe to dereference it without locking.
1351 */
1352 return worker && worker->current_pwq->wq == wq;
1353 }
1354
1355 /*
1356 * When queueing an unbound work item to a wq, prefer local CPU if allowed
1357 * by wq_unbound_cpumask. Otherwise, round robin among the allowed ones to
1358 * avoid perturbing sensitive tasks.
1359 */
1360 static int wq_select_unbound_cpu(int cpu)
1361 {
1362 static bool printed_dbg_warning;
1363 int new_cpu;
1364
1365 if (likely(!wq_debug_force_rr_cpu)) {
1366 if (cpumask_test_cpu(cpu, wq_unbound_cpumask))
1367 return cpu;
1368 } else if (!printed_dbg_warning) {
1369 pr_warn("workqueue: round-robin CPU selection forced, expect performance impact\n");
1370 printed_dbg_warning = true;
1371 }
1372
1373 if (cpumask_empty(wq_unbound_cpumask))
1374 return cpu;
1375
1376 new_cpu = __this_cpu_read(wq_rr_cpu_last);
1377 new_cpu = cpumask_next_and(new_cpu, wq_unbound_cpumask, cpu_online_mask);
1378 if (unlikely(new_cpu >= nr_cpu_ids)) {
1379 new_cpu = cpumask_first_and(wq_unbound_cpumask, cpu_online_mask);
1380 if (unlikely(new_cpu >= nr_cpu_ids))
1381 return cpu;
1382 }
1383 __this_cpu_write(wq_rr_cpu_last, new_cpu);
1384
1385 return new_cpu;
1386 }
1387
1388 static void __queue_work(int cpu, struct workqueue_struct *wq,
1389 struct work_struct *work)
1390 {
1391 struct pool_workqueue *pwq;
1392 struct worker_pool *last_pool;
1393 struct list_head *worklist;
1394 unsigned int work_flags;
1395 unsigned int req_cpu = cpu;
1396
1397 /*
1398 * While a work item is PENDING && off queue, a task trying to
1399 * steal the PENDING will busy-loop waiting for it to either get
1400 * queued or lose PENDING. Grabbing PENDING and queueing should
1401 * happen with IRQ disabled.
1402 */
1403 WARN_ON_ONCE(!irqs_disabled());
1404
1405 debug_work_activate(work);
1406
1407 /* if draining, only works from the same workqueue are allowed */
1408 if (unlikely(wq->flags & __WQ_DRAINING) &&
1409 WARN_ON_ONCE(!is_chained_work(wq)))
1410 return;
1411 retry:
1412 if (req_cpu == WORK_CPU_UNBOUND)
1413 cpu = wq_select_unbound_cpu(raw_smp_processor_id());
1414
1415 /* pwq which will be used unless @work is executing elsewhere */
1416 if (!(wq->flags & WQ_UNBOUND))
1417 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
1418 else
1419 pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
1420
1421 /*
1422 * If @work was previously on a different pool, it might still be
1423 * running there, in which case the work needs to be queued on that
1424 * pool to guarantee non-reentrancy.
1425 */
1426 last_pool = get_work_pool(work);
1427 if (last_pool && last_pool != pwq->pool) {
1428 struct worker *worker;
1429
1430 spin_lock(&last_pool->lock);
1431
1432 worker = find_worker_executing_work(last_pool, work);
1433
1434 if (worker && worker->current_pwq->wq == wq) {
1435 pwq = worker->current_pwq;
1436 } else {
1437 /* meh... not running there, queue here */
1438 spin_unlock(&last_pool->lock);
1439 spin_lock(&pwq->pool->lock);
1440 }
1441 } else {
1442 spin_lock(&pwq->pool->lock);
1443 }
1444
1445 /*
1446 * pwq is determined and locked. For unbound pools, we could have
1447 * raced with pwq release and it could already be dead. If its
1448 * refcnt is zero, repeat pwq selection. Note that pwqs never die
1449 * without another pwq replacing it in the numa_pwq_tbl or while
1450 * work items are executing on it, so the retrying is guaranteed to
1451 * make forward-progress.
1452 */
1453 if (unlikely(!pwq->refcnt)) {
1454 if (wq->flags & WQ_UNBOUND) {
1455 spin_unlock(&pwq->pool->lock);
1456 cpu_relax();
1457 goto retry;
1458 }
1459 /* oops */
1460 WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt",
1461 wq->name, cpu);
1462 }
1463
1464 /* pwq determined, queue */
1465 trace_workqueue_queue_work(req_cpu, pwq, work);
1466
1467 if (WARN_ON(!list_empty(&work->entry))) {
1468 spin_unlock(&pwq->pool->lock);
1469 return;
1470 }
1471
1472 pwq->nr_in_flight[pwq->work_color]++;
1473 work_flags = work_color_to_flags(pwq->work_color);
1474
1475 if (likely(pwq->nr_active < pwq->max_active)) {
1476 trace_workqueue_activate_work(work);
1477 pwq->nr_active++;
1478 worklist = &pwq->pool->worklist;
1479 if (list_empty(worklist))
1480 pwq->pool->watchdog_ts = jiffies;
1481 } else {
1482 work_flags |= WORK_STRUCT_DELAYED;
1483 worklist = &pwq->delayed_works;
1484 }
1485
1486 insert_work(pwq, work, worklist, work_flags);
1487
1488 spin_unlock(&pwq->pool->lock);
1489 }
1490
1491 /**
1492 * queue_work_on - queue work on specific cpu
1493 * @cpu: CPU number to execute work on
1494 * @wq: workqueue to use
1495 * @work: work to queue
1496 *
1497 * We queue the work to a specific CPU, the caller must ensure it
1498 * can't go away.
1499 *
1500 * Return: %false if @work was already on a queue, %true otherwise.
1501 */
1502 bool queue_work_on(int cpu, struct workqueue_struct *wq,
1503 struct work_struct *work)
1504 {
1505 bool ret = false;
1506 unsigned long flags;
1507
1508 local_irq_save(flags);
1509
1510 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1511 __queue_work(cpu, wq, work);
1512 ret = true;
1513 }
1514
1515 local_irq_restore(flags);
1516 return ret;
1517 }
1518 EXPORT_SYMBOL(queue_work_on);
1519
1520 void delayed_work_timer_fn(unsigned long __data)
1521 {
1522 struct delayed_work *dwork = (struct delayed_work *)__data;
1523
1524 /* should have been called from irqsafe timer with irq already off */
1525 __queue_work(dwork->cpu, dwork->wq, &dwork->work);
1526 }
1527 EXPORT_SYMBOL(delayed_work_timer_fn);
1528
1529 static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
1530 struct delayed_work *dwork, unsigned long delay)
1531 {
1532 struct timer_list *timer = &dwork->timer;
1533 struct work_struct *work = &dwork->work;
1534
1535 WARN_ON_ONCE(timer->function != delayed_work_timer_fn ||
1536 timer->data != (unsigned long)dwork);
1537 WARN_ON_ONCE(timer_pending(timer));
1538 WARN_ON_ONCE(!list_empty(&work->entry));
1539
1540 /*
1541 * If @delay is 0, queue @dwork->work immediately. This is for
1542 * both optimization and correctness. The earliest @timer can
1543 * expire is on the closest next tick and delayed_work users depend
1544 * on that there's no such delay when @delay is 0.
1545 */
1546 if (!delay) {
1547 __queue_work(cpu, wq, &dwork->work);
1548 return;
1549 }
1550
1551 timer_stats_timer_set_start_info(&dwork->timer);
1552
1553 dwork->wq = wq;
1554 dwork->cpu = cpu;
1555 timer->expires = jiffies + delay;
1556
1557 if (unlikely(cpu != WORK_CPU_UNBOUND))
1558 add_timer_on(timer, cpu);
1559 else
1560 add_timer(timer);
1561 }
1562
1563 /**
1564 * queue_delayed_work_on - queue work on specific CPU after delay
1565 * @cpu: CPU number to execute work on
1566 * @wq: workqueue to use
1567 * @dwork: work to queue
1568 * @delay: number of jiffies to wait before queueing
1569 *
1570 * Return: %false if @work was already on a queue, %true otherwise. If
1571 * @delay is zero and @dwork is idle, it will be scheduled for immediate
1572 * execution.
1573 */
1574 bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
1575 struct delayed_work *dwork, unsigned long delay)
1576 {
1577 struct work_struct *work = &dwork->work;
1578 bool ret = false;
1579 unsigned long flags;
1580
1581 /* read the comment in __queue_work() */
1582 local_irq_save(flags);
1583
1584 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1585 __queue_delayed_work(cpu, wq, dwork, delay);
1586 ret = true;
1587 }
1588
1589 local_irq_restore(flags);
1590 return ret;
1591 }
1592 EXPORT_SYMBOL(queue_delayed_work_on);
1593
1594 /**
1595 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
1596 * @cpu: CPU number to execute work on
1597 * @wq: workqueue to use
1598 * @dwork: work to queue
1599 * @delay: number of jiffies to wait before queueing
1600 *
1601 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
1602 * modify @dwork's timer so that it expires after @delay. If @delay is
1603 * zero, @work is guaranteed to be scheduled immediately regardless of its
1604 * current state.
1605 *
1606 * Return: %false if @dwork was idle and queued, %true if @dwork was
1607 * pending and its timer was modified.
1608 *
1609 * This function is safe to call from any context including IRQ handler.
1610 * See try_to_grab_pending() for details.
1611 */
1612 bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
1613 struct delayed_work *dwork, unsigned long delay)
1614 {
1615 unsigned long flags;
1616 int ret;
1617
1618 do {
1619 ret = try_to_grab_pending(&dwork->work, true, &flags);
1620 } while (unlikely(ret == -EAGAIN));
1621
1622 if (likely(ret >= 0)) {
1623 __queue_delayed_work(cpu, wq, dwork, delay);
1624 local_irq_restore(flags);
1625 }
1626
1627 /* -ENOENT from try_to_grab_pending() becomes %true */
1628 return ret;
1629 }
1630 EXPORT_SYMBOL_GPL(mod_delayed_work_on);
1631
1632 /**
1633 * worker_enter_idle - enter idle state
1634 * @worker: worker which is entering idle state
1635 *
1636 * @worker is entering idle state. Update stats and idle timer if
1637 * necessary.
1638 *
1639 * LOCKING:
1640 * spin_lock_irq(pool->lock).
1641 */
1642 static void worker_enter_idle(struct worker *worker)
1643 {
1644 struct worker_pool *pool = worker->pool;
1645
1646 if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) ||
1647 WARN_ON_ONCE(!list_empty(&worker->entry) &&
1648 (worker->hentry.next || worker->hentry.pprev)))
1649 return;
1650
1651 /* can't use worker_set_flags(), also called from create_worker() */
1652 worker->flags |= WORKER_IDLE;
1653 pool->nr_idle++;
1654 worker->last_active = jiffies;
1655
1656 /* idle_list is LIFO */
1657 list_add(&worker->entry, &pool->idle_list);
1658
1659 if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
1660 mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
1661
1662 /*
1663 * Sanity check nr_running. Because wq_unbind_fn() releases
1664 * pool->lock between setting %WORKER_UNBOUND and zapping
1665 * nr_running, the warning may trigger spuriously. Check iff
1666 * unbind is not in progress.
1667 */
1668 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
1669 pool->nr_workers == pool->nr_idle &&
1670 atomic_read(&pool->nr_running));
1671 }
1672
1673 /**
1674 * worker_leave_idle - leave idle state
1675 * @worker: worker which is leaving idle state
1676 *
1677 * @worker is leaving idle state. Update stats.
1678 *
1679 * LOCKING:
1680 * spin_lock_irq(pool->lock).
1681 */
1682 static void worker_leave_idle(struct worker *worker)
1683 {
1684 struct worker_pool *pool = worker->pool;
1685
1686 if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE)))
1687 return;
1688 worker_clr_flags(worker, WORKER_IDLE);
1689 pool->nr_idle--;
1690 list_del_init(&worker->entry);
1691 }
1692
1693 static struct worker *alloc_worker(int node)
1694 {
1695 struct worker *worker;
1696
1697 worker = kzalloc_node(sizeof(*worker), GFP_KERNEL, node);
1698 if (worker) {
1699 INIT_LIST_HEAD(&worker->entry);
1700 INIT_LIST_HEAD(&worker->scheduled);
1701 INIT_LIST_HEAD(&worker->node);
1702 /* on creation a worker is in !idle && prep state */
1703 worker->flags = WORKER_PREP;
1704 }
1705 return worker;
1706 }
1707
1708 /**
1709 * worker_attach_to_pool() - attach a worker to a pool
1710 * @worker: worker to be attached
1711 * @pool: the target pool
1712 *
1713 * Attach @worker to @pool. Once attached, the %WORKER_UNBOUND flag and
1714 * cpu-binding of @worker are kept coordinated with the pool across
1715 * cpu-[un]hotplugs.
1716 */
1717 static void worker_attach_to_pool(struct worker *worker,
1718 struct worker_pool *pool)
1719 {
1720 mutex_lock(&pool->attach_mutex);
1721
1722 /*
1723 * set_cpus_allowed_ptr() will fail if the cpumask doesn't have any
1724 * online CPUs. It'll be re-applied when any of the CPUs come up.
1725 */
1726 set_cpus_allowed_ptr(worker->task, pool->attrs->cpumask);
1727
1728 /*
1729 * The pool->attach_mutex ensures %POOL_DISASSOCIATED remains
1730 * stable across this function. See the comments above the
1731 * flag definition for details.
1732 */
1733 if (pool->flags & POOL_DISASSOCIATED)
1734 worker->flags |= WORKER_UNBOUND;
1735
1736 list_add_tail(&worker->node, &pool->workers);
1737
1738 mutex_unlock(&pool->attach_mutex);
1739 }
1740
1741 /**
1742 * worker_detach_from_pool() - detach a worker from its pool
1743 * @worker: worker which is attached to its pool
1744 * @pool: the pool @worker is attached to
1745 *
1746 * Undo the attaching which had been done in worker_attach_to_pool(). The
1747 * caller worker shouldn't access to the pool after detached except it has
1748 * other reference to the pool.
1749 */
1750 static void worker_detach_from_pool(struct worker *worker,
1751 struct worker_pool *pool)
1752 {
1753 struct completion *detach_completion = NULL;
1754
1755 mutex_lock(&pool->attach_mutex);
1756 list_del(&worker->node);
1757 if (list_empty(&pool->workers))
1758 detach_completion = pool->detach_completion;
1759 mutex_unlock(&pool->attach_mutex);
1760
1761 /* clear leftover flags without pool->lock after it is detached */
1762 worker->flags &= ~(WORKER_UNBOUND | WORKER_REBOUND);
1763
1764 if (detach_completion)
1765 complete(detach_completion);
1766 }
1767
1768 /**
1769 * create_worker - create a new workqueue worker
1770 * @pool: pool the new worker will belong to
1771 *
1772 * Create and start a new worker which is attached to @pool.
1773 *
1774 * CONTEXT:
1775 * Might sleep. Does GFP_KERNEL allocations.
1776 *
1777 * Return:
1778 * Pointer to the newly created worker.
1779 */
1780 static struct worker *create_worker(struct worker_pool *pool)
1781 {
1782 struct worker *worker = NULL;
1783 int id = -1;
1784 char id_buf[16];
1785
1786 /* ID is needed to determine kthread name */
1787 id = ida_simple_get(&pool->worker_ida, 0, 0, GFP_KERNEL);
1788 if (id < 0)
1789 goto fail;
1790
1791 worker = alloc_worker(pool->node);
1792 if (!worker)
1793 goto fail;
1794
1795 worker->pool = pool;
1796 worker->id = id;
1797
1798 if (pool->cpu >= 0)
1799 snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id,
1800 pool->attrs->nice < 0 ? "H" : "");
1801 else
1802 snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id);
1803
1804 worker->task = kthread_create_on_node(worker_thread, worker, pool->node,
1805 "kworker/%s", id_buf);
1806 if (IS_ERR(worker->task))
1807 goto fail;
1808
1809 set_user_nice(worker->task, pool->attrs->nice);
1810 kthread_bind_mask(worker->task, pool->attrs->cpumask);
1811
1812 /* successful, attach the worker to the pool */
1813 worker_attach_to_pool(worker, pool);
1814
1815 /* start the newly created worker */
1816 spin_lock_irq(&pool->lock);
1817 worker->pool->nr_workers++;
1818 worker_enter_idle(worker);
1819 wake_up_process(worker->task);
1820 spin_unlock_irq(&pool->lock);
1821
1822 return worker;
1823
1824 fail:
1825 if (id >= 0)
1826 ida_simple_remove(&pool->worker_ida, id);
1827 kfree(worker);
1828 return NULL;
1829 }
1830
1831 /**
1832 * destroy_worker - destroy a workqueue worker
1833 * @worker: worker to be destroyed
1834 *
1835 * Destroy @worker and adjust @pool stats accordingly. The worker should
1836 * be idle.
1837 *
1838 * CONTEXT:
1839 * spin_lock_irq(pool->lock).
1840 */
1841 static void destroy_worker(struct worker *worker)
1842 {
1843 struct worker_pool *pool = worker->pool;
1844
1845 lockdep_assert_held(&pool->lock);
1846
1847 /* sanity check frenzy */
1848 if (WARN_ON(worker->current_work) ||
1849 WARN_ON(!list_empty(&worker->scheduled)) ||
1850 WARN_ON(!(worker->flags & WORKER_IDLE)))
1851 return;
1852
1853 pool->nr_workers--;
1854 pool->nr_idle--;
1855
1856 list_del_init(&worker->entry);
1857 worker->flags |= WORKER_DIE;
1858 wake_up_process(worker->task);
1859 }
1860
1861 static void idle_worker_timeout(unsigned long __pool)
1862 {
1863 struct worker_pool *pool = (void *)__pool;
1864
1865 spin_lock_irq(&pool->lock);
1866
1867 while (too_many_workers(pool)) {
1868 struct worker *worker;
1869 unsigned long expires;
1870
1871 /* idle_list is kept in LIFO order, check the last one */
1872 worker = list_entry(pool->idle_list.prev, struct worker, entry);
1873 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
1874
1875 if (time_before(jiffies, expires)) {
1876 mod_timer(&pool->idle_timer, expires);
1877 break;
1878 }
1879
1880 destroy_worker(worker);
1881 }
1882
1883 spin_unlock_irq(&pool->lock);
1884 }
1885
1886 static void send_mayday(struct work_struct *work)
1887 {
1888 struct pool_workqueue *pwq = get_work_pwq(work);
1889 struct workqueue_struct *wq = pwq->wq;
1890
1891 lockdep_assert_held(&wq_mayday_lock);
1892
1893 if (!wq->rescuer)
1894 return;
1895
1896 /* mayday mayday mayday */
1897 if (list_empty(&pwq->mayday_node)) {
1898 /*
1899 * If @pwq is for an unbound wq, its base ref may be put at
1900 * any time due to an attribute change. Pin @pwq until the
1901 * rescuer is done with it.
1902 */
1903 get_pwq(pwq);
1904 list_add_tail(&pwq->mayday_node, &wq->maydays);
1905 wake_up_process(wq->rescuer->task);
1906 }
1907 }
1908
1909 static void pool_mayday_timeout(unsigned long __pool)
1910 {
1911 struct worker_pool *pool = (void *)__pool;
1912 struct work_struct *work;
1913
1914 spin_lock_irq(&pool->lock);
1915 spin_lock(&wq_mayday_lock); /* for wq->maydays */
1916
1917 if (need_to_create_worker(pool)) {
1918 /*
1919 * We've been trying to create a new worker but
1920 * haven't been successful. We might be hitting an
1921 * allocation deadlock. Send distress signals to
1922 * rescuers.
1923 */
1924 list_for_each_entry(work, &pool->worklist, entry)
1925 send_mayday(work);
1926 }
1927
1928 spin_unlock(&wq_mayday_lock);
1929 spin_unlock_irq(&pool->lock);
1930
1931 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
1932 }
1933
1934 /**
1935 * maybe_create_worker - create a new worker if necessary
1936 * @pool: pool to create a new worker for
1937 *
1938 * Create a new worker for @pool if necessary. @pool is guaranteed to
1939 * have at least one idle worker on return from this function. If
1940 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
1941 * sent to all rescuers with works scheduled on @pool to resolve
1942 * possible allocation deadlock.
1943 *
1944 * On return, need_to_create_worker() is guaranteed to be %false and
1945 * may_start_working() %true.
1946 *
1947 * LOCKING:
1948 * spin_lock_irq(pool->lock) which may be released and regrabbed
1949 * multiple times. Does GFP_KERNEL allocations. Called only from
1950 * manager.
1951 */
1952 static void maybe_create_worker(struct worker_pool *pool)
1953 __releases(&pool->lock)
1954 __acquires(&pool->lock)
1955 {
1956 restart:
1957 spin_unlock_irq(&pool->lock);
1958
1959 /* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
1960 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
1961
1962 while (true) {
1963 if (create_worker(pool) || !need_to_create_worker(pool))
1964 break;
1965
1966 schedule_timeout_interruptible(CREATE_COOLDOWN);
1967
1968 if (!need_to_create_worker(pool))
1969 break;
1970 }
1971
1972 del_timer_sync(&pool->mayday_timer);
1973 spin_lock_irq(&pool->lock);
1974 /*
1975 * This is necessary even after a new worker was just successfully
1976 * created as @pool->lock was dropped and the new worker might have
1977 * already become busy.
1978 */
1979 if (need_to_create_worker(pool))
1980 goto restart;
1981 }
1982
1983 /**
1984 * manage_workers - manage worker pool
1985 * @worker: self
1986 *
1987 * Assume the manager role and manage the worker pool @worker belongs
1988 * to. At any given time, there can be only zero or one manager per
1989 * pool. The exclusion is handled automatically by this function.
1990 *
1991 * The caller can safely start processing works on false return. On
1992 * true return, it's guaranteed that need_to_create_worker() is false
1993 * and may_start_working() is true.
1994 *
1995 * CONTEXT:
1996 * spin_lock_irq(pool->lock) which may be released and regrabbed
1997 * multiple times. Does GFP_KERNEL allocations.
1998 *
1999 * Return:
2000 * %false if the pool doesn't need management and the caller can safely
2001 * start processing works, %true if management function was performed and
2002 * the conditions that the caller verified before calling the function may
2003 * no longer be true.
2004 */
2005 static bool manage_workers(struct worker *worker)
2006 {
2007 struct worker_pool *pool = worker->pool;
2008
2009 /*
2010 * Anyone who successfully grabs manager_arb wins the arbitration
2011 * and becomes the manager. mutex_trylock() on pool->manager_arb
2012 * failure while holding pool->lock reliably indicates that someone
2013 * else is managing the pool and the worker which failed trylock
2014 * can proceed to executing work items. This means that anyone
2015 * grabbing manager_arb is responsible for actually performing
2016 * manager duties. If manager_arb is grabbed and released without
2017 * actual management, the pool may stall indefinitely.
2018 */
2019 if (!mutex_trylock(&pool->manager_arb))
2020 return false;
2021 pool->manager = worker;
2022
2023 maybe_create_worker(pool);
2024
2025 pool->manager = NULL;
2026 mutex_unlock(&pool->manager_arb);
2027 return true;
2028 }
2029
2030 /**
2031 * process_one_work - process single work
2032 * @worker: self
2033 * @work: work to process
2034 *
2035 * Process @work. This function contains all the logics necessary to
2036 * process a single work including synchronization against and
2037 * interaction with other workers on the same cpu, queueing and
2038 * flushing. As long as context requirement is met, any worker can
2039 * call this function to process a work.
2040 *
2041 * CONTEXT:
2042 * spin_lock_irq(pool->lock) which is released and regrabbed.
2043 */
2044 static void process_one_work(struct worker *worker, struct work_struct *work)
2045 __releases(&pool->lock)
2046 __acquires(&pool->lock)
2047 {
2048 struct pool_workqueue *pwq = get_work_pwq(work);
2049 struct worker_pool *pool = worker->pool;
2050 bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE;
2051 int work_color;
2052 struct worker *collision;
2053 #ifdef CONFIG_LOCKDEP
2054 /*
2055 * It is permissible to free the struct work_struct from
2056 * inside the function that is called from it, this we need to
2057 * take into account for lockdep too. To avoid bogus "held
2058 * lock freed" warnings as well as problems when looking into
2059 * work->lockdep_map, make a copy and use that here.
2060 */
2061 struct lockdep_map lockdep_map;
2062
2063 lockdep_copy_map(&lockdep_map, &work->lockdep_map);
2064 #endif
2065 /* ensure we're on the correct CPU */
2066 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
2067 raw_smp_processor_id() != pool->cpu);
2068
2069 /*
2070 * A single work shouldn't be executed concurrently by
2071 * multiple workers on a single cpu. Check whether anyone is
2072 * already processing the work. If so, defer the work to the
2073 * currently executing one.
2074 */
2075 collision = find_worker_executing_work(pool, work);
2076 if (unlikely(collision)) {
2077 move_linked_works(work, &collision->scheduled, NULL);
2078 return;
2079 }
2080
2081 /* claim and dequeue */
2082 debug_work_deactivate(work);
2083 hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
2084 worker->current_work = work;
2085 worker->current_func = work->func;
2086 worker->current_pwq = pwq;
2087 work_color = get_work_color(work);
2088
2089 list_del_init(&work->entry);
2090
2091 /*
2092 * CPU intensive works don't participate in concurrency management.
2093 * They're the scheduler's responsibility. This takes @worker out
2094 * of concurrency management and the next code block will chain
2095 * execution of the pending work items.
2096 */
2097 if (unlikely(cpu_intensive))
2098 worker_set_flags(worker, WORKER_CPU_INTENSIVE);
2099
2100 /*
2101 * Wake up another worker if necessary. The condition is always
2102 * false for normal per-cpu workers since nr_running would always
2103 * be >= 1 at this point. This is used to chain execution of the
2104 * pending work items for WORKER_NOT_RUNNING workers such as the
2105 * UNBOUND and CPU_INTENSIVE ones.
2106 */
2107 if (need_more_worker(pool))
2108 wake_up_worker(pool);
2109
2110 /*
2111 * Record the last pool and clear PENDING which should be the last
2112 * update to @work. Also, do this inside @pool->lock so that
2113 * PENDING and queued state changes happen together while IRQ is
2114 * disabled.
2115 */
2116 set_work_pool_and_clear_pending(work, pool->id);
2117
2118 spin_unlock_irq(&pool->lock);
2119
2120 lock_map_acquire_read(&pwq->wq->lockdep_map);
2121 lock_map_acquire(&lockdep_map);
2122 trace_workqueue_execute_start(work);
2123 worker->current_func(work);
2124 /*
2125 * While we must be careful to not use "work" after this, the trace
2126 * point will only record its address.
2127 */
2128 trace_workqueue_execute_end(work);
2129 lock_map_release(&lockdep_map);
2130 lock_map_release(&pwq->wq->lockdep_map);
2131
2132 if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
2133 pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
2134 " last function: %pf\n",
2135 current->comm, preempt_count(), task_pid_nr(current),
2136 worker->current_func);
2137 debug_show_held_locks(current);
2138 dump_stack();
2139 }
2140
2141 /*
2142 * The following prevents a kworker from hogging CPU on !PREEMPT
2143 * kernels, where a requeueing work item waiting for something to
2144 * happen could deadlock with stop_machine as such work item could
2145 * indefinitely requeue itself while all other CPUs are trapped in
2146 * stop_machine. At the same time, report a quiescent RCU state so
2147 * the same condition doesn't freeze RCU.
2148 */
2149 cond_resched_rcu_qs();
2150
2151 spin_lock_irq(&pool->lock);
2152
2153 /* clear cpu intensive status */
2154 if (unlikely(cpu_intensive))
2155 worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
2156
2157 /* we're done with it, release */
2158 hash_del(&worker->hentry);
2159 worker->current_work = NULL;
2160 worker->current_func = NULL;
2161 worker->current_pwq = NULL;
2162 worker->desc_valid = false;
2163 pwq_dec_nr_in_flight(pwq, work_color);
2164 }
2165
2166 /**
2167 * process_scheduled_works - process scheduled works
2168 * @worker: self
2169 *
2170 * Process all scheduled works. Please note that the scheduled list
2171 * may change while processing a work, so this function repeatedly
2172 * fetches a work from the top and executes it.
2173 *
2174 * CONTEXT:
2175 * spin_lock_irq(pool->lock) which may be released and regrabbed
2176 * multiple times.
2177 */
2178 static void process_scheduled_works(struct worker *worker)
2179 {
2180 while (!list_empty(&worker->scheduled)) {
2181 struct work_struct *work = list_first_entry(&worker->scheduled,
2182 struct work_struct, entry);
2183 process_one_work(worker, work);
2184 }
2185 }
2186
2187 /**
2188 * worker_thread - the worker thread function
2189 * @__worker: self
2190 *
2191 * The worker thread function. All workers belong to a worker_pool -
2192 * either a per-cpu one or dynamic unbound one. These workers process all
2193 * work items regardless of their specific target workqueue. The only
2194 * exception is work items which belong to workqueues with a rescuer which
2195 * will be explained in rescuer_thread().
2196 *
2197 * Return: 0
2198 */
2199 static int worker_thread(void *__worker)
2200 {
2201 struct worker *worker = __worker;
2202 struct worker_pool *pool = worker->pool;
2203
2204 /* tell the scheduler that this is a workqueue worker */
2205 worker->task->flags |= PF_WQ_WORKER;
2206 woke_up:
2207 spin_lock_irq(&pool->lock);
2208
2209 /* am I supposed to die? */
2210 if (unlikely(worker->flags & WORKER_DIE)) {
2211 spin_unlock_irq(&pool->lock);
2212 WARN_ON_ONCE(!list_empty(&worker->entry));
2213 worker->task->flags &= ~PF_WQ_WORKER;
2214
2215 set_task_comm(worker->task, "kworker/dying");
2216 ida_simple_remove(&pool->worker_ida, worker->id);
2217 worker_detach_from_pool(worker, pool);
2218 kfree(worker);
2219 return 0;
2220 }
2221
2222 worker_leave_idle(worker);
2223 recheck:
2224 /* no more worker necessary? */
2225 if (!need_more_worker(pool))
2226 goto sleep;
2227
2228 /* do we need to manage? */
2229 if (unlikely(!may_start_working(pool)) && manage_workers(worker))
2230 goto recheck;
2231
2232 /*
2233 * ->scheduled list can only be filled while a worker is
2234 * preparing to process a work or actually processing it.
2235 * Make sure nobody diddled with it while I was sleeping.
2236 */
2237 WARN_ON_ONCE(!list_empty(&worker->scheduled));
2238
2239 /*
2240 * Finish PREP stage. We're guaranteed to have at least one idle
2241 * worker or that someone else has already assumed the manager
2242 * role. This is where @worker starts participating in concurrency
2243 * management if applicable and concurrency management is restored
2244 * after being rebound. See rebind_workers() for details.
2245 */
2246 worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND);
2247
2248 do {
2249 struct work_struct *work =
2250 list_first_entry(&pool->worklist,
2251 struct work_struct, entry);
2252
2253 pool->watchdog_ts = jiffies;
2254
2255 if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
2256 /* optimization path, not strictly necessary */
2257 process_one_work(worker, work);
2258 if (unlikely(!list_empty(&worker->scheduled)))
2259 process_scheduled_works(worker);
2260 } else {
2261 move_linked_works(work, &worker->scheduled, NULL);
2262 process_scheduled_works(worker);
2263 }
2264 } while (keep_working(pool));
2265
2266 worker_set_flags(worker, WORKER_PREP);
2267 sleep:
2268 /*
2269 * pool->lock is held and there's no work to process and no need to
2270 * manage, sleep. Workers are woken up only while holding
2271 * pool->lock or from local cpu, so setting the current state
2272 * before releasing pool->lock is enough to prevent losing any
2273 * event.
2274 */
2275 worker_enter_idle(worker);
2276 __set_current_state(TASK_INTERRUPTIBLE);
2277 spin_unlock_irq(&pool->lock);
2278 schedule();
2279 goto woke_up;
2280 }
2281
2282 /**
2283 * rescuer_thread - the rescuer thread function
2284 * @__rescuer: self
2285 *
2286 * Workqueue rescuer thread function. There's one rescuer for each
2287 * workqueue which has WQ_MEM_RECLAIM set.
2288 *
2289 * Regular work processing on a pool may block trying to create a new
2290 * worker which uses GFP_KERNEL allocation which has slight chance of
2291 * developing into deadlock if some works currently on the same queue
2292 * need to be processed to satisfy the GFP_KERNEL allocation. This is
2293 * the problem rescuer solves.
2294 *
2295 * When such condition is possible, the pool summons rescuers of all
2296 * workqueues which have works queued on the pool and let them process
2297 * those works so that forward progress can be guaranteed.
2298 *
2299 * This should happen rarely.
2300 *
2301 * Return: 0
2302 */
2303 static int rescuer_thread(void *__rescuer)
2304 {
2305 struct worker *rescuer = __rescuer;
2306 struct workqueue_struct *wq = rescuer->rescue_wq;
2307 struct list_head *scheduled = &rescuer->scheduled;
2308 bool should_stop;
2309
2310 set_user_nice(current, RESCUER_NICE_LEVEL);
2311
2312 /*
2313 * Mark rescuer as worker too. As WORKER_PREP is never cleared, it
2314 * doesn't participate in concurrency management.
2315 */
2316 rescuer->task->flags |= PF_WQ_WORKER;
2317 repeat:
2318 set_current_state(TASK_INTERRUPTIBLE);
2319
2320 /*
2321 * By the time the rescuer is requested to stop, the workqueue
2322 * shouldn't have any work pending, but @wq->maydays may still have
2323 * pwq(s) queued. This can happen by non-rescuer workers consuming
2324 * all the work items before the rescuer got to them. Go through
2325 * @wq->maydays processing before acting on should_stop so that the
2326 * list is always empty on exit.
2327 */
2328 should_stop = kthread_should_stop();
2329
2330 /* see whether any pwq is asking for help */
2331 spin_lock_irq(&wq_mayday_lock);
2332
2333 while (!list_empty(&wq->maydays)) {
2334 struct pool_workqueue *pwq = list_first_entry(&wq->maydays,
2335 struct pool_workqueue, mayday_node);
2336 struct worker_pool *pool = pwq->pool;
2337 struct work_struct *work, *n;
2338 bool first = true;
2339
2340 __set_current_state(TASK_RUNNING);
2341 list_del_init(&pwq->mayday_node);
2342
2343 spin_unlock_irq(&wq_mayday_lock);
2344
2345 worker_attach_to_pool(rescuer, pool);
2346
2347 spin_lock_irq(&pool->lock);
2348 rescuer->pool = pool;
2349
2350 /*
2351 * Slurp in all works issued via this workqueue and
2352 * process'em.
2353 */
2354 WARN_ON_ONCE(!list_empty(scheduled));
2355 list_for_each_entry_safe(work, n, &pool->worklist, entry) {
2356 if (get_work_pwq(work) == pwq) {
2357 if (first)
2358 pool->watchdog_ts = jiffies;
2359 move_linked_works(work, scheduled, &n);
2360 }
2361 first = false;
2362 }
2363
2364 if (!list_empty(scheduled)) {
2365 process_scheduled_works(rescuer);
2366
2367 /*
2368 * The above execution of rescued work items could
2369 * have created more to rescue through
2370 * pwq_activate_first_delayed() or chained
2371 * queueing. Let's put @pwq back on mayday list so
2372 * that such back-to-back work items, which may be
2373 * being used to relieve memory pressure, don't
2374 * incur MAYDAY_INTERVAL delay inbetween.
2375 */
2376 if (need_to_create_worker(pool)) {
2377 spin_lock(&wq_mayday_lock);
2378 get_pwq(pwq);
2379 list_move_tail(&pwq->mayday_node, &wq->maydays);
2380 spin_unlock(&wq_mayday_lock);
2381 }
2382 }
2383
2384 /*
2385 * Put the reference grabbed by send_mayday(). @pool won't
2386 * go away while we're still attached to it.
2387 */
2388 put_pwq(pwq);
2389
2390 /*
2391 * Leave this pool. If need_more_worker() is %true, notify a
2392 * regular worker; otherwise, we end up with 0 concurrency
2393 * and stalling the execution.
2394 */
2395 if (need_more_worker(pool))
2396 wake_up_worker(pool);
2397
2398 rescuer->pool = NULL;
2399 spin_unlock_irq(&pool->lock);
2400
2401 worker_detach_from_pool(rescuer, pool);
2402
2403 spin_lock_irq(&wq_mayday_lock);
2404 }
2405
2406 spin_unlock_irq(&wq_mayday_lock);
2407
2408 if (should_stop) {
2409 __set_current_state(TASK_RUNNING);
2410 rescuer->task->flags &= ~PF_WQ_WORKER;
2411 return 0;
2412 }
2413
2414 /* rescuers should never participate in concurrency management */
2415 WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
2416 schedule();
2417 goto repeat;
2418 }
2419
2420 /**
2421 * check_flush_dependency - check for flush dependency sanity
2422 * @target_wq: workqueue being flushed
2423 * @target_work: work item being flushed (NULL for workqueue flushes)
2424 *
2425 * %current is trying to flush the whole @target_wq or @target_work on it.
2426 * If @target_wq doesn't have %WQ_MEM_RECLAIM, verify that %current is not
2427 * reclaiming memory or running on a workqueue which doesn't have
2428 * %WQ_MEM_RECLAIM as that can break forward-progress guarantee leading to
2429 * a deadlock.
2430 */
2431 static void check_flush_dependency(struct workqueue_struct *target_wq,
2432 struct work_struct *target_work)
2433 {
2434 work_func_t target_func = target_work ? target_work->func : NULL;
2435 struct worker *worker;
2436
2437 if (target_wq->flags & WQ_MEM_RECLAIM)
2438 return;
2439
2440 worker = current_wq_worker();
2441
2442 WARN_ONCE(current->flags & PF_MEMALLOC,
2443 "workqueue: PF_MEMALLOC task %d(%s) is flushing !WQ_MEM_RECLAIM %s:%pf",
2444 current->pid, current->comm, target_wq->name, target_func);
2445 WARN_ONCE(worker && ((worker->current_pwq->wq->flags &
2446 (WQ_MEM_RECLAIM | __WQ_LEGACY)) == WQ_MEM_RECLAIM),
2447 "workqueue: WQ_MEM_RECLAIM %s:%pf is flushing !WQ_MEM_RECLAIM %s:%pf",
2448 worker->current_pwq->wq->name, worker->current_func,
2449 target_wq->name, target_func);
2450 }
2451
2452 struct wq_barrier {
2453 struct work_struct work;
2454 struct completion done;
2455 struct task_struct *task; /* purely informational */
2456 };
2457
2458 static void wq_barrier_func(struct work_struct *work)
2459 {
2460 struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
2461 complete(&barr->done);
2462 }
2463
2464 /**
2465 * insert_wq_barrier - insert a barrier work
2466 * @pwq: pwq to insert barrier into
2467 * @barr: wq_barrier to insert
2468 * @target: target work to attach @barr to
2469 * @worker: worker currently executing @target, NULL if @target is not executing
2470 *
2471 * @barr is linked to @target such that @barr is completed only after
2472 * @target finishes execution. Please note that the ordering
2473 * guarantee is observed only with respect to @target and on the local
2474 * cpu.
2475 *
2476 * Currently, a queued barrier can't be canceled. This is because
2477 * try_to_grab_pending() can't determine whether the work to be
2478 * grabbed is at the head of the queue and thus can't clear LINKED
2479 * flag of the previous work while there must be a valid next work
2480 * after a work with LINKED flag set.
2481 *
2482 * Note that when @worker is non-NULL, @target may be modified
2483 * underneath us, so we can't reliably determine pwq from @target.
2484 *
2485 * CONTEXT:
2486 * spin_lock_irq(pool->lock).
2487 */
2488 static void insert_wq_barrier(struct pool_workqueue *pwq,
2489 struct wq_barrier *barr,
2490 struct work_struct *target, struct worker *worker)
2491 {
2492 struct list_head *head;
2493 unsigned int linked = 0;
2494
2495 /*
2496 * debugobject calls are safe here even with pool->lock locked
2497 * as we know for sure that this will not trigger any of the
2498 * checks and call back into the fixup functions where we
2499 * might deadlock.
2500 */
2501 INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
2502 __set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
2503 init_completion(&barr->done);
2504 barr->task = current;
2505
2506 /*
2507 * If @target is currently being executed, schedule the
2508 * barrier to the worker; otherwise, put it after @target.
2509 */
2510 if (worker)
2511 head = worker->scheduled.next;
2512 else {
2513 unsigned long *bits = work_data_bits(target);
2514
2515 head = target->entry.next;
2516 /* there can already be other linked works, inherit and set */
2517 linked = *bits & WORK_STRUCT_LINKED;
2518 __set_bit(WORK_STRUCT_LINKED_BIT, bits);
2519 }
2520
2521 debug_work_activate(&barr->work);
2522 insert_work(pwq, &barr->work, head,
2523 work_color_to_flags(WORK_NO_COLOR) | linked);
2524 }
2525
2526 /**
2527 * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing
2528 * @wq: workqueue being flushed
2529 * @flush_color: new flush color, < 0 for no-op
2530 * @work_color: new work color, < 0 for no-op
2531 *
2532 * Prepare pwqs for workqueue flushing.
2533 *
2534 * If @flush_color is non-negative, flush_color on all pwqs should be
2535 * -1. If no pwq has in-flight commands at the specified color, all
2536 * pwq->flush_color's stay at -1 and %false is returned. If any pwq
2537 * has in flight commands, its pwq->flush_color is set to
2538 * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq
2539 * wakeup logic is armed and %true is returned.
2540 *
2541 * The caller should have initialized @wq->first_flusher prior to
2542 * calling this function with non-negative @flush_color. If
2543 * @flush_color is negative, no flush color update is done and %false
2544 * is returned.
2545 *
2546 * If @work_color is non-negative, all pwqs should have the same
2547 * work_color which is previous to @work_color and all will be
2548 * advanced to @work_color.
2549 *
2550 * CONTEXT:
2551 * mutex_lock(wq->mutex).
2552 *
2553 * Return:
2554 * %true if @flush_color >= 0 and there's something to flush. %false
2555 * otherwise.
2556 */
2557 static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq,
2558 int flush_color, int work_color)
2559 {
2560 bool wait = false;
2561 struct pool_workqueue *pwq;
2562
2563 if (flush_color >= 0) {
2564 WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush));
2565 atomic_set(&wq->nr_pwqs_to_flush, 1);
2566 }
2567
2568 for_each_pwq(pwq, wq) {
2569 struct worker_pool *pool = pwq->pool;
2570
2571 spin_lock_irq(&pool->lock);
2572
2573 if (flush_color >= 0) {
2574 WARN_ON_ONCE(pwq->flush_color != -1);
2575
2576 if (pwq->nr_in_flight[flush_color]) {
2577 pwq->flush_color = flush_color;
2578 atomic_inc(&wq->nr_pwqs_to_flush);
2579 wait = true;
2580 }
2581 }
2582
2583 if (work_color >= 0) {
2584 WARN_ON_ONCE(work_color != work_next_color(pwq->work_color));
2585 pwq->work_color = work_color;
2586 }
2587
2588 spin_unlock_irq(&pool->lock);
2589 }
2590
2591 if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush))
2592 complete(&wq->first_flusher->done);
2593
2594 return wait;
2595 }
2596
2597 /**
2598 * flush_workqueue - ensure that any scheduled work has run to completion.
2599 * @wq: workqueue to flush
2600 *
2601 * This function sleeps until all work items which were queued on entry
2602 * have finished execution, but it is not livelocked by new incoming ones.
2603 */
2604 void flush_workqueue(struct workqueue_struct *wq)
2605 {
2606 struct wq_flusher this_flusher = {
2607 .list = LIST_HEAD_INIT(this_flusher.list),
2608 .flush_color = -1,
2609 .done = COMPLETION_INITIALIZER_ONSTACK(this_flusher.done),
2610 };
2611 int next_color;
2612
2613 lock_map_acquire(&wq->lockdep_map);
2614 lock_map_release(&wq->lockdep_map);
2615
2616 mutex_lock(&wq->mutex);
2617
2618 /*
2619 * Start-to-wait phase
2620 */
2621 next_color = work_next_color(wq->work_color);
2622
2623 if (next_color != wq->flush_color) {
2624 /*
2625 * Color space is not full. The current work_color
2626 * becomes our flush_color and work_color is advanced
2627 * by one.
2628 */
2629 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow));
2630 this_flusher.flush_color = wq->work_color;
2631 wq->work_color = next_color;
2632
2633 if (!wq->first_flusher) {
2634 /* no flush in progress, become the first flusher */
2635 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2636
2637 wq->first_flusher = &this_flusher;
2638
2639 if (!flush_workqueue_prep_pwqs(wq, wq->flush_color,
2640 wq->work_color)) {
2641 /* nothing to flush, done */
2642 wq->flush_color = next_color;
2643 wq->first_flusher = NULL;
2644 goto out_unlock;
2645 }
2646 } else {
2647 /* wait in queue */
2648 WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color);
2649 list_add_tail(&this_flusher.list, &wq->flusher_queue);
2650 flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2651 }
2652 } else {
2653 /*
2654 * Oops, color space is full, wait on overflow queue.
2655 * The next flush completion will assign us
2656 * flush_color and transfer to flusher_queue.
2657 */
2658 list_add_tail(&this_flusher.list, &wq->flusher_overflow);
2659 }
2660
2661 check_flush_dependency(wq, NULL);
2662
2663 mutex_unlock(&wq->mutex);
2664
2665 wait_for_completion(&this_flusher.done);
2666
2667 /*
2668 * Wake-up-and-cascade phase
2669 *
2670 * First flushers are responsible for cascading flushes and
2671 * handling overflow. Non-first flushers can simply return.
2672 */
2673 if (wq->first_flusher != &this_flusher)
2674 return;
2675
2676 mutex_lock(&wq->mutex);
2677
2678 /* we might have raced, check again with mutex held */
2679 if (wq->first_flusher != &this_flusher)
2680 goto out_unlock;
2681
2682 wq->first_flusher = NULL;
2683
2684 WARN_ON_ONCE(!list_empty(&this_flusher.list));
2685 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2686
2687 while (true) {
2688 struct wq_flusher *next, *tmp;
2689
2690 /* complete all the flushers sharing the current flush color */
2691 list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
2692 if (next->flush_color != wq->flush_color)
2693 break;
2694 list_del_init(&next->list);
2695 complete(&next->done);
2696 }
2697
2698 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) &&
2699 wq->flush_color != work_next_color(wq->work_color));
2700
2701 /* this flush_color is finished, advance by one */
2702 wq->flush_color = work_next_color(wq->flush_color);
2703
2704 /* one color has been freed, handle overflow queue */
2705 if (!list_empty(&wq->flusher_overflow)) {
2706 /*
2707 * Assign the same color to all overflowed
2708 * flushers, advance work_color and append to
2709 * flusher_queue. This is the start-to-wait
2710 * phase for these overflowed flushers.
2711 */
2712 list_for_each_entry(tmp, &wq->flusher_overflow, list)
2713 tmp->flush_color = wq->work_color;
2714
2715 wq->work_color = work_next_color(wq->work_color);
2716
2717 list_splice_tail_init(&wq->flusher_overflow,
2718 &wq->flusher_queue);
2719 flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2720 }
2721
2722 if (list_empty(&wq->flusher_queue)) {
2723 WARN_ON_ONCE(wq->flush_color != wq->work_color);
2724 break;
2725 }
2726
2727 /*
2728 * Need to flush more colors. Make the next flusher
2729 * the new first flusher and arm pwqs.
2730 */
2731 WARN_ON_ONCE(wq->flush_color == wq->work_color);
2732 WARN_ON_ONCE(wq->flush_color != next->flush_color);
2733
2734 list_del_init(&next->list);
2735 wq->first_flusher = next;
2736
2737 if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1))
2738 break;
2739
2740 /*
2741 * Meh... this color is already done, clear first
2742 * flusher and repeat cascading.
2743 */
2744 wq->first_flusher = NULL;
2745 }
2746
2747 out_unlock:
2748 mutex_unlock(&wq->mutex);
2749 }
2750 EXPORT_SYMBOL(flush_workqueue);
2751
2752 /**
2753 * drain_workqueue - drain a workqueue
2754 * @wq: workqueue to drain
2755 *
2756 * Wait until the workqueue becomes empty. While draining is in progress,
2757 * only chain queueing is allowed. IOW, only currently pending or running
2758 * work items on @wq can queue further work items on it. @wq is flushed
2759 * repeatedly until it becomes empty. The number of flushing is determined
2760 * by the depth of chaining and should be relatively short. Whine if it
2761 * takes too long.
2762 */
2763 void drain_workqueue(struct workqueue_struct *wq)
2764 {
2765 unsigned int flush_cnt = 0;
2766 struct pool_workqueue *pwq;
2767
2768 /*
2769 * __queue_work() needs to test whether there are drainers, is much
2770 * hotter than drain_workqueue() and already looks at @wq->flags.
2771 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers.
2772 */
2773 mutex_lock(&wq->mutex);
2774 if (!wq->nr_drainers++)
2775 wq->flags |= __WQ_DRAINING;
2776 mutex_unlock(&wq->mutex);
2777 reflush:
2778 flush_workqueue(wq);
2779
2780 mutex_lock(&wq->mutex);
2781
2782 for_each_pwq(pwq, wq) {
2783 bool drained;
2784
2785 spin_lock_irq(&pwq->pool->lock);
2786 drained = !pwq->nr_active && list_empty(&pwq->delayed_works);
2787 spin_unlock_irq(&pwq->pool->lock);
2788
2789 if (drained)
2790 continue;
2791
2792 if (++flush_cnt == 10 ||
2793 (flush_cnt % 100 == 0 && flush_cnt <= 1000))
2794 pr_warn("workqueue %s: drain_workqueue() isn't complete after %u tries\n",
2795 wq->name, flush_cnt);
2796
2797 mutex_unlock(&wq->mutex);
2798 goto reflush;
2799 }
2800
2801 if (!--wq->nr_drainers)
2802 wq->flags &= ~__WQ_DRAINING;
2803 mutex_unlock(&wq->mutex);
2804 }
2805 EXPORT_SYMBOL_GPL(drain_workqueue);
2806
2807 static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr)
2808 {
2809 struct worker *worker = NULL;
2810 struct worker_pool *pool;
2811 struct pool_workqueue *pwq;
2812
2813 might_sleep();
2814
2815 local_irq_disable();
2816 pool = get_work_pool(work);
2817 if (!pool) {
2818 local_irq_enable();
2819 return false;
2820 }
2821
2822 spin_lock(&pool->lock);
2823 /* see the comment in try_to_grab_pending() with the same code */
2824 pwq = get_work_pwq(work);
2825 if (pwq) {
2826 if (unlikely(pwq->pool != pool))
2827 goto already_gone;
2828 } else {
2829 worker = find_worker_executing_work(pool, work);
2830 if (!worker)
2831 goto already_gone;
2832 pwq = worker->current_pwq;
2833 }
2834
2835 check_flush_dependency(pwq->wq, work);
2836
2837 insert_wq_barrier(pwq, barr, work, worker);
2838 spin_unlock_irq(&pool->lock);
2839
2840 /*
2841 * If @max_active is 1 or rescuer is in use, flushing another work
2842 * item on the same workqueue may lead to deadlock. Make sure the
2843 * flusher is not running on the same workqueue by verifying write
2844 * access.
2845 */
2846 if (pwq->wq->saved_max_active == 1 || pwq->wq->rescuer)
2847 lock_map_acquire(&pwq->wq->lockdep_map);
2848 else
2849 lock_map_acquire_read(&pwq->wq->lockdep_map);
2850 lock_map_release(&pwq->wq->lockdep_map);
2851
2852 return true;
2853 already_gone:
2854 spin_unlock_irq(&pool->lock);
2855 return false;
2856 }
2857
2858 /**
2859 * flush_work - wait for a work to finish executing the last queueing instance
2860 * @work: the work to flush
2861 *
2862 * Wait until @work has finished execution. @work is guaranteed to be idle
2863 * on return if it hasn't been requeued since flush started.
2864 *
2865 * Return:
2866 * %true if flush_work() waited for the work to finish execution,
2867 * %false if it was already idle.
2868 */
2869 bool flush_work(struct work_struct *work)
2870 {
2871 struct wq_barrier barr;
2872
2873 lock_map_acquire(&work->lockdep_map);
2874 lock_map_release(&work->lockdep_map);
2875
2876 if (start_flush_work(work, &barr)) {
2877 wait_for_completion(&barr.done);
2878 destroy_work_on_stack(&barr.work);
2879 return true;
2880 } else {
2881 return false;
2882 }
2883 }
2884 EXPORT_SYMBOL_GPL(flush_work);
2885
2886 struct cwt_wait {
2887 wait_queue_t wait;
2888 struct work_struct *work;
2889 };
2890
2891 static int cwt_wakefn(wait_queue_t *wait, unsigned mode, int sync, void *key)
2892 {
2893 struct cwt_wait *cwait = container_of(wait, struct cwt_wait, wait);
2894
2895 if (cwait->work != key)
2896 return 0;
2897 return autoremove_wake_function(wait, mode, sync, key);
2898 }
2899
2900 static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
2901 {
2902 static DECLARE_WAIT_QUEUE_HEAD(cancel_waitq);
2903 unsigned long flags;
2904 int ret;
2905
2906 do {
2907 ret = try_to_grab_pending(work, is_dwork, &flags);
2908 /*
2909 * If someone else is already canceling, wait for it to
2910 * finish. flush_work() doesn't work for PREEMPT_NONE
2911 * because we may get scheduled between @work's completion
2912 * and the other canceling task resuming and clearing
2913 * CANCELING - flush_work() will return false immediately
2914 * as @work is no longer busy, try_to_grab_pending() will
2915 * return -ENOENT as @work is still being canceled and the
2916 * other canceling task won't be able to clear CANCELING as
2917 * we're hogging the CPU.
2918 *
2919 * Let's wait for completion using a waitqueue. As this
2920 * may lead to the thundering herd problem, use a custom
2921 * wake function which matches @work along with exclusive
2922 * wait and wakeup.
2923 */
2924 if (unlikely(ret == -ENOENT)) {
2925 struct cwt_wait cwait;
2926
2927 init_wait(&cwait.wait);
2928 cwait.wait.func = cwt_wakefn;
2929 cwait.work = work;
2930
2931 prepare_to_wait_exclusive(&cancel_waitq, &cwait.wait,
2932 TASK_UNINTERRUPTIBLE);
2933 if (work_is_canceling(work))
2934 schedule();
2935 finish_wait(&cancel_waitq, &cwait.wait);
2936 }
2937 } while (unlikely(ret < 0));
2938
2939 /* tell other tasks trying to grab @work to back off */
2940 mark_work_canceling(work);
2941 local_irq_restore(flags);
2942
2943 flush_work(work);
2944 clear_work_data(work);
2945
2946 /*
2947 * Paired with prepare_to_wait() above so that either
2948 * waitqueue_active() is visible here or !work_is_canceling() is
2949 * visible there.
2950 */
2951 smp_mb();
2952 if (waitqueue_active(&cancel_waitq))
2953 __wake_up(&cancel_waitq, TASK_NORMAL, 1, work);
2954
2955 return ret;
2956 }
2957
2958 /**
2959 * cancel_work_sync - cancel a work and wait for it to finish
2960 * @work: the work to cancel
2961 *
2962 * Cancel @work and wait for its execution to finish. This function
2963 * can be used even if the work re-queues itself or migrates to
2964 * another workqueue. On return from this function, @work is
2965 * guaranteed to be not pending or executing on any CPU.
2966 *
2967 * cancel_work_sync(&delayed_work->work) must not be used for
2968 * delayed_work's. Use cancel_delayed_work_sync() instead.
2969 *
2970 * The caller must ensure that the workqueue on which @work was last
2971 * queued can't be destroyed before this function returns.
2972 *
2973 * Return:
2974 * %true if @work was pending, %false otherwise.
2975 */
2976 bool cancel_work_sync(struct work_struct *work)
2977 {
2978 return __cancel_work_timer(work, false);
2979 }
2980 EXPORT_SYMBOL_GPL(cancel_work_sync);
2981
2982 /**
2983 * flush_delayed_work - wait for a dwork to finish executing the last queueing
2984 * @dwork: the delayed work to flush
2985 *
2986 * Delayed timer is cancelled and the pending work is queued for
2987 * immediate execution. Like flush_work(), this function only
2988 * considers the last queueing instance of @dwork.
2989 *
2990 * Return:
2991 * %true if flush_work() waited for the work to finish execution,
2992 * %false if it was already idle.
2993 */
2994 bool flush_delayed_work(struct delayed_work *dwork)
2995 {
2996 local_irq_disable();
2997 if (del_timer_sync(&dwork->timer))
2998 __queue_work(dwork->cpu, dwork->wq, &dwork->work);
2999 local_irq_enable();
3000 return flush_work(&dwork->work);
3001 }
3002 EXPORT_SYMBOL(flush_delayed_work);
3003
3004 /**
3005 * cancel_delayed_work - cancel a delayed work
3006 * @dwork: delayed_work to cancel
3007 *
3008 * Kill off a pending delayed_work.
3009 *
3010 * Return: %true if @dwork was pending and canceled; %false if it wasn't
3011 * pending.
3012 *
3013 * Note:
3014 * The work callback function may still be running on return, unless
3015 * it returns %true and the work doesn't re-arm itself. Explicitly flush or
3016 * use cancel_delayed_work_sync() to wait on it.
3017 *
3018 * This function is safe to call from any context including IRQ handler.
3019 */
3020 bool cancel_delayed_work(struct delayed_work *dwork)
3021 {
3022 unsigned long flags;
3023 int ret;
3024
3025 do {
3026 ret = try_to_grab_pending(&dwork->work, true, &flags);
3027 } while (unlikely(ret == -EAGAIN));
3028
3029 if (unlikely(ret < 0))
3030 return false;
3031
3032 set_work_pool_and_clear_pending(&dwork->work,
3033 get_work_pool_id(&dwork->work));
3034 local_irq_restore(flags);
3035 return ret;
3036 }
3037 EXPORT_SYMBOL(cancel_delayed_work);
3038
3039 /**
3040 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
3041 * @dwork: the delayed work cancel
3042 *
3043 * This is cancel_work_sync() for delayed works.
3044 *
3045 * Return:
3046 * %true if @dwork was pending, %false otherwise.
3047 */
3048 bool cancel_delayed_work_sync(struct delayed_work *dwork)
3049 {
3050 return __cancel_work_timer(&dwork->work, true);
3051 }
3052 EXPORT_SYMBOL(cancel_delayed_work_sync);
3053
3054 /**
3055 * schedule_on_each_cpu - execute a function synchronously on each online CPU
3056 * @func: the function to call
3057 *
3058 * schedule_on_each_cpu() executes @func on each online CPU using the
3059 * system workqueue and blocks until all CPUs have completed.
3060 * schedule_on_each_cpu() is very slow.
3061 *
3062 * Return:
3063 * 0 on success, -errno on failure.
3064 */
3065 int schedule_on_each_cpu(work_func_t func)
3066 {
3067 int cpu;
3068 struct work_struct __percpu *works;
3069
3070 works = alloc_percpu(struct work_struct);
3071 if (!works)
3072 return -ENOMEM;
3073
3074 get_online_cpus();
3075
3076 for_each_online_cpu(cpu) {
3077 struct work_struct *work = per_cpu_ptr(works, cpu);
3078
3079 INIT_WORK(work, func);
3080 schedule_work_on(cpu, work);
3081 }
3082
3083 for_each_online_cpu(cpu)
3084 flush_work(per_cpu_ptr(works, cpu));
3085
3086 put_online_cpus();
3087 free_percpu(works);
3088 return 0;
3089 }
3090
3091 /**
3092 * execute_in_process_context - reliably execute the routine with user context
3093 * @fn: the function to execute
3094 * @ew: guaranteed storage for the execute work structure (must
3095 * be available when the work executes)
3096 *
3097 * Executes the function immediately if process context is available,
3098 * otherwise schedules the function for delayed execution.
3099 *
3100 * Return: 0 - function was executed
3101 * 1 - function was scheduled for execution
3102 */
3103 int execute_in_process_context(work_func_t fn, struct execute_work *ew)
3104 {
3105 if (!in_interrupt()) {
3106 fn(&ew->work);
3107 return 0;
3108 }
3109
3110 INIT_WORK(&ew->work, fn);
3111 schedule_work(&ew->work);
3112
3113 return 1;
3114 }
3115 EXPORT_SYMBOL_GPL(execute_in_process_context);
3116
3117 /**
3118 * free_workqueue_attrs - free a workqueue_attrs
3119 * @attrs: workqueue_attrs to free
3120 *
3121 * Undo alloc_workqueue_attrs().
3122 */
3123 void free_workqueue_attrs(struct workqueue_attrs *attrs)
3124 {
3125 if (attrs) {
3126 free_cpumask_var(attrs->cpumask);
3127 kfree(attrs);
3128 }
3129 }
3130
3131 /**
3132 * alloc_workqueue_attrs - allocate a workqueue_attrs
3133 * @gfp_mask: allocation mask to use
3134 *
3135 * Allocate a new workqueue_attrs, initialize with default settings and
3136 * return it.
3137 *
3138 * Return: The allocated new workqueue_attr on success. %NULL on failure.
3139 */
3140 struct workqueue_attrs *alloc_workqueue_attrs(gfp_t gfp_mask)
3141 {
3142 struct workqueue_attrs *attrs;
3143
3144 attrs = kzalloc(sizeof(*attrs), gfp_mask);
3145 if (!attrs)
3146 goto fail;
3147 if (!alloc_cpumask_var(&attrs->cpumask, gfp_mask))
3148 goto fail;
3149
3150 cpumask_copy(attrs->cpumask, cpu_possible_mask);
3151 return attrs;
3152 fail:
3153 free_workqueue_attrs(attrs);
3154 return NULL;
3155 }
3156
3157 static void copy_workqueue_attrs(struct workqueue_attrs *to,
3158 const struct workqueue_attrs *from)
3159 {
3160 to->nice = from->nice;
3161 cpumask_copy(to->cpumask, from->cpumask);
3162 /*
3163 * Unlike hash and equality test, this function doesn't ignore
3164 * ->no_numa as it is used for both pool and wq attrs. Instead,
3165 * get_unbound_pool() explicitly clears ->no_numa after copying.
3166 */
3167 to->no_numa = from->no_numa;
3168 }
3169
3170 /* hash value of the content of @attr */
3171 static u32 wqattrs_hash(const struct workqueue_attrs *attrs)
3172 {
3173 u32 hash = 0;
3174
3175 hash = jhash_1word(attrs->nice, hash);
3176 hash = jhash(cpumask_bits(attrs->cpumask),
3177 BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash);
3178 return hash;
3179 }
3180
3181 /* content equality test */
3182 static bool wqattrs_equal(const struct workqueue_attrs *a,
3183 const struct workqueue_attrs *b)
3184 {
3185 if (a->nice != b->nice)
3186 return false;
3187 if (!cpumask_equal(a->cpumask, b->cpumask))
3188 return false;
3189 return true;
3190 }
3191
3192 /**
3193 * init_worker_pool - initialize a newly zalloc'd worker_pool
3194 * @pool: worker_pool to initialize
3195 *
3196 * Initialize a newly zalloc'd @pool. It also allocates @pool->attrs.
3197 *
3198 * Return: 0 on success, -errno on failure. Even on failure, all fields
3199 * inside @pool proper are initialized and put_unbound_pool() can be called
3200 * on @pool safely to release it.
3201 */
3202 static int init_worker_pool(struct worker_pool *pool)
3203 {
3204 spin_lock_init(&pool->lock);
3205 pool->id = -1;
3206 pool->cpu = -1;
3207 pool->node = NUMA_NO_NODE;
3208 pool->flags |= POOL_DISASSOCIATED;
3209 pool->watchdog_ts = jiffies;
3210 INIT_LIST_HEAD(&pool->worklist);
3211 INIT_LIST_HEAD(&pool->idle_list);
3212 hash_init(pool->busy_hash);
3213
3214 init_timer_deferrable(&pool->idle_timer);
3215 pool->idle_timer.function = idle_worker_timeout;
3216 pool->idle_timer.data = (unsigned long)pool;
3217
3218 setup_timer(&pool->mayday_timer, pool_mayday_timeout,
3219 (unsigned long)pool);
3220
3221 mutex_init(&pool->manager_arb);
3222 mutex_init(&pool->attach_mutex);
3223 INIT_LIST_HEAD(&pool->workers);
3224
3225 ida_init(&pool->worker_ida);
3226 INIT_HLIST_NODE(&pool->hash_node);
3227 pool->refcnt = 1;
3228
3229 /* shouldn't fail above this point */
3230 pool->attrs = alloc_workqueue_attrs(GFP_KERNEL);
3231 if (!pool->attrs)
3232 return -ENOMEM;
3233 return 0;
3234 }
3235
3236 static void rcu_free_wq(struct rcu_head *rcu)
3237 {
3238 struct workqueue_struct *wq =
3239 container_of(rcu, struct workqueue_struct, rcu);
3240
3241 if (!(wq->flags & WQ_UNBOUND))
3242 free_percpu(wq->cpu_pwqs);
3243 else
3244 free_workqueue_attrs(wq->unbound_attrs);
3245
3246 kfree(wq->rescuer);
3247 kfree(wq);
3248 }
3249
3250 static void rcu_free_pool(struct rcu_head *rcu)
3251 {
3252 struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu);
3253
3254 ida_destroy(&pool->worker_ida);
3255 free_workqueue_attrs(pool->attrs);
3256 kfree(pool);
3257 }
3258
3259 /**
3260 * put_unbound_pool - put a worker_pool
3261 * @pool: worker_pool to put
3262 *
3263 * Put @pool. If its refcnt reaches zero, it gets destroyed in sched-RCU
3264 * safe manner. get_unbound_pool() calls this function on its failure path
3265 * and this function should be able to release pools which went through,
3266 * successfully or not, init_worker_pool().
3267 *
3268 * Should be called with wq_pool_mutex held.
3269 */
3270 static void put_unbound_pool(struct worker_pool *pool)
3271 {
3272 DECLARE_COMPLETION_ONSTACK(detach_completion);
3273 struct worker *worker;
3274
3275 lockdep_assert_held(&wq_pool_mutex);
3276
3277 if (--pool->refcnt)
3278 return;
3279
3280 /* sanity checks */
3281 if (WARN_ON(!(pool->cpu < 0)) ||
3282 WARN_ON(!list_empty(&pool->worklist)))
3283 return;
3284
3285 /* release id and unhash */
3286 if (pool->id >= 0)
3287 idr_remove(&worker_pool_idr, pool->id);
3288 hash_del(&pool->hash_node);
3289
3290 /*
3291 * Become the manager and destroy all workers. Grabbing
3292 * manager_arb prevents @pool's workers from blocking on
3293 * attach_mutex.
3294 */
3295 mutex_lock(&pool->manager_arb);
3296
3297 spin_lock_irq(&pool->lock);
3298 while ((worker = first_idle_worker(pool)))
3299 destroy_worker(worker);
3300 WARN_ON(pool->nr_workers || pool->nr_idle);
3301 spin_unlock_irq(&pool->lock);
3302
3303 mutex_lock(&pool->attach_mutex);
3304 if (!list_empty(&pool->workers))
3305 pool->detach_completion = &detach_completion;
3306 mutex_unlock(&pool->attach_mutex);
3307
3308 if (pool->detach_completion)
3309 wait_for_completion(pool->detach_completion);
3310
3311 mutex_unlock(&pool->manager_arb);
3312
3313 /* shut down the timers */
3314 del_timer_sync(&pool->idle_timer);
3315 del_timer_sync(&pool->mayday_timer);
3316
3317 /* sched-RCU protected to allow dereferences from get_work_pool() */
3318 call_rcu_sched(&pool->rcu, rcu_free_pool);
3319 }
3320
3321 /**
3322 * get_unbound_pool - get a worker_pool with the specified attributes
3323 * @attrs: the attributes of the worker_pool to get
3324 *
3325 * Obtain a worker_pool which has the same attributes as @attrs, bump the
3326 * reference count and return it. If there already is a matching
3327 * worker_pool, it will be used; otherwise, this function attempts to
3328 * create a new one.
3329 *
3330 * Should be called with wq_pool_mutex held.
3331 *
3332 * Return: On success, a worker_pool with the same attributes as @attrs.
3333 * On failure, %NULL.
3334 */
3335 static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs)
3336 {
3337 u32 hash = wqattrs_hash(attrs);
3338 struct worker_pool *pool;
3339 int node;
3340 int target_node = NUMA_NO_NODE;
3341
3342 lockdep_assert_held(&wq_pool_mutex);
3343
3344 /* do we already have a matching pool? */
3345 hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) {
3346 if (wqattrs_equal(pool->attrs, attrs)) {
3347 pool->refcnt++;
3348 return pool;
3349 }
3350 }
3351
3352 /* if cpumask is contained inside a NUMA node, we belong to that node */
3353 if (wq_numa_enabled) {
3354 for_each_node(node) {
3355 if (cpumask_subset(attrs->cpumask,
3356 wq_numa_possible_cpumask[node])) {
3357 target_node = node;
3358 break;
3359 }
3360 }
3361 }
3362
3363 /* nope, create a new one */
3364 pool = kzalloc_node(sizeof(*pool), GFP_KERNEL, target_node);
3365 if (!pool || init_worker_pool(pool) < 0)
3366 goto fail;
3367
3368 lockdep_set_subclass(&pool->lock, 1); /* see put_pwq() */
3369 copy_workqueue_attrs(pool->attrs, attrs);
3370 pool->node = target_node;
3371
3372 /*
3373 * no_numa isn't a worker_pool attribute, always clear it. See
3374 * 'struct workqueue_attrs' comments for detail.
3375 */
3376 pool->attrs->no_numa = false;
3377
3378 if (worker_pool_assign_id(pool) < 0)
3379 goto fail;
3380
3381 /* create and start the initial worker */
3382 if (!create_worker(pool))
3383 goto fail;
3384
3385 /* install */
3386 hash_add(unbound_pool_hash, &pool->hash_node, hash);
3387
3388 return pool;
3389 fail:
3390 if (pool)
3391 put_unbound_pool(pool);
3392 return NULL;
3393 }
3394
3395 static void rcu_free_pwq(struct rcu_head *rcu)
3396 {
3397 kmem_cache_free(pwq_cache,
3398 container_of(rcu, struct pool_workqueue, rcu));
3399 }
3400
3401 /*
3402 * Scheduled on system_wq by put_pwq() when an unbound pwq hits zero refcnt
3403 * and needs to be destroyed.
3404 */
3405 static void pwq_unbound_release_workfn(struct work_struct *work)
3406 {
3407 struct pool_workqueue *pwq = container_of(work, struct pool_workqueue,
3408 unbound_release_work);
3409 struct workqueue_struct *wq = pwq->wq;
3410 struct worker_pool *pool = pwq->pool;
3411 bool is_last;
3412
3413 if (WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND)))
3414 return;
3415
3416 mutex_lock(&wq->mutex);
3417 list_del_rcu(&pwq->pwqs_node);
3418 is_last = list_empty(&wq->pwqs);
3419 mutex_unlock(&wq->mutex);
3420
3421 mutex_lock(&wq_pool_mutex);
3422 put_unbound_pool(pool);
3423 mutex_unlock(&wq_pool_mutex);
3424
3425 call_rcu_sched(&pwq->rcu, rcu_free_pwq);
3426
3427 /*
3428 * If we're the last pwq going away, @wq is already dead and no one
3429 * is gonna access it anymore. Schedule RCU free.
3430 */
3431 if (is_last)
3432 call_rcu_sched(&wq->rcu, rcu_free_wq);
3433 }
3434
3435 /**
3436 * pwq_adjust_max_active - update a pwq's max_active to the current setting
3437 * @pwq: target pool_workqueue
3438 *
3439 * If @pwq isn't freezing, set @pwq->max_active to the associated
3440 * workqueue's saved_max_active and activate delayed work items
3441 * accordingly. If @pwq is freezing, clear @pwq->max_active to zero.
3442 */
3443 static void pwq_adjust_max_active(struct pool_workqueue *pwq)
3444 {
3445 struct workqueue_struct *wq = pwq->wq;
3446 bool freezable = wq->flags & WQ_FREEZABLE;
3447
3448 /* for @wq->saved_max_active */
3449 lockdep_assert_held(&wq->mutex);
3450
3451 /* fast exit for non-freezable wqs */
3452 if (!freezable && pwq->max_active == wq->saved_max_active)
3453 return;
3454
3455 spin_lock_irq(&pwq->pool->lock);
3456
3457 /*
3458 * During [un]freezing, the caller is responsible for ensuring that
3459 * this function is called at least once after @workqueue_freezing
3460 * is updated and visible.
3461 */
3462 if (!freezable || !workqueue_freezing) {
3463 pwq->max_active = wq->saved_max_active;
3464
3465 while (!list_empty(&pwq->delayed_works) &&
3466 pwq->nr_active < pwq->max_active)
3467 pwq_activate_first_delayed(pwq);
3468
3469 /*
3470 * Need to kick a worker after thawed or an unbound wq's
3471 * max_active is bumped. It's a slow path. Do it always.
3472 */
3473 wake_up_worker(pwq->pool);
3474 } else {
3475 pwq->max_active = 0;
3476 }
3477
3478 spin_unlock_irq(&pwq->pool->lock);
3479 }
3480
3481 /* initialize newly alloced @pwq which is associated with @wq and @pool */
3482 static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq,
3483 struct worker_pool *pool)
3484 {
3485 BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK);
3486
3487 memset(pwq, 0, sizeof(*pwq));
3488
3489 pwq->pool = pool;
3490 pwq->wq = wq;
3491 pwq->flush_color = -1;
3492 pwq->refcnt = 1;
3493 INIT_LIST_HEAD(&pwq->delayed_works);
3494 INIT_LIST_HEAD(&pwq->pwqs_node);
3495 INIT_LIST_HEAD(&pwq->mayday_node);
3496 INIT_WORK(&pwq->unbound_release_work, pwq_unbound_release_workfn);
3497 }
3498
3499 /* sync @pwq with the current state of its associated wq and link it */
3500 static void link_pwq(struct pool_workqueue *pwq)
3501 {
3502 struct workqueue_struct *wq = pwq->wq;
3503
3504 lockdep_assert_held(&wq->mutex);
3505
3506 /* may be called multiple times, ignore if already linked */
3507 if (!list_empty(&pwq->pwqs_node))
3508 return;
3509
3510 /* set the matching work_color */
3511 pwq->work_color = wq->work_color;
3512
3513 /* sync max_active to the current setting */
3514 pwq_adjust_max_active(pwq);
3515
3516 /* link in @pwq */
3517 list_add_rcu(&pwq->pwqs_node, &wq->pwqs);
3518 }
3519
3520 /* obtain a pool matching @attr and create a pwq associating the pool and @wq */
3521 static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq,
3522 const struct workqueue_attrs *attrs)
3523 {
3524 struct worker_pool *pool;
3525 struct pool_workqueue *pwq;
3526
3527 lockdep_assert_held(&wq_pool_mutex);
3528
3529 pool = get_unbound_pool(attrs);
3530 if (!pool)
3531 return NULL;
3532
3533 pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node);
3534 if (!pwq) {
3535 put_unbound_pool(pool);
3536 return NULL;
3537 }
3538
3539 init_pwq(pwq, wq, pool);
3540 return pwq;
3541 }
3542
3543 /**
3544 * wq_calc_node_cpumask - calculate a wq_attrs' cpumask for the specified node
3545 * @attrs: the wq_attrs of the default pwq of the target workqueue
3546 * @node: the target NUMA node
3547 * @cpu_going_down: if >= 0, the CPU to consider as offline
3548 * @cpumask: outarg, the resulting cpumask
3549 *
3550 * Calculate the cpumask a workqueue with @attrs should use on @node. If
3551 * @cpu_going_down is >= 0, that cpu is considered offline during
3552 * calculation. The result is stored in @cpumask.
3553 *
3554 * If NUMA affinity is not enabled, @attrs->cpumask is always used. If
3555 * enabled and @node has online CPUs requested by @attrs, the returned
3556 * cpumask is the intersection of the possible CPUs of @node and
3557 * @attrs->cpumask.
3558 *
3559 * The caller is responsible for ensuring that the cpumask of @node stays
3560 * stable.
3561 *
3562 * Return: %true if the resulting @cpumask is different from @attrs->cpumask,
3563 * %false if equal.
3564 */
3565 static bool wq_calc_node_cpumask(const struct workqueue_attrs *attrs, int node,
3566 int cpu_going_down, cpumask_t *cpumask)
3567 {
3568 if (!wq_numa_enabled || attrs->no_numa)
3569 goto use_dfl;
3570
3571 /* does @node have any online CPUs @attrs wants? */
3572 cpumask_and(cpumask, cpumask_of_node(node), attrs->cpumask);
3573 if (cpu_going_down >= 0)
3574 cpumask_clear_cpu(cpu_going_down, cpumask);
3575
3576 if (cpumask_empty(cpumask))
3577 goto use_dfl;
3578
3579 /* yeap, return possible CPUs in @node that @attrs wants */
3580 cpumask_and(cpumask, attrs->cpumask, wq_numa_possible_cpumask[node]);
3581 return !cpumask_equal(cpumask, attrs->cpumask);
3582
3583 use_dfl:
3584 cpumask_copy(cpumask, attrs->cpumask);
3585 return false;
3586 }
3587
3588 /* install @pwq into @wq's numa_pwq_tbl[] for @node and return the old pwq */
3589 static struct pool_workqueue *numa_pwq_tbl_install(struct workqueue_struct *wq,
3590 int node,
3591 struct pool_workqueue *pwq)
3592 {
3593 struct pool_workqueue *old_pwq;
3594
3595 lockdep_assert_held(&wq_pool_mutex);
3596 lockdep_assert_held(&wq->mutex);
3597
3598 /* link_pwq() can handle duplicate calls */
3599 link_pwq(pwq);
3600
3601 old_pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
3602 rcu_assign_pointer(wq->numa_pwq_tbl[node], pwq);
3603 return old_pwq;
3604 }
3605
3606 /* context to store the prepared attrs & pwqs before applying */
3607 struct apply_wqattrs_ctx {
3608 struct workqueue_struct *wq; /* target workqueue */
3609 struct workqueue_attrs *attrs; /* attrs to apply */
3610 struct list_head list; /* queued for batching commit */
3611 struct pool_workqueue *dfl_pwq;
3612 struct pool_workqueue *pwq_tbl[];
3613 };
3614
3615 /* free the resources after success or abort */
3616 static void apply_wqattrs_cleanup(struct apply_wqattrs_ctx *ctx)
3617 {
3618 if (ctx) {
3619 int node;
3620
3621 for_each_node(node)
3622 put_pwq_unlocked(ctx->pwq_tbl[node]);
3623 put_pwq_unlocked(ctx->dfl_pwq);
3624
3625 free_workqueue_attrs(ctx->attrs);
3626
3627 kfree(ctx);
3628 }
3629 }
3630
3631 /* allocate the attrs and pwqs for later installation */
3632 static struct apply_wqattrs_ctx *
3633 apply_wqattrs_prepare(struct workqueue_struct *wq,
3634 const struct workqueue_attrs *attrs)
3635 {
3636 struct apply_wqattrs_ctx *ctx;
3637 struct workqueue_attrs *new_attrs, *tmp_attrs;
3638 int node;
3639
3640 lockdep_assert_held(&wq_pool_mutex);
3641
3642 ctx = kzalloc(sizeof(*ctx) + nr_node_ids * sizeof(ctx->pwq_tbl[0]),
3643 GFP_KERNEL);
3644
3645 new_attrs = alloc_workqueue_attrs(GFP_KERNEL);
3646 tmp_attrs = alloc_workqueue_attrs(GFP_KERNEL);
3647 if (!ctx || !new_attrs || !tmp_attrs)
3648 goto out_free;
3649
3650 /*
3651 * Calculate the attrs of the default pwq.
3652 * If the user configured cpumask doesn't overlap with the
3653 * wq_unbound_cpumask, we fallback to the wq_unbound_cpumask.
3654 */
3655 copy_workqueue_attrs(new_attrs, attrs);
3656 cpumask_and(new_attrs->cpumask, new_attrs->cpumask, wq_unbound_cpumask);
3657 if (unlikely(cpumask_empty(new_attrs->cpumask)))
3658 cpumask_copy(new_attrs->cpumask, wq_unbound_cpumask);
3659
3660 /*
3661 * We may create multiple pwqs with differing cpumasks. Make a
3662 * copy of @new_attrs which will be modified and used to obtain
3663 * pools.
3664 */
3665 copy_workqueue_attrs(tmp_attrs, new_attrs);
3666
3667 /*
3668 * If something goes wrong during CPU up/down, we'll fall back to
3669 * the default pwq covering whole @attrs->cpumask. Always create
3670 * it even if we don't use it immediately.
3671 */
3672 ctx->dfl_pwq = alloc_unbound_pwq(wq, new_attrs);
3673 if (!ctx->dfl_pwq)
3674 goto out_free;
3675
3676 for_each_node(node) {
3677 if (wq_calc_node_cpumask(new_attrs, node, -1, tmp_attrs->cpumask)) {
3678 ctx->pwq_tbl[node] = alloc_unbound_pwq(wq, tmp_attrs);
3679 if (!ctx->pwq_tbl[node])
3680 goto out_free;
3681 } else {
3682 ctx->dfl_pwq->refcnt++;
3683 ctx->pwq_tbl[node] = ctx->dfl_pwq;
3684 }
3685 }
3686
3687 /* save the user configured attrs and sanitize it. */
3688 copy_workqueue_attrs(new_attrs, attrs);
3689 cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask);
3690 ctx->attrs = new_attrs;
3691
3692 ctx->wq = wq;
3693 free_workqueue_attrs(tmp_attrs);
3694 return ctx;
3695
3696 out_free:
3697 free_workqueue_attrs(tmp_attrs);
3698 free_workqueue_attrs(new_attrs);
3699 apply_wqattrs_cleanup(ctx);
3700 return NULL;
3701 }
3702
3703 /* set attrs and install prepared pwqs, @ctx points to old pwqs on return */
3704 static void apply_wqattrs_commit(struct apply_wqattrs_ctx *ctx)
3705 {
3706 int node;
3707
3708 /* all pwqs have been created successfully, let's install'em */
3709 mutex_lock(&ctx->wq->mutex);
3710
3711 copy_workqueue_attrs(ctx->wq->unbound_attrs, ctx->attrs);
3712
3713 /* save the previous pwq and install the new one */
3714 for_each_node(node)
3715 ctx->pwq_tbl[node] = numa_pwq_tbl_install(ctx->wq, node,
3716 ctx->pwq_tbl[node]);
3717
3718 /* @dfl_pwq might not have been used, ensure it's linked */
3719 link_pwq(ctx->dfl_pwq);
3720 swap(ctx->wq->dfl_pwq, ctx->dfl_pwq);
3721
3722 mutex_unlock(&ctx->wq->mutex);
3723 }
3724
3725 static void apply_wqattrs_lock(void)
3726 {
3727 /* CPUs should stay stable across pwq creations and installations */
3728 get_online_cpus();
3729 mutex_lock(&wq_pool_mutex);
3730 }
3731
3732 static void apply_wqattrs_unlock(void)
3733 {
3734 mutex_unlock(&wq_pool_mutex);
3735 put_online_cpus();
3736 }
3737
3738 static int apply_workqueue_attrs_locked(struct workqueue_struct *wq,
3739 const struct workqueue_attrs *attrs)
3740 {
3741 struct apply_wqattrs_ctx *ctx;
3742
3743 /* only unbound workqueues can change attributes */
3744 if (WARN_ON(!(wq->flags & WQ_UNBOUND)))
3745 return -EINVAL;
3746
3747 /* creating multiple pwqs breaks ordering guarantee */
3748 if (WARN_ON((wq->flags & __WQ_ORDERED) && !list_empty(&wq->pwqs)))
3749 return -EINVAL;
3750
3751 ctx = apply_wqattrs_prepare(wq, attrs);
3752 if (!ctx)
3753 return -ENOMEM;
3754
3755 /* the ctx has been prepared successfully, let's commit it */
3756 apply_wqattrs_commit(ctx);
3757 apply_wqattrs_cleanup(ctx);
3758
3759 return 0;
3760 }
3761
3762 /**
3763 * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue
3764 * @wq: the target workqueue
3765 * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs()
3766 *
3767 * Apply @attrs to an unbound workqueue @wq. Unless disabled, on NUMA
3768 * machines, this function maps a separate pwq to each NUMA node with
3769 * possibles CPUs in @attrs->cpumask so that work items are affine to the
3770 * NUMA node it was issued on. Older pwqs are released as in-flight work
3771 * items finish. Note that a work item which repeatedly requeues itself
3772 * back-to-back will stay on its current pwq.
3773 *
3774 * Performs GFP_KERNEL allocations.
3775 *
3776 * Return: 0 on success and -errno on failure.
3777 */
3778 int apply_workqueue_attrs(struct workqueue_struct *wq,
3779 const struct workqueue_attrs *attrs)
3780 {
3781 int ret;
3782
3783 apply_wqattrs_lock();
3784 ret = apply_workqueue_attrs_locked(wq, attrs);
3785 apply_wqattrs_unlock();
3786
3787 return ret;
3788 }
3789
3790 /**
3791 * wq_update_unbound_numa - update NUMA affinity of a wq for CPU hot[un]plug
3792 * @wq: the target workqueue
3793 * @cpu: the CPU coming up or going down
3794 * @online: whether @cpu is coming up or going down
3795 *
3796 * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and
3797 * %CPU_DOWN_FAILED. @cpu is being hot[un]plugged, update NUMA affinity of
3798 * @wq accordingly.
3799 *
3800 * If NUMA affinity can't be adjusted due to memory allocation failure, it
3801 * falls back to @wq->dfl_pwq which may not be optimal but is always
3802 * correct.
3803 *
3804 * Note that when the last allowed CPU of a NUMA node goes offline for a
3805 * workqueue with a cpumask spanning multiple nodes, the workers which were
3806 * already executing the work items for the workqueue will lose their CPU
3807 * affinity and may execute on any CPU. This is similar to how per-cpu
3808 * workqueues behave on CPU_DOWN. If a workqueue user wants strict
3809 * affinity, it's the user's responsibility to flush the work item from
3810 * CPU_DOWN_PREPARE.
3811 */
3812 static void wq_update_unbound_numa(struct workqueue_struct *wq, int cpu,
3813 bool online)
3814 {
3815 int node = cpu_to_node(cpu);
3816 int cpu_off = online ? -1 : cpu;
3817 struct pool_workqueue *old_pwq = NULL, *pwq;
3818 struct workqueue_attrs *target_attrs;
3819 cpumask_t *cpumask;
3820
3821 lockdep_assert_held(&wq_pool_mutex);
3822
3823 if (!wq_numa_enabled || !(wq->flags & WQ_UNBOUND) ||
3824 wq->unbound_attrs->no_numa)
3825 return;
3826
3827 /*
3828 * We don't wanna alloc/free wq_attrs for each wq for each CPU.
3829 * Let's use a preallocated one. The following buf is protected by
3830 * CPU hotplug exclusion.
3831 */
3832 target_attrs = wq_update_unbound_numa_attrs_buf;
3833 cpumask = target_attrs->cpumask;
3834
3835 copy_workqueue_attrs(target_attrs, wq->unbound_attrs);
3836 pwq = unbound_pwq_by_node(wq, node);
3837
3838 /*
3839 * Let's determine what needs to be done. If the target cpumask is
3840 * different from the default pwq's, we need to compare it to @pwq's
3841 * and create a new one if they don't match. If the target cpumask
3842 * equals the default pwq's, the default pwq should be used.
3843 */
3844 if (wq_calc_node_cpumask(wq->dfl_pwq->pool->attrs, node, cpu_off, cpumask)) {
3845 if (cpumask_equal(cpumask, pwq->pool->attrs->cpumask))
3846 return;
3847 } else {
3848 goto use_dfl_pwq;
3849 }
3850
3851 /* create a new pwq */
3852 pwq = alloc_unbound_pwq(wq, target_attrs);
3853 if (!pwq) {
3854 pr_warn("workqueue: allocation failed while updating NUMA affinity of \"%s\"\n",
3855 wq->name);
3856 goto use_dfl_pwq;
3857 }
3858
3859 /* Install the new pwq. */
3860 mutex_lock(&wq->mutex);
3861 old_pwq = numa_pwq_tbl_install(wq, node, pwq);
3862 goto out_unlock;
3863
3864 use_dfl_pwq:
3865 mutex_lock(&wq->mutex);
3866 spin_lock_irq(&wq->dfl_pwq->pool->lock);
3867 get_pwq(wq->dfl_pwq);
3868 spin_unlock_irq(&wq->dfl_pwq->pool->lock);
3869 old_pwq = numa_pwq_tbl_install(wq, node, wq->dfl_pwq);
3870 out_unlock:
3871 mutex_unlock(&wq->mutex);
3872 put_pwq_unlocked(old_pwq);
3873 }
3874
3875 static int alloc_and_link_pwqs(struct workqueue_struct *wq)
3876 {
3877 bool highpri = wq->flags & WQ_HIGHPRI;
3878 int cpu, ret;
3879
3880 if (!(wq->flags & WQ_UNBOUND)) {
3881 wq->cpu_pwqs = alloc_percpu(struct pool_workqueue);
3882 if (!wq->cpu_pwqs)
3883 return -ENOMEM;
3884
3885 for_each_possible_cpu(cpu) {
3886 struct pool_workqueue *pwq =
3887 per_cpu_ptr(wq->cpu_pwqs, cpu);
3888 struct worker_pool *cpu_pools =
3889 per_cpu(cpu_worker_pools, cpu);
3890
3891 init_pwq(pwq, wq, &cpu_pools[highpri]);
3892
3893 mutex_lock(&wq->mutex);
3894 link_pwq(pwq);
3895 mutex_unlock(&wq->mutex);
3896 }
3897 return 0;
3898 } else if (wq->flags & __WQ_ORDERED) {
3899 ret = apply_workqueue_attrs(wq, ordered_wq_attrs[highpri]);
3900 /* there should only be single pwq for ordering guarantee */
3901 WARN(!ret && (wq->pwqs.next != &wq->dfl_pwq->pwqs_node ||
3902 wq->pwqs.prev != &wq->dfl_pwq->pwqs_node),
3903 "ordering guarantee broken for workqueue %s\n", wq->name);
3904 return ret;
3905 } else {
3906 return apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]);
3907 }
3908 }
3909
3910 static int wq_clamp_max_active(int max_active, unsigned int flags,
3911 const char *name)
3912 {
3913 int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;
3914
3915 if (max_active < 1 || max_active > lim)
3916 pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
3917 max_active, name, 1, lim);
3918
3919 return clamp_val(max_active, 1, lim);
3920 }
3921
3922 struct workqueue_struct *__alloc_workqueue_key(const char *fmt,
3923 unsigned int flags,
3924 int max_active,
3925 struct lock_class_key *key,
3926 const char *lock_name, ...)
3927 {
3928 size_t tbl_size = 0;
3929 va_list args;
3930 struct workqueue_struct *wq;
3931 struct pool_workqueue *pwq;
3932
3933 /* see the comment above the definition of WQ_POWER_EFFICIENT */
3934 if ((flags & WQ_POWER_EFFICIENT) && wq_power_efficient)
3935 flags |= WQ_UNBOUND;
3936
3937 /* allocate wq and format name */
3938 if (flags & WQ_UNBOUND)
3939 tbl_size = nr_node_ids * sizeof(wq->numa_pwq_tbl[0]);
3940
3941 wq = kzalloc(sizeof(*wq) + tbl_size, GFP_KERNEL);
3942 if (!wq)
3943 return NULL;
3944
3945 if (flags & WQ_UNBOUND) {
3946 wq->unbound_attrs = alloc_workqueue_attrs(GFP_KERNEL);
3947 if (!wq->unbound_attrs)
3948 goto err_free_wq;
3949 }
3950
3951 va_start(args, lock_name);
3952 vsnprintf(wq->name, sizeof(wq->name), fmt, args);
3953 va_end(args);
3954
3955 max_active = max_active ?: WQ_DFL_ACTIVE;
3956 max_active = wq_clamp_max_active(max_active, flags, wq->name);
3957
3958 /* init wq */
3959 wq->flags = flags;
3960 wq->saved_max_active = max_active;
3961 mutex_init(&wq->mutex);
3962 atomic_set(&wq->nr_pwqs_to_flush, 0);
3963 INIT_LIST_HEAD(&wq->pwqs);
3964 INIT_LIST_HEAD(&wq->flusher_queue);
3965 INIT_LIST_HEAD(&wq->flusher_overflow);
3966 INIT_LIST_HEAD(&wq->maydays);
3967
3968 lockdep_init_map(&wq->lockdep_map, lock_name, key, 0);
3969 INIT_LIST_HEAD(&wq->list);
3970
3971 if (alloc_and_link_pwqs(wq) < 0)
3972 goto err_free_wq;
3973
3974 /*
3975 * Workqueues which may be used during memory reclaim should
3976 * have a rescuer to guarantee forward progress.
3977 */
3978 if (flags & WQ_MEM_RECLAIM) {
3979 struct worker *rescuer;
3980
3981 rescuer = alloc_worker(NUMA_NO_NODE);
3982 if (!rescuer)
3983 goto err_destroy;
3984
3985 rescuer->rescue_wq = wq;
3986 rescuer->task = kthread_create(rescuer_thread, rescuer, "%s",
3987 wq->name);
3988 if (IS_ERR(rescuer->task)) {
3989 kfree(rescuer);
3990 goto err_destroy;
3991 }
3992
3993 wq->rescuer = rescuer;
3994 kthread_bind_mask(rescuer->task, cpu_possible_mask);
3995 wake_up_process(rescuer->task);
3996 }
3997
3998 if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq))
3999 goto err_destroy;
4000
4001 /*
4002 * wq_pool_mutex protects global freeze state and workqueues list.
4003 * Grab it, adjust max_active and add the new @wq to workqueues
4004 * list.
4005 */
4006 mutex_lock(&wq_pool_mutex);
4007
4008 mutex_lock(&wq->mutex);
4009 for_each_pwq(pwq, wq)
4010 pwq_adjust_max_active(pwq);
4011 mutex_unlock(&wq->mutex);
4012
4013 list_add_tail_rcu(&wq->list, &workqueues);
4014
4015 mutex_unlock(&wq_pool_mutex);
4016
4017 return wq;
4018
4019 err_free_wq:
4020 free_workqueue_attrs(wq->unbound_attrs);
4021 kfree(wq);
4022 return NULL;
4023 err_destroy:
4024 destroy_workqueue(wq);
4025 return NULL;
4026 }
4027 EXPORT_SYMBOL_GPL(__alloc_workqueue_key);
4028
4029 /**
4030 * destroy_workqueue - safely terminate a workqueue
4031 * @wq: target workqueue
4032 *
4033 * Safely destroy a workqueue. All work currently pending will be done first.
4034 */
4035 void destroy_workqueue(struct workqueue_struct *wq)
4036 {
4037 struct pool_workqueue *pwq;
4038 int node;
4039
4040 /* drain it before proceeding with destruction */
4041 drain_workqueue(wq);
4042
4043 /* sanity checks */
4044 mutex_lock(&wq->mutex);
4045 for_each_pwq(pwq, wq) {
4046 int i;
4047
4048 for (i = 0; i < WORK_NR_COLORS; i++) {
4049 if (WARN_ON(pwq->nr_in_flight[i])) {
4050 mutex_unlock(&wq->mutex);
4051 return;
4052 }
4053 }
4054
4055 if (WARN_ON((pwq != wq->dfl_pwq) && (pwq->refcnt > 1)) ||
4056 WARN_ON(pwq->nr_active) ||
4057 WARN_ON(!list_empty(&pwq->delayed_works))) {
4058 mutex_unlock(&wq->mutex);
4059 return;
4060 }
4061 }
4062 mutex_unlock(&wq->mutex);
4063
4064 /*
4065 * wq list is used to freeze wq, remove from list after
4066 * flushing is complete in case freeze races us.
4067 */
4068 mutex_lock(&wq_pool_mutex);
4069 list_del_rcu(&wq->list);
4070 mutex_unlock(&wq_pool_mutex);
4071
4072 workqueue_sysfs_unregister(wq);
4073
4074 if (wq->rescuer)
4075 kthread_stop(wq->rescuer->task);
4076
4077 if (!(wq->flags & WQ_UNBOUND)) {
4078 /*
4079 * The base ref is never dropped on per-cpu pwqs. Directly
4080 * schedule RCU free.
4081 */
4082 call_rcu_sched(&wq->rcu, rcu_free_wq);
4083 } else {
4084 /*
4085 * We're the sole accessor of @wq at this point. Directly
4086 * access numa_pwq_tbl[] and dfl_pwq to put the base refs.
4087 * @wq will be freed when the last pwq is released.
4088 */
4089 for_each_node(node) {
4090 pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
4091 RCU_INIT_POINTER(wq->numa_pwq_tbl[node], NULL);
4092 put_pwq_unlocked(pwq);
4093 }
4094
4095 /*
4096 * Put dfl_pwq. @wq may be freed any time after dfl_pwq is
4097 * put. Don't access it afterwards.
4098 */
4099 pwq = wq->dfl_pwq;
4100 wq->dfl_pwq = NULL;
4101 put_pwq_unlocked(pwq);
4102 }
4103 }
4104 EXPORT_SYMBOL_GPL(destroy_workqueue);
4105
4106 /**
4107 * workqueue_set_max_active - adjust max_active of a workqueue
4108 * @wq: target workqueue
4109 * @max_active: new max_active value.
4110 *
4111 * Set max_active of @wq to @max_active.
4112 *
4113 * CONTEXT:
4114 * Don't call from IRQ context.
4115 */
4116 void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
4117 {
4118 struct pool_workqueue *pwq;
4119
4120 /* disallow meddling with max_active for ordered workqueues */
4121 if (WARN_ON(wq->flags & __WQ_ORDERED))
4122 return;
4123
4124 max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
4125
4126 mutex_lock(&wq->mutex);
4127
4128 wq->saved_max_active = max_active;
4129
4130 for_each_pwq(pwq, wq)
4131 pwq_adjust_max_active(pwq);
4132
4133 mutex_unlock(&wq->mutex);
4134 }
4135 EXPORT_SYMBOL_GPL(workqueue_set_max_active);
4136
4137 /**
4138 * current_is_workqueue_rescuer - is %current workqueue rescuer?
4139 *
4140 * Determine whether %current is a workqueue rescuer. Can be used from
4141 * work functions to determine whether it's being run off the rescuer task.
4142 *
4143 * Return: %true if %current is a workqueue rescuer. %false otherwise.
4144 */
4145 bool current_is_workqueue_rescuer(void)
4146 {
4147 struct worker *worker = current_wq_worker();
4148
4149 return worker && worker->rescue_wq;
4150 }
4151
4152 /**
4153 * workqueue_congested - test whether a workqueue is congested
4154 * @cpu: CPU in question
4155 * @wq: target workqueue
4156 *
4157 * Test whether @wq's cpu workqueue for @cpu is congested. There is
4158 * no synchronization around this function and the test result is
4159 * unreliable and only useful as advisory hints or for debugging.
4160 *
4161 * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU.
4162 * Note that both per-cpu and unbound workqueues may be associated with
4163 * multiple pool_workqueues which have separate congested states. A
4164 * workqueue being congested on one CPU doesn't mean the workqueue is also
4165 * contested on other CPUs / NUMA nodes.
4166 *
4167 * Return:
4168 * %true if congested, %false otherwise.
4169 */
4170 bool workqueue_congested(int cpu, struct workqueue_struct *wq)
4171 {
4172 struct pool_workqueue *pwq;
4173 bool ret;
4174
4175 rcu_read_lock_sched();
4176
4177 if (cpu == WORK_CPU_UNBOUND)
4178 cpu = smp_processor_id();
4179
4180 if (!(wq->flags & WQ_UNBOUND))
4181 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
4182 else
4183 pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
4184
4185 ret = !list_empty(&pwq->delayed_works);
4186 rcu_read_unlock_sched();
4187
4188 return ret;
4189 }
4190 EXPORT_SYMBOL_GPL(workqueue_congested);
4191
4192 /**
4193 * work_busy - test whether a work is currently pending or running
4194 * @work: the work to be tested
4195 *
4196 * Test whether @work is currently pending or running. There is no
4197 * synchronization around this function and the test result is
4198 * unreliable and only useful as advisory hints or for debugging.
4199 *
4200 * Return:
4201 * OR'd bitmask of WORK_BUSY_* bits.
4202 */
4203 unsigned int work_busy(struct work_struct *work)
4204 {
4205 struct worker_pool *pool;
4206 unsigned long flags;
4207 unsigned int ret = 0;
4208
4209 if (work_pending(work))
4210 ret |= WORK_BUSY_PENDING;
4211
4212 local_irq_save(flags);
4213 pool = get_work_pool(work);
4214 if (pool) {
4215 spin_lock(&pool->lock);
4216 if (find_worker_executing_work(pool, work))
4217 ret |= WORK_BUSY_RUNNING;
4218 spin_unlock(&pool->lock);
4219 }
4220 local_irq_restore(flags);
4221
4222 return ret;
4223 }
4224 EXPORT_SYMBOL_GPL(work_busy);
4225
4226 /**
4227 * set_worker_desc - set description for the current work item
4228 * @fmt: printf-style format string
4229 * @...: arguments for the format string
4230 *
4231 * This function can be called by a running work function to describe what
4232 * the work item is about. If the worker task gets dumped, this
4233 * information will be printed out together to help debugging. The
4234 * description can be at most WORKER_DESC_LEN including the trailing '\0'.
4235 */
4236 void set_worker_desc(const char *fmt, ...)
4237 {
4238 struct worker *worker = current_wq_worker();
4239 va_list args;
4240
4241 if (worker) {
4242 va_start(args, fmt);
4243 vsnprintf(worker->desc, sizeof(worker->desc), fmt, args);
4244 va_end(args);
4245 worker->desc_valid = true;
4246 }
4247 }
4248
4249 /**
4250 * print_worker_info - print out worker information and description
4251 * @log_lvl: the log level to use when printing
4252 * @task: target task
4253 *
4254 * If @task is a worker and currently executing a work item, print out the
4255 * name of the workqueue being serviced and worker description set with
4256 * set_worker_desc() by the currently executing work item.
4257 *
4258 * This function can be safely called on any task as long as the
4259 * task_struct itself is accessible. While safe, this function isn't
4260 * synchronized and may print out mixups or garbages of limited length.
4261 */
4262 void print_worker_info(const char *log_lvl, struct task_struct *task)
4263 {
4264 work_func_t *fn = NULL;
4265 char name[WQ_NAME_LEN] = { };
4266 char desc[WORKER_DESC_LEN] = { };
4267 struct pool_workqueue *pwq = NULL;
4268 struct workqueue_struct *wq = NULL;
4269 bool desc_valid = false;
4270 struct worker *worker;
4271
4272 if (!(task->flags & PF_WQ_WORKER))
4273 return;
4274
4275 /*
4276 * This function is called without any synchronization and @task
4277 * could be in any state. Be careful with dereferences.
4278 */
4279 worker = probe_kthread_data(task);
4280
4281 /*
4282 * Carefully copy the associated workqueue's workfn and name. Keep
4283 * the original last '\0' in case the original contains garbage.
4284 */
4285 probe_kernel_read(&fn, &worker->current_func, sizeof(fn));
4286 probe_kernel_read(&pwq, &worker->current_pwq, sizeof(pwq));
4287 probe_kernel_read(&wq, &pwq->wq, sizeof(wq));
4288 probe_kernel_read(name, wq->name, sizeof(name) - 1);
4289
4290 /* copy worker description */
4291 probe_kernel_read(&desc_valid, &worker->desc_valid, sizeof(desc_valid));
4292 if (desc_valid)
4293 probe_kernel_read(desc, worker->desc, sizeof(desc) - 1);
4294
4295 if (fn || name[0] || desc[0]) {
4296 printk("%sWorkqueue: %s %pf", log_lvl, name, fn);
4297 if (desc[0])
4298 pr_cont(" (%s)", desc);
4299 pr_cont("\n");
4300 }
4301 }
4302
4303 static void pr_cont_pool_info(struct worker_pool *pool)
4304 {
4305 pr_cont(" cpus=%*pbl", nr_cpumask_bits, pool->attrs->cpumask);
4306 if (pool->node != NUMA_NO_NODE)
4307 pr_cont(" node=%d", pool->node);
4308 pr_cont(" flags=0x%x nice=%d", pool->flags, pool->attrs->nice);
4309 }
4310
4311 static void pr_cont_work(bool comma, struct work_struct *work)
4312 {
4313 if (work->func == wq_barrier_func) {
4314 struct wq_barrier *barr;
4315
4316 barr = container_of(work, struct wq_barrier, work);
4317
4318 pr_cont("%s BAR(%d)", comma ? "," : "",
4319 task_pid_nr(barr->task));
4320 } else {
4321 pr_cont("%s %pf", comma ? "," : "", work->func);
4322 }
4323 }
4324
4325 static void show_pwq(struct pool_workqueue *pwq)
4326 {
4327 struct worker_pool *pool = pwq->pool;
4328 struct work_struct *work;
4329 struct worker *worker;
4330 bool has_in_flight = false, has_pending = false;
4331 int bkt;
4332
4333 pr_info(" pwq %d:", pool->id);
4334 pr_cont_pool_info(pool);
4335
4336 pr_cont(" active=%d/%d%s\n", pwq->nr_active, pwq->max_active,
4337 !list_empty(&pwq->mayday_node) ? " MAYDAY" : "");
4338
4339 hash_for_each(pool->busy_hash, bkt, worker, hentry) {
4340 if (worker->current_pwq == pwq) {
4341 has_in_flight = true;
4342 break;
4343 }
4344 }
4345 if (has_in_flight) {
4346 bool comma = false;
4347
4348 pr_info(" in-flight:");
4349 hash_for_each(pool->busy_hash, bkt, worker, hentry) {
4350 if (worker->current_pwq != pwq)
4351 continue;
4352
4353 pr_cont("%s %d%s:%pf", comma ? "," : "",
4354 task_pid_nr(worker->task),
4355 worker == pwq->wq->rescuer ? "(RESCUER)" : "",
4356 worker->current_func);
4357 list_for_each_entry(work, &worker->scheduled, entry)
4358 pr_cont_work(false, work);
4359 comma = true;
4360 }
4361 pr_cont("\n");
4362 }
4363
4364 list_for_each_entry(work, &pool->worklist, entry) {
4365 if (get_work_pwq(work) == pwq) {
4366 has_pending = true;
4367 break;
4368 }
4369 }
4370 if (has_pending) {
4371 bool comma = false;
4372
4373 pr_info(" pending:");
4374 list_for_each_entry(work, &pool->worklist, entry) {
4375 if (get_work_pwq(work) != pwq)
4376 continue;
4377
4378 pr_cont_work(comma, work);
4379 comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
4380 }
4381 pr_cont("\n");
4382 }
4383
4384 if (!list_empty(&pwq->delayed_works)) {
4385 bool comma = false;
4386
4387 pr_info(" delayed:");
4388 list_for_each_entry(work, &pwq->delayed_works, entry) {
4389 pr_cont_work(comma, work);
4390 comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
4391 }
4392 pr_cont("\n");
4393 }
4394 }
4395
4396 /**
4397 * show_workqueue_state - dump workqueue state
4398 *
4399 * Called from a sysrq handler and prints out all busy workqueues and
4400 * pools.
4401 */
4402 void show_workqueue_state(void)
4403 {
4404 struct workqueue_struct *wq;
4405 struct worker_pool *pool;
4406 unsigned long flags;
4407 int pi;
4408
4409 rcu_read_lock_sched();
4410
4411 pr_info("Showing busy workqueues and worker pools:\n");
4412
4413 list_for_each_entry_rcu(wq, &workqueues, list) {
4414 struct pool_workqueue *pwq;
4415 bool idle = true;
4416
4417 for_each_pwq(pwq, wq) {
4418 if (pwq->nr_active || !list_empty(&pwq->delayed_works)) {
4419 idle = false;
4420 break;
4421 }
4422 }
4423 if (idle)
4424 continue;
4425
4426 pr_info("workqueue %s: flags=0x%x\n", wq->name, wq->flags);
4427
4428 for_each_pwq(pwq, wq) {
4429 spin_lock_irqsave(&pwq->pool->lock, flags);
4430 if (pwq->nr_active || !list_empty(&pwq->delayed_works))
4431 show_pwq(pwq);
4432 spin_unlock_irqrestore(&pwq->pool->lock, flags);
4433 }
4434 }
4435
4436 for_each_pool(pool, pi) {
4437 struct worker *worker;
4438 bool first = true;
4439
4440 spin_lock_irqsave(&pool->lock, flags);
4441 if (pool->nr_workers == pool->nr_idle)
4442 goto next_pool;
4443
4444 pr_info("pool %d:", pool->id);
4445 pr_cont_pool_info(pool);
4446 pr_cont(" hung=%us workers=%d",
4447 jiffies_to_msecs(jiffies - pool->watchdog_ts) / 1000,
4448 pool->nr_workers);
4449 if (pool->manager)
4450 pr_cont(" manager: %d",
4451 task_pid_nr(pool->manager->task));
4452 list_for_each_entry(worker, &pool->idle_list, entry) {
4453 pr_cont(" %s%d", first ? "idle: " : "",
4454 task_pid_nr(worker->task));
4455 first = false;
4456 }
4457 pr_cont("\n");
4458 next_pool:
4459 spin_unlock_irqrestore(&pool->lock, flags);
4460 }
4461
4462 rcu_read_unlock_sched();
4463 }
4464
4465 /*
4466 * CPU hotplug.
4467 *
4468 * There are two challenges in supporting CPU hotplug. Firstly, there
4469 * are a lot of assumptions on strong associations among work, pwq and
4470 * pool which make migrating pending and scheduled works very
4471 * difficult to implement without impacting hot paths. Secondly,
4472 * worker pools serve mix of short, long and very long running works making
4473 * blocked draining impractical.
4474 *
4475 * This is solved by allowing the pools to be disassociated from the CPU
4476 * running as an unbound one and allowing it to be reattached later if the
4477 * cpu comes back online.
4478 */
4479
4480 static void wq_unbind_fn(struct work_struct *work)
4481 {
4482 int cpu = smp_processor_id();
4483 struct worker_pool *pool;
4484 struct worker *worker;
4485
4486 for_each_cpu_worker_pool(pool, cpu) {
4487 mutex_lock(&pool->attach_mutex);
4488 spin_lock_irq(&pool->lock);
4489
4490 /*
4491 * We've blocked all attach/detach operations. Make all workers
4492 * unbound and set DISASSOCIATED. Before this, all workers
4493 * except for the ones which are still executing works from
4494 * before the last CPU down must be on the cpu. After
4495 * this, they may become diasporas.
4496 */
4497 for_each_pool_worker(worker, pool)
4498 worker->flags |= WORKER_UNBOUND;
4499
4500 pool->flags |= POOL_DISASSOCIATED;
4501
4502 spin_unlock_irq(&pool->lock);
4503 mutex_unlock(&pool->attach_mutex);
4504
4505 /*
4506 * Call schedule() so that we cross rq->lock and thus can
4507 * guarantee sched callbacks see the %WORKER_UNBOUND flag.
4508 * This is necessary as scheduler callbacks may be invoked
4509 * from other cpus.
4510 */
4511 schedule();
4512
4513 /*
4514 * Sched callbacks are disabled now. Zap nr_running.
4515 * After this, nr_running stays zero and need_more_worker()
4516 * and keep_working() are always true as long as the
4517 * worklist is not empty. This pool now behaves as an
4518 * unbound (in terms of concurrency management) pool which
4519 * are served by workers tied to the pool.
4520 */
4521 atomic_set(&pool->nr_running, 0);
4522
4523 /*
4524 * With concurrency management just turned off, a busy
4525 * worker blocking could lead to lengthy stalls. Kick off
4526 * unbound chain execution of currently pending work items.
4527 */
4528 spin_lock_irq(&pool->lock);
4529 wake_up_worker(pool);
4530 spin_unlock_irq(&pool->lock);
4531 }
4532 }
4533
4534 /**
4535 * rebind_workers - rebind all workers of a pool to the associated CPU
4536 * @pool: pool of interest
4537 *
4538 * @pool->cpu is coming online. Rebind all workers to the CPU.
4539 */
4540 static void rebind_workers(struct worker_pool *pool)
4541 {
4542 struct worker *worker;
4543
4544 lockdep_assert_held(&pool->attach_mutex);
4545
4546 /*
4547 * Restore CPU affinity of all workers. As all idle workers should
4548 * be on the run-queue of the associated CPU before any local
4549 * wake-ups for concurrency management happen, restore CPU affinity
4550 * of all workers first and then clear UNBOUND. As we're called
4551 * from CPU_ONLINE, the following shouldn't fail.
4552 */
4553 for_each_pool_worker(worker, pool)
4554 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
4555 pool->attrs->cpumask) < 0);
4556
4557 spin_lock_irq(&pool->lock);
4558 pool->flags &= ~POOL_DISASSOCIATED;
4559
4560 for_each_pool_worker(worker, pool) {
4561 unsigned int worker_flags = worker->flags;
4562
4563 /*
4564 * A bound idle worker should actually be on the runqueue
4565 * of the associated CPU for local wake-ups targeting it to
4566 * work. Kick all idle workers so that they migrate to the
4567 * associated CPU. Doing this in the same loop as
4568 * replacing UNBOUND with REBOUND is safe as no worker will
4569 * be bound before @pool->lock is released.
4570 */
4571 if (worker_flags & WORKER_IDLE)
4572 wake_up_process(worker->task);
4573
4574 /*
4575 * We want to clear UNBOUND but can't directly call
4576 * worker_clr_flags() or adjust nr_running. Atomically
4577 * replace UNBOUND with another NOT_RUNNING flag REBOUND.
4578 * @worker will clear REBOUND using worker_clr_flags() when
4579 * it initiates the next execution cycle thus restoring
4580 * concurrency management. Note that when or whether
4581 * @worker clears REBOUND doesn't affect correctness.
4582 *
4583 * ACCESS_ONCE() is necessary because @worker->flags may be
4584 * tested without holding any lock in
4585 * wq_worker_waking_up(). Without it, NOT_RUNNING test may
4586 * fail incorrectly leading to premature concurrency
4587 * management operations.
4588 */
4589 WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND));
4590 worker_flags |= WORKER_REBOUND;
4591 worker_flags &= ~WORKER_UNBOUND;
4592 ACCESS_ONCE(worker->flags) = worker_flags;
4593 }
4594
4595 spin_unlock_irq(&pool->lock);
4596 }
4597
4598 /**
4599 * restore_unbound_workers_cpumask - restore cpumask of unbound workers
4600 * @pool: unbound pool of interest
4601 * @cpu: the CPU which is coming up
4602 *
4603 * An unbound pool may end up with a cpumask which doesn't have any online
4604 * CPUs. When a worker of such pool get scheduled, the scheduler resets
4605 * its cpus_allowed. If @cpu is in @pool's cpumask which didn't have any
4606 * online CPU before, cpus_allowed of all its workers should be restored.
4607 */
4608 static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu)
4609 {
4610 static cpumask_t cpumask;
4611 struct worker *worker;
4612
4613 lockdep_assert_held(&pool->attach_mutex);
4614
4615 /* is @cpu allowed for @pool? */
4616 if (!cpumask_test_cpu(cpu, pool->attrs->cpumask))
4617 return;
4618
4619 /* is @cpu the only online CPU? */
4620 cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask);
4621 if (cpumask_weight(&cpumask) != 1)
4622 return;
4623
4624 /* as we're called from CPU_ONLINE, the following shouldn't fail */
4625 for_each_pool_worker(worker, pool)
4626 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
4627 pool->attrs->cpumask) < 0);
4628 }
4629
4630 /*
4631 * Workqueues should be brought up before normal priority CPU notifiers.
4632 * This will be registered high priority CPU notifier.
4633 */
4634 static int workqueue_cpu_up_callback(struct notifier_block *nfb,
4635 unsigned long action,
4636 void *hcpu)
4637 {
4638 int cpu = (unsigned long)hcpu;
4639 struct worker_pool *pool;
4640 struct workqueue_struct *wq;
4641 int pi;
4642
4643 switch (action & ~CPU_TASKS_FROZEN) {
4644 case CPU_UP_PREPARE:
4645 for_each_cpu_worker_pool(pool, cpu) {
4646 if (pool->nr_workers)
4647 continue;
4648 if (!create_worker(pool))
4649 return NOTIFY_BAD;
4650 }
4651 break;
4652
4653 case CPU_DOWN_FAILED:
4654 case CPU_ONLINE:
4655 mutex_lock(&wq_pool_mutex);
4656
4657 for_each_pool(pool, pi) {
4658 mutex_lock(&pool->attach_mutex);
4659
4660 if (pool->cpu == cpu)
4661 rebind_workers(pool);
4662 else if (pool->cpu < 0)
4663 restore_unbound_workers_cpumask(pool, cpu);
4664
4665 mutex_unlock(&pool->attach_mutex);
4666 }
4667
4668 /* update NUMA affinity of unbound workqueues */
4669 list_for_each_entry(wq, &workqueues, list)
4670 wq_update_unbound_numa(wq, cpu, true);
4671
4672 mutex_unlock(&wq_pool_mutex);
4673 break;
4674 }
4675 return NOTIFY_OK;
4676 }
4677
4678 /*
4679 * Workqueues should be brought down after normal priority CPU notifiers.
4680 * This will be registered as low priority CPU notifier.
4681 */
4682 static int workqueue_cpu_down_callback(struct notifier_block *nfb,
4683 unsigned long action,
4684 void *hcpu)
4685 {
4686 int cpu = (unsigned long)hcpu;
4687 struct work_struct unbind_work;
4688 struct workqueue_struct *wq;
4689
4690 switch (action & ~CPU_TASKS_FROZEN) {
4691 case CPU_DOWN_PREPARE:
4692 /* unbinding per-cpu workers should happen on the local CPU */
4693 INIT_WORK_ONSTACK(&unbind_work, wq_unbind_fn);
4694 queue_work_on(cpu, system_highpri_wq, &unbind_work);
4695
4696 /* update NUMA affinity of unbound workqueues */
4697 mutex_lock(&wq_pool_mutex);
4698 list_for_each_entry(wq, &workqueues, list)
4699 wq_update_unbound_numa(wq, cpu, false);
4700 mutex_unlock(&wq_pool_mutex);
4701
4702 /* wait for per-cpu unbinding to finish */
4703 flush_work(&unbind_work);
4704 destroy_work_on_stack(&unbind_work);
4705 break;
4706 }
4707 return NOTIFY_OK;
4708 }
4709
4710 #ifdef CONFIG_SMP
4711
4712 struct work_for_cpu {
4713 struct work_struct work;
4714 long (*fn)(void *);
4715 void *arg;
4716 long ret;
4717 };
4718
4719 static void work_for_cpu_fn(struct work_struct *work)
4720 {
4721 struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);
4722
4723 wfc->ret = wfc->fn(wfc->arg);
4724 }
4725
4726 /**
4727 * work_on_cpu - run a function in user context on a particular cpu
4728 * @cpu: the cpu to run on
4729 * @fn: the function to run
4730 * @arg: the function arg
4731 *
4732 * It is up to the caller to ensure that the cpu doesn't go offline.
4733 * The caller must not hold any locks which would prevent @fn from completing.
4734 *
4735 * Return: The value @fn returns.
4736 */
4737 long work_on_cpu(int cpu, long (*fn)(void *), void *arg)
4738 {
4739 struct work_for_cpu wfc = { .fn = fn, .arg = arg };
4740
4741 INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn);
4742 schedule_work_on(cpu, &wfc.work);
4743 flush_work(&wfc.work);
4744 destroy_work_on_stack(&wfc.work);
4745 return wfc.ret;
4746 }
4747 EXPORT_SYMBOL_GPL(work_on_cpu);
4748 #endif /* CONFIG_SMP */
4749
4750 #ifdef CONFIG_FREEZER
4751
4752 /**
4753 * freeze_workqueues_begin - begin freezing workqueues
4754 *
4755 * Start freezing workqueues. After this function returns, all freezable
4756 * workqueues will queue new works to their delayed_works list instead of
4757 * pool->worklist.
4758 *
4759 * CONTEXT:
4760 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
4761 */
4762 void freeze_workqueues_begin(void)
4763 {
4764 struct workqueue_struct *wq;
4765 struct pool_workqueue *pwq;
4766
4767 mutex_lock(&wq_pool_mutex);
4768
4769 WARN_ON_ONCE(workqueue_freezing);
4770 workqueue_freezing = true;
4771
4772 list_for_each_entry(wq, &workqueues, list) {
4773 mutex_lock(&wq->mutex);
4774 for_each_pwq(pwq, wq)
4775 pwq_adjust_max_active(pwq);
4776 mutex_unlock(&wq->mutex);
4777 }
4778
4779 mutex_unlock(&wq_pool_mutex);
4780 }
4781
4782 /**
4783 * freeze_workqueues_busy - are freezable workqueues still busy?
4784 *
4785 * Check whether freezing is complete. This function must be called
4786 * between freeze_workqueues_begin() and thaw_workqueues().
4787 *
4788 * CONTEXT:
4789 * Grabs and releases wq_pool_mutex.
4790 *
4791 * Return:
4792 * %true if some freezable workqueues are still busy. %false if freezing
4793 * is complete.
4794 */
4795 bool freeze_workqueues_busy(void)
4796 {
4797 bool busy = false;
4798 struct workqueue_struct *wq;
4799 struct pool_workqueue *pwq;
4800
4801 mutex_lock(&wq_pool_mutex);
4802
4803 WARN_ON_ONCE(!workqueue_freezing);
4804
4805 list_for_each_entry(wq, &workqueues, list) {
4806 if (!(wq->flags & WQ_FREEZABLE))
4807 continue;
4808 /*
4809 * nr_active is monotonically decreasing. It's safe
4810 * to peek without lock.
4811 */
4812 rcu_read_lock_sched();
4813 for_each_pwq(pwq, wq) {
4814 WARN_ON_ONCE(pwq->nr_active < 0);
4815 if (pwq->nr_active) {
4816 busy = true;
4817 rcu_read_unlock_sched();
4818 goto out_unlock;
4819 }
4820 }
4821 rcu_read_unlock_sched();
4822 }
4823 out_unlock:
4824 mutex_unlock(&wq_pool_mutex);
4825 return busy;
4826 }
4827
4828 /**
4829 * thaw_workqueues - thaw workqueues
4830 *
4831 * Thaw workqueues. Normal queueing is restored and all collected
4832 * frozen works are transferred to their respective pool worklists.
4833 *
4834 * CONTEXT:
4835 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
4836 */
4837 void thaw_workqueues(void)
4838 {
4839 struct workqueue_struct *wq;
4840 struct pool_workqueue *pwq;
4841
4842 mutex_lock(&wq_pool_mutex);
4843
4844 if (!workqueue_freezing)
4845 goto out_unlock;
4846
4847 workqueue_freezing = false;
4848
4849 /* restore max_active and repopulate worklist */
4850 list_for_each_entry(wq, &workqueues, list) {
4851 mutex_lock(&wq->mutex);
4852 for_each_pwq(pwq, wq)
4853 pwq_adjust_max_active(pwq);
4854 mutex_unlock(&wq->mutex);
4855 }
4856
4857 out_unlock:
4858 mutex_unlock(&wq_pool_mutex);
4859 }
4860 #endif /* CONFIG_FREEZER */
4861
4862 static int workqueue_apply_unbound_cpumask(void)
4863 {
4864 LIST_HEAD(ctxs);
4865 int ret = 0;
4866 struct workqueue_struct *wq;
4867 struct apply_wqattrs_ctx *ctx, *n;
4868
4869 lockdep_assert_held(&wq_pool_mutex);
4870
4871 list_for_each_entry(wq, &workqueues, list) {
4872 if (!(wq->flags & WQ_UNBOUND))
4873 continue;
4874 /* creating multiple pwqs breaks ordering guarantee */
4875 if (wq->flags & __WQ_ORDERED)
4876 continue;
4877
4878 ctx = apply_wqattrs_prepare(wq, wq->unbound_attrs);
4879 if (!ctx) {
4880 ret = -ENOMEM;
4881 break;
4882 }
4883
4884 list_add_tail(&ctx->list, &ctxs);
4885 }
4886
4887 list_for_each_entry_safe(ctx, n, &ctxs, list) {
4888 if (!ret)
4889 apply_wqattrs_commit(ctx);
4890 apply_wqattrs_cleanup(ctx);
4891 }
4892
4893 return ret;
4894 }
4895
4896 /**
4897 * workqueue_set_unbound_cpumask - Set the low-level unbound cpumask
4898 * @cpumask: the cpumask to set
4899 *
4900 * The low-level workqueues cpumask is a global cpumask that limits
4901 * the affinity of all unbound workqueues. This function check the @cpumask
4902 * and apply it to all unbound workqueues and updates all pwqs of them.
4903 *
4904 * Retun: 0 - Success
4905 * -EINVAL - Invalid @cpumask
4906 * -ENOMEM - Failed to allocate memory for attrs or pwqs.
4907 */
4908 int workqueue_set_unbound_cpumask(cpumask_var_t cpumask)
4909 {
4910 int ret = -EINVAL;
4911 cpumask_var_t saved_cpumask;
4912
4913 if (!zalloc_cpumask_var(&saved_cpumask, GFP_KERNEL))
4914 return -ENOMEM;
4915
4916 cpumask_and(cpumask, cpumask, cpu_possible_mask);
4917 if (!cpumask_empty(cpumask)) {
4918 apply_wqattrs_lock();
4919
4920 /* save the old wq_unbound_cpumask. */
4921 cpumask_copy(saved_cpumask, wq_unbound_cpumask);
4922
4923 /* update wq_unbound_cpumask at first and apply it to wqs. */
4924 cpumask_copy(wq_unbound_cpumask, cpumask);
4925 ret = workqueue_apply_unbound_cpumask();
4926
4927 /* restore the wq_unbound_cpumask when failed. */
4928 if (ret < 0)
4929 cpumask_copy(wq_unbound_cpumask, saved_cpumask);
4930
4931 apply_wqattrs_unlock();
4932 }
4933
4934 free_cpumask_var(saved_cpumask);
4935 return ret;
4936 }
4937
4938 #ifdef CONFIG_SYSFS
4939 /*
4940 * Workqueues with WQ_SYSFS flag set is visible to userland via
4941 * /sys/bus/workqueue/devices/WQ_NAME. All visible workqueues have the
4942 * following attributes.
4943 *
4944 * per_cpu RO bool : whether the workqueue is per-cpu or unbound
4945 * max_active RW int : maximum number of in-flight work items
4946 *
4947 * Unbound workqueues have the following extra attributes.
4948 *
4949 * id RO int : the associated pool ID
4950 * nice RW int : nice value of the workers
4951 * cpumask RW mask : bitmask of allowed CPUs for the workers
4952 */
4953 struct wq_device {
4954 struct workqueue_struct *wq;
4955 struct device dev;
4956 };
4957
4958 static struct workqueue_struct *dev_to_wq(struct device *dev)
4959 {
4960 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
4961
4962 return wq_dev->wq;
4963 }
4964
4965 static ssize_t per_cpu_show(struct device *dev, struct device_attribute *attr,
4966 char *buf)
4967 {
4968 struct workqueue_struct *wq = dev_to_wq(dev);
4969
4970 return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND));
4971 }
4972 static DEVICE_ATTR_RO(per_cpu);
4973
4974 static ssize_t max_active_show(struct device *dev,
4975 struct device_attribute *attr, char *buf)
4976 {
4977 struct workqueue_struct *wq = dev_to_wq(dev);
4978
4979 return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active);
4980 }
4981
4982 static ssize_t max_active_store(struct device *dev,
4983 struct device_attribute *attr, const char *buf,
4984 size_t count)
4985 {
4986 struct workqueue_struct *wq = dev_to_wq(dev);
4987 int val;
4988
4989 if (sscanf(buf, "%d", &val) != 1 || val <= 0)
4990 return -EINVAL;
4991
4992 workqueue_set_max_active(wq, val);
4993 return count;
4994 }
4995 static DEVICE_ATTR_RW(max_active);
4996
4997 static struct attribute *wq_sysfs_attrs[] = {
4998 &dev_attr_per_cpu.attr,
4999 &dev_attr_max_active.attr,
5000 NULL,
5001 };
5002 ATTRIBUTE_GROUPS(wq_sysfs);
5003
5004 static ssize_t wq_pool_ids_show(struct device *dev,
5005 struct device_attribute *attr, char *buf)
5006 {
5007 struct workqueue_struct *wq = dev_to_wq(dev);
5008 const char *delim = "";
5009 int node, written = 0;
5010
5011 rcu_read_lock_sched();
5012 for_each_node(node) {
5013 written += scnprintf(buf + written, PAGE_SIZE - written,
5014 "%s%d:%d", delim, node,
5015 unbound_pwq_by_node(wq, node)->pool->id);
5016 delim = " ";
5017 }
5018 written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
5019 rcu_read_unlock_sched();
5020
5021 return written;
5022 }
5023
5024 static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr,
5025 char *buf)
5026 {
5027 struct workqueue_struct *wq = dev_to_wq(dev);
5028 int written;
5029
5030 mutex_lock(&wq->mutex);
5031 written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice);
5032 mutex_unlock(&wq->mutex);
5033
5034 return written;
5035 }
5036
5037 /* prepare workqueue_attrs for sysfs store operations */
5038 static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq)
5039 {
5040 struct workqueue_attrs *attrs;
5041
5042 lockdep_assert_held(&wq_pool_mutex);
5043
5044 attrs = alloc_workqueue_attrs(GFP_KERNEL);
5045 if (!attrs)
5046 return NULL;
5047
5048 copy_workqueue_attrs(attrs, wq->unbound_attrs);
5049 return attrs;
5050 }
5051
5052 static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr,
5053 const char *buf, size_t count)
5054 {
5055 struct workqueue_struct *wq = dev_to_wq(dev);
5056 struct workqueue_attrs *attrs;
5057 int ret = -ENOMEM;
5058
5059 apply_wqattrs_lock();
5060
5061 attrs = wq_sysfs_prep_attrs(wq);
5062 if (!attrs)
5063 goto out_unlock;
5064
5065 if (sscanf(buf, "%d", &attrs->nice) == 1 &&
5066 attrs->nice >= MIN_NICE && attrs->nice <= MAX_NICE)
5067 ret = apply_workqueue_attrs_locked(wq, attrs);
5068 else
5069 ret = -EINVAL;
5070
5071 out_unlock:
5072 apply_wqattrs_unlock();
5073 free_workqueue_attrs(attrs);
5074 return ret ?: count;
5075 }
5076
5077 static ssize_t wq_cpumask_show(struct device *dev,
5078 struct device_attribute *attr, char *buf)
5079 {
5080 struct workqueue_struct *wq = dev_to_wq(dev);
5081 int written;
5082
5083 mutex_lock(&wq->mutex);
5084 written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
5085 cpumask_pr_args(wq->unbound_attrs->cpumask));
5086 mutex_unlock(&wq->mutex);
5087 return written;
5088 }
5089
5090 static ssize_t wq_cpumask_store(struct device *dev,
5091 struct device_attribute *attr,
5092 const char *buf, size_t count)
5093 {
5094 struct workqueue_struct *wq = dev_to_wq(dev);
5095 struct workqueue_attrs *attrs;
5096 int ret = -ENOMEM;
5097
5098 apply_wqattrs_lock();
5099
5100 attrs = wq_sysfs_prep_attrs(wq);
5101 if (!attrs)
5102 goto out_unlock;
5103
5104 ret = cpumask_parse(buf, attrs->cpumask);
5105 if (!ret)
5106 ret = apply_workqueue_attrs_locked(wq, attrs);
5107
5108 out_unlock:
5109 apply_wqattrs_unlock();
5110 free_workqueue_attrs(attrs);
5111 return ret ?: count;
5112 }
5113
5114 static ssize_t wq_numa_show(struct device *dev, struct device_attribute *attr,
5115 char *buf)
5116 {
5117 struct workqueue_struct *wq = dev_to_wq(dev);
5118 int written;
5119
5120 mutex_lock(&wq->mutex);
5121 written = scnprintf(buf, PAGE_SIZE, "%d\n",
5122 !wq->unbound_attrs->no_numa);
5123 mutex_unlock(&wq->mutex);
5124
5125 return written;
5126 }
5127
5128 static ssize_t wq_numa_store(struct device *dev, struct device_attribute *attr,
5129 const char *buf, size_t count)
5130 {
5131 struct workqueue_struct *wq = dev_to_wq(dev);
5132 struct workqueue_attrs *attrs;
5133 int v, ret = -ENOMEM;
5134
5135 apply_wqattrs_lock();
5136
5137 attrs = wq_sysfs_prep_attrs(wq);
5138 if (!attrs)
5139 goto out_unlock;
5140
5141 ret = -EINVAL;
5142 if (sscanf(buf, "%d", &v) == 1) {
5143 attrs->no_numa = !v;
5144 ret = apply_workqueue_attrs_locked(wq, attrs);
5145 }
5146
5147 out_unlock:
5148 apply_wqattrs_unlock();
5149 free_workqueue_attrs(attrs);
5150 return ret ?: count;
5151 }
5152
5153 static struct device_attribute wq_sysfs_unbound_attrs[] = {
5154 __ATTR(pool_ids, 0444, wq_pool_ids_show, NULL),
5155 __ATTR(nice, 0644, wq_nice_show, wq_nice_store),
5156 __ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store),
5157 __ATTR(numa, 0644, wq_numa_show, wq_numa_store),
5158 __ATTR_NULL,
5159 };
5160
5161 static struct bus_type wq_subsys = {
5162 .name = "workqueue",
5163 .dev_groups = wq_sysfs_groups,
5164 };
5165
5166 static ssize_t wq_unbound_cpumask_show(struct device *dev,
5167 struct device_attribute *attr, char *buf)
5168 {
5169 int written;
5170
5171 mutex_lock(&wq_pool_mutex);
5172 written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
5173 cpumask_pr_args(wq_unbound_cpumask));
5174 mutex_unlock(&wq_pool_mutex);
5175
5176 return written;
5177 }
5178
5179 static ssize_t wq_unbound_cpumask_store(struct device *dev,
5180 struct device_attribute *attr, const char *buf, size_t count)
5181 {
5182 cpumask_var_t cpumask;
5183 int ret;
5184
5185 if (!zalloc_cpumask_var(&cpumask, GFP_KERNEL))
5186 return -ENOMEM;
5187
5188 ret = cpumask_parse(buf, cpumask);
5189 if (!ret)
5190 ret = workqueue_set_unbound_cpumask(cpumask);
5191
5192 free_cpumask_var(cpumask);
5193 return ret ? ret : count;
5194 }
5195
5196 static struct device_attribute wq_sysfs_cpumask_attr =
5197 __ATTR(cpumask, 0644, wq_unbound_cpumask_show,
5198 wq_unbound_cpumask_store);
5199
5200 static int __init wq_sysfs_init(void)
5201 {
5202 int err;
5203
5204 err = subsys_virtual_register(&wq_subsys, NULL);
5205 if (err)
5206 return err;
5207
5208 return device_create_file(wq_subsys.dev_root, &wq_sysfs_cpumask_attr);
5209 }
5210 core_initcall(wq_sysfs_init);
5211
5212 static void wq_device_release(struct device *dev)
5213 {
5214 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
5215
5216 kfree(wq_dev);
5217 }
5218
5219 /**
5220 * workqueue_sysfs_register - make a workqueue visible in sysfs
5221 * @wq: the workqueue to register
5222 *
5223 * Expose @wq in sysfs under /sys/bus/workqueue/devices.
5224 * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set
5225 * which is the preferred method.
5226 *
5227 * Workqueue user should use this function directly iff it wants to apply
5228 * workqueue_attrs before making the workqueue visible in sysfs; otherwise,
5229 * apply_workqueue_attrs() may race against userland updating the
5230 * attributes.
5231 *
5232 * Return: 0 on success, -errno on failure.
5233 */
5234 int workqueue_sysfs_register(struct workqueue_struct *wq)
5235 {
5236 struct wq_device *wq_dev;
5237 int ret;
5238
5239 /*
5240 * Adjusting max_active or creating new pwqs by applying
5241 * attributes breaks ordering guarantee. Disallow exposing ordered
5242 * workqueues.
5243 */
5244 if (WARN_ON(wq->flags & __WQ_ORDERED))
5245 return -EINVAL;
5246
5247 wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL);
5248 if (!wq_dev)
5249 return -ENOMEM;
5250
5251 wq_dev->wq = wq;
5252 wq_dev->dev.bus = &wq_subsys;
5253 wq_dev->dev.init_name = wq->name;
5254 wq_dev->dev.release = wq_device_release;
5255
5256 /*
5257 * unbound_attrs are created separately. Suppress uevent until
5258 * everything is ready.
5259 */
5260 dev_set_uevent_suppress(&wq_dev->dev, true);
5261
5262 ret = device_register(&wq_dev->dev);
5263 if (ret) {
5264 kfree(wq_dev);
5265 wq->wq_dev = NULL;
5266 return ret;
5267 }
5268
5269 if (wq->flags & WQ_UNBOUND) {
5270 struct device_attribute *attr;
5271
5272 for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) {
5273 ret = device_create_file(&wq_dev->dev, attr);
5274 if (ret) {
5275 device_unregister(&wq_dev->dev);
5276 wq->wq_dev = NULL;
5277 return ret;
5278 }
5279 }
5280 }
5281
5282 dev_set_uevent_suppress(&wq_dev->dev, false);
5283 kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD);
5284 return 0;
5285 }
5286
5287 /**
5288 * workqueue_sysfs_unregister - undo workqueue_sysfs_register()
5289 * @wq: the workqueue to unregister
5290 *
5291 * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister.
5292 */
5293 static void workqueue_sysfs_unregister(struct workqueue_struct *wq)
5294 {
5295 struct wq_device *wq_dev = wq->wq_dev;
5296
5297 if (!wq->wq_dev)
5298 return;
5299
5300 wq->wq_dev = NULL;
5301 device_unregister(&wq_dev->dev);
5302 }
5303 #else /* CONFIG_SYSFS */
5304 static void workqueue_sysfs_unregister(struct workqueue_struct *wq) { }
5305 #endif /* CONFIG_SYSFS */
5306
5307 /*
5308 * Workqueue watchdog.
5309 *
5310 * Stall may be caused by various bugs - missing WQ_MEM_RECLAIM, illegal
5311 * flush dependency, a concurrency managed work item which stays RUNNING
5312 * indefinitely. Workqueue stalls can be very difficult to debug as the
5313 * usual warning mechanisms don't trigger and internal workqueue state is
5314 * largely opaque.
5315 *
5316 * Workqueue watchdog monitors all worker pools periodically and dumps
5317 * state if some pools failed to make forward progress for a while where
5318 * forward progress is defined as the first item on ->worklist changing.
5319 *
5320 * This mechanism is controlled through the kernel parameter
5321 * "workqueue.watchdog_thresh" which can be updated at runtime through the
5322 * corresponding sysfs parameter file.
5323 */
5324 #ifdef CONFIG_WQ_WATCHDOG
5325
5326 static void wq_watchdog_timer_fn(unsigned long data);
5327
5328 static unsigned long wq_watchdog_thresh = 30;
5329 static struct timer_list wq_watchdog_timer =
5330 TIMER_DEFERRED_INITIALIZER(wq_watchdog_timer_fn, 0, 0);
5331
5332 static unsigned long wq_watchdog_touched = INITIAL_JIFFIES;
5333 static DEFINE_PER_CPU(unsigned long, wq_watchdog_touched_cpu) = INITIAL_JIFFIES;
5334
5335 static void wq_watchdog_reset_touched(void)
5336 {
5337 int cpu;
5338
5339 wq_watchdog_touched = jiffies;
5340 for_each_possible_cpu(cpu)
5341 per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
5342 }
5343
5344 static void wq_watchdog_timer_fn(unsigned long data)
5345 {
5346 unsigned long thresh = READ_ONCE(wq_watchdog_thresh) * HZ;
5347 bool lockup_detected = false;
5348 struct worker_pool *pool;
5349 int pi;
5350
5351 if (!thresh)
5352 return;
5353
5354 rcu_read_lock();
5355
5356 for_each_pool(pool, pi) {
5357 unsigned long pool_ts, touched, ts;
5358
5359 if (list_empty(&pool->worklist))
5360 continue;
5361
5362 /* get the latest of pool and touched timestamps */
5363 pool_ts = READ_ONCE(pool->watchdog_ts);
5364 touched = READ_ONCE(wq_watchdog_touched);
5365
5366 if (time_after(pool_ts, touched))
5367 ts = pool_ts;
5368 else
5369 ts = touched;
5370
5371 if (pool->cpu >= 0) {
5372 unsigned long cpu_touched =
5373 READ_ONCE(per_cpu(wq_watchdog_touched_cpu,
5374 pool->cpu));
5375 if (time_after(cpu_touched, ts))
5376 ts = cpu_touched;
5377 }
5378
5379 /* did we stall? */
5380 if (time_after(jiffies, ts + thresh)) {
5381 lockup_detected = true;
5382 pr_emerg("BUG: workqueue lockup - pool");
5383 pr_cont_pool_info(pool);
5384 pr_cont(" stuck for %us!\n",
5385 jiffies_to_msecs(jiffies - pool_ts) / 1000);
5386 }
5387 }
5388
5389 rcu_read_unlock();
5390
5391 if (lockup_detected)
5392 show_workqueue_state();
5393
5394 wq_watchdog_reset_touched();
5395 mod_timer(&wq_watchdog_timer, jiffies + thresh);
5396 }
5397
5398 void wq_watchdog_touch(int cpu)
5399 {
5400 if (cpu >= 0)
5401 per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
5402 else
5403 wq_watchdog_touched = jiffies;
5404 }
5405
5406 static void wq_watchdog_set_thresh(unsigned long thresh)
5407 {
5408 wq_watchdog_thresh = 0;
5409 del_timer_sync(&wq_watchdog_timer);
5410
5411 if (thresh) {
5412 wq_watchdog_thresh = thresh;
5413 wq_watchdog_reset_touched();
5414 mod_timer(&wq_watchdog_timer, jiffies + thresh * HZ);
5415 }
5416 }
5417
5418 static int wq_watchdog_param_set_thresh(const char *val,
5419 const struct kernel_param *kp)
5420 {
5421 unsigned long thresh;
5422 int ret;
5423
5424 ret = kstrtoul(val, 0, &thresh);
5425 if (ret)
5426 return ret;
5427
5428 if (system_wq)
5429 wq_watchdog_set_thresh(thresh);
5430 else
5431 wq_watchdog_thresh = thresh;
5432
5433 return 0;
5434 }
5435
5436 static const struct kernel_param_ops wq_watchdog_thresh_ops = {
5437 .set = wq_watchdog_param_set_thresh,
5438 .get = param_get_ulong,
5439 };
5440
5441 module_param_cb(watchdog_thresh, &wq_watchdog_thresh_ops, &wq_watchdog_thresh,
5442 0644);
5443
5444 static void wq_watchdog_init(void)
5445 {
5446 wq_watchdog_set_thresh(wq_watchdog_thresh);
5447 }
5448
5449 #else /* CONFIG_WQ_WATCHDOG */
5450
5451 static inline void wq_watchdog_init(void) { }
5452
5453 #endif /* CONFIG_WQ_WATCHDOG */
5454
5455 static void __init wq_numa_init(void)
5456 {
5457 cpumask_var_t *tbl;
5458 int node, cpu;
5459
5460 if (num_possible_nodes() <= 1)
5461 return;
5462
5463 if (wq_disable_numa) {
5464 pr_info("workqueue: NUMA affinity support disabled\n");
5465 return;
5466 }
5467
5468 wq_update_unbound_numa_attrs_buf = alloc_workqueue_attrs(GFP_KERNEL);
5469 BUG_ON(!wq_update_unbound_numa_attrs_buf);
5470
5471 /*
5472 * We want masks of possible CPUs of each node which isn't readily
5473 * available. Build one from cpu_to_node() which should have been
5474 * fully initialized by now.
5475 */
5476 tbl = kzalloc(nr_node_ids * sizeof(tbl[0]), GFP_KERNEL);
5477 BUG_ON(!tbl);
5478
5479 for_each_node(node)
5480 BUG_ON(!zalloc_cpumask_var_node(&tbl[node], GFP_KERNEL,
5481 node_online(node) ? node : NUMA_NO_NODE));
5482
5483 for_each_possible_cpu(cpu) {
5484 node = cpu_to_node(cpu);
5485 if (WARN_ON(node == NUMA_NO_NODE)) {
5486 pr_warn("workqueue: NUMA node mapping not available for cpu%d, disabling NUMA support\n", cpu);
5487 /* happens iff arch is bonkers, let's just proceed */
5488 return;
5489 }
5490 cpumask_set_cpu(cpu, tbl[node]);
5491 }
5492
5493 wq_numa_possible_cpumask = tbl;
5494 wq_numa_enabled = true;
5495 }
5496
5497 static int __init init_workqueues(void)
5498 {
5499 int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL };
5500 int i, cpu;
5501
5502 WARN_ON(__alignof__(struct pool_workqueue) < __alignof__(long long));
5503
5504 BUG_ON(!alloc_cpumask_var(&wq_unbound_cpumask, GFP_KERNEL));
5505 cpumask_copy(wq_unbound_cpumask, cpu_possible_mask);
5506
5507 pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC);
5508
5509 cpu_notifier(workqueue_cpu_up_callback, CPU_PRI_WORKQUEUE_UP);
5510 hotcpu_notifier(workqueue_cpu_down_callback, CPU_PRI_WORKQUEUE_DOWN);
5511
5512 wq_numa_init();
5513
5514 /* initialize CPU pools */
5515 for_each_possible_cpu(cpu) {
5516 struct worker_pool *pool;
5517
5518 i = 0;
5519 for_each_cpu_worker_pool(pool, cpu) {
5520 BUG_ON(init_worker_pool(pool));
5521 pool->cpu = cpu;
5522 cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu));
5523 pool->attrs->nice = std_nice[i++];
5524 pool->node = cpu_to_node(cpu);
5525
5526 /* alloc pool ID */
5527 mutex_lock(&wq_pool_mutex);
5528 BUG_ON(worker_pool_assign_id(pool));
5529 mutex_unlock(&wq_pool_mutex);
5530 }
5531 }
5532
5533 /* create the initial worker */
5534 for_each_online_cpu(cpu) {
5535 struct worker_pool *pool;
5536
5537 for_each_cpu_worker_pool(pool, cpu) {
5538 pool->flags &= ~POOL_DISASSOCIATED;
5539 BUG_ON(!create_worker(pool));
5540 }
5541 }
5542
5543 /* create default unbound and ordered wq attrs */
5544 for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
5545 struct workqueue_attrs *attrs;
5546
5547 BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
5548 attrs->nice = std_nice[i];
5549 unbound_std_wq_attrs[i] = attrs;
5550
5551 /*
5552 * An ordered wq should have only one pwq as ordering is
5553 * guaranteed by max_active which is enforced by pwqs.
5554 * Turn off NUMA so that dfl_pwq is used for all nodes.
5555 */
5556 BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
5557 attrs->nice = std_nice[i];
5558 attrs->no_numa = true;
5559 ordered_wq_attrs[i] = attrs;
5560 }
5561
5562 system_wq = alloc_workqueue("events", 0, 0);
5563 system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
5564 system_long_wq = alloc_workqueue("events_long", 0, 0);
5565 system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
5566 WQ_UNBOUND_MAX_ACTIVE);
5567 system_freezable_wq = alloc_workqueue("events_freezable",
5568 WQ_FREEZABLE, 0);
5569 system_power_efficient_wq = alloc_workqueue("events_power_efficient",
5570 WQ_POWER_EFFICIENT, 0);
5571 system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_power_efficient",
5572 WQ_FREEZABLE | WQ_POWER_EFFICIENT,
5573 0);
5574 BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
5575 !system_unbound_wq || !system_freezable_wq ||
5576 !system_power_efficient_wq ||
5577 !system_freezable_power_efficient_wq);
5578
5579 wq_watchdog_init();
5580
5581 return 0;
5582 }
5583 early_initcall(init_workqueues);