]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blob - kernel/workqueue.c
workqueue: Fix missing kfree(rescuer) in destroy_workqueue()
[mirror_ubuntu-focal-kernel.git] / kernel / workqueue.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * kernel/workqueue.c - generic async execution with shared worker pool
4 *
5 * Copyright (C) 2002 Ingo Molnar
6 *
7 * Derived from the taskqueue/keventd code by:
8 * David Woodhouse <dwmw2@infradead.org>
9 * Andrew Morton
10 * Kai Petzke <wpp@marie.physik.tu-berlin.de>
11 * Theodore Ts'o <tytso@mit.edu>
12 *
13 * Made to use alloc_percpu by Christoph Lameter.
14 *
15 * Copyright (C) 2010 SUSE Linux Products GmbH
16 * Copyright (C) 2010 Tejun Heo <tj@kernel.org>
17 *
18 * This is the generic async execution mechanism. Work items as are
19 * executed in process context. The worker pool is shared and
20 * automatically managed. There are two worker pools for each CPU (one for
21 * normal work items and the other for high priority ones) and some extra
22 * pools for workqueues which are not bound to any specific CPU - the
23 * number of these backing pools is dynamic.
24 *
25 * Please read Documentation/core-api/workqueue.rst for details.
26 */
27
28 #include <linux/export.h>
29 #include <linux/kernel.h>
30 #include <linux/sched.h>
31 #include <linux/init.h>
32 #include <linux/signal.h>
33 #include <linux/completion.h>
34 #include <linux/workqueue.h>
35 #include <linux/slab.h>
36 #include <linux/cpu.h>
37 #include <linux/notifier.h>
38 #include <linux/kthread.h>
39 #include <linux/hardirq.h>
40 #include <linux/mempolicy.h>
41 #include <linux/freezer.h>
42 #include <linux/debug_locks.h>
43 #include <linux/lockdep.h>
44 #include <linux/idr.h>
45 #include <linux/jhash.h>
46 #include <linux/hashtable.h>
47 #include <linux/rculist.h>
48 #include <linux/nodemask.h>
49 #include <linux/moduleparam.h>
50 #include <linux/uaccess.h>
51 #include <linux/sched/isolation.h>
52 #include <linux/nmi.h>
53
54 #include "workqueue_internal.h"
55
56 enum {
57 /*
58 * worker_pool flags
59 *
60 * A bound pool is either associated or disassociated with its CPU.
61 * While associated (!DISASSOCIATED), all workers are bound to the
62 * CPU and none has %WORKER_UNBOUND set and concurrency management
63 * is in effect.
64 *
65 * While DISASSOCIATED, the cpu may be offline and all workers have
66 * %WORKER_UNBOUND set and concurrency management disabled, and may
67 * be executing on any CPU. The pool behaves as an unbound one.
68 *
69 * Note that DISASSOCIATED should be flipped only while holding
70 * wq_pool_attach_mutex to avoid changing binding state while
71 * worker_attach_to_pool() is in progress.
72 */
73 POOL_MANAGER_ACTIVE = 1 << 0, /* being managed */
74 POOL_DISASSOCIATED = 1 << 2, /* cpu can't serve workers */
75
76 /* worker flags */
77 WORKER_DIE = 1 << 1, /* die die die */
78 WORKER_IDLE = 1 << 2, /* is idle */
79 WORKER_PREP = 1 << 3, /* preparing to run works */
80 WORKER_CPU_INTENSIVE = 1 << 6, /* cpu intensive */
81 WORKER_UNBOUND = 1 << 7, /* worker is unbound */
82 WORKER_REBOUND = 1 << 8, /* worker was rebound */
83
84 WORKER_NOT_RUNNING = WORKER_PREP | WORKER_CPU_INTENSIVE |
85 WORKER_UNBOUND | WORKER_REBOUND,
86
87 NR_STD_WORKER_POOLS = 2, /* # standard pools per cpu */
88
89 UNBOUND_POOL_HASH_ORDER = 6, /* hashed by pool->attrs */
90 BUSY_WORKER_HASH_ORDER = 6, /* 64 pointers */
91
92 MAX_IDLE_WORKERS_RATIO = 4, /* 1/4 of busy can be idle */
93 IDLE_WORKER_TIMEOUT = 300 * HZ, /* keep idle ones for 5 mins */
94
95 MAYDAY_INITIAL_TIMEOUT = HZ / 100 >= 2 ? HZ / 100 : 2,
96 /* call for help after 10ms
97 (min two ticks) */
98 MAYDAY_INTERVAL = HZ / 10, /* and then every 100ms */
99 CREATE_COOLDOWN = HZ, /* time to breath after fail */
100
101 /*
102 * Rescue workers are used only on emergencies and shared by
103 * all cpus. Give MIN_NICE.
104 */
105 RESCUER_NICE_LEVEL = MIN_NICE,
106 HIGHPRI_NICE_LEVEL = MIN_NICE,
107
108 WQ_NAME_LEN = 24,
109 };
110
111 /*
112 * Structure fields follow one of the following exclusion rules.
113 *
114 * I: Modifiable by initialization/destruction paths and read-only for
115 * everyone else.
116 *
117 * P: Preemption protected. Disabling preemption is enough and should
118 * only be modified and accessed from the local cpu.
119 *
120 * L: pool->lock protected. Access with pool->lock held.
121 *
122 * X: During normal operation, modification requires pool->lock and should
123 * be done only from local cpu. Either disabling preemption on local
124 * cpu or grabbing pool->lock is enough for read access. If
125 * POOL_DISASSOCIATED is set, it's identical to L.
126 *
127 * A: wq_pool_attach_mutex protected.
128 *
129 * PL: wq_pool_mutex protected.
130 *
131 * PR: wq_pool_mutex protected for writes. RCU protected for reads.
132 *
133 * PW: wq_pool_mutex and wq->mutex protected for writes. Either for reads.
134 *
135 * PWR: wq_pool_mutex and wq->mutex protected for writes. Either or
136 * RCU for reads.
137 *
138 * WQ: wq->mutex protected.
139 *
140 * WR: wq->mutex protected for writes. RCU protected for reads.
141 *
142 * MD: wq_mayday_lock protected.
143 */
144
145 /* struct worker is defined in workqueue_internal.h */
146
147 struct worker_pool {
148 spinlock_t lock; /* the pool lock */
149 int cpu; /* I: the associated cpu */
150 int node; /* I: the associated node ID */
151 int id; /* I: pool ID */
152 unsigned int flags; /* X: flags */
153
154 unsigned long watchdog_ts; /* L: watchdog timestamp */
155
156 struct list_head worklist; /* L: list of pending works */
157
158 int nr_workers; /* L: total number of workers */
159 int nr_idle; /* L: currently idle workers */
160
161 struct list_head idle_list; /* X: list of idle workers */
162 struct timer_list idle_timer; /* L: worker idle timeout */
163 struct timer_list mayday_timer; /* L: SOS timer for workers */
164
165 /* a workers is either on busy_hash or idle_list, or the manager */
166 DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
167 /* L: hash of busy workers */
168
169 struct worker *manager; /* L: purely informational */
170 struct list_head workers; /* A: attached workers */
171 struct completion *detach_completion; /* all workers detached */
172
173 struct ida worker_ida; /* worker IDs for task name */
174
175 struct workqueue_attrs *attrs; /* I: worker attributes */
176 struct hlist_node hash_node; /* PL: unbound_pool_hash node */
177 int refcnt; /* PL: refcnt for unbound pools */
178
179 /*
180 * The current concurrency level. As it's likely to be accessed
181 * from other CPUs during try_to_wake_up(), put it in a separate
182 * cacheline.
183 */
184 atomic_t nr_running ____cacheline_aligned_in_smp;
185
186 /*
187 * Destruction of pool is RCU protected to allow dereferences
188 * from get_work_pool().
189 */
190 struct rcu_head rcu;
191 } ____cacheline_aligned_in_smp;
192
193 /*
194 * The per-pool workqueue. While queued, the lower WORK_STRUCT_FLAG_BITS
195 * of work_struct->data are used for flags and the remaining high bits
196 * point to the pwq; thus, pwqs need to be aligned at two's power of the
197 * number of flag bits.
198 */
199 struct pool_workqueue {
200 struct worker_pool *pool; /* I: the associated pool */
201 struct workqueue_struct *wq; /* I: the owning workqueue */
202 int work_color; /* L: current color */
203 int flush_color; /* L: flushing color */
204 int refcnt; /* L: reference count */
205 int nr_in_flight[WORK_NR_COLORS];
206 /* L: nr of in_flight works */
207 int nr_active; /* L: nr of active works */
208 int max_active; /* L: max active works */
209 struct list_head delayed_works; /* L: delayed works */
210 struct list_head pwqs_node; /* WR: node on wq->pwqs */
211 struct list_head mayday_node; /* MD: node on wq->maydays */
212
213 /*
214 * Release of unbound pwq is punted to system_wq. See put_pwq()
215 * and pwq_unbound_release_workfn() for details. pool_workqueue
216 * itself is also RCU protected so that the first pwq can be
217 * determined without grabbing wq->mutex.
218 */
219 struct work_struct unbound_release_work;
220 struct rcu_head rcu;
221 } __aligned(1 << WORK_STRUCT_FLAG_BITS);
222
223 /*
224 * Structure used to wait for workqueue flush.
225 */
226 struct wq_flusher {
227 struct list_head list; /* WQ: list of flushers */
228 int flush_color; /* WQ: flush color waiting for */
229 struct completion done; /* flush completion */
230 };
231
232 struct wq_device;
233
234 /*
235 * The externally visible workqueue. It relays the issued work items to
236 * the appropriate worker_pool through its pool_workqueues.
237 */
238 struct workqueue_struct {
239 struct list_head pwqs; /* WR: all pwqs of this wq */
240 struct list_head list; /* PR: list of all workqueues */
241
242 struct mutex mutex; /* protects this wq */
243 int work_color; /* WQ: current work color */
244 int flush_color; /* WQ: current flush color */
245 atomic_t nr_pwqs_to_flush; /* flush in progress */
246 struct wq_flusher *first_flusher; /* WQ: first flusher */
247 struct list_head flusher_queue; /* WQ: flush waiters */
248 struct list_head flusher_overflow; /* WQ: flush overflow list */
249
250 struct list_head maydays; /* MD: pwqs requesting rescue */
251 struct worker *rescuer; /* I: rescue worker */
252
253 int nr_drainers; /* WQ: drain in progress */
254 int saved_max_active; /* WQ: saved pwq max_active */
255
256 struct workqueue_attrs *unbound_attrs; /* PW: only for unbound wqs */
257 struct pool_workqueue *dfl_pwq; /* PW: only for unbound wqs */
258
259 #ifdef CONFIG_SYSFS
260 struct wq_device *wq_dev; /* I: for sysfs interface */
261 #endif
262 #ifdef CONFIG_LOCKDEP
263 char *lock_name;
264 struct lock_class_key key;
265 struct lockdep_map lockdep_map;
266 #endif
267 char name[WQ_NAME_LEN]; /* I: workqueue name */
268
269 /*
270 * Destruction of workqueue_struct is RCU protected to allow walking
271 * the workqueues list without grabbing wq_pool_mutex.
272 * This is used to dump all workqueues from sysrq.
273 */
274 struct rcu_head rcu;
275
276 /* hot fields used during command issue, aligned to cacheline */
277 unsigned int flags ____cacheline_aligned; /* WQ: WQ_* flags */
278 struct pool_workqueue __percpu *cpu_pwqs; /* I: per-cpu pwqs */
279 struct pool_workqueue __rcu *numa_pwq_tbl[]; /* PWR: unbound pwqs indexed by node */
280 };
281
282 static struct kmem_cache *pwq_cache;
283
284 static cpumask_var_t *wq_numa_possible_cpumask;
285 /* possible CPUs of each node */
286
287 static bool wq_disable_numa;
288 module_param_named(disable_numa, wq_disable_numa, bool, 0444);
289
290 /* see the comment above the definition of WQ_POWER_EFFICIENT */
291 static bool wq_power_efficient = IS_ENABLED(CONFIG_WQ_POWER_EFFICIENT_DEFAULT);
292 module_param_named(power_efficient, wq_power_efficient, bool, 0444);
293
294 static bool wq_online; /* can kworkers be created yet? */
295
296 static bool wq_numa_enabled; /* unbound NUMA affinity enabled */
297
298 /* buf for wq_update_unbound_numa_attrs(), protected by CPU hotplug exclusion */
299 static struct workqueue_attrs *wq_update_unbound_numa_attrs_buf;
300
301 static DEFINE_MUTEX(wq_pool_mutex); /* protects pools and workqueues list */
302 static DEFINE_MUTEX(wq_pool_attach_mutex); /* protects worker attach/detach */
303 static DEFINE_SPINLOCK(wq_mayday_lock); /* protects wq->maydays list */
304 static DECLARE_WAIT_QUEUE_HEAD(wq_manager_wait); /* wait for manager to go away */
305
306 static LIST_HEAD(workqueues); /* PR: list of all workqueues */
307 static bool workqueue_freezing; /* PL: have wqs started freezing? */
308
309 /* PL: allowable cpus for unbound wqs and work items */
310 static cpumask_var_t wq_unbound_cpumask;
311
312 /* CPU where unbound work was last round robin scheduled from this CPU */
313 static DEFINE_PER_CPU(int, wq_rr_cpu_last);
314
315 /*
316 * Local execution of unbound work items is no longer guaranteed. The
317 * following always forces round-robin CPU selection on unbound work items
318 * to uncover usages which depend on it.
319 */
320 #ifdef CONFIG_DEBUG_WQ_FORCE_RR_CPU
321 static bool wq_debug_force_rr_cpu = true;
322 #else
323 static bool wq_debug_force_rr_cpu = false;
324 #endif
325 module_param_named(debug_force_rr_cpu, wq_debug_force_rr_cpu, bool, 0644);
326
327 /* the per-cpu worker pools */
328 static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS], cpu_worker_pools);
329
330 static DEFINE_IDR(worker_pool_idr); /* PR: idr of all pools */
331
332 /* PL: hash of all unbound pools keyed by pool->attrs */
333 static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER);
334
335 /* I: attributes used when instantiating standard unbound pools on demand */
336 static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS];
337
338 /* I: attributes used when instantiating ordered pools on demand */
339 static struct workqueue_attrs *ordered_wq_attrs[NR_STD_WORKER_POOLS];
340
341 struct workqueue_struct *system_wq __read_mostly;
342 EXPORT_SYMBOL(system_wq);
343 struct workqueue_struct *system_highpri_wq __read_mostly;
344 EXPORT_SYMBOL_GPL(system_highpri_wq);
345 struct workqueue_struct *system_long_wq __read_mostly;
346 EXPORT_SYMBOL_GPL(system_long_wq);
347 struct workqueue_struct *system_unbound_wq __read_mostly;
348 EXPORT_SYMBOL_GPL(system_unbound_wq);
349 struct workqueue_struct *system_freezable_wq __read_mostly;
350 EXPORT_SYMBOL_GPL(system_freezable_wq);
351 struct workqueue_struct *system_power_efficient_wq __read_mostly;
352 EXPORT_SYMBOL_GPL(system_power_efficient_wq);
353 struct workqueue_struct *system_freezable_power_efficient_wq __read_mostly;
354 EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq);
355
356 static int worker_thread(void *__worker);
357 static void workqueue_sysfs_unregister(struct workqueue_struct *wq);
358
359 #define CREATE_TRACE_POINTS
360 #include <trace/events/workqueue.h>
361
362 #define assert_rcu_or_pool_mutex() \
363 RCU_LOCKDEP_WARN(!rcu_read_lock_held() && \
364 !lockdep_is_held(&wq_pool_mutex), \
365 "RCU or wq_pool_mutex should be held")
366
367 #define assert_rcu_or_wq_mutex(wq) \
368 RCU_LOCKDEP_WARN(!rcu_read_lock_held() && \
369 !lockdep_is_held(&wq->mutex), \
370 "RCU or wq->mutex should be held")
371
372 #define assert_rcu_or_wq_mutex_or_pool_mutex(wq) \
373 RCU_LOCKDEP_WARN(!rcu_read_lock_held() && \
374 !lockdep_is_held(&wq->mutex) && \
375 !lockdep_is_held(&wq_pool_mutex), \
376 "RCU, wq->mutex or wq_pool_mutex should be held")
377
378 #define for_each_cpu_worker_pool(pool, cpu) \
379 for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0]; \
380 (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
381 (pool)++)
382
383 /**
384 * for_each_pool - iterate through all worker_pools in the system
385 * @pool: iteration cursor
386 * @pi: integer used for iteration
387 *
388 * This must be called either with wq_pool_mutex held or RCU read
389 * locked. If the pool needs to be used beyond the locking in effect, the
390 * caller is responsible for guaranteeing that the pool stays online.
391 *
392 * The if/else clause exists only for the lockdep assertion and can be
393 * ignored.
394 */
395 #define for_each_pool(pool, pi) \
396 idr_for_each_entry(&worker_pool_idr, pool, pi) \
397 if (({ assert_rcu_or_pool_mutex(); false; })) { } \
398 else
399
400 /**
401 * for_each_pool_worker - iterate through all workers of a worker_pool
402 * @worker: iteration cursor
403 * @pool: worker_pool to iterate workers of
404 *
405 * This must be called with wq_pool_attach_mutex.
406 *
407 * The if/else clause exists only for the lockdep assertion and can be
408 * ignored.
409 */
410 #define for_each_pool_worker(worker, pool) \
411 list_for_each_entry((worker), &(pool)->workers, node) \
412 if (({ lockdep_assert_held(&wq_pool_attach_mutex); false; })) { } \
413 else
414
415 /**
416 * for_each_pwq - iterate through all pool_workqueues of the specified workqueue
417 * @pwq: iteration cursor
418 * @wq: the target workqueue
419 *
420 * This must be called either with wq->mutex held or RCU read locked.
421 * If the pwq needs to be used beyond the locking in effect, the caller is
422 * responsible for guaranteeing that the pwq stays online.
423 *
424 * The if/else clause exists only for the lockdep assertion and can be
425 * ignored.
426 */
427 #define for_each_pwq(pwq, wq) \
428 list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node) \
429 if (({ assert_rcu_or_wq_mutex(wq); false; })) { } \
430 else
431
432 #ifdef CONFIG_DEBUG_OBJECTS_WORK
433
434 static struct debug_obj_descr work_debug_descr;
435
436 static void *work_debug_hint(void *addr)
437 {
438 return ((struct work_struct *) addr)->func;
439 }
440
441 static bool work_is_static_object(void *addr)
442 {
443 struct work_struct *work = addr;
444
445 return test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work));
446 }
447
448 /*
449 * fixup_init is called when:
450 * - an active object is initialized
451 */
452 static bool work_fixup_init(void *addr, enum debug_obj_state state)
453 {
454 struct work_struct *work = addr;
455
456 switch (state) {
457 case ODEBUG_STATE_ACTIVE:
458 cancel_work_sync(work);
459 debug_object_init(work, &work_debug_descr);
460 return true;
461 default:
462 return false;
463 }
464 }
465
466 /*
467 * fixup_free is called when:
468 * - an active object is freed
469 */
470 static bool work_fixup_free(void *addr, enum debug_obj_state state)
471 {
472 struct work_struct *work = addr;
473
474 switch (state) {
475 case ODEBUG_STATE_ACTIVE:
476 cancel_work_sync(work);
477 debug_object_free(work, &work_debug_descr);
478 return true;
479 default:
480 return false;
481 }
482 }
483
484 static struct debug_obj_descr work_debug_descr = {
485 .name = "work_struct",
486 .debug_hint = work_debug_hint,
487 .is_static_object = work_is_static_object,
488 .fixup_init = work_fixup_init,
489 .fixup_free = work_fixup_free,
490 };
491
492 static inline void debug_work_activate(struct work_struct *work)
493 {
494 debug_object_activate(work, &work_debug_descr);
495 }
496
497 static inline void debug_work_deactivate(struct work_struct *work)
498 {
499 debug_object_deactivate(work, &work_debug_descr);
500 }
501
502 void __init_work(struct work_struct *work, int onstack)
503 {
504 if (onstack)
505 debug_object_init_on_stack(work, &work_debug_descr);
506 else
507 debug_object_init(work, &work_debug_descr);
508 }
509 EXPORT_SYMBOL_GPL(__init_work);
510
511 void destroy_work_on_stack(struct work_struct *work)
512 {
513 debug_object_free(work, &work_debug_descr);
514 }
515 EXPORT_SYMBOL_GPL(destroy_work_on_stack);
516
517 void destroy_delayed_work_on_stack(struct delayed_work *work)
518 {
519 destroy_timer_on_stack(&work->timer);
520 debug_object_free(&work->work, &work_debug_descr);
521 }
522 EXPORT_SYMBOL_GPL(destroy_delayed_work_on_stack);
523
524 #else
525 static inline void debug_work_activate(struct work_struct *work) { }
526 static inline void debug_work_deactivate(struct work_struct *work) { }
527 #endif
528
529 /**
530 * worker_pool_assign_id - allocate ID and assing it to @pool
531 * @pool: the pool pointer of interest
532 *
533 * Returns 0 if ID in [0, WORK_OFFQ_POOL_NONE) is allocated and assigned
534 * successfully, -errno on failure.
535 */
536 static int worker_pool_assign_id(struct worker_pool *pool)
537 {
538 int ret;
539
540 lockdep_assert_held(&wq_pool_mutex);
541
542 ret = idr_alloc(&worker_pool_idr, pool, 0, WORK_OFFQ_POOL_NONE,
543 GFP_KERNEL);
544 if (ret >= 0) {
545 pool->id = ret;
546 return 0;
547 }
548 return ret;
549 }
550
551 /**
552 * unbound_pwq_by_node - return the unbound pool_workqueue for the given node
553 * @wq: the target workqueue
554 * @node: the node ID
555 *
556 * This must be called with any of wq_pool_mutex, wq->mutex or RCU
557 * read locked.
558 * If the pwq needs to be used beyond the locking in effect, the caller is
559 * responsible for guaranteeing that the pwq stays online.
560 *
561 * Return: The unbound pool_workqueue for @node.
562 */
563 static struct pool_workqueue *unbound_pwq_by_node(struct workqueue_struct *wq,
564 int node)
565 {
566 assert_rcu_or_wq_mutex_or_pool_mutex(wq);
567
568 /*
569 * XXX: @node can be NUMA_NO_NODE if CPU goes offline while a
570 * delayed item is pending. The plan is to keep CPU -> NODE
571 * mapping valid and stable across CPU on/offlines. Once that
572 * happens, this workaround can be removed.
573 */
574 if (unlikely(node == NUMA_NO_NODE))
575 return wq->dfl_pwq;
576
577 return rcu_dereference_raw(wq->numa_pwq_tbl[node]);
578 }
579
580 static unsigned int work_color_to_flags(int color)
581 {
582 return color << WORK_STRUCT_COLOR_SHIFT;
583 }
584
585 static int get_work_color(struct work_struct *work)
586 {
587 return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
588 ((1 << WORK_STRUCT_COLOR_BITS) - 1);
589 }
590
591 static int work_next_color(int color)
592 {
593 return (color + 1) % WORK_NR_COLORS;
594 }
595
596 /*
597 * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
598 * contain the pointer to the queued pwq. Once execution starts, the flag
599 * is cleared and the high bits contain OFFQ flags and pool ID.
600 *
601 * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling()
602 * and clear_work_data() can be used to set the pwq, pool or clear
603 * work->data. These functions should only be called while the work is
604 * owned - ie. while the PENDING bit is set.
605 *
606 * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
607 * corresponding to a work. Pool is available once the work has been
608 * queued anywhere after initialization until it is sync canceled. pwq is
609 * available only while the work item is queued.
610 *
611 * %WORK_OFFQ_CANCELING is used to mark a work item which is being
612 * canceled. While being canceled, a work item may have its PENDING set
613 * but stay off timer and worklist for arbitrarily long and nobody should
614 * try to steal the PENDING bit.
615 */
616 static inline void set_work_data(struct work_struct *work, unsigned long data,
617 unsigned long flags)
618 {
619 WARN_ON_ONCE(!work_pending(work));
620 atomic_long_set(&work->data, data | flags | work_static(work));
621 }
622
623 static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq,
624 unsigned long extra_flags)
625 {
626 set_work_data(work, (unsigned long)pwq,
627 WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags);
628 }
629
630 static void set_work_pool_and_keep_pending(struct work_struct *work,
631 int pool_id)
632 {
633 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT,
634 WORK_STRUCT_PENDING);
635 }
636
637 static void set_work_pool_and_clear_pending(struct work_struct *work,
638 int pool_id)
639 {
640 /*
641 * The following wmb is paired with the implied mb in
642 * test_and_set_bit(PENDING) and ensures all updates to @work made
643 * here are visible to and precede any updates by the next PENDING
644 * owner.
645 */
646 smp_wmb();
647 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0);
648 /*
649 * The following mb guarantees that previous clear of a PENDING bit
650 * will not be reordered with any speculative LOADS or STORES from
651 * work->current_func, which is executed afterwards. This possible
652 * reordering can lead to a missed execution on attempt to queue
653 * the same @work. E.g. consider this case:
654 *
655 * CPU#0 CPU#1
656 * ---------------------------- --------------------------------
657 *
658 * 1 STORE event_indicated
659 * 2 queue_work_on() {
660 * 3 test_and_set_bit(PENDING)
661 * 4 } set_..._and_clear_pending() {
662 * 5 set_work_data() # clear bit
663 * 6 smp_mb()
664 * 7 work->current_func() {
665 * 8 LOAD event_indicated
666 * }
667 *
668 * Without an explicit full barrier speculative LOAD on line 8 can
669 * be executed before CPU#0 does STORE on line 1. If that happens,
670 * CPU#0 observes the PENDING bit is still set and new execution of
671 * a @work is not queued in a hope, that CPU#1 will eventually
672 * finish the queued @work. Meanwhile CPU#1 does not see
673 * event_indicated is set, because speculative LOAD was executed
674 * before actual STORE.
675 */
676 smp_mb();
677 }
678
679 static void clear_work_data(struct work_struct *work)
680 {
681 smp_wmb(); /* see set_work_pool_and_clear_pending() */
682 set_work_data(work, WORK_STRUCT_NO_POOL, 0);
683 }
684
685 static struct pool_workqueue *get_work_pwq(struct work_struct *work)
686 {
687 unsigned long data = atomic_long_read(&work->data);
688
689 if (data & WORK_STRUCT_PWQ)
690 return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
691 else
692 return NULL;
693 }
694
695 /**
696 * get_work_pool - return the worker_pool a given work was associated with
697 * @work: the work item of interest
698 *
699 * Pools are created and destroyed under wq_pool_mutex, and allows read
700 * access under RCU read lock. As such, this function should be
701 * called under wq_pool_mutex or inside of a rcu_read_lock() region.
702 *
703 * All fields of the returned pool are accessible as long as the above
704 * mentioned locking is in effect. If the returned pool needs to be used
705 * beyond the critical section, the caller is responsible for ensuring the
706 * returned pool is and stays online.
707 *
708 * Return: The worker_pool @work was last associated with. %NULL if none.
709 */
710 static struct worker_pool *get_work_pool(struct work_struct *work)
711 {
712 unsigned long data = atomic_long_read(&work->data);
713 int pool_id;
714
715 assert_rcu_or_pool_mutex();
716
717 if (data & WORK_STRUCT_PWQ)
718 return ((struct pool_workqueue *)
719 (data & WORK_STRUCT_WQ_DATA_MASK))->pool;
720
721 pool_id = data >> WORK_OFFQ_POOL_SHIFT;
722 if (pool_id == WORK_OFFQ_POOL_NONE)
723 return NULL;
724
725 return idr_find(&worker_pool_idr, pool_id);
726 }
727
728 /**
729 * get_work_pool_id - return the worker pool ID a given work is associated with
730 * @work: the work item of interest
731 *
732 * Return: The worker_pool ID @work was last associated with.
733 * %WORK_OFFQ_POOL_NONE if none.
734 */
735 static int get_work_pool_id(struct work_struct *work)
736 {
737 unsigned long data = atomic_long_read(&work->data);
738
739 if (data & WORK_STRUCT_PWQ)
740 return ((struct pool_workqueue *)
741 (data & WORK_STRUCT_WQ_DATA_MASK))->pool->id;
742
743 return data >> WORK_OFFQ_POOL_SHIFT;
744 }
745
746 static void mark_work_canceling(struct work_struct *work)
747 {
748 unsigned long pool_id = get_work_pool_id(work);
749
750 pool_id <<= WORK_OFFQ_POOL_SHIFT;
751 set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING);
752 }
753
754 static bool work_is_canceling(struct work_struct *work)
755 {
756 unsigned long data = atomic_long_read(&work->data);
757
758 return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING);
759 }
760
761 /*
762 * Policy functions. These define the policies on how the global worker
763 * pools are managed. Unless noted otherwise, these functions assume that
764 * they're being called with pool->lock held.
765 */
766
767 static bool __need_more_worker(struct worker_pool *pool)
768 {
769 return !atomic_read(&pool->nr_running);
770 }
771
772 /*
773 * Need to wake up a worker? Called from anything but currently
774 * running workers.
775 *
776 * Note that, because unbound workers never contribute to nr_running, this
777 * function will always return %true for unbound pools as long as the
778 * worklist isn't empty.
779 */
780 static bool need_more_worker(struct worker_pool *pool)
781 {
782 return !list_empty(&pool->worklist) && __need_more_worker(pool);
783 }
784
785 /* Can I start working? Called from busy but !running workers. */
786 static bool may_start_working(struct worker_pool *pool)
787 {
788 return pool->nr_idle;
789 }
790
791 /* Do I need to keep working? Called from currently running workers. */
792 static bool keep_working(struct worker_pool *pool)
793 {
794 return !list_empty(&pool->worklist) &&
795 atomic_read(&pool->nr_running) <= 1;
796 }
797
798 /* Do we need a new worker? Called from manager. */
799 static bool need_to_create_worker(struct worker_pool *pool)
800 {
801 return need_more_worker(pool) && !may_start_working(pool);
802 }
803
804 /* Do we have too many workers and should some go away? */
805 static bool too_many_workers(struct worker_pool *pool)
806 {
807 bool managing = pool->flags & POOL_MANAGER_ACTIVE;
808 int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
809 int nr_busy = pool->nr_workers - nr_idle;
810
811 return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
812 }
813
814 /*
815 * Wake up functions.
816 */
817
818 /* Return the first idle worker. Safe with preemption disabled */
819 static struct worker *first_idle_worker(struct worker_pool *pool)
820 {
821 if (unlikely(list_empty(&pool->idle_list)))
822 return NULL;
823
824 return list_first_entry(&pool->idle_list, struct worker, entry);
825 }
826
827 /**
828 * wake_up_worker - wake up an idle worker
829 * @pool: worker pool to wake worker from
830 *
831 * Wake up the first idle worker of @pool.
832 *
833 * CONTEXT:
834 * spin_lock_irq(pool->lock).
835 */
836 static void wake_up_worker(struct worker_pool *pool)
837 {
838 struct worker *worker = first_idle_worker(pool);
839
840 if (likely(worker))
841 wake_up_process(worker->task);
842 }
843
844 /**
845 * wq_worker_running - a worker is running again
846 * @task: task waking up
847 *
848 * This function is called when a worker returns from schedule()
849 */
850 void wq_worker_running(struct task_struct *task)
851 {
852 struct worker *worker = kthread_data(task);
853
854 if (!worker->sleeping)
855 return;
856 if (!(worker->flags & WORKER_NOT_RUNNING))
857 atomic_inc(&worker->pool->nr_running);
858 worker->sleeping = 0;
859 }
860
861 /**
862 * wq_worker_sleeping - a worker is going to sleep
863 * @task: task going to sleep
864 *
865 * This function is called from schedule() when a busy worker is
866 * going to sleep.
867 */
868 void wq_worker_sleeping(struct task_struct *task)
869 {
870 struct worker *next, *worker = kthread_data(task);
871 struct worker_pool *pool;
872
873 /*
874 * Rescuers, which may not have all the fields set up like normal
875 * workers, also reach here, let's not access anything before
876 * checking NOT_RUNNING.
877 */
878 if (worker->flags & WORKER_NOT_RUNNING)
879 return;
880
881 pool = worker->pool;
882
883 if (WARN_ON_ONCE(worker->sleeping))
884 return;
885
886 worker->sleeping = 1;
887 spin_lock_irq(&pool->lock);
888
889 /*
890 * The counterpart of the following dec_and_test, implied mb,
891 * worklist not empty test sequence is in insert_work().
892 * Please read comment there.
893 *
894 * NOT_RUNNING is clear. This means that we're bound to and
895 * running on the local cpu w/ rq lock held and preemption
896 * disabled, which in turn means that none else could be
897 * manipulating idle_list, so dereferencing idle_list without pool
898 * lock is safe.
899 */
900 if (atomic_dec_and_test(&pool->nr_running) &&
901 !list_empty(&pool->worklist)) {
902 next = first_idle_worker(pool);
903 if (next)
904 wake_up_process(next->task);
905 }
906 spin_unlock_irq(&pool->lock);
907 }
908
909 /**
910 * wq_worker_last_func - retrieve worker's last work function
911 * @task: Task to retrieve last work function of.
912 *
913 * Determine the last function a worker executed. This is called from
914 * the scheduler to get a worker's last known identity.
915 *
916 * CONTEXT:
917 * spin_lock_irq(rq->lock)
918 *
919 * This function is called during schedule() when a kworker is going
920 * to sleep. It's used by psi to identify aggregation workers during
921 * dequeuing, to allow periodic aggregation to shut-off when that
922 * worker is the last task in the system or cgroup to go to sleep.
923 *
924 * As this function doesn't involve any workqueue-related locking, it
925 * only returns stable values when called from inside the scheduler's
926 * queuing and dequeuing paths, when @task, which must be a kworker,
927 * is guaranteed to not be processing any works.
928 *
929 * Return:
930 * The last work function %current executed as a worker, NULL if it
931 * hasn't executed any work yet.
932 */
933 work_func_t wq_worker_last_func(struct task_struct *task)
934 {
935 struct worker *worker = kthread_data(task);
936
937 return worker->last_func;
938 }
939
940 /**
941 * worker_set_flags - set worker flags and adjust nr_running accordingly
942 * @worker: self
943 * @flags: flags to set
944 *
945 * Set @flags in @worker->flags and adjust nr_running accordingly.
946 *
947 * CONTEXT:
948 * spin_lock_irq(pool->lock)
949 */
950 static inline void worker_set_flags(struct worker *worker, unsigned int flags)
951 {
952 struct worker_pool *pool = worker->pool;
953
954 WARN_ON_ONCE(worker->task != current);
955
956 /* If transitioning into NOT_RUNNING, adjust nr_running. */
957 if ((flags & WORKER_NOT_RUNNING) &&
958 !(worker->flags & WORKER_NOT_RUNNING)) {
959 atomic_dec(&pool->nr_running);
960 }
961
962 worker->flags |= flags;
963 }
964
965 /**
966 * worker_clr_flags - clear worker flags and adjust nr_running accordingly
967 * @worker: self
968 * @flags: flags to clear
969 *
970 * Clear @flags in @worker->flags and adjust nr_running accordingly.
971 *
972 * CONTEXT:
973 * spin_lock_irq(pool->lock)
974 */
975 static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
976 {
977 struct worker_pool *pool = worker->pool;
978 unsigned int oflags = worker->flags;
979
980 WARN_ON_ONCE(worker->task != current);
981
982 worker->flags &= ~flags;
983
984 /*
985 * If transitioning out of NOT_RUNNING, increment nr_running. Note
986 * that the nested NOT_RUNNING is not a noop. NOT_RUNNING is mask
987 * of multiple flags, not a single flag.
988 */
989 if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
990 if (!(worker->flags & WORKER_NOT_RUNNING))
991 atomic_inc(&pool->nr_running);
992 }
993
994 /**
995 * find_worker_executing_work - find worker which is executing a work
996 * @pool: pool of interest
997 * @work: work to find worker for
998 *
999 * Find a worker which is executing @work on @pool by searching
1000 * @pool->busy_hash which is keyed by the address of @work. For a worker
1001 * to match, its current execution should match the address of @work and
1002 * its work function. This is to avoid unwanted dependency between
1003 * unrelated work executions through a work item being recycled while still
1004 * being executed.
1005 *
1006 * This is a bit tricky. A work item may be freed once its execution
1007 * starts and nothing prevents the freed area from being recycled for
1008 * another work item. If the same work item address ends up being reused
1009 * before the original execution finishes, workqueue will identify the
1010 * recycled work item as currently executing and make it wait until the
1011 * current execution finishes, introducing an unwanted dependency.
1012 *
1013 * This function checks the work item address and work function to avoid
1014 * false positives. Note that this isn't complete as one may construct a
1015 * work function which can introduce dependency onto itself through a
1016 * recycled work item. Well, if somebody wants to shoot oneself in the
1017 * foot that badly, there's only so much we can do, and if such deadlock
1018 * actually occurs, it should be easy to locate the culprit work function.
1019 *
1020 * CONTEXT:
1021 * spin_lock_irq(pool->lock).
1022 *
1023 * Return:
1024 * Pointer to worker which is executing @work if found, %NULL
1025 * otherwise.
1026 */
1027 static struct worker *find_worker_executing_work(struct worker_pool *pool,
1028 struct work_struct *work)
1029 {
1030 struct worker *worker;
1031
1032 hash_for_each_possible(pool->busy_hash, worker, hentry,
1033 (unsigned long)work)
1034 if (worker->current_work == work &&
1035 worker->current_func == work->func)
1036 return worker;
1037
1038 return NULL;
1039 }
1040
1041 /**
1042 * move_linked_works - move linked works to a list
1043 * @work: start of series of works to be scheduled
1044 * @head: target list to append @work to
1045 * @nextp: out parameter for nested worklist walking
1046 *
1047 * Schedule linked works starting from @work to @head. Work series to
1048 * be scheduled starts at @work and includes any consecutive work with
1049 * WORK_STRUCT_LINKED set in its predecessor.
1050 *
1051 * If @nextp is not NULL, it's updated to point to the next work of
1052 * the last scheduled work. This allows move_linked_works() to be
1053 * nested inside outer list_for_each_entry_safe().
1054 *
1055 * CONTEXT:
1056 * spin_lock_irq(pool->lock).
1057 */
1058 static void move_linked_works(struct work_struct *work, struct list_head *head,
1059 struct work_struct **nextp)
1060 {
1061 struct work_struct *n;
1062
1063 /*
1064 * Linked worklist will always end before the end of the list,
1065 * use NULL for list head.
1066 */
1067 list_for_each_entry_safe_from(work, n, NULL, entry) {
1068 list_move_tail(&work->entry, head);
1069 if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
1070 break;
1071 }
1072
1073 /*
1074 * If we're already inside safe list traversal and have moved
1075 * multiple works to the scheduled queue, the next position
1076 * needs to be updated.
1077 */
1078 if (nextp)
1079 *nextp = n;
1080 }
1081
1082 /**
1083 * get_pwq - get an extra reference on the specified pool_workqueue
1084 * @pwq: pool_workqueue to get
1085 *
1086 * Obtain an extra reference on @pwq. The caller should guarantee that
1087 * @pwq has positive refcnt and be holding the matching pool->lock.
1088 */
1089 static void get_pwq(struct pool_workqueue *pwq)
1090 {
1091 lockdep_assert_held(&pwq->pool->lock);
1092 WARN_ON_ONCE(pwq->refcnt <= 0);
1093 pwq->refcnt++;
1094 }
1095
1096 /**
1097 * put_pwq - put a pool_workqueue reference
1098 * @pwq: pool_workqueue to put
1099 *
1100 * Drop a reference of @pwq. If its refcnt reaches zero, schedule its
1101 * destruction. The caller should be holding the matching pool->lock.
1102 */
1103 static void put_pwq(struct pool_workqueue *pwq)
1104 {
1105 lockdep_assert_held(&pwq->pool->lock);
1106 if (likely(--pwq->refcnt))
1107 return;
1108 if (WARN_ON_ONCE(!(pwq->wq->flags & WQ_UNBOUND)))
1109 return;
1110 /*
1111 * @pwq can't be released under pool->lock, bounce to
1112 * pwq_unbound_release_workfn(). This never recurses on the same
1113 * pool->lock as this path is taken only for unbound workqueues and
1114 * the release work item is scheduled on a per-cpu workqueue. To
1115 * avoid lockdep warning, unbound pool->locks are given lockdep
1116 * subclass of 1 in get_unbound_pool().
1117 */
1118 schedule_work(&pwq->unbound_release_work);
1119 }
1120
1121 /**
1122 * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock
1123 * @pwq: pool_workqueue to put (can be %NULL)
1124 *
1125 * put_pwq() with locking. This function also allows %NULL @pwq.
1126 */
1127 static void put_pwq_unlocked(struct pool_workqueue *pwq)
1128 {
1129 if (pwq) {
1130 /*
1131 * As both pwqs and pools are RCU protected, the
1132 * following lock operations are safe.
1133 */
1134 spin_lock_irq(&pwq->pool->lock);
1135 put_pwq(pwq);
1136 spin_unlock_irq(&pwq->pool->lock);
1137 }
1138 }
1139
1140 static void pwq_activate_delayed_work(struct work_struct *work)
1141 {
1142 struct pool_workqueue *pwq = get_work_pwq(work);
1143
1144 trace_workqueue_activate_work(work);
1145 if (list_empty(&pwq->pool->worklist))
1146 pwq->pool->watchdog_ts = jiffies;
1147 move_linked_works(work, &pwq->pool->worklist, NULL);
1148 __clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
1149 pwq->nr_active++;
1150 }
1151
1152 static void pwq_activate_first_delayed(struct pool_workqueue *pwq)
1153 {
1154 struct work_struct *work = list_first_entry(&pwq->delayed_works,
1155 struct work_struct, entry);
1156
1157 pwq_activate_delayed_work(work);
1158 }
1159
1160 /**
1161 * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
1162 * @pwq: pwq of interest
1163 * @color: color of work which left the queue
1164 *
1165 * A work either has completed or is removed from pending queue,
1166 * decrement nr_in_flight of its pwq and handle workqueue flushing.
1167 *
1168 * CONTEXT:
1169 * spin_lock_irq(pool->lock).
1170 */
1171 static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, int color)
1172 {
1173 /* uncolored work items don't participate in flushing or nr_active */
1174 if (color == WORK_NO_COLOR)
1175 goto out_put;
1176
1177 pwq->nr_in_flight[color]--;
1178
1179 pwq->nr_active--;
1180 if (!list_empty(&pwq->delayed_works)) {
1181 /* one down, submit a delayed one */
1182 if (pwq->nr_active < pwq->max_active)
1183 pwq_activate_first_delayed(pwq);
1184 }
1185
1186 /* is flush in progress and are we at the flushing tip? */
1187 if (likely(pwq->flush_color != color))
1188 goto out_put;
1189
1190 /* are there still in-flight works? */
1191 if (pwq->nr_in_flight[color])
1192 goto out_put;
1193
1194 /* this pwq is done, clear flush_color */
1195 pwq->flush_color = -1;
1196
1197 /*
1198 * If this was the last pwq, wake up the first flusher. It
1199 * will handle the rest.
1200 */
1201 if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush))
1202 complete(&pwq->wq->first_flusher->done);
1203 out_put:
1204 put_pwq(pwq);
1205 }
1206
1207 /**
1208 * try_to_grab_pending - steal work item from worklist and disable irq
1209 * @work: work item to steal
1210 * @is_dwork: @work is a delayed_work
1211 * @flags: place to store irq state
1212 *
1213 * Try to grab PENDING bit of @work. This function can handle @work in any
1214 * stable state - idle, on timer or on worklist.
1215 *
1216 * Return:
1217 * 1 if @work was pending and we successfully stole PENDING
1218 * 0 if @work was idle and we claimed PENDING
1219 * -EAGAIN if PENDING couldn't be grabbed at the moment, safe to busy-retry
1220 * -ENOENT if someone else is canceling @work, this state may persist
1221 * for arbitrarily long
1222 *
1223 * Note:
1224 * On >= 0 return, the caller owns @work's PENDING bit. To avoid getting
1225 * interrupted while holding PENDING and @work off queue, irq must be
1226 * disabled on entry. This, combined with delayed_work->timer being
1227 * irqsafe, ensures that we return -EAGAIN for finite short period of time.
1228 *
1229 * On successful return, >= 0, irq is disabled and the caller is
1230 * responsible for releasing it using local_irq_restore(*@flags).
1231 *
1232 * This function is safe to call from any context including IRQ handler.
1233 */
1234 static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
1235 unsigned long *flags)
1236 {
1237 struct worker_pool *pool;
1238 struct pool_workqueue *pwq;
1239
1240 local_irq_save(*flags);
1241
1242 /* try to steal the timer if it exists */
1243 if (is_dwork) {
1244 struct delayed_work *dwork = to_delayed_work(work);
1245
1246 /*
1247 * dwork->timer is irqsafe. If del_timer() fails, it's
1248 * guaranteed that the timer is not queued anywhere and not
1249 * running on the local CPU.
1250 */
1251 if (likely(del_timer(&dwork->timer)))
1252 return 1;
1253 }
1254
1255 /* try to claim PENDING the normal way */
1256 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
1257 return 0;
1258
1259 rcu_read_lock();
1260 /*
1261 * The queueing is in progress, or it is already queued. Try to
1262 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
1263 */
1264 pool = get_work_pool(work);
1265 if (!pool)
1266 goto fail;
1267
1268 spin_lock(&pool->lock);
1269 /*
1270 * work->data is guaranteed to point to pwq only while the work
1271 * item is queued on pwq->wq, and both updating work->data to point
1272 * to pwq on queueing and to pool on dequeueing are done under
1273 * pwq->pool->lock. This in turn guarantees that, if work->data
1274 * points to pwq which is associated with a locked pool, the work
1275 * item is currently queued on that pool.
1276 */
1277 pwq = get_work_pwq(work);
1278 if (pwq && pwq->pool == pool) {
1279 debug_work_deactivate(work);
1280
1281 /*
1282 * A delayed work item cannot be grabbed directly because
1283 * it might have linked NO_COLOR work items which, if left
1284 * on the delayed_list, will confuse pwq->nr_active
1285 * management later on and cause stall. Make sure the work
1286 * item is activated before grabbing.
1287 */
1288 if (*work_data_bits(work) & WORK_STRUCT_DELAYED)
1289 pwq_activate_delayed_work(work);
1290
1291 list_del_init(&work->entry);
1292 pwq_dec_nr_in_flight(pwq, get_work_color(work));
1293
1294 /* work->data points to pwq iff queued, point to pool */
1295 set_work_pool_and_keep_pending(work, pool->id);
1296
1297 spin_unlock(&pool->lock);
1298 rcu_read_unlock();
1299 return 1;
1300 }
1301 spin_unlock(&pool->lock);
1302 fail:
1303 rcu_read_unlock();
1304 local_irq_restore(*flags);
1305 if (work_is_canceling(work))
1306 return -ENOENT;
1307 cpu_relax();
1308 return -EAGAIN;
1309 }
1310
1311 /**
1312 * insert_work - insert a work into a pool
1313 * @pwq: pwq @work belongs to
1314 * @work: work to insert
1315 * @head: insertion point
1316 * @extra_flags: extra WORK_STRUCT_* flags to set
1317 *
1318 * Insert @work which belongs to @pwq after @head. @extra_flags is or'd to
1319 * work_struct flags.
1320 *
1321 * CONTEXT:
1322 * spin_lock_irq(pool->lock).
1323 */
1324 static void insert_work(struct pool_workqueue *pwq, struct work_struct *work,
1325 struct list_head *head, unsigned int extra_flags)
1326 {
1327 struct worker_pool *pool = pwq->pool;
1328
1329 /* we own @work, set data and link */
1330 set_work_pwq(work, pwq, extra_flags);
1331 list_add_tail(&work->entry, head);
1332 get_pwq(pwq);
1333
1334 /*
1335 * Ensure either wq_worker_sleeping() sees the above
1336 * list_add_tail() or we see zero nr_running to avoid workers lying
1337 * around lazily while there are works to be processed.
1338 */
1339 smp_mb();
1340
1341 if (__need_more_worker(pool))
1342 wake_up_worker(pool);
1343 }
1344
1345 /*
1346 * Test whether @work is being queued from another work executing on the
1347 * same workqueue.
1348 */
1349 static bool is_chained_work(struct workqueue_struct *wq)
1350 {
1351 struct worker *worker;
1352
1353 worker = current_wq_worker();
1354 /*
1355 * Return %true iff I'm a worker executing a work item on @wq. If
1356 * I'm @worker, it's safe to dereference it without locking.
1357 */
1358 return worker && worker->current_pwq->wq == wq;
1359 }
1360
1361 /*
1362 * When queueing an unbound work item to a wq, prefer local CPU if allowed
1363 * by wq_unbound_cpumask. Otherwise, round robin among the allowed ones to
1364 * avoid perturbing sensitive tasks.
1365 */
1366 static int wq_select_unbound_cpu(int cpu)
1367 {
1368 static bool printed_dbg_warning;
1369 int new_cpu;
1370
1371 if (likely(!wq_debug_force_rr_cpu)) {
1372 if (cpumask_test_cpu(cpu, wq_unbound_cpumask))
1373 return cpu;
1374 } else if (!printed_dbg_warning) {
1375 pr_warn("workqueue: round-robin CPU selection forced, expect performance impact\n");
1376 printed_dbg_warning = true;
1377 }
1378
1379 if (cpumask_empty(wq_unbound_cpumask))
1380 return cpu;
1381
1382 new_cpu = __this_cpu_read(wq_rr_cpu_last);
1383 new_cpu = cpumask_next_and(new_cpu, wq_unbound_cpumask, cpu_online_mask);
1384 if (unlikely(new_cpu >= nr_cpu_ids)) {
1385 new_cpu = cpumask_first_and(wq_unbound_cpumask, cpu_online_mask);
1386 if (unlikely(new_cpu >= nr_cpu_ids))
1387 return cpu;
1388 }
1389 __this_cpu_write(wq_rr_cpu_last, new_cpu);
1390
1391 return new_cpu;
1392 }
1393
1394 static void __queue_work(int cpu, struct workqueue_struct *wq,
1395 struct work_struct *work)
1396 {
1397 struct pool_workqueue *pwq;
1398 struct worker_pool *last_pool;
1399 struct list_head *worklist;
1400 unsigned int work_flags;
1401 unsigned int req_cpu = cpu;
1402
1403 /*
1404 * While a work item is PENDING && off queue, a task trying to
1405 * steal the PENDING will busy-loop waiting for it to either get
1406 * queued or lose PENDING. Grabbing PENDING and queueing should
1407 * happen with IRQ disabled.
1408 */
1409 lockdep_assert_irqs_disabled();
1410
1411 debug_work_activate(work);
1412
1413 /* if draining, only works from the same workqueue are allowed */
1414 if (unlikely(wq->flags & __WQ_DRAINING) &&
1415 WARN_ON_ONCE(!is_chained_work(wq)))
1416 return;
1417 rcu_read_lock();
1418 retry:
1419 if (req_cpu == WORK_CPU_UNBOUND)
1420 cpu = wq_select_unbound_cpu(raw_smp_processor_id());
1421
1422 /* pwq which will be used unless @work is executing elsewhere */
1423 if (!(wq->flags & WQ_UNBOUND))
1424 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
1425 else
1426 pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
1427
1428 /*
1429 * If @work was previously on a different pool, it might still be
1430 * running there, in which case the work needs to be queued on that
1431 * pool to guarantee non-reentrancy.
1432 */
1433 last_pool = get_work_pool(work);
1434 if (last_pool && last_pool != pwq->pool) {
1435 struct worker *worker;
1436
1437 spin_lock(&last_pool->lock);
1438
1439 worker = find_worker_executing_work(last_pool, work);
1440
1441 if (worker && worker->current_pwq->wq == wq) {
1442 pwq = worker->current_pwq;
1443 } else {
1444 /* meh... not running there, queue here */
1445 spin_unlock(&last_pool->lock);
1446 spin_lock(&pwq->pool->lock);
1447 }
1448 } else {
1449 spin_lock(&pwq->pool->lock);
1450 }
1451
1452 /*
1453 * pwq is determined and locked. For unbound pools, we could have
1454 * raced with pwq release and it could already be dead. If its
1455 * refcnt is zero, repeat pwq selection. Note that pwqs never die
1456 * without another pwq replacing it in the numa_pwq_tbl or while
1457 * work items are executing on it, so the retrying is guaranteed to
1458 * make forward-progress.
1459 */
1460 if (unlikely(!pwq->refcnt)) {
1461 if (wq->flags & WQ_UNBOUND) {
1462 spin_unlock(&pwq->pool->lock);
1463 cpu_relax();
1464 goto retry;
1465 }
1466 /* oops */
1467 WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt",
1468 wq->name, cpu);
1469 }
1470
1471 /* pwq determined, queue */
1472 trace_workqueue_queue_work(req_cpu, pwq, work);
1473
1474 if (WARN_ON(!list_empty(&work->entry)))
1475 goto out;
1476
1477 pwq->nr_in_flight[pwq->work_color]++;
1478 work_flags = work_color_to_flags(pwq->work_color);
1479
1480 if (likely(pwq->nr_active < pwq->max_active)) {
1481 trace_workqueue_activate_work(work);
1482 pwq->nr_active++;
1483 worklist = &pwq->pool->worklist;
1484 if (list_empty(worklist))
1485 pwq->pool->watchdog_ts = jiffies;
1486 } else {
1487 work_flags |= WORK_STRUCT_DELAYED;
1488 worklist = &pwq->delayed_works;
1489 }
1490
1491 insert_work(pwq, work, worklist, work_flags);
1492
1493 out:
1494 spin_unlock(&pwq->pool->lock);
1495 rcu_read_unlock();
1496 }
1497
1498 /**
1499 * queue_work_on - queue work on specific cpu
1500 * @cpu: CPU number to execute work on
1501 * @wq: workqueue to use
1502 * @work: work to queue
1503 *
1504 * We queue the work to a specific CPU, the caller must ensure it
1505 * can't go away.
1506 *
1507 * Return: %false if @work was already on a queue, %true otherwise.
1508 */
1509 bool queue_work_on(int cpu, struct workqueue_struct *wq,
1510 struct work_struct *work)
1511 {
1512 bool ret = false;
1513 unsigned long flags;
1514
1515 local_irq_save(flags);
1516
1517 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1518 __queue_work(cpu, wq, work);
1519 ret = true;
1520 }
1521
1522 local_irq_restore(flags);
1523 return ret;
1524 }
1525 EXPORT_SYMBOL(queue_work_on);
1526
1527 /**
1528 * workqueue_select_cpu_near - Select a CPU based on NUMA node
1529 * @node: NUMA node ID that we want to select a CPU from
1530 *
1531 * This function will attempt to find a "random" cpu available on a given
1532 * node. If there are no CPUs available on the given node it will return
1533 * WORK_CPU_UNBOUND indicating that we should just schedule to any
1534 * available CPU if we need to schedule this work.
1535 */
1536 static int workqueue_select_cpu_near(int node)
1537 {
1538 int cpu;
1539
1540 /* No point in doing this if NUMA isn't enabled for workqueues */
1541 if (!wq_numa_enabled)
1542 return WORK_CPU_UNBOUND;
1543
1544 /* Delay binding to CPU if node is not valid or online */
1545 if (node < 0 || node >= MAX_NUMNODES || !node_online(node))
1546 return WORK_CPU_UNBOUND;
1547
1548 /* Use local node/cpu if we are already there */
1549 cpu = raw_smp_processor_id();
1550 if (node == cpu_to_node(cpu))
1551 return cpu;
1552
1553 /* Use "random" otherwise know as "first" online CPU of node */
1554 cpu = cpumask_any_and(cpumask_of_node(node), cpu_online_mask);
1555
1556 /* If CPU is valid return that, otherwise just defer */
1557 return cpu < nr_cpu_ids ? cpu : WORK_CPU_UNBOUND;
1558 }
1559
1560 /**
1561 * queue_work_node - queue work on a "random" cpu for a given NUMA node
1562 * @node: NUMA node that we are targeting the work for
1563 * @wq: workqueue to use
1564 * @work: work to queue
1565 *
1566 * We queue the work to a "random" CPU within a given NUMA node. The basic
1567 * idea here is to provide a way to somehow associate work with a given
1568 * NUMA node.
1569 *
1570 * This function will only make a best effort attempt at getting this onto
1571 * the right NUMA node. If no node is requested or the requested node is
1572 * offline then we just fall back to standard queue_work behavior.
1573 *
1574 * Currently the "random" CPU ends up being the first available CPU in the
1575 * intersection of cpu_online_mask and the cpumask of the node, unless we
1576 * are running on the node. In that case we just use the current CPU.
1577 *
1578 * Return: %false if @work was already on a queue, %true otherwise.
1579 */
1580 bool queue_work_node(int node, struct workqueue_struct *wq,
1581 struct work_struct *work)
1582 {
1583 unsigned long flags;
1584 bool ret = false;
1585
1586 /*
1587 * This current implementation is specific to unbound workqueues.
1588 * Specifically we only return the first available CPU for a given
1589 * node instead of cycling through individual CPUs within the node.
1590 *
1591 * If this is used with a per-cpu workqueue then the logic in
1592 * workqueue_select_cpu_near would need to be updated to allow for
1593 * some round robin type logic.
1594 */
1595 WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND));
1596
1597 local_irq_save(flags);
1598
1599 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1600 int cpu = workqueue_select_cpu_near(node);
1601
1602 __queue_work(cpu, wq, work);
1603 ret = true;
1604 }
1605
1606 local_irq_restore(flags);
1607 return ret;
1608 }
1609 EXPORT_SYMBOL_GPL(queue_work_node);
1610
1611 void delayed_work_timer_fn(struct timer_list *t)
1612 {
1613 struct delayed_work *dwork = from_timer(dwork, t, timer);
1614
1615 /* should have been called from irqsafe timer with irq already off */
1616 __queue_work(dwork->cpu, dwork->wq, &dwork->work);
1617 }
1618 EXPORT_SYMBOL(delayed_work_timer_fn);
1619
1620 static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
1621 struct delayed_work *dwork, unsigned long delay)
1622 {
1623 struct timer_list *timer = &dwork->timer;
1624 struct work_struct *work = &dwork->work;
1625
1626 WARN_ON_ONCE(!wq);
1627 WARN_ON_ONCE(timer->function != delayed_work_timer_fn);
1628 WARN_ON_ONCE(timer_pending(timer));
1629 WARN_ON_ONCE(!list_empty(&work->entry));
1630
1631 /*
1632 * If @delay is 0, queue @dwork->work immediately. This is for
1633 * both optimization and correctness. The earliest @timer can
1634 * expire is on the closest next tick and delayed_work users depend
1635 * on that there's no such delay when @delay is 0.
1636 */
1637 if (!delay) {
1638 __queue_work(cpu, wq, &dwork->work);
1639 return;
1640 }
1641
1642 dwork->wq = wq;
1643 dwork->cpu = cpu;
1644 timer->expires = jiffies + delay;
1645
1646 if (unlikely(cpu != WORK_CPU_UNBOUND))
1647 add_timer_on(timer, cpu);
1648 else
1649 add_timer(timer);
1650 }
1651
1652 /**
1653 * queue_delayed_work_on - queue work on specific CPU after delay
1654 * @cpu: CPU number to execute work on
1655 * @wq: workqueue to use
1656 * @dwork: work to queue
1657 * @delay: number of jiffies to wait before queueing
1658 *
1659 * Return: %false if @work was already on a queue, %true otherwise. If
1660 * @delay is zero and @dwork is idle, it will be scheduled for immediate
1661 * execution.
1662 */
1663 bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
1664 struct delayed_work *dwork, unsigned long delay)
1665 {
1666 struct work_struct *work = &dwork->work;
1667 bool ret = false;
1668 unsigned long flags;
1669
1670 /* read the comment in __queue_work() */
1671 local_irq_save(flags);
1672
1673 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1674 __queue_delayed_work(cpu, wq, dwork, delay);
1675 ret = true;
1676 }
1677
1678 local_irq_restore(flags);
1679 return ret;
1680 }
1681 EXPORT_SYMBOL(queue_delayed_work_on);
1682
1683 /**
1684 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
1685 * @cpu: CPU number to execute work on
1686 * @wq: workqueue to use
1687 * @dwork: work to queue
1688 * @delay: number of jiffies to wait before queueing
1689 *
1690 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
1691 * modify @dwork's timer so that it expires after @delay. If @delay is
1692 * zero, @work is guaranteed to be scheduled immediately regardless of its
1693 * current state.
1694 *
1695 * Return: %false if @dwork was idle and queued, %true if @dwork was
1696 * pending and its timer was modified.
1697 *
1698 * This function is safe to call from any context including IRQ handler.
1699 * See try_to_grab_pending() for details.
1700 */
1701 bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
1702 struct delayed_work *dwork, unsigned long delay)
1703 {
1704 unsigned long flags;
1705 int ret;
1706
1707 do {
1708 ret = try_to_grab_pending(&dwork->work, true, &flags);
1709 } while (unlikely(ret == -EAGAIN));
1710
1711 if (likely(ret >= 0)) {
1712 __queue_delayed_work(cpu, wq, dwork, delay);
1713 local_irq_restore(flags);
1714 }
1715
1716 /* -ENOENT from try_to_grab_pending() becomes %true */
1717 return ret;
1718 }
1719 EXPORT_SYMBOL_GPL(mod_delayed_work_on);
1720
1721 static void rcu_work_rcufn(struct rcu_head *rcu)
1722 {
1723 struct rcu_work *rwork = container_of(rcu, struct rcu_work, rcu);
1724
1725 /* read the comment in __queue_work() */
1726 local_irq_disable();
1727 __queue_work(WORK_CPU_UNBOUND, rwork->wq, &rwork->work);
1728 local_irq_enable();
1729 }
1730
1731 /**
1732 * queue_rcu_work - queue work after a RCU grace period
1733 * @wq: workqueue to use
1734 * @rwork: work to queue
1735 *
1736 * Return: %false if @rwork was already pending, %true otherwise. Note
1737 * that a full RCU grace period is guaranteed only after a %true return.
1738 * While @rwork is guaranteed to be executed after a %false return, the
1739 * execution may happen before a full RCU grace period has passed.
1740 */
1741 bool queue_rcu_work(struct workqueue_struct *wq, struct rcu_work *rwork)
1742 {
1743 struct work_struct *work = &rwork->work;
1744
1745 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1746 rwork->wq = wq;
1747 call_rcu(&rwork->rcu, rcu_work_rcufn);
1748 return true;
1749 }
1750
1751 return false;
1752 }
1753 EXPORT_SYMBOL(queue_rcu_work);
1754
1755 /**
1756 * worker_enter_idle - enter idle state
1757 * @worker: worker which is entering idle state
1758 *
1759 * @worker is entering idle state. Update stats and idle timer if
1760 * necessary.
1761 *
1762 * LOCKING:
1763 * spin_lock_irq(pool->lock).
1764 */
1765 static void worker_enter_idle(struct worker *worker)
1766 {
1767 struct worker_pool *pool = worker->pool;
1768
1769 if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) ||
1770 WARN_ON_ONCE(!list_empty(&worker->entry) &&
1771 (worker->hentry.next || worker->hentry.pprev)))
1772 return;
1773
1774 /* can't use worker_set_flags(), also called from create_worker() */
1775 worker->flags |= WORKER_IDLE;
1776 pool->nr_idle++;
1777 worker->last_active = jiffies;
1778
1779 /* idle_list is LIFO */
1780 list_add(&worker->entry, &pool->idle_list);
1781
1782 if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
1783 mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
1784
1785 /*
1786 * Sanity check nr_running. Because unbind_workers() releases
1787 * pool->lock between setting %WORKER_UNBOUND and zapping
1788 * nr_running, the warning may trigger spuriously. Check iff
1789 * unbind is not in progress.
1790 */
1791 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
1792 pool->nr_workers == pool->nr_idle &&
1793 atomic_read(&pool->nr_running));
1794 }
1795
1796 /**
1797 * worker_leave_idle - leave idle state
1798 * @worker: worker which is leaving idle state
1799 *
1800 * @worker is leaving idle state. Update stats.
1801 *
1802 * LOCKING:
1803 * spin_lock_irq(pool->lock).
1804 */
1805 static void worker_leave_idle(struct worker *worker)
1806 {
1807 struct worker_pool *pool = worker->pool;
1808
1809 if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE)))
1810 return;
1811 worker_clr_flags(worker, WORKER_IDLE);
1812 pool->nr_idle--;
1813 list_del_init(&worker->entry);
1814 }
1815
1816 static struct worker *alloc_worker(int node)
1817 {
1818 struct worker *worker;
1819
1820 worker = kzalloc_node(sizeof(*worker), GFP_KERNEL, node);
1821 if (worker) {
1822 INIT_LIST_HEAD(&worker->entry);
1823 INIT_LIST_HEAD(&worker->scheduled);
1824 INIT_LIST_HEAD(&worker->node);
1825 /* on creation a worker is in !idle && prep state */
1826 worker->flags = WORKER_PREP;
1827 }
1828 return worker;
1829 }
1830
1831 /**
1832 * worker_attach_to_pool() - attach a worker to a pool
1833 * @worker: worker to be attached
1834 * @pool: the target pool
1835 *
1836 * Attach @worker to @pool. Once attached, the %WORKER_UNBOUND flag and
1837 * cpu-binding of @worker are kept coordinated with the pool across
1838 * cpu-[un]hotplugs.
1839 */
1840 static void worker_attach_to_pool(struct worker *worker,
1841 struct worker_pool *pool)
1842 {
1843 mutex_lock(&wq_pool_attach_mutex);
1844
1845 /*
1846 * set_cpus_allowed_ptr() will fail if the cpumask doesn't have any
1847 * online CPUs. It'll be re-applied when any of the CPUs come up.
1848 */
1849 set_cpus_allowed_ptr(worker->task, pool->attrs->cpumask);
1850
1851 /*
1852 * The wq_pool_attach_mutex ensures %POOL_DISASSOCIATED remains
1853 * stable across this function. See the comments above the flag
1854 * definition for details.
1855 */
1856 if (pool->flags & POOL_DISASSOCIATED)
1857 worker->flags |= WORKER_UNBOUND;
1858
1859 list_add_tail(&worker->node, &pool->workers);
1860 worker->pool = pool;
1861
1862 mutex_unlock(&wq_pool_attach_mutex);
1863 }
1864
1865 /**
1866 * worker_detach_from_pool() - detach a worker from its pool
1867 * @worker: worker which is attached to its pool
1868 *
1869 * Undo the attaching which had been done in worker_attach_to_pool(). The
1870 * caller worker shouldn't access to the pool after detached except it has
1871 * other reference to the pool.
1872 */
1873 static void worker_detach_from_pool(struct worker *worker)
1874 {
1875 struct worker_pool *pool = worker->pool;
1876 struct completion *detach_completion = NULL;
1877
1878 mutex_lock(&wq_pool_attach_mutex);
1879
1880 list_del(&worker->node);
1881 worker->pool = NULL;
1882
1883 if (list_empty(&pool->workers))
1884 detach_completion = pool->detach_completion;
1885 mutex_unlock(&wq_pool_attach_mutex);
1886
1887 /* clear leftover flags without pool->lock after it is detached */
1888 worker->flags &= ~(WORKER_UNBOUND | WORKER_REBOUND);
1889
1890 if (detach_completion)
1891 complete(detach_completion);
1892 }
1893
1894 /**
1895 * create_worker - create a new workqueue worker
1896 * @pool: pool the new worker will belong to
1897 *
1898 * Create and start a new worker which is attached to @pool.
1899 *
1900 * CONTEXT:
1901 * Might sleep. Does GFP_KERNEL allocations.
1902 *
1903 * Return:
1904 * Pointer to the newly created worker.
1905 */
1906 static struct worker *create_worker(struct worker_pool *pool)
1907 {
1908 struct worker *worker = NULL;
1909 int id = -1;
1910 char id_buf[16];
1911
1912 /* ID is needed to determine kthread name */
1913 id = ida_simple_get(&pool->worker_ida, 0, 0, GFP_KERNEL);
1914 if (id < 0)
1915 goto fail;
1916
1917 worker = alloc_worker(pool->node);
1918 if (!worker)
1919 goto fail;
1920
1921 worker->id = id;
1922
1923 if (pool->cpu >= 0)
1924 snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id,
1925 pool->attrs->nice < 0 ? "H" : "");
1926 else
1927 snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id);
1928
1929 worker->task = kthread_create_on_node(worker_thread, worker, pool->node,
1930 "kworker/%s", id_buf);
1931 if (IS_ERR(worker->task))
1932 goto fail;
1933
1934 set_user_nice(worker->task, pool->attrs->nice);
1935 kthread_bind_mask(worker->task, pool->attrs->cpumask);
1936
1937 /* successful, attach the worker to the pool */
1938 worker_attach_to_pool(worker, pool);
1939
1940 /* start the newly created worker */
1941 spin_lock_irq(&pool->lock);
1942 worker->pool->nr_workers++;
1943 worker_enter_idle(worker);
1944 wake_up_process(worker->task);
1945 spin_unlock_irq(&pool->lock);
1946
1947 return worker;
1948
1949 fail:
1950 if (id >= 0)
1951 ida_simple_remove(&pool->worker_ida, id);
1952 kfree(worker);
1953 return NULL;
1954 }
1955
1956 /**
1957 * destroy_worker - destroy a workqueue worker
1958 * @worker: worker to be destroyed
1959 *
1960 * Destroy @worker and adjust @pool stats accordingly. The worker should
1961 * be idle.
1962 *
1963 * CONTEXT:
1964 * spin_lock_irq(pool->lock).
1965 */
1966 static void destroy_worker(struct worker *worker)
1967 {
1968 struct worker_pool *pool = worker->pool;
1969
1970 lockdep_assert_held(&pool->lock);
1971
1972 /* sanity check frenzy */
1973 if (WARN_ON(worker->current_work) ||
1974 WARN_ON(!list_empty(&worker->scheduled)) ||
1975 WARN_ON(!(worker->flags & WORKER_IDLE)))
1976 return;
1977
1978 pool->nr_workers--;
1979 pool->nr_idle--;
1980
1981 list_del_init(&worker->entry);
1982 worker->flags |= WORKER_DIE;
1983 wake_up_process(worker->task);
1984 }
1985
1986 static void idle_worker_timeout(struct timer_list *t)
1987 {
1988 struct worker_pool *pool = from_timer(pool, t, idle_timer);
1989
1990 spin_lock_irq(&pool->lock);
1991
1992 while (too_many_workers(pool)) {
1993 struct worker *worker;
1994 unsigned long expires;
1995
1996 /* idle_list is kept in LIFO order, check the last one */
1997 worker = list_entry(pool->idle_list.prev, struct worker, entry);
1998 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
1999
2000 if (time_before(jiffies, expires)) {
2001 mod_timer(&pool->idle_timer, expires);
2002 break;
2003 }
2004
2005 destroy_worker(worker);
2006 }
2007
2008 spin_unlock_irq(&pool->lock);
2009 }
2010
2011 static void send_mayday(struct work_struct *work)
2012 {
2013 struct pool_workqueue *pwq = get_work_pwq(work);
2014 struct workqueue_struct *wq = pwq->wq;
2015
2016 lockdep_assert_held(&wq_mayday_lock);
2017
2018 if (!wq->rescuer)
2019 return;
2020
2021 /* mayday mayday mayday */
2022 if (list_empty(&pwq->mayday_node)) {
2023 /*
2024 * If @pwq is for an unbound wq, its base ref may be put at
2025 * any time due to an attribute change. Pin @pwq until the
2026 * rescuer is done with it.
2027 */
2028 get_pwq(pwq);
2029 list_add_tail(&pwq->mayday_node, &wq->maydays);
2030 wake_up_process(wq->rescuer->task);
2031 }
2032 }
2033
2034 static void pool_mayday_timeout(struct timer_list *t)
2035 {
2036 struct worker_pool *pool = from_timer(pool, t, mayday_timer);
2037 struct work_struct *work;
2038
2039 spin_lock_irq(&pool->lock);
2040 spin_lock(&wq_mayday_lock); /* for wq->maydays */
2041
2042 if (need_to_create_worker(pool)) {
2043 /*
2044 * We've been trying to create a new worker but
2045 * haven't been successful. We might be hitting an
2046 * allocation deadlock. Send distress signals to
2047 * rescuers.
2048 */
2049 list_for_each_entry(work, &pool->worklist, entry)
2050 send_mayday(work);
2051 }
2052
2053 spin_unlock(&wq_mayday_lock);
2054 spin_unlock_irq(&pool->lock);
2055
2056 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
2057 }
2058
2059 /**
2060 * maybe_create_worker - create a new worker if necessary
2061 * @pool: pool to create a new worker for
2062 *
2063 * Create a new worker for @pool if necessary. @pool is guaranteed to
2064 * have at least one idle worker on return from this function. If
2065 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
2066 * sent to all rescuers with works scheduled on @pool to resolve
2067 * possible allocation deadlock.
2068 *
2069 * On return, need_to_create_worker() is guaranteed to be %false and
2070 * may_start_working() %true.
2071 *
2072 * LOCKING:
2073 * spin_lock_irq(pool->lock) which may be released and regrabbed
2074 * multiple times. Does GFP_KERNEL allocations. Called only from
2075 * manager.
2076 */
2077 static void maybe_create_worker(struct worker_pool *pool)
2078 __releases(&pool->lock)
2079 __acquires(&pool->lock)
2080 {
2081 restart:
2082 spin_unlock_irq(&pool->lock);
2083
2084 /* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
2085 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
2086
2087 while (true) {
2088 if (create_worker(pool) || !need_to_create_worker(pool))
2089 break;
2090
2091 schedule_timeout_interruptible(CREATE_COOLDOWN);
2092
2093 if (!need_to_create_worker(pool))
2094 break;
2095 }
2096
2097 del_timer_sync(&pool->mayday_timer);
2098 spin_lock_irq(&pool->lock);
2099 /*
2100 * This is necessary even after a new worker was just successfully
2101 * created as @pool->lock was dropped and the new worker might have
2102 * already become busy.
2103 */
2104 if (need_to_create_worker(pool))
2105 goto restart;
2106 }
2107
2108 /**
2109 * manage_workers - manage worker pool
2110 * @worker: self
2111 *
2112 * Assume the manager role and manage the worker pool @worker belongs
2113 * to. At any given time, there can be only zero or one manager per
2114 * pool. The exclusion is handled automatically by this function.
2115 *
2116 * The caller can safely start processing works on false return. On
2117 * true return, it's guaranteed that need_to_create_worker() is false
2118 * and may_start_working() is true.
2119 *
2120 * CONTEXT:
2121 * spin_lock_irq(pool->lock) which may be released and regrabbed
2122 * multiple times. Does GFP_KERNEL allocations.
2123 *
2124 * Return:
2125 * %false if the pool doesn't need management and the caller can safely
2126 * start processing works, %true if management function was performed and
2127 * the conditions that the caller verified before calling the function may
2128 * no longer be true.
2129 */
2130 static bool manage_workers(struct worker *worker)
2131 {
2132 struct worker_pool *pool = worker->pool;
2133
2134 if (pool->flags & POOL_MANAGER_ACTIVE)
2135 return false;
2136
2137 pool->flags |= POOL_MANAGER_ACTIVE;
2138 pool->manager = worker;
2139
2140 maybe_create_worker(pool);
2141
2142 pool->manager = NULL;
2143 pool->flags &= ~POOL_MANAGER_ACTIVE;
2144 wake_up(&wq_manager_wait);
2145 return true;
2146 }
2147
2148 /**
2149 * process_one_work - process single work
2150 * @worker: self
2151 * @work: work to process
2152 *
2153 * Process @work. This function contains all the logics necessary to
2154 * process a single work including synchronization against and
2155 * interaction with other workers on the same cpu, queueing and
2156 * flushing. As long as context requirement is met, any worker can
2157 * call this function to process a work.
2158 *
2159 * CONTEXT:
2160 * spin_lock_irq(pool->lock) which is released and regrabbed.
2161 */
2162 static void process_one_work(struct worker *worker, struct work_struct *work)
2163 __releases(&pool->lock)
2164 __acquires(&pool->lock)
2165 {
2166 struct pool_workqueue *pwq = get_work_pwq(work);
2167 struct worker_pool *pool = worker->pool;
2168 bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE;
2169 int work_color;
2170 struct worker *collision;
2171 #ifdef CONFIG_LOCKDEP
2172 /*
2173 * It is permissible to free the struct work_struct from
2174 * inside the function that is called from it, this we need to
2175 * take into account for lockdep too. To avoid bogus "held
2176 * lock freed" warnings as well as problems when looking into
2177 * work->lockdep_map, make a copy and use that here.
2178 */
2179 struct lockdep_map lockdep_map;
2180
2181 lockdep_copy_map(&lockdep_map, &work->lockdep_map);
2182 #endif
2183 /* ensure we're on the correct CPU */
2184 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
2185 raw_smp_processor_id() != pool->cpu);
2186
2187 /*
2188 * A single work shouldn't be executed concurrently by
2189 * multiple workers on a single cpu. Check whether anyone is
2190 * already processing the work. If so, defer the work to the
2191 * currently executing one.
2192 */
2193 collision = find_worker_executing_work(pool, work);
2194 if (unlikely(collision)) {
2195 move_linked_works(work, &collision->scheduled, NULL);
2196 return;
2197 }
2198
2199 /* claim and dequeue */
2200 debug_work_deactivate(work);
2201 hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
2202 worker->current_work = work;
2203 worker->current_func = work->func;
2204 worker->current_pwq = pwq;
2205 work_color = get_work_color(work);
2206
2207 /*
2208 * Record wq name for cmdline and debug reporting, may get
2209 * overridden through set_worker_desc().
2210 */
2211 strscpy(worker->desc, pwq->wq->name, WORKER_DESC_LEN);
2212
2213 list_del_init(&work->entry);
2214
2215 /*
2216 * CPU intensive works don't participate in concurrency management.
2217 * They're the scheduler's responsibility. This takes @worker out
2218 * of concurrency management and the next code block will chain
2219 * execution of the pending work items.
2220 */
2221 if (unlikely(cpu_intensive))
2222 worker_set_flags(worker, WORKER_CPU_INTENSIVE);
2223
2224 /*
2225 * Wake up another worker if necessary. The condition is always
2226 * false for normal per-cpu workers since nr_running would always
2227 * be >= 1 at this point. This is used to chain execution of the
2228 * pending work items for WORKER_NOT_RUNNING workers such as the
2229 * UNBOUND and CPU_INTENSIVE ones.
2230 */
2231 if (need_more_worker(pool))
2232 wake_up_worker(pool);
2233
2234 /*
2235 * Record the last pool and clear PENDING which should be the last
2236 * update to @work. Also, do this inside @pool->lock so that
2237 * PENDING and queued state changes happen together while IRQ is
2238 * disabled.
2239 */
2240 set_work_pool_and_clear_pending(work, pool->id);
2241
2242 spin_unlock_irq(&pool->lock);
2243
2244 lock_map_acquire(&pwq->wq->lockdep_map);
2245 lock_map_acquire(&lockdep_map);
2246 /*
2247 * Strictly speaking we should mark the invariant state without holding
2248 * any locks, that is, before these two lock_map_acquire()'s.
2249 *
2250 * However, that would result in:
2251 *
2252 * A(W1)
2253 * WFC(C)
2254 * A(W1)
2255 * C(C)
2256 *
2257 * Which would create W1->C->W1 dependencies, even though there is no
2258 * actual deadlock possible. There are two solutions, using a
2259 * read-recursive acquire on the work(queue) 'locks', but this will then
2260 * hit the lockdep limitation on recursive locks, or simply discard
2261 * these locks.
2262 *
2263 * AFAICT there is no possible deadlock scenario between the
2264 * flush_work() and complete() primitives (except for single-threaded
2265 * workqueues), so hiding them isn't a problem.
2266 */
2267 lockdep_invariant_state(true);
2268 trace_workqueue_execute_start(work);
2269 worker->current_func(work);
2270 /*
2271 * While we must be careful to not use "work" after this, the trace
2272 * point will only record its address.
2273 */
2274 trace_workqueue_execute_end(work);
2275 lock_map_release(&lockdep_map);
2276 lock_map_release(&pwq->wq->lockdep_map);
2277
2278 if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
2279 pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
2280 " last function: %ps\n",
2281 current->comm, preempt_count(), task_pid_nr(current),
2282 worker->current_func);
2283 debug_show_held_locks(current);
2284 dump_stack();
2285 }
2286
2287 /*
2288 * The following prevents a kworker from hogging CPU on !PREEMPT
2289 * kernels, where a requeueing work item waiting for something to
2290 * happen could deadlock with stop_machine as such work item could
2291 * indefinitely requeue itself while all other CPUs are trapped in
2292 * stop_machine. At the same time, report a quiescent RCU state so
2293 * the same condition doesn't freeze RCU.
2294 */
2295 cond_resched();
2296
2297 spin_lock_irq(&pool->lock);
2298
2299 /* clear cpu intensive status */
2300 if (unlikely(cpu_intensive))
2301 worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
2302
2303 /* tag the worker for identification in schedule() */
2304 worker->last_func = worker->current_func;
2305
2306 /* we're done with it, release */
2307 hash_del(&worker->hentry);
2308 worker->current_work = NULL;
2309 worker->current_func = NULL;
2310 worker->current_pwq = NULL;
2311 pwq_dec_nr_in_flight(pwq, work_color);
2312 }
2313
2314 /**
2315 * process_scheduled_works - process scheduled works
2316 * @worker: self
2317 *
2318 * Process all scheduled works. Please note that the scheduled list
2319 * may change while processing a work, so this function repeatedly
2320 * fetches a work from the top and executes it.
2321 *
2322 * CONTEXT:
2323 * spin_lock_irq(pool->lock) which may be released and regrabbed
2324 * multiple times.
2325 */
2326 static void process_scheduled_works(struct worker *worker)
2327 {
2328 while (!list_empty(&worker->scheduled)) {
2329 struct work_struct *work = list_first_entry(&worker->scheduled,
2330 struct work_struct, entry);
2331 process_one_work(worker, work);
2332 }
2333 }
2334
2335 static void set_pf_worker(bool val)
2336 {
2337 mutex_lock(&wq_pool_attach_mutex);
2338 if (val)
2339 current->flags |= PF_WQ_WORKER;
2340 else
2341 current->flags &= ~PF_WQ_WORKER;
2342 mutex_unlock(&wq_pool_attach_mutex);
2343 }
2344
2345 /**
2346 * worker_thread - the worker thread function
2347 * @__worker: self
2348 *
2349 * The worker thread function. All workers belong to a worker_pool -
2350 * either a per-cpu one or dynamic unbound one. These workers process all
2351 * work items regardless of their specific target workqueue. The only
2352 * exception is work items which belong to workqueues with a rescuer which
2353 * will be explained in rescuer_thread().
2354 *
2355 * Return: 0
2356 */
2357 static int worker_thread(void *__worker)
2358 {
2359 struct worker *worker = __worker;
2360 struct worker_pool *pool = worker->pool;
2361
2362 /* tell the scheduler that this is a workqueue worker */
2363 set_pf_worker(true);
2364 woke_up:
2365 spin_lock_irq(&pool->lock);
2366
2367 /* am I supposed to die? */
2368 if (unlikely(worker->flags & WORKER_DIE)) {
2369 spin_unlock_irq(&pool->lock);
2370 WARN_ON_ONCE(!list_empty(&worker->entry));
2371 set_pf_worker(false);
2372
2373 set_task_comm(worker->task, "kworker/dying");
2374 ida_simple_remove(&pool->worker_ida, worker->id);
2375 worker_detach_from_pool(worker);
2376 kfree(worker);
2377 return 0;
2378 }
2379
2380 worker_leave_idle(worker);
2381 recheck:
2382 /* no more worker necessary? */
2383 if (!need_more_worker(pool))
2384 goto sleep;
2385
2386 /* do we need to manage? */
2387 if (unlikely(!may_start_working(pool)) && manage_workers(worker))
2388 goto recheck;
2389
2390 /*
2391 * ->scheduled list can only be filled while a worker is
2392 * preparing to process a work or actually processing it.
2393 * Make sure nobody diddled with it while I was sleeping.
2394 */
2395 WARN_ON_ONCE(!list_empty(&worker->scheduled));
2396
2397 /*
2398 * Finish PREP stage. We're guaranteed to have at least one idle
2399 * worker or that someone else has already assumed the manager
2400 * role. This is where @worker starts participating in concurrency
2401 * management if applicable and concurrency management is restored
2402 * after being rebound. See rebind_workers() for details.
2403 */
2404 worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND);
2405
2406 do {
2407 struct work_struct *work =
2408 list_first_entry(&pool->worklist,
2409 struct work_struct, entry);
2410
2411 pool->watchdog_ts = jiffies;
2412
2413 if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
2414 /* optimization path, not strictly necessary */
2415 process_one_work(worker, work);
2416 if (unlikely(!list_empty(&worker->scheduled)))
2417 process_scheduled_works(worker);
2418 } else {
2419 move_linked_works(work, &worker->scheduled, NULL);
2420 process_scheduled_works(worker);
2421 }
2422 } while (keep_working(pool));
2423
2424 worker_set_flags(worker, WORKER_PREP);
2425 sleep:
2426 /*
2427 * pool->lock is held and there's no work to process and no need to
2428 * manage, sleep. Workers are woken up only while holding
2429 * pool->lock or from local cpu, so setting the current state
2430 * before releasing pool->lock is enough to prevent losing any
2431 * event.
2432 */
2433 worker_enter_idle(worker);
2434 __set_current_state(TASK_IDLE);
2435 spin_unlock_irq(&pool->lock);
2436 schedule();
2437 goto woke_up;
2438 }
2439
2440 /**
2441 * rescuer_thread - the rescuer thread function
2442 * @__rescuer: self
2443 *
2444 * Workqueue rescuer thread function. There's one rescuer for each
2445 * workqueue which has WQ_MEM_RECLAIM set.
2446 *
2447 * Regular work processing on a pool may block trying to create a new
2448 * worker which uses GFP_KERNEL allocation which has slight chance of
2449 * developing into deadlock if some works currently on the same queue
2450 * need to be processed to satisfy the GFP_KERNEL allocation. This is
2451 * the problem rescuer solves.
2452 *
2453 * When such condition is possible, the pool summons rescuers of all
2454 * workqueues which have works queued on the pool and let them process
2455 * those works so that forward progress can be guaranteed.
2456 *
2457 * This should happen rarely.
2458 *
2459 * Return: 0
2460 */
2461 static int rescuer_thread(void *__rescuer)
2462 {
2463 struct worker *rescuer = __rescuer;
2464 struct workqueue_struct *wq = rescuer->rescue_wq;
2465 struct list_head *scheduled = &rescuer->scheduled;
2466 bool should_stop;
2467
2468 set_user_nice(current, RESCUER_NICE_LEVEL);
2469
2470 /*
2471 * Mark rescuer as worker too. As WORKER_PREP is never cleared, it
2472 * doesn't participate in concurrency management.
2473 */
2474 set_pf_worker(true);
2475 repeat:
2476 set_current_state(TASK_IDLE);
2477
2478 /*
2479 * By the time the rescuer is requested to stop, the workqueue
2480 * shouldn't have any work pending, but @wq->maydays may still have
2481 * pwq(s) queued. This can happen by non-rescuer workers consuming
2482 * all the work items before the rescuer got to them. Go through
2483 * @wq->maydays processing before acting on should_stop so that the
2484 * list is always empty on exit.
2485 */
2486 should_stop = kthread_should_stop();
2487
2488 /* see whether any pwq is asking for help */
2489 spin_lock_irq(&wq_mayday_lock);
2490
2491 while (!list_empty(&wq->maydays)) {
2492 struct pool_workqueue *pwq = list_first_entry(&wq->maydays,
2493 struct pool_workqueue, mayday_node);
2494 struct worker_pool *pool = pwq->pool;
2495 struct work_struct *work, *n;
2496 bool first = true;
2497
2498 __set_current_state(TASK_RUNNING);
2499 list_del_init(&pwq->mayday_node);
2500
2501 spin_unlock_irq(&wq_mayday_lock);
2502
2503 worker_attach_to_pool(rescuer, pool);
2504
2505 spin_lock_irq(&pool->lock);
2506
2507 /*
2508 * Slurp in all works issued via this workqueue and
2509 * process'em.
2510 */
2511 WARN_ON_ONCE(!list_empty(scheduled));
2512 list_for_each_entry_safe(work, n, &pool->worklist, entry) {
2513 if (get_work_pwq(work) == pwq) {
2514 if (first)
2515 pool->watchdog_ts = jiffies;
2516 move_linked_works(work, scheduled, &n);
2517 }
2518 first = false;
2519 }
2520
2521 if (!list_empty(scheduled)) {
2522 process_scheduled_works(rescuer);
2523
2524 /*
2525 * The above execution of rescued work items could
2526 * have created more to rescue through
2527 * pwq_activate_first_delayed() or chained
2528 * queueing. Let's put @pwq back on mayday list so
2529 * that such back-to-back work items, which may be
2530 * being used to relieve memory pressure, don't
2531 * incur MAYDAY_INTERVAL delay inbetween.
2532 */
2533 if (need_to_create_worker(pool)) {
2534 spin_lock(&wq_mayday_lock);
2535 /*
2536 * Queue iff we aren't racing destruction
2537 * and somebody else hasn't queued it already.
2538 */
2539 if (wq->rescuer && list_empty(&pwq->mayday_node)) {
2540 get_pwq(pwq);
2541 list_add_tail(&pwq->mayday_node, &wq->maydays);
2542 }
2543 spin_unlock(&wq_mayday_lock);
2544 }
2545 }
2546
2547 /*
2548 * Put the reference grabbed by send_mayday(). @pool won't
2549 * go away while we're still attached to it.
2550 */
2551 put_pwq(pwq);
2552
2553 /*
2554 * Leave this pool. If need_more_worker() is %true, notify a
2555 * regular worker; otherwise, we end up with 0 concurrency
2556 * and stalling the execution.
2557 */
2558 if (need_more_worker(pool))
2559 wake_up_worker(pool);
2560
2561 spin_unlock_irq(&pool->lock);
2562
2563 worker_detach_from_pool(rescuer);
2564
2565 spin_lock_irq(&wq_mayday_lock);
2566 }
2567
2568 spin_unlock_irq(&wq_mayday_lock);
2569
2570 if (should_stop) {
2571 __set_current_state(TASK_RUNNING);
2572 set_pf_worker(false);
2573 return 0;
2574 }
2575
2576 /* rescuers should never participate in concurrency management */
2577 WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
2578 schedule();
2579 goto repeat;
2580 }
2581
2582 /**
2583 * check_flush_dependency - check for flush dependency sanity
2584 * @target_wq: workqueue being flushed
2585 * @target_work: work item being flushed (NULL for workqueue flushes)
2586 *
2587 * %current is trying to flush the whole @target_wq or @target_work on it.
2588 * If @target_wq doesn't have %WQ_MEM_RECLAIM, verify that %current is not
2589 * reclaiming memory or running on a workqueue which doesn't have
2590 * %WQ_MEM_RECLAIM as that can break forward-progress guarantee leading to
2591 * a deadlock.
2592 */
2593 static void check_flush_dependency(struct workqueue_struct *target_wq,
2594 struct work_struct *target_work)
2595 {
2596 work_func_t target_func = target_work ? target_work->func : NULL;
2597 struct worker *worker;
2598
2599 if (target_wq->flags & WQ_MEM_RECLAIM)
2600 return;
2601
2602 worker = current_wq_worker();
2603
2604 WARN_ONCE(current->flags & PF_MEMALLOC,
2605 "workqueue: PF_MEMALLOC task %d(%s) is flushing !WQ_MEM_RECLAIM %s:%ps",
2606 current->pid, current->comm, target_wq->name, target_func);
2607 WARN_ONCE(worker && ((worker->current_pwq->wq->flags &
2608 (WQ_MEM_RECLAIM | __WQ_LEGACY)) == WQ_MEM_RECLAIM),
2609 "workqueue: WQ_MEM_RECLAIM %s:%ps is flushing !WQ_MEM_RECLAIM %s:%ps",
2610 worker->current_pwq->wq->name, worker->current_func,
2611 target_wq->name, target_func);
2612 }
2613
2614 struct wq_barrier {
2615 struct work_struct work;
2616 struct completion done;
2617 struct task_struct *task; /* purely informational */
2618 };
2619
2620 static void wq_barrier_func(struct work_struct *work)
2621 {
2622 struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
2623 complete(&barr->done);
2624 }
2625
2626 /**
2627 * insert_wq_barrier - insert a barrier work
2628 * @pwq: pwq to insert barrier into
2629 * @barr: wq_barrier to insert
2630 * @target: target work to attach @barr to
2631 * @worker: worker currently executing @target, NULL if @target is not executing
2632 *
2633 * @barr is linked to @target such that @barr is completed only after
2634 * @target finishes execution. Please note that the ordering
2635 * guarantee is observed only with respect to @target and on the local
2636 * cpu.
2637 *
2638 * Currently, a queued barrier can't be canceled. This is because
2639 * try_to_grab_pending() can't determine whether the work to be
2640 * grabbed is at the head of the queue and thus can't clear LINKED
2641 * flag of the previous work while there must be a valid next work
2642 * after a work with LINKED flag set.
2643 *
2644 * Note that when @worker is non-NULL, @target may be modified
2645 * underneath us, so we can't reliably determine pwq from @target.
2646 *
2647 * CONTEXT:
2648 * spin_lock_irq(pool->lock).
2649 */
2650 static void insert_wq_barrier(struct pool_workqueue *pwq,
2651 struct wq_barrier *barr,
2652 struct work_struct *target, struct worker *worker)
2653 {
2654 struct list_head *head;
2655 unsigned int linked = 0;
2656
2657 /*
2658 * debugobject calls are safe here even with pool->lock locked
2659 * as we know for sure that this will not trigger any of the
2660 * checks and call back into the fixup functions where we
2661 * might deadlock.
2662 */
2663 INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
2664 __set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
2665
2666 init_completion_map(&barr->done, &target->lockdep_map);
2667
2668 barr->task = current;
2669
2670 /*
2671 * If @target is currently being executed, schedule the
2672 * barrier to the worker; otherwise, put it after @target.
2673 */
2674 if (worker)
2675 head = worker->scheduled.next;
2676 else {
2677 unsigned long *bits = work_data_bits(target);
2678
2679 head = target->entry.next;
2680 /* there can already be other linked works, inherit and set */
2681 linked = *bits & WORK_STRUCT_LINKED;
2682 __set_bit(WORK_STRUCT_LINKED_BIT, bits);
2683 }
2684
2685 debug_work_activate(&barr->work);
2686 insert_work(pwq, &barr->work, head,
2687 work_color_to_flags(WORK_NO_COLOR) | linked);
2688 }
2689
2690 /**
2691 * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing
2692 * @wq: workqueue being flushed
2693 * @flush_color: new flush color, < 0 for no-op
2694 * @work_color: new work color, < 0 for no-op
2695 *
2696 * Prepare pwqs for workqueue flushing.
2697 *
2698 * If @flush_color is non-negative, flush_color on all pwqs should be
2699 * -1. If no pwq has in-flight commands at the specified color, all
2700 * pwq->flush_color's stay at -1 and %false is returned. If any pwq
2701 * has in flight commands, its pwq->flush_color is set to
2702 * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq
2703 * wakeup logic is armed and %true is returned.
2704 *
2705 * The caller should have initialized @wq->first_flusher prior to
2706 * calling this function with non-negative @flush_color. If
2707 * @flush_color is negative, no flush color update is done and %false
2708 * is returned.
2709 *
2710 * If @work_color is non-negative, all pwqs should have the same
2711 * work_color which is previous to @work_color and all will be
2712 * advanced to @work_color.
2713 *
2714 * CONTEXT:
2715 * mutex_lock(wq->mutex).
2716 *
2717 * Return:
2718 * %true if @flush_color >= 0 and there's something to flush. %false
2719 * otherwise.
2720 */
2721 static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq,
2722 int flush_color, int work_color)
2723 {
2724 bool wait = false;
2725 struct pool_workqueue *pwq;
2726
2727 if (flush_color >= 0) {
2728 WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush));
2729 atomic_set(&wq->nr_pwqs_to_flush, 1);
2730 }
2731
2732 for_each_pwq(pwq, wq) {
2733 struct worker_pool *pool = pwq->pool;
2734
2735 spin_lock_irq(&pool->lock);
2736
2737 if (flush_color >= 0) {
2738 WARN_ON_ONCE(pwq->flush_color != -1);
2739
2740 if (pwq->nr_in_flight[flush_color]) {
2741 pwq->flush_color = flush_color;
2742 atomic_inc(&wq->nr_pwqs_to_flush);
2743 wait = true;
2744 }
2745 }
2746
2747 if (work_color >= 0) {
2748 WARN_ON_ONCE(work_color != work_next_color(pwq->work_color));
2749 pwq->work_color = work_color;
2750 }
2751
2752 spin_unlock_irq(&pool->lock);
2753 }
2754
2755 if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush))
2756 complete(&wq->first_flusher->done);
2757
2758 return wait;
2759 }
2760
2761 /**
2762 * flush_workqueue - ensure that any scheduled work has run to completion.
2763 * @wq: workqueue to flush
2764 *
2765 * This function sleeps until all work items which were queued on entry
2766 * have finished execution, but it is not livelocked by new incoming ones.
2767 */
2768 void flush_workqueue(struct workqueue_struct *wq)
2769 {
2770 struct wq_flusher this_flusher = {
2771 .list = LIST_HEAD_INIT(this_flusher.list),
2772 .flush_color = -1,
2773 .done = COMPLETION_INITIALIZER_ONSTACK_MAP(this_flusher.done, wq->lockdep_map),
2774 };
2775 int next_color;
2776
2777 if (WARN_ON(!wq_online))
2778 return;
2779
2780 lock_map_acquire(&wq->lockdep_map);
2781 lock_map_release(&wq->lockdep_map);
2782
2783 mutex_lock(&wq->mutex);
2784
2785 /*
2786 * Start-to-wait phase
2787 */
2788 next_color = work_next_color(wq->work_color);
2789
2790 if (next_color != wq->flush_color) {
2791 /*
2792 * Color space is not full. The current work_color
2793 * becomes our flush_color and work_color is advanced
2794 * by one.
2795 */
2796 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow));
2797 this_flusher.flush_color = wq->work_color;
2798 wq->work_color = next_color;
2799
2800 if (!wq->first_flusher) {
2801 /* no flush in progress, become the first flusher */
2802 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2803
2804 wq->first_flusher = &this_flusher;
2805
2806 if (!flush_workqueue_prep_pwqs(wq, wq->flush_color,
2807 wq->work_color)) {
2808 /* nothing to flush, done */
2809 wq->flush_color = next_color;
2810 wq->first_flusher = NULL;
2811 goto out_unlock;
2812 }
2813 } else {
2814 /* wait in queue */
2815 WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color);
2816 list_add_tail(&this_flusher.list, &wq->flusher_queue);
2817 flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2818 }
2819 } else {
2820 /*
2821 * Oops, color space is full, wait on overflow queue.
2822 * The next flush completion will assign us
2823 * flush_color and transfer to flusher_queue.
2824 */
2825 list_add_tail(&this_flusher.list, &wq->flusher_overflow);
2826 }
2827
2828 check_flush_dependency(wq, NULL);
2829
2830 mutex_unlock(&wq->mutex);
2831
2832 wait_for_completion(&this_flusher.done);
2833
2834 /*
2835 * Wake-up-and-cascade phase
2836 *
2837 * First flushers are responsible for cascading flushes and
2838 * handling overflow. Non-first flushers can simply return.
2839 */
2840 if (wq->first_flusher != &this_flusher)
2841 return;
2842
2843 mutex_lock(&wq->mutex);
2844
2845 /* we might have raced, check again with mutex held */
2846 if (wq->first_flusher != &this_flusher)
2847 goto out_unlock;
2848
2849 wq->first_flusher = NULL;
2850
2851 WARN_ON_ONCE(!list_empty(&this_flusher.list));
2852 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2853
2854 while (true) {
2855 struct wq_flusher *next, *tmp;
2856
2857 /* complete all the flushers sharing the current flush color */
2858 list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
2859 if (next->flush_color != wq->flush_color)
2860 break;
2861 list_del_init(&next->list);
2862 complete(&next->done);
2863 }
2864
2865 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) &&
2866 wq->flush_color != work_next_color(wq->work_color));
2867
2868 /* this flush_color is finished, advance by one */
2869 wq->flush_color = work_next_color(wq->flush_color);
2870
2871 /* one color has been freed, handle overflow queue */
2872 if (!list_empty(&wq->flusher_overflow)) {
2873 /*
2874 * Assign the same color to all overflowed
2875 * flushers, advance work_color and append to
2876 * flusher_queue. This is the start-to-wait
2877 * phase for these overflowed flushers.
2878 */
2879 list_for_each_entry(tmp, &wq->flusher_overflow, list)
2880 tmp->flush_color = wq->work_color;
2881
2882 wq->work_color = work_next_color(wq->work_color);
2883
2884 list_splice_tail_init(&wq->flusher_overflow,
2885 &wq->flusher_queue);
2886 flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2887 }
2888
2889 if (list_empty(&wq->flusher_queue)) {
2890 WARN_ON_ONCE(wq->flush_color != wq->work_color);
2891 break;
2892 }
2893
2894 /*
2895 * Need to flush more colors. Make the next flusher
2896 * the new first flusher and arm pwqs.
2897 */
2898 WARN_ON_ONCE(wq->flush_color == wq->work_color);
2899 WARN_ON_ONCE(wq->flush_color != next->flush_color);
2900
2901 list_del_init(&next->list);
2902 wq->first_flusher = next;
2903
2904 if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1))
2905 break;
2906
2907 /*
2908 * Meh... this color is already done, clear first
2909 * flusher and repeat cascading.
2910 */
2911 wq->first_flusher = NULL;
2912 }
2913
2914 out_unlock:
2915 mutex_unlock(&wq->mutex);
2916 }
2917 EXPORT_SYMBOL(flush_workqueue);
2918
2919 /**
2920 * drain_workqueue - drain a workqueue
2921 * @wq: workqueue to drain
2922 *
2923 * Wait until the workqueue becomes empty. While draining is in progress,
2924 * only chain queueing is allowed. IOW, only currently pending or running
2925 * work items on @wq can queue further work items on it. @wq is flushed
2926 * repeatedly until it becomes empty. The number of flushing is determined
2927 * by the depth of chaining and should be relatively short. Whine if it
2928 * takes too long.
2929 */
2930 void drain_workqueue(struct workqueue_struct *wq)
2931 {
2932 unsigned int flush_cnt = 0;
2933 struct pool_workqueue *pwq;
2934
2935 /*
2936 * __queue_work() needs to test whether there are drainers, is much
2937 * hotter than drain_workqueue() and already looks at @wq->flags.
2938 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers.
2939 */
2940 mutex_lock(&wq->mutex);
2941 if (!wq->nr_drainers++)
2942 wq->flags |= __WQ_DRAINING;
2943 mutex_unlock(&wq->mutex);
2944 reflush:
2945 flush_workqueue(wq);
2946
2947 mutex_lock(&wq->mutex);
2948
2949 for_each_pwq(pwq, wq) {
2950 bool drained;
2951
2952 spin_lock_irq(&pwq->pool->lock);
2953 drained = !pwq->nr_active && list_empty(&pwq->delayed_works);
2954 spin_unlock_irq(&pwq->pool->lock);
2955
2956 if (drained)
2957 continue;
2958
2959 if (++flush_cnt == 10 ||
2960 (flush_cnt % 100 == 0 && flush_cnt <= 1000))
2961 pr_warn("workqueue %s: drain_workqueue() isn't complete after %u tries\n",
2962 wq->name, flush_cnt);
2963
2964 mutex_unlock(&wq->mutex);
2965 goto reflush;
2966 }
2967
2968 if (!--wq->nr_drainers)
2969 wq->flags &= ~__WQ_DRAINING;
2970 mutex_unlock(&wq->mutex);
2971 }
2972 EXPORT_SYMBOL_GPL(drain_workqueue);
2973
2974 static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr,
2975 bool from_cancel)
2976 {
2977 struct worker *worker = NULL;
2978 struct worker_pool *pool;
2979 struct pool_workqueue *pwq;
2980
2981 might_sleep();
2982
2983 rcu_read_lock();
2984 pool = get_work_pool(work);
2985 if (!pool) {
2986 rcu_read_unlock();
2987 return false;
2988 }
2989
2990 spin_lock_irq(&pool->lock);
2991 /* see the comment in try_to_grab_pending() with the same code */
2992 pwq = get_work_pwq(work);
2993 if (pwq) {
2994 if (unlikely(pwq->pool != pool))
2995 goto already_gone;
2996 } else {
2997 worker = find_worker_executing_work(pool, work);
2998 if (!worker)
2999 goto already_gone;
3000 pwq = worker->current_pwq;
3001 }
3002
3003 check_flush_dependency(pwq->wq, work);
3004
3005 insert_wq_barrier(pwq, barr, work, worker);
3006 spin_unlock_irq(&pool->lock);
3007
3008 /*
3009 * Force a lock recursion deadlock when using flush_work() inside a
3010 * single-threaded or rescuer equipped workqueue.
3011 *
3012 * For single threaded workqueues the deadlock happens when the work
3013 * is after the work issuing the flush_work(). For rescuer equipped
3014 * workqueues the deadlock happens when the rescuer stalls, blocking
3015 * forward progress.
3016 */
3017 if (!from_cancel &&
3018 (pwq->wq->saved_max_active == 1 || pwq->wq->rescuer)) {
3019 lock_map_acquire(&pwq->wq->lockdep_map);
3020 lock_map_release(&pwq->wq->lockdep_map);
3021 }
3022 rcu_read_unlock();
3023 return true;
3024 already_gone:
3025 spin_unlock_irq(&pool->lock);
3026 rcu_read_unlock();
3027 return false;
3028 }
3029
3030 static bool __flush_work(struct work_struct *work, bool from_cancel)
3031 {
3032 struct wq_barrier barr;
3033
3034 if (WARN_ON(!wq_online))
3035 return false;
3036
3037 if (WARN_ON(!work->func))
3038 return false;
3039
3040 if (!from_cancel) {
3041 lock_map_acquire(&work->lockdep_map);
3042 lock_map_release(&work->lockdep_map);
3043 }
3044
3045 if (start_flush_work(work, &barr, from_cancel)) {
3046 wait_for_completion(&barr.done);
3047 destroy_work_on_stack(&barr.work);
3048 return true;
3049 } else {
3050 return false;
3051 }
3052 }
3053
3054 /**
3055 * flush_work - wait for a work to finish executing the last queueing instance
3056 * @work: the work to flush
3057 *
3058 * Wait until @work has finished execution. @work is guaranteed to be idle
3059 * on return if it hasn't been requeued since flush started.
3060 *
3061 * Return:
3062 * %true if flush_work() waited for the work to finish execution,
3063 * %false if it was already idle.
3064 */
3065 bool flush_work(struct work_struct *work)
3066 {
3067 return __flush_work(work, false);
3068 }
3069 EXPORT_SYMBOL_GPL(flush_work);
3070
3071 struct cwt_wait {
3072 wait_queue_entry_t wait;
3073 struct work_struct *work;
3074 };
3075
3076 static int cwt_wakefn(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
3077 {
3078 struct cwt_wait *cwait = container_of(wait, struct cwt_wait, wait);
3079
3080 if (cwait->work != key)
3081 return 0;
3082 return autoremove_wake_function(wait, mode, sync, key);
3083 }
3084
3085 static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
3086 {
3087 static DECLARE_WAIT_QUEUE_HEAD(cancel_waitq);
3088 unsigned long flags;
3089 int ret;
3090
3091 do {
3092 ret = try_to_grab_pending(work, is_dwork, &flags);
3093 /*
3094 * If someone else is already canceling, wait for it to
3095 * finish. flush_work() doesn't work for PREEMPT_NONE
3096 * because we may get scheduled between @work's completion
3097 * and the other canceling task resuming and clearing
3098 * CANCELING - flush_work() will return false immediately
3099 * as @work is no longer busy, try_to_grab_pending() will
3100 * return -ENOENT as @work is still being canceled and the
3101 * other canceling task won't be able to clear CANCELING as
3102 * we're hogging the CPU.
3103 *
3104 * Let's wait for completion using a waitqueue. As this
3105 * may lead to the thundering herd problem, use a custom
3106 * wake function which matches @work along with exclusive
3107 * wait and wakeup.
3108 */
3109 if (unlikely(ret == -ENOENT)) {
3110 struct cwt_wait cwait;
3111
3112 init_wait(&cwait.wait);
3113 cwait.wait.func = cwt_wakefn;
3114 cwait.work = work;
3115
3116 prepare_to_wait_exclusive(&cancel_waitq, &cwait.wait,
3117 TASK_UNINTERRUPTIBLE);
3118 if (work_is_canceling(work))
3119 schedule();
3120 finish_wait(&cancel_waitq, &cwait.wait);
3121 }
3122 } while (unlikely(ret < 0));
3123
3124 /* tell other tasks trying to grab @work to back off */
3125 mark_work_canceling(work);
3126 local_irq_restore(flags);
3127
3128 /*
3129 * This allows canceling during early boot. We know that @work
3130 * isn't executing.
3131 */
3132 if (wq_online)
3133 __flush_work(work, true);
3134
3135 clear_work_data(work);
3136
3137 /*
3138 * Paired with prepare_to_wait() above so that either
3139 * waitqueue_active() is visible here or !work_is_canceling() is
3140 * visible there.
3141 */
3142 smp_mb();
3143 if (waitqueue_active(&cancel_waitq))
3144 __wake_up(&cancel_waitq, TASK_NORMAL, 1, work);
3145
3146 return ret;
3147 }
3148
3149 /**
3150 * cancel_work_sync - cancel a work and wait for it to finish
3151 * @work: the work to cancel
3152 *
3153 * Cancel @work and wait for its execution to finish. This function
3154 * can be used even if the work re-queues itself or migrates to
3155 * another workqueue. On return from this function, @work is
3156 * guaranteed to be not pending or executing on any CPU.
3157 *
3158 * cancel_work_sync(&delayed_work->work) must not be used for
3159 * delayed_work's. Use cancel_delayed_work_sync() instead.
3160 *
3161 * The caller must ensure that the workqueue on which @work was last
3162 * queued can't be destroyed before this function returns.
3163 *
3164 * Return:
3165 * %true if @work was pending, %false otherwise.
3166 */
3167 bool cancel_work_sync(struct work_struct *work)
3168 {
3169 return __cancel_work_timer(work, false);
3170 }
3171 EXPORT_SYMBOL_GPL(cancel_work_sync);
3172
3173 /**
3174 * flush_delayed_work - wait for a dwork to finish executing the last queueing
3175 * @dwork: the delayed work to flush
3176 *
3177 * Delayed timer is cancelled and the pending work is queued for
3178 * immediate execution. Like flush_work(), this function only
3179 * considers the last queueing instance of @dwork.
3180 *
3181 * Return:
3182 * %true if flush_work() waited for the work to finish execution,
3183 * %false if it was already idle.
3184 */
3185 bool flush_delayed_work(struct delayed_work *dwork)
3186 {
3187 local_irq_disable();
3188 if (del_timer_sync(&dwork->timer))
3189 __queue_work(dwork->cpu, dwork->wq, &dwork->work);
3190 local_irq_enable();
3191 return flush_work(&dwork->work);
3192 }
3193 EXPORT_SYMBOL(flush_delayed_work);
3194
3195 /**
3196 * flush_rcu_work - wait for a rwork to finish executing the last queueing
3197 * @rwork: the rcu work to flush
3198 *
3199 * Return:
3200 * %true if flush_rcu_work() waited for the work to finish execution,
3201 * %false if it was already idle.
3202 */
3203 bool flush_rcu_work(struct rcu_work *rwork)
3204 {
3205 if (test_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&rwork->work))) {
3206 rcu_barrier();
3207 flush_work(&rwork->work);
3208 return true;
3209 } else {
3210 return flush_work(&rwork->work);
3211 }
3212 }
3213 EXPORT_SYMBOL(flush_rcu_work);
3214
3215 static bool __cancel_work(struct work_struct *work, bool is_dwork)
3216 {
3217 unsigned long flags;
3218 int ret;
3219
3220 do {
3221 ret = try_to_grab_pending(work, is_dwork, &flags);
3222 } while (unlikely(ret == -EAGAIN));
3223
3224 if (unlikely(ret < 0))
3225 return false;
3226
3227 set_work_pool_and_clear_pending(work, get_work_pool_id(work));
3228 local_irq_restore(flags);
3229 return ret;
3230 }
3231
3232 /**
3233 * cancel_delayed_work - cancel a delayed work
3234 * @dwork: delayed_work to cancel
3235 *
3236 * Kill off a pending delayed_work.
3237 *
3238 * Return: %true if @dwork was pending and canceled; %false if it wasn't
3239 * pending.
3240 *
3241 * Note:
3242 * The work callback function may still be running on return, unless
3243 * it returns %true and the work doesn't re-arm itself. Explicitly flush or
3244 * use cancel_delayed_work_sync() to wait on it.
3245 *
3246 * This function is safe to call from any context including IRQ handler.
3247 */
3248 bool cancel_delayed_work(struct delayed_work *dwork)
3249 {
3250 return __cancel_work(&dwork->work, true);
3251 }
3252 EXPORT_SYMBOL(cancel_delayed_work);
3253
3254 /**
3255 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
3256 * @dwork: the delayed work cancel
3257 *
3258 * This is cancel_work_sync() for delayed works.
3259 *
3260 * Return:
3261 * %true if @dwork was pending, %false otherwise.
3262 */
3263 bool cancel_delayed_work_sync(struct delayed_work *dwork)
3264 {
3265 return __cancel_work_timer(&dwork->work, true);
3266 }
3267 EXPORT_SYMBOL(cancel_delayed_work_sync);
3268
3269 /**
3270 * schedule_on_each_cpu - execute a function synchronously on each online CPU
3271 * @func: the function to call
3272 *
3273 * schedule_on_each_cpu() executes @func on each online CPU using the
3274 * system workqueue and blocks until all CPUs have completed.
3275 * schedule_on_each_cpu() is very slow.
3276 *
3277 * Return:
3278 * 0 on success, -errno on failure.
3279 */
3280 int schedule_on_each_cpu(work_func_t func)
3281 {
3282 int cpu;
3283 struct work_struct __percpu *works;
3284
3285 works = alloc_percpu(struct work_struct);
3286 if (!works)
3287 return -ENOMEM;
3288
3289 get_online_cpus();
3290
3291 for_each_online_cpu(cpu) {
3292 struct work_struct *work = per_cpu_ptr(works, cpu);
3293
3294 INIT_WORK(work, func);
3295 schedule_work_on(cpu, work);
3296 }
3297
3298 for_each_online_cpu(cpu)
3299 flush_work(per_cpu_ptr(works, cpu));
3300
3301 put_online_cpus();
3302 free_percpu(works);
3303 return 0;
3304 }
3305
3306 /**
3307 * execute_in_process_context - reliably execute the routine with user context
3308 * @fn: the function to execute
3309 * @ew: guaranteed storage for the execute work structure (must
3310 * be available when the work executes)
3311 *
3312 * Executes the function immediately if process context is available,
3313 * otherwise schedules the function for delayed execution.
3314 *
3315 * Return: 0 - function was executed
3316 * 1 - function was scheduled for execution
3317 */
3318 int execute_in_process_context(work_func_t fn, struct execute_work *ew)
3319 {
3320 if (!in_interrupt()) {
3321 fn(&ew->work);
3322 return 0;
3323 }
3324
3325 INIT_WORK(&ew->work, fn);
3326 schedule_work(&ew->work);
3327
3328 return 1;
3329 }
3330 EXPORT_SYMBOL_GPL(execute_in_process_context);
3331
3332 /**
3333 * free_workqueue_attrs - free a workqueue_attrs
3334 * @attrs: workqueue_attrs to free
3335 *
3336 * Undo alloc_workqueue_attrs().
3337 */
3338 void free_workqueue_attrs(struct workqueue_attrs *attrs)
3339 {
3340 if (attrs) {
3341 free_cpumask_var(attrs->cpumask);
3342 kfree(attrs);
3343 }
3344 }
3345
3346 /**
3347 * alloc_workqueue_attrs - allocate a workqueue_attrs
3348 *
3349 * Allocate a new workqueue_attrs, initialize with default settings and
3350 * return it.
3351 *
3352 * Return: The allocated new workqueue_attr on success. %NULL on failure.
3353 */
3354 struct workqueue_attrs *alloc_workqueue_attrs(void)
3355 {
3356 struct workqueue_attrs *attrs;
3357
3358 attrs = kzalloc(sizeof(*attrs), GFP_KERNEL);
3359 if (!attrs)
3360 goto fail;
3361 if (!alloc_cpumask_var(&attrs->cpumask, GFP_KERNEL))
3362 goto fail;
3363
3364 cpumask_copy(attrs->cpumask, cpu_possible_mask);
3365 return attrs;
3366 fail:
3367 free_workqueue_attrs(attrs);
3368 return NULL;
3369 }
3370
3371 static void copy_workqueue_attrs(struct workqueue_attrs *to,
3372 const struct workqueue_attrs *from)
3373 {
3374 to->nice = from->nice;
3375 cpumask_copy(to->cpumask, from->cpumask);
3376 /*
3377 * Unlike hash and equality test, this function doesn't ignore
3378 * ->no_numa as it is used for both pool and wq attrs. Instead,
3379 * get_unbound_pool() explicitly clears ->no_numa after copying.
3380 */
3381 to->no_numa = from->no_numa;
3382 }
3383
3384 /* hash value of the content of @attr */
3385 static u32 wqattrs_hash(const struct workqueue_attrs *attrs)
3386 {
3387 u32 hash = 0;
3388
3389 hash = jhash_1word(attrs->nice, hash);
3390 hash = jhash(cpumask_bits(attrs->cpumask),
3391 BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash);
3392 return hash;
3393 }
3394
3395 /* content equality test */
3396 static bool wqattrs_equal(const struct workqueue_attrs *a,
3397 const struct workqueue_attrs *b)
3398 {
3399 if (a->nice != b->nice)
3400 return false;
3401 if (!cpumask_equal(a->cpumask, b->cpumask))
3402 return false;
3403 return true;
3404 }
3405
3406 /**
3407 * init_worker_pool - initialize a newly zalloc'd worker_pool
3408 * @pool: worker_pool to initialize
3409 *
3410 * Initialize a newly zalloc'd @pool. It also allocates @pool->attrs.
3411 *
3412 * Return: 0 on success, -errno on failure. Even on failure, all fields
3413 * inside @pool proper are initialized and put_unbound_pool() can be called
3414 * on @pool safely to release it.
3415 */
3416 static int init_worker_pool(struct worker_pool *pool)
3417 {
3418 spin_lock_init(&pool->lock);
3419 pool->id = -1;
3420 pool->cpu = -1;
3421 pool->node = NUMA_NO_NODE;
3422 pool->flags |= POOL_DISASSOCIATED;
3423 pool->watchdog_ts = jiffies;
3424 INIT_LIST_HEAD(&pool->worklist);
3425 INIT_LIST_HEAD(&pool->idle_list);
3426 hash_init(pool->busy_hash);
3427
3428 timer_setup(&pool->idle_timer, idle_worker_timeout, TIMER_DEFERRABLE);
3429
3430 timer_setup(&pool->mayday_timer, pool_mayday_timeout, 0);
3431
3432 INIT_LIST_HEAD(&pool->workers);
3433
3434 ida_init(&pool->worker_ida);
3435 INIT_HLIST_NODE(&pool->hash_node);
3436 pool->refcnt = 1;
3437
3438 /* shouldn't fail above this point */
3439 pool->attrs = alloc_workqueue_attrs();
3440 if (!pool->attrs)
3441 return -ENOMEM;
3442 return 0;
3443 }
3444
3445 #ifdef CONFIG_LOCKDEP
3446 static void wq_init_lockdep(struct workqueue_struct *wq)
3447 {
3448 char *lock_name;
3449
3450 lockdep_register_key(&wq->key);
3451 lock_name = kasprintf(GFP_KERNEL, "%s%s", "(wq_completion)", wq->name);
3452 if (!lock_name)
3453 lock_name = wq->name;
3454
3455 wq->lock_name = lock_name;
3456 lockdep_init_map(&wq->lockdep_map, lock_name, &wq->key, 0);
3457 }
3458
3459 static void wq_unregister_lockdep(struct workqueue_struct *wq)
3460 {
3461 lockdep_unregister_key(&wq->key);
3462 }
3463
3464 static void wq_free_lockdep(struct workqueue_struct *wq)
3465 {
3466 if (wq->lock_name != wq->name)
3467 kfree(wq->lock_name);
3468 }
3469 #else
3470 static void wq_init_lockdep(struct workqueue_struct *wq)
3471 {
3472 }
3473
3474 static void wq_unregister_lockdep(struct workqueue_struct *wq)
3475 {
3476 }
3477
3478 static void wq_free_lockdep(struct workqueue_struct *wq)
3479 {
3480 }
3481 #endif
3482
3483 static void rcu_free_wq(struct rcu_head *rcu)
3484 {
3485 struct workqueue_struct *wq =
3486 container_of(rcu, struct workqueue_struct, rcu);
3487
3488 wq_free_lockdep(wq);
3489
3490 if (!(wq->flags & WQ_UNBOUND))
3491 free_percpu(wq->cpu_pwqs);
3492 else
3493 free_workqueue_attrs(wq->unbound_attrs);
3494
3495 kfree(wq->rescuer);
3496 kfree(wq);
3497 }
3498
3499 static void rcu_free_pool(struct rcu_head *rcu)
3500 {
3501 struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu);
3502
3503 ida_destroy(&pool->worker_ida);
3504 free_workqueue_attrs(pool->attrs);
3505 kfree(pool);
3506 }
3507
3508 /**
3509 * put_unbound_pool - put a worker_pool
3510 * @pool: worker_pool to put
3511 *
3512 * Put @pool. If its refcnt reaches zero, it gets destroyed in RCU
3513 * safe manner. get_unbound_pool() calls this function on its failure path
3514 * and this function should be able to release pools which went through,
3515 * successfully or not, init_worker_pool().
3516 *
3517 * Should be called with wq_pool_mutex held.
3518 */
3519 static void put_unbound_pool(struct worker_pool *pool)
3520 {
3521 DECLARE_COMPLETION_ONSTACK(detach_completion);
3522 struct worker *worker;
3523
3524 lockdep_assert_held(&wq_pool_mutex);
3525
3526 if (--pool->refcnt)
3527 return;
3528
3529 /* sanity checks */
3530 if (WARN_ON(!(pool->cpu < 0)) ||
3531 WARN_ON(!list_empty(&pool->worklist)))
3532 return;
3533
3534 /* release id and unhash */
3535 if (pool->id >= 0)
3536 idr_remove(&worker_pool_idr, pool->id);
3537 hash_del(&pool->hash_node);
3538
3539 /*
3540 * Become the manager and destroy all workers. This prevents
3541 * @pool's workers from blocking on attach_mutex. We're the last
3542 * manager and @pool gets freed with the flag set.
3543 */
3544 spin_lock_irq(&pool->lock);
3545 wait_event_lock_irq(wq_manager_wait,
3546 !(pool->flags & POOL_MANAGER_ACTIVE), pool->lock);
3547 pool->flags |= POOL_MANAGER_ACTIVE;
3548
3549 while ((worker = first_idle_worker(pool)))
3550 destroy_worker(worker);
3551 WARN_ON(pool->nr_workers || pool->nr_idle);
3552 spin_unlock_irq(&pool->lock);
3553
3554 mutex_lock(&wq_pool_attach_mutex);
3555 if (!list_empty(&pool->workers))
3556 pool->detach_completion = &detach_completion;
3557 mutex_unlock(&wq_pool_attach_mutex);
3558
3559 if (pool->detach_completion)
3560 wait_for_completion(pool->detach_completion);
3561
3562 /* shut down the timers */
3563 del_timer_sync(&pool->idle_timer);
3564 del_timer_sync(&pool->mayday_timer);
3565
3566 /* RCU protected to allow dereferences from get_work_pool() */
3567 call_rcu(&pool->rcu, rcu_free_pool);
3568 }
3569
3570 /**
3571 * get_unbound_pool - get a worker_pool with the specified attributes
3572 * @attrs: the attributes of the worker_pool to get
3573 *
3574 * Obtain a worker_pool which has the same attributes as @attrs, bump the
3575 * reference count and return it. If there already is a matching
3576 * worker_pool, it will be used; otherwise, this function attempts to
3577 * create a new one.
3578 *
3579 * Should be called with wq_pool_mutex held.
3580 *
3581 * Return: On success, a worker_pool with the same attributes as @attrs.
3582 * On failure, %NULL.
3583 */
3584 static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs)
3585 {
3586 u32 hash = wqattrs_hash(attrs);
3587 struct worker_pool *pool;
3588 int node;
3589 int target_node = NUMA_NO_NODE;
3590
3591 lockdep_assert_held(&wq_pool_mutex);
3592
3593 /* do we already have a matching pool? */
3594 hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) {
3595 if (wqattrs_equal(pool->attrs, attrs)) {
3596 pool->refcnt++;
3597 return pool;
3598 }
3599 }
3600
3601 /* if cpumask is contained inside a NUMA node, we belong to that node */
3602 if (wq_numa_enabled) {
3603 for_each_node(node) {
3604 if (cpumask_subset(attrs->cpumask,
3605 wq_numa_possible_cpumask[node])) {
3606 target_node = node;
3607 break;
3608 }
3609 }
3610 }
3611
3612 /* nope, create a new one */
3613 pool = kzalloc_node(sizeof(*pool), GFP_KERNEL, target_node);
3614 if (!pool || init_worker_pool(pool) < 0)
3615 goto fail;
3616
3617 lockdep_set_subclass(&pool->lock, 1); /* see put_pwq() */
3618 copy_workqueue_attrs(pool->attrs, attrs);
3619 pool->node = target_node;
3620
3621 /*
3622 * no_numa isn't a worker_pool attribute, always clear it. See
3623 * 'struct workqueue_attrs' comments for detail.
3624 */
3625 pool->attrs->no_numa = false;
3626
3627 if (worker_pool_assign_id(pool) < 0)
3628 goto fail;
3629
3630 /* create and start the initial worker */
3631 if (wq_online && !create_worker(pool))
3632 goto fail;
3633
3634 /* install */
3635 hash_add(unbound_pool_hash, &pool->hash_node, hash);
3636
3637 return pool;
3638 fail:
3639 if (pool)
3640 put_unbound_pool(pool);
3641 return NULL;
3642 }
3643
3644 static void rcu_free_pwq(struct rcu_head *rcu)
3645 {
3646 kmem_cache_free(pwq_cache,
3647 container_of(rcu, struct pool_workqueue, rcu));
3648 }
3649
3650 /*
3651 * Scheduled on system_wq by put_pwq() when an unbound pwq hits zero refcnt
3652 * and needs to be destroyed.
3653 */
3654 static void pwq_unbound_release_workfn(struct work_struct *work)
3655 {
3656 struct pool_workqueue *pwq = container_of(work, struct pool_workqueue,
3657 unbound_release_work);
3658 struct workqueue_struct *wq = pwq->wq;
3659 struct worker_pool *pool = pwq->pool;
3660 bool is_last;
3661
3662 if (WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND)))
3663 return;
3664
3665 mutex_lock(&wq->mutex);
3666 list_del_rcu(&pwq->pwqs_node);
3667 is_last = list_empty(&wq->pwqs);
3668 mutex_unlock(&wq->mutex);
3669
3670 mutex_lock(&wq_pool_mutex);
3671 put_unbound_pool(pool);
3672 mutex_unlock(&wq_pool_mutex);
3673
3674 call_rcu(&pwq->rcu, rcu_free_pwq);
3675
3676 /*
3677 * If we're the last pwq going away, @wq is already dead and no one
3678 * is gonna access it anymore. Schedule RCU free.
3679 */
3680 if (is_last) {
3681 wq_unregister_lockdep(wq);
3682 call_rcu(&wq->rcu, rcu_free_wq);
3683 }
3684 }
3685
3686 /**
3687 * pwq_adjust_max_active - update a pwq's max_active to the current setting
3688 * @pwq: target pool_workqueue
3689 *
3690 * If @pwq isn't freezing, set @pwq->max_active to the associated
3691 * workqueue's saved_max_active and activate delayed work items
3692 * accordingly. If @pwq is freezing, clear @pwq->max_active to zero.
3693 */
3694 static void pwq_adjust_max_active(struct pool_workqueue *pwq)
3695 {
3696 struct workqueue_struct *wq = pwq->wq;
3697 bool freezable = wq->flags & WQ_FREEZABLE;
3698 unsigned long flags;
3699
3700 /* for @wq->saved_max_active */
3701 lockdep_assert_held(&wq->mutex);
3702
3703 /* fast exit for non-freezable wqs */
3704 if (!freezable && pwq->max_active == wq->saved_max_active)
3705 return;
3706
3707 /* this function can be called during early boot w/ irq disabled */
3708 spin_lock_irqsave(&pwq->pool->lock, flags);
3709
3710 /*
3711 * During [un]freezing, the caller is responsible for ensuring that
3712 * this function is called at least once after @workqueue_freezing
3713 * is updated and visible.
3714 */
3715 if (!freezable || !workqueue_freezing) {
3716 pwq->max_active = wq->saved_max_active;
3717
3718 while (!list_empty(&pwq->delayed_works) &&
3719 pwq->nr_active < pwq->max_active)
3720 pwq_activate_first_delayed(pwq);
3721
3722 /*
3723 * Need to kick a worker after thawed or an unbound wq's
3724 * max_active is bumped. It's a slow path. Do it always.
3725 */
3726 wake_up_worker(pwq->pool);
3727 } else {
3728 pwq->max_active = 0;
3729 }
3730
3731 spin_unlock_irqrestore(&pwq->pool->lock, flags);
3732 }
3733
3734 /* initialize newly alloced @pwq which is associated with @wq and @pool */
3735 static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq,
3736 struct worker_pool *pool)
3737 {
3738 BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK);
3739
3740 memset(pwq, 0, sizeof(*pwq));
3741
3742 pwq->pool = pool;
3743 pwq->wq = wq;
3744 pwq->flush_color = -1;
3745 pwq->refcnt = 1;
3746 INIT_LIST_HEAD(&pwq->delayed_works);
3747 INIT_LIST_HEAD(&pwq->pwqs_node);
3748 INIT_LIST_HEAD(&pwq->mayday_node);
3749 INIT_WORK(&pwq->unbound_release_work, pwq_unbound_release_workfn);
3750 }
3751
3752 /* sync @pwq with the current state of its associated wq and link it */
3753 static void link_pwq(struct pool_workqueue *pwq)
3754 {
3755 struct workqueue_struct *wq = pwq->wq;
3756
3757 lockdep_assert_held(&wq->mutex);
3758
3759 /* may be called multiple times, ignore if already linked */
3760 if (!list_empty(&pwq->pwqs_node))
3761 return;
3762
3763 /* set the matching work_color */
3764 pwq->work_color = wq->work_color;
3765
3766 /* sync max_active to the current setting */
3767 pwq_adjust_max_active(pwq);
3768
3769 /* link in @pwq */
3770 list_add_rcu(&pwq->pwqs_node, &wq->pwqs);
3771 }
3772
3773 /* obtain a pool matching @attr and create a pwq associating the pool and @wq */
3774 static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq,
3775 const struct workqueue_attrs *attrs)
3776 {
3777 struct worker_pool *pool;
3778 struct pool_workqueue *pwq;
3779
3780 lockdep_assert_held(&wq_pool_mutex);
3781
3782 pool = get_unbound_pool(attrs);
3783 if (!pool)
3784 return NULL;
3785
3786 pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node);
3787 if (!pwq) {
3788 put_unbound_pool(pool);
3789 return NULL;
3790 }
3791
3792 init_pwq(pwq, wq, pool);
3793 return pwq;
3794 }
3795
3796 /**
3797 * wq_calc_node_cpumask - calculate a wq_attrs' cpumask for the specified node
3798 * @attrs: the wq_attrs of the default pwq of the target workqueue
3799 * @node: the target NUMA node
3800 * @cpu_going_down: if >= 0, the CPU to consider as offline
3801 * @cpumask: outarg, the resulting cpumask
3802 *
3803 * Calculate the cpumask a workqueue with @attrs should use on @node. If
3804 * @cpu_going_down is >= 0, that cpu is considered offline during
3805 * calculation. The result is stored in @cpumask.
3806 *
3807 * If NUMA affinity is not enabled, @attrs->cpumask is always used. If
3808 * enabled and @node has online CPUs requested by @attrs, the returned
3809 * cpumask is the intersection of the possible CPUs of @node and
3810 * @attrs->cpumask.
3811 *
3812 * The caller is responsible for ensuring that the cpumask of @node stays
3813 * stable.
3814 *
3815 * Return: %true if the resulting @cpumask is different from @attrs->cpumask,
3816 * %false if equal.
3817 */
3818 static bool wq_calc_node_cpumask(const struct workqueue_attrs *attrs, int node,
3819 int cpu_going_down, cpumask_t *cpumask)
3820 {
3821 if (!wq_numa_enabled || attrs->no_numa)
3822 goto use_dfl;
3823
3824 /* does @node have any online CPUs @attrs wants? */
3825 cpumask_and(cpumask, cpumask_of_node(node), attrs->cpumask);
3826 if (cpu_going_down >= 0)
3827 cpumask_clear_cpu(cpu_going_down, cpumask);
3828
3829 if (cpumask_empty(cpumask))
3830 goto use_dfl;
3831
3832 /* yeap, return possible CPUs in @node that @attrs wants */
3833 cpumask_and(cpumask, attrs->cpumask, wq_numa_possible_cpumask[node]);
3834
3835 if (cpumask_empty(cpumask)) {
3836 pr_warn_once("WARNING: workqueue cpumask: online intersect > "
3837 "possible intersect\n");
3838 return false;
3839 }
3840
3841 return !cpumask_equal(cpumask, attrs->cpumask);
3842
3843 use_dfl:
3844 cpumask_copy(cpumask, attrs->cpumask);
3845 return false;
3846 }
3847
3848 /* install @pwq into @wq's numa_pwq_tbl[] for @node and return the old pwq */
3849 static struct pool_workqueue *numa_pwq_tbl_install(struct workqueue_struct *wq,
3850 int node,
3851 struct pool_workqueue *pwq)
3852 {
3853 struct pool_workqueue *old_pwq;
3854
3855 lockdep_assert_held(&wq_pool_mutex);
3856 lockdep_assert_held(&wq->mutex);
3857
3858 /* link_pwq() can handle duplicate calls */
3859 link_pwq(pwq);
3860
3861 old_pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
3862 rcu_assign_pointer(wq->numa_pwq_tbl[node], pwq);
3863 return old_pwq;
3864 }
3865
3866 /* context to store the prepared attrs & pwqs before applying */
3867 struct apply_wqattrs_ctx {
3868 struct workqueue_struct *wq; /* target workqueue */
3869 struct workqueue_attrs *attrs; /* attrs to apply */
3870 struct list_head list; /* queued for batching commit */
3871 struct pool_workqueue *dfl_pwq;
3872 struct pool_workqueue *pwq_tbl[];
3873 };
3874
3875 /* free the resources after success or abort */
3876 static void apply_wqattrs_cleanup(struct apply_wqattrs_ctx *ctx)
3877 {
3878 if (ctx) {
3879 int node;
3880
3881 for_each_node(node)
3882 put_pwq_unlocked(ctx->pwq_tbl[node]);
3883 put_pwq_unlocked(ctx->dfl_pwq);
3884
3885 free_workqueue_attrs(ctx->attrs);
3886
3887 kfree(ctx);
3888 }
3889 }
3890
3891 /* allocate the attrs and pwqs for later installation */
3892 static struct apply_wqattrs_ctx *
3893 apply_wqattrs_prepare(struct workqueue_struct *wq,
3894 const struct workqueue_attrs *attrs)
3895 {
3896 struct apply_wqattrs_ctx *ctx;
3897 struct workqueue_attrs *new_attrs, *tmp_attrs;
3898 int node;
3899
3900 lockdep_assert_held(&wq_pool_mutex);
3901
3902 ctx = kzalloc(struct_size(ctx, pwq_tbl, nr_node_ids), GFP_KERNEL);
3903
3904 new_attrs = alloc_workqueue_attrs();
3905 tmp_attrs = alloc_workqueue_attrs();
3906 if (!ctx || !new_attrs || !tmp_attrs)
3907 goto out_free;
3908
3909 /*
3910 * Calculate the attrs of the default pwq.
3911 * If the user configured cpumask doesn't overlap with the
3912 * wq_unbound_cpumask, we fallback to the wq_unbound_cpumask.
3913 */
3914 copy_workqueue_attrs(new_attrs, attrs);
3915 cpumask_and(new_attrs->cpumask, new_attrs->cpumask, wq_unbound_cpumask);
3916 if (unlikely(cpumask_empty(new_attrs->cpumask)))
3917 cpumask_copy(new_attrs->cpumask, wq_unbound_cpumask);
3918
3919 /*
3920 * We may create multiple pwqs with differing cpumasks. Make a
3921 * copy of @new_attrs which will be modified and used to obtain
3922 * pools.
3923 */
3924 copy_workqueue_attrs(tmp_attrs, new_attrs);
3925
3926 /*
3927 * If something goes wrong during CPU up/down, we'll fall back to
3928 * the default pwq covering whole @attrs->cpumask. Always create
3929 * it even if we don't use it immediately.
3930 */
3931 ctx->dfl_pwq = alloc_unbound_pwq(wq, new_attrs);
3932 if (!ctx->dfl_pwq)
3933 goto out_free;
3934
3935 for_each_node(node) {
3936 if (wq_calc_node_cpumask(new_attrs, node, -1, tmp_attrs->cpumask)) {
3937 ctx->pwq_tbl[node] = alloc_unbound_pwq(wq, tmp_attrs);
3938 if (!ctx->pwq_tbl[node])
3939 goto out_free;
3940 } else {
3941 ctx->dfl_pwq->refcnt++;
3942 ctx->pwq_tbl[node] = ctx->dfl_pwq;
3943 }
3944 }
3945
3946 /* save the user configured attrs and sanitize it. */
3947 copy_workqueue_attrs(new_attrs, attrs);
3948 cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask);
3949 ctx->attrs = new_attrs;
3950
3951 ctx->wq = wq;
3952 free_workqueue_attrs(tmp_attrs);
3953 return ctx;
3954
3955 out_free:
3956 free_workqueue_attrs(tmp_attrs);
3957 free_workqueue_attrs(new_attrs);
3958 apply_wqattrs_cleanup(ctx);
3959 return NULL;
3960 }
3961
3962 /* set attrs and install prepared pwqs, @ctx points to old pwqs on return */
3963 static void apply_wqattrs_commit(struct apply_wqattrs_ctx *ctx)
3964 {
3965 int node;
3966
3967 /* all pwqs have been created successfully, let's install'em */
3968 mutex_lock(&ctx->wq->mutex);
3969
3970 copy_workqueue_attrs(ctx->wq->unbound_attrs, ctx->attrs);
3971
3972 /* save the previous pwq and install the new one */
3973 for_each_node(node)
3974 ctx->pwq_tbl[node] = numa_pwq_tbl_install(ctx->wq, node,
3975 ctx->pwq_tbl[node]);
3976
3977 /* @dfl_pwq might not have been used, ensure it's linked */
3978 link_pwq(ctx->dfl_pwq);
3979 swap(ctx->wq->dfl_pwq, ctx->dfl_pwq);
3980
3981 mutex_unlock(&ctx->wq->mutex);
3982 }
3983
3984 static void apply_wqattrs_lock(void)
3985 {
3986 /* CPUs should stay stable across pwq creations and installations */
3987 get_online_cpus();
3988 mutex_lock(&wq_pool_mutex);
3989 }
3990
3991 static void apply_wqattrs_unlock(void)
3992 {
3993 mutex_unlock(&wq_pool_mutex);
3994 put_online_cpus();
3995 }
3996
3997 static int apply_workqueue_attrs_locked(struct workqueue_struct *wq,
3998 const struct workqueue_attrs *attrs)
3999 {
4000 struct apply_wqattrs_ctx *ctx;
4001
4002 /* only unbound workqueues can change attributes */
4003 if (WARN_ON(!(wq->flags & WQ_UNBOUND)))
4004 return -EINVAL;
4005
4006 /* creating multiple pwqs breaks ordering guarantee */
4007 if (!list_empty(&wq->pwqs)) {
4008 if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
4009 return -EINVAL;
4010
4011 wq->flags &= ~__WQ_ORDERED;
4012 }
4013
4014 ctx = apply_wqattrs_prepare(wq, attrs);
4015 if (!ctx)
4016 return -ENOMEM;
4017
4018 /* the ctx has been prepared successfully, let's commit it */
4019 apply_wqattrs_commit(ctx);
4020 apply_wqattrs_cleanup(ctx);
4021
4022 return 0;
4023 }
4024
4025 /**
4026 * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue
4027 * @wq: the target workqueue
4028 * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs()
4029 *
4030 * Apply @attrs to an unbound workqueue @wq. Unless disabled, on NUMA
4031 * machines, this function maps a separate pwq to each NUMA node with
4032 * possibles CPUs in @attrs->cpumask so that work items are affine to the
4033 * NUMA node it was issued on. Older pwqs are released as in-flight work
4034 * items finish. Note that a work item which repeatedly requeues itself
4035 * back-to-back will stay on its current pwq.
4036 *
4037 * Performs GFP_KERNEL allocations.
4038 *
4039 * Assumes caller has CPU hotplug read exclusion, i.e. get_online_cpus().
4040 *
4041 * Return: 0 on success and -errno on failure.
4042 */
4043 int apply_workqueue_attrs(struct workqueue_struct *wq,
4044 const struct workqueue_attrs *attrs)
4045 {
4046 int ret;
4047
4048 lockdep_assert_cpus_held();
4049
4050 mutex_lock(&wq_pool_mutex);
4051 ret = apply_workqueue_attrs_locked(wq, attrs);
4052 mutex_unlock(&wq_pool_mutex);
4053
4054 return ret;
4055 }
4056
4057 /**
4058 * wq_update_unbound_numa - update NUMA affinity of a wq for CPU hot[un]plug
4059 * @wq: the target workqueue
4060 * @cpu: the CPU coming up or going down
4061 * @online: whether @cpu is coming up or going down
4062 *
4063 * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and
4064 * %CPU_DOWN_FAILED. @cpu is being hot[un]plugged, update NUMA affinity of
4065 * @wq accordingly.
4066 *
4067 * If NUMA affinity can't be adjusted due to memory allocation failure, it
4068 * falls back to @wq->dfl_pwq which may not be optimal but is always
4069 * correct.
4070 *
4071 * Note that when the last allowed CPU of a NUMA node goes offline for a
4072 * workqueue with a cpumask spanning multiple nodes, the workers which were
4073 * already executing the work items for the workqueue will lose their CPU
4074 * affinity and may execute on any CPU. This is similar to how per-cpu
4075 * workqueues behave on CPU_DOWN. If a workqueue user wants strict
4076 * affinity, it's the user's responsibility to flush the work item from
4077 * CPU_DOWN_PREPARE.
4078 */
4079 static void wq_update_unbound_numa(struct workqueue_struct *wq, int cpu,
4080 bool online)
4081 {
4082 int node = cpu_to_node(cpu);
4083 int cpu_off = online ? -1 : cpu;
4084 struct pool_workqueue *old_pwq = NULL, *pwq;
4085 struct workqueue_attrs *target_attrs;
4086 cpumask_t *cpumask;
4087
4088 lockdep_assert_held(&wq_pool_mutex);
4089
4090 if (!wq_numa_enabled || !(wq->flags & WQ_UNBOUND) ||
4091 wq->unbound_attrs->no_numa)
4092 return;
4093
4094 /*
4095 * We don't wanna alloc/free wq_attrs for each wq for each CPU.
4096 * Let's use a preallocated one. The following buf is protected by
4097 * CPU hotplug exclusion.
4098 */
4099 target_attrs = wq_update_unbound_numa_attrs_buf;
4100 cpumask = target_attrs->cpumask;
4101
4102 copy_workqueue_attrs(target_attrs, wq->unbound_attrs);
4103 pwq = unbound_pwq_by_node(wq, node);
4104
4105 /*
4106 * Let's determine what needs to be done. If the target cpumask is
4107 * different from the default pwq's, we need to compare it to @pwq's
4108 * and create a new one if they don't match. If the target cpumask
4109 * equals the default pwq's, the default pwq should be used.
4110 */
4111 if (wq_calc_node_cpumask(wq->dfl_pwq->pool->attrs, node, cpu_off, cpumask)) {
4112 if (cpumask_equal(cpumask, pwq->pool->attrs->cpumask))
4113 return;
4114 } else {
4115 goto use_dfl_pwq;
4116 }
4117
4118 /* create a new pwq */
4119 pwq = alloc_unbound_pwq(wq, target_attrs);
4120 if (!pwq) {
4121 pr_warn("workqueue: allocation failed while updating NUMA affinity of \"%s\"\n",
4122 wq->name);
4123 goto use_dfl_pwq;
4124 }
4125
4126 /* Install the new pwq. */
4127 mutex_lock(&wq->mutex);
4128 old_pwq = numa_pwq_tbl_install(wq, node, pwq);
4129 goto out_unlock;
4130
4131 use_dfl_pwq:
4132 mutex_lock(&wq->mutex);
4133 spin_lock_irq(&wq->dfl_pwq->pool->lock);
4134 get_pwq(wq->dfl_pwq);
4135 spin_unlock_irq(&wq->dfl_pwq->pool->lock);
4136 old_pwq = numa_pwq_tbl_install(wq, node, wq->dfl_pwq);
4137 out_unlock:
4138 mutex_unlock(&wq->mutex);
4139 put_pwq_unlocked(old_pwq);
4140 }
4141
4142 static int alloc_and_link_pwqs(struct workqueue_struct *wq)
4143 {
4144 bool highpri = wq->flags & WQ_HIGHPRI;
4145 int cpu, ret;
4146
4147 if (!(wq->flags & WQ_UNBOUND)) {
4148 wq->cpu_pwqs = alloc_percpu(struct pool_workqueue);
4149 if (!wq->cpu_pwqs)
4150 return -ENOMEM;
4151
4152 for_each_possible_cpu(cpu) {
4153 struct pool_workqueue *pwq =
4154 per_cpu_ptr(wq->cpu_pwqs, cpu);
4155 struct worker_pool *cpu_pools =
4156 per_cpu(cpu_worker_pools, cpu);
4157
4158 init_pwq(pwq, wq, &cpu_pools[highpri]);
4159
4160 mutex_lock(&wq->mutex);
4161 link_pwq(pwq);
4162 mutex_unlock(&wq->mutex);
4163 }
4164 return 0;
4165 }
4166
4167 get_online_cpus();
4168 if (wq->flags & __WQ_ORDERED) {
4169 ret = apply_workqueue_attrs(wq, ordered_wq_attrs[highpri]);
4170 /* there should only be single pwq for ordering guarantee */
4171 WARN(!ret && (wq->pwqs.next != &wq->dfl_pwq->pwqs_node ||
4172 wq->pwqs.prev != &wq->dfl_pwq->pwqs_node),
4173 "ordering guarantee broken for workqueue %s\n", wq->name);
4174 } else {
4175 ret = apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]);
4176 }
4177 put_online_cpus();
4178
4179 return ret;
4180 }
4181
4182 static int wq_clamp_max_active(int max_active, unsigned int flags,
4183 const char *name)
4184 {
4185 int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;
4186
4187 if (max_active < 1 || max_active > lim)
4188 pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
4189 max_active, name, 1, lim);
4190
4191 return clamp_val(max_active, 1, lim);
4192 }
4193
4194 /*
4195 * Workqueues which may be used during memory reclaim should have a rescuer
4196 * to guarantee forward progress.
4197 */
4198 static int init_rescuer(struct workqueue_struct *wq)
4199 {
4200 struct worker *rescuer;
4201 int ret;
4202
4203 if (!(wq->flags & WQ_MEM_RECLAIM))
4204 return 0;
4205
4206 rescuer = alloc_worker(NUMA_NO_NODE);
4207 if (!rescuer)
4208 return -ENOMEM;
4209
4210 rescuer->rescue_wq = wq;
4211 rescuer->task = kthread_create(rescuer_thread, rescuer, "%s", wq->name);
4212 ret = PTR_ERR_OR_ZERO(rescuer->task);
4213 if (ret) {
4214 kfree(rescuer);
4215 return ret;
4216 }
4217
4218 wq->rescuer = rescuer;
4219 kthread_bind_mask(rescuer->task, cpu_possible_mask);
4220 wake_up_process(rescuer->task);
4221
4222 return 0;
4223 }
4224
4225 __printf(1, 4)
4226 struct workqueue_struct *alloc_workqueue(const char *fmt,
4227 unsigned int flags,
4228 int max_active, ...)
4229 {
4230 size_t tbl_size = 0;
4231 va_list args;
4232 struct workqueue_struct *wq;
4233 struct pool_workqueue *pwq;
4234
4235 /*
4236 * Unbound && max_active == 1 used to imply ordered, which is no
4237 * longer the case on NUMA machines due to per-node pools. While
4238 * alloc_ordered_workqueue() is the right way to create an ordered
4239 * workqueue, keep the previous behavior to avoid subtle breakages
4240 * on NUMA.
4241 */
4242 if ((flags & WQ_UNBOUND) && max_active == 1)
4243 flags |= __WQ_ORDERED;
4244
4245 /* see the comment above the definition of WQ_POWER_EFFICIENT */
4246 if ((flags & WQ_POWER_EFFICIENT) && wq_power_efficient)
4247 flags |= WQ_UNBOUND;
4248
4249 /* allocate wq and format name */
4250 if (flags & WQ_UNBOUND)
4251 tbl_size = nr_node_ids * sizeof(wq->numa_pwq_tbl[0]);
4252
4253 wq = kzalloc(sizeof(*wq) + tbl_size, GFP_KERNEL);
4254 if (!wq)
4255 return NULL;
4256
4257 if (flags & WQ_UNBOUND) {
4258 wq->unbound_attrs = alloc_workqueue_attrs();
4259 if (!wq->unbound_attrs)
4260 goto err_free_wq;
4261 }
4262
4263 va_start(args, max_active);
4264 vsnprintf(wq->name, sizeof(wq->name), fmt, args);
4265 va_end(args);
4266
4267 max_active = max_active ?: WQ_DFL_ACTIVE;
4268 max_active = wq_clamp_max_active(max_active, flags, wq->name);
4269
4270 /* init wq */
4271 wq->flags = flags;
4272 wq->saved_max_active = max_active;
4273 mutex_init(&wq->mutex);
4274 atomic_set(&wq->nr_pwqs_to_flush, 0);
4275 INIT_LIST_HEAD(&wq->pwqs);
4276 INIT_LIST_HEAD(&wq->flusher_queue);
4277 INIT_LIST_HEAD(&wq->flusher_overflow);
4278 INIT_LIST_HEAD(&wq->maydays);
4279
4280 wq_init_lockdep(wq);
4281 INIT_LIST_HEAD(&wq->list);
4282
4283 if (alloc_and_link_pwqs(wq) < 0)
4284 goto err_unreg_lockdep;
4285
4286 if (wq_online && init_rescuer(wq) < 0)
4287 goto err_destroy;
4288
4289 if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq))
4290 goto err_destroy;
4291
4292 /*
4293 * wq_pool_mutex protects global freeze state and workqueues list.
4294 * Grab it, adjust max_active and add the new @wq to workqueues
4295 * list.
4296 */
4297 mutex_lock(&wq_pool_mutex);
4298
4299 mutex_lock(&wq->mutex);
4300 for_each_pwq(pwq, wq)
4301 pwq_adjust_max_active(pwq);
4302 mutex_unlock(&wq->mutex);
4303
4304 list_add_tail_rcu(&wq->list, &workqueues);
4305
4306 mutex_unlock(&wq_pool_mutex);
4307
4308 return wq;
4309
4310 err_unreg_lockdep:
4311 wq_unregister_lockdep(wq);
4312 wq_free_lockdep(wq);
4313 err_free_wq:
4314 free_workqueue_attrs(wq->unbound_attrs);
4315 kfree(wq);
4316 return NULL;
4317 err_destroy:
4318 destroy_workqueue(wq);
4319 return NULL;
4320 }
4321 EXPORT_SYMBOL_GPL(alloc_workqueue);
4322
4323 /**
4324 * destroy_workqueue - safely terminate a workqueue
4325 * @wq: target workqueue
4326 *
4327 * Safely destroy a workqueue. All work currently pending will be done first.
4328 */
4329 void destroy_workqueue(struct workqueue_struct *wq)
4330 {
4331 struct pool_workqueue *pwq;
4332 int node;
4333
4334 /*
4335 * Remove it from sysfs first so that sanity check failure doesn't
4336 * lead to sysfs name conflicts.
4337 */
4338 workqueue_sysfs_unregister(wq);
4339
4340 /* drain it before proceeding with destruction */
4341 drain_workqueue(wq);
4342
4343 /* kill rescuer, if sanity checks fail, leave it w/o rescuer */
4344 if (wq->rescuer) {
4345 struct worker *rescuer = wq->rescuer;
4346
4347 /* this prevents new queueing */
4348 spin_lock_irq(&wq_mayday_lock);
4349 wq->rescuer = NULL;
4350 spin_unlock_irq(&wq_mayday_lock);
4351
4352 /* rescuer will empty maydays list before exiting */
4353 kthread_stop(rescuer->task);
4354 kfree(rescuer);
4355 }
4356
4357 /* sanity checks */
4358 mutex_lock(&wq->mutex);
4359 for_each_pwq(pwq, wq) {
4360 int i;
4361
4362 for (i = 0; i < WORK_NR_COLORS; i++) {
4363 if (WARN_ON(pwq->nr_in_flight[i])) {
4364 mutex_unlock(&wq->mutex);
4365 show_workqueue_state();
4366 return;
4367 }
4368 }
4369
4370 if (WARN_ON((pwq != wq->dfl_pwq) && (pwq->refcnt > 1)) ||
4371 WARN_ON(pwq->nr_active) ||
4372 WARN_ON(!list_empty(&pwq->delayed_works))) {
4373 mutex_unlock(&wq->mutex);
4374 show_workqueue_state();
4375 return;
4376 }
4377 }
4378 mutex_unlock(&wq->mutex);
4379
4380 /*
4381 * wq list is used to freeze wq, remove from list after
4382 * flushing is complete in case freeze races us.
4383 */
4384 mutex_lock(&wq_pool_mutex);
4385 list_del_rcu(&wq->list);
4386 mutex_unlock(&wq_pool_mutex);
4387
4388 if (!(wq->flags & WQ_UNBOUND)) {
4389 wq_unregister_lockdep(wq);
4390 /*
4391 * The base ref is never dropped on per-cpu pwqs. Directly
4392 * schedule RCU free.
4393 */
4394 call_rcu(&wq->rcu, rcu_free_wq);
4395 } else {
4396 /*
4397 * We're the sole accessor of @wq at this point. Directly
4398 * access numa_pwq_tbl[] and dfl_pwq to put the base refs.
4399 * @wq will be freed when the last pwq is released.
4400 */
4401 for_each_node(node) {
4402 pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
4403 RCU_INIT_POINTER(wq->numa_pwq_tbl[node], NULL);
4404 put_pwq_unlocked(pwq);
4405 }
4406
4407 /*
4408 * Put dfl_pwq. @wq may be freed any time after dfl_pwq is
4409 * put. Don't access it afterwards.
4410 */
4411 pwq = wq->dfl_pwq;
4412 wq->dfl_pwq = NULL;
4413 put_pwq_unlocked(pwq);
4414 }
4415 }
4416 EXPORT_SYMBOL_GPL(destroy_workqueue);
4417
4418 /**
4419 * workqueue_set_max_active - adjust max_active of a workqueue
4420 * @wq: target workqueue
4421 * @max_active: new max_active value.
4422 *
4423 * Set max_active of @wq to @max_active.
4424 *
4425 * CONTEXT:
4426 * Don't call from IRQ context.
4427 */
4428 void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
4429 {
4430 struct pool_workqueue *pwq;
4431
4432 /* disallow meddling with max_active for ordered workqueues */
4433 if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
4434 return;
4435
4436 max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
4437
4438 mutex_lock(&wq->mutex);
4439
4440 wq->flags &= ~__WQ_ORDERED;
4441 wq->saved_max_active = max_active;
4442
4443 for_each_pwq(pwq, wq)
4444 pwq_adjust_max_active(pwq);
4445
4446 mutex_unlock(&wq->mutex);
4447 }
4448 EXPORT_SYMBOL_GPL(workqueue_set_max_active);
4449
4450 /**
4451 * current_work - retrieve %current task's work struct
4452 *
4453 * Determine if %current task is a workqueue worker and what it's working on.
4454 * Useful to find out the context that the %current task is running in.
4455 *
4456 * Return: work struct if %current task is a workqueue worker, %NULL otherwise.
4457 */
4458 struct work_struct *current_work(void)
4459 {
4460 struct worker *worker = current_wq_worker();
4461
4462 return worker ? worker->current_work : NULL;
4463 }
4464 EXPORT_SYMBOL(current_work);
4465
4466 /**
4467 * current_is_workqueue_rescuer - is %current workqueue rescuer?
4468 *
4469 * Determine whether %current is a workqueue rescuer. Can be used from
4470 * work functions to determine whether it's being run off the rescuer task.
4471 *
4472 * Return: %true if %current is a workqueue rescuer. %false otherwise.
4473 */
4474 bool current_is_workqueue_rescuer(void)
4475 {
4476 struct worker *worker = current_wq_worker();
4477
4478 return worker && worker->rescue_wq;
4479 }
4480
4481 /**
4482 * workqueue_congested - test whether a workqueue is congested
4483 * @cpu: CPU in question
4484 * @wq: target workqueue
4485 *
4486 * Test whether @wq's cpu workqueue for @cpu is congested. There is
4487 * no synchronization around this function and the test result is
4488 * unreliable and only useful as advisory hints or for debugging.
4489 *
4490 * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU.
4491 * Note that both per-cpu and unbound workqueues may be associated with
4492 * multiple pool_workqueues which have separate congested states. A
4493 * workqueue being congested on one CPU doesn't mean the workqueue is also
4494 * contested on other CPUs / NUMA nodes.
4495 *
4496 * Return:
4497 * %true if congested, %false otherwise.
4498 */
4499 bool workqueue_congested(int cpu, struct workqueue_struct *wq)
4500 {
4501 struct pool_workqueue *pwq;
4502 bool ret;
4503
4504 rcu_read_lock();
4505 preempt_disable();
4506
4507 if (cpu == WORK_CPU_UNBOUND)
4508 cpu = smp_processor_id();
4509
4510 if (!(wq->flags & WQ_UNBOUND))
4511 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
4512 else
4513 pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
4514
4515 ret = !list_empty(&pwq->delayed_works);
4516 preempt_enable();
4517 rcu_read_unlock();
4518
4519 return ret;
4520 }
4521 EXPORT_SYMBOL_GPL(workqueue_congested);
4522
4523 /**
4524 * work_busy - test whether a work is currently pending or running
4525 * @work: the work to be tested
4526 *
4527 * Test whether @work is currently pending or running. There is no
4528 * synchronization around this function and the test result is
4529 * unreliable and only useful as advisory hints or for debugging.
4530 *
4531 * Return:
4532 * OR'd bitmask of WORK_BUSY_* bits.
4533 */
4534 unsigned int work_busy(struct work_struct *work)
4535 {
4536 struct worker_pool *pool;
4537 unsigned long flags;
4538 unsigned int ret = 0;
4539
4540 if (work_pending(work))
4541 ret |= WORK_BUSY_PENDING;
4542
4543 rcu_read_lock();
4544 pool = get_work_pool(work);
4545 if (pool) {
4546 spin_lock_irqsave(&pool->lock, flags);
4547 if (find_worker_executing_work(pool, work))
4548 ret |= WORK_BUSY_RUNNING;
4549 spin_unlock_irqrestore(&pool->lock, flags);
4550 }
4551 rcu_read_unlock();
4552
4553 return ret;
4554 }
4555 EXPORT_SYMBOL_GPL(work_busy);
4556
4557 /**
4558 * set_worker_desc - set description for the current work item
4559 * @fmt: printf-style format string
4560 * @...: arguments for the format string
4561 *
4562 * This function can be called by a running work function to describe what
4563 * the work item is about. If the worker task gets dumped, this
4564 * information will be printed out together to help debugging. The
4565 * description can be at most WORKER_DESC_LEN including the trailing '\0'.
4566 */
4567 void set_worker_desc(const char *fmt, ...)
4568 {
4569 struct worker *worker = current_wq_worker();
4570 va_list args;
4571
4572 if (worker) {
4573 va_start(args, fmt);
4574 vsnprintf(worker->desc, sizeof(worker->desc), fmt, args);
4575 va_end(args);
4576 }
4577 }
4578 EXPORT_SYMBOL_GPL(set_worker_desc);
4579
4580 /**
4581 * print_worker_info - print out worker information and description
4582 * @log_lvl: the log level to use when printing
4583 * @task: target task
4584 *
4585 * If @task is a worker and currently executing a work item, print out the
4586 * name of the workqueue being serviced and worker description set with
4587 * set_worker_desc() by the currently executing work item.
4588 *
4589 * This function can be safely called on any task as long as the
4590 * task_struct itself is accessible. While safe, this function isn't
4591 * synchronized and may print out mixups or garbages of limited length.
4592 */
4593 void print_worker_info(const char *log_lvl, struct task_struct *task)
4594 {
4595 work_func_t *fn = NULL;
4596 char name[WQ_NAME_LEN] = { };
4597 char desc[WORKER_DESC_LEN] = { };
4598 struct pool_workqueue *pwq = NULL;
4599 struct workqueue_struct *wq = NULL;
4600 struct worker *worker;
4601
4602 if (!(task->flags & PF_WQ_WORKER))
4603 return;
4604
4605 /*
4606 * This function is called without any synchronization and @task
4607 * could be in any state. Be careful with dereferences.
4608 */
4609 worker = kthread_probe_data(task);
4610
4611 /*
4612 * Carefully copy the associated workqueue's workfn, name and desc.
4613 * Keep the original last '\0' in case the original is garbage.
4614 */
4615 probe_kernel_read(&fn, &worker->current_func, sizeof(fn));
4616 probe_kernel_read(&pwq, &worker->current_pwq, sizeof(pwq));
4617 probe_kernel_read(&wq, &pwq->wq, sizeof(wq));
4618 probe_kernel_read(name, wq->name, sizeof(name) - 1);
4619 probe_kernel_read(desc, worker->desc, sizeof(desc) - 1);
4620
4621 if (fn || name[0] || desc[0]) {
4622 printk("%sWorkqueue: %s %ps", log_lvl, name, fn);
4623 if (strcmp(name, desc))
4624 pr_cont(" (%s)", desc);
4625 pr_cont("\n");
4626 }
4627 }
4628
4629 static void pr_cont_pool_info(struct worker_pool *pool)
4630 {
4631 pr_cont(" cpus=%*pbl", nr_cpumask_bits, pool->attrs->cpumask);
4632 if (pool->node != NUMA_NO_NODE)
4633 pr_cont(" node=%d", pool->node);
4634 pr_cont(" flags=0x%x nice=%d", pool->flags, pool->attrs->nice);
4635 }
4636
4637 static void pr_cont_work(bool comma, struct work_struct *work)
4638 {
4639 if (work->func == wq_barrier_func) {
4640 struct wq_barrier *barr;
4641
4642 barr = container_of(work, struct wq_barrier, work);
4643
4644 pr_cont("%s BAR(%d)", comma ? "," : "",
4645 task_pid_nr(barr->task));
4646 } else {
4647 pr_cont("%s %ps", comma ? "," : "", work->func);
4648 }
4649 }
4650
4651 static void show_pwq(struct pool_workqueue *pwq)
4652 {
4653 struct worker_pool *pool = pwq->pool;
4654 struct work_struct *work;
4655 struct worker *worker;
4656 bool has_in_flight = false, has_pending = false;
4657 int bkt;
4658
4659 pr_info(" pwq %d:", pool->id);
4660 pr_cont_pool_info(pool);
4661
4662 pr_cont(" active=%d/%d refcnt=%d%s\n",
4663 pwq->nr_active, pwq->max_active, pwq->refcnt,
4664 !list_empty(&pwq->mayday_node) ? " MAYDAY" : "");
4665
4666 hash_for_each(pool->busy_hash, bkt, worker, hentry) {
4667 if (worker->current_pwq == pwq) {
4668 has_in_flight = true;
4669 break;
4670 }
4671 }
4672 if (has_in_flight) {
4673 bool comma = false;
4674
4675 pr_info(" in-flight:");
4676 hash_for_each(pool->busy_hash, bkt, worker, hentry) {
4677 if (worker->current_pwq != pwq)
4678 continue;
4679
4680 pr_cont("%s %d%s:%ps", comma ? "," : "",
4681 task_pid_nr(worker->task),
4682 worker == pwq->wq->rescuer ? "(RESCUER)" : "",
4683 worker->current_func);
4684 list_for_each_entry(work, &worker->scheduled, entry)
4685 pr_cont_work(false, work);
4686 comma = true;
4687 }
4688 pr_cont("\n");
4689 }
4690
4691 list_for_each_entry(work, &pool->worklist, entry) {
4692 if (get_work_pwq(work) == pwq) {
4693 has_pending = true;
4694 break;
4695 }
4696 }
4697 if (has_pending) {
4698 bool comma = false;
4699
4700 pr_info(" pending:");
4701 list_for_each_entry(work, &pool->worklist, entry) {
4702 if (get_work_pwq(work) != pwq)
4703 continue;
4704
4705 pr_cont_work(comma, work);
4706 comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
4707 }
4708 pr_cont("\n");
4709 }
4710
4711 if (!list_empty(&pwq->delayed_works)) {
4712 bool comma = false;
4713
4714 pr_info(" delayed:");
4715 list_for_each_entry(work, &pwq->delayed_works, entry) {
4716 pr_cont_work(comma, work);
4717 comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
4718 }
4719 pr_cont("\n");
4720 }
4721 }
4722
4723 /**
4724 * show_workqueue_state - dump workqueue state
4725 *
4726 * Called from a sysrq handler or try_to_freeze_tasks() and prints out
4727 * all busy workqueues and pools.
4728 */
4729 void show_workqueue_state(void)
4730 {
4731 struct workqueue_struct *wq;
4732 struct worker_pool *pool;
4733 unsigned long flags;
4734 int pi;
4735
4736 rcu_read_lock();
4737
4738 pr_info("Showing busy workqueues and worker pools:\n");
4739
4740 list_for_each_entry_rcu(wq, &workqueues, list) {
4741 struct pool_workqueue *pwq;
4742 bool idle = true;
4743
4744 for_each_pwq(pwq, wq) {
4745 if (pwq->nr_active || !list_empty(&pwq->delayed_works)) {
4746 idle = false;
4747 break;
4748 }
4749 }
4750 if (idle)
4751 continue;
4752
4753 pr_info("workqueue %s: flags=0x%x\n", wq->name, wq->flags);
4754
4755 for_each_pwq(pwq, wq) {
4756 spin_lock_irqsave(&pwq->pool->lock, flags);
4757 if (pwq->nr_active || !list_empty(&pwq->delayed_works))
4758 show_pwq(pwq);
4759 spin_unlock_irqrestore(&pwq->pool->lock, flags);
4760 /*
4761 * We could be printing a lot from atomic context, e.g.
4762 * sysrq-t -> show_workqueue_state(). Avoid triggering
4763 * hard lockup.
4764 */
4765 touch_nmi_watchdog();
4766 }
4767 }
4768
4769 for_each_pool(pool, pi) {
4770 struct worker *worker;
4771 bool first = true;
4772
4773 spin_lock_irqsave(&pool->lock, flags);
4774 if (pool->nr_workers == pool->nr_idle)
4775 goto next_pool;
4776
4777 pr_info("pool %d:", pool->id);
4778 pr_cont_pool_info(pool);
4779 pr_cont(" hung=%us workers=%d",
4780 jiffies_to_msecs(jiffies - pool->watchdog_ts) / 1000,
4781 pool->nr_workers);
4782 if (pool->manager)
4783 pr_cont(" manager: %d",
4784 task_pid_nr(pool->manager->task));
4785 list_for_each_entry(worker, &pool->idle_list, entry) {
4786 pr_cont(" %s%d", first ? "idle: " : "",
4787 task_pid_nr(worker->task));
4788 first = false;
4789 }
4790 pr_cont("\n");
4791 next_pool:
4792 spin_unlock_irqrestore(&pool->lock, flags);
4793 /*
4794 * We could be printing a lot from atomic context, e.g.
4795 * sysrq-t -> show_workqueue_state(). Avoid triggering
4796 * hard lockup.
4797 */
4798 touch_nmi_watchdog();
4799 }
4800
4801 rcu_read_unlock();
4802 }
4803
4804 /* used to show worker information through /proc/PID/{comm,stat,status} */
4805 void wq_worker_comm(char *buf, size_t size, struct task_struct *task)
4806 {
4807 int off;
4808
4809 /* always show the actual comm */
4810 off = strscpy(buf, task->comm, size);
4811 if (off < 0)
4812 return;
4813
4814 /* stabilize PF_WQ_WORKER and worker pool association */
4815 mutex_lock(&wq_pool_attach_mutex);
4816
4817 if (task->flags & PF_WQ_WORKER) {
4818 struct worker *worker = kthread_data(task);
4819 struct worker_pool *pool = worker->pool;
4820
4821 if (pool) {
4822 spin_lock_irq(&pool->lock);
4823 /*
4824 * ->desc tracks information (wq name or
4825 * set_worker_desc()) for the latest execution. If
4826 * current, prepend '+', otherwise '-'.
4827 */
4828 if (worker->desc[0] != '\0') {
4829 if (worker->current_work)
4830 scnprintf(buf + off, size - off, "+%s",
4831 worker->desc);
4832 else
4833 scnprintf(buf + off, size - off, "-%s",
4834 worker->desc);
4835 }
4836 spin_unlock_irq(&pool->lock);
4837 }
4838 }
4839
4840 mutex_unlock(&wq_pool_attach_mutex);
4841 }
4842
4843 #ifdef CONFIG_SMP
4844
4845 /*
4846 * CPU hotplug.
4847 *
4848 * There are two challenges in supporting CPU hotplug. Firstly, there
4849 * are a lot of assumptions on strong associations among work, pwq and
4850 * pool which make migrating pending and scheduled works very
4851 * difficult to implement without impacting hot paths. Secondly,
4852 * worker pools serve mix of short, long and very long running works making
4853 * blocked draining impractical.
4854 *
4855 * This is solved by allowing the pools to be disassociated from the CPU
4856 * running as an unbound one and allowing it to be reattached later if the
4857 * cpu comes back online.
4858 */
4859
4860 static void unbind_workers(int cpu)
4861 {
4862 struct worker_pool *pool;
4863 struct worker *worker;
4864
4865 for_each_cpu_worker_pool(pool, cpu) {
4866 mutex_lock(&wq_pool_attach_mutex);
4867 spin_lock_irq(&pool->lock);
4868
4869 /*
4870 * We've blocked all attach/detach operations. Make all workers
4871 * unbound and set DISASSOCIATED. Before this, all workers
4872 * except for the ones which are still executing works from
4873 * before the last CPU down must be on the cpu. After
4874 * this, they may become diasporas.
4875 */
4876 for_each_pool_worker(worker, pool)
4877 worker->flags |= WORKER_UNBOUND;
4878
4879 pool->flags |= POOL_DISASSOCIATED;
4880
4881 spin_unlock_irq(&pool->lock);
4882 mutex_unlock(&wq_pool_attach_mutex);
4883
4884 /*
4885 * Call schedule() so that we cross rq->lock and thus can
4886 * guarantee sched callbacks see the %WORKER_UNBOUND flag.
4887 * This is necessary as scheduler callbacks may be invoked
4888 * from other cpus.
4889 */
4890 schedule();
4891
4892 /*
4893 * Sched callbacks are disabled now. Zap nr_running.
4894 * After this, nr_running stays zero and need_more_worker()
4895 * and keep_working() are always true as long as the
4896 * worklist is not empty. This pool now behaves as an
4897 * unbound (in terms of concurrency management) pool which
4898 * are served by workers tied to the pool.
4899 */
4900 atomic_set(&pool->nr_running, 0);
4901
4902 /*
4903 * With concurrency management just turned off, a busy
4904 * worker blocking could lead to lengthy stalls. Kick off
4905 * unbound chain execution of currently pending work items.
4906 */
4907 spin_lock_irq(&pool->lock);
4908 wake_up_worker(pool);
4909 spin_unlock_irq(&pool->lock);
4910 }
4911 }
4912
4913 /**
4914 * rebind_workers - rebind all workers of a pool to the associated CPU
4915 * @pool: pool of interest
4916 *
4917 * @pool->cpu is coming online. Rebind all workers to the CPU.
4918 */
4919 static void rebind_workers(struct worker_pool *pool)
4920 {
4921 struct worker *worker;
4922
4923 lockdep_assert_held(&wq_pool_attach_mutex);
4924
4925 /*
4926 * Restore CPU affinity of all workers. As all idle workers should
4927 * be on the run-queue of the associated CPU before any local
4928 * wake-ups for concurrency management happen, restore CPU affinity
4929 * of all workers first and then clear UNBOUND. As we're called
4930 * from CPU_ONLINE, the following shouldn't fail.
4931 */
4932 for_each_pool_worker(worker, pool)
4933 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
4934 pool->attrs->cpumask) < 0);
4935
4936 spin_lock_irq(&pool->lock);
4937
4938 pool->flags &= ~POOL_DISASSOCIATED;
4939
4940 for_each_pool_worker(worker, pool) {
4941 unsigned int worker_flags = worker->flags;
4942
4943 /*
4944 * A bound idle worker should actually be on the runqueue
4945 * of the associated CPU for local wake-ups targeting it to
4946 * work. Kick all idle workers so that they migrate to the
4947 * associated CPU. Doing this in the same loop as
4948 * replacing UNBOUND with REBOUND is safe as no worker will
4949 * be bound before @pool->lock is released.
4950 */
4951 if (worker_flags & WORKER_IDLE)
4952 wake_up_process(worker->task);
4953
4954 /*
4955 * We want to clear UNBOUND but can't directly call
4956 * worker_clr_flags() or adjust nr_running. Atomically
4957 * replace UNBOUND with another NOT_RUNNING flag REBOUND.
4958 * @worker will clear REBOUND using worker_clr_flags() when
4959 * it initiates the next execution cycle thus restoring
4960 * concurrency management. Note that when or whether
4961 * @worker clears REBOUND doesn't affect correctness.
4962 *
4963 * WRITE_ONCE() is necessary because @worker->flags may be
4964 * tested without holding any lock in
4965 * wq_worker_running(). Without it, NOT_RUNNING test may
4966 * fail incorrectly leading to premature concurrency
4967 * management operations.
4968 */
4969 WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND));
4970 worker_flags |= WORKER_REBOUND;
4971 worker_flags &= ~WORKER_UNBOUND;
4972 WRITE_ONCE(worker->flags, worker_flags);
4973 }
4974
4975 spin_unlock_irq(&pool->lock);
4976 }
4977
4978 /**
4979 * restore_unbound_workers_cpumask - restore cpumask of unbound workers
4980 * @pool: unbound pool of interest
4981 * @cpu: the CPU which is coming up
4982 *
4983 * An unbound pool may end up with a cpumask which doesn't have any online
4984 * CPUs. When a worker of such pool get scheduled, the scheduler resets
4985 * its cpus_allowed. If @cpu is in @pool's cpumask which didn't have any
4986 * online CPU before, cpus_allowed of all its workers should be restored.
4987 */
4988 static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu)
4989 {
4990 static cpumask_t cpumask;
4991 struct worker *worker;
4992
4993 lockdep_assert_held(&wq_pool_attach_mutex);
4994
4995 /* is @cpu allowed for @pool? */
4996 if (!cpumask_test_cpu(cpu, pool->attrs->cpumask))
4997 return;
4998
4999 cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask);
5000
5001 /* as we're called from CPU_ONLINE, the following shouldn't fail */
5002 for_each_pool_worker(worker, pool)
5003 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, &cpumask) < 0);
5004 }
5005
5006 int workqueue_prepare_cpu(unsigned int cpu)
5007 {
5008 struct worker_pool *pool;
5009
5010 for_each_cpu_worker_pool(pool, cpu) {
5011 if (pool->nr_workers)
5012 continue;
5013 if (!create_worker(pool))
5014 return -ENOMEM;
5015 }
5016 return 0;
5017 }
5018
5019 int workqueue_online_cpu(unsigned int cpu)
5020 {
5021 struct worker_pool *pool;
5022 struct workqueue_struct *wq;
5023 int pi;
5024
5025 mutex_lock(&wq_pool_mutex);
5026
5027 for_each_pool(pool, pi) {
5028 mutex_lock(&wq_pool_attach_mutex);
5029
5030 if (pool->cpu == cpu)
5031 rebind_workers(pool);
5032 else if (pool->cpu < 0)
5033 restore_unbound_workers_cpumask(pool, cpu);
5034
5035 mutex_unlock(&wq_pool_attach_mutex);
5036 }
5037
5038 /* update NUMA affinity of unbound workqueues */
5039 list_for_each_entry(wq, &workqueues, list)
5040 wq_update_unbound_numa(wq, cpu, true);
5041
5042 mutex_unlock(&wq_pool_mutex);
5043 return 0;
5044 }
5045
5046 int workqueue_offline_cpu(unsigned int cpu)
5047 {
5048 struct workqueue_struct *wq;
5049
5050 /* unbinding per-cpu workers should happen on the local CPU */
5051 if (WARN_ON(cpu != smp_processor_id()))
5052 return -1;
5053
5054 unbind_workers(cpu);
5055
5056 /* update NUMA affinity of unbound workqueues */
5057 mutex_lock(&wq_pool_mutex);
5058 list_for_each_entry(wq, &workqueues, list)
5059 wq_update_unbound_numa(wq, cpu, false);
5060 mutex_unlock(&wq_pool_mutex);
5061
5062 return 0;
5063 }
5064
5065 struct work_for_cpu {
5066 struct work_struct work;
5067 long (*fn)(void *);
5068 void *arg;
5069 long ret;
5070 };
5071
5072 static void work_for_cpu_fn(struct work_struct *work)
5073 {
5074 struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);
5075
5076 wfc->ret = wfc->fn(wfc->arg);
5077 }
5078
5079 /**
5080 * work_on_cpu - run a function in thread context on a particular cpu
5081 * @cpu: the cpu to run on
5082 * @fn: the function to run
5083 * @arg: the function arg
5084 *
5085 * It is up to the caller to ensure that the cpu doesn't go offline.
5086 * The caller must not hold any locks which would prevent @fn from completing.
5087 *
5088 * Return: The value @fn returns.
5089 */
5090 long work_on_cpu(int cpu, long (*fn)(void *), void *arg)
5091 {
5092 struct work_for_cpu wfc = { .fn = fn, .arg = arg };
5093
5094 INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn);
5095 schedule_work_on(cpu, &wfc.work);
5096 flush_work(&wfc.work);
5097 destroy_work_on_stack(&wfc.work);
5098 return wfc.ret;
5099 }
5100 EXPORT_SYMBOL_GPL(work_on_cpu);
5101
5102 /**
5103 * work_on_cpu_safe - run a function in thread context on a particular cpu
5104 * @cpu: the cpu to run on
5105 * @fn: the function to run
5106 * @arg: the function argument
5107 *
5108 * Disables CPU hotplug and calls work_on_cpu(). The caller must not hold
5109 * any locks which would prevent @fn from completing.
5110 *
5111 * Return: The value @fn returns.
5112 */
5113 long work_on_cpu_safe(int cpu, long (*fn)(void *), void *arg)
5114 {
5115 long ret = -ENODEV;
5116
5117 get_online_cpus();
5118 if (cpu_online(cpu))
5119 ret = work_on_cpu(cpu, fn, arg);
5120 put_online_cpus();
5121 return ret;
5122 }
5123 EXPORT_SYMBOL_GPL(work_on_cpu_safe);
5124 #endif /* CONFIG_SMP */
5125
5126 #ifdef CONFIG_FREEZER
5127
5128 /**
5129 * freeze_workqueues_begin - begin freezing workqueues
5130 *
5131 * Start freezing workqueues. After this function returns, all freezable
5132 * workqueues will queue new works to their delayed_works list instead of
5133 * pool->worklist.
5134 *
5135 * CONTEXT:
5136 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
5137 */
5138 void freeze_workqueues_begin(void)
5139 {
5140 struct workqueue_struct *wq;
5141 struct pool_workqueue *pwq;
5142
5143 mutex_lock(&wq_pool_mutex);
5144
5145 WARN_ON_ONCE(workqueue_freezing);
5146 workqueue_freezing = true;
5147
5148 list_for_each_entry(wq, &workqueues, list) {
5149 mutex_lock(&wq->mutex);
5150 for_each_pwq(pwq, wq)
5151 pwq_adjust_max_active(pwq);
5152 mutex_unlock(&wq->mutex);
5153 }
5154
5155 mutex_unlock(&wq_pool_mutex);
5156 }
5157
5158 /**
5159 * freeze_workqueues_busy - are freezable workqueues still busy?
5160 *
5161 * Check whether freezing is complete. This function must be called
5162 * between freeze_workqueues_begin() and thaw_workqueues().
5163 *
5164 * CONTEXT:
5165 * Grabs and releases wq_pool_mutex.
5166 *
5167 * Return:
5168 * %true if some freezable workqueues are still busy. %false if freezing
5169 * is complete.
5170 */
5171 bool freeze_workqueues_busy(void)
5172 {
5173 bool busy = false;
5174 struct workqueue_struct *wq;
5175 struct pool_workqueue *pwq;
5176
5177 mutex_lock(&wq_pool_mutex);
5178
5179 WARN_ON_ONCE(!workqueue_freezing);
5180
5181 list_for_each_entry(wq, &workqueues, list) {
5182 if (!(wq->flags & WQ_FREEZABLE))
5183 continue;
5184 /*
5185 * nr_active is monotonically decreasing. It's safe
5186 * to peek without lock.
5187 */
5188 rcu_read_lock();
5189 for_each_pwq(pwq, wq) {
5190 WARN_ON_ONCE(pwq->nr_active < 0);
5191 if (pwq->nr_active) {
5192 busy = true;
5193 rcu_read_unlock();
5194 goto out_unlock;
5195 }
5196 }
5197 rcu_read_unlock();
5198 }
5199 out_unlock:
5200 mutex_unlock(&wq_pool_mutex);
5201 return busy;
5202 }
5203
5204 /**
5205 * thaw_workqueues - thaw workqueues
5206 *
5207 * Thaw workqueues. Normal queueing is restored and all collected
5208 * frozen works are transferred to their respective pool worklists.
5209 *
5210 * CONTEXT:
5211 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
5212 */
5213 void thaw_workqueues(void)
5214 {
5215 struct workqueue_struct *wq;
5216 struct pool_workqueue *pwq;
5217
5218 mutex_lock(&wq_pool_mutex);
5219
5220 if (!workqueue_freezing)
5221 goto out_unlock;
5222
5223 workqueue_freezing = false;
5224
5225 /* restore max_active and repopulate worklist */
5226 list_for_each_entry(wq, &workqueues, list) {
5227 mutex_lock(&wq->mutex);
5228 for_each_pwq(pwq, wq)
5229 pwq_adjust_max_active(pwq);
5230 mutex_unlock(&wq->mutex);
5231 }
5232
5233 out_unlock:
5234 mutex_unlock(&wq_pool_mutex);
5235 }
5236 #endif /* CONFIG_FREEZER */
5237
5238 static int workqueue_apply_unbound_cpumask(void)
5239 {
5240 LIST_HEAD(ctxs);
5241 int ret = 0;
5242 struct workqueue_struct *wq;
5243 struct apply_wqattrs_ctx *ctx, *n;
5244
5245 lockdep_assert_held(&wq_pool_mutex);
5246
5247 list_for_each_entry(wq, &workqueues, list) {
5248 if (!(wq->flags & WQ_UNBOUND))
5249 continue;
5250 /* creating multiple pwqs breaks ordering guarantee */
5251 if (wq->flags & __WQ_ORDERED)
5252 continue;
5253
5254 ctx = apply_wqattrs_prepare(wq, wq->unbound_attrs);
5255 if (!ctx) {
5256 ret = -ENOMEM;
5257 break;
5258 }
5259
5260 list_add_tail(&ctx->list, &ctxs);
5261 }
5262
5263 list_for_each_entry_safe(ctx, n, &ctxs, list) {
5264 if (!ret)
5265 apply_wqattrs_commit(ctx);
5266 apply_wqattrs_cleanup(ctx);
5267 }
5268
5269 return ret;
5270 }
5271
5272 /**
5273 * workqueue_set_unbound_cpumask - Set the low-level unbound cpumask
5274 * @cpumask: the cpumask to set
5275 *
5276 * The low-level workqueues cpumask is a global cpumask that limits
5277 * the affinity of all unbound workqueues. This function check the @cpumask
5278 * and apply it to all unbound workqueues and updates all pwqs of them.
5279 *
5280 * Retun: 0 - Success
5281 * -EINVAL - Invalid @cpumask
5282 * -ENOMEM - Failed to allocate memory for attrs or pwqs.
5283 */
5284 int workqueue_set_unbound_cpumask(cpumask_var_t cpumask)
5285 {
5286 int ret = -EINVAL;
5287 cpumask_var_t saved_cpumask;
5288
5289 if (!zalloc_cpumask_var(&saved_cpumask, GFP_KERNEL))
5290 return -ENOMEM;
5291
5292 /*
5293 * Not excluding isolated cpus on purpose.
5294 * If the user wishes to include them, we allow that.
5295 */
5296 cpumask_and(cpumask, cpumask, cpu_possible_mask);
5297 if (!cpumask_empty(cpumask)) {
5298 apply_wqattrs_lock();
5299
5300 /* save the old wq_unbound_cpumask. */
5301 cpumask_copy(saved_cpumask, wq_unbound_cpumask);
5302
5303 /* update wq_unbound_cpumask at first and apply it to wqs. */
5304 cpumask_copy(wq_unbound_cpumask, cpumask);
5305 ret = workqueue_apply_unbound_cpumask();
5306
5307 /* restore the wq_unbound_cpumask when failed. */
5308 if (ret < 0)
5309 cpumask_copy(wq_unbound_cpumask, saved_cpumask);
5310
5311 apply_wqattrs_unlock();
5312 }
5313
5314 free_cpumask_var(saved_cpumask);
5315 return ret;
5316 }
5317
5318 #ifdef CONFIG_SYSFS
5319 /*
5320 * Workqueues with WQ_SYSFS flag set is visible to userland via
5321 * /sys/bus/workqueue/devices/WQ_NAME. All visible workqueues have the
5322 * following attributes.
5323 *
5324 * per_cpu RO bool : whether the workqueue is per-cpu or unbound
5325 * max_active RW int : maximum number of in-flight work items
5326 *
5327 * Unbound workqueues have the following extra attributes.
5328 *
5329 * pool_ids RO int : the associated pool IDs for each node
5330 * nice RW int : nice value of the workers
5331 * cpumask RW mask : bitmask of allowed CPUs for the workers
5332 * numa RW bool : whether enable NUMA affinity
5333 */
5334 struct wq_device {
5335 struct workqueue_struct *wq;
5336 struct device dev;
5337 };
5338
5339 static struct workqueue_struct *dev_to_wq(struct device *dev)
5340 {
5341 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
5342
5343 return wq_dev->wq;
5344 }
5345
5346 static ssize_t per_cpu_show(struct device *dev, struct device_attribute *attr,
5347 char *buf)
5348 {
5349 struct workqueue_struct *wq = dev_to_wq(dev);
5350
5351 return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND));
5352 }
5353 static DEVICE_ATTR_RO(per_cpu);
5354
5355 static ssize_t max_active_show(struct device *dev,
5356 struct device_attribute *attr, char *buf)
5357 {
5358 struct workqueue_struct *wq = dev_to_wq(dev);
5359
5360 return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active);
5361 }
5362
5363 static ssize_t max_active_store(struct device *dev,
5364 struct device_attribute *attr, const char *buf,
5365 size_t count)
5366 {
5367 struct workqueue_struct *wq = dev_to_wq(dev);
5368 int val;
5369
5370 if (sscanf(buf, "%d", &val) != 1 || val <= 0)
5371 return -EINVAL;
5372
5373 workqueue_set_max_active(wq, val);
5374 return count;
5375 }
5376 static DEVICE_ATTR_RW(max_active);
5377
5378 static struct attribute *wq_sysfs_attrs[] = {
5379 &dev_attr_per_cpu.attr,
5380 &dev_attr_max_active.attr,
5381 NULL,
5382 };
5383 ATTRIBUTE_GROUPS(wq_sysfs);
5384
5385 static ssize_t wq_pool_ids_show(struct device *dev,
5386 struct device_attribute *attr, char *buf)
5387 {
5388 struct workqueue_struct *wq = dev_to_wq(dev);
5389 const char *delim = "";
5390 int node, written = 0;
5391
5392 get_online_cpus();
5393 rcu_read_lock();
5394 for_each_node(node) {
5395 written += scnprintf(buf + written, PAGE_SIZE - written,
5396 "%s%d:%d", delim, node,
5397 unbound_pwq_by_node(wq, node)->pool->id);
5398 delim = " ";
5399 }
5400 written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
5401 rcu_read_unlock();
5402 put_online_cpus();
5403
5404 return written;
5405 }
5406
5407 static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr,
5408 char *buf)
5409 {
5410 struct workqueue_struct *wq = dev_to_wq(dev);
5411 int written;
5412
5413 mutex_lock(&wq->mutex);
5414 written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice);
5415 mutex_unlock(&wq->mutex);
5416
5417 return written;
5418 }
5419
5420 /* prepare workqueue_attrs for sysfs store operations */
5421 static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq)
5422 {
5423 struct workqueue_attrs *attrs;
5424
5425 lockdep_assert_held(&wq_pool_mutex);
5426
5427 attrs = alloc_workqueue_attrs();
5428 if (!attrs)
5429 return NULL;
5430
5431 copy_workqueue_attrs(attrs, wq->unbound_attrs);
5432 return attrs;
5433 }
5434
5435 static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr,
5436 const char *buf, size_t count)
5437 {
5438 struct workqueue_struct *wq = dev_to_wq(dev);
5439 struct workqueue_attrs *attrs;
5440 int ret = -ENOMEM;
5441
5442 apply_wqattrs_lock();
5443
5444 attrs = wq_sysfs_prep_attrs(wq);
5445 if (!attrs)
5446 goto out_unlock;
5447
5448 if (sscanf(buf, "%d", &attrs->nice) == 1 &&
5449 attrs->nice >= MIN_NICE && attrs->nice <= MAX_NICE)
5450 ret = apply_workqueue_attrs_locked(wq, attrs);
5451 else
5452 ret = -EINVAL;
5453
5454 out_unlock:
5455 apply_wqattrs_unlock();
5456 free_workqueue_attrs(attrs);
5457 return ret ?: count;
5458 }
5459
5460 static ssize_t wq_cpumask_show(struct device *dev,
5461 struct device_attribute *attr, char *buf)
5462 {
5463 struct workqueue_struct *wq = dev_to_wq(dev);
5464 int written;
5465
5466 mutex_lock(&wq->mutex);
5467 written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
5468 cpumask_pr_args(wq->unbound_attrs->cpumask));
5469 mutex_unlock(&wq->mutex);
5470 return written;
5471 }
5472
5473 static ssize_t wq_cpumask_store(struct device *dev,
5474 struct device_attribute *attr,
5475 const char *buf, size_t count)
5476 {
5477 struct workqueue_struct *wq = dev_to_wq(dev);
5478 struct workqueue_attrs *attrs;
5479 int ret = -ENOMEM;
5480
5481 apply_wqattrs_lock();
5482
5483 attrs = wq_sysfs_prep_attrs(wq);
5484 if (!attrs)
5485 goto out_unlock;
5486
5487 ret = cpumask_parse(buf, attrs->cpumask);
5488 if (!ret)
5489 ret = apply_workqueue_attrs_locked(wq, attrs);
5490
5491 out_unlock:
5492 apply_wqattrs_unlock();
5493 free_workqueue_attrs(attrs);
5494 return ret ?: count;
5495 }
5496
5497 static ssize_t wq_numa_show(struct device *dev, struct device_attribute *attr,
5498 char *buf)
5499 {
5500 struct workqueue_struct *wq = dev_to_wq(dev);
5501 int written;
5502
5503 mutex_lock(&wq->mutex);
5504 written = scnprintf(buf, PAGE_SIZE, "%d\n",
5505 !wq->unbound_attrs->no_numa);
5506 mutex_unlock(&wq->mutex);
5507
5508 return written;
5509 }
5510
5511 static ssize_t wq_numa_store(struct device *dev, struct device_attribute *attr,
5512 const char *buf, size_t count)
5513 {
5514 struct workqueue_struct *wq = dev_to_wq(dev);
5515 struct workqueue_attrs *attrs;
5516 int v, ret = -ENOMEM;
5517
5518 apply_wqattrs_lock();
5519
5520 attrs = wq_sysfs_prep_attrs(wq);
5521 if (!attrs)
5522 goto out_unlock;
5523
5524 ret = -EINVAL;
5525 if (sscanf(buf, "%d", &v) == 1) {
5526 attrs->no_numa = !v;
5527 ret = apply_workqueue_attrs_locked(wq, attrs);
5528 }
5529
5530 out_unlock:
5531 apply_wqattrs_unlock();
5532 free_workqueue_attrs(attrs);
5533 return ret ?: count;
5534 }
5535
5536 static struct device_attribute wq_sysfs_unbound_attrs[] = {
5537 __ATTR(pool_ids, 0444, wq_pool_ids_show, NULL),
5538 __ATTR(nice, 0644, wq_nice_show, wq_nice_store),
5539 __ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store),
5540 __ATTR(numa, 0644, wq_numa_show, wq_numa_store),
5541 __ATTR_NULL,
5542 };
5543
5544 static struct bus_type wq_subsys = {
5545 .name = "workqueue",
5546 .dev_groups = wq_sysfs_groups,
5547 };
5548
5549 static ssize_t wq_unbound_cpumask_show(struct device *dev,
5550 struct device_attribute *attr, char *buf)
5551 {
5552 int written;
5553
5554 mutex_lock(&wq_pool_mutex);
5555 written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
5556 cpumask_pr_args(wq_unbound_cpumask));
5557 mutex_unlock(&wq_pool_mutex);
5558
5559 return written;
5560 }
5561
5562 static ssize_t wq_unbound_cpumask_store(struct device *dev,
5563 struct device_attribute *attr, const char *buf, size_t count)
5564 {
5565 cpumask_var_t cpumask;
5566 int ret;
5567
5568 if (!zalloc_cpumask_var(&cpumask, GFP_KERNEL))
5569 return -ENOMEM;
5570
5571 ret = cpumask_parse(buf, cpumask);
5572 if (!ret)
5573 ret = workqueue_set_unbound_cpumask(cpumask);
5574
5575 free_cpumask_var(cpumask);
5576 return ret ? ret : count;
5577 }
5578
5579 static struct device_attribute wq_sysfs_cpumask_attr =
5580 __ATTR(cpumask, 0644, wq_unbound_cpumask_show,
5581 wq_unbound_cpumask_store);
5582
5583 static int __init wq_sysfs_init(void)
5584 {
5585 int err;
5586
5587 err = subsys_virtual_register(&wq_subsys, NULL);
5588 if (err)
5589 return err;
5590
5591 return device_create_file(wq_subsys.dev_root, &wq_sysfs_cpumask_attr);
5592 }
5593 core_initcall(wq_sysfs_init);
5594
5595 static void wq_device_release(struct device *dev)
5596 {
5597 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
5598
5599 kfree(wq_dev);
5600 }
5601
5602 /**
5603 * workqueue_sysfs_register - make a workqueue visible in sysfs
5604 * @wq: the workqueue to register
5605 *
5606 * Expose @wq in sysfs under /sys/bus/workqueue/devices.
5607 * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set
5608 * which is the preferred method.
5609 *
5610 * Workqueue user should use this function directly iff it wants to apply
5611 * workqueue_attrs before making the workqueue visible in sysfs; otherwise,
5612 * apply_workqueue_attrs() may race against userland updating the
5613 * attributes.
5614 *
5615 * Return: 0 on success, -errno on failure.
5616 */
5617 int workqueue_sysfs_register(struct workqueue_struct *wq)
5618 {
5619 struct wq_device *wq_dev;
5620 int ret;
5621
5622 /*
5623 * Adjusting max_active or creating new pwqs by applying
5624 * attributes breaks ordering guarantee. Disallow exposing ordered
5625 * workqueues.
5626 */
5627 if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
5628 return -EINVAL;
5629
5630 wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL);
5631 if (!wq_dev)
5632 return -ENOMEM;
5633
5634 wq_dev->wq = wq;
5635 wq_dev->dev.bus = &wq_subsys;
5636 wq_dev->dev.release = wq_device_release;
5637 dev_set_name(&wq_dev->dev, "%s", wq->name);
5638
5639 /*
5640 * unbound_attrs are created separately. Suppress uevent until
5641 * everything is ready.
5642 */
5643 dev_set_uevent_suppress(&wq_dev->dev, true);
5644
5645 ret = device_register(&wq_dev->dev);
5646 if (ret) {
5647 put_device(&wq_dev->dev);
5648 wq->wq_dev = NULL;
5649 return ret;
5650 }
5651
5652 if (wq->flags & WQ_UNBOUND) {
5653 struct device_attribute *attr;
5654
5655 for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) {
5656 ret = device_create_file(&wq_dev->dev, attr);
5657 if (ret) {
5658 device_unregister(&wq_dev->dev);
5659 wq->wq_dev = NULL;
5660 return ret;
5661 }
5662 }
5663 }
5664
5665 dev_set_uevent_suppress(&wq_dev->dev, false);
5666 kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD);
5667 return 0;
5668 }
5669
5670 /**
5671 * workqueue_sysfs_unregister - undo workqueue_sysfs_register()
5672 * @wq: the workqueue to unregister
5673 *
5674 * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister.
5675 */
5676 static void workqueue_sysfs_unregister(struct workqueue_struct *wq)
5677 {
5678 struct wq_device *wq_dev = wq->wq_dev;
5679
5680 if (!wq->wq_dev)
5681 return;
5682
5683 wq->wq_dev = NULL;
5684 device_unregister(&wq_dev->dev);
5685 }
5686 #else /* CONFIG_SYSFS */
5687 static void workqueue_sysfs_unregister(struct workqueue_struct *wq) { }
5688 #endif /* CONFIG_SYSFS */
5689
5690 /*
5691 * Workqueue watchdog.
5692 *
5693 * Stall may be caused by various bugs - missing WQ_MEM_RECLAIM, illegal
5694 * flush dependency, a concurrency managed work item which stays RUNNING
5695 * indefinitely. Workqueue stalls can be very difficult to debug as the
5696 * usual warning mechanisms don't trigger and internal workqueue state is
5697 * largely opaque.
5698 *
5699 * Workqueue watchdog monitors all worker pools periodically and dumps
5700 * state if some pools failed to make forward progress for a while where
5701 * forward progress is defined as the first item on ->worklist changing.
5702 *
5703 * This mechanism is controlled through the kernel parameter
5704 * "workqueue.watchdog_thresh" which can be updated at runtime through the
5705 * corresponding sysfs parameter file.
5706 */
5707 #ifdef CONFIG_WQ_WATCHDOG
5708
5709 static unsigned long wq_watchdog_thresh = 30;
5710 static struct timer_list wq_watchdog_timer;
5711
5712 static unsigned long wq_watchdog_touched = INITIAL_JIFFIES;
5713 static DEFINE_PER_CPU(unsigned long, wq_watchdog_touched_cpu) = INITIAL_JIFFIES;
5714
5715 static void wq_watchdog_reset_touched(void)
5716 {
5717 int cpu;
5718
5719 wq_watchdog_touched = jiffies;
5720 for_each_possible_cpu(cpu)
5721 per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
5722 }
5723
5724 static void wq_watchdog_timer_fn(struct timer_list *unused)
5725 {
5726 unsigned long thresh = READ_ONCE(wq_watchdog_thresh) * HZ;
5727 bool lockup_detected = false;
5728 struct worker_pool *pool;
5729 int pi;
5730
5731 if (!thresh)
5732 return;
5733
5734 rcu_read_lock();
5735
5736 for_each_pool(pool, pi) {
5737 unsigned long pool_ts, touched, ts;
5738
5739 if (list_empty(&pool->worklist))
5740 continue;
5741
5742 /* get the latest of pool and touched timestamps */
5743 pool_ts = READ_ONCE(pool->watchdog_ts);
5744 touched = READ_ONCE(wq_watchdog_touched);
5745
5746 if (time_after(pool_ts, touched))
5747 ts = pool_ts;
5748 else
5749 ts = touched;
5750
5751 if (pool->cpu >= 0) {
5752 unsigned long cpu_touched =
5753 READ_ONCE(per_cpu(wq_watchdog_touched_cpu,
5754 pool->cpu));
5755 if (time_after(cpu_touched, ts))
5756 ts = cpu_touched;
5757 }
5758
5759 /* did we stall? */
5760 if (time_after(jiffies, ts + thresh)) {
5761 lockup_detected = true;
5762 pr_emerg("BUG: workqueue lockup - pool");
5763 pr_cont_pool_info(pool);
5764 pr_cont(" stuck for %us!\n",
5765 jiffies_to_msecs(jiffies - pool_ts) / 1000);
5766 }
5767 }
5768
5769 rcu_read_unlock();
5770
5771 if (lockup_detected)
5772 show_workqueue_state();
5773
5774 wq_watchdog_reset_touched();
5775 mod_timer(&wq_watchdog_timer, jiffies + thresh);
5776 }
5777
5778 notrace void wq_watchdog_touch(int cpu)
5779 {
5780 if (cpu >= 0)
5781 per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
5782 else
5783 wq_watchdog_touched = jiffies;
5784 }
5785
5786 static void wq_watchdog_set_thresh(unsigned long thresh)
5787 {
5788 wq_watchdog_thresh = 0;
5789 del_timer_sync(&wq_watchdog_timer);
5790
5791 if (thresh) {
5792 wq_watchdog_thresh = thresh;
5793 wq_watchdog_reset_touched();
5794 mod_timer(&wq_watchdog_timer, jiffies + thresh * HZ);
5795 }
5796 }
5797
5798 static int wq_watchdog_param_set_thresh(const char *val,
5799 const struct kernel_param *kp)
5800 {
5801 unsigned long thresh;
5802 int ret;
5803
5804 ret = kstrtoul(val, 0, &thresh);
5805 if (ret)
5806 return ret;
5807
5808 if (system_wq)
5809 wq_watchdog_set_thresh(thresh);
5810 else
5811 wq_watchdog_thresh = thresh;
5812
5813 return 0;
5814 }
5815
5816 static const struct kernel_param_ops wq_watchdog_thresh_ops = {
5817 .set = wq_watchdog_param_set_thresh,
5818 .get = param_get_ulong,
5819 };
5820
5821 module_param_cb(watchdog_thresh, &wq_watchdog_thresh_ops, &wq_watchdog_thresh,
5822 0644);
5823
5824 static void wq_watchdog_init(void)
5825 {
5826 timer_setup(&wq_watchdog_timer, wq_watchdog_timer_fn, TIMER_DEFERRABLE);
5827 wq_watchdog_set_thresh(wq_watchdog_thresh);
5828 }
5829
5830 #else /* CONFIG_WQ_WATCHDOG */
5831
5832 static inline void wq_watchdog_init(void) { }
5833
5834 #endif /* CONFIG_WQ_WATCHDOG */
5835
5836 static void __init wq_numa_init(void)
5837 {
5838 cpumask_var_t *tbl;
5839 int node, cpu;
5840
5841 if (num_possible_nodes() <= 1)
5842 return;
5843
5844 if (wq_disable_numa) {
5845 pr_info("workqueue: NUMA affinity support disabled\n");
5846 return;
5847 }
5848
5849 wq_update_unbound_numa_attrs_buf = alloc_workqueue_attrs();
5850 BUG_ON(!wq_update_unbound_numa_attrs_buf);
5851
5852 /*
5853 * We want masks of possible CPUs of each node which isn't readily
5854 * available. Build one from cpu_to_node() which should have been
5855 * fully initialized by now.
5856 */
5857 tbl = kcalloc(nr_node_ids, sizeof(tbl[0]), GFP_KERNEL);
5858 BUG_ON(!tbl);
5859
5860 for_each_node(node)
5861 BUG_ON(!zalloc_cpumask_var_node(&tbl[node], GFP_KERNEL,
5862 node_online(node) ? node : NUMA_NO_NODE));
5863
5864 for_each_possible_cpu(cpu) {
5865 node = cpu_to_node(cpu);
5866 if (WARN_ON(node == NUMA_NO_NODE)) {
5867 pr_warn("workqueue: NUMA node mapping not available for cpu%d, disabling NUMA support\n", cpu);
5868 /* happens iff arch is bonkers, let's just proceed */
5869 return;
5870 }
5871 cpumask_set_cpu(cpu, tbl[node]);
5872 }
5873
5874 wq_numa_possible_cpumask = tbl;
5875 wq_numa_enabled = true;
5876 }
5877
5878 /**
5879 * workqueue_init_early - early init for workqueue subsystem
5880 *
5881 * This is the first half of two-staged workqueue subsystem initialization
5882 * and invoked as soon as the bare basics - memory allocation, cpumasks and
5883 * idr are up. It sets up all the data structures and system workqueues
5884 * and allows early boot code to create workqueues and queue/cancel work
5885 * items. Actual work item execution starts only after kthreads can be
5886 * created and scheduled right before early initcalls.
5887 */
5888 int __init workqueue_init_early(void)
5889 {
5890 int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL };
5891 int hk_flags = HK_FLAG_DOMAIN | HK_FLAG_WQ;
5892 int i, cpu;
5893
5894 WARN_ON(__alignof__(struct pool_workqueue) < __alignof__(long long));
5895
5896 BUG_ON(!alloc_cpumask_var(&wq_unbound_cpumask, GFP_KERNEL));
5897 cpumask_copy(wq_unbound_cpumask, housekeeping_cpumask(hk_flags));
5898
5899 pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC);
5900
5901 /* initialize CPU pools */
5902 for_each_possible_cpu(cpu) {
5903 struct worker_pool *pool;
5904
5905 i = 0;
5906 for_each_cpu_worker_pool(pool, cpu) {
5907 BUG_ON(init_worker_pool(pool));
5908 pool->cpu = cpu;
5909 cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu));
5910 pool->attrs->nice = std_nice[i++];
5911 pool->node = cpu_to_node(cpu);
5912
5913 /* alloc pool ID */
5914 mutex_lock(&wq_pool_mutex);
5915 BUG_ON(worker_pool_assign_id(pool));
5916 mutex_unlock(&wq_pool_mutex);
5917 }
5918 }
5919
5920 /* create default unbound and ordered wq attrs */
5921 for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
5922 struct workqueue_attrs *attrs;
5923
5924 BUG_ON(!(attrs = alloc_workqueue_attrs()));
5925 attrs->nice = std_nice[i];
5926 unbound_std_wq_attrs[i] = attrs;
5927
5928 /*
5929 * An ordered wq should have only one pwq as ordering is
5930 * guaranteed by max_active which is enforced by pwqs.
5931 * Turn off NUMA so that dfl_pwq is used for all nodes.
5932 */
5933 BUG_ON(!(attrs = alloc_workqueue_attrs()));
5934 attrs->nice = std_nice[i];
5935 attrs->no_numa = true;
5936 ordered_wq_attrs[i] = attrs;
5937 }
5938
5939 system_wq = alloc_workqueue("events", 0, 0);
5940 system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
5941 system_long_wq = alloc_workqueue("events_long", 0, 0);
5942 system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
5943 WQ_UNBOUND_MAX_ACTIVE);
5944 system_freezable_wq = alloc_workqueue("events_freezable",
5945 WQ_FREEZABLE, 0);
5946 system_power_efficient_wq = alloc_workqueue("events_power_efficient",
5947 WQ_POWER_EFFICIENT, 0);
5948 system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_power_efficient",
5949 WQ_FREEZABLE | WQ_POWER_EFFICIENT,
5950 0);
5951 BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
5952 !system_unbound_wq || !system_freezable_wq ||
5953 !system_power_efficient_wq ||
5954 !system_freezable_power_efficient_wq);
5955
5956 return 0;
5957 }
5958
5959 /**
5960 * workqueue_init - bring workqueue subsystem fully online
5961 *
5962 * This is the latter half of two-staged workqueue subsystem initialization
5963 * and invoked as soon as kthreads can be created and scheduled.
5964 * Workqueues have been created and work items queued on them, but there
5965 * are no kworkers executing the work items yet. Populate the worker pools
5966 * with the initial workers and enable future kworker creations.
5967 */
5968 int __init workqueue_init(void)
5969 {
5970 struct workqueue_struct *wq;
5971 struct worker_pool *pool;
5972 int cpu, bkt;
5973
5974 /*
5975 * It'd be simpler to initialize NUMA in workqueue_init_early() but
5976 * CPU to node mapping may not be available that early on some
5977 * archs such as power and arm64. As per-cpu pools created
5978 * previously could be missing node hint and unbound pools NUMA
5979 * affinity, fix them up.
5980 *
5981 * Also, while iterating workqueues, create rescuers if requested.
5982 */
5983 wq_numa_init();
5984
5985 mutex_lock(&wq_pool_mutex);
5986
5987 for_each_possible_cpu(cpu) {
5988 for_each_cpu_worker_pool(pool, cpu) {
5989 pool->node = cpu_to_node(cpu);
5990 }
5991 }
5992
5993 list_for_each_entry(wq, &workqueues, list) {
5994 wq_update_unbound_numa(wq, smp_processor_id(), true);
5995 WARN(init_rescuer(wq),
5996 "workqueue: failed to create early rescuer for %s",
5997 wq->name);
5998 }
5999
6000 mutex_unlock(&wq_pool_mutex);
6001
6002 /* create the initial workers */
6003 for_each_online_cpu(cpu) {
6004 for_each_cpu_worker_pool(pool, cpu) {
6005 pool->flags &= ~POOL_DISASSOCIATED;
6006 BUG_ON(!create_worker(pool));
6007 }
6008 }
6009
6010 hash_for_each(unbound_pool_hash, bkt, pool, hash_node)
6011 BUG_ON(!create_worker(pool));
6012
6013 wq_online = true;
6014 wq_watchdog_init();
6015
6016 return 0;
6017 }