]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - kernel/workqueue.c
workqueue: skip lockdep wq dependency in cancel_work_sync()
[mirror_ubuntu-bionic-kernel.git] / kernel / workqueue.c
1 /*
2 * kernel/workqueue.c - generic async execution with shared worker pool
3 *
4 * Copyright (C) 2002 Ingo Molnar
5 *
6 * Derived from the taskqueue/keventd code by:
7 * David Woodhouse <dwmw2@infradead.org>
8 * Andrew Morton
9 * Kai Petzke <wpp@marie.physik.tu-berlin.de>
10 * Theodore Ts'o <tytso@mit.edu>
11 *
12 * Made to use alloc_percpu by Christoph Lameter.
13 *
14 * Copyright (C) 2010 SUSE Linux Products GmbH
15 * Copyright (C) 2010 Tejun Heo <tj@kernel.org>
16 *
17 * This is the generic async execution mechanism. Work items as are
18 * executed in process context. The worker pool is shared and
19 * automatically managed. There are two worker pools for each CPU (one for
20 * normal work items and the other for high priority ones) and some extra
21 * pools for workqueues which are not bound to any specific CPU - the
22 * number of these backing pools is dynamic.
23 *
24 * Please read Documentation/core-api/workqueue.rst for details.
25 */
26
27 #include <linux/export.h>
28 #include <linux/kernel.h>
29 #include <linux/sched.h>
30 #include <linux/init.h>
31 #include <linux/signal.h>
32 #include <linux/completion.h>
33 #include <linux/workqueue.h>
34 #include <linux/slab.h>
35 #include <linux/cpu.h>
36 #include <linux/notifier.h>
37 #include <linux/kthread.h>
38 #include <linux/hardirq.h>
39 #include <linux/mempolicy.h>
40 #include <linux/freezer.h>
41 #include <linux/debug_locks.h>
42 #include <linux/lockdep.h>
43 #include <linux/idr.h>
44 #include <linux/jhash.h>
45 #include <linux/hashtable.h>
46 #include <linux/rculist.h>
47 #include <linux/nodemask.h>
48 #include <linux/moduleparam.h>
49 #include <linux/uaccess.h>
50 #include <linux/sched/isolation.h>
51 #include <linux/nmi.h>
52
53 #include "workqueue_internal.h"
54
55 enum {
56 /*
57 * worker_pool flags
58 *
59 * A bound pool is either associated or disassociated with its CPU.
60 * While associated (!DISASSOCIATED), all workers are bound to the
61 * CPU and none has %WORKER_UNBOUND set and concurrency management
62 * is in effect.
63 *
64 * While DISASSOCIATED, the cpu may be offline and all workers have
65 * %WORKER_UNBOUND set and concurrency management disabled, and may
66 * be executing on any CPU. The pool behaves as an unbound one.
67 *
68 * Note that DISASSOCIATED should be flipped only while holding
69 * attach_mutex to avoid changing binding state while
70 * worker_attach_to_pool() is in progress.
71 */
72 POOL_MANAGER_ACTIVE = 1 << 0, /* being managed */
73 POOL_DISASSOCIATED = 1 << 2, /* cpu can't serve workers */
74
75 /* worker flags */
76 WORKER_DIE = 1 << 1, /* die die die */
77 WORKER_IDLE = 1 << 2, /* is idle */
78 WORKER_PREP = 1 << 3, /* preparing to run works */
79 WORKER_CPU_INTENSIVE = 1 << 6, /* cpu intensive */
80 WORKER_UNBOUND = 1 << 7, /* worker is unbound */
81 WORKER_REBOUND = 1 << 8, /* worker was rebound */
82
83 WORKER_NOT_RUNNING = WORKER_PREP | WORKER_CPU_INTENSIVE |
84 WORKER_UNBOUND | WORKER_REBOUND,
85
86 NR_STD_WORKER_POOLS = 2, /* # standard pools per cpu */
87
88 UNBOUND_POOL_HASH_ORDER = 6, /* hashed by pool->attrs */
89 BUSY_WORKER_HASH_ORDER = 6, /* 64 pointers */
90
91 MAX_IDLE_WORKERS_RATIO = 4, /* 1/4 of busy can be idle */
92 IDLE_WORKER_TIMEOUT = 300 * HZ, /* keep idle ones for 5 mins */
93
94 MAYDAY_INITIAL_TIMEOUT = HZ / 100 >= 2 ? HZ / 100 : 2,
95 /* call for help after 10ms
96 (min two ticks) */
97 MAYDAY_INTERVAL = HZ / 10, /* and then every 100ms */
98 CREATE_COOLDOWN = HZ, /* time to breath after fail */
99
100 /*
101 * Rescue workers are used only on emergencies and shared by
102 * all cpus. Give MIN_NICE.
103 */
104 RESCUER_NICE_LEVEL = MIN_NICE,
105 HIGHPRI_NICE_LEVEL = MIN_NICE,
106
107 WQ_NAME_LEN = 24,
108 };
109
110 /*
111 * Structure fields follow one of the following exclusion rules.
112 *
113 * I: Modifiable by initialization/destruction paths and read-only for
114 * everyone else.
115 *
116 * P: Preemption protected. Disabling preemption is enough and should
117 * only be modified and accessed from the local cpu.
118 *
119 * L: pool->lock protected. Access with pool->lock held.
120 *
121 * X: During normal operation, modification requires pool->lock and should
122 * be done only from local cpu. Either disabling preemption on local
123 * cpu or grabbing pool->lock is enough for read access. If
124 * POOL_DISASSOCIATED is set, it's identical to L.
125 *
126 * A: pool->attach_mutex protected.
127 *
128 * PL: wq_pool_mutex protected.
129 *
130 * PR: wq_pool_mutex protected for writes. Sched-RCU protected for reads.
131 *
132 * PW: wq_pool_mutex and wq->mutex protected for writes. Either for reads.
133 *
134 * PWR: wq_pool_mutex and wq->mutex protected for writes. Either or
135 * sched-RCU for reads.
136 *
137 * WQ: wq->mutex protected.
138 *
139 * WR: wq->mutex protected for writes. Sched-RCU protected for reads.
140 *
141 * MD: wq_mayday_lock protected.
142 */
143
144 /* struct worker is defined in workqueue_internal.h */
145
146 struct worker_pool {
147 spinlock_t lock; /* the pool lock */
148 int cpu; /* I: the associated cpu */
149 int node; /* I: the associated node ID */
150 int id; /* I: pool ID */
151 unsigned int flags; /* X: flags */
152
153 unsigned long watchdog_ts; /* L: watchdog timestamp */
154
155 struct list_head worklist; /* L: list of pending works */
156 int nr_workers; /* L: total number of workers */
157
158 /* nr_idle includes the ones off idle_list for rebinding */
159 int nr_idle; /* L: currently idle ones */
160
161 struct list_head idle_list; /* X: list of idle workers */
162 struct timer_list idle_timer; /* L: worker idle timeout */
163 struct timer_list mayday_timer; /* L: SOS timer for workers */
164
165 /* a workers is either on busy_hash or idle_list, or the manager */
166 DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
167 /* L: hash of busy workers */
168
169 /* see manage_workers() for details on the two manager mutexes */
170 struct worker *manager; /* L: purely informational */
171 struct mutex attach_mutex; /* attach/detach exclusion */
172 struct list_head workers; /* A: attached workers */
173 struct completion *detach_completion; /* all workers detached */
174
175 struct ida worker_ida; /* worker IDs for task name */
176
177 struct workqueue_attrs *attrs; /* I: worker attributes */
178 struct hlist_node hash_node; /* PL: unbound_pool_hash node */
179 int refcnt; /* PL: refcnt for unbound pools */
180
181 /*
182 * The current concurrency level. As it's likely to be accessed
183 * from other CPUs during try_to_wake_up(), put it in a separate
184 * cacheline.
185 */
186 atomic_t nr_running ____cacheline_aligned_in_smp;
187
188 /*
189 * Destruction of pool is sched-RCU protected to allow dereferences
190 * from get_work_pool().
191 */
192 struct rcu_head rcu;
193 } ____cacheline_aligned_in_smp;
194
195 /*
196 * The per-pool workqueue. While queued, the lower WORK_STRUCT_FLAG_BITS
197 * of work_struct->data are used for flags and the remaining high bits
198 * point to the pwq; thus, pwqs need to be aligned at two's power of the
199 * number of flag bits.
200 */
201 struct pool_workqueue {
202 struct worker_pool *pool; /* I: the associated pool */
203 struct workqueue_struct *wq; /* I: the owning workqueue */
204 int work_color; /* L: current color */
205 int flush_color; /* L: flushing color */
206 int refcnt; /* L: reference count */
207 int nr_in_flight[WORK_NR_COLORS];
208 /* L: nr of in_flight works */
209 int nr_active; /* L: nr of active works */
210 int max_active; /* L: max active works */
211 struct list_head delayed_works; /* L: delayed works */
212 struct list_head pwqs_node; /* WR: node on wq->pwqs */
213 struct list_head mayday_node; /* MD: node on wq->maydays */
214
215 /*
216 * Release of unbound pwq is punted to system_wq. See put_pwq()
217 * and pwq_unbound_release_workfn() for details. pool_workqueue
218 * itself is also sched-RCU protected so that the first pwq can be
219 * determined without grabbing wq->mutex.
220 */
221 struct work_struct unbound_release_work;
222 struct rcu_head rcu;
223 } __aligned(1 << WORK_STRUCT_FLAG_BITS);
224
225 /*
226 * Structure used to wait for workqueue flush.
227 */
228 struct wq_flusher {
229 struct list_head list; /* WQ: list of flushers */
230 int flush_color; /* WQ: flush color waiting for */
231 struct completion done; /* flush completion */
232 };
233
234 struct wq_device;
235
236 /*
237 * The externally visible workqueue. It relays the issued work items to
238 * the appropriate worker_pool through its pool_workqueues.
239 */
240 struct workqueue_struct {
241 struct list_head pwqs; /* WR: all pwqs of this wq */
242 struct list_head list; /* PR: list of all workqueues */
243
244 struct mutex mutex; /* protects this wq */
245 int work_color; /* WQ: current work color */
246 int flush_color; /* WQ: current flush color */
247 atomic_t nr_pwqs_to_flush; /* flush in progress */
248 struct wq_flusher *first_flusher; /* WQ: first flusher */
249 struct list_head flusher_queue; /* WQ: flush waiters */
250 struct list_head flusher_overflow; /* WQ: flush overflow list */
251
252 struct list_head maydays; /* MD: pwqs requesting rescue */
253 struct worker *rescuer; /* I: rescue worker */
254
255 int nr_drainers; /* WQ: drain in progress */
256 int saved_max_active; /* WQ: saved pwq max_active */
257
258 struct workqueue_attrs *unbound_attrs; /* PW: only for unbound wqs */
259 struct pool_workqueue *dfl_pwq; /* PW: only for unbound wqs */
260
261 #ifdef CONFIG_SYSFS
262 struct wq_device *wq_dev; /* I: for sysfs interface */
263 #endif
264 #ifdef CONFIG_LOCKDEP
265 struct lockdep_map lockdep_map;
266 #endif
267 char name[WQ_NAME_LEN]; /* I: workqueue name */
268
269 /*
270 * Destruction of workqueue_struct is sched-RCU protected to allow
271 * walking the workqueues list without grabbing wq_pool_mutex.
272 * This is used to dump all workqueues from sysrq.
273 */
274 struct rcu_head rcu;
275
276 /* hot fields used during command issue, aligned to cacheline */
277 unsigned int flags ____cacheline_aligned; /* WQ: WQ_* flags */
278 struct pool_workqueue __percpu *cpu_pwqs; /* I: per-cpu pwqs */
279 struct pool_workqueue __rcu *numa_pwq_tbl[]; /* PWR: unbound pwqs indexed by node */
280 };
281
282 static struct kmem_cache *pwq_cache;
283
284 static cpumask_var_t *wq_numa_possible_cpumask;
285 /* possible CPUs of each node */
286
287 static bool wq_disable_numa;
288 module_param_named(disable_numa, wq_disable_numa, bool, 0444);
289
290 /* see the comment above the definition of WQ_POWER_EFFICIENT */
291 static bool wq_power_efficient = IS_ENABLED(CONFIG_WQ_POWER_EFFICIENT_DEFAULT);
292 module_param_named(power_efficient, wq_power_efficient, bool, 0444);
293
294 static bool wq_online; /* can kworkers be created yet? */
295
296 static bool wq_numa_enabled; /* unbound NUMA affinity enabled */
297
298 /* buf for wq_update_unbound_numa_attrs(), protected by CPU hotplug exclusion */
299 static struct workqueue_attrs *wq_update_unbound_numa_attrs_buf;
300
301 static DEFINE_MUTEX(wq_pool_mutex); /* protects pools and workqueues list */
302 static DEFINE_SPINLOCK(wq_mayday_lock); /* protects wq->maydays list */
303 static DECLARE_WAIT_QUEUE_HEAD(wq_manager_wait); /* wait for manager to go away */
304
305 static LIST_HEAD(workqueues); /* PR: list of all workqueues */
306 static bool workqueue_freezing; /* PL: have wqs started freezing? */
307
308 /* PL: allowable cpus for unbound wqs and work items */
309 static cpumask_var_t wq_unbound_cpumask;
310
311 /* CPU where unbound work was last round robin scheduled from this CPU */
312 static DEFINE_PER_CPU(int, wq_rr_cpu_last);
313
314 /*
315 * Local execution of unbound work items is no longer guaranteed. The
316 * following always forces round-robin CPU selection on unbound work items
317 * to uncover usages which depend on it.
318 */
319 #ifdef CONFIG_DEBUG_WQ_FORCE_RR_CPU
320 static bool wq_debug_force_rr_cpu = true;
321 #else
322 static bool wq_debug_force_rr_cpu = false;
323 #endif
324 module_param_named(debug_force_rr_cpu, wq_debug_force_rr_cpu, bool, 0644);
325
326 /* the per-cpu worker pools */
327 static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS], cpu_worker_pools);
328
329 static DEFINE_IDR(worker_pool_idr); /* PR: idr of all pools */
330
331 /* PL: hash of all unbound pools keyed by pool->attrs */
332 static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER);
333
334 /* I: attributes used when instantiating standard unbound pools on demand */
335 static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS];
336
337 /* I: attributes used when instantiating ordered pools on demand */
338 static struct workqueue_attrs *ordered_wq_attrs[NR_STD_WORKER_POOLS];
339
340 struct workqueue_struct *system_wq __read_mostly;
341 EXPORT_SYMBOL(system_wq);
342 struct workqueue_struct *system_highpri_wq __read_mostly;
343 EXPORT_SYMBOL_GPL(system_highpri_wq);
344 struct workqueue_struct *system_long_wq __read_mostly;
345 EXPORT_SYMBOL_GPL(system_long_wq);
346 struct workqueue_struct *system_unbound_wq __read_mostly;
347 EXPORT_SYMBOL_GPL(system_unbound_wq);
348 struct workqueue_struct *system_freezable_wq __read_mostly;
349 EXPORT_SYMBOL_GPL(system_freezable_wq);
350 struct workqueue_struct *system_power_efficient_wq __read_mostly;
351 EXPORT_SYMBOL_GPL(system_power_efficient_wq);
352 struct workqueue_struct *system_freezable_power_efficient_wq __read_mostly;
353 EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq);
354
355 static int worker_thread(void *__worker);
356 static void workqueue_sysfs_unregister(struct workqueue_struct *wq);
357
358 #define CREATE_TRACE_POINTS
359 #include <trace/events/workqueue.h>
360
361 #define assert_rcu_or_pool_mutex() \
362 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held() && \
363 !lockdep_is_held(&wq_pool_mutex), \
364 "sched RCU or wq_pool_mutex should be held")
365
366 #define assert_rcu_or_wq_mutex(wq) \
367 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held() && \
368 !lockdep_is_held(&wq->mutex), \
369 "sched RCU or wq->mutex should be held")
370
371 #define assert_rcu_or_wq_mutex_or_pool_mutex(wq) \
372 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held() && \
373 !lockdep_is_held(&wq->mutex) && \
374 !lockdep_is_held(&wq_pool_mutex), \
375 "sched RCU, wq->mutex or wq_pool_mutex should be held")
376
377 #define for_each_cpu_worker_pool(pool, cpu) \
378 for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0]; \
379 (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
380 (pool)++)
381
382 /**
383 * for_each_pool - iterate through all worker_pools in the system
384 * @pool: iteration cursor
385 * @pi: integer used for iteration
386 *
387 * This must be called either with wq_pool_mutex held or sched RCU read
388 * locked. If the pool needs to be used beyond the locking in effect, the
389 * caller is responsible for guaranteeing that the pool stays online.
390 *
391 * The if/else clause exists only for the lockdep assertion and can be
392 * ignored.
393 */
394 #define for_each_pool(pool, pi) \
395 idr_for_each_entry(&worker_pool_idr, pool, pi) \
396 if (({ assert_rcu_or_pool_mutex(); false; })) { } \
397 else
398
399 /**
400 * for_each_pool_worker - iterate through all workers of a worker_pool
401 * @worker: iteration cursor
402 * @pool: worker_pool to iterate workers of
403 *
404 * This must be called with @pool->attach_mutex.
405 *
406 * The if/else clause exists only for the lockdep assertion and can be
407 * ignored.
408 */
409 #define for_each_pool_worker(worker, pool) \
410 list_for_each_entry((worker), &(pool)->workers, node) \
411 if (({ lockdep_assert_held(&pool->attach_mutex); false; })) { } \
412 else
413
414 /**
415 * for_each_pwq - iterate through all pool_workqueues of the specified workqueue
416 * @pwq: iteration cursor
417 * @wq: the target workqueue
418 *
419 * This must be called either with wq->mutex held or sched RCU read locked.
420 * If the pwq needs to be used beyond the locking in effect, the caller is
421 * responsible for guaranteeing that the pwq stays online.
422 *
423 * The if/else clause exists only for the lockdep assertion and can be
424 * ignored.
425 */
426 #define for_each_pwq(pwq, wq) \
427 list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node) \
428 if (({ assert_rcu_or_wq_mutex(wq); false; })) { } \
429 else
430
431 #ifdef CONFIG_DEBUG_OBJECTS_WORK
432
433 static struct debug_obj_descr work_debug_descr;
434
435 static void *work_debug_hint(void *addr)
436 {
437 return ((struct work_struct *) addr)->func;
438 }
439
440 static bool work_is_static_object(void *addr)
441 {
442 struct work_struct *work = addr;
443
444 return test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work));
445 }
446
447 /*
448 * fixup_init is called when:
449 * - an active object is initialized
450 */
451 static bool work_fixup_init(void *addr, enum debug_obj_state state)
452 {
453 struct work_struct *work = addr;
454
455 switch (state) {
456 case ODEBUG_STATE_ACTIVE:
457 cancel_work_sync(work);
458 debug_object_init(work, &work_debug_descr);
459 return true;
460 default:
461 return false;
462 }
463 }
464
465 /*
466 * fixup_free is called when:
467 * - an active object is freed
468 */
469 static bool work_fixup_free(void *addr, enum debug_obj_state state)
470 {
471 struct work_struct *work = addr;
472
473 switch (state) {
474 case ODEBUG_STATE_ACTIVE:
475 cancel_work_sync(work);
476 debug_object_free(work, &work_debug_descr);
477 return true;
478 default:
479 return false;
480 }
481 }
482
483 static struct debug_obj_descr work_debug_descr = {
484 .name = "work_struct",
485 .debug_hint = work_debug_hint,
486 .is_static_object = work_is_static_object,
487 .fixup_init = work_fixup_init,
488 .fixup_free = work_fixup_free,
489 };
490
491 static inline void debug_work_activate(struct work_struct *work)
492 {
493 debug_object_activate(work, &work_debug_descr);
494 }
495
496 static inline void debug_work_deactivate(struct work_struct *work)
497 {
498 debug_object_deactivate(work, &work_debug_descr);
499 }
500
501 void __init_work(struct work_struct *work, int onstack)
502 {
503 if (onstack)
504 debug_object_init_on_stack(work, &work_debug_descr);
505 else
506 debug_object_init(work, &work_debug_descr);
507 }
508 EXPORT_SYMBOL_GPL(__init_work);
509
510 void destroy_work_on_stack(struct work_struct *work)
511 {
512 debug_object_free(work, &work_debug_descr);
513 }
514 EXPORT_SYMBOL_GPL(destroy_work_on_stack);
515
516 void destroy_delayed_work_on_stack(struct delayed_work *work)
517 {
518 destroy_timer_on_stack(&work->timer);
519 debug_object_free(&work->work, &work_debug_descr);
520 }
521 EXPORT_SYMBOL_GPL(destroy_delayed_work_on_stack);
522
523 #else
524 static inline void debug_work_activate(struct work_struct *work) { }
525 static inline void debug_work_deactivate(struct work_struct *work) { }
526 #endif
527
528 /**
529 * worker_pool_assign_id - allocate ID and assing it to @pool
530 * @pool: the pool pointer of interest
531 *
532 * Returns 0 if ID in [0, WORK_OFFQ_POOL_NONE) is allocated and assigned
533 * successfully, -errno on failure.
534 */
535 static int worker_pool_assign_id(struct worker_pool *pool)
536 {
537 int ret;
538
539 lockdep_assert_held(&wq_pool_mutex);
540
541 ret = idr_alloc(&worker_pool_idr, pool, 0, WORK_OFFQ_POOL_NONE,
542 GFP_KERNEL);
543 if (ret >= 0) {
544 pool->id = ret;
545 return 0;
546 }
547 return ret;
548 }
549
550 /**
551 * unbound_pwq_by_node - return the unbound pool_workqueue for the given node
552 * @wq: the target workqueue
553 * @node: the node ID
554 *
555 * This must be called with any of wq_pool_mutex, wq->mutex or sched RCU
556 * read locked.
557 * If the pwq needs to be used beyond the locking in effect, the caller is
558 * responsible for guaranteeing that the pwq stays online.
559 *
560 * Return: The unbound pool_workqueue for @node.
561 */
562 static struct pool_workqueue *unbound_pwq_by_node(struct workqueue_struct *wq,
563 int node)
564 {
565 assert_rcu_or_wq_mutex_or_pool_mutex(wq);
566
567 /*
568 * XXX: @node can be NUMA_NO_NODE if CPU goes offline while a
569 * delayed item is pending. The plan is to keep CPU -> NODE
570 * mapping valid and stable across CPU on/offlines. Once that
571 * happens, this workaround can be removed.
572 */
573 if (unlikely(node == NUMA_NO_NODE))
574 return wq->dfl_pwq;
575
576 return rcu_dereference_raw(wq->numa_pwq_tbl[node]);
577 }
578
579 static unsigned int work_color_to_flags(int color)
580 {
581 return color << WORK_STRUCT_COLOR_SHIFT;
582 }
583
584 static int get_work_color(struct work_struct *work)
585 {
586 return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
587 ((1 << WORK_STRUCT_COLOR_BITS) - 1);
588 }
589
590 static int work_next_color(int color)
591 {
592 return (color + 1) % WORK_NR_COLORS;
593 }
594
595 /*
596 * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
597 * contain the pointer to the queued pwq. Once execution starts, the flag
598 * is cleared and the high bits contain OFFQ flags and pool ID.
599 *
600 * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling()
601 * and clear_work_data() can be used to set the pwq, pool or clear
602 * work->data. These functions should only be called while the work is
603 * owned - ie. while the PENDING bit is set.
604 *
605 * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
606 * corresponding to a work. Pool is available once the work has been
607 * queued anywhere after initialization until it is sync canceled. pwq is
608 * available only while the work item is queued.
609 *
610 * %WORK_OFFQ_CANCELING is used to mark a work item which is being
611 * canceled. While being canceled, a work item may have its PENDING set
612 * but stay off timer and worklist for arbitrarily long and nobody should
613 * try to steal the PENDING bit.
614 */
615 static inline void set_work_data(struct work_struct *work, unsigned long data,
616 unsigned long flags)
617 {
618 WARN_ON_ONCE(!work_pending(work));
619 atomic_long_set(&work->data, data | flags | work_static(work));
620 }
621
622 static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq,
623 unsigned long extra_flags)
624 {
625 set_work_data(work, (unsigned long)pwq,
626 WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags);
627 }
628
629 static void set_work_pool_and_keep_pending(struct work_struct *work,
630 int pool_id)
631 {
632 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT,
633 WORK_STRUCT_PENDING);
634 }
635
636 static void set_work_pool_and_clear_pending(struct work_struct *work,
637 int pool_id)
638 {
639 /*
640 * The following wmb is paired with the implied mb in
641 * test_and_set_bit(PENDING) and ensures all updates to @work made
642 * here are visible to and precede any updates by the next PENDING
643 * owner.
644 */
645 smp_wmb();
646 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0);
647 /*
648 * The following mb guarantees that previous clear of a PENDING bit
649 * will not be reordered with any speculative LOADS or STORES from
650 * work->current_func, which is executed afterwards. This possible
651 * reordering can lead to a missed execution on attempt to qeueue
652 * the same @work. E.g. consider this case:
653 *
654 * CPU#0 CPU#1
655 * ---------------------------- --------------------------------
656 *
657 * 1 STORE event_indicated
658 * 2 queue_work_on() {
659 * 3 test_and_set_bit(PENDING)
660 * 4 } set_..._and_clear_pending() {
661 * 5 set_work_data() # clear bit
662 * 6 smp_mb()
663 * 7 work->current_func() {
664 * 8 LOAD event_indicated
665 * }
666 *
667 * Without an explicit full barrier speculative LOAD on line 8 can
668 * be executed before CPU#0 does STORE on line 1. If that happens,
669 * CPU#0 observes the PENDING bit is still set and new execution of
670 * a @work is not queued in a hope, that CPU#1 will eventually
671 * finish the queued @work. Meanwhile CPU#1 does not see
672 * event_indicated is set, because speculative LOAD was executed
673 * before actual STORE.
674 */
675 smp_mb();
676 }
677
678 static void clear_work_data(struct work_struct *work)
679 {
680 smp_wmb(); /* see set_work_pool_and_clear_pending() */
681 set_work_data(work, WORK_STRUCT_NO_POOL, 0);
682 }
683
684 static struct pool_workqueue *get_work_pwq(struct work_struct *work)
685 {
686 unsigned long data = atomic_long_read(&work->data);
687
688 if (data & WORK_STRUCT_PWQ)
689 return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
690 else
691 return NULL;
692 }
693
694 /**
695 * get_work_pool - return the worker_pool a given work was associated with
696 * @work: the work item of interest
697 *
698 * Pools are created and destroyed under wq_pool_mutex, and allows read
699 * access under sched-RCU read lock. As such, this function should be
700 * called under wq_pool_mutex or with preemption disabled.
701 *
702 * All fields of the returned pool are accessible as long as the above
703 * mentioned locking is in effect. If the returned pool needs to be used
704 * beyond the critical section, the caller is responsible for ensuring the
705 * returned pool is and stays online.
706 *
707 * Return: The worker_pool @work was last associated with. %NULL if none.
708 */
709 static struct worker_pool *get_work_pool(struct work_struct *work)
710 {
711 unsigned long data = atomic_long_read(&work->data);
712 int pool_id;
713
714 assert_rcu_or_pool_mutex();
715
716 if (data & WORK_STRUCT_PWQ)
717 return ((struct pool_workqueue *)
718 (data & WORK_STRUCT_WQ_DATA_MASK))->pool;
719
720 pool_id = data >> WORK_OFFQ_POOL_SHIFT;
721 if (pool_id == WORK_OFFQ_POOL_NONE)
722 return NULL;
723
724 return idr_find(&worker_pool_idr, pool_id);
725 }
726
727 /**
728 * get_work_pool_id - return the worker pool ID a given work is associated with
729 * @work: the work item of interest
730 *
731 * Return: The worker_pool ID @work was last associated with.
732 * %WORK_OFFQ_POOL_NONE if none.
733 */
734 static int get_work_pool_id(struct work_struct *work)
735 {
736 unsigned long data = atomic_long_read(&work->data);
737
738 if (data & WORK_STRUCT_PWQ)
739 return ((struct pool_workqueue *)
740 (data & WORK_STRUCT_WQ_DATA_MASK))->pool->id;
741
742 return data >> WORK_OFFQ_POOL_SHIFT;
743 }
744
745 static void mark_work_canceling(struct work_struct *work)
746 {
747 unsigned long pool_id = get_work_pool_id(work);
748
749 pool_id <<= WORK_OFFQ_POOL_SHIFT;
750 set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING);
751 }
752
753 static bool work_is_canceling(struct work_struct *work)
754 {
755 unsigned long data = atomic_long_read(&work->data);
756
757 return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING);
758 }
759
760 /*
761 * Policy functions. These define the policies on how the global worker
762 * pools are managed. Unless noted otherwise, these functions assume that
763 * they're being called with pool->lock held.
764 */
765
766 static bool __need_more_worker(struct worker_pool *pool)
767 {
768 return !atomic_read(&pool->nr_running);
769 }
770
771 /*
772 * Need to wake up a worker? Called from anything but currently
773 * running workers.
774 *
775 * Note that, because unbound workers never contribute to nr_running, this
776 * function will always return %true for unbound pools as long as the
777 * worklist isn't empty.
778 */
779 static bool need_more_worker(struct worker_pool *pool)
780 {
781 return !list_empty(&pool->worklist) && __need_more_worker(pool);
782 }
783
784 /* Can I start working? Called from busy but !running workers. */
785 static bool may_start_working(struct worker_pool *pool)
786 {
787 return pool->nr_idle;
788 }
789
790 /* Do I need to keep working? Called from currently running workers. */
791 static bool keep_working(struct worker_pool *pool)
792 {
793 return !list_empty(&pool->worklist) &&
794 atomic_read(&pool->nr_running) <= 1;
795 }
796
797 /* Do we need a new worker? Called from manager. */
798 static bool need_to_create_worker(struct worker_pool *pool)
799 {
800 return need_more_worker(pool) && !may_start_working(pool);
801 }
802
803 /* Do we have too many workers and should some go away? */
804 static bool too_many_workers(struct worker_pool *pool)
805 {
806 bool managing = pool->flags & POOL_MANAGER_ACTIVE;
807 int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
808 int nr_busy = pool->nr_workers - nr_idle;
809
810 return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
811 }
812
813 /*
814 * Wake up functions.
815 */
816
817 /* Return the first idle worker. Safe with preemption disabled */
818 static struct worker *first_idle_worker(struct worker_pool *pool)
819 {
820 if (unlikely(list_empty(&pool->idle_list)))
821 return NULL;
822
823 return list_first_entry(&pool->idle_list, struct worker, entry);
824 }
825
826 /**
827 * wake_up_worker - wake up an idle worker
828 * @pool: worker pool to wake worker from
829 *
830 * Wake up the first idle worker of @pool.
831 *
832 * CONTEXT:
833 * spin_lock_irq(pool->lock).
834 */
835 static void wake_up_worker(struct worker_pool *pool)
836 {
837 struct worker *worker = first_idle_worker(pool);
838
839 if (likely(worker))
840 wake_up_process(worker->task);
841 }
842
843 /**
844 * wq_worker_waking_up - a worker is waking up
845 * @task: task waking up
846 * @cpu: CPU @task is waking up to
847 *
848 * This function is called during try_to_wake_up() when a worker is
849 * being awoken.
850 *
851 * CONTEXT:
852 * spin_lock_irq(rq->lock)
853 */
854 void wq_worker_waking_up(struct task_struct *task, int cpu)
855 {
856 struct worker *worker = kthread_data(task);
857
858 if (!(worker->flags & WORKER_NOT_RUNNING)) {
859 WARN_ON_ONCE(worker->pool->cpu != cpu);
860 atomic_inc(&worker->pool->nr_running);
861 }
862 }
863
864 /**
865 * wq_worker_sleeping - a worker is going to sleep
866 * @task: task going to sleep
867 *
868 * This function is called during schedule() when a busy worker is
869 * going to sleep. Worker on the same cpu can be woken up by
870 * returning pointer to its task.
871 *
872 * CONTEXT:
873 * spin_lock_irq(rq->lock)
874 *
875 * Return:
876 * Worker task on @cpu to wake up, %NULL if none.
877 */
878 struct task_struct *wq_worker_sleeping(struct task_struct *task)
879 {
880 struct worker *worker = kthread_data(task), *to_wakeup = NULL;
881 struct worker_pool *pool;
882
883 /*
884 * Rescuers, which may not have all the fields set up like normal
885 * workers, also reach here, let's not access anything before
886 * checking NOT_RUNNING.
887 */
888 if (worker->flags & WORKER_NOT_RUNNING)
889 return NULL;
890
891 pool = worker->pool;
892
893 /* this can only happen on the local cpu */
894 if (WARN_ON_ONCE(pool->cpu != raw_smp_processor_id()))
895 return NULL;
896
897 /*
898 * The counterpart of the following dec_and_test, implied mb,
899 * worklist not empty test sequence is in insert_work().
900 * Please read comment there.
901 *
902 * NOT_RUNNING is clear. This means that we're bound to and
903 * running on the local cpu w/ rq lock held and preemption
904 * disabled, which in turn means that none else could be
905 * manipulating idle_list, so dereferencing idle_list without pool
906 * lock is safe.
907 */
908 if (atomic_dec_and_test(&pool->nr_running) &&
909 !list_empty(&pool->worklist))
910 to_wakeup = first_idle_worker(pool);
911 return to_wakeup ? to_wakeup->task : NULL;
912 }
913
914 /**
915 * worker_set_flags - set worker flags and adjust nr_running accordingly
916 * @worker: self
917 * @flags: flags to set
918 *
919 * Set @flags in @worker->flags and adjust nr_running accordingly.
920 *
921 * CONTEXT:
922 * spin_lock_irq(pool->lock)
923 */
924 static inline void worker_set_flags(struct worker *worker, unsigned int flags)
925 {
926 struct worker_pool *pool = worker->pool;
927
928 WARN_ON_ONCE(worker->task != current);
929
930 /* If transitioning into NOT_RUNNING, adjust nr_running. */
931 if ((flags & WORKER_NOT_RUNNING) &&
932 !(worker->flags & WORKER_NOT_RUNNING)) {
933 atomic_dec(&pool->nr_running);
934 }
935
936 worker->flags |= flags;
937 }
938
939 /**
940 * worker_clr_flags - clear worker flags and adjust nr_running accordingly
941 * @worker: self
942 * @flags: flags to clear
943 *
944 * Clear @flags in @worker->flags and adjust nr_running accordingly.
945 *
946 * CONTEXT:
947 * spin_lock_irq(pool->lock)
948 */
949 static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
950 {
951 struct worker_pool *pool = worker->pool;
952 unsigned int oflags = worker->flags;
953
954 WARN_ON_ONCE(worker->task != current);
955
956 worker->flags &= ~flags;
957
958 /*
959 * If transitioning out of NOT_RUNNING, increment nr_running. Note
960 * that the nested NOT_RUNNING is not a noop. NOT_RUNNING is mask
961 * of multiple flags, not a single flag.
962 */
963 if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
964 if (!(worker->flags & WORKER_NOT_RUNNING))
965 atomic_inc(&pool->nr_running);
966 }
967
968 /**
969 * find_worker_executing_work - find worker which is executing a work
970 * @pool: pool of interest
971 * @work: work to find worker for
972 *
973 * Find a worker which is executing @work on @pool by searching
974 * @pool->busy_hash which is keyed by the address of @work. For a worker
975 * to match, its current execution should match the address of @work and
976 * its work function. This is to avoid unwanted dependency between
977 * unrelated work executions through a work item being recycled while still
978 * being executed.
979 *
980 * This is a bit tricky. A work item may be freed once its execution
981 * starts and nothing prevents the freed area from being recycled for
982 * another work item. If the same work item address ends up being reused
983 * before the original execution finishes, workqueue will identify the
984 * recycled work item as currently executing and make it wait until the
985 * current execution finishes, introducing an unwanted dependency.
986 *
987 * This function checks the work item address and work function to avoid
988 * false positives. Note that this isn't complete as one may construct a
989 * work function which can introduce dependency onto itself through a
990 * recycled work item. Well, if somebody wants to shoot oneself in the
991 * foot that badly, there's only so much we can do, and if such deadlock
992 * actually occurs, it should be easy to locate the culprit work function.
993 *
994 * CONTEXT:
995 * spin_lock_irq(pool->lock).
996 *
997 * Return:
998 * Pointer to worker which is executing @work if found, %NULL
999 * otherwise.
1000 */
1001 static struct worker *find_worker_executing_work(struct worker_pool *pool,
1002 struct work_struct *work)
1003 {
1004 struct worker *worker;
1005
1006 hash_for_each_possible(pool->busy_hash, worker, hentry,
1007 (unsigned long)work)
1008 if (worker->current_work == work &&
1009 worker->current_func == work->func)
1010 return worker;
1011
1012 return NULL;
1013 }
1014
1015 /**
1016 * move_linked_works - move linked works to a list
1017 * @work: start of series of works to be scheduled
1018 * @head: target list to append @work to
1019 * @nextp: out parameter for nested worklist walking
1020 *
1021 * Schedule linked works starting from @work to @head. Work series to
1022 * be scheduled starts at @work and includes any consecutive work with
1023 * WORK_STRUCT_LINKED set in its predecessor.
1024 *
1025 * If @nextp is not NULL, it's updated to point to the next work of
1026 * the last scheduled work. This allows move_linked_works() to be
1027 * nested inside outer list_for_each_entry_safe().
1028 *
1029 * CONTEXT:
1030 * spin_lock_irq(pool->lock).
1031 */
1032 static void move_linked_works(struct work_struct *work, struct list_head *head,
1033 struct work_struct **nextp)
1034 {
1035 struct work_struct *n;
1036
1037 /*
1038 * Linked worklist will always end before the end of the list,
1039 * use NULL for list head.
1040 */
1041 list_for_each_entry_safe_from(work, n, NULL, entry) {
1042 list_move_tail(&work->entry, head);
1043 if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
1044 break;
1045 }
1046
1047 /*
1048 * If we're already inside safe list traversal and have moved
1049 * multiple works to the scheduled queue, the next position
1050 * needs to be updated.
1051 */
1052 if (nextp)
1053 *nextp = n;
1054 }
1055
1056 /**
1057 * get_pwq - get an extra reference on the specified pool_workqueue
1058 * @pwq: pool_workqueue to get
1059 *
1060 * Obtain an extra reference on @pwq. The caller should guarantee that
1061 * @pwq has positive refcnt and be holding the matching pool->lock.
1062 */
1063 static void get_pwq(struct pool_workqueue *pwq)
1064 {
1065 lockdep_assert_held(&pwq->pool->lock);
1066 WARN_ON_ONCE(pwq->refcnt <= 0);
1067 pwq->refcnt++;
1068 }
1069
1070 /**
1071 * put_pwq - put a pool_workqueue reference
1072 * @pwq: pool_workqueue to put
1073 *
1074 * Drop a reference of @pwq. If its refcnt reaches zero, schedule its
1075 * destruction. The caller should be holding the matching pool->lock.
1076 */
1077 static void put_pwq(struct pool_workqueue *pwq)
1078 {
1079 lockdep_assert_held(&pwq->pool->lock);
1080 if (likely(--pwq->refcnt))
1081 return;
1082 if (WARN_ON_ONCE(!(pwq->wq->flags & WQ_UNBOUND)))
1083 return;
1084 /*
1085 * @pwq can't be released under pool->lock, bounce to
1086 * pwq_unbound_release_workfn(). This never recurses on the same
1087 * pool->lock as this path is taken only for unbound workqueues and
1088 * the release work item is scheduled on a per-cpu workqueue. To
1089 * avoid lockdep warning, unbound pool->locks are given lockdep
1090 * subclass of 1 in get_unbound_pool().
1091 */
1092 schedule_work(&pwq->unbound_release_work);
1093 }
1094
1095 /**
1096 * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock
1097 * @pwq: pool_workqueue to put (can be %NULL)
1098 *
1099 * put_pwq() with locking. This function also allows %NULL @pwq.
1100 */
1101 static void put_pwq_unlocked(struct pool_workqueue *pwq)
1102 {
1103 if (pwq) {
1104 /*
1105 * As both pwqs and pools are sched-RCU protected, the
1106 * following lock operations are safe.
1107 */
1108 spin_lock_irq(&pwq->pool->lock);
1109 put_pwq(pwq);
1110 spin_unlock_irq(&pwq->pool->lock);
1111 }
1112 }
1113
1114 static void pwq_activate_delayed_work(struct work_struct *work)
1115 {
1116 struct pool_workqueue *pwq = get_work_pwq(work);
1117
1118 trace_workqueue_activate_work(work);
1119 if (list_empty(&pwq->pool->worklist))
1120 pwq->pool->watchdog_ts = jiffies;
1121 move_linked_works(work, &pwq->pool->worklist, NULL);
1122 __clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
1123 pwq->nr_active++;
1124 }
1125
1126 static void pwq_activate_first_delayed(struct pool_workqueue *pwq)
1127 {
1128 struct work_struct *work = list_first_entry(&pwq->delayed_works,
1129 struct work_struct, entry);
1130
1131 pwq_activate_delayed_work(work);
1132 }
1133
1134 /**
1135 * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
1136 * @pwq: pwq of interest
1137 * @color: color of work which left the queue
1138 *
1139 * A work either has completed or is removed from pending queue,
1140 * decrement nr_in_flight of its pwq and handle workqueue flushing.
1141 *
1142 * CONTEXT:
1143 * spin_lock_irq(pool->lock).
1144 */
1145 static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, int color)
1146 {
1147 /* uncolored work items don't participate in flushing or nr_active */
1148 if (color == WORK_NO_COLOR)
1149 goto out_put;
1150
1151 pwq->nr_in_flight[color]--;
1152
1153 pwq->nr_active--;
1154 if (!list_empty(&pwq->delayed_works)) {
1155 /* one down, submit a delayed one */
1156 if (pwq->nr_active < pwq->max_active)
1157 pwq_activate_first_delayed(pwq);
1158 }
1159
1160 /* is flush in progress and are we at the flushing tip? */
1161 if (likely(pwq->flush_color != color))
1162 goto out_put;
1163
1164 /* are there still in-flight works? */
1165 if (pwq->nr_in_flight[color])
1166 goto out_put;
1167
1168 /* this pwq is done, clear flush_color */
1169 pwq->flush_color = -1;
1170
1171 /*
1172 * If this was the last pwq, wake up the first flusher. It
1173 * will handle the rest.
1174 */
1175 if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush))
1176 complete(&pwq->wq->first_flusher->done);
1177 out_put:
1178 put_pwq(pwq);
1179 }
1180
1181 /**
1182 * try_to_grab_pending - steal work item from worklist and disable irq
1183 * @work: work item to steal
1184 * @is_dwork: @work is a delayed_work
1185 * @flags: place to store irq state
1186 *
1187 * Try to grab PENDING bit of @work. This function can handle @work in any
1188 * stable state - idle, on timer or on worklist.
1189 *
1190 * Return:
1191 * 1 if @work was pending and we successfully stole PENDING
1192 * 0 if @work was idle and we claimed PENDING
1193 * -EAGAIN if PENDING couldn't be grabbed at the moment, safe to busy-retry
1194 * -ENOENT if someone else is canceling @work, this state may persist
1195 * for arbitrarily long
1196 *
1197 * Note:
1198 * On >= 0 return, the caller owns @work's PENDING bit. To avoid getting
1199 * interrupted while holding PENDING and @work off queue, irq must be
1200 * disabled on entry. This, combined with delayed_work->timer being
1201 * irqsafe, ensures that we return -EAGAIN for finite short period of time.
1202 *
1203 * On successful return, >= 0, irq is disabled and the caller is
1204 * responsible for releasing it using local_irq_restore(*@flags).
1205 *
1206 * This function is safe to call from any context including IRQ handler.
1207 */
1208 static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
1209 unsigned long *flags)
1210 {
1211 struct worker_pool *pool;
1212 struct pool_workqueue *pwq;
1213
1214 local_irq_save(*flags);
1215
1216 /* try to steal the timer if it exists */
1217 if (is_dwork) {
1218 struct delayed_work *dwork = to_delayed_work(work);
1219
1220 /*
1221 * dwork->timer is irqsafe. If del_timer() fails, it's
1222 * guaranteed that the timer is not queued anywhere and not
1223 * running on the local CPU.
1224 */
1225 if (likely(del_timer(&dwork->timer)))
1226 return 1;
1227 }
1228
1229 /* try to claim PENDING the normal way */
1230 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
1231 return 0;
1232
1233 /*
1234 * The queueing is in progress, or it is already queued. Try to
1235 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
1236 */
1237 pool = get_work_pool(work);
1238 if (!pool)
1239 goto fail;
1240
1241 spin_lock(&pool->lock);
1242 /*
1243 * work->data is guaranteed to point to pwq only while the work
1244 * item is queued on pwq->wq, and both updating work->data to point
1245 * to pwq on queueing and to pool on dequeueing are done under
1246 * pwq->pool->lock. This in turn guarantees that, if work->data
1247 * points to pwq which is associated with a locked pool, the work
1248 * item is currently queued on that pool.
1249 */
1250 pwq = get_work_pwq(work);
1251 if (pwq && pwq->pool == pool) {
1252 debug_work_deactivate(work);
1253
1254 /*
1255 * A delayed work item cannot be grabbed directly because
1256 * it might have linked NO_COLOR work items which, if left
1257 * on the delayed_list, will confuse pwq->nr_active
1258 * management later on and cause stall. Make sure the work
1259 * item is activated before grabbing.
1260 */
1261 if (*work_data_bits(work) & WORK_STRUCT_DELAYED)
1262 pwq_activate_delayed_work(work);
1263
1264 list_del_init(&work->entry);
1265 pwq_dec_nr_in_flight(pwq, get_work_color(work));
1266
1267 /* work->data points to pwq iff queued, point to pool */
1268 set_work_pool_and_keep_pending(work, pool->id);
1269
1270 spin_unlock(&pool->lock);
1271 return 1;
1272 }
1273 spin_unlock(&pool->lock);
1274 fail:
1275 local_irq_restore(*flags);
1276 if (work_is_canceling(work))
1277 return -ENOENT;
1278 cpu_relax();
1279 return -EAGAIN;
1280 }
1281
1282 /**
1283 * insert_work - insert a work into a pool
1284 * @pwq: pwq @work belongs to
1285 * @work: work to insert
1286 * @head: insertion point
1287 * @extra_flags: extra WORK_STRUCT_* flags to set
1288 *
1289 * Insert @work which belongs to @pwq after @head. @extra_flags is or'd to
1290 * work_struct flags.
1291 *
1292 * CONTEXT:
1293 * spin_lock_irq(pool->lock).
1294 */
1295 static void insert_work(struct pool_workqueue *pwq, struct work_struct *work,
1296 struct list_head *head, unsigned int extra_flags)
1297 {
1298 struct worker_pool *pool = pwq->pool;
1299
1300 /* we own @work, set data and link */
1301 set_work_pwq(work, pwq, extra_flags);
1302 list_add_tail(&work->entry, head);
1303 get_pwq(pwq);
1304
1305 /*
1306 * Ensure either wq_worker_sleeping() sees the above
1307 * list_add_tail() or we see zero nr_running to avoid workers lying
1308 * around lazily while there are works to be processed.
1309 */
1310 smp_mb();
1311
1312 if (__need_more_worker(pool))
1313 wake_up_worker(pool);
1314 }
1315
1316 /*
1317 * Test whether @work is being queued from another work executing on the
1318 * same workqueue.
1319 */
1320 static bool is_chained_work(struct workqueue_struct *wq)
1321 {
1322 struct worker *worker;
1323
1324 worker = current_wq_worker();
1325 /*
1326 * Return %true iff I'm a worker execuing a work item on @wq. If
1327 * I'm @worker, it's safe to dereference it without locking.
1328 */
1329 return worker && worker->current_pwq->wq == wq;
1330 }
1331
1332 /*
1333 * When queueing an unbound work item to a wq, prefer local CPU if allowed
1334 * by wq_unbound_cpumask. Otherwise, round robin among the allowed ones to
1335 * avoid perturbing sensitive tasks.
1336 */
1337 static int wq_select_unbound_cpu(int cpu)
1338 {
1339 static bool printed_dbg_warning;
1340 int new_cpu;
1341
1342 if (likely(!wq_debug_force_rr_cpu)) {
1343 if (cpumask_test_cpu(cpu, wq_unbound_cpumask))
1344 return cpu;
1345 } else if (!printed_dbg_warning) {
1346 pr_warn("workqueue: round-robin CPU selection forced, expect performance impact\n");
1347 printed_dbg_warning = true;
1348 }
1349
1350 if (cpumask_empty(wq_unbound_cpumask))
1351 return cpu;
1352
1353 new_cpu = __this_cpu_read(wq_rr_cpu_last);
1354 new_cpu = cpumask_next_and(new_cpu, wq_unbound_cpumask, cpu_online_mask);
1355 if (unlikely(new_cpu >= nr_cpu_ids)) {
1356 new_cpu = cpumask_first_and(wq_unbound_cpumask, cpu_online_mask);
1357 if (unlikely(new_cpu >= nr_cpu_ids))
1358 return cpu;
1359 }
1360 __this_cpu_write(wq_rr_cpu_last, new_cpu);
1361
1362 return new_cpu;
1363 }
1364
1365 static void __queue_work(int cpu, struct workqueue_struct *wq,
1366 struct work_struct *work)
1367 {
1368 struct pool_workqueue *pwq;
1369 struct worker_pool *last_pool;
1370 struct list_head *worklist;
1371 unsigned int work_flags;
1372 unsigned int req_cpu = cpu;
1373
1374 /*
1375 * While a work item is PENDING && off queue, a task trying to
1376 * steal the PENDING will busy-loop waiting for it to either get
1377 * queued or lose PENDING. Grabbing PENDING and queueing should
1378 * happen with IRQ disabled.
1379 */
1380 lockdep_assert_irqs_disabled();
1381
1382 debug_work_activate(work);
1383
1384 /* if draining, only works from the same workqueue are allowed */
1385 if (unlikely(wq->flags & __WQ_DRAINING) &&
1386 WARN_ON_ONCE(!is_chained_work(wq)))
1387 return;
1388 retry:
1389 if (req_cpu == WORK_CPU_UNBOUND)
1390 cpu = wq_select_unbound_cpu(raw_smp_processor_id());
1391
1392 /* pwq which will be used unless @work is executing elsewhere */
1393 if (!(wq->flags & WQ_UNBOUND))
1394 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
1395 else
1396 pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
1397
1398 /*
1399 * If @work was previously on a different pool, it might still be
1400 * running there, in which case the work needs to be queued on that
1401 * pool to guarantee non-reentrancy.
1402 */
1403 last_pool = get_work_pool(work);
1404 if (last_pool && last_pool != pwq->pool) {
1405 struct worker *worker;
1406
1407 spin_lock(&last_pool->lock);
1408
1409 worker = find_worker_executing_work(last_pool, work);
1410
1411 if (worker && worker->current_pwq->wq == wq) {
1412 pwq = worker->current_pwq;
1413 } else {
1414 /* meh... not running there, queue here */
1415 spin_unlock(&last_pool->lock);
1416 spin_lock(&pwq->pool->lock);
1417 }
1418 } else {
1419 spin_lock(&pwq->pool->lock);
1420 }
1421
1422 /*
1423 * pwq is determined and locked. For unbound pools, we could have
1424 * raced with pwq release and it could already be dead. If its
1425 * refcnt is zero, repeat pwq selection. Note that pwqs never die
1426 * without another pwq replacing it in the numa_pwq_tbl or while
1427 * work items are executing on it, so the retrying is guaranteed to
1428 * make forward-progress.
1429 */
1430 if (unlikely(!pwq->refcnt)) {
1431 if (wq->flags & WQ_UNBOUND) {
1432 spin_unlock(&pwq->pool->lock);
1433 cpu_relax();
1434 goto retry;
1435 }
1436 /* oops */
1437 WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt",
1438 wq->name, cpu);
1439 }
1440
1441 /* pwq determined, queue */
1442 trace_workqueue_queue_work(req_cpu, pwq, work);
1443
1444 if (WARN_ON(!list_empty(&work->entry))) {
1445 spin_unlock(&pwq->pool->lock);
1446 return;
1447 }
1448
1449 pwq->nr_in_flight[pwq->work_color]++;
1450 work_flags = work_color_to_flags(pwq->work_color);
1451
1452 if (likely(pwq->nr_active < pwq->max_active)) {
1453 trace_workqueue_activate_work(work);
1454 pwq->nr_active++;
1455 worklist = &pwq->pool->worklist;
1456 if (list_empty(worklist))
1457 pwq->pool->watchdog_ts = jiffies;
1458 } else {
1459 work_flags |= WORK_STRUCT_DELAYED;
1460 worklist = &pwq->delayed_works;
1461 }
1462
1463 insert_work(pwq, work, worklist, work_flags);
1464
1465 spin_unlock(&pwq->pool->lock);
1466 }
1467
1468 /**
1469 * queue_work_on - queue work on specific cpu
1470 * @cpu: CPU number to execute work on
1471 * @wq: workqueue to use
1472 * @work: work to queue
1473 *
1474 * We queue the work to a specific CPU, the caller must ensure it
1475 * can't go away.
1476 *
1477 * Return: %false if @work was already on a queue, %true otherwise.
1478 */
1479 bool queue_work_on(int cpu, struct workqueue_struct *wq,
1480 struct work_struct *work)
1481 {
1482 bool ret = false;
1483 unsigned long flags;
1484
1485 local_irq_save(flags);
1486
1487 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1488 __queue_work(cpu, wq, work);
1489 ret = true;
1490 }
1491
1492 local_irq_restore(flags);
1493 return ret;
1494 }
1495 EXPORT_SYMBOL(queue_work_on);
1496
1497 void delayed_work_timer_fn(struct timer_list *t)
1498 {
1499 struct delayed_work *dwork = from_timer(dwork, t, timer);
1500
1501 /* should have been called from irqsafe timer with irq already off */
1502 __queue_work(dwork->cpu, dwork->wq, &dwork->work);
1503 }
1504 EXPORT_SYMBOL(delayed_work_timer_fn);
1505
1506 static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
1507 struct delayed_work *dwork, unsigned long delay)
1508 {
1509 struct timer_list *timer = &dwork->timer;
1510 struct work_struct *work = &dwork->work;
1511
1512 WARN_ON_ONCE(!wq);
1513 WARN_ON_ONCE(timer->function != delayed_work_timer_fn);
1514 WARN_ON_ONCE(timer_pending(timer));
1515 WARN_ON_ONCE(!list_empty(&work->entry));
1516
1517 /*
1518 * If @delay is 0, queue @dwork->work immediately. This is for
1519 * both optimization and correctness. The earliest @timer can
1520 * expire is on the closest next tick and delayed_work users depend
1521 * on that there's no such delay when @delay is 0.
1522 */
1523 if (!delay) {
1524 __queue_work(cpu, wq, &dwork->work);
1525 return;
1526 }
1527
1528 dwork->wq = wq;
1529 dwork->cpu = cpu;
1530 timer->expires = jiffies + delay;
1531
1532 if (unlikely(cpu != WORK_CPU_UNBOUND))
1533 add_timer_on(timer, cpu);
1534 else
1535 add_timer(timer);
1536 }
1537
1538 /**
1539 * queue_delayed_work_on - queue work on specific CPU after delay
1540 * @cpu: CPU number to execute work on
1541 * @wq: workqueue to use
1542 * @dwork: work to queue
1543 * @delay: number of jiffies to wait before queueing
1544 *
1545 * Return: %false if @work was already on a queue, %true otherwise. If
1546 * @delay is zero and @dwork is idle, it will be scheduled for immediate
1547 * execution.
1548 */
1549 bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
1550 struct delayed_work *dwork, unsigned long delay)
1551 {
1552 struct work_struct *work = &dwork->work;
1553 bool ret = false;
1554 unsigned long flags;
1555
1556 /* read the comment in __queue_work() */
1557 local_irq_save(flags);
1558
1559 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1560 __queue_delayed_work(cpu, wq, dwork, delay);
1561 ret = true;
1562 }
1563
1564 local_irq_restore(flags);
1565 return ret;
1566 }
1567 EXPORT_SYMBOL(queue_delayed_work_on);
1568
1569 /**
1570 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
1571 * @cpu: CPU number to execute work on
1572 * @wq: workqueue to use
1573 * @dwork: work to queue
1574 * @delay: number of jiffies to wait before queueing
1575 *
1576 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
1577 * modify @dwork's timer so that it expires after @delay. If @delay is
1578 * zero, @work is guaranteed to be scheduled immediately regardless of its
1579 * current state.
1580 *
1581 * Return: %false if @dwork was idle and queued, %true if @dwork was
1582 * pending and its timer was modified.
1583 *
1584 * This function is safe to call from any context including IRQ handler.
1585 * See try_to_grab_pending() for details.
1586 */
1587 bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
1588 struct delayed_work *dwork, unsigned long delay)
1589 {
1590 unsigned long flags;
1591 int ret;
1592
1593 do {
1594 ret = try_to_grab_pending(&dwork->work, true, &flags);
1595 } while (unlikely(ret == -EAGAIN));
1596
1597 if (likely(ret >= 0)) {
1598 __queue_delayed_work(cpu, wq, dwork, delay);
1599 local_irq_restore(flags);
1600 }
1601
1602 /* -ENOENT from try_to_grab_pending() becomes %true */
1603 return ret;
1604 }
1605 EXPORT_SYMBOL_GPL(mod_delayed_work_on);
1606
1607 static void rcu_work_rcufn(struct rcu_head *rcu)
1608 {
1609 struct rcu_work *rwork = container_of(rcu, struct rcu_work, rcu);
1610
1611 /* read the comment in __queue_work() */
1612 local_irq_disable();
1613 __queue_work(WORK_CPU_UNBOUND, rwork->wq, &rwork->work);
1614 local_irq_enable();
1615 }
1616
1617 /**
1618 * queue_rcu_work - queue work after a RCU grace period
1619 * @wq: workqueue to use
1620 * @rwork: work to queue
1621 *
1622 * Return: %false if @rwork was already pending, %true otherwise. Note
1623 * that a full RCU grace period is guaranteed only after a %true return.
1624 * While @rwork is guarnateed to be executed after a %false return, the
1625 * execution may happen before a full RCU grace period has passed.
1626 */
1627 bool queue_rcu_work(struct workqueue_struct *wq, struct rcu_work *rwork)
1628 {
1629 struct work_struct *work = &rwork->work;
1630
1631 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1632 rwork->wq = wq;
1633 call_rcu(&rwork->rcu, rcu_work_rcufn);
1634 return true;
1635 }
1636
1637 return false;
1638 }
1639 EXPORT_SYMBOL(queue_rcu_work);
1640
1641 /**
1642 * worker_enter_idle - enter idle state
1643 * @worker: worker which is entering idle state
1644 *
1645 * @worker is entering idle state. Update stats and idle timer if
1646 * necessary.
1647 *
1648 * LOCKING:
1649 * spin_lock_irq(pool->lock).
1650 */
1651 static void worker_enter_idle(struct worker *worker)
1652 {
1653 struct worker_pool *pool = worker->pool;
1654
1655 if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) ||
1656 WARN_ON_ONCE(!list_empty(&worker->entry) &&
1657 (worker->hentry.next || worker->hentry.pprev)))
1658 return;
1659
1660 /* can't use worker_set_flags(), also called from create_worker() */
1661 worker->flags |= WORKER_IDLE;
1662 pool->nr_idle++;
1663 worker->last_active = jiffies;
1664
1665 /* idle_list is LIFO */
1666 list_add(&worker->entry, &pool->idle_list);
1667
1668 if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
1669 mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
1670
1671 /*
1672 * Sanity check nr_running. Because unbind_workers() releases
1673 * pool->lock between setting %WORKER_UNBOUND and zapping
1674 * nr_running, the warning may trigger spuriously. Check iff
1675 * unbind is not in progress.
1676 */
1677 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
1678 pool->nr_workers == pool->nr_idle &&
1679 atomic_read(&pool->nr_running));
1680 }
1681
1682 /**
1683 * worker_leave_idle - leave idle state
1684 * @worker: worker which is leaving idle state
1685 *
1686 * @worker is leaving idle state. Update stats.
1687 *
1688 * LOCKING:
1689 * spin_lock_irq(pool->lock).
1690 */
1691 static void worker_leave_idle(struct worker *worker)
1692 {
1693 struct worker_pool *pool = worker->pool;
1694
1695 if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE)))
1696 return;
1697 worker_clr_flags(worker, WORKER_IDLE);
1698 pool->nr_idle--;
1699 list_del_init(&worker->entry);
1700 }
1701
1702 static struct worker *alloc_worker(int node)
1703 {
1704 struct worker *worker;
1705
1706 worker = kzalloc_node(sizeof(*worker), GFP_KERNEL, node);
1707 if (worker) {
1708 INIT_LIST_HEAD(&worker->entry);
1709 INIT_LIST_HEAD(&worker->scheduled);
1710 INIT_LIST_HEAD(&worker->node);
1711 /* on creation a worker is in !idle && prep state */
1712 worker->flags = WORKER_PREP;
1713 }
1714 return worker;
1715 }
1716
1717 /**
1718 * worker_attach_to_pool() - attach a worker to a pool
1719 * @worker: worker to be attached
1720 * @pool: the target pool
1721 *
1722 * Attach @worker to @pool. Once attached, the %WORKER_UNBOUND flag and
1723 * cpu-binding of @worker are kept coordinated with the pool across
1724 * cpu-[un]hotplugs.
1725 */
1726 static void worker_attach_to_pool(struct worker *worker,
1727 struct worker_pool *pool)
1728 {
1729 mutex_lock(&pool->attach_mutex);
1730
1731 /*
1732 * set_cpus_allowed_ptr() will fail if the cpumask doesn't have any
1733 * online CPUs. It'll be re-applied when any of the CPUs come up.
1734 */
1735 set_cpus_allowed_ptr(worker->task, pool->attrs->cpumask);
1736
1737 /*
1738 * The pool->attach_mutex ensures %POOL_DISASSOCIATED remains
1739 * stable across this function. See the comments above the
1740 * flag definition for details.
1741 */
1742 if (pool->flags & POOL_DISASSOCIATED)
1743 worker->flags |= WORKER_UNBOUND;
1744
1745 list_add_tail(&worker->node, &pool->workers);
1746
1747 mutex_unlock(&pool->attach_mutex);
1748 }
1749
1750 /**
1751 * worker_detach_from_pool() - detach a worker from its pool
1752 * @worker: worker which is attached to its pool
1753 * @pool: the pool @worker is attached to
1754 *
1755 * Undo the attaching which had been done in worker_attach_to_pool(). The
1756 * caller worker shouldn't access to the pool after detached except it has
1757 * other reference to the pool.
1758 */
1759 static void worker_detach_from_pool(struct worker *worker,
1760 struct worker_pool *pool)
1761 {
1762 struct completion *detach_completion = NULL;
1763
1764 mutex_lock(&pool->attach_mutex);
1765 list_del(&worker->node);
1766 if (list_empty(&pool->workers))
1767 detach_completion = pool->detach_completion;
1768 mutex_unlock(&pool->attach_mutex);
1769
1770 /* clear leftover flags without pool->lock after it is detached */
1771 worker->flags &= ~(WORKER_UNBOUND | WORKER_REBOUND);
1772
1773 if (detach_completion)
1774 complete(detach_completion);
1775 }
1776
1777 /**
1778 * create_worker - create a new workqueue worker
1779 * @pool: pool the new worker will belong to
1780 *
1781 * Create and start a new worker which is attached to @pool.
1782 *
1783 * CONTEXT:
1784 * Might sleep. Does GFP_KERNEL allocations.
1785 *
1786 * Return:
1787 * Pointer to the newly created worker.
1788 */
1789 static struct worker *create_worker(struct worker_pool *pool)
1790 {
1791 struct worker *worker = NULL;
1792 int id = -1;
1793 char id_buf[16];
1794
1795 /* ID is needed to determine kthread name */
1796 id = ida_simple_get(&pool->worker_ida, 0, 0, GFP_KERNEL);
1797 if (id < 0)
1798 goto fail;
1799
1800 worker = alloc_worker(pool->node);
1801 if (!worker)
1802 goto fail;
1803
1804 worker->pool = pool;
1805 worker->id = id;
1806
1807 if (pool->cpu >= 0)
1808 snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id,
1809 pool->attrs->nice < 0 ? "H" : "");
1810 else
1811 snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id);
1812
1813 worker->task = kthread_create_on_node(worker_thread, worker, pool->node,
1814 "kworker/%s", id_buf);
1815 if (IS_ERR(worker->task))
1816 goto fail;
1817
1818 set_user_nice(worker->task, pool->attrs->nice);
1819 kthread_bind_mask(worker->task, pool->attrs->cpumask);
1820
1821 /* successful, attach the worker to the pool */
1822 worker_attach_to_pool(worker, pool);
1823
1824 /* start the newly created worker */
1825 spin_lock_irq(&pool->lock);
1826 worker->pool->nr_workers++;
1827 worker_enter_idle(worker);
1828 wake_up_process(worker->task);
1829 spin_unlock_irq(&pool->lock);
1830
1831 return worker;
1832
1833 fail:
1834 if (id >= 0)
1835 ida_simple_remove(&pool->worker_ida, id);
1836 kfree(worker);
1837 return NULL;
1838 }
1839
1840 /**
1841 * destroy_worker - destroy a workqueue worker
1842 * @worker: worker to be destroyed
1843 *
1844 * Destroy @worker and adjust @pool stats accordingly. The worker should
1845 * be idle.
1846 *
1847 * CONTEXT:
1848 * spin_lock_irq(pool->lock).
1849 */
1850 static void destroy_worker(struct worker *worker)
1851 {
1852 struct worker_pool *pool = worker->pool;
1853
1854 lockdep_assert_held(&pool->lock);
1855
1856 /* sanity check frenzy */
1857 if (WARN_ON(worker->current_work) ||
1858 WARN_ON(!list_empty(&worker->scheduled)) ||
1859 WARN_ON(!(worker->flags & WORKER_IDLE)))
1860 return;
1861
1862 pool->nr_workers--;
1863 pool->nr_idle--;
1864
1865 list_del_init(&worker->entry);
1866 worker->flags |= WORKER_DIE;
1867 wake_up_process(worker->task);
1868 }
1869
1870 static void idle_worker_timeout(struct timer_list *t)
1871 {
1872 struct worker_pool *pool = from_timer(pool, t, idle_timer);
1873
1874 spin_lock_irq(&pool->lock);
1875
1876 while (too_many_workers(pool)) {
1877 struct worker *worker;
1878 unsigned long expires;
1879
1880 /* idle_list is kept in LIFO order, check the last one */
1881 worker = list_entry(pool->idle_list.prev, struct worker, entry);
1882 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
1883
1884 if (time_before(jiffies, expires)) {
1885 mod_timer(&pool->idle_timer, expires);
1886 break;
1887 }
1888
1889 destroy_worker(worker);
1890 }
1891
1892 spin_unlock_irq(&pool->lock);
1893 }
1894
1895 static void send_mayday(struct work_struct *work)
1896 {
1897 struct pool_workqueue *pwq = get_work_pwq(work);
1898 struct workqueue_struct *wq = pwq->wq;
1899
1900 lockdep_assert_held(&wq_mayday_lock);
1901
1902 if (!wq->rescuer)
1903 return;
1904
1905 /* mayday mayday mayday */
1906 if (list_empty(&pwq->mayday_node)) {
1907 /*
1908 * If @pwq is for an unbound wq, its base ref may be put at
1909 * any time due to an attribute change. Pin @pwq until the
1910 * rescuer is done with it.
1911 */
1912 get_pwq(pwq);
1913 list_add_tail(&pwq->mayday_node, &wq->maydays);
1914 wake_up_process(wq->rescuer->task);
1915 }
1916 }
1917
1918 static void pool_mayday_timeout(struct timer_list *t)
1919 {
1920 struct worker_pool *pool = from_timer(pool, t, mayday_timer);
1921 struct work_struct *work;
1922
1923 spin_lock_irq(&pool->lock);
1924 spin_lock(&wq_mayday_lock); /* for wq->maydays */
1925
1926 if (need_to_create_worker(pool)) {
1927 /*
1928 * We've been trying to create a new worker but
1929 * haven't been successful. We might be hitting an
1930 * allocation deadlock. Send distress signals to
1931 * rescuers.
1932 */
1933 list_for_each_entry(work, &pool->worklist, entry)
1934 send_mayday(work);
1935 }
1936
1937 spin_unlock(&wq_mayday_lock);
1938 spin_unlock_irq(&pool->lock);
1939
1940 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
1941 }
1942
1943 /**
1944 * maybe_create_worker - create a new worker if necessary
1945 * @pool: pool to create a new worker for
1946 *
1947 * Create a new worker for @pool if necessary. @pool is guaranteed to
1948 * have at least one idle worker on return from this function. If
1949 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
1950 * sent to all rescuers with works scheduled on @pool to resolve
1951 * possible allocation deadlock.
1952 *
1953 * On return, need_to_create_worker() is guaranteed to be %false and
1954 * may_start_working() %true.
1955 *
1956 * LOCKING:
1957 * spin_lock_irq(pool->lock) which may be released and regrabbed
1958 * multiple times. Does GFP_KERNEL allocations. Called only from
1959 * manager.
1960 */
1961 static void maybe_create_worker(struct worker_pool *pool)
1962 __releases(&pool->lock)
1963 __acquires(&pool->lock)
1964 {
1965 restart:
1966 spin_unlock_irq(&pool->lock);
1967
1968 /* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
1969 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
1970
1971 while (true) {
1972 if (create_worker(pool) || !need_to_create_worker(pool))
1973 break;
1974
1975 schedule_timeout_interruptible(CREATE_COOLDOWN);
1976
1977 if (!need_to_create_worker(pool))
1978 break;
1979 }
1980
1981 del_timer_sync(&pool->mayday_timer);
1982 spin_lock_irq(&pool->lock);
1983 /*
1984 * This is necessary even after a new worker was just successfully
1985 * created as @pool->lock was dropped and the new worker might have
1986 * already become busy.
1987 */
1988 if (need_to_create_worker(pool))
1989 goto restart;
1990 }
1991
1992 /**
1993 * manage_workers - manage worker pool
1994 * @worker: self
1995 *
1996 * Assume the manager role and manage the worker pool @worker belongs
1997 * to. At any given time, there can be only zero or one manager per
1998 * pool. The exclusion is handled automatically by this function.
1999 *
2000 * The caller can safely start processing works on false return. On
2001 * true return, it's guaranteed that need_to_create_worker() is false
2002 * and may_start_working() is true.
2003 *
2004 * CONTEXT:
2005 * spin_lock_irq(pool->lock) which may be released and regrabbed
2006 * multiple times. Does GFP_KERNEL allocations.
2007 *
2008 * Return:
2009 * %false if the pool doesn't need management and the caller can safely
2010 * start processing works, %true if management function was performed and
2011 * the conditions that the caller verified before calling the function may
2012 * no longer be true.
2013 */
2014 static bool manage_workers(struct worker *worker)
2015 {
2016 struct worker_pool *pool = worker->pool;
2017
2018 if (pool->flags & POOL_MANAGER_ACTIVE)
2019 return false;
2020
2021 pool->flags |= POOL_MANAGER_ACTIVE;
2022 pool->manager = worker;
2023
2024 maybe_create_worker(pool);
2025
2026 pool->manager = NULL;
2027 pool->flags &= ~POOL_MANAGER_ACTIVE;
2028 wake_up(&wq_manager_wait);
2029 return true;
2030 }
2031
2032 /**
2033 * process_one_work - process single work
2034 * @worker: self
2035 * @work: work to process
2036 *
2037 * Process @work. This function contains all the logics necessary to
2038 * process a single work including synchronization against and
2039 * interaction with other workers on the same cpu, queueing and
2040 * flushing. As long as context requirement is met, any worker can
2041 * call this function to process a work.
2042 *
2043 * CONTEXT:
2044 * spin_lock_irq(pool->lock) which is released and regrabbed.
2045 */
2046 static void process_one_work(struct worker *worker, struct work_struct *work)
2047 __releases(&pool->lock)
2048 __acquires(&pool->lock)
2049 {
2050 struct pool_workqueue *pwq = get_work_pwq(work);
2051 struct worker_pool *pool = worker->pool;
2052 bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE;
2053 int work_color;
2054 struct worker *collision;
2055 #ifdef CONFIG_LOCKDEP
2056 /*
2057 * It is permissible to free the struct work_struct from
2058 * inside the function that is called from it, this we need to
2059 * take into account for lockdep too. To avoid bogus "held
2060 * lock freed" warnings as well as problems when looking into
2061 * work->lockdep_map, make a copy and use that here.
2062 */
2063 struct lockdep_map lockdep_map;
2064
2065 lockdep_copy_map(&lockdep_map, &work->lockdep_map);
2066 #endif
2067 /* ensure we're on the correct CPU */
2068 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
2069 raw_smp_processor_id() != pool->cpu);
2070
2071 /*
2072 * A single work shouldn't be executed concurrently by
2073 * multiple workers on a single cpu. Check whether anyone is
2074 * already processing the work. If so, defer the work to the
2075 * currently executing one.
2076 */
2077 collision = find_worker_executing_work(pool, work);
2078 if (unlikely(collision)) {
2079 move_linked_works(work, &collision->scheduled, NULL);
2080 return;
2081 }
2082
2083 /* claim and dequeue */
2084 debug_work_deactivate(work);
2085 hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
2086 worker->current_work = work;
2087 worker->current_func = work->func;
2088 worker->current_pwq = pwq;
2089 work_color = get_work_color(work);
2090
2091 list_del_init(&work->entry);
2092
2093 /*
2094 * CPU intensive works don't participate in concurrency management.
2095 * They're the scheduler's responsibility. This takes @worker out
2096 * of concurrency management and the next code block will chain
2097 * execution of the pending work items.
2098 */
2099 if (unlikely(cpu_intensive))
2100 worker_set_flags(worker, WORKER_CPU_INTENSIVE);
2101
2102 /*
2103 * Wake up another worker if necessary. The condition is always
2104 * false for normal per-cpu workers since nr_running would always
2105 * be >= 1 at this point. This is used to chain execution of the
2106 * pending work items for WORKER_NOT_RUNNING workers such as the
2107 * UNBOUND and CPU_INTENSIVE ones.
2108 */
2109 if (need_more_worker(pool))
2110 wake_up_worker(pool);
2111
2112 /*
2113 * Record the last pool and clear PENDING which should be the last
2114 * update to @work. Also, do this inside @pool->lock so that
2115 * PENDING and queued state changes happen together while IRQ is
2116 * disabled.
2117 */
2118 set_work_pool_and_clear_pending(work, pool->id);
2119
2120 spin_unlock_irq(&pool->lock);
2121
2122 lock_map_acquire(&pwq->wq->lockdep_map);
2123 lock_map_acquire(&lockdep_map);
2124 /*
2125 * Strictly speaking we should mark the invariant state without holding
2126 * any locks, that is, before these two lock_map_acquire()'s.
2127 *
2128 * However, that would result in:
2129 *
2130 * A(W1)
2131 * WFC(C)
2132 * A(W1)
2133 * C(C)
2134 *
2135 * Which would create W1->C->W1 dependencies, even though there is no
2136 * actual deadlock possible. There are two solutions, using a
2137 * read-recursive acquire on the work(queue) 'locks', but this will then
2138 * hit the lockdep limitation on recursive locks, or simply discard
2139 * these locks.
2140 *
2141 * AFAICT there is no possible deadlock scenario between the
2142 * flush_work() and complete() primitives (except for single-threaded
2143 * workqueues), so hiding them isn't a problem.
2144 */
2145 lockdep_invariant_state(true);
2146 trace_workqueue_execute_start(work);
2147 worker->current_func(work);
2148 /*
2149 * While we must be careful to not use "work" after this, the trace
2150 * point will only record its address.
2151 */
2152 trace_workqueue_execute_end(work);
2153 lock_map_release(&lockdep_map);
2154 lock_map_release(&pwq->wq->lockdep_map);
2155
2156 if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
2157 pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
2158 " last function: %pf\n",
2159 current->comm, preempt_count(), task_pid_nr(current),
2160 worker->current_func);
2161 debug_show_held_locks(current);
2162 dump_stack();
2163 }
2164
2165 /*
2166 * The following prevents a kworker from hogging CPU on !PREEMPT
2167 * kernels, where a requeueing work item waiting for something to
2168 * happen could deadlock with stop_machine as such work item could
2169 * indefinitely requeue itself while all other CPUs are trapped in
2170 * stop_machine. At the same time, report a quiescent RCU state so
2171 * the same condition doesn't freeze RCU.
2172 */
2173 cond_resched_rcu_qs();
2174
2175 spin_lock_irq(&pool->lock);
2176
2177 /* clear cpu intensive status */
2178 if (unlikely(cpu_intensive))
2179 worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
2180
2181 /* we're done with it, release */
2182 hash_del(&worker->hentry);
2183 worker->current_work = NULL;
2184 worker->current_func = NULL;
2185 worker->current_pwq = NULL;
2186 worker->desc_valid = false;
2187 pwq_dec_nr_in_flight(pwq, work_color);
2188 }
2189
2190 /**
2191 * process_scheduled_works - process scheduled works
2192 * @worker: self
2193 *
2194 * Process all scheduled works. Please note that the scheduled list
2195 * may change while processing a work, so this function repeatedly
2196 * fetches a work from the top and executes it.
2197 *
2198 * CONTEXT:
2199 * spin_lock_irq(pool->lock) which may be released and regrabbed
2200 * multiple times.
2201 */
2202 static void process_scheduled_works(struct worker *worker)
2203 {
2204 while (!list_empty(&worker->scheduled)) {
2205 struct work_struct *work = list_first_entry(&worker->scheduled,
2206 struct work_struct, entry);
2207 process_one_work(worker, work);
2208 }
2209 }
2210
2211 /**
2212 * worker_thread - the worker thread function
2213 * @__worker: self
2214 *
2215 * The worker thread function. All workers belong to a worker_pool -
2216 * either a per-cpu one or dynamic unbound one. These workers process all
2217 * work items regardless of their specific target workqueue. The only
2218 * exception is work items which belong to workqueues with a rescuer which
2219 * will be explained in rescuer_thread().
2220 *
2221 * Return: 0
2222 */
2223 static int worker_thread(void *__worker)
2224 {
2225 struct worker *worker = __worker;
2226 struct worker_pool *pool = worker->pool;
2227
2228 /* tell the scheduler that this is a workqueue worker */
2229 worker->task->flags |= PF_WQ_WORKER;
2230 woke_up:
2231 spin_lock_irq(&pool->lock);
2232
2233 /* am I supposed to die? */
2234 if (unlikely(worker->flags & WORKER_DIE)) {
2235 spin_unlock_irq(&pool->lock);
2236 WARN_ON_ONCE(!list_empty(&worker->entry));
2237 worker->task->flags &= ~PF_WQ_WORKER;
2238
2239 set_task_comm(worker->task, "kworker/dying");
2240 ida_simple_remove(&pool->worker_ida, worker->id);
2241 worker_detach_from_pool(worker, pool);
2242 kfree(worker);
2243 return 0;
2244 }
2245
2246 worker_leave_idle(worker);
2247 recheck:
2248 /* no more worker necessary? */
2249 if (!need_more_worker(pool))
2250 goto sleep;
2251
2252 /* do we need to manage? */
2253 if (unlikely(!may_start_working(pool)) && manage_workers(worker))
2254 goto recheck;
2255
2256 /*
2257 * ->scheduled list can only be filled while a worker is
2258 * preparing to process a work or actually processing it.
2259 * Make sure nobody diddled with it while I was sleeping.
2260 */
2261 WARN_ON_ONCE(!list_empty(&worker->scheduled));
2262
2263 /*
2264 * Finish PREP stage. We're guaranteed to have at least one idle
2265 * worker or that someone else has already assumed the manager
2266 * role. This is where @worker starts participating in concurrency
2267 * management if applicable and concurrency management is restored
2268 * after being rebound. See rebind_workers() for details.
2269 */
2270 worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND);
2271
2272 do {
2273 struct work_struct *work =
2274 list_first_entry(&pool->worklist,
2275 struct work_struct, entry);
2276
2277 pool->watchdog_ts = jiffies;
2278
2279 if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
2280 /* optimization path, not strictly necessary */
2281 process_one_work(worker, work);
2282 if (unlikely(!list_empty(&worker->scheduled)))
2283 process_scheduled_works(worker);
2284 } else {
2285 move_linked_works(work, &worker->scheduled, NULL);
2286 process_scheduled_works(worker);
2287 }
2288 } while (keep_working(pool));
2289
2290 worker_set_flags(worker, WORKER_PREP);
2291 sleep:
2292 /*
2293 * pool->lock is held and there's no work to process and no need to
2294 * manage, sleep. Workers are woken up only while holding
2295 * pool->lock or from local cpu, so setting the current state
2296 * before releasing pool->lock is enough to prevent losing any
2297 * event.
2298 */
2299 worker_enter_idle(worker);
2300 __set_current_state(TASK_IDLE);
2301 spin_unlock_irq(&pool->lock);
2302 schedule();
2303 goto woke_up;
2304 }
2305
2306 /**
2307 * rescuer_thread - the rescuer thread function
2308 * @__rescuer: self
2309 *
2310 * Workqueue rescuer thread function. There's one rescuer for each
2311 * workqueue which has WQ_MEM_RECLAIM set.
2312 *
2313 * Regular work processing on a pool may block trying to create a new
2314 * worker which uses GFP_KERNEL allocation which has slight chance of
2315 * developing into deadlock if some works currently on the same queue
2316 * need to be processed to satisfy the GFP_KERNEL allocation. This is
2317 * the problem rescuer solves.
2318 *
2319 * When such condition is possible, the pool summons rescuers of all
2320 * workqueues which have works queued on the pool and let them process
2321 * those works so that forward progress can be guaranteed.
2322 *
2323 * This should happen rarely.
2324 *
2325 * Return: 0
2326 */
2327 static int rescuer_thread(void *__rescuer)
2328 {
2329 struct worker *rescuer = __rescuer;
2330 struct workqueue_struct *wq = rescuer->rescue_wq;
2331 struct list_head *scheduled = &rescuer->scheduled;
2332 bool should_stop;
2333
2334 set_user_nice(current, RESCUER_NICE_LEVEL);
2335
2336 /*
2337 * Mark rescuer as worker too. As WORKER_PREP is never cleared, it
2338 * doesn't participate in concurrency management.
2339 */
2340 rescuer->task->flags |= PF_WQ_WORKER;
2341 repeat:
2342 set_current_state(TASK_IDLE);
2343
2344 /*
2345 * By the time the rescuer is requested to stop, the workqueue
2346 * shouldn't have any work pending, but @wq->maydays may still have
2347 * pwq(s) queued. This can happen by non-rescuer workers consuming
2348 * all the work items before the rescuer got to them. Go through
2349 * @wq->maydays processing before acting on should_stop so that the
2350 * list is always empty on exit.
2351 */
2352 should_stop = kthread_should_stop();
2353
2354 /* see whether any pwq is asking for help */
2355 spin_lock_irq(&wq_mayday_lock);
2356
2357 while (!list_empty(&wq->maydays)) {
2358 struct pool_workqueue *pwq = list_first_entry(&wq->maydays,
2359 struct pool_workqueue, mayday_node);
2360 struct worker_pool *pool = pwq->pool;
2361 struct work_struct *work, *n;
2362 bool first = true;
2363
2364 __set_current_state(TASK_RUNNING);
2365 list_del_init(&pwq->mayday_node);
2366
2367 spin_unlock_irq(&wq_mayday_lock);
2368
2369 worker_attach_to_pool(rescuer, pool);
2370
2371 spin_lock_irq(&pool->lock);
2372 rescuer->pool = pool;
2373
2374 /*
2375 * Slurp in all works issued via this workqueue and
2376 * process'em.
2377 */
2378 WARN_ON_ONCE(!list_empty(scheduled));
2379 list_for_each_entry_safe(work, n, &pool->worklist, entry) {
2380 if (get_work_pwq(work) == pwq) {
2381 if (first)
2382 pool->watchdog_ts = jiffies;
2383 move_linked_works(work, scheduled, &n);
2384 }
2385 first = false;
2386 }
2387
2388 if (!list_empty(scheduled)) {
2389 process_scheduled_works(rescuer);
2390
2391 /*
2392 * The above execution of rescued work items could
2393 * have created more to rescue through
2394 * pwq_activate_first_delayed() or chained
2395 * queueing. Let's put @pwq back on mayday list so
2396 * that such back-to-back work items, which may be
2397 * being used to relieve memory pressure, don't
2398 * incur MAYDAY_INTERVAL delay inbetween.
2399 */
2400 if (need_to_create_worker(pool)) {
2401 spin_lock(&wq_mayday_lock);
2402 get_pwq(pwq);
2403 list_move_tail(&pwq->mayday_node, &wq->maydays);
2404 spin_unlock(&wq_mayday_lock);
2405 }
2406 }
2407
2408 /*
2409 * Put the reference grabbed by send_mayday(). @pool won't
2410 * go away while we're still attached to it.
2411 */
2412 put_pwq(pwq);
2413
2414 /*
2415 * Leave this pool. If need_more_worker() is %true, notify a
2416 * regular worker; otherwise, we end up with 0 concurrency
2417 * and stalling the execution.
2418 */
2419 if (need_more_worker(pool))
2420 wake_up_worker(pool);
2421
2422 rescuer->pool = NULL;
2423 spin_unlock_irq(&pool->lock);
2424
2425 worker_detach_from_pool(rescuer, pool);
2426
2427 spin_lock_irq(&wq_mayday_lock);
2428 }
2429
2430 spin_unlock_irq(&wq_mayday_lock);
2431
2432 if (should_stop) {
2433 __set_current_state(TASK_RUNNING);
2434 rescuer->task->flags &= ~PF_WQ_WORKER;
2435 return 0;
2436 }
2437
2438 /* rescuers should never participate in concurrency management */
2439 WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
2440 schedule();
2441 goto repeat;
2442 }
2443
2444 /**
2445 * check_flush_dependency - check for flush dependency sanity
2446 * @target_wq: workqueue being flushed
2447 * @target_work: work item being flushed (NULL for workqueue flushes)
2448 *
2449 * %current is trying to flush the whole @target_wq or @target_work on it.
2450 * If @target_wq doesn't have %WQ_MEM_RECLAIM, verify that %current is not
2451 * reclaiming memory or running on a workqueue which doesn't have
2452 * %WQ_MEM_RECLAIM as that can break forward-progress guarantee leading to
2453 * a deadlock.
2454 */
2455 static void check_flush_dependency(struct workqueue_struct *target_wq,
2456 struct work_struct *target_work)
2457 {
2458 work_func_t target_func = target_work ? target_work->func : NULL;
2459 struct worker *worker;
2460
2461 if (target_wq->flags & WQ_MEM_RECLAIM)
2462 return;
2463
2464 worker = current_wq_worker();
2465
2466 WARN_ONCE(current->flags & PF_MEMALLOC,
2467 "workqueue: PF_MEMALLOC task %d(%s) is flushing !WQ_MEM_RECLAIM %s:%pf",
2468 current->pid, current->comm, target_wq->name, target_func);
2469 WARN_ONCE(worker && ((worker->current_pwq->wq->flags &
2470 (WQ_MEM_RECLAIM | __WQ_LEGACY)) == WQ_MEM_RECLAIM),
2471 "workqueue: WQ_MEM_RECLAIM %s:%pf is flushing !WQ_MEM_RECLAIM %s:%pf",
2472 worker->current_pwq->wq->name, worker->current_func,
2473 target_wq->name, target_func);
2474 }
2475
2476 struct wq_barrier {
2477 struct work_struct work;
2478 struct completion done;
2479 struct task_struct *task; /* purely informational */
2480 };
2481
2482 static void wq_barrier_func(struct work_struct *work)
2483 {
2484 struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
2485 complete(&barr->done);
2486 }
2487
2488 /**
2489 * insert_wq_barrier - insert a barrier work
2490 * @pwq: pwq to insert barrier into
2491 * @barr: wq_barrier to insert
2492 * @target: target work to attach @barr to
2493 * @worker: worker currently executing @target, NULL if @target is not executing
2494 *
2495 * @barr is linked to @target such that @barr is completed only after
2496 * @target finishes execution. Please note that the ordering
2497 * guarantee is observed only with respect to @target and on the local
2498 * cpu.
2499 *
2500 * Currently, a queued barrier can't be canceled. This is because
2501 * try_to_grab_pending() can't determine whether the work to be
2502 * grabbed is at the head of the queue and thus can't clear LINKED
2503 * flag of the previous work while there must be a valid next work
2504 * after a work with LINKED flag set.
2505 *
2506 * Note that when @worker is non-NULL, @target may be modified
2507 * underneath us, so we can't reliably determine pwq from @target.
2508 *
2509 * CONTEXT:
2510 * spin_lock_irq(pool->lock).
2511 */
2512 static void insert_wq_barrier(struct pool_workqueue *pwq,
2513 struct wq_barrier *barr,
2514 struct work_struct *target, struct worker *worker)
2515 {
2516 struct list_head *head;
2517 unsigned int linked = 0;
2518
2519 /*
2520 * debugobject calls are safe here even with pool->lock locked
2521 * as we know for sure that this will not trigger any of the
2522 * checks and call back into the fixup functions where we
2523 * might deadlock.
2524 */
2525 INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
2526 __set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
2527
2528 init_completion_map(&barr->done, &target->lockdep_map);
2529
2530 barr->task = current;
2531
2532 /*
2533 * If @target is currently being executed, schedule the
2534 * barrier to the worker; otherwise, put it after @target.
2535 */
2536 if (worker)
2537 head = worker->scheduled.next;
2538 else {
2539 unsigned long *bits = work_data_bits(target);
2540
2541 head = target->entry.next;
2542 /* there can already be other linked works, inherit and set */
2543 linked = *bits & WORK_STRUCT_LINKED;
2544 __set_bit(WORK_STRUCT_LINKED_BIT, bits);
2545 }
2546
2547 debug_work_activate(&barr->work);
2548 insert_work(pwq, &barr->work, head,
2549 work_color_to_flags(WORK_NO_COLOR) | linked);
2550 }
2551
2552 /**
2553 * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing
2554 * @wq: workqueue being flushed
2555 * @flush_color: new flush color, < 0 for no-op
2556 * @work_color: new work color, < 0 for no-op
2557 *
2558 * Prepare pwqs for workqueue flushing.
2559 *
2560 * If @flush_color is non-negative, flush_color on all pwqs should be
2561 * -1. If no pwq has in-flight commands at the specified color, all
2562 * pwq->flush_color's stay at -1 and %false is returned. If any pwq
2563 * has in flight commands, its pwq->flush_color is set to
2564 * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq
2565 * wakeup logic is armed and %true is returned.
2566 *
2567 * The caller should have initialized @wq->first_flusher prior to
2568 * calling this function with non-negative @flush_color. If
2569 * @flush_color is negative, no flush color update is done and %false
2570 * is returned.
2571 *
2572 * If @work_color is non-negative, all pwqs should have the same
2573 * work_color which is previous to @work_color and all will be
2574 * advanced to @work_color.
2575 *
2576 * CONTEXT:
2577 * mutex_lock(wq->mutex).
2578 *
2579 * Return:
2580 * %true if @flush_color >= 0 and there's something to flush. %false
2581 * otherwise.
2582 */
2583 static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq,
2584 int flush_color, int work_color)
2585 {
2586 bool wait = false;
2587 struct pool_workqueue *pwq;
2588
2589 if (flush_color >= 0) {
2590 WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush));
2591 atomic_set(&wq->nr_pwqs_to_flush, 1);
2592 }
2593
2594 for_each_pwq(pwq, wq) {
2595 struct worker_pool *pool = pwq->pool;
2596
2597 spin_lock_irq(&pool->lock);
2598
2599 if (flush_color >= 0) {
2600 WARN_ON_ONCE(pwq->flush_color != -1);
2601
2602 if (pwq->nr_in_flight[flush_color]) {
2603 pwq->flush_color = flush_color;
2604 atomic_inc(&wq->nr_pwqs_to_flush);
2605 wait = true;
2606 }
2607 }
2608
2609 if (work_color >= 0) {
2610 WARN_ON_ONCE(work_color != work_next_color(pwq->work_color));
2611 pwq->work_color = work_color;
2612 }
2613
2614 spin_unlock_irq(&pool->lock);
2615 }
2616
2617 if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush))
2618 complete(&wq->first_flusher->done);
2619
2620 return wait;
2621 }
2622
2623 /**
2624 * flush_workqueue - ensure that any scheduled work has run to completion.
2625 * @wq: workqueue to flush
2626 *
2627 * This function sleeps until all work items which were queued on entry
2628 * have finished execution, but it is not livelocked by new incoming ones.
2629 */
2630 void flush_workqueue(struct workqueue_struct *wq)
2631 {
2632 struct wq_flusher this_flusher = {
2633 .list = LIST_HEAD_INIT(this_flusher.list),
2634 .flush_color = -1,
2635 .done = COMPLETION_INITIALIZER_ONSTACK_MAP(this_flusher.done, wq->lockdep_map),
2636 };
2637 int next_color;
2638
2639 if (WARN_ON(!wq_online))
2640 return;
2641
2642 mutex_lock(&wq->mutex);
2643
2644 /*
2645 * Start-to-wait phase
2646 */
2647 next_color = work_next_color(wq->work_color);
2648
2649 if (next_color != wq->flush_color) {
2650 /*
2651 * Color space is not full. The current work_color
2652 * becomes our flush_color and work_color is advanced
2653 * by one.
2654 */
2655 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow));
2656 this_flusher.flush_color = wq->work_color;
2657 wq->work_color = next_color;
2658
2659 if (!wq->first_flusher) {
2660 /* no flush in progress, become the first flusher */
2661 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2662
2663 wq->first_flusher = &this_flusher;
2664
2665 if (!flush_workqueue_prep_pwqs(wq, wq->flush_color,
2666 wq->work_color)) {
2667 /* nothing to flush, done */
2668 wq->flush_color = next_color;
2669 wq->first_flusher = NULL;
2670 goto out_unlock;
2671 }
2672 } else {
2673 /* wait in queue */
2674 WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color);
2675 list_add_tail(&this_flusher.list, &wq->flusher_queue);
2676 flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2677 }
2678 } else {
2679 /*
2680 * Oops, color space is full, wait on overflow queue.
2681 * The next flush completion will assign us
2682 * flush_color and transfer to flusher_queue.
2683 */
2684 list_add_tail(&this_flusher.list, &wq->flusher_overflow);
2685 }
2686
2687 check_flush_dependency(wq, NULL);
2688
2689 mutex_unlock(&wq->mutex);
2690
2691 wait_for_completion(&this_flusher.done);
2692
2693 /*
2694 * Wake-up-and-cascade phase
2695 *
2696 * First flushers are responsible for cascading flushes and
2697 * handling overflow. Non-first flushers can simply return.
2698 */
2699 if (wq->first_flusher != &this_flusher)
2700 return;
2701
2702 mutex_lock(&wq->mutex);
2703
2704 /* we might have raced, check again with mutex held */
2705 if (wq->first_flusher != &this_flusher)
2706 goto out_unlock;
2707
2708 wq->first_flusher = NULL;
2709
2710 WARN_ON_ONCE(!list_empty(&this_flusher.list));
2711 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2712
2713 while (true) {
2714 struct wq_flusher *next, *tmp;
2715
2716 /* complete all the flushers sharing the current flush color */
2717 list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
2718 if (next->flush_color != wq->flush_color)
2719 break;
2720 list_del_init(&next->list);
2721 complete(&next->done);
2722 }
2723
2724 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) &&
2725 wq->flush_color != work_next_color(wq->work_color));
2726
2727 /* this flush_color is finished, advance by one */
2728 wq->flush_color = work_next_color(wq->flush_color);
2729
2730 /* one color has been freed, handle overflow queue */
2731 if (!list_empty(&wq->flusher_overflow)) {
2732 /*
2733 * Assign the same color to all overflowed
2734 * flushers, advance work_color and append to
2735 * flusher_queue. This is the start-to-wait
2736 * phase for these overflowed flushers.
2737 */
2738 list_for_each_entry(tmp, &wq->flusher_overflow, list)
2739 tmp->flush_color = wq->work_color;
2740
2741 wq->work_color = work_next_color(wq->work_color);
2742
2743 list_splice_tail_init(&wq->flusher_overflow,
2744 &wq->flusher_queue);
2745 flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2746 }
2747
2748 if (list_empty(&wq->flusher_queue)) {
2749 WARN_ON_ONCE(wq->flush_color != wq->work_color);
2750 break;
2751 }
2752
2753 /*
2754 * Need to flush more colors. Make the next flusher
2755 * the new first flusher and arm pwqs.
2756 */
2757 WARN_ON_ONCE(wq->flush_color == wq->work_color);
2758 WARN_ON_ONCE(wq->flush_color != next->flush_color);
2759
2760 list_del_init(&next->list);
2761 wq->first_flusher = next;
2762
2763 if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1))
2764 break;
2765
2766 /*
2767 * Meh... this color is already done, clear first
2768 * flusher and repeat cascading.
2769 */
2770 wq->first_flusher = NULL;
2771 }
2772
2773 out_unlock:
2774 mutex_unlock(&wq->mutex);
2775 }
2776 EXPORT_SYMBOL(flush_workqueue);
2777
2778 /**
2779 * drain_workqueue - drain a workqueue
2780 * @wq: workqueue to drain
2781 *
2782 * Wait until the workqueue becomes empty. While draining is in progress,
2783 * only chain queueing is allowed. IOW, only currently pending or running
2784 * work items on @wq can queue further work items on it. @wq is flushed
2785 * repeatedly until it becomes empty. The number of flushing is determined
2786 * by the depth of chaining and should be relatively short. Whine if it
2787 * takes too long.
2788 */
2789 void drain_workqueue(struct workqueue_struct *wq)
2790 {
2791 unsigned int flush_cnt = 0;
2792 struct pool_workqueue *pwq;
2793
2794 /*
2795 * __queue_work() needs to test whether there are drainers, is much
2796 * hotter than drain_workqueue() and already looks at @wq->flags.
2797 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers.
2798 */
2799 mutex_lock(&wq->mutex);
2800 if (!wq->nr_drainers++)
2801 wq->flags |= __WQ_DRAINING;
2802 mutex_unlock(&wq->mutex);
2803 reflush:
2804 flush_workqueue(wq);
2805
2806 mutex_lock(&wq->mutex);
2807
2808 for_each_pwq(pwq, wq) {
2809 bool drained;
2810
2811 spin_lock_irq(&pwq->pool->lock);
2812 drained = !pwq->nr_active && list_empty(&pwq->delayed_works);
2813 spin_unlock_irq(&pwq->pool->lock);
2814
2815 if (drained)
2816 continue;
2817
2818 if (++flush_cnt == 10 ||
2819 (flush_cnt % 100 == 0 && flush_cnt <= 1000))
2820 pr_warn("workqueue %s: drain_workqueue() isn't complete after %u tries\n",
2821 wq->name, flush_cnt);
2822
2823 mutex_unlock(&wq->mutex);
2824 goto reflush;
2825 }
2826
2827 if (!--wq->nr_drainers)
2828 wq->flags &= ~__WQ_DRAINING;
2829 mutex_unlock(&wq->mutex);
2830 }
2831 EXPORT_SYMBOL_GPL(drain_workqueue);
2832
2833 static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr,
2834 bool from_cancel)
2835 {
2836 struct worker *worker = NULL;
2837 struct worker_pool *pool;
2838 struct pool_workqueue *pwq;
2839
2840 might_sleep();
2841
2842 local_irq_disable();
2843 pool = get_work_pool(work);
2844 if (!pool) {
2845 local_irq_enable();
2846 return false;
2847 }
2848
2849 spin_lock(&pool->lock);
2850 /* see the comment in try_to_grab_pending() with the same code */
2851 pwq = get_work_pwq(work);
2852 if (pwq) {
2853 if (unlikely(pwq->pool != pool))
2854 goto already_gone;
2855 } else {
2856 worker = find_worker_executing_work(pool, work);
2857 if (!worker)
2858 goto already_gone;
2859 pwq = worker->current_pwq;
2860 }
2861
2862 check_flush_dependency(pwq->wq, work);
2863
2864 insert_wq_barrier(pwq, barr, work, worker);
2865 spin_unlock_irq(&pool->lock);
2866
2867 /*
2868 * Force a lock recursion deadlock when using flush_work() inside a
2869 * single-threaded or rescuer equipped workqueue.
2870 *
2871 * For single threaded workqueues the deadlock happens when the work
2872 * is after the work issuing the flush_work(). For rescuer equipped
2873 * workqueues the deadlock happens when the rescuer stalls, blocking
2874 * forward progress.
2875 */
2876 if (!from_cancel &&
2877 (pwq->wq->saved_max_active == 1 || pwq->wq->rescuer)) {
2878 lock_map_acquire(&pwq->wq->lockdep_map);
2879 lock_map_release(&pwq->wq->lockdep_map);
2880 }
2881
2882 return true;
2883 already_gone:
2884 spin_unlock_irq(&pool->lock);
2885 return false;
2886 }
2887
2888 static bool __flush_work(struct work_struct *work, bool from_cancel)
2889 {
2890 struct wq_barrier barr;
2891
2892 if (WARN_ON(!wq_online))
2893 return false;
2894
2895 if (start_flush_work(work, &barr, from_cancel)) {
2896 wait_for_completion(&barr.done);
2897 destroy_work_on_stack(&barr.work);
2898 return true;
2899 } else {
2900 return false;
2901 }
2902 }
2903
2904 /**
2905 * flush_work - wait for a work to finish executing the last queueing instance
2906 * @work: the work to flush
2907 *
2908 * Wait until @work has finished execution. @work is guaranteed to be idle
2909 * on return if it hasn't been requeued since flush started.
2910 *
2911 * Return:
2912 * %true if flush_work() waited for the work to finish execution,
2913 * %false if it was already idle.
2914 */
2915 bool flush_work(struct work_struct *work)
2916 {
2917 return __flush_work(work, false);
2918 }
2919 EXPORT_SYMBOL_GPL(flush_work);
2920
2921 struct cwt_wait {
2922 wait_queue_entry_t wait;
2923 struct work_struct *work;
2924 };
2925
2926 static int cwt_wakefn(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
2927 {
2928 struct cwt_wait *cwait = container_of(wait, struct cwt_wait, wait);
2929
2930 if (cwait->work != key)
2931 return 0;
2932 return autoremove_wake_function(wait, mode, sync, key);
2933 }
2934
2935 static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
2936 {
2937 static DECLARE_WAIT_QUEUE_HEAD(cancel_waitq);
2938 unsigned long flags;
2939 int ret;
2940
2941 do {
2942 ret = try_to_grab_pending(work, is_dwork, &flags);
2943 /*
2944 * If someone else is already canceling, wait for it to
2945 * finish. flush_work() doesn't work for PREEMPT_NONE
2946 * because we may get scheduled between @work's completion
2947 * and the other canceling task resuming and clearing
2948 * CANCELING - flush_work() will return false immediately
2949 * as @work is no longer busy, try_to_grab_pending() will
2950 * return -ENOENT as @work is still being canceled and the
2951 * other canceling task won't be able to clear CANCELING as
2952 * we're hogging the CPU.
2953 *
2954 * Let's wait for completion using a waitqueue. As this
2955 * may lead to the thundering herd problem, use a custom
2956 * wake function which matches @work along with exclusive
2957 * wait and wakeup.
2958 */
2959 if (unlikely(ret == -ENOENT)) {
2960 struct cwt_wait cwait;
2961
2962 init_wait(&cwait.wait);
2963 cwait.wait.func = cwt_wakefn;
2964 cwait.work = work;
2965
2966 prepare_to_wait_exclusive(&cancel_waitq, &cwait.wait,
2967 TASK_UNINTERRUPTIBLE);
2968 if (work_is_canceling(work))
2969 schedule();
2970 finish_wait(&cancel_waitq, &cwait.wait);
2971 }
2972 } while (unlikely(ret < 0));
2973
2974 /* tell other tasks trying to grab @work to back off */
2975 mark_work_canceling(work);
2976 local_irq_restore(flags);
2977
2978 /*
2979 * This allows canceling during early boot. We know that @work
2980 * isn't executing.
2981 */
2982 if (wq_online)
2983 __flush_work(work, true);
2984
2985 clear_work_data(work);
2986
2987 /*
2988 * Paired with prepare_to_wait() above so that either
2989 * waitqueue_active() is visible here or !work_is_canceling() is
2990 * visible there.
2991 */
2992 smp_mb();
2993 if (waitqueue_active(&cancel_waitq))
2994 __wake_up(&cancel_waitq, TASK_NORMAL, 1, work);
2995
2996 return ret;
2997 }
2998
2999 /**
3000 * cancel_work_sync - cancel a work and wait for it to finish
3001 * @work: the work to cancel
3002 *
3003 * Cancel @work and wait for its execution to finish. This function
3004 * can be used even if the work re-queues itself or migrates to
3005 * another workqueue. On return from this function, @work is
3006 * guaranteed to be not pending or executing on any CPU.
3007 *
3008 * cancel_work_sync(&delayed_work->work) must not be used for
3009 * delayed_work's. Use cancel_delayed_work_sync() instead.
3010 *
3011 * The caller must ensure that the workqueue on which @work was last
3012 * queued can't be destroyed before this function returns.
3013 *
3014 * Return:
3015 * %true if @work was pending, %false otherwise.
3016 */
3017 bool cancel_work_sync(struct work_struct *work)
3018 {
3019 return __cancel_work_timer(work, false);
3020 }
3021 EXPORT_SYMBOL_GPL(cancel_work_sync);
3022
3023 /**
3024 * flush_delayed_work - wait for a dwork to finish executing the last queueing
3025 * @dwork: the delayed work to flush
3026 *
3027 * Delayed timer is cancelled and the pending work is queued for
3028 * immediate execution. Like flush_work(), this function only
3029 * considers the last queueing instance of @dwork.
3030 *
3031 * Return:
3032 * %true if flush_work() waited for the work to finish execution,
3033 * %false if it was already idle.
3034 */
3035 bool flush_delayed_work(struct delayed_work *dwork)
3036 {
3037 local_irq_disable();
3038 if (del_timer_sync(&dwork->timer))
3039 __queue_work(dwork->cpu, dwork->wq, &dwork->work);
3040 local_irq_enable();
3041 return flush_work(&dwork->work);
3042 }
3043 EXPORT_SYMBOL(flush_delayed_work);
3044
3045 /**
3046 * flush_rcu_work - wait for a rwork to finish executing the last queueing
3047 * @rwork: the rcu work to flush
3048 *
3049 * Return:
3050 * %true if flush_rcu_work() waited for the work to finish execution,
3051 * %false if it was already idle.
3052 */
3053 bool flush_rcu_work(struct rcu_work *rwork)
3054 {
3055 if (test_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&rwork->work))) {
3056 rcu_barrier();
3057 flush_work(&rwork->work);
3058 return true;
3059 } else {
3060 return flush_work(&rwork->work);
3061 }
3062 }
3063 EXPORT_SYMBOL(flush_rcu_work);
3064
3065 static bool __cancel_work(struct work_struct *work, bool is_dwork)
3066 {
3067 unsigned long flags;
3068 int ret;
3069
3070 do {
3071 ret = try_to_grab_pending(work, is_dwork, &flags);
3072 } while (unlikely(ret == -EAGAIN));
3073
3074 if (unlikely(ret < 0))
3075 return false;
3076
3077 set_work_pool_and_clear_pending(work, get_work_pool_id(work));
3078 local_irq_restore(flags);
3079 return ret;
3080 }
3081
3082 /*
3083 * See cancel_delayed_work()
3084 */
3085 bool cancel_work(struct work_struct *work)
3086 {
3087 return __cancel_work(work, false);
3088 }
3089
3090 /**
3091 * cancel_delayed_work - cancel a delayed work
3092 * @dwork: delayed_work to cancel
3093 *
3094 * Kill off a pending delayed_work.
3095 *
3096 * Return: %true if @dwork was pending and canceled; %false if it wasn't
3097 * pending.
3098 *
3099 * Note:
3100 * The work callback function may still be running on return, unless
3101 * it returns %true and the work doesn't re-arm itself. Explicitly flush or
3102 * use cancel_delayed_work_sync() to wait on it.
3103 *
3104 * This function is safe to call from any context including IRQ handler.
3105 */
3106 bool cancel_delayed_work(struct delayed_work *dwork)
3107 {
3108 return __cancel_work(&dwork->work, true);
3109 }
3110 EXPORT_SYMBOL(cancel_delayed_work);
3111
3112 /**
3113 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
3114 * @dwork: the delayed work cancel
3115 *
3116 * This is cancel_work_sync() for delayed works.
3117 *
3118 * Return:
3119 * %true if @dwork was pending, %false otherwise.
3120 */
3121 bool cancel_delayed_work_sync(struct delayed_work *dwork)
3122 {
3123 return __cancel_work_timer(&dwork->work, true);
3124 }
3125 EXPORT_SYMBOL(cancel_delayed_work_sync);
3126
3127 /**
3128 * schedule_on_each_cpu - execute a function synchronously on each online CPU
3129 * @func: the function to call
3130 *
3131 * schedule_on_each_cpu() executes @func on each online CPU using the
3132 * system workqueue and blocks until all CPUs have completed.
3133 * schedule_on_each_cpu() is very slow.
3134 *
3135 * Return:
3136 * 0 on success, -errno on failure.
3137 */
3138 int schedule_on_each_cpu(work_func_t func)
3139 {
3140 int cpu;
3141 struct work_struct __percpu *works;
3142
3143 works = alloc_percpu(struct work_struct);
3144 if (!works)
3145 return -ENOMEM;
3146
3147 get_online_cpus();
3148
3149 for_each_online_cpu(cpu) {
3150 struct work_struct *work = per_cpu_ptr(works, cpu);
3151
3152 INIT_WORK(work, func);
3153 schedule_work_on(cpu, work);
3154 }
3155
3156 for_each_online_cpu(cpu)
3157 flush_work(per_cpu_ptr(works, cpu));
3158
3159 put_online_cpus();
3160 free_percpu(works);
3161 return 0;
3162 }
3163
3164 /**
3165 * execute_in_process_context - reliably execute the routine with user context
3166 * @fn: the function to execute
3167 * @ew: guaranteed storage for the execute work structure (must
3168 * be available when the work executes)
3169 *
3170 * Executes the function immediately if process context is available,
3171 * otherwise schedules the function for delayed execution.
3172 *
3173 * Return: 0 - function was executed
3174 * 1 - function was scheduled for execution
3175 */
3176 int execute_in_process_context(work_func_t fn, struct execute_work *ew)
3177 {
3178 if (!in_interrupt()) {
3179 fn(&ew->work);
3180 return 0;
3181 }
3182
3183 INIT_WORK(&ew->work, fn);
3184 schedule_work(&ew->work);
3185
3186 return 1;
3187 }
3188 EXPORT_SYMBOL_GPL(execute_in_process_context);
3189
3190 /**
3191 * free_workqueue_attrs - free a workqueue_attrs
3192 * @attrs: workqueue_attrs to free
3193 *
3194 * Undo alloc_workqueue_attrs().
3195 */
3196 void free_workqueue_attrs(struct workqueue_attrs *attrs)
3197 {
3198 if (attrs) {
3199 free_cpumask_var(attrs->cpumask);
3200 kfree(attrs);
3201 }
3202 }
3203
3204 /**
3205 * alloc_workqueue_attrs - allocate a workqueue_attrs
3206 * @gfp_mask: allocation mask to use
3207 *
3208 * Allocate a new workqueue_attrs, initialize with default settings and
3209 * return it.
3210 *
3211 * Return: The allocated new workqueue_attr on success. %NULL on failure.
3212 */
3213 struct workqueue_attrs *alloc_workqueue_attrs(gfp_t gfp_mask)
3214 {
3215 struct workqueue_attrs *attrs;
3216
3217 attrs = kzalloc(sizeof(*attrs), gfp_mask);
3218 if (!attrs)
3219 goto fail;
3220 if (!alloc_cpumask_var(&attrs->cpumask, gfp_mask))
3221 goto fail;
3222
3223 cpumask_copy(attrs->cpumask, cpu_possible_mask);
3224 return attrs;
3225 fail:
3226 free_workqueue_attrs(attrs);
3227 return NULL;
3228 }
3229
3230 static void copy_workqueue_attrs(struct workqueue_attrs *to,
3231 const struct workqueue_attrs *from)
3232 {
3233 to->nice = from->nice;
3234 cpumask_copy(to->cpumask, from->cpumask);
3235 /*
3236 * Unlike hash and equality test, this function doesn't ignore
3237 * ->no_numa as it is used for both pool and wq attrs. Instead,
3238 * get_unbound_pool() explicitly clears ->no_numa after copying.
3239 */
3240 to->no_numa = from->no_numa;
3241 }
3242
3243 /* hash value of the content of @attr */
3244 static u32 wqattrs_hash(const struct workqueue_attrs *attrs)
3245 {
3246 u32 hash = 0;
3247
3248 hash = jhash_1word(attrs->nice, hash);
3249 hash = jhash(cpumask_bits(attrs->cpumask),
3250 BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash);
3251 return hash;
3252 }
3253
3254 /* content equality test */
3255 static bool wqattrs_equal(const struct workqueue_attrs *a,
3256 const struct workqueue_attrs *b)
3257 {
3258 if (a->nice != b->nice)
3259 return false;
3260 if (!cpumask_equal(a->cpumask, b->cpumask))
3261 return false;
3262 return true;
3263 }
3264
3265 /**
3266 * init_worker_pool - initialize a newly zalloc'd worker_pool
3267 * @pool: worker_pool to initialize
3268 *
3269 * Initialize a newly zalloc'd @pool. It also allocates @pool->attrs.
3270 *
3271 * Return: 0 on success, -errno on failure. Even on failure, all fields
3272 * inside @pool proper are initialized and put_unbound_pool() can be called
3273 * on @pool safely to release it.
3274 */
3275 static int init_worker_pool(struct worker_pool *pool)
3276 {
3277 spin_lock_init(&pool->lock);
3278 pool->id = -1;
3279 pool->cpu = -1;
3280 pool->node = NUMA_NO_NODE;
3281 pool->flags |= POOL_DISASSOCIATED;
3282 pool->watchdog_ts = jiffies;
3283 INIT_LIST_HEAD(&pool->worklist);
3284 INIT_LIST_HEAD(&pool->idle_list);
3285 hash_init(pool->busy_hash);
3286
3287 timer_setup(&pool->idle_timer, idle_worker_timeout, TIMER_DEFERRABLE);
3288
3289 timer_setup(&pool->mayday_timer, pool_mayday_timeout, 0);
3290
3291 mutex_init(&pool->attach_mutex);
3292 INIT_LIST_HEAD(&pool->workers);
3293
3294 ida_init(&pool->worker_ida);
3295 INIT_HLIST_NODE(&pool->hash_node);
3296 pool->refcnt = 1;
3297
3298 /* shouldn't fail above this point */
3299 pool->attrs = alloc_workqueue_attrs(GFP_KERNEL);
3300 if (!pool->attrs)
3301 return -ENOMEM;
3302 return 0;
3303 }
3304
3305 static void rcu_free_wq(struct rcu_head *rcu)
3306 {
3307 struct workqueue_struct *wq =
3308 container_of(rcu, struct workqueue_struct, rcu);
3309
3310 if (!(wq->flags & WQ_UNBOUND))
3311 free_percpu(wq->cpu_pwqs);
3312 else
3313 free_workqueue_attrs(wq->unbound_attrs);
3314
3315 kfree(wq->rescuer);
3316 kfree(wq);
3317 }
3318
3319 static void rcu_free_pool(struct rcu_head *rcu)
3320 {
3321 struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu);
3322
3323 ida_destroy(&pool->worker_ida);
3324 free_workqueue_attrs(pool->attrs);
3325 kfree(pool);
3326 }
3327
3328 /**
3329 * put_unbound_pool - put a worker_pool
3330 * @pool: worker_pool to put
3331 *
3332 * Put @pool. If its refcnt reaches zero, it gets destroyed in sched-RCU
3333 * safe manner. get_unbound_pool() calls this function on its failure path
3334 * and this function should be able to release pools which went through,
3335 * successfully or not, init_worker_pool().
3336 *
3337 * Should be called with wq_pool_mutex held.
3338 */
3339 static void put_unbound_pool(struct worker_pool *pool)
3340 {
3341 DECLARE_COMPLETION_ONSTACK(detach_completion);
3342 struct worker *worker;
3343
3344 lockdep_assert_held(&wq_pool_mutex);
3345
3346 if (--pool->refcnt)
3347 return;
3348
3349 /* sanity checks */
3350 if (WARN_ON(!(pool->cpu < 0)) ||
3351 WARN_ON(!list_empty(&pool->worklist)))
3352 return;
3353
3354 /* release id and unhash */
3355 if (pool->id >= 0)
3356 idr_remove(&worker_pool_idr, pool->id);
3357 hash_del(&pool->hash_node);
3358
3359 /*
3360 * Become the manager and destroy all workers. This prevents
3361 * @pool's workers from blocking on attach_mutex. We're the last
3362 * manager and @pool gets freed with the flag set.
3363 */
3364 spin_lock_irq(&pool->lock);
3365 wait_event_lock_irq(wq_manager_wait,
3366 !(pool->flags & POOL_MANAGER_ACTIVE), pool->lock);
3367 pool->flags |= POOL_MANAGER_ACTIVE;
3368
3369 while ((worker = first_idle_worker(pool)))
3370 destroy_worker(worker);
3371 WARN_ON(pool->nr_workers || pool->nr_idle);
3372 spin_unlock_irq(&pool->lock);
3373
3374 mutex_lock(&pool->attach_mutex);
3375 if (!list_empty(&pool->workers))
3376 pool->detach_completion = &detach_completion;
3377 mutex_unlock(&pool->attach_mutex);
3378
3379 if (pool->detach_completion)
3380 wait_for_completion(pool->detach_completion);
3381
3382 /* shut down the timers */
3383 del_timer_sync(&pool->idle_timer);
3384 del_timer_sync(&pool->mayday_timer);
3385
3386 /* sched-RCU protected to allow dereferences from get_work_pool() */
3387 call_rcu_sched(&pool->rcu, rcu_free_pool);
3388 }
3389
3390 /**
3391 * get_unbound_pool - get a worker_pool with the specified attributes
3392 * @attrs: the attributes of the worker_pool to get
3393 *
3394 * Obtain a worker_pool which has the same attributes as @attrs, bump the
3395 * reference count and return it. If there already is a matching
3396 * worker_pool, it will be used; otherwise, this function attempts to
3397 * create a new one.
3398 *
3399 * Should be called with wq_pool_mutex held.
3400 *
3401 * Return: On success, a worker_pool with the same attributes as @attrs.
3402 * On failure, %NULL.
3403 */
3404 static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs)
3405 {
3406 u32 hash = wqattrs_hash(attrs);
3407 struct worker_pool *pool;
3408 int node;
3409 int target_node = NUMA_NO_NODE;
3410
3411 lockdep_assert_held(&wq_pool_mutex);
3412
3413 /* do we already have a matching pool? */
3414 hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) {
3415 if (wqattrs_equal(pool->attrs, attrs)) {
3416 pool->refcnt++;
3417 return pool;
3418 }
3419 }
3420
3421 /* if cpumask is contained inside a NUMA node, we belong to that node */
3422 if (wq_numa_enabled) {
3423 for_each_node(node) {
3424 if (cpumask_subset(attrs->cpumask,
3425 wq_numa_possible_cpumask[node])) {
3426 target_node = node;
3427 break;
3428 }
3429 }
3430 }
3431
3432 /* nope, create a new one */
3433 pool = kzalloc_node(sizeof(*pool), GFP_KERNEL, target_node);
3434 if (!pool || init_worker_pool(pool) < 0)
3435 goto fail;
3436
3437 lockdep_set_subclass(&pool->lock, 1); /* see put_pwq() */
3438 copy_workqueue_attrs(pool->attrs, attrs);
3439 pool->node = target_node;
3440
3441 /*
3442 * no_numa isn't a worker_pool attribute, always clear it. See
3443 * 'struct workqueue_attrs' comments for detail.
3444 */
3445 pool->attrs->no_numa = false;
3446
3447 if (worker_pool_assign_id(pool) < 0)
3448 goto fail;
3449
3450 /* create and start the initial worker */
3451 if (wq_online && !create_worker(pool))
3452 goto fail;
3453
3454 /* install */
3455 hash_add(unbound_pool_hash, &pool->hash_node, hash);
3456
3457 return pool;
3458 fail:
3459 if (pool)
3460 put_unbound_pool(pool);
3461 return NULL;
3462 }
3463
3464 static void rcu_free_pwq(struct rcu_head *rcu)
3465 {
3466 kmem_cache_free(pwq_cache,
3467 container_of(rcu, struct pool_workqueue, rcu));
3468 }
3469
3470 /*
3471 * Scheduled on system_wq by put_pwq() when an unbound pwq hits zero refcnt
3472 * and needs to be destroyed.
3473 */
3474 static void pwq_unbound_release_workfn(struct work_struct *work)
3475 {
3476 struct pool_workqueue *pwq = container_of(work, struct pool_workqueue,
3477 unbound_release_work);
3478 struct workqueue_struct *wq = pwq->wq;
3479 struct worker_pool *pool = pwq->pool;
3480 bool is_last;
3481
3482 if (WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND)))
3483 return;
3484
3485 mutex_lock(&wq->mutex);
3486 list_del_rcu(&pwq->pwqs_node);
3487 is_last = list_empty(&wq->pwqs);
3488 mutex_unlock(&wq->mutex);
3489
3490 mutex_lock(&wq_pool_mutex);
3491 put_unbound_pool(pool);
3492 mutex_unlock(&wq_pool_mutex);
3493
3494 call_rcu_sched(&pwq->rcu, rcu_free_pwq);
3495
3496 /*
3497 * If we're the last pwq going away, @wq is already dead and no one
3498 * is gonna access it anymore. Schedule RCU free.
3499 */
3500 if (is_last)
3501 call_rcu_sched(&wq->rcu, rcu_free_wq);
3502 }
3503
3504 /**
3505 * pwq_adjust_max_active - update a pwq's max_active to the current setting
3506 * @pwq: target pool_workqueue
3507 *
3508 * If @pwq isn't freezing, set @pwq->max_active to the associated
3509 * workqueue's saved_max_active and activate delayed work items
3510 * accordingly. If @pwq is freezing, clear @pwq->max_active to zero.
3511 */
3512 static void pwq_adjust_max_active(struct pool_workqueue *pwq)
3513 {
3514 struct workqueue_struct *wq = pwq->wq;
3515 bool freezable = wq->flags & WQ_FREEZABLE;
3516 unsigned long flags;
3517
3518 /* for @wq->saved_max_active */
3519 lockdep_assert_held(&wq->mutex);
3520
3521 /* fast exit for non-freezable wqs */
3522 if (!freezable && pwq->max_active == wq->saved_max_active)
3523 return;
3524
3525 /* this function can be called during early boot w/ irq disabled */
3526 spin_lock_irqsave(&pwq->pool->lock, flags);
3527
3528 /*
3529 * During [un]freezing, the caller is responsible for ensuring that
3530 * this function is called at least once after @workqueue_freezing
3531 * is updated and visible.
3532 */
3533 if (!freezable || !workqueue_freezing) {
3534 pwq->max_active = wq->saved_max_active;
3535
3536 while (!list_empty(&pwq->delayed_works) &&
3537 pwq->nr_active < pwq->max_active)
3538 pwq_activate_first_delayed(pwq);
3539
3540 /*
3541 * Need to kick a worker after thawed or an unbound wq's
3542 * max_active is bumped. It's a slow path. Do it always.
3543 */
3544 wake_up_worker(pwq->pool);
3545 } else {
3546 pwq->max_active = 0;
3547 }
3548
3549 spin_unlock_irqrestore(&pwq->pool->lock, flags);
3550 }
3551
3552 /* initialize newly alloced @pwq which is associated with @wq and @pool */
3553 static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq,
3554 struct worker_pool *pool)
3555 {
3556 BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK);
3557
3558 memset(pwq, 0, sizeof(*pwq));
3559
3560 pwq->pool = pool;
3561 pwq->wq = wq;
3562 pwq->flush_color = -1;
3563 pwq->refcnt = 1;
3564 INIT_LIST_HEAD(&pwq->delayed_works);
3565 INIT_LIST_HEAD(&pwq->pwqs_node);
3566 INIT_LIST_HEAD(&pwq->mayday_node);
3567 INIT_WORK(&pwq->unbound_release_work, pwq_unbound_release_workfn);
3568 }
3569
3570 /* sync @pwq with the current state of its associated wq and link it */
3571 static void link_pwq(struct pool_workqueue *pwq)
3572 {
3573 struct workqueue_struct *wq = pwq->wq;
3574
3575 lockdep_assert_held(&wq->mutex);
3576
3577 /* may be called multiple times, ignore if already linked */
3578 if (!list_empty(&pwq->pwqs_node))
3579 return;
3580
3581 /* set the matching work_color */
3582 pwq->work_color = wq->work_color;
3583
3584 /* sync max_active to the current setting */
3585 pwq_adjust_max_active(pwq);
3586
3587 /* link in @pwq */
3588 list_add_rcu(&pwq->pwqs_node, &wq->pwqs);
3589 }
3590
3591 /* obtain a pool matching @attr and create a pwq associating the pool and @wq */
3592 static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq,
3593 const struct workqueue_attrs *attrs)
3594 {
3595 struct worker_pool *pool;
3596 struct pool_workqueue *pwq;
3597
3598 lockdep_assert_held(&wq_pool_mutex);
3599
3600 pool = get_unbound_pool(attrs);
3601 if (!pool)
3602 return NULL;
3603
3604 pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node);
3605 if (!pwq) {
3606 put_unbound_pool(pool);
3607 return NULL;
3608 }
3609
3610 init_pwq(pwq, wq, pool);
3611 return pwq;
3612 }
3613
3614 /**
3615 * wq_calc_node_cpumask - calculate a wq_attrs' cpumask for the specified node
3616 * @attrs: the wq_attrs of the default pwq of the target workqueue
3617 * @node: the target NUMA node
3618 * @cpu_going_down: if >= 0, the CPU to consider as offline
3619 * @cpumask: outarg, the resulting cpumask
3620 *
3621 * Calculate the cpumask a workqueue with @attrs should use on @node. If
3622 * @cpu_going_down is >= 0, that cpu is considered offline during
3623 * calculation. The result is stored in @cpumask.
3624 *
3625 * If NUMA affinity is not enabled, @attrs->cpumask is always used. If
3626 * enabled and @node has online CPUs requested by @attrs, the returned
3627 * cpumask is the intersection of the possible CPUs of @node and
3628 * @attrs->cpumask.
3629 *
3630 * The caller is responsible for ensuring that the cpumask of @node stays
3631 * stable.
3632 *
3633 * Return: %true if the resulting @cpumask is different from @attrs->cpumask,
3634 * %false if equal.
3635 */
3636 static bool wq_calc_node_cpumask(const struct workqueue_attrs *attrs, int node,
3637 int cpu_going_down, cpumask_t *cpumask)
3638 {
3639 if (!wq_numa_enabled || attrs->no_numa)
3640 goto use_dfl;
3641
3642 /* does @node have any online CPUs @attrs wants? */
3643 cpumask_and(cpumask, cpumask_of_node(node), attrs->cpumask);
3644 if (cpu_going_down >= 0)
3645 cpumask_clear_cpu(cpu_going_down, cpumask);
3646
3647 if (cpumask_empty(cpumask))
3648 goto use_dfl;
3649
3650 /* yeap, return possible CPUs in @node that @attrs wants */
3651 cpumask_and(cpumask, attrs->cpumask, wq_numa_possible_cpumask[node]);
3652
3653 if (cpumask_empty(cpumask)) {
3654 pr_warn_once("WARNING: workqueue cpumask: online intersect > "
3655 "possible intersect\n");
3656 return false;
3657 }
3658
3659 return !cpumask_equal(cpumask, attrs->cpumask);
3660
3661 use_dfl:
3662 cpumask_copy(cpumask, attrs->cpumask);
3663 return false;
3664 }
3665
3666 /* install @pwq into @wq's numa_pwq_tbl[] for @node and return the old pwq */
3667 static struct pool_workqueue *numa_pwq_tbl_install(struct workqueue_struct *wq,
3668 int node,
3669 struct pool_workqueue *pwq)
3670 {
3671 struct pool_workqueue *old_pwq;
3672
3673 lockdep_assert_held(&wq_pool_mutex);
3674 lockdep_assert_held(&wq->mutex);
3675
3676 /* link_pwq() can handle duplicate calls */
3677 link_pwq(pwq);
3678
3679 old_pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
3680 rcu_assign_pointer(wq->numa_pwq_tbl[node], pwq);
3681 return old_pwq;
3682 }
3683
3684 /* context to store the prepared attrs & pwqs before applying */
3685 struct apply_wqattrs_ctx {
3686 struct workqueue_struct *wq; /* target workqueue */
3687 struct workqueue_attrs *attrs; /* attrs to apply */
3688 struct list_head list; /* queued for batching commit */
3689 struct pool_workqueue *dfl_pwq;
3690 struct pool_workqueue *pwq_tbl[];
3691 };
3692
3693 /* free the resources after success or abort */
3694 static void apply_wqattrs_cleanup(struct apply_wqattrs_ctx *ctx)
3695 {
3696 if (ctx) {
3697 int node;
3698
3699 for_each_node(node)
3700 put_pwq_unlocked(ctx->pwq_tbl[node]);
3701 put_pwq_unlocked(ctx->dfl_pwq);
3702
3703 free_workqueue_attrs(ctx->attrs);
3704
3705 kfree(ctx);
3706 }
3707 }
3708
3709 /* allocate the attrs and pwqs for later installation */
3710 static struct apply_wqattrs_ctx *
3711 apply_wqattrs_prepare(struct workqueue_struct *wq,
3712 const struct workqueue_attrs *attrs)
3713 {
3714 struct apply_wqattrs_ctx *ctx;
3715 struct workqueue_attrs *new_attrs, *tmp_attrs;
3716 int node;
3717
3718 lockdep_assert_held(&wq_pool_mutex);
3719
3720 ctx = kzalloc(sizeof(*ctx) + nr_node_ids * sizeof(ctx->pwq_tbl[0]),
3721 GFP_KERNEL);
3722
3723 new_attrs = alloc_workqueue_attrs(GFP_KERNEL);
3724 tmp_attrs = alloc_workqueue_attrs(GFP_KERNEL);
3725 if (!ctx || !new_attrs || !tmp_attrs)
3726 goto out_free;
3727
3728 /*
3729 * Calculate the attrs of the default pwq.
3730 * If the user configured cpumask doesn't overlap with the
3731 * wq_unbound_cpumask, we fallback to the wq_unbound_cpumask.
3732 */
3733 copy_workqueue_attrs(new_attrs, attrs);
3734 cpumask_and(new_attrs->cpumask, new_attrs->cpumask, wq_unbound_cpumask);
3735 if (unlikely(cpumask_empty(new_attrs->cpumask)))
3736 cpumask_copy(new_attrs->cpumask, wq_unbound_cpumask);
3737
3738 /*
3739 * We may create multiple pwqs with differing cpumasks. Make a
3740 * copy of @new_attrs which will be modified and used to obtain
3741 * pools.
3742 */
3743 copy_workqueue_attrs(tmp_attrs, new_attrs);
3744
3745 /*
3746 * If something goes wrong during CPU up/down, we'll fall back to
3747 * the default pwq covering whole @attrs->cpumask. Always create
3748 * it even if we don't use it immediately.
3749 */
3750 ctx->dfl_pwq = alloc_unbound_pwq(wq, new_attrs);
3751 if (!ctx->dfl_pwq)
3752 goto out_free;
3753
3754 for_each_node(node) {
3755 if (wq_calc_node_cpumask(new_attrs, node, -1, tmp_attrs->cpumask)) {
3756 ctx->pwq_tbl[node] = alloc_unbound_pwq(wq, tmp_attrs);
3757 if (!ctx->pwq_tbl[node])
3758 goto out_free;
3759 } else {
3760 ctx->dfl_pwq->refcnt++;
3761 ctx->pwq_tbl[node] = ctx->dfl_pwq;
3762 }
3763 }
3764
3765 /* save the user configured attrs and sanitize it. */
3766 copy_workqueue_attrs(new_attrs, attrs);
3767 cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask);
3768 ctx->attrs = new_attrs;
3769
3770 ctx->wq = wq;
3771 free_workqueue_attrs(tmp_attrs);
3772 return ctx;
3773
3774 out_free:
3775 free_workqueue_attrs(tmp_attrs);
3776 free_workqueue_attrs(new_attrs);
3777 apply_wqattrs_cleanup(ctx);
3778 return NULL;
3779 }
3780
3781 /* set attrs and install prepared pwqs, @ctx points to old pwqs on return */
3782 static void apply_wqattrs_commit(struct apply_wqattrs_ctx *ctx)
3783 {
3784 int node;
3785
3786 /* all pwqs have been created successfully, let's install'em */
3787 mutex_lock(&ctx->wq->mutex);
3788
3789 copy_workqueue_attrs(ctx->wq->unbound_attrs, ctx->attrs);
3790
3791 /* save the previous pwq and install the new one */
3792 for_each_node(node)
3793 ctx->pwq_tbl[node] = numa_pwq_tbl_install(ctx->wq, node,
3794 ctx->pwq_tbl[node]);
3795
3796 /* @dfl_pwq might not have been used, ensure it's linked */
3797 link_pwq(ctx->dfl_pwq);
3798 swap(ctx->wq->dfl_pwq, ctx->dfl_pwq);
3799
3800 mutex_unlock(&ctx->wq->mutex);
3801 }
3802
3803 static void apply_wqattrs_lock(void)
3804 {
3805 /* CPUs should stay stable across pwq creations and installations */
3806 get_online_cpus();
3807 mutex_lock(&wq_pool_mutex);
3808 }
3809
3810 static void apply_wqattrs_unlock(void)
3811 {
3812 mutex_unlock(&wq_pool_mutex);
3813 put_online_cpus();
3814 }
3815
3816 static int apply_workqueue_attrs_locked(struct workqueue_struct *wq,
3817 const struct workqueue_attrs *attrs)
3818 {
3819 struct apply_wqattrs_ctx *ctx;
3820
3821 /* only unbound workqueues can change attributes */
3822 if (WARN_ON(!(wq->flags & WQ_UNBOUND)))
3823 return -EINVAL;
3824
3825 /* creating multiple pwqs breaks ordering guarantee */
3826 if (!list_empty(&wq->pwqs)) {
3827 if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
3828 return -EINVAL;
3829
3830 wq->flags &= ~__WQ_ORDERED;
3831 }
3832
3833 ctx = apply_wqattrs_prepare(wq, attrs);
3834 if (!ctx)
3835 return -ENOMEM;
3836
3837 /* the ctx has been prepared successfully, let's commit it */
3838 apply_wqattrs_commit(ctx);
3839 apply_wqattrs_cleanup(ctx);
3840
3841 return 0;
3842 }
3843
3844 /**
3845 * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue
3846 * @wq: the target workqueue
3847 * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs()
3848 *
3849 * Apply @attrs to an unbound workqueue @wq. Unless disabled, on NUMA
3850 * machines, this function maps a separate pwq to each NUMA node with
3851 * possibles CPUs in @attrs->cpumask so that work items are affine to the
3852 * NUMA node it was issued on. Older pwqs are released as in-flight work
3853 * items finish. Note that a work item which repeatedly requeues itself
3854 * back-to-back will stay on its current pwq.
3855 *
3856 * Performs GFP_KERNEL allocations.
3857 *
3858 * Return: 0 on success and -errno on failure.
3859 */
3860 int apply_workqueue_attrs(struct workqueue_struct *wq,
3861 const struct workqueue_attrs *attrs)
3862 {
3863 int ret;
3864
3865 apply_wqattrs_lock();
3866 ret = apply_workqueue_attrs_locked(wq, attrs);
3867 apply_wqattrs_unlock();
3868
3869 return ret;
3870 }
3871
3872 /**
3873 * wq_update_unbound_numa - update NUMA affinity of a wq for CPU hot[un]plug
3874 * @wq: the target workqueue
3875 * @cpu: the CPU coming up or going down
3876 * @online: whether @cpu is coming up or going down
3877 *
3878 * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and
3879 * %CPU_DOWN_FAILED. @cpu is being hot[un]plugged, update NUMA affinity of
3880 * @wq accordingly.
3881 *
3882 * If NUMA affinity can't be adjusted due to memory allocation failure, it
3883 * falls back to @wq->dfl_pwq which may not be optimal but is always
3884 * correct.
3885 *
3886 * Note that when the last allowed CPU of a NUMA node goes offline for a
3887 * workqueue with a cpumask spanning multiple nodes, the workers which were
3888 * already executing the work items for the workqueue will lose their CPU
3889 * affinity and may execute on any CPU. This is similar to how per-cpu
3890 * workqueues behave on CPU_DOWN. If a workqueue user wants strict
3891 * affinity, it's the user's responsibility to flush the work item from
3892 * CPU_DOWN_PREPARE.
3893 */
3894 static void wq_update_unbound_numa(struct workqueue_struct *wq, int cpu,
3895 bool online)
3896 {
3897 int node = cpu_to_node(cpu);
3898 int cpu_off = online ? -1 : cpu;
3899 struct pool_workqueue *old_pwq = NULL, *pwq;
3900 struct workqueue_attrs *target_attrs;
3901 cpumask_t *cpumask;
3902
3903 lockdep_assert_held(&wq_pool_mutex);
3904
3905 if (!wq_numa_enabled || !(wq->flags & WQ_UNBOUND) ||
3906 wq->unbound_attrs->no_numa)
3907 return;
3908
3909 /*
3910 * We don't wanna alloc/free wq_attrs for each wq for each CPU.
3911 * Let's use a preallocated one. The following buf is protected by
3912 * CPU hotplug exclusion.
3913 */
3914 target_attrs = wq_update_unbound_numa_attrs_buf;
3915 cpumask = target_attrs->cpumask;
3916
3917 copy_workqueue_attrs(target_attrs, wq->unbound_attrs);
3918 pwq = unbound_pwq_by_node(wq, node);
3919
3920 /*
3921 * Let's determine what needs to be done. If the target cpumask is
3922 * different from the default pwq's, we need to compare it to @pwq's
3923 * and create a new one if they don't match. If the target cpumask
3924 * equals the default pwq's, the default pwq should be used.
3925 */
3926 if (wq_calc_node_cpumask(wq->dfl_pwq->pool->attrs, node, cpu_off, cpumask)) {
3927 if (cpumask_equal(cpumask, pwq->pool->attrs->cpumask))
3928 return;
3929 } else {
3930 goto use_dfl_pwq;
3931 }
3932
3933 /* create a new pwq */
3934 pwq = alloc_unbound_pwq(wq, target_attrs);
3935 if (!pwq) {
3936 pr_warn("workqueue: allocation failed while updating NUMA affinity of \"%s\"\n",
3937 wq->name);
3938 goto use_dfl_pwq;
3939 }
3940
3941 /* Install the new pwq. */
3942 mutex_lock(&wq->mutex);
3943 old_pwq = numa_pwq_tbl_install(wq, node, pwq);
3944 goto out_unlock;
3945
3946 use_dfl_pwq:
3947 mutex_lock(&wq->mutex);
3948 spin_lock_irq(&wq->dfl_pwq->pool->lock);
3949 get_pwq(wq->dfl_pwq);
3950 spin_unlock_irq(&wq->dfl_pwq->pool->lock);
3951 old_pwq = numa_pwq_tbl_install(wq, node, wq->dfl_pwq);
3952 out_unlock:
3953 mutex_unlock(&wq->mutex);
3954 put_pwq_unlocked(old_pwq);
3955 }
3956
3957 static int alloc_and_link_pwqs(struct workqueue_struct *wq)
3958 {
3959 bool highpri = wq->flags & WQ_HIGHPRI;
3960 int cpu, ret;
3961
3962 if (!(wq->flags & WQ_UNBOUND)) {
3963 wq->cpu_pwqs = alloc_percpu(struct pool_workqueue);
3964 if (!wq->cpu_pwqs)
3965 return -ENOMEM;
3966
3967 for_each_possible_cpu(cpu) {
3968 struct pool_workqueue *pwq =
3969 per_cpu_ptr(wq->cpu_pwqs, cpu);
3970 struct worker_pool *cpu_pools =
3971 per_cpu(cpu_worker_pools, cpu);
3972
3973 init_pwq(pwq, wq, &cpu_pools[highpri]);
3974
3975 mutex_lock(&wq->mutex);
3976 link_pwq(pwq);
3977 mutex_unlock(&wq->mutex);
3978 }
3979 return 0;
3980 } else if (wq->flags & __WQ_ORDERED) {
3981 ret = apply_workqueue_attrs(wq, ordered_wq_attrs[highpri]);
3982 /* there should only be single pwq for ordering guarantee */
3983 WARN(!ret && (wq->pwqs.next != &wq->dfl_pwq->pwqs_node ||
3984 wq->pwqs.prev != &wq->dfl_pwq->pwqs_node),
3985 "ordering guarantee broken for workqueue %s\n", wq->name);
3986 return ret;
3987 } else {
3988 return apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]);
3989 }
3990 }
3991
3992 static int wq_clamp_max_active(int max_active, unsigned int flags,
3993 const char *name)
3994 {
3995 int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;
3996
3997 if (max_active < 1 || max_active > lim)
3998 pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
3999 max_active, name, 1, lim);
4000
4001 return clamp_val(max_active, 1, lim);
4002 }
4003
4004 struct workqueue_struct *__alloc_workqueue_key(const char *fmt,
4005 unsigned int flags,
4006 int max_active,
4007 struct lock_class_key *key,
4008 const char *lock_name, ...)
4009 {
4010 size_t tbl_size = 0;
4011 va_list args;
4012 struct workqueue_struct *wq;
4013 struct pool_workqueue *pwq;
4014
4015 /*
4016 * Unbound && max_active == 1 used to imply ordered, which is no
4017 * longer the case on NUMA machines due to per-node pools. While
4018 * alloc_ordered_workqueue() is the right way to create an ordered
4019 * workqueue, keep the previous behavior to avoid subtle breakages
4020 * on NUMA.
4021 */
4022 if ((flags & WQ_UNBOUND) && max_active == 1)
4023 flags |= __WQ_ORDERED;
4024
4025 /* see the comment above the definition of WQ_POWER_EFFICIENT */
4026 if ((flags & WQ_POWER_EFFICIENT) && wq_power_efficient)
4027 flags |= WQ_UNBOUND;
4028
4029 /* allocate wq and format name */
4030 if (flags & WQ_UNBOUND)
4031 tbl_size = nr_node_ids * sizeof(wq->numa_pwq_tbl[0]);
4032
4033 wq = kzalloc(sizeof(*wq) + tbl_size, GFP_KERNEL);
4034 if (!wq)
4035 return NULL;
4036
4037 if (flags & WQ_UNBOUND) {
4038 wq->unbound_attrs = alloc_workqueue_attrs(GFP_KERNEL);
4039 if (!wq->unbound_attrs)
4040 goto err_free_wq;
4041 }
4042
4043 va_start(args, lock_name);
4044 vsnprintf(wq->name, sizeof(wq->name), fmt, args);
4045 va_end(args);
4046
4047 max_active = max_active ?: WQ_DFL_ACTIVE;
4048 max_active = wq_clamp_max_active(max_active, flags, wq->name);
4049
4050 /* init wq */
4051 wq->flags = flags;
4052 wq->saved_max_active = max_active;
4053 mutex_init(&wq->mutex);
4054 atomic_set(&wq->nr_pwqs_to_flush, 0);
4055 INIT_LIST_HEAD(&wq->pwqs);
4056 INIT_LIST_HEAD(&wq->flusher_queue);
4057 INIT_LIST_HEAD(&wq->flusher_overflow);
4058 INIT_LIST_HEAD(&wq->maydays);
4059
4060 lockdep_init_map(&wq->lockdep_map, lock_name, key, 0);
4061 INIT_LIST_HEAD(&wq->list);
4062
4063 if (alloc_and_link_pwqs(wq) < 0)
4064 goto err_free_wq;
4065
4066 /*
4067 * Workqueues which may be used during memory reclaim should
4068 * have a rescuer to guarantee forward progress.
4069 */
4070 if (flags & WQ_MEM_RECLAIM) {
4071 struct worker *rescuer;
4072
4073 rescuer = alloc_worker(NUMA_NO_NODE);
4074 if (!rescuer)
4075 goto err_destroy;
4076
4077 rescuer->rescue_wq = wq;
4078 rescuer->task = kthread_create(rescuer_thread, rescuer, "%s",
4079 wq->name);
4080 if (IS_ERR(rescuer->task)) {
4081 kfree(rescuer);
4082 goto err_destroy;
4083 }
4084
4085 wq->rescuer = rescuer;
4086 kthread_bind_mask(rescuer->task, cpu_possible_mask);
4087 wake_up_process(rescuer->task);
4088 }
4089
4090 if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq))
4091 goto err_destroy;
4092
4093 /*
4094 * wq_pool_mutex protects global freeze state and workqueues list.
4095 * Grab it, adjust max_active and add the new @wq to workqueues
4096 * list.
4097 */
4098 mutex_lock(&wq_pool_mutex);
4099
4100 mutex_lock(&wq->mutex);
4101 for_each_pwq(pwq, wq)
4102 pwq_adjust_max_active(pwq);
4103 mutex_unlock(&wq->mutex);
4104
4105 list_add_tail_rcu(&wq->list, &workqueues);
4106
4107 mutex_unlock(&wq_pool_mutex);
4108
4109 return wq;
4110
4111 err_free_wq:
4112 free_workqueue_attrs(wq->unbound_attrs);
4113 kfree(wq);
4114 return NULL;
4115 err_destroy:
4116 destroy_workqueue(wq);
4117 return NULL;
4118 }
4119 EXPORT_SYMBOL_GPL(__alloc_workqueue_key);
4120
4121 /**
4122 * destroy_workqueue - safely terminate a workqueue
4123 * @wq: target workqueue
4124 *
4125 * Safely destroy a workqueue. All work currently pending will be done first.
4126 */
4127 void destroy_workqueue(struct workqueue_struct *wq)
4128 {
4129 struct pool_workqueue *pwq;
4130 int node;
4131
4132 /* drain it before proceeding with destruction */
4133 drain_workqueue(wq);
4134
4135 /* sanity checks */
4136 mutex_lock(&wq->mutex);
4137 for_each_pwq(pwq, wq) {
4138 int i;
4139
4140 for (i = 0; i < WORK_NR_COLORS; i++) {
4141 if (WARN_ON(pwq->nr_in_flight[i])) {
4142 mutex_unlock(&wq->mutex);
4143 show_workqueue_state();
4144 return;
4145 }
4146 }
4147
4148 if (WARN_ON((pwq != wq->dfl_pwq) && (pwq->refcnt > 1)) ||
4149 WARN_ON(pwq->nr_active) ||
4150 WARN_ON(!list_empty(&pwq->delayed_works))) {
4151 mutex_unlock(&wq->mutex);
4152 show_workqueue_state();
4153 return;
4154 }
4155 }
4156 mutex_unlock(&wq->mutex);
4157
4158 /*
4159 * wq list is used to freeze wq, remove from list after
4160 * flushing is complete in case freeze races us.
4161 */
4162 mutex_lock(&wq_pool_mutex);
4163 list_del_rcu(&wq->list);
4164 mutex_unlock(&wq_pool_mutex);
4165
4166 workqueue_sysfs_unregister(wq);
4167
4168 if (wq->rescuer)
4169 kthread_stop(wq->rescuer->task);
4170
4171 if (!(wq->flags & WQ_UNBOUND)) {
4172 /*
4173 * The base ref is never dropped on per-cpu pwqs. Directly
4174 * schedule RCU free.
4175 */
4176 call_rcu_sched(&wq->rcu, rcu_free_wq);
4177 } else {
4178 /*
4179 * We're the sole accessor of @wq at this point. Directly
4180 * access numa_pwq_tbl[] and dfl_pwq to put the base refs.
4181 * @wq will be freed when the last pwq is released.
4182 */
4183 for_each_node(node) {
4184 pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
4185 RCU_INIT_POINTER(wq->numa_pwq_tbl[node], NULL);
4186 put_pwq_unlocked(pwq);
4187 }
4188
4189 /*
4190 * Put dfl_pwq. @wq may be freed any time after dfl_pwq is
4191 * put. Don't access it afterwards.
4192 */
4193 pwq = wq->dfl_pwq;
4194 wq->dfl_pwq = NULL;
4195 put_pwq_unlocked(pwq);
4196 }
4197 }
4198 EXPORT_SYMBOL_GPL(destroy_workqueue);
4199
4200 /**
4201 * workqueue_set_max_active - adjust max_active of a workqueue
4202 * @wq: target workqueue
4203 * @max_active: new max_active value.
4204 *
4205 * Set max_active of @wq to @max_active.
4206 *
4207 * CONTEXT:
4208 * Don't call from IRQ context.
4209 */
4210 void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
4211 {
4212 struct pool_workqueue *pwq;
4213
4214 /* disallow meddling with max_active for ordered workqueues */
4215 if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
4216 return;
4217
4218 max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
4219
4220 mutex_lock(&wq->mutex);
4221
4222 wq->flags &= ~__WQ_ORDERED;
4223 wq->saved_max_active = max_active;
4224
4225 for_each_pwq(pwq, wq)
4226 pwq_adjust_max_active(pwq);
4227
4228 mutex_unlock(&wq->mutex);
4229 }
4230 EXPORT_SYMBOL_GPL(workqueue_set_max_active);
4231
4232 /**
4233 * current_work - retrieve %current task's work struct
4234 *
4235 * Determine if %current task is a workqueue worker and what it's working on.
4236 * Useful to find out the context that the %current task is running in.
4237 *
4238 * Return: work struct if %current task is a workqueue worker, %NULL otherwise.
4239 */
4240 struct work_struct *current_work(void)
4241 {
4242 struct worker *worker = current_wq_worker();
4243
4244 return worker ? worker->current_work : NULL;
4245 }
4246 EXPORT_SYMBOL(current_work);
4247
4248 /**
4249 * current_is_workqueue_rescuer - is %current workqueue rescuer?
4250 *
4251 * Determine whether %current is a workqueue rescuer. Can be used from
4252 * work functions to determine whether it's being run off the rescuer task.
4253 *
4254 * Return: %true if %current is a workqueue rescuer. %false otherwise.
4255 */
4256 bool current_is_workqueue_rescuer(void)
4257 {
4258 struct worker *worker = current_wq_worker();
4259
4260 return worker && worker->rescue_wq;
4261 }
4262
4263 /**
4264 * workqueue_congested - test whether a workqueue is congested
4265 * @cpu: CPU in question
4266 * @wq: target workqueue
4267 *
4268 * Test whether @wq's cpu workqueue for @cpu is congested. There is
4269 * no synchronization around this function and the test result is
4270 * unreliable and only useful as advisory hints or for debugging.
4271 *
4272 * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU.
4273 * Note that both per-cpu and unbound workqueues may be associated with
4274 * multiple pool_workqueues which have separate congested states. A
4275 * workqueue being congested on one CPU doesn't mean the workqueue is also
4276 * contested on other CPUs / NUMA nodes.
4277 *
4278 * Return:
4279 * %true if congested, %false otherwise.
4280 */
4281 bool workqueue_congested(int cpu, struct workqueue_struct *wq)
4282 {
4283 struct pool_workqueue *pwq;
4284 bool ret;
4285
4286 rcu_read_lock_sched();
4287
4288 if (cpu == WORK_CPU_UNBOUND)
4289 cpu = smp_processor_id();
4290
4291 if (!(wq->flags & WQ_UNBOUND))
4292 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
4293 else
4294 pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
4295
4296 ret = !list_empty(&pwq->delayed_works);
4297 rcu_read_unlock_sched();
4298
4299 return ret;
4300 }
4301 EXPORT_SYMBOL_GPL(workqueue_congested);
4302
4303 /**
4304 * work_busy - test whether a work is currently pending or running
4305 * @work: the work to be tested
4306 *
4307 * Test whether @work is currently pending or running. There is no
4308 * synchronization around this function and the test result is
4309 * unreliable and only useful as advisory hints or for debugging.
4310 *
4311 * Return:
4312 * OR'd bitmask of WORK_BUSY_* bits.
4313 */
4314 unsigned int work_busy(struct work_struct *work)
4315 {
4316 struct worker_pool *pool;
4317 unsigned long flags;
4318 unsigned int ret = 0;
4319
4320 if (work_pending(work))
4321 ret |= WORK_BUSY_PENDING;
4322
4323 local_irq_save(flags);
4324 pool = get_work_pool(work);
4325 if (pool) {
4326 spin_lock(&pool->lock);
4327 if (find_worker_executing_work(pool, work))
4328 ret |= WORK_BUSY_RUNNING;
4329 spin_unlock(&pool->lock);
4330 }
4331 local_irq_restore(flags);
4332
4333 return ret;
4334 }
4335 EXPORT_SYMBOL_GPL(work_busy);
4336
4337 /**
4338 * set_worker_desc - set description for the current work item
4339 * @fmt: printf-style format string
4340 * @...: arguments for the format string
4341 *
4342 * This function can be called by a running work function to describe what
4343 * the work item is about. If the worker task gets dumped, this
4344 * information will be printed out together to help debugging. The
4345 * description can be at most WORKER_DESC_LEN including the trailing '\0'.
4346 */
4347 void set_worker_desc(const char *fmt, ...)
4348 {
4349 struct worker *worker = current_wq_worker();
4350 va_list args;
4351
4352 if (worker) {
4353 va_start(args, fmt);
4354 vsnprintf(worker->desc, sizeof(worker->desc), fmt, args);
4355 va_end(args);
4356 worker->desc_valid = true;
4357 }
4358 }
4359
4360 /**
4361 * print_worker_info - print out worker information and description
4362 * @log_lvl: the log level to use when printing
4363 * @task: target task
4364 *
4365 * If @task is a worker and currently executing a work item, print out the
4366 * name of the workqueue being serviced and worker description set with
4367 * set_worker_desc() by the currently executing work item.
4368 *
4369 * This function can be safely called on any task as long as the
4370 * task_struct itself is accessible. While safe, this function isn't
4371 * synchronized and may print out mixups or garbages of limited length.
4372 */
4373 void print_worker_info(const char *log_lvl, struct task_struct *task)
4374 {
4375 work_func_t *fn = NULL;
4376 char name[WQ_NAME_LEN] = { };
4377 char desc[WORKER_DESC_LEN] = { };
4378 struct pool_workqueue *pwq = NULL;
4379 struct workqueue_struct *wq = NULL;
4380 bool desc_valid = false;
4381 struct worker *worker;
4382
4383 if (!(task->flags & PF_WQ_WORKER))
4384 return;
4385
4386 /*
4387 * This function is called without any synchronization and @task
4388 * could be in any state. Be careful with dereferences.
4389 */
4390 worker = kthread_probe_data(task);
4391
4392 /*
4393 * Carefully copy the associated workqueue's workfn and name. Keep
4394 * the original last '\0' in case the original contains garbage.
4395 */
4396 probe_kernel_read(&fn, &worker->current_func, sizeof(fn));
4397 probe_kernel_read(&pwq, &worker->current_pwq, sizeof(pwq));
4398 probe_kernel_read(&wq, &pwq->wq, sizeof(wq));
4399 probe_kernel_read(name, wq->name, sizeof(name) - 1);
4400
4401 /* copy worker description */
4402 probe_kernel_read(&desc_valid, &worker->desc_valid, sizeof(desc_valid));
4403 if (desc_valid)
4404 probe_kernel_read(desc, worker->desc, sizeof(desc) - 1);
4405
4406 if (fn || name[0] || desc[0]) {
4407 printk("%sWorkqueue: %s %pf", log_lvl, name, fn);
4408 if (desc[0])
4409 pr_cont(" (%s)", desc);
4410 pr_cont("\n");
4411 }
4412 }
4413
4414 static void pr_cont_pool_info(struct worker_pool *pool)
4415 {
4416 pr_cont(" cpus=%*pbl", nr_cpumask_bits, pool->attrs->cpumask);
4417 if (pool->node != NUMA_NO_NODE)
4418 pr_cont(" node=%d", pool->node);
4419 pr_cont(" flags=0x%x nice=%d", pool->flags, pool->attrs->nice);
4420 }
4421
4422 static void pr_cont_work(bool comma, struct work_struct *work)
4423 {
4424 if (work->func == wq_barrier_func) {
4425 struct wq_barrier *barr;
4426
4427 barr = container_of(work, struct wq_barrier, work);
4428
4429 pr_cont("%s BAR(%d)", comma ? "," : "",
4430 task_pid_nr(barr->task));
4431 } else {
4432 pr_cont("%s %pf", comma ? "," : "", work->func);
4433 }
4434 }
4435
4436 static void show_pwq(struct pool_workqueue *pwq)
4437 {
4438 struct worker_pool *pool = pwq->pool;
4439 struct work_struct *work;
4440 struct worker *worker;
4441 bool has_in_flight = false, has_pending = false;
4442 int bkt;
4443
4444 pr_info(" pwq %d:", pool->id);
4445 pr_cont_pool_info(pool);
4446
4447 pr_cont(" active=%d/%d%s\n", pwq->nr_active, pwq->max_active,
4448 !list_empty(&pwq->mayday_node) ? " MAYDAY" : "");
4449
4450 hash_for_each(pool->busy_hash, bkt, worker, hentry) {
4451 if (worker->current_pwq == pwq) {
4452 has_in_flight = true;
4453 break;
4454 }
4455 }
4456 if (has_in_flight) {
4457 bool comma = false;
4458
4459 pr_info(" in-flight:");
4460 hash_for_each(pool->busy_hash, bkt, worker, hentry) {
4461 if (worker->current_pwq != pwq)
4462 continue;
4463
4464 pr_cont("%s %d%s:%pf", comma ? "," : "",
4465 task_pid_nr(worker->task),
4466 worker == pwq->wq->rescuer ? "(RESCUER)" : "",
4467 worker->current_func);
4468 list_for_each_entry(work, &worker->scheduled, entry)
4469 pr_cont_work(false, work);
4470 comma = true;
4471 }
4472 pr_cont("\n");
4473 }
4474
4475 list_for_each_entry(work, &pool->worklist, entry) {
4476 if (get_work_pwq(work) == pwq) {
4477 has_pending = true;
4478 break;
4479 }
4480 }
4481 if (has_pending) {
4482 bool comma = false;
4483
4484 pr_info(" pending:");
4485 list_for_each_entry(work, &pool->worklist, entry) {
4486 if (get_work_pwq(work) != pwq)
4487 continue;
4488
4489 pr_cont_work(comma, work);
4490 comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
4491 }
4492 pr_cont("\n");
4493 }
4494
4495 if (!list_empty(&pwq->delayed_works)) {
4496 bool comma = false;
4497
4498 pr_info(" delayed:");
4499 list_for_each_entry(work, &pwq->delayed_works, entry) {
4500 pr_cont_work(comma, work);
4501 comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
4502 }
4503 pr_cont("\n");
4504 }
4505 }
4506
4507 /**
4508 * show_workqueue_state - dump workqueue state
4509 *
4510 * Called from a sysrq handler or try_to_freeze_tasks() and prints out
4511 * all busy workqueues and pools.
4512 */
4513 void show_workqueue_state(void)
4514 {
4515 struct workqueue_struct *wq;
4516 struct worker_pool *pool;
4517 unsigned long flags;
4518 int pi;
4519
4520 rcu_read_lock_sched();
4521
4522 pr_info("Showing busy workqueues and worker pools:\n");
4523
4524 list_for_each_entry_rcu(wq, &workqueues, list) {
4525 struct pool_workqueue *pwq;
4526 bool idle = true;
4527
4528 for_each_pwq(pwq, wq) {
4529 if (pwq->nr_active || !list_empty(&pwq->delayed_works)) {
4530 idle = false;
4531 break;
4532 }
4533 }
4534 if (idle)
4535 continue;
4536
4537 pr_info("workqueue %s: flags=0x%x\n", wq->name, wq->flags);
4538
4539 for_each_pwq(pwq, wq) {
4540 spin_lock_irqsave(&pwq->pool->lock, flags);
4541 if (pwq->nr_active || !list_empty(&pwq->delayed_works))
4542 show_pwq(pwq);
4543 spin_unlock_irqrestore(&pwq->pool->lock, flags);
4544 /*
4545 * We could be printing a lot from atomic context, e.g.
4546 * sysrq-t -> show_workqueue_state(). Avoid triggering
4547 * hard lockup.
4548 */
4549 touch_nmi_watchdog();
4550 }
4551 }
4552
4553 for_each_pool(pool, pi) {
4554 struct worker *worker;
4555 bool first = true;
4556
4557 spin_lock_irqsave(&pool->lock, flags);
4558 if (pool->nr_workers == pool->nr_idle)
4559 goto next_pool;
4560
4561 pr_info("pool %d:", pool->id);
4562 pr_cont_pool_info(pool);
4563 pr_cont(" hung=%us workers=%d",
4564 jiffies_to_msecs(jiffies - pool->watchdog_ts) / 1000,
4565 pool->nr_workers);
4566 if (pool->manager)
4567 pr_cont(" manager: %d",
4568 task_pid_nr(pool->manager->task));
4569 list_for_each_entry(worker, &pool->idle_list, entry) {
4570 pr_cont(" %s%d", first ? "idle: " : "",
4571 task_pid_nr(worker->task));
4572 first = false;
4573 }
4574 pr_cont("\n");
4575 next_pool:
4576 spin_unlock_irqrestore(&pool->lock, flags);
4577 /*
4578 * We could be printing a lot from atomic context, e.g.
4579 * sysrq-t -> show_workqueue_state(). Avoid triggering
4580 * hard lockup.
4581 */
4582 touch_nmi_watchdog();
4583 }
4584
4585 rcu_read_unlock_sched();
4586 }
4587
4588 /*
4589 * CPU hotplug.
4590 *
4591 * There are two challenges in supporting CPU hotplug. Firstly, there
4592 * are a lot of assumptions on strong associations among work, pwq and
4593 * pool which make migrating pending and scheduled works very
4594 * difficult to implement without impacting hot paths. Secondly,
4595 * worker pools serve mix of short, long and very long running works making
4596 * blocked draining impractical.
4597 *
4598 * This is solved by allowing the pools to be disassociated from the CPU
4599 * running as an unbound one and allowing it to be reattached later if the
4600 * cpu comes back online.
4601 */
4602
4603 static void unbind_workers(int cpu)
4604 {
4605 struct worker_pool *pool;
4606 struct worker *worker;
4607
4608 for_each_cpu_worker_pool(pool, cpu) {
4609 mutex_lock(&pool->attach_mutex);
4610 spin_lock_irq(&pool->lock);
4611
4612 /*
4613 * We've blocked all attach/detach operations. Make all workers
4614 * unbound and set DISASSOCIATED. Before this, all workers
4615 * except for the ones which are still executing works from
4616 * before the last CPU down must be on the cpu. After
4617 * this, they may become diasporas.
4618 */
4619 for_each_pool_worker(worker, pool)
4620 worker->flags |= WORKER_UNBOUND;
4621
4622 pool->flags |= POOL_DISASSOCIATED;
4623
4624 spin_unlock_irq(&pool->lock);
4625 mutex_unlock(&pool->attach_mutex);
4626
4627 /*
4628 * Call schedule() so that we cross rq->lock and thus can
4629 * guarantee sched callbacks see the %WORKER_UNBOUND flag.
4630 * This is necessary as scheduler callbacks may be invoked
4631 * from other cpus.
4632 */
4633 schedule();
4634
4635 /*
4636 * Sched callbacks are disabled now. Zap nr_running.
4637 * After this, nr_running stays zero and need_more_worker()
4638 * and keep_working() are always true as long as the
4639 * worklist is not empty. This pool now behaves as an
4640 * unbound (in terms of concurrency management) pool which
4641 * are served by workers tied to the pool.
4642 */
4643 atomic_set(&pool->nr_running, 0);
4644
4645 /*
4646 * With concurrency management just turned off, a busy
4647 * worker blocking could lead to lengthy stalls. Kick off
4648 * unbound chain execution of currently pending work items.
4649 */
4650 spin_lock_irq(&pool->lock);
4651 wake_up_worker(pool);
4652 spin_unlock_irq(&pool->lock);
4653 }
4654 }
4655
4656 /**
4657 * rebind_workers - rebind all workers of a pool to the associated CPU
4658 * @pool: pool of interest
4659 *
4660 * @pool->cpu is coming online. Rebind all workers to the CPU.
4661 */
4662 static void rebind_workers(struct worker_pool *pool)
4663 {
4664 struct worker *worker;
4665
4666 lockdep_assert_held(&pool->attach_mutex);
4667
4668 /*
4669 * Restore CPU affinity of all workers. As all idle workers should
4670 * be on the run-queue of the associated CPU before any local
4671 * wake-ups for concurrency management happen, restore CPU affinity
4672 * of all workers first and then clear UNBOUND. As we're called
4673 * from CPU_ONLINE, the following shouldn't fail.
4674 */
4675 for_each_pool_worker(worker, pool)
4676 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
4677 pool->attrs->cpumask) < 0);
4678
4679 spin_lock_irq(&pool->lock);
4680
4681 pool->flags &= ~POOL_DISASSOCIATED;
4682
4683 for_each_pool_worker(worker, pool) {
4684 unsigned int worker_flags = worker->flags;
4685
4686 /*
4687 * A bound idle worker should actually be on the runqueue
4688 * of the associated CPU for local wake-ups targeting it to
4689 * work. Kick all idle workers so that they migrate to the
4690 * associated CPU. Doing this in the same loop as
4691 * replacing UNBOUND with REBOUND is safe as no worker will
4692 * be bound before @pool->lock is released.
4693 */
4694 if (worker_flags & WORKER_IDLE)
4695 wake_up_process(worker->task);
4696
4697 /*
4698 * We want to clear UNBOUND but can't directly call
4699 * worker_clr_flags() or adjust nr_running. Atomically
4700 * replace UNBOUND with another NOT_RUNNING flag REBOUND.
4701 * @worker will clear REBOUND using worker_clr_flags() when
4702 * it initiates the next execution cycle thus restoring
4703 * concurrency management. Note that when or whether
4704 * @worker clears REBOUND doesn't affect correctness.
4705 *
4706 * WRITE_ONCE() is necessary because @worker->flags may be
4707 * tested without holding any lock in
4708 * wq_worker_waking_up(). Without it, NOT_RUNNING test may
4709 * fail incorrectly leading to premature concurrency
4710 * management operations.
4711 */
4712 WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND));
4713 worker_flags |= WORKER_REBOUND;
4714 worker_flags &= ~WORKER_UNBOUND;
4715 WRITE_ONCE(worker->flags, worker_flags);
4716 }
4717
4718 spin_unlock_irq(&pool->lock);
4719 }
4720
4721 /**
4722 * restore_unbound_workers_cpumask - restore cpumask of unbound workers
4723 * @pool: unbound pool of interest
4724 * @cpu: the CPU which is coming up
4725 *
4726 * An unbound pool may end up with a cpumask which doesn't have any online
4727 * CPUs. When a worker of such pool get scheduled, the scheduler resets
4728 * its cpus_allowed. If @cpu is in @pool's cpumask which didn't have any
4729 * online CPU before, cpus_allowed of all its workers should be restored.
4730 */
4731 static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu)
4732 {
4733 static cpumask_t cpumask;
4734 struct worker *worker;
4735
4736 lockdep_assert_held(&pool->attach_mutex);
4737
4738 /* is @cpu allowed for @pool? */
4739 if (!cpumask_test_cpu(cpu, pool->attrs->cpumask))
4740 return;
4741
4742 cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask);
4743
4744 /* as we're called from CPU_ONLINE, the following shouldn't fail */
4745 for_each_pool_worker(worker, pool)
4746 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, &cpumask) < 0);
4747 }
4748
4749 int workqueue_prepare_cpu(unsigned int cpu)
4750 {
4751 struct worker_pool *pool;
4752
4753 for_each_cpu_worker_pool(pool, cpu) {
4754 if (pool->nr_workers)
4755 continue;
4756 if (!create_worker(pool))
4757 return -ENOMEM;
4758 }
4759 return 0;
4760 }
4761
4762 int workqueue_online_cpu(unsigned int cpu)
4763 {
4764 struct worker_pool *pool;
4765 struct workqueue_struct *wq;
4766 int pi;
4767
4768 mutex_lock(&wq_pool_mutex);
4769
4770 for_each_pool(pool, pi) {
4771 mutex_lock(&pool->attach_mutex);
4772
4773 if (pool->cpu == cpu)
4774 rebind_workers(pool);
4775 else if (pool->cpu < 0)
4776 restore_unbound_workers_cpumask(pool, cpu);
4777
4778 mutex_unlock(&pool->attach_mutex);
4779 }
4780
4781 /* update NUMA affinity of unbound workqueues */
4782 list_for_each_entry(wq, &workqueues, list)
4783 wq_update_unbound_numa(wq, cpu, true);
4784
4785 mutex_unlock(&wq_pool_mutex);
4786 return 0;
4787 }
4788
4789 int workqueue_offline_cpu(unsigned int cpu)
4790 {
4791 struct workqueue_struct *wq;
4792
4793 /* unbinding per-cpu workers should happen on the local CPU */
4794 if (WARN_ON(cpu != smp_processor_id()))
4795 return -1;
4796
4797 unbind_workers(cpu);
4798
4799 /* update NUMA affinity of unbound workqueues */
4800 mutex_lock(&wq_pool_mutex);
4801 list_for_each_entry(wq, &workqueues, list)
4802 wq_update_unbound_numa(wq, cpu, false);
4803 mutex_unlock(&wq_pool_mutex);
4804
4805 return 0;
4806 }
4807
4808 #ifdef CONFIG_SMP
4809
4810 struct work_for_cpu {
4811 struct work_struct work;
4812 long (*fn)(void *);
4813 void *arg;
4814 long ret;
4815 };
4816
4817 static void work_for_cpu_fn(struct work_struct *work)
4818 {
4819 struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);
4820
4821 wfc->ret = wfc->fn(wfc->arg);
4822 }
4823
4824 /**
4825 * work_on_cpu - run a function in thread context on a particular cpu
4826 * @cpu: the cpu to run on
4827 * @fn: the function to run
4828 * @arg: the function arg
4829 *
4830 * It is up to the caller to ensure that the cpu doesn't go offline.
4831 * The caller must not hold any locks which would prevent @fn from completing.
4832 *
4833 * Return: The value @fn returns.
4834 */
4835 long work_on_cpu(int cpu, long (*fn)(void *), void *arg)
4836 {
4837 struct work_for_cpu wfc = { .fn = fn, .arg = arg };
4838
4839 INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn);
4840 schedule_work_on(cpu, &wfc.work);
4841 flush_work(&wfc.work);
4842 destroy_work_on_stack(&wfc.work);
4843 return wfc.ret;
4844 }
4845 EXPORT_SYMBOL_GPL(work_on_cpu);
4846
4847 /**
4848 * work_on_cpu_safe - run a function in thread context on a particular cpu
4849 * @cpu: the cpu to run on
4850 * @fn: the function to run
4851 * @arg: the function argument
4852 *
4853 * Disables CPU hotplug and calls work_on_cpu(). The caller must not hold
4854 * any locks which would prevent @fn from completing.
4855 *
4856 * Return: The value @fn returns.
4857 */
4858 long work_on_cpu_safe(int cpu, long (*fn)(void *), void *arg)
4859 {
4860 long ret = -ENODEV;
4861
4862 get_online_cpus();
4863 if (cpu_online(cpu))
4864 ret = work_on_cpu(cpu, fn, arg);
4865 put_online_cpus();
4866 return ret;
4867 }
4868 EXPORT_SYMBOL_GPL(work_on_cpu_safe);
4869 #endif /* CONFIG_SMP */
4870
4871 #ifdef CONFIG_FREEZER
4872
4873 /**
4874 * freeze_workqueues_begin - begin freezing workqueues
4875 *
4876 * Start freezing workqueues. After this function returns, all freezable
4877 * workqueues will queue new works to their delayed_works list instead of
4878 * pool->worklist.
4879 *
4880 * CONTEXT:
4881 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
4882 */
4883 void freeze_workqueues_begin(void)
4884 {
4885 struct workqueue_struct *wq;
4886 struct pool_workqueue *pwq;
4887
4888 mutex_lock(&wq_pool_mutex);
4889
4890 WARN_ON_ONCE(workqueue_freezing);
4891 workqueue_freezing = true;
4892
4893 list_for_each_entry(wq, &workqueues, list) {
4894 mutex_lock(&wq->mutex);
4895 for_each_pwq(pwq, wq)
4896 pwq_adjust_max_active(pwq);
4897 mutex_unlock(&wq->mutex);
4898 }
4899
4900 mutex_unlock(&wq_pool_mutex);
4901 }
4902
4903 /**
4904 * freeze_workqueues_busy - are freezable workqueues still busy?
4905 *
4906 * Check whether freezing is complete. This function must be called
4907 * between freeze_workqueues_begin() and thaw_workqueues().
4908 *
4909 * CONTEXT:
4910 * Grabs and releases wq_pool_mutex.
4911 *
4912 * Return:
4913 * %true if some freezable workqueues are still busy. %false if freezing
4914 * is complete.
4915 */
4916 bool freeze_workqueues_busy(void)
4917 {
4918 bool busy = false;
4919 struct workqueue_struct *wq;
4920 struct pool_workqueue *pwq;
4921
4922 mutex_lock(&wq_pool_mutex);
4923
4924 WARN_ON_ONCE(!workqueue_freezing);
4925
4926 list_for_each_entry(wq, &workqueues, list) {
4927 if (!(wq->flags & WQ_FREEZABLE))
4928 continue;
4929 /*
4930 * nr_active is monotonically decreasing. It's safe
4931 * to peek without lock.
4932 */
4933 rcu_read_lock_sched();
4934 for_each_pwq(pwq, wq) {
4935 WARN_ON_ONCE(pwq->nr_active < 0);
4936 if (pwq->nr_active) {
4937 busy = true;
4938 rcu_read_unlock_sched();
4939 goto out_unlock;
4940 }
4941 }
4942 rcu_read_unlock_sched();
4943 }
4944 out_unlock:
4945 mutex_unlock(&wq_pool_mutex);
4946 return busy;
4947 }
4948
4949 /**
4950 * thaw_workqueues - thaw workqueues
4951 *
4952 * Thaw workqueues. Normal queueing is restored and all collected
4953 * frozen works are transferred to their respective pool worklists.
4954 *
4955 * CONTEXT:
4956 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
4957 */
4958 void thaw_workqueues(void)
4959 {
4960 struct workqueue_struct *wq;
4961 struct pool_workqueue *pwq;
4962
4963 mutex_lock(&wq_pool_mutex);
4964
4965 if (!workqueue_freezing)
4966 goto out_unlock;
4967
4968 workqueue_freezing = false;
4969
4970 /* restore max_active and repopulate worklist */
4971 list_for_each_entry(wq, &workqueues, list) {
4972 mutex_lock(&wq->mutex);
4973 for_each_pwq(pwq, wq)
4974 pwq_adjust_max_active(pwq);
4975 mutex_unlock(&wq->mutex);
4976 }
4977
4978 out_unlock:
4979 mutex_unlock(&wq_pool_mutex);
4980 }
4981 #endif /* CONFIG_FREEZER */
4982
4983 static int workqueue_apply_unbound_cpumask(void)
4984 {
4985 LIST_HEAD(ctxs);
4986 int ret = 0;
4987 struct workqueue_struct *wq;
4988 struct apply_wqattrs_ctx *ctx, *n;
4989
4990 lockdep_assert_held(&wq_pool_mutex);
4991
4992 list_for_each_entry(wq, &workqueues, list) {
4993 if (!(wq->flags & WQ_UNBOUND))
4994 continue;
4995 /* creating multiple pwqs breaks ordering guarantee */
4996 if (wq->flags & __WQ_ORDERED)
4997 continue;
4998
4999 ctx = apply_wqattrs_prepare(wq, wq->unbound_attrs);
5000 if (!ctx) {
5001 ret = -ENOMEM;
5002 break;
5003 }
5004
5005 list_add_tail(&ctx->list, &ctxs);
5006 }
5007
5008 list_for_each_entry_safe(ctx, n, &ctxs, list) {
5009 if (!ret)
5010 apply_wqattrs_commit(ctx);
5011 apply_wqattrs_cleanup(ctx);
5012 }
5013
5014 return ret;
5015 }
5016
5017 /**
5018 * workqueue_set_unbound_cpumask - Set the low-level unbound cpumask
5019 * @cpumask: the cpumask to set
5020 *
5021 * The low-level workqueues cpumask is a global cpumask that limits
5022 * the affinity of all unbound workqueues. This function check the @cpumask
5023 * and apply it to all unbound workqueues and updates all pwqs of them.
5024 *
5025 * Retun: 0 - Success
5026 * -EINVAL - Invalid @cpumask
5027 * -ENOMEM - Failed to allocate memory for attrs or pwqs.
5028 */
5029 int workqueue_set_unbound_cpumask(cpumask_var_t cpumask)
5030 {
5031 int ret = -EINVAL;
5032 cpumask_var_t saved_cpumask;
5033
5034 if (!zalloc_cpumask_var(&saved_cpumask, GFP_KERNEL))
5035 return -ENOMEM;
5036
5037 /*
5038 * Not excluding isolated cpus on purpose.
5039 * If the user wishes to include them, we allow that.
5040 */
5041 cpumask_and(cpumask, cpumask, cpu_possible_mask);
5042 if (!cpumask_empty(cpumask)) {
5043 apply_wqattrs_lock();
5044
5045 /* save the old wq_unbound_cpumask. */
5046 cpumask_copy(saved_cpumask, wq_unbound_cpumask);
5047
5048 /* update wq_unbound_cpumask at first and apply it to wqs. */
5049 cpumask_copy(wq_unbound_cpumask, cpumask);
5050 ret = workqueue_apply_unbound_cpumask();
5051
5052 /* restore the wq_unbound_cpumask when failed. */
5053 if (ret < 0)
5054 cpumask_copy(wq_unbound_cpumask, saved_cpumask);
5055
5056 apply_wqattrs_unlock();
5057 }
5058
5059 free_cpumask_var(saved_cpumask);
5060 return ret;
5061 }
5062
5063 #ifdef CONFIG_SYSFS
5064 /*
5065 * Workqueues with WQ_SYSFS flag set is visible to userland via
5066 * /sys/bus/workqueue/devices/WQ_NAME. All visible workqueues have the
5067 * following attributes.
5068 *
5069 * per_cpu RO bool : whether the workqueue is per-cpu or unbound
5070 * max_active RW int : maximum number of in-flight work items
5071 *
5072 * Unbound workqueues have the following extra attributes.
5073 *
5074 * pool_ids RO int : the associated pool IDs for each node
5075 * nice RW int : nice value of the workers
5076 * cpumask RW mask : bitmask of allowed CPUs for the workers
5077 * numa RW bool : whether enable NUMA affinity
5078 */
5079 struct wq_device {
5080 struct workqueue_struct *wq;
5081 struct device dev;
5082 };
5083
5084 static struct workqueue_struct *dev_to_wq(struct device *dev)
5085 {
5086 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
5087
5088 return wq_dev->wq;
5089 }
5090
5091 static ssize_t per_cpu_show(struct device *dev, struct device_attribute *attr,
5092 char *buf)
5093 {
5094 struct workqueue_struct *wq = dev_to_wq(dev);
5095
5096 return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND));
5097 }
5098 static DEVICE_ATTR_RO(per_cpu);
5099
5100 static ssize_t max_active_show(struct device *dev,
5101 struct device_attribute *attr, char *buf)
5102 {
5103 struct workqueue_struct *wq = dev_to_wq(dev);
5104
5105 return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active);
5106 }
5107
5108 static ssize_t max_active_store(struct device *dev,
5109 struct device_attribute *attr, const char *buf,
5110 size_t count)
5111 {
5112 struct workqueue_struct *wq = dev_to_wq(dev);
5113 int val;
5114
5115 if (sscanf(buf, "%d", &val) != 1 || val <= 0)
5116 return -EINVAL;
5117
5118 workqueue_set_max_active(wq, val);
5119 return count;
5120 }
5121 static DEVICE_ATTR_RW(max_active);
5122
5123 static struct attribute *wq_sysfs_attrs[] = {
5124 &dev_attr_per_cpu.attr,
5125 &dev_attr_max_active.attr,
5126 NULL,
5127 };
5128 ATTRIBUTE_GROUPS(wq_sysfs);
5129
5130 static ssize_t wq_pool_ids_show(struct device *dev,
5131 struct device_attribute *attr, char *buf)
5132 {
5133 struct workqueue_struct *wq = dev_to_wq(dev);
5134 const char *delim = "";
5135 int node, written = 0;
5136
5137 rcu_read_lock_sched();
5138 for_each_node(node) {
5139 written += scnprintf(buf + written, PAGE_SIZE - written,
5140 "%s%d:%d", delim, node,
5141 unbound_pwq_by_node(wq, node)->pool->id);
5142 delim = " ";
5143 }
5144 written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
5145 rcu_read_unlock_sched();
5146
5147 return written;
5148 }
5149
5150 static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr,
5151 char *buf)
5152 {
5153 struct workqueue_struct *wq = dev_to_wq(dev);
5154 int written;
5155
5156 mutex_lock(&wq->mutex);
5157 written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice);
5158 mutex_unlock(&wq->mutex);
5159
5160 return written;
5161 }
5162
5163 /* prepare workqueue_attrs for sysfs store operations */
5164 static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq)
5165 {
5166 struct workqueue_attrs *attrs;
5167
5168 lockdep_assert_held(&wq_pool_mutex);
5169
5170 attrs = alloc_workqueue_attrs(GFP_KERNEL);
5171 if (!attrs)
5172 return NULL;
5173
5174 copy_workqueue_attrs(attrs, wq->unbound_attrs);
5175 return attrs;
5176 }
5177
5178 static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr,
5179 const char *buf, size_t count)
5180 {
5181 struct workqueue_struct *wq = dev_to_wq(dev);
5182 struct workqueue_attrs *attrs;
5183 int ret = -ENOMEM;
5184
5185 apply_wqattrs_lock();
5186
5187 attrs = wq_sysfs_prep_attrs(wq);
5188 if (!attrs)
5189 goto out_unlock;
5190
5191 if (sscanf(buf, "%d", &attrs->nice) == 1 &&
5192 attrs->nice >= MIN_NICE && attrs->nice <= MAX_NICE)
5193 ret = apply_workqueue_attrs_locked(wq, attrs);
5194 else
5195 ret = -EINVAL;
5196
5197 out_unlock:
5198 apply_wqattrs_unlock();
5199 free_workqueue_attrs(attrs);
5200 return ret ?: count;
5201 }
5202
5203 static ssize_t wq_cpumask_show(struct device *dev,
5204 struct device_attribute *attr, char *buf)
5205 {
5206 struct workqueue_struct *wq = dev_to_wq(dev);
5207 int written;
5208
5209 mutex_lock(&wq->mutex);
5210 written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
5211 cpumask_pr_args(wq->unbound_attrs->cpumask));
5212 mutex_unlock(&wq->mutex);
5213 return written;
5214 }
5215
5216 static ssize_t wq_cpumask_store(struct device *dev,
5217 struct device_attribute *attr,
5218 const char *buf, size_t count)
5219 {
5220 struct workqueue_struct *wq = dev_to_wq(dev);
5221 struct workqueue_attrs *attrs;
5222 int ret = -ENOMEM;
5223
5224 apply_wqattrs_lock();
5225
5226 attrs = wq_sysfs_prep_attrs(wq);
5227 if (!attrs)
5228 goto out_unlock;
5229
5230 ret = cpumask_parse(buf, attrs->cpumask);
5231 if (!ret)
5232 ret = apply_workqueue_attrs_locked(wq, attrs);
5233
5234 out_unlock:
5235 apply_wqattrs_unlock();
5236 free_workqueue_attrs(attrs);
5237 return ret ?: count;
5238 }
5239
5240 static ssize_t wq_numa_show(struct device *dev, struct device_attribute *attr,
5241 char *buf)
5242 {
5243 struct workqueue_struct *wq = dev_to_wq(dev);
5244 int written;
5245
5246 mutex_lock(&wq->mutex);
5247 written = scnprintf(buf, PAGE_SIZE, "%d\n",
5248 !wq->unbound_attrs->no_numa);
5249 mutex_unlock(&wq->mutex);
5250
5251 return written;
5252 }
5253
5254 static ssize_t wq_numa_store(struct device *dev, struct device_attribute *attr,
5255 const char *buf, size_t count)
5256 {
5257 struct workqueue_struct *wq = dev_to_wq(dev);
5258 struct workqueue_attrs *attrs;
5259 int v, ret = -ENOMEM;
5260
5261 apply_wqattrs_lock();
5262
5263 attrs = wq_sysfs_prep_attrs(wq);
5264 if (!attrs)
5265 goto out_unlock;
5266
5267 ret = -EINVAL;
5268 if (sscanf(buf, "%d", &v) == 1) {
5269 attrs->no_numa = !v;
5270 ret = apply_workqueue_attrs_locked(wq, attrs);
5271 }
5272
5273 out_unlock:
5274 apply_wqattrs_unlock();
5275 free_workqueue_attrs(attrs);
5276 return ret ?: count;
5277 }
5278
5279 static struct device_attribute wq_sysfs_unbound_attrs[] = {
5280 __ATTR(pool_ids, 0444, wq_pool_ids_show, NULL),
5281 __ATTR(nice, 0644, wq_nice_show, wq_nice_store),
5282 __ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store),
5283 __ATTR(numa, 0644, wq_numa_show, wq_numa_store),
5284 __ATTR_NULL,
5285 };
5286
5287 static struct bus_type wq_subsys = {
5288 .name = "workqueue",
5289 .dev_groups = wq_sysfs_groups,
5290 };
5291
5292 static ssize_t wq_unbound_cpumask_show(struct device *dev,
5293 struct device_attribute *attr, char *buf)
5294 {
5295 int written;
5296
5297 mutex_lock(&wq_pool_mutex);
5298 written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
5299 cpumask_pr_args(wq_unbound_cpumask));
5300 mutex_unlock(&wq_pool_mutex);
5301
5302 return written;
5303 }
5304
5305 static ssize_t wq_unbound_cpumask_store(struct device *dev,
5306 struct device_attribute *attr, const char *buf, size_t count)
5307 {
5308 cpumask_var_t cpumask;
5309 int ret;
5310
5311 if (!zalloc_cpumask_var(&cpumask, GFP_KERNEL))
5312 return -ENOMEM;
5313
5314 ret = cpumask_parse(buf, cpumask);
5315 if (!ret)
5316 ret = workqueue_set_unbound_cpumask(cpumask);
5317
5318 free_cpumask_var(cpumask);
5319 return ret ? ret : count;
5320 }
5321
5322 static struct device_attribute wq_sysfs_cpumask_attr =
5323 __ATTR(cpumask, 0644, wq_unbound_cpumask_show,
5324 wq_unbound_cpumask_store);
5325
5326 static int __init wq_sysfs_init(void)
5327 {
5328 int err;
5329
5330 err = subsys_virtual_register(&wq_subsys, NULL);
5331 if (err)
5332 return err;
5333
5334 return device_create_file(wq_subsys.dev_root, &wq_sysfs_cpumask_attr);
5335 }
5336 core_initcall(wq_sysfs_init);
5337
5338 static void wq_device_release(struct device *dev)
5339 {
5340 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
5341
5342 kfree(wq_dev);
5343 }
5344
5345 /**
5346 * workqueue_sysfs_register - make a workqueue visible in sysfs
5347 * @wq: the workqueue to register
5348 *
5349 * Expose @wq in sysfs under /sys/bus/workqueue/devices.
5350 * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set
5351 * which is the preferred method.
5352 *
5353 * Workqueue user should use this function directly iff it wants to apply
5354 * workqueue_attrs before making the workqueue visible in sysfs; otherwise,
5355 * apply_workqueue_attrs() may race against userland updating the
5356 * attributes.
5357 *
5358 * Return: 0 on success, -errno on failure.
5359 */
5360 int workqueue_sysfs_register(struct workqueue_struct *wq)
5361 {
5362 struct wq_device *wq_dev;
5363 int ret;
5364
5365 /*
5366 * Adjusting max_active or creating new pwqs by applying
5367 * attributes breaks ordering guarantee. Disallow exposing ordered
5368 * workqueues.
5369 */
5370 if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
5371 return -EINVAL;
5372
5373 wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL);
5374 if (!wq_dev)
5375 return -ENOMEM;
5376
5377 wq_dev->wq = wq;
5378 wq_dev->dev.bus = &wq_subsys;
5379 wq_dev->dev.release = wq_device_release;
5380 dev_set_name(&wq_dev->dev, "%s", wq->name);
5381
5382 /*
5383 * unbound_attrs are created separately. Suppress uevent until
5384 * everything is ready.
5385 */
5386 dev_set_uevent_suppress(&wq_dev->dev, true);
5387
5388 ret = device_register(&wq_dev->dev);
5389 if (ret) {
5390 put_device(&wq_dev->dev);
5391 wq->wq_dev = NULL;
5392 return ret;
5393 }
5394
5395 if (wq->flags & WQ_UNBOUND) {
5396 struct device_attribute *attr;
5397
5398 for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) {
5399 ret = device_create_file(&wq_dev->dev, attr);
5400 if (ret) {
5401 device_unregister(&wq_dev->dev);
5402 wq->wq_dev = NULL;
5403 return ret;
5404 }
5405 }
5406 }
5407
5408 dev_set_uevent_suppress(&wq_dev->dev, false);
5409 kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD);
5410 return 0;
5411 }
5412
5413 /**
5414 * workqueue_sysfs_unregister - undo workqueue_sysfs_register()
5415 * @wq: the workqueue to unregister
5416 *
5417 * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister.
5418 */
5419 static void workqueue_sysfs_unregister(struct workqueue_struct *wq)
5420 {
5421 struct wq_device *wq_dev = wq->wq_dev;
5422
5423 if (!wq->wq_dev)
5424 return;
5425
5426 wq->wq_dev = NULL;
5427 device_unregister(&wq_dev->dev);
5428 }
5429 #else /* CONFIG_SYSFS */
5430 static void workqueue_sysfs_unregister(struct workqueue_struct *wq) { }
5431 #endif /* CONFIG_SYSFS */
5432
5433 /*
5434 * Workqueue watchdog.
5435 *
5436 * Stall may be caused by various bugs - missing WQ_MEM_RECLAIM, illegal
5437 * flush dependency, a concurrency managed work item which stays RUNNING
5438 * indefinitely. Workqueue stalls can be very difficult to debug as the
5439 * usual warning mechanisms don't trigger and internal workqueue state is
5440 * largely opaque.
5441 *
5442 * Workqueue watchdog monitors all worker pools periodically and dumps
5443 * state if some pools failed to make forward progress for a while where
5444 * forward progress is defined as the first item on ->worklist changing.
5445 *
5446 * This mechanism is controlled through the kernel parameter
5447 * "workqueue.watchdog_thresh" which can be updated at runtime through the
5448 * corresponding sysfs parameter file.
5449 */
5450 #ifdef CONFIG_WQ_WATCHDOG
5451
5452 static unsigned long wq_watchdog_thresh = 30;
5453 static struct timer_list wq_watchdog_timer;
5454
5455 static unsigned long wq_watchdog_touched = INITIAL_JIFFIES;
5456 static DEFINE_PER_CPU(unsigned long, wq_watchdog_touched_cpu) = INITIAL_JIFFIES;
5457
5458 static void wq_watchdog_reset_touched(void)
5459 {
5460 int cpu;
5461
5462 wq_watchdog_touched = jiffies;
5463 for_each_possible_cpu(cpu)
5464 per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
5465 }
5466
5467 static void wq_watchdog_timer_fn(struct timer_list *unused)
5468 {
5469 unsigned long thresh = READ_ONCE(wq_watchdog_thresh) * HZ;
5470 bool lockup_detected = false;
5471 struct worker_pool *pool;
5472 int pi;
5473
5474 if (!thresh)
5475 return;
5476
5477 rcu_read_lock();
5478
5479 for_each_pool(pool, pi) {
5480 unsigned long pool_ts, touched, ts;
5481
5482 if (list_empty(&pool->worklist))
5483 continue;
5484
5485 /* get the latest of pool and touched timestamps */
5486 pool_ts = READ_ONCE(pool->watchdog_ts);
5487 touched = READ_ONCE(wq_watchdog_touched);
5488
5489 if (time_after(pool_ts, touched))
5490 ts = pool_ts;
5491 else
5492 ts = touched;
5493
5494 if (pool->cpu >= 0) {
5495 unsigned long cpu_touched =
5496 READ_ONCE(per_cpu(wq_watchdog_touched_cpu,
5497 pool->cpu));
5498 if (time_after(cpu_touched, ts))
5499 ts = cpu_touched;
5500 }
5501
5502 /* did we stall? */
5503 if (time_after(jiffies, ts + thresh)) {
5504 lockup_detected = true;
5505 pr_emerg("BUG: workqueue lockup - pool");
5506 pr_cont_pool_info(pool);
5507 pr_cont(" stuck for %us!\n",
5508 jiffies_to_msecs(jiffies - pool_ts) / 1000);
5509 }
5510 }
5511
5512 rcu_read_unlock();
5513
5514 if (lockup_detected)
5515 show_workqueue_state();
5516
5517 wq_watchdog_reset_touched();
5518 mod_timer(&wq_watchdog_timer, jiffies + thresh);
5519 }
5520
5521 notrace void wq_watchdog_touch(int cpu)
5522 {
5523 if (cpu >= 0)
5524 per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
5525 else
5526 wq_watchdog_touched = jiffies;
5527 }
5528
5529 static void wq_watchdog_set_thresh(unsigned long thresh)
5530 {
5531 wq_watchdog_thresh = 0;
5532 del_timer_sync(&wq_watchdog_timer);
5533
5534 if (thresh) {
5535 wq_watchdog_thresh = thresh;
5536 wq_watchdog_reset_touched();
5537 mod_timer(&wq_watchdog_timer, jiffies + thresh * HZ);
5538 }
5539 }
5540
5541 static int wq_watchdog_param_set_thresh(const char *val,
5542 const struct kernel_param *kp)
5543 {
5544 unsigned long thresh;
5545 int ret;
5546
5547 ret = kstrtoul(val, 0, &thresh);
5548 if (ret)
5549 return ret;
5550
5551 if (system_wq)
5552 wq_watchdog_set_thresh(thresh);
5553 else
5554 wq_watchdog_thresh = thresh;
5555
5556 return 0;
5557 }
5558
5559 static const struct kernel_param_ops wq_watchdog_thresh_ops = {
5560 .set = wq_watchdog_param_set_thresh,
5561 .get = param_get_ulong,
5562 };
5563
5564 module_param_cb(watchdog_thresh, &wq_watchdog_thresh_ops, &wq_watchdog_thresh,
5565 0644);
5566
5567 static void wq_watchdog_init(void)
5568 {
5569 timer_setup(&wq_watchdog_timer, wq_watchdog_timer_fn, TIMER_DEFERRABLE);
5570 wq_watchdog_set_thresh(wq_watchdog_thresh);
5571 }
5572
5573 #else /* CONFIG_WQ_WATCHDOG */
5574
5575 static inline void wq_watchdog_init(void) { }
5576
5577 #endif /* CONFIG_WQ_WATCHDOG */
5578
5579 static void __init wq_numa_init(void)
5580 {
5581 cpumask_var_t *tbl;
5582 int node, cpu;
5583
5584 if (num_possible_nodes() <= 1)
5585 return;
5586
5587 if (wq_disable_numa) {
5588 pr_info("workqueue: NUMA affinity support disabled\n");
5589 return;
5590 }
5591
5592 wq_update_unbound_numa_attrs_buf = alloc_workqueue_attrs(GFP_KERNEL);
5593 BUG_ON(!wq_update_unbound_numa_attrs_buf);
5594
5595 /*
5596 * We want masks of possible CPUs of each node which isn't readily
5597 * available. Build one from cpu_to_node() which should have been
5598 * fully initialized by now.
5599 */
5600 tbl = kzalloc(nr_node_ids * sizeof(tbl[0]), GFP_KERNEL);
5601 BUG_ON(!tbl);
5602
5603 for_each_node(node)
5604 BUG_ON(!zalloc_cpumask_var_node(&tbl[node], GFP_KERNEL,
5605 node_online(node) ? node : NUMA_NO_NODE));
5606
5607 for_each_possible_cpu(cpu) {
5608 node = cpu_to_node(cpu);
5609 if (WARN_ON(node == NUMA_NO_NODE)) {
5610 pr_warn("workqueue: NUMA node mapping not available for cpu%d, disabling NUMA support\n", cpu);
5611 /* happens iff arch is bonkers, let's just proceed */
5612 return;
5613 }
5614 cpumask_set_cpu(cpu, tbl[node]);
5615 }
5616
5617 wq_numa_possible_cpumask = tbl;
5618 wq_numa_enabled = true;
5619 }
5620
5621 /**
5622 * workqueue_init_early - early init for workqueue subsystem
5623 *
5624 * This is the first half of two-staged workqueue subsystem initialization
5625 * and invoked as soon as the bare basics - memory allocation, cpumasks and
5626 * idr are up. It sets up all the data structures and system workqueues
5627 * and allows early boot code to create workqueues and queue/cancel work
5628 * items. Actual work item execution starts only after kthreads can be
5629 * created and scheduled right before early initcalls.
5630 */
5631 int __init workqueue_init_early(void)
5632 {
5633 int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL };
5634 int i, cpu;
5635
5636 WARN_ON(__alignof__(struct pool_workqueue) < __alignof__(long long));
5637
5638 BUG_ON(!alloc_cpumask_var(&wq_unbound_cpumask, GFP_KERNEL));
5639 cpumask_copy(wq_unbound_cpumask, housekeeping_cpumask(HK_FLAG_DOMAIN));
5640
5641 pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC);
5642
5643 /* initialize CPU pools */
5644 for_each_possible_cpu(cpu) {
5645 struct worker_pool *pool;
5646
5647 i = 0;
5648 for_each_cpu_worker_pool(pool, cpu) {
5649 BUG_ON(init_worker_pool(pool));
5650 pool->cpu = cpu;
5651 cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu));
5652 pool->attrs->nice = std_nice[i++];
5653 pool->node = cpu_to_node(cpu);
5654
5655 /* alloc pool ID */
5656 mutex_lock(&wq_pool_mutex);
5657 BUG_ON(worker_pool_assign_id(pool));
5658 mutex_unlock(&wq_pool_mutex);
5659 }
5660 }
5661
5662 /* create default unbound and ordered wq attrs */
5663 for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
5664 struct workqueue_attrs *attrs;
5665
5666 BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
5667 attrs->nice = std_nice[i];
5668 unbound_std_wq_attrs[i] = attrs;
5669
5670 /*
5671 * An ordered wq should have only one pwq as ordering is
5672 * guaranteed by max_active which is enforced by pwqs.
5673 * Turn off NUMA so that dfl_pwq is used for all nodes.
5674 */
5675 BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
5676 attrs->nice = std_nice[i];
5677 attrs->no_numa = true;
5678 ordered_wq_attrs[i] = attrs;
5679 }
5680
5681 system_wq = alloc_workqueue("events", 0, 0);
5682 system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
5683 system_long_wq = alloc_workqueue("events_long", 0, 0);
5684 system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
5685 WQ_UNBOUND_MAX_ACTIVE);
5686 system_freezable_wq = alloc_workqueue("events_freezable",
5687 WQ_FREEZABLE, 0);
5688 system_power_efficient_wq = alloc_workqueue("events_power_efficient",
5689 WQ_POWER_EFFICIENT, 0);
5690 system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_power_efficient",
5691 WQ_FREEZABLE | WQ_POWER_EFFICIENT,
5692 0);
5693 BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
5694 !system_unbound_wq || !system_freezable_wq ||
5695 !system_power_efficient_wq ||
5696 !system_freezable_power_efficient_wq);
5697
5698 return 0;
5699 }
5700
5701 /**
5702 * workqueue_init - bring workqueue subsystem fully online
5703 *
5704 * This is the latter half of two-staged workqueue subsystem initialization
5705 * and invoked as soon as kthreads can be created and scheduled.
5706 * Workqueues have been created and work items queued on them, but there
5707 * are no kworkers executing the work items yet. Populate the worker pools
5708 * with the initial workers and enable future kworker creations.
5709 */
5710 int __init workqueue_init(void)
5711 {
5712 struct workqueue_struct *wq;
5713 struct worker_pool *pool;
5714 int cpu, bkt;
5715
5716 /*
5717 * It'd be simpler to initialize NUMA in workqueue_init_early() but
5718 * CPU to node mapping may not be available that early on some
5719 * archs such as power and arm64. As per-cpu pools created
5720 * previously could be missing node hint and unbound pools NUMA
5721 * affinity, fix them up.
5722 */
5723 wq_numa_init();
5724
5725 mutex_lock(&wq_pool_mutex);
5726
5727 for_each_possible_cpu(cpu) {
5728 for_each_cpu_worker_pool(pool, cpu) {
5729 pool->node = cpu_to_node(cpu);
5730 }
5731 }
5732
5733 list_for_each_entry(wq, &workqueues, list)
5734 wq_update_unbound_numa(wq, smp_processor_id(), true);
5735
5736 mutex_unlock(&wq_pool_mutex);
5737
5738 /* create the initial workers */
5739 for_each_online_cpu(cpu) {
5740 for_each_cpu_worker_pool(pool, cpu) {
5741 pool->flags &= ~POOL_DISASSOCIATED;
5742 BUG_ON(!create_worker(pool));
5743 }
5744 }
5745
5746 hash_for_each(unbound_pool_hash, bkt, pool, hash_node)
5747 BUG_ON(!create_worker(pool));
5748
5749 wq_online = true;
5750 wq_watchdog_init();
5751
5752 return 0;
5753 }