]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - kernel/workqueue.c
Merge tag 'pwm/for-5.7-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/thierry...
[mirror_ubuntu-jammy-kernel.git] / kernel / workqueue.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * kernel/workqueue.c - generic async execution with shared worker pool
4 *
5 * Copyright (C) 2002 Ingo Molnar
6 *
7 * Derived from the taskqueue/keventd code by:
8 * David Woodhouse <dwmw2@infradead.org>
9 * Andrew Morton
10 * Kai Petzke <wpp@marie.physik.tu-berlin.de>
11 * Theodore Ts'o <tytso@mit.edu>
12 *
13 * Made to use alloc_percpu by Christoph Lameter.
14 *
15 * Copyright (C) 2010 SUSE Linux Products GmbH
16 * Copyright (C) 2010 Tejun Heo <tj@kernel.org>
17 *
18 * This is the generic async execution mechanism. Work items as are
19 * executed in process context. The worker pool is shared and
20 * automatically managed. There are two worker pools for each CPU (one for
21 * normal work items and the other for high priority ones) and some extra
22 * pools for workqueues which are not bound to any specific CPU - the
23 * number of these backing pools is dynamic.
24 *
25 * Please read Documentation/core-api/workqueue.rst for details.
26 */
27
28 #include <linux/export.h>
29 #include <linux/kernel.h>
30 #include <linux/sched.h>
31 #include <linux/init.h>
32 #include <linux/signal.h>
33 #include <linux/completion.h>
34 #include <linux/workqueue.h>
35 #include <linux/slab.h>
36 #include <linux/cpu.h>
37 #include <linux/notifier.h>
38 #include <linux/kthread.h>
39 #include <linux/hardirq.h>
40 #include <linux/mempolicy.h>
41 #include <linux/freezer.h>
42 #include <linux/debug_locks.h>
43 #include <linux/lockdep.h>
44 #include <linux/idr.h>
45 #include <linux/jhash.h>
46 #include <linux/hashtable.h>
47 #include <linux/rculist.h>
48 #include <linux/nodemask.h>
49 #include <linux/moduleparam.h>
50 #include <linux/uaccess.h>
51 #include <linux/sched/isolation.h>
52 #include <linux/nmi.h>
53
54 #include "workqueue_internal.h"
55
56 enum {
57 /*
58 * worker_pool flags
59 *
60 * A bound pool is either associated or disassociated with its CPU.
61 * While associated (!DISASSOCIATED), all workers are bound to the
62 * CPU and none has %WORKER_UNBOUND set and concurrency management
63 * is in effect.
64 *
65 * While DISASSOCIATED, the cpu may be offline and all workers have
66 * %WORKER_UNBOUND set and concurrency management disabled, and may
67 * be executing on any CPU. The pool behaves as an unbound one.
68 *
69 * Note that DISASSOCIATED should be flipped only while holding
70 * wq_pool_attach_mutex to avoid changing binding state while
71 * worker_attach_to_pool() is in progress.
72 */
73 POOL_MANAGER_ACTIVE = 1 << 0, /* being managed */
74 POOL_DISASSOCIATED = 1 << 2, /* cpu can't serve workers */
75
76 /* worker flags */
77 WORKER_DIE = 1 << 1, /* die die die */
78 WORKER_IDLE = 1 << 2, /* is idle */
79 WORKER_PREP = 1 << 3, /* preparing to run works */
80 WORKER_CPU_INTENSIVE = 1 << 6, /* cpu intensive */
81 WORKER_UNBOUND = 1 << 7, /* worker is unbound */
82 WORKER_REBOUND = 1 << 8, /* worker was rebound */
83
84 WORKER_NOT_RUNNING = WORKER_PREP | WORKER_CPU_INTENSIVE |
85 WORKER_UNBOUND | WORKER_REBOUND,
86
87 NR_STD_WORKER_POOLS = 2, /* # standard pools per cpu */
88
89 UNBOUND_POOL_HASH_ORDER = 6, /* hashed by pool->attrs */
90 BUSY_WORKER_HASH_ORDER = 6, /* 64 pointers */
91
92 MAX_IDLE_WORKERS_RATIO = 4, /* 1/4 of busy can be idle */
93 IDLE_WORKER_TIMEOUT = 300 * HZ, /* keep idle ones for 5 mins */
94
95 MAYDAY_INITIAL_TIMEOUT = HZ / 100 >= 2 ? HZ / 100 : 2,
96 /* call for help after 10ms
97 (min two ticks) */
98 MAYDAY_INTERVAL = HZ / 10, /* and then every 100ms */
99 CREATE_COOLDOWN = HZ, /* time to breath after fail */
100
101 /*
102 * Rescue workers are used only on emergencies and shared by
103 * all cpus. Give MIN_NICE.
104 */
105 RESCUER_NICE_LEVEL = MIN_NICE,
106 HIGHPRI_NICE_LEVEL = MIN_NICE,
107
108 WQ_NAME_LEN = 24,
109 };
110
111 /*
112 * Structure fields follow one of the following exclusion rules.
113 *
114 * I: Modifiable by initialization/destruction paths and read-only for
115 * everyone else.
116 *
117 * P: Preemption protected. Disabling preemption is enough and should
118 * only be modified and accessed from the local cpu.
119 *
120 * L: pool->lock protected. Access with pool->lock held.
121 *
122 * X: During normal operation, modification requires pool->lock and should
123 * be done only from local cpu. Either disabling preemption on local
124 * cpu or grabbing pool->lock is enough for read access. If
125 * POOL_DISASSOCIATED is set, it's identical to L.
126 *
127 * A: wq_pool_attach_mutex protected.
128 *
129 * PL: wq_pool_mutex protected.
130 *
131 * PR: wq_pool_mutex protected for writes. RCU protected for reads.
132 *
133 * PW: wq_pool_mutex and wq->mutex protected for writes. Either for reads.
134 *
135 * PWR: wq_pool_mutex and wq->mutex protected for writes. Either or
136 * RCU for reads.
137 *
138 * WQ: wq->mutex protected.
139 *
140 * WR: wq->mutex protected for writes. RCU protected for reads.
141 *
142 * MD: wq_mayday_lock protected.
143 */
144
145 /* struct worker is defined in workqueue_internal.h */
146
147 struct worker_pool {
148 spinlock_t lock; /* the pool lock */
149 int cpu; /* I: the associated cpu */
150 int node; /* I: the associated node ID */
151 int id; /* I: pool ID */
152 unsigned int flags; /* X: flags */
153
154 unsigned long watchdog_ts; /* L: watchdog timestamp */
155
156 struct list_head worklist; /* L: list of pending works */
157
158 int nr_workers; /* L: total number of workers */
159 int nr_idle; /* L: currently idle workers */
160
161 struct list_head idle_list; /* X: list of idle workers */
162 struct timer_list idle_timer; /* L: worker idle timeout */
163 struct timer_list mayday_timer; /* L: SOS timer for workers */
164
165 /* a workers is either on busy_hash or idle_list, or the manager */
166 DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
167 /* L: hash of busy workers */
168
169 struct worker *manager; /* L: purely informational */
170 struct list_head workers; /* A: attached workers */
171 struct completion *detach_completion; /* all workers detached */
172
173 struct ida worker_ida; /* worker IDs for task name */
174
175 struct workqueue_attrs *attrs; /* I: worker attributes */
176 struct hlist_node hash_node; /* PL: unbound_pool_hash node */
177 int refcnt; /* PL: refcnt for unbound pools */
178
179 /*
180 * The current concurrency level. As it's likely to be accessed
181 * from other CPUs during try_to_wake_up(), put it in a separate
182 * cacheline.
183 */
184 atomic_t nr_running ____cacheline_aligned_in_smp;
185
186 /*
187 * Destruction of pool is RCU protected to allow dereferences
188 * from get_work_pool().
189 */
190 struct rcu_head rcu;
191 } ____cacheline_aligned_in_smp;
192
193 /*
194 * The per-pool workqueue. While queued, the lower WORK_STRUCT_FLAG_BITS
195 * of work_struct->data are used for flags and the remaining high bits
196 * point to the pwq; thus, pwqs need to be aligned at two's power of the
197 * number of flag bits.
198 */
199 struct pool_workqueue {
200 struct worker_pool *pool; /* I: the associated pool */
201 struct workqueue_struct *wq; /* I: the owning workqueue */
202 int work_color; /* L: current color */
203 int flush_color; /* L: flushing color */
204 int refcnt; /* L: reference count */
205 int nr_in_flight[WORK_NR_COLORS];
206 /* L: nr of in_flight works */
207 int nr_active; /* L: nr of active works */
208 int max_active; /* L: max active works */
209 struct list_head delayed_works; /* L: delayed works */
210 struct list_head pwqs_node; /* WR: node on wq->pwqs */
211 struct list_head mayday_node; /* MD: node on wq->maydays */
212
213 /*
214 * Release of unbound pwq is punted to system_wq. See put_pwq()
215 * and pwq_unbound_release_workfn() for details. pool_workqueue
216 * itself is also RCU protected so that the first pwq can be
217 * determined without grabbing wq->mutex.
218 */
219 struct work_struct unbound_release_work;
220 struct rcu_head rcu;
221 } __aligned(1 << WORK_STRUCT_FLAG_BITS);
222
223 /*
224 * Structure used to wait for workqueue flush.
225 */
226 struct wq_flusher {
227 struct list_head list; /* WQ: list of flushers */
228 int flush_color; /* WQ: flush color waiting for */
229 struct completion done; /* flush completion */
230 };
231
232 struct wq_device;
233
234 /*
235 * The externally visible workqueue. It relays the issued work items to
236 * the appropriate worker_pool through its pool_workqueues.
237 */
238 struct workqueue_struct {
239 struct list_head pwqs; /* WR: all pwqs of this wq */
240 struct list_head list; /* PR: list of all workqueues */
241
242 struct mutex mutex; /* protects this wq */
243 int work_color; /* WQ: current work color */
244 int flush_color; /* WQ: current flush color */
245 atomic_t nr_pwqs_to_flush; /* flush in progress */
246 struct wq_flusher *first_flusher; /* WQ: first flusher */
247 struct list_head flusher_queue; /* WQ: flush waiters */
248 struct list_head flusher_overflow; /* WQ: flush overflow list */
249
250 struct list_head maydays; /* MD: pwqs requesting rescue */
251 struct worker *rescuer; /* MD: rescue worker */
252
253 int nr_drainers; /* WQ: drain in progress */
254 int saved_max_active; /* WQ: saved pwq max_active */
255
256 struct workqueue_attrs *unbound_attrs; /* PW: only for unbound wqs */
257 struct pool_workqueue *dfl_pwq; /* PW: only for unbound wqs */
258
259 #ifdef CONFIG_SYSFS
260 struct wq_device *wq_dev; /* I: for sysfs interface */
261 #endif
262 #ifdef CONFIG_LOCKDEP
263 char *lock_name;
264 struct lock_class_key key;
265 struct lockdep_map lockdep_map;
266 #endif
267 char name[WQ_NAME_LEN]; /* I: workqueue name */
268
269 /*
270 * Destruction of workqueue_struct is RCU protected to allow walking
271 * the workqueues list without grabbing wq_pool_mutex.
272 * This is used to dump all workqueues from sysrq.
273 */
274 struct rcu_head rcu;
275
276 /* hot fields used during command issue, aligned to cacheline */
277 unsigned int flags ____cacheline_aligned; /* WQ: WQ_* flags */
278 struct pool_workqueue __percpu *cpu_pwqs; /* I: per-cpu pwqs */
279 struct pool_workqueue __rcu *numa_pwq_tbl[]; /* PWR: unbound pwqs indexed by node */
280 };
281
282 static struct kmem_cache *pwq_cache;
283
284 static cpumask_var_t *wq_numa_possible_cpumask;
285 /* possible CPUs of each node */
286
287 static bool wq_disable_numa;
288 module_param_named(disable_numa, wq_disable_numa, bool, 0444);
289
290 /* see the comment above the definition of WQ_POWER_EFFICIENT */
291 static bool wq_power_efficient = IS_ENABLED(CONFIG_WQ_POWER_EFFICIENT_DEFAULT);
292 module_param_named(power_efficient, wq_power_efficient, bool, 0444);
293
294 static bool wq_online; /* can kworkers be created yet? */
295
296 static bool wq_numa_enabled; /* unbound NUMA affinity enabled */
297
298 /* buf for wq_update_unbound_numa_attrs(), protected by CPU hotplug exclusion */
299 static struct workqueue_attrs *wq_update_unbound_numa_attrs_buf;
300
301 static DEFINE_MUTEX(wq_pool_mutex); /* protects pools and workqueues list */
302 static DEFINE_MUTEX(wq_pool_attach_mutex); /* protects worker attach/detach */
303 static DEFINE_SPINLOCK(wq_mayday_lock); /* protects wq->maydays list */
304 static DECLARE_WAIT_QUEUE_HEAD(wq_manager_wait); /* wait for manager to go away */
305
306 static LIST_HEAD(workqueues); /* PR: list of all workqueues */
307 static bool workqueue_freezing; /* PL: have wqs started freezing? */
308
309 /* PL: allowable cpus for unbound wqs and work items */
310 static cpumask_var_t wq_unbound_cpumask;
311
312 /* CPU where unbound work was last round robin scheduled from this CPU */
313 static DEFINE_PER_CPU(int, wq_rr_cpu_last);
314
315 /*
316 * Local execution of unbound work items is no longer guaranteed. The
317 * following always forces round-robin CPU selection on unbound work items
318 * to uncover usages which depend on it.
319 */
320 #ifdef CONFIG_DEBUG_WQ_FORCE_RR_CPU
321 static bool wq_debug_force_rr_cpu = true;
322 #else
323 static bool wq_debug_force_rr_cpu = false;
324 #endif
325 module_param_named(debug_force_rr_cpu, wq_debug_force_rr_cpu, bool, 0644);
326
327 /* the per-cpu worker pools */
328 static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS], cpu_worker_pools);
329
330 static DEFINE_IDR(worker_pool_idr); /* PR: idr of all pools */
331
332 /* PL: hash of all unbound pools keyed by pool->attrs */
333 static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER);
334
335 /* I: attributes used when instantiating standard unbound pools on demand */
336 static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS];
337
338 /* I: attributes used when instantiating ordered pools on demand */
339 static struct workqueue_attrs *ordered_wq_attrs[NR_STD_WORKER_POOLS];
340
341 struct workqueue_struct *system_wq __read_mostly;
342 EXPORT_SYMBOL(system_wq);
343 struct workqueue_struct *system_highpri_wq __read_mostly;
344 EXPORT_SYMBOL_GPL(system_highpri_wq);
345 struct workqueue_struct *system_long_wq __read_mostly;
346 EXPORT_SYMBOL_GPL(system_long_wq);
347 struct workqueue_struct *system_unbound_wq __read_mostly;
348 EXPORT_SYMBOL_GPL(system_unbound_wq);
349 struct workqueue_struct *system_freezable_wq __read_mostly;
350 EXPORT_SYMBOL_GPL(system_freezable_wq);
351 struct workqueue_struct *system_power_efficient_wq __read_mostly;
352 EXPORT_SYMBOL_GPL(system_power_efficient_wq);
353 struct workqueue_struct *system_freezable_power_efficient_wq __read_mostly;
354 EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq);
355
356 static int worker_thread(void *__worker);
357 static void workqueue_sysfs_unregister(struct workqueue_struct *wq);
358 static void show_pwq(struct pool_workqueue *pwq);
359
360 #define CREATE_TRACE_POINTS
361 #include <trace/events/workqueue.h>
362
363 #define assert_rcu_or_pool_mutex() \
364 RCU_LOCKDEP_WARN(!rcu_read_lock_held() && \
365 !lockdep_is_held(&wq_pool_mutex), \
366 "RCU or wq_pool_mutex should be held")
367
368 #define assert_rcu_or_wq_mutex_or_pool_mutex(wq) \
369 RCU_LOCKDEP_WARN(!rcu_read_lock_held() && \
370 !lockdep_is_held(&wq->mutex) && \
371 !lockdep_is_held(&wq_pool_mutex), \
372 "RCU, wq->mutex or wq_pool_mutex should be held")
373
374 #define for_each_cpu_worker_pool(pool, cpu) \
375 for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0]; \
376 (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
377 (pool)++)
378
379 /**
380 * for_each_pool - iterate through all worker_pools in the system
381 * @pool: iteration cursor
382 * @pi: integer used for iteration
383 *
384 * This must be called either with wq_pool_mutex held or RCU read
385 * locked. If the pool needs to be used beyond the locking in effect, the
386 * caller is responsible for guaranteeing that the pool stays online.
387 *
388 * The if/else clause exists only for the lockdep assertion and can be
389 * ignored.
390 */
391 #define for_each_pool(pool, pi) \
392 idr_for_each_entry(&worker_pool_idr, pool, pi) \
393 if (({ assert_rcu_or_pool_mutex(); false; })) { } \
394 else
395
396 /**
397 * for_each_pool_worker - iterate through all workers of a worker_pool
398 * @worker: iteration cursor
399 * @pool: worker_pool to iterate workers of
400 *
401 * This must be called with wq_pool_attach_mutex.
402 *
403 * The if/else clause exists only for the lockdep assertion and can be
404 * ignored.
405 */
406 #define for_each_pool_worker(worker, pool) \
407 list_for_each_entry((worker), &(pool)->workers, node) \
408 if (({ lockdep_assert_held(&wq_pool_attach_mutex); false; })) { } \
409 else
410
411 /**
412 * for_each_pwq - iterate through all pool_workqueues of the specified workqueue
413 * @pwq: iteration cursor
414 * @wq: the target workqueue
415 *
416 * This must be called either with wq->mutex held or RCU read locked.
417 * If the pwq needs to be used beyond the locking in effect, the caller is
418 * responsible for guaranteeing that the pwq stays online.
419 *
420 * The if/else clause exists only for the lockdep assertion and can be
421 * ignored.
422 */
423 #define for_each_pwq(pwq, wq) \
424 list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node, \
425 lockdep_is_held(&(wq->mutex)))
426
427 #ifdef CONFIG_DEBUG_OBJECTS_WORK
428
429 static struct debug_obj_descr work_debug_descr;
430
431 static void *work_debug_hint(void *addr)
432 {
433 return ((struct work_struct *) addr)->func;
434 }
435
436 static bool work_is_static_object(void *addr)
437 {
438 struct work_struct *work = addr;
439
440 return test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work));
441 }
442
443 /*
444 * fixup_init is called when:
445 * - an active object is initialized
446 */
447 static bool work_fixup_init(void *addr, enum debug_obj_state state)
448 {
449 struct work_struct *work = addr;
450
451 switch (state) {
452 case ODEBUG_STATE_ACTIVE:
453 cancel_work_sync(work);
454 debug_object_init(work, &work_debug_descr);
455 return true;
456 default:
457 return false;
458 }
459 }
460
461 /*
462 * fixup_free is called when:
463 * - an active object is freed
464 */
465 static bool work_fixup_free(void *addr, enum debug_obj_state state)
466 {
467 struct work_struct *work = addr;
468
469 switch (state) {
470 case ODEBUG_STATE_ACTIVE:
471 cancel_work_sync(work);
472 debug_object_free(work, &work_debug_descr);
473 return true;
474 default:
475 return false;
476 }
477 }
478
479 static struct debug_obj_descr work_debug_descr = {
480 .name = "work_struct",
481 .debug_hint = work_debug_hint,
482 .is_static_object = work_is_static_object,
483 .fixup_init = work_fixup_init,
484 .fixup_free = work_fixup_free,
485 };
486
487 static inline void debug_work_activate(struct work_struct *work)
488 {
489 debug_object_activate(work, &work_debug_descr);
490 }
491
492 static inline void debug_work_deactivate(struct work_struct *work)
493 {
494 debug_object_deactivate(work, &work_debug_descr);
495 }
496
497 void __init_work(struct work_struct *work, int onstack)
498 {
499 if (onstack)
500 debug_object_init_on_stack(work, &work_debug_descr);
501 else
502 debug_object_init(work, &work_debug_descr);
503 }
504 EXPORT_SYMBOL_GPL(__init_work);
505
506 void destroy_work_on_stack(struct work_struct *work)
507 {
508 debug_object_free(work, &work_debug_descr);
509 }
510 EXPORT_SYMBOL_GPL(destroy_work_on_stack);
511
512 void destroy_delayed_work_on_stack(struct delayed_work *work)
513 {
514 destroy_timer_on_stack(&work->timer);
515 debug_object_free(&work->work, &work_debug_descr);
516 }
517 EXPORT_SYMBOL_GPL(destroy_delayed_work_on_stack);
518
519 #else
520 static inline void debug_work_activate(struct work_struct *work) { }
521 static inline void debug_work_deactivate(struct work_struct *work) { }
522 #endif
523
524 /**
525 * worker_pool_assign_id - allocate ID and assing it to @pool
526 * @pool: the pool pointer of interest
527 *
528 * Returns 0 if ID in [0, WORK_OFFQ_POOL_NONE) is allocated and assigned
529 * successfully, -errno on failure.
530 */
531 static int worker_pool_assign_id(struct worker_pool *pool)
532 {
533 int ret;
534
535 lockdep_assert_held(&wq_pool_mutex);
536
537 ret = idr_alloc(&worker_pool_idr, pool, 0, WORK_OFFQ_POOL_NONE,
538 GFP_KERNEL);
539 if (ret >= 0) {
540 pool->id = ret;
541 return 0;
542 }
543 return ret;
544 }
545
546 /**
547 * unbound_pwq_by_node - return the unbound pool_workqueue for the given node
548 * @wq: the target workqueue
549 * @node: the node ID
550 *
551 * This must be called with any of wq_pool_mutex, wq->mutex or RCU
552 * read locked.
553 * If the pwq needs to be used beyond the locking in effect, the caller is
554 * responsible for guaranteeing that the pwq stays online.
555 *
556 * Return: The unbound pool_workqueue for @node.
557 */
558 static struct pool_workqueue *unbound_pwq_by_node(struct workqueue_struct *wq,
559 int node)
560 {
561 assert_rcu_or_wq_mutex_or_pool_mutex(wq);
562
563 /*
564 * XXX: @node can be NUMA_NO_NODE if CPU goes offline while a
565 * delayed item is pending. The plan is to keep CPU -> NODE
566 * mapping valid and stable across CPU on/offlines. Once that
567 * happens, this workaround can be removed.
568 */
569 if (unlikely(node == NUMA_NO_NODE))
570 return wq->dfl_pwq;
571
572 return rcu_dereference_raw(wq->numa_pwq_tbl[node]);
573 }
574
575 static unsigned int work_color_to_flags(int color)
576 {
577 return color << WORK_STRUCT_COLOR_SHIFT;
578 }
579
580 static int get_work_color(struct work_struct *work)
581 {
582 return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
583 ((1 << WORK_STRUCT_COLOR_BITS) - 1);
584 }
585
586 static int work_next_color(int color)
587 {
588 return (color + 1) % WORK_NR_COLORS;
589 }
590
591 /*
592 * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
593 * contain the pointer to the queued pwq. Once execution starts, the flag
594 * is cleared and the high bits contain OFFQ flags and pool ID.
595 *
596 * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling()
597 * and clear_work_data() can be used to set the pwq, pool or clear
598 * work->data. These functions should only be called while the work is
599 * owned - ie. while the PENDING bit is set.
600 *
601 * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
602 * corresponding to a work. Pool is available once the work has been
603 * queued anywhere after initialization until it is sync canceled. pwq is
604 * available only while the work item is queued.
605 *
606 * %WORK_OFFQ_CANCELING is used to mark a work item which is being
607 * canceled. While being canceled, a work item may have its PENDING set
608 * but stay off timer and worklist for arbitrarily long and nobody should
609 * try to steal the PENDING bit.
610 */
611 static inline void set_work_data(struct work_struct *work, unsigned long data,
612 unsigned long flags)
613 {
614 WARN_ON_ONCE(!work_pending(work));
615 atomic_long_set(&work->data, data | flags | work_static(work));
616 }
617
618 static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq,
619 unsigned long extra_flags)
620 {
621 set_work_data(work, (unsigned long)pwq,
622 WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags);
623 }
624
625 static void set_work_pool_and_keep_pending(struct work_struct *work,
626 int pool_id)
627 {
628 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT,
629 WORK_STRUCT_PENDING);
630 }
631
632 static void set_work_pool_and_clear_pending(struct work_struct *work,
633 int pool_id)
634 {
635 /*
636 * The following wmb is paired with the implied mb in
637 * test_and_set_bit(PENDING) and ensures all updates to @work made
638 * here are visible to and precede any updates by the next PENDING
639 * owner.
640 */
641 smp_wmb();
642 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0);
643 /*
644 * The following mb guarantees that previous clear of a PENDING bit
645 * will not be reordered with any speculative LOADS or STORES from
646 * work->current_func, which is executed afterwards. This possible
647 * reordering can lead to a missed execution on attempt to queue
648 * the same @work. E.g. consider this case:
649 *
650 * CPU#0 CPU#1
651 * ---------------------------- --------------------------------
652 *
653 * 1 STORE event_indicated
654 * 2 queue_work_on() {
655 * 3 test_and_set_bit(PENDING)
656 * 4 } set_..._and_clear_pending() {
657 * 5 set_work_data() # clear bit
658 * 6 smp_mb()
659 * 7 work->current_func() {
660 * 8 LOAD event_indicated
661 * }
662 *
663 * Without an explicit full barrier speculative LOAD on line 8 can
664 * be executed before CPU#0 does STORE on line 1. If that happens,
665 * CPU#0 observes the PENDING bit is still set and new execution of
666 * a @work is not queued in a hope, that CPU#1 will eventually
667 * finish the queued @work. Meanwhile CPU#1 does not see
668 * event_indicated is set, because speculative LOAD was executed
669 * before actual STORE.
670 */
671 smp_mb();
672 }
673
674 static void clear_work_data(struct work_struct *work)
675 {
676 smp_wmb(); /* see set_work_pool_and_clear_pending() */
677 set_work_data(work, WORK_STRUCT_NO_POOL, 0);
678 }
679
680 static struct pool_workqueue *get_work_pwq(struct work_struct *work)
681 {
682 unsigned long data = atomic_long_read(&work->data);
683
684 if (data & WORK_STRUCT_PWQ)
685 return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
686 else
687 return NULL;
688 }
689
690 /**
691 * get_work_pool - return the worker_pool a given work was associated with
692 * @work: the work item of interest
693 *
694 * Pools are created and destroyed under wq_pool_mutex, and allows read
695 * access under RCU read lock. As such, this function should be
696 * called under wq_pool_mutex or inside of a rcu_read_lock() region.
697 *
698 * All fields of the returned pool are accessible as long as the above
699 * mentioned locking is in effect. If the returned pool needs to be used
700 * beyond the critical section, the caller is responsible for ensuring the
701 * returned pool is and stays online.
702 *
703 * Return: The worker_pool @work was last associated with. %NULL if none.
704 */
705 static struct worker_pool *get_work_pool(struct work_struct *work)
706 {
707 unsigned long data = atomic_long_read(&work->data);
708 int pool_id;
709
710 assert_rcu_or_pool_mutex();
711
712 if (data & WORK_STRUCT_PWQ)
713 return ((struct pool_workqueue *)
714 (data & WORK_STRUCT_WQ_DATA_MASK))->pool;
715
716 pool_id = data >> WORK_OFFQ_POOL_SHIFT;
717 if (pool_id == WORK_OFFQ_POOL_NONE)
718 return NULL;
719
720 return idr_find(&worker_pool_idr, pool_id);
721 }
722
723 /**
724 * get_work_pool_id - return the worker pool ID a given work is associated with
725 * @work: the work item of interest
726 *
727 * Return: The worker_pool ID @work was last associated with.
728 * %WORK_OFFQ_POOL_NONE if none.
729 */
730 static int get_work_pool_id(struct work_struct *work)
731 {
732 unsigned long data = atomic_long_read(&work->data);
733
734 if (data & WORK_STRUCT_PWQ)
735 return ((struct pool_workqueue *)
736 (data & WORK_STRUCT_WQ_DATA_MASK))->pool->id;
737
738 return data >> WORK_OFFQ_POOL_SHIFT;
739 }
740
741 static void mark_work_canceling(struct work_struct *work)
742 {
743 unsigned long pool_id = get_work_pool_id(work);
744
745 pool_id <<= WORK_OFFQ_POOL_SHIFT;
746 set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING);
747 }
748
749 static bool work_is_canceling(struct work_struct *work)
750 {
751 unsigned long data = atomic_long_read(&work->data);
752
753 return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING);
754 }
755
756 /*
757 * Policy functions. These define the policies on how the global worker
758 * pools are managed. Unless noted otherwise, these functions assume that
759 * they're being called with pool->lock held.
760 */
761
762 static bool __need_more_worker(struct worker_pool *pool)
763 {
764 return !atomic_read(&pool->nr_running);
765 }
766
767 /*
768 * Need to wake up a worker? Called from anything but currently
769 * running workers.
770 *
771 * Note that, because unbound workers never contribute to nr_running, this
772 * function will always return %true for unbound pools as long as the
773 * worklist isn't empty.
774 */
775 static bool need_more_worker(struct worker_pool *pool)
776 {
777 return !list_empty(&pool->worklist) && __need_more_worker(pool);
778 }
779
780 /* Can I start working? Called from busy but !running workers. */
781 static bool may_start_working(struct worker_pool *pool)
782 {
783 return pool->nr_idle;
784 }
785
786 /* Do I need to keep working? Called from currently running workers. */
787 static bool keep_working(struct worker_pool *pool)
788 {
789 return !list_empty(&pool->worklist) &&
790 atomic_read(&pool->nr_running) <= 1;
791 }
792
793 /* Do we need a new worker? Called from manager. */
794 static bool need_to_create_worker(struct worker_pool *pool)
795 {
796 return need_more_worker(pool) && !may_start_working(pool);
797 }
798
799 /* Do we have too many workers and should some go away? */
800 static bool too_many_workers(struct worker_pool *pool)
801 {
802 bool managing = pool->flags & POOL_MANAGER_ACTIVE;
803 int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
804 int nr_busy = pool->nr_workers - nr_idle;
805
806 return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
807 }
808
809 /*
810 * Wake up functions.
811 */
812
813 /* Return the first idle worker. Safe with preemption disabled */
814 static struct worker *first_idle_worker(struct worker_pool *pool)
815 {
816 if (unlikely(list_empty(&pool->idle_list)))
817 return NULL;
818
819 return list_first_entry(&pool->idle_list, struct worker, entry);
820 }
821
822 /**
823 * wake_up_worker - wake up an idle worker
824 * @pool: worker pool to wake worker from
825 *
826 * Wake up the first idle worker of @pool.
827 *
828 * CONTEXT:
829 * spin_lock_irq(pool->lock).
830 */
831 static void wake_up_worker(struct worker_pool *pool)
832 {
833 struct worker *worker = first_idle_worker(pool);
834
835 if (likely(worker))
836 wake_up_process(worker->task);
837 }
838
839 /**
840 * wq_worker_running - a worker is running again
841 * @task: task waking up
842 *
843 * This function is called when a worker returns from schedule()
844 */
845 void wq_worker_running(struct task_struct *task)
846 {
847 struct worker *worker = kthread_data(task);
848
849 if (!worker->sleeping)
850 return;
851 if (!(worker->flags & WORKER_NOT_RUNNING))
852 atomic_inc(&worker->pool->nr_running);
853 worker->sleeping = 0;
854 }
855
856 /**
857 * wq_worker_sleeping - a worker is going to sleep
858 * @task: task going to sleep
859 *
860 * This function is called from schedule() when a busy worker is
861 * going to sleep.
862 */
863 void wq_worker_sleeping(struct task_struct *task)
864 {
865 struct worker *next, *worker = kthread_data(task);
866 struct worker_pool *pool;
867
868 /*
869 * Rescuers, which may not have all the fields set up like normal
870 * workers, also reach here, let's not access anything before
871 * checking NOT_RUNNING.
872 */
873 if (worker->flags & WORKER_NOT_RUNNING)
874 return;
875
876 pool = worker->pool;
877
878 if (WARN_ON_ONCE(worker->sleeping))
879 return;
880
881 worker->sleeping = 1;
882 spin_lock_irq(&pool->lock);
883
884 /*
885 * The counterpart of the following dec_and_test, implied mb,
886 * worklist not empty test sequence is in insert_work().
887 * Please read comment there.
888 *
889 * NOT_RUNNING is clear. This means that we're bound to and
890 * running on the local cpu w/ rq lock held and preemption
891 * disabled, which in turn means that none else could be
892 * manipulating idle_list, so dereferencing idle_list without pool
893 * lock is safe.
894 */
895 if (atomic_dec_and_test(&pool->nr_running) &&
896 !list_empty(&pool->worklist)) {
897 next = first_idle_worker(pool);
898 if (next)
899 wake_up_process(next->task);
900 }
901 spin_unlock_irq(&pool->lock);
902 }
903
904 /**
905 * wq_worker_last_func - retrieve worker's last work function
906 * @task: Task to retrieve last work function of.
907 *
908 * Determine the last function a worker executed. This is called from
909 * the scheduler to get a worker's last known identity.
910 *
911 * CONTEXT:
912 * spin_lock_irq(rq->lock)
913 *
914 * This function is called during schedule() when a kworker is going
915 * to sleep. It's used by psi to identify aggregation workers during
916 * dequeuing, to allow periodic aggregation to shut-off when that
917 * worker is the last task in the system or cgroup to go to sleep.
918 *
919 * As this function doesn't involve any workqueue-related locking, it
920 * only returns stable values when called from inside the scheduler's
921 * queuing and dequeuing paths, when @task, which must be a kworker,
922 * is guaranteed to not be processing any works.
923 *
924 * Return:
925 * The last work function %current executed as a worker, NULL if it
926 * hasn't executed any work yet.
927 */
928 work_func_t wq_worker_last_func(struct task_struct *task)
929 {
930 struct worker *worker = kthread_data(task);
931
932 return worker->last_func;
933 }
934
935 /**
936 * worker_set_flags - set worker flags and adjust nr_running accordingly
937 * @worker: self
938 * @flags: flags to set
939 *
940 * Set @flags in @worker->flags and adjust nr_running accordingly.
941 *
942 * CONTEXT:
943 * spin_lock_irq(pool->lock)
944 */
945 static inline void worker_set_flags(struct worker *worker, unsigned int flags)
946 {
947 struct worker_pool *pool = worker->pool;
948
949 WARN_ON_ONCE(worker->task != current);
950
951 /* If transitioning into NOT_RUNNING, adjust nr_running. */
952 if ((flags & WORKER_NOT_RUNNING) &&
953 !(worker->flags & WORKER_NOT_RUNNING)) {
954 atomic_dec(&pool->nr_running);
955 }
956
957 worker->flags |= flags;
958 }
959
960 /**
961 * worker_clr_flags - clear worker flags and adjust nr_running accordingly
962 * @worker: self
963 * @flags: flags to clear
964 *
965 * Clear @flags in @worker->flags and adjust nr_running accordingly.
966 *
967 * CONTEXT:
968 * spin_lock_irq(pool->lock)
969 */
970 static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
971 {
972 struct worker_pool *pool = worker->pool;
973 unsigned int oflags = worker->flags;
974
975 WARN_ON_ONCE(worker->task != current);
976
977 worker->flags &= ~flags;
978
979 /*
980 * If transitioning out of NOT_RUNNING, increment nr_running. Note
981 * that the nested NOT_RUNNING is not a noop. NOT_RUNNING is mask
982 * of multiple flags, not a single flag.
983 */
984 if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
985 if (!(worker->flags & WORKER_NOT_RUNNING))
986 atomic_inc(&pool->nr_running);
987 }
988
989 /**
990 * find_worker_executing_work - find worker which is executing a work
991 * @pool: pool of interest
992 * @work: work to find worker for
993 *
994 * Find a worker which is executing @work on @pool by searching
995 * @pool->busy_hash which is keyed by the address of @work. For a worker
996 * to match, its current execution should match the address of @work and
997 * its work function. This is to avoid unwanted dependency between
998 * unrelated work executions through a work item being recycled while still
999 * being executed.
1000 *
1001 * This is a bit tricky. A work item may be freed once its execution
1002 * starts and nothing prevents the freed area from being recycled for
1003 * another work item. If the same work item address ends up being reused
1004 * before the original execution finishes, workqueue will identify the
1005 * recycled work item as currently executing and make it wait until the
1006 * current execution finishes, introducing an unwanted dependency.
1007 *
1008 * This function checks the work item address and work function to avoid
1009 * false positives. Note that this isn't complete as one may construct a
1010 * work function which can introduce dependency onto itself through a
1011 * recycled work item. Well, if somebody wants to shoot oneself in the
1012 * foot that badly, there's only so much we can do, and if such deadlock
1013 * actually occurs, it should be easy to locate the culprit work function.
1014 *
1015 * CONTEXT:
1016 * spin_lock_irq(pool->lock).
1017 *
1018 * Return:
1019 * Pointer to worker which is executing @work if found, %NULL
1020 * otherwise.
1021 */
1022 static struct worker *find_worker_executing_work(struct worker_pool *pool,
1023 struct work_struct *work)
1024 {
1025 struct worker *worker;
1026
1027 hash_for_each_possible(pool->busy_hash, worker, hentry,
1028 (unsigned long)work)
1029 if (worker->current_work == work &&
1030 worker->current_func == work->func)
1031 return worker;
1032
1033 return NULL;
1034 }
1035
1036 /**
1037 * move_linked_works - move linked works to a list
1038 * @work: start of series of works to be scheduled
1039 * @head: target list to append @work to
1040 * @nextp: out parameter for nested worklist walking
1041 *
1042 * Schedule linked works starting from @work to @head. Work series to
1043 * be scheduled starts at @work and includes any consecutive work with
1044 * WORK_STRUCT_LINKED set in its predecessor.
1045 *
1046 * If @nextp is not NULL, it's updated to point to the next work of
1047 * the last scheduled work. This allows move_linked_works() to be
1048 * nested inside outer list_for_each_entry_safe().
1049 *
1050 * CONTEXT:
1051 * spin_lock_irq(pool->lock).
1052 */
1053 static void move_linked_works(struct work_struct *work, struct list_head *head,
1054 struct work_struct **nextp)
1055 {
1056 struct work_struct *n;
1057
1058 /*
1059 * Linked worklist will always end before the end of the list,
1060 * use NULL for list head.
1061 */
1062 list_for_each_entry_safe_from(work, n, NULL, entry) {
1063 list_move_tail(&work->entry, head);
1064 if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
1065 break;
1066 }
1067
1068 /*
1069 * If we're already inside safe list traversal and have moved
1070 * multiple works to the scheduled queue, the next position
1071 * needs to be updated.
1072 */
1073 if (nextp)
1074 *nextp = n;
1075 }
1076
1077 /**
1078 * get_pwq - get an extra reference on the specified pool_workqueue
1079 * @pwq: pool_workqueue to get
1080 *
1081 * Obtain an extra reference on @pwq. The caller should guarantee that
1082 * @pwq has positive refcnt and be holding the matching pool->lock.
1083 */
1084 static void get_pwq(struct pool_workqueue *pwq)
1085 {
1086 lockdep_assert_held(&pwq->pool->lock);
1087 WARN_ON_ONCE(pwq->refcnt <= 0);
1088 pwq->refcnt++;
1089 }
1090
1091 /**
1092 * put_pwq - put a pool_workqueue reference
1093 * @pwq: pool_workqueue to put
1094 *
1095 * Drop a reference of @pwq. If its refcnt reaches zero, schedule its
1096 * destruction. The caller should be holding the matching pool->lock.
1097 */
1098 static void put_pwq(struct pool_workqueue *pwq)
1099 {
1100 lockdep_assert_held(&pwq->pool->lock);
1101 if (likely(--pwq->refcnt))
1102 return;
1103 if (WARN_ON_ONCE(!(pwq->wq->flags & WQ_UNBOUND)))
1104 return;
1105 /*
1106 * @pwq can't be released under pool->lock, bounce to
1107 * pwq_unbound_release_workfn(). This never recurses on the same
1108 * pool->lock as this path is taken only for unbound workqueues and
1109 * the release work item is scheduled on a per-cpu workqueue. To
1110 * avoid lockdep warning, unbound pool->locks are given lockdep
1111 * subclass of 1 in get_unbound_pool().
1112 */
1113 schedule_work(&pwq->unbound_release_work);
1114 }
1115
1116 /**
1117 * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock
1118 * @pwq: pool_workqueue to put (can be %NULL)
1119 *
1120 * put_pwq() with locking. This function also allows %NULL @pwq.
1121 */
1122 static void put_pwq_unlocked(struct pool_workqueue *pwq)
1123 {
1124 if (pwq) {
1125 /*
1126 * As both pwqs and pools are RCU protected, the
1127 * following lock operations are safe.
1128 */
1129 spin_lock_irq(&pwq->pool->lock);
1130 put_pwq(pwq);
1131 spin_unlock_irq(&pwq->pool->lock);
1132 }
1133 }
1134
1135 static void pwq_activate_delayed_work(struct work_struct *work)
1136 {
1137 struct pool_workqueue *pwq = get_work_pwq(work);
1138
1139 trace_workqueue_activate_work(work);
1140 if (list_empty(&pwq->pool->worklist))
1141 pwq->pool->watchdog_ts = jiffies;
1142 move_linked_works(work, &pwq->pool->worklist, NULL);
1143 __clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
1144 pwq->nr_active++;
1145 }
1146
1147 static void pwq_activate_first_delayed(struct pool_workqueue *pwq)
1148 {
1149 struct work_struct *work = list_first_entry(&pwq->delayed_works,
1150 struct work_struct, entry);
1151
1152 pwq_activate_delayed_work(work);
1153 }
1154
1155 /**
1156 * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
1157 * @pwq: pwq of interest
1158 * @color: color of work which left the queue
1159 *
1160 * A work either has completed or is removed from pending queue,
1161 * decrement nr_in_flight of its pwq and handle workqueue flushing.
1162 *
1163 * CONTEXT:
1164 * spin_lock_irq(pool->lock).
1165 */
1166 static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, int color)
1167 {
1168 /* uncolored work items don't participate in flushing or nr_active */
1169 if (color == WORK_NO_COLOR)
1170 goto out_put;
1171
1172 pwq->nr_in_flight[color]--;
1173
1174 pwq->nr_active--;
1175 if (!list_empty(&pwq->delayed_works)) {
1176 /* one down, submit a delayed one */
1177 if (pwq->nr_active < pwq->max_active)
1178 pwq_activate_first_delayed(pwq);
1179 }
1180
1181 /* is flush in progress and are we at the flushing tip? */
1182 if (likely(pwq->flush_color != color))
1183 goto out_put;
1184
1185 /* are there still in-flight works? */
1186 if (pwq->nr_in_flight[color])
1187 goto out_put;
1188
1189 /* this pwq is done, clear flush_color */
1190 pwq->flush_color = -1;
1191
1192 /*
1193 * If this was the last pwq, wake up the first flusher. It
1194 * will handle the rest.
1195 */
1196 if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush))
1197 complete(&pwq->wq->first_flusher->done);
1198 out_put:
1199 put_pwq(pwq);
1200 }
1201
1202 /**
1203 * try_to_grab_pending - steal work item from worklist and disable irq
1204 * @work: work item to steal
1205 * @is_dwork: @work is a delayed_work
1206 * @flags: place to store irq state
1207 *
1208 * Try to grab PENDING bit of @work. This function can handle @work in any
1209 * stable state - idle, on timer or on worklist.
1210 *
1211 * Return:
1212 * 1 if @work was pending and we successfully stole PENDING
1213 * 0 if @work was idle and we claimed PENDING
1214 * -EAGAIN if PENDING couldn't be grabbed at the moment, safe to busy-retry
1215 * -ENOENT if someone else is canceling @work, this state may persist
1216 * for arbitrarily long
1217 *
1218 * Note:
1219 * On >= 0 return, the caller owns @work's PENDING bit. To avoid getting
1220 * interrupted while holding PENDING and @work off queue, irq must be
1221 * disabled on entry. This, combined with delayed_work->timer being
1222 * irqsafe, ensures that we return -EAGAIN for finite short period of time.
1223 *
1224 * On successful return, >= 0, irq is disabled and the caller is
1225 * responsible for releasing it using local_irq_restore(*@flags).
1226 *
1227 * This function is safe to call from any context including IRQ handler.
1228 */
1229 static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
1230 unsigned long *flags)
1231 {
1232 struct worker_pool *pool;
1233 struct pool_workqueue *pwq;
1234
1235 local_irq_save(*flags);
1236
1237 /* try to steal the timer if it exists */
1238 if (is_dwork) {
1239 struct delayed_work *dwork = to_delayed_work(work);
1240
1241 /*
1242 * dwork->timer is irqsafe. If del_timer() fails, it's
1243 * guaranteed that the timer is not queued anywhere and not
1244 * running on the local CPU.
1245 */
1246 if (likely(del_timer(&dwork->timer)))
1247 return 1;
1248 }
1249
1250 /* try to claim PENDING the normal way */
1251 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
1252 return 0;
1253
1254 rcu_read_lock();
1255 /*
1256 * The queueing is in progress, or it is already queued. Try to
1257 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
1258 */
1259 pool = get_work_pool(work);
1260 if (!pool)
1261 goto fail;
1262
1263 spin_lock(&pool->lock);
1264 /*
1265 * work->data is guaranteed to point to pwq only while the work
1266 * item is queued on pwq->wq, and both updating work->data to point
1267 * to pwq on queueing and to pool on dequeueing are done under
1268 * pwq->pool->lock. This in turn guarantees that, if work->data
1269 * points to pwq which is associated with a locked pool, the work
1270 * item is currently queued on that pool.
1271 */
1272 pwq = get_work_pwq(work);
1273 if (pwq && pwq->pool == pool) {
1274 debug_work_deactivate(work);
1275
1276 /*
1277 * A delayed work item cannot be grabbed directly because
1278 * it might have linked NO_COLOR work items which, if left
1279 * on the delayed_list, will confuse pwq->nr_active
1280 * management later on and cause stall. Make sure the work
1281 * item is activated before grabbing.
1282 */
1283 if (*work_data_bits(work) & WORK_STRUCT_DELAYED)
1284 pwq_activate_delayed_work(work);
1285
1286 list_del_init(&work->entry);
1287 pwq_dec_nr_in_flight(pwq, get_work_color(work));
1288
1289 /* work->data points to pwq iff queued, point to pool */
1290 set_work_pool_and_keep_pending(work, pool->id);
1291
1292 spin_unlock(&pool->lock);
1293 rcu_read_unlock();
1294 return 1;
1295 }
1296 spin_unlock(&pool->lock);
1297 fail:
1298 rcu_read_unlock();
1299 local_irq_restore(*flags);
1300 if (work_is_canceling(work))
1301 return -ENOENT;
1302 cpu_relax();
1303 return -EAGAIN;
1304 }
1305
1306 /**
1307 * insert_work - insert a work into a pool
1308 * @pwq: pwq @work belongs to
1309 * @work: work to insert
1310 * @head: insertion point
1311 * @extra_flags: extra WORK_STRUCT_* flags to set
1312 *
1313 * Insert @work which belongs to @pwq after @head. @extra_flags is or'd to
1314 * work_struct flags.
1315 *
1316 * CONTEXT:
1317 * spin_lock_irq(pool->lock).
1318 */
1319 static void insert_work(struct pool_workqueue *pwq, struct work_struct *work,
1320 struct list_head *head, unsigned int extra_flags)
1321 {
1322 struct worker_pool *pool = pwq->pool;
1323
1324 /* we own @work, set data and link */
1325 set_work_pwq(work, pwq, extra_flags);
1326 list_add_tail(&work->entry, head);
1327 get_pwq(pwq);
1328
1329 /*
1330 * Ensure either wq_worker_sleeping() sees the above
1331 * list_add_tail() or we see zero nr_running to avoid workers lying
1332 * around lazily while there are works to be processed.
1333 */
1334 smp_mb();
1335
1336 if (__need_more_worker(pool))
1337 wake_up_worker(pool);
1338 }
1339
1340 /*
1341 * Test whether @work is being queued from another work executing on the
1342 * same workqueue.
1343 */
1344 static bool is_chained_work(struct workqueue_struct *wq)
1345 {
1346 struct worker *worker;
1347
1348 worker = current_wq_worker();
1349 /*
1350 * Return %true iff I'm a worker executing a work item on @wq. If
1351 * I'm @worker, it's safe to dereference it without locking.
1352 */
1353 return worker && worker->current_pwq->wq == wq;
1354 }
1355
1356 /*
1357 * When queueing an unbound work item to a wq, prefer local CPU if allowed
1358 * by wq_unbound_cpumask. Otherwise, round robin among the allowed ones to
1359 * avoid perturbing sensitive tasks.
1360 */
1361 static int wq_select_unbound_cpu(int cpu)
1362 {
1363 static bool printed_dbg_warning;
1364 int new_cpu;
1365
1366 if (likely(!wq_debug_force_rr_cpu)) {
1367 if (cpumask_test_cpu(cpu, wq_unbound_cpumask))
1368 return cpu;
1369 } else if (!printed_dbg_warning) {
1370 pr_warn("workqueue: round-robin CPU selection forced, expect performance impact\n");
1371 printed_dbg_warning = true;
1372 }
1373
1374 if (cpumask_empty(wq_unbound_cpumask))
1375 return cpu;
1376
1377 new_cpu = __this_cpu_read(wq_rr_cpu_last);
1378 new_cpu = cpumask_next_and(new_cpu, wq_unbound_cpumask, cpu_online_mask);
1379 if (unlikely(new_cpu >= nr_cpu_ids)) {
1380 new_cpu = cpumask_first_and(wq_unbound_cpumask, cpu_online_mask);
1381 if (unlikely(new_cpu >= nr_cpu_ids))
1382 return cpu;
1383 }
1384 __this_cpu_write(wq_rr_cpu_last, new_cpu);
1385
1386 return new_cpu;
1387 }
1388
1389 static void __queue_work(int cpu, struct workqueue_struct *wq,
1390 struct work_struct *work)
1391 {
1392 struct pool_workqueue *pwq;
1393 struct worker_pool *last_pool;
1394 struct list_head *worklist;
1395 unsigned int work_flags;
1396 unsigned int req_cpu = cpu;
1397
1398 /*
1399 * While a work item is PENDING && off queue, a task trying to
1400 * steal the PENDING will busy-loop waiting for it to either get
1401 * queued or lose PENDING. Grabbing PENDING and queueing should
1402 * happen with IRQ disabled.
1403 */
1404 lockdep_assert_irqs_disabled();
1405
1406 debug_work_activate(work);
1407
1408 /* if draining, only works from the same workqueue are allowed */
1409 if (unlikely(wq->flags & __WQ_DRAINING) &&
1410 WARN_ON_ONCE(!is_chained_work(wq)))
1411 return;
1412 rcu_read_lock();
1413 retry:
1414 /* pwq which will be used unless @work is executing elsewhere */
1415 if (wq->flags & WQ_UNBOUND) {
1416 if (req_cpu == WORK_CPU_UNBOUND)
1417 cpu = wq_select_unbound_cpu(raw_smp_processor_id());
1418 pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
1419 } else {
1420 if (req_cpu == WORK_CPU_UNBOUND)
1421 cpu = raw_smp_processor_id();
1422 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
1423 }
1424
1425 /*
1426 * If @work was previously on a different pool, it might still be
1427 * running there, in which case the work needs to be queued on that
1428 * pool to guarantee non-reentrancy.
1429 */
1430 last_pool = get_work_pool(work);
1431 if (last_pool && last_pool != pwq->pool) {
1432 struct worker *worker;
1433
1434 spin_lock(&last_pool->lock);
1435
1436 worker = find_worker_executing_work(last_pool, work);
1437
1438 if (worker && worker->current_pwq->wq == wq) {
1439 pwq = worker->current_pwq;
1440 } else {
1441 /* meh... not running there, queue here */
1442 spin_unlock(&last_pool->lock);
1443 spin_lock(&pwq->pool->lock);
1444 }
1445 } else {
1446 spin_lock(&pwq->pool->lock);
1447 }
1448
1449 /*
1450 * pwq is determined and locked. For unbound pools, we could have
1451 * raced with pwq release and it could already be dead. If its
1452 * refcnt is zero, repeat pwq selection. Note that pwqs never die
1453 * without another pwq replacing it in the numa_pwq_tbl or while
1454 * work items are executing on it, so the retrying is guaranteed to
1455 * make forward-progress.
1456 */
1457 if (unlikely(!pwq->refcnt)) {
1458 if (wq->flags & WQ_UNBOUND) {
1459 spin_unlock(&pwq->pool->lock);
1460 cpu_relax();
1461 goto retry;
1462 }
1463 /* oops */
1464 WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt",
1465 wq->name, cpu);
1466 }
1467
1468 /* pwq determined, queue */
1469 trace_workqueue_queue_work(req_cpu, pwq, work);
1470
1471 if (WARN_ON(!list_empty(&work->entry)))
1472 goto out;
1473
1474 pwq->nr_in_flight[pwq->work_color]++;
1475 work_flags = work_color_to_flags(pwq->work_color);
1476
1477 if (likely(pwq->nr_active < pwq->max_active)) {
1478 trace_workqueue_activate_work(work);
1479 pwq->nr_active++;
1480 worklist = &pwq->pool->worklist;
1481 if (list_empty(worklist))
1482 pwq->pool->watchdog_ts = jiffies;
1483 } else {
1484 work_flags |= WORK_STRUCT_DELAYED;
1485 worklist = &pwq->delayed_works;
1486 }
1487
1488 insert_work(pwq, work, worklist, work_flags);
1489
1490 out:
1491 spin_unlock(&pwq->pool->lock);
1492 rcu_read_unlock();
1493 }
1494
1495 /**
1496 * queue_work_on - queue work on specific cpu
1497 * @cpu: CPU number to execute work on
1498 * @wq: workqueue to use
1499 * @work: work to queue
1500 *
1501 * We queue the work to a specific CPU, the caller must ensure it
1502 * can't go away.
1503 *
1504 * Return: %false if @work was already on a queue, %true otherwise.
1505 */
1506 bool queue_work_on(int cpu, struct workqueue_struct *wq,
1507 struct work_struct *work)
1508 {
1509 bool ret = false;
1510 unsigned long flags;
1511
1512 local_irq_save(flags);
1513
1514 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1515 __queue_work(cpu, wq, work);
1516 ret = true;
1517 }
1518
1519 local_irq_restore(flags);
1520 return ret;
1521 }
1522 EXPORT_SYMBOL(queue_work_on);
1523
1524 /**
1525 * workqueue_select_cpu_near - Select a CPU based on NUMA node
1526 * @node: NUMA node ID that we want to select a CPU from
1527 *
1528 * This function will attempt to find a "random" cpu available on a given
1529 * node. If there are no CPUs available on the given node it will return
1530 * WORK_CPU_UNBOUND indicating that we should just schedule to any
1531 * available CPU if we need to schedule this work.
1532 */
1533 static int workqueue_select_cpu_near(int node)
1534 {
1535 int cpu;
1536
1537 /* No point in doing this if NUMA isn't enabled for workqueues */
1538 if (!wq_numa_enabled)
1539 return WORK_CPU_UNBOUND;
1540
1541 /* Delay binding to CPU if node is not valid or online */
1542 if (node < 0 || node >= MAX_NUMNODES || !node_online(node))
1543 return WORK_CPU_UNBOUND;
1544
1545 /* Use local node/cpu if we are already there */
1546 cpu = raw_smp_processor_id();
1547 if (node == cpu_to_node(cpu))
1548 return cpu;
1549
1550 /* Use "random" otherwise know as "first" online CPU of node */
1551 cpu = cpumask_any_and(cpumask_of_node(node), cpu_online_mask);
1552
1553 /* If CPU is valid return that, otherwise just defer */
1554 return cpu < nr_cpu_ids ? cpu : WORK_CPU_UNBOUND;
1555 }
1556
1557 /**
1558 * queue_work_node - queue work on a "random" cpu for a given NUMA node
1559 * @node: NUMA node that we are targeting the work for
1560 * @wq: workqueue to use
1561 * @work: work to queue
1562 *
1563 * We queue the work to a "random" CPU within a given NUMA node. The basic
1564 * idea here is to provide a way to somehow associate work with a given
1565 * NUMA node.
1566 *
1567 * This function will only make a best effort attempt at getting this onto
1568 * the right NUMA node. If no node is requested or the requested node is
1569 * offline then we just fall back to standard queue_work behavior.
1570 *
1571 * Currently the "random" CPU ends up being the first available CPU in the
1572 * intersection of cpu_online_mask and the cpumask of the node, unless we
1573 * are running on the node. In that case we just use the current CPU.
1574 *
1575 * Return: %false if @work was already on a queue, %true otherwise.
1576 */
1577 bool queue_work_node(int node, struct workqueue_struct *wq,
1578 struct work_struct *work)
1579 {
1580 unsigned long flags;
1581 bool ret = false;
1582
1583 /*
1584 * This current implementation is specific to unbound workqueues.
1585 * Specifically we only return the first available CPU for a given
1586 * node instead of cycling through individual CPUs within the node.
1587 *
1588 * If this is used with a per-cpu workqueue then the logic in
1589 * workqueue_select_cpu_near would need to be updated to allow for
1590 * some round robin type logic.
1591 */
1592 WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND));
1593
1594 local_irq_save(flags);
1595
1596 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1597 int cpu = workqueue_select_cpu_near(node);
1598
1599 __queue_work(cpu, wq, work);
1600 ret = true;
1601 }
1602
1603 local_irq_restore(flags);
1604 return ret;
1605 }
1606 EXPORT_SYMBOL_GPL(queue_work_node);
1607
1608 void delayed_work_timer_fn(struct timer_list *t)
1609 {
1610 struct delayed_work *dwork = from_timer(dwork, t, timer);
1611
1612 /* should have been called from irqsafe timer with irq already off */
1613 __queue_work(dwork->cpu, dwork->wq, &dwork->work);
1614 }
1615 EXPORT_SYMBOL(delayed_work_timer_fn);
1616
1617 static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
1618 struct delayed_work *dwork, unsigned long delay)
1619 {
1620 struct timer_list *timer = &dwork->timer;
1621 struct work_struct *work = &dwork->work;
1622
1623 WARN_ON_ONCE(!wq);
1624 WARN_ON_ONCE(timer->function != delayed_work_timer_fn);
1625 WARN_ON_ONCE(timer_pending(timer));
1626 WARN_ON_ONCE(!list_empty(&work->entry));
1627
1628 /*
1629 * If @delay is 0, queue @dwork->work immediately. This is for
1630 * both optimization and correctness. The earliest @timer can
1631 * expire is on the closest next tick and delayed_work users depend
1632 * on that there's no such delay when @delay is 0.
1633 */
1634 if (!delay) {
1635 __queue_work(cpu, wq, &dwork->work);
1636 return;
1637 }
1638
1639 dwork->wq = wq;
1640 dwork->cpu = cpu;
1641 timer->expires = jiffies + delay;
1642
1643 if (unlikely(cpu != WORK_CPU_UNBOUND))
1644 add_timer_on(timer, cpu);
1645 else
1646 add_timer(timer);
1647 }
1648
1649 /**
1650 * queue_delayed_work_on - queue work on specific CPU after delay
1651 * @cpu: CPU number to execute work on
1652 * @wq: workqueue to use
1653 * @dwork: work to queue
1654 * @delay: number of jiffies to wait before queueing
1655 *
1656 * Return: %false if @work was already on a queue, %true otherwise. If
1657 * @delay is zero and @dwork is idle, it will be scheduled for immediate
1658 * execution.
1659 */
1660 bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
1661 struct delayed_work *dwork, unsigned long delay)
1662 {
1663 struct work_struct *work = &dwork->work;
1664 bool ret = false;
1665 unsigned long flags;
1666
1667 /* read the comment in __queue_work() */
1668 local_irq_save(flags);
1669
1670 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1671 __queue_delayed_work(cpu, wq, dwork, delay);
1672 ret = true;
1673 }
1674
1675 local_irq_restore(flags);
1676 return ret;
1677 }
1678 EXPORT_SYMBOL(queue_delayed_work_on);
1679
1680 /**
1681 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
1682 * @cpu: CPU number to execute work on
1683 * @wq: workqueue to use
1684 * @dwork: work to queue
1685 * @delay: number of jiffies to wait before queueing
1686 *
1687 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
1688 * modify @dwork's timer so that it expires after @delay. If @delay is
1689 * zero, @work is guaranteed to be scheduled immediately regardless of its
1690 * current state.
1691 *
1692 * Return: %false if @dwork was idle and queued, %true if @dwork was
1693 * pending and its timer was modified.
1694 *
1695 * This function is safe to call from any context including IRQ handler.
1696 * See try_to_grab_pending() for details.
1697 */
1698 bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
1699 struct delayed_work *dwork, unsigned long delay)
1700 {
1701 unsigned long flags;
1702 int ret;
1703
1704 do {
1705 ret = try_to_grab_pending(&dwork->work, true, &flags);
1706 } while (unlikely(ret == -EAGAIN));
1707
1708 if (likely(ret >= 0)) {
1709 __queue_delayed_work(cpu, wq, dwork, delay);
1710 local_irq_restore(flags);
1711 }
1712
1713 /* -ENOENT from try_to_grab_pending() becomes %true */
1714 return ret;
1715 }
1716 EXPORT_SYMBOL_GPL(mod_delayed_work_on);
1717
1718 static void rcu_work_rcufn(struct rcu_head *rcu)
1719 {
1720 struct rcu_work *rwork = container_of(rcu, struct rcu_work, rcu);
1721
1722 /* read the comment in __queue_work() */
1723 local_irq_disable();
1724 __queue_work(WORK_CPU_UNBOUND, rwork->wq, &rwork->work);
1725 local_irq_enable();
1726 }
1727
1728 /**
1729 * queue_rcu_work - queue work after a RCU grace period
1730 * @wq: workqueue to use
1731 * @rwork: work to queue
1732 *
1733 * Return: %false if @rwork was already pending, %true otherwise. Note
1734 * that a full RCU grace period is guaranteed only after a %true return.
1735 * While @rwork is guaranteed to be executed after a %false return, the
1736 * execution may happen before a full RCU grace period has passed.
1737 */
1738 bool queue_rcu_work(struct workqueue_struct *wq, struct rcu_work *rwork)
1739 {
1740 struct work_struct *work = &rwork->work;
1741
1742 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1743 rwork->wq = wq;
1744 call_rcu(&rwork->rcu, rcu_work_rcufn);
1745 return true;
1746 }
1747
1748 return false;
1749 }
1750 EXPORT_SYMBOL(queue_rcu_work);
1751
1752 /**
1753 * worker_enter_idle - enter idle state
1754 * @worker: worker which is entering idle state
1755 *
1756 * @worker is entering idle state. Update stats and idle timer if
1757 * necessary.
1758 *
1759 * LOCKING:
1760 * spin_lock_irq(pool->lock).
1761 */
1762 static void worker_enter_idle(struct worker *worker)
1763 {
1764 struct worker_pool *pool = worker->pool;
1765
1766 if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) ||
1767 WARN_ON_ONCE(!list_empty(&worker->entry) &&
1768 (worker->hentry.next || worker->hentry.pprev)))
1769 return;
1770
1771 /* can't use worker_set_flags(), also called from create_worker() */
1772 worker->flags |= WORKER_IDLE;
1773 pool->nr_idle++;
1774 worker->last_active = jiffies;
1775
1776 /* idle_list is LIFO */
1777 list_add(&worker->entry, &pool->idle_list);
1778
1779 if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
1780 mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
1781
1782 /*
1783 * Sanity check nr_running. Because unbind_workers() releases
1784 * pool->lock between setting %WORKER_UNBOUND and zapping
1785 * nr_running, the warning may trigger spuriously. Check iff
1786 * unbind is not in progress.
1787 */
1788 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
1789 pool->nr_workers == pool->nr_idle &&
1790 atomic_read(&pool->nr_running));
1791 }
1792
1793 /**
1794 * worker_leave_idle - leave idle state
1795 * @worker: worker which is leaving idle state
1796 *
1797 * @worker is leaving idle state. Update stats.
1798 *
1799 * LOCKING:
1800 * spin_lock_irq(pool->lock).
1801 */
1802 static void worker_leave_idle(struct worker *worker)
1803 {
1804 struct worker_pool *pool = worker->pool;
1805
1806 if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE)))
1807 return;
1808 worker_clr_flags(worker, WORKER_IDLE);
1809 pool->nr_idle--;
1810 list_del_init(&worker->entry);
1811 }
1812
1813 static struct worker *alloc_worker(int node)
1814 {
1815 struct worker *worker;
1816
1817 worker = kzalloc_node(sizeof(*worker), GFP_KERNEL, node);
1818 if (worker) {
1819 INIT_LIST_HEAD(&worker->entry);
1820 INIT_LIST_HEAD(&worker->scheduled);
1821 INIT_LIST_HEAD(&worker->node);
1822 /* on creation a worker is in !idle && prep state */
1823 worker->flags = WORKER_PREP;
1824 }
1825 return worker;
1826 }
1827
1828 /**
1829 * worker_attach_to_pool() - attach a worker to a pool
1830 * @worker: worker to be attached
1831 * @pool: the target pool
1832 *
1833 * Attach @worker to @pool. Once attached, the %WORKER_UNBOUND flag and
1834 * cpu-binding of @worker are kept coordinated with the pool across
1835 * cpu-[un]hotplugs.
1836 */
1837 static void worker_attach_to_pool(struct worker *worker,
1838 struct worker_pool *pool)
1839 {
1840 mutex_lock(&wq_pool_attach_mutex);
1841
1842 /*
1843 * set_cpus_allowed_ptr() will fail if the cpumask doesn't have any
1844 * online CPUs. It'll be re-applied when any of the CPUs come up.
1845 */
1846 set_cpus_allowed_ptr(worker->task, pool->attrs->cpumask);
1847
1848 /*
1849 * The wq_pool_attach_mutex ensures %POOL_DISASSOCIATED remains
1850 * stable across this function. See the comments above the flag
1851 * definition for details.
1852 */
1853 if (pool->flags & POOL_DISASSOCIATED)
1854 worker->flags |= WORKER_UNBOUND;
1855
1856 list_add_tail(&worker->node, &pool->workers);
1857 worker->pool = pool;
1858
1859 mutex_unlock(&wq_pool_attach_mutex);
1860 }
1861
1862 /**
1863 * worker_detach_from_pool() - detach a worker from its pool
1864 * @worker: worker which is attached to its pool
1865 *
1866 * Undo the attaching which had been done in worker_attach_to_pool(). The
1867 * caller worker shouldn't access to the pool after detached except it has
1868 * other reference to the pool.
1869 */
1870 static void worker_detach_from_pool(struct worker *worker)
1871 {
1872 struct worker_pool *pool = worker->pool;
1873 struct completion *detach_completion = NULL;
1874
1875 mutex_lock(&wq_pool_attach_mutex);
1876
1877 list_del(&worker->node);
1878 worker->pool = NULL;
1879
1880 if (list_empty(&pool->workers))
1881 detach_completion = pool->detach_completion;
1882 mutex_unlock(&wq_pool_attach_mutex);
1883
1884 /* clear leftover flags without pool->lock after it is detached */
1885 worker->flags &= ~(WORKER_UNBOUND | WORKER_REBOUND);
1886
1887 if (detach_completion)
1888 complete(detach_completion);
1889 }
1890
1891 /**
1892 * create_worker - create a new workqueue worker
1893 * @pool: pool the new worker will belong to
1894 *
1895 * Create and start a new worker which is attached to @pool.
1896 *
1897 * CONTEXT:
1898 * Might sleep. Does GFP_KERNEL allocations.
1899 *
1900 * Return:
1901 * Pointer to the newly created worker.
1902 */
1903 static struct worker *create_worker(struct worker_pool *pool)
1904 {
1905 struct worker *worker = NULL;
1906 int id = -1;
1907 char id_buf[16];
1908
1909 /* ID is needed to determine kthread name */
1910 id = ida_simple_get(&pool->worker_ida, 0, 0, GFP_KERNEL);
1911 if (id < 0)
1912 goto fail;
1913
1914 worker = alloc_worker(pool->node);
1915 if (!worker)
1916 goto fail;
1917
1918 worker->id = id;
1919
1920 if (pool->cpu >= 0)
1921 snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id,
1922 pool->attrs->nice < 0 ? "H" : "");
1923 else
1924 snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id);
1925
1926 worker->task = kthread_create_on_node(worker_thread, worker, pool->node,
1927 "kworker/%s", id_buf);
1928 if (IS_ERR(worker->task))
1929 goto fail;
1930
1931 set_user_nice(worker->task, pool->attrs->nice);
1932 kthread_bind_mask(worker->task, pool->attrs->cpumask);
1933
1934 /* successful, attach the worker to the pool */
1935 worker_attach_to_pool(worker, pool);
1936
1937 /* start the newly created worker */
1938 spin_lock_irq(&pool->lock);
1939 worker->pool->nr_workers++;
1940 worker_enter_idle(worker);
1941 wake_up_process(worker->task);
1942 spin_unlock_irq(&pool->lock);
1943
1944 return worker;
1945
1946 fail:
1947 if (id >= 0)
1948 ida_simple_remove(&pool->worker_ida, id);
1949 kfree(worker);
1950 return NULL;
1951 }
1952
1953 /**
1954 * destroy_worker - destroy a workqueue worker
1955 * @worker: worker to be destroyed
1956 *
1957 * Destroy @worker and adjust @pool stats accordingly. The worker should
1958 * be idle.
1959 *
1960 * CONTEXT:
1961 * spin_lock_irq(pool->lock).
1962 */
1963 static void destroy_worker(struct worker *worker)
1964 {
1965 struct worker_pool *pool = worker->pool;
1966
1967 lockdep_assert_held(&pool->lock);
1968
1969 /* sanity check frenzy */
1970 if (WARN_ON(worker->current_work) ||
1971 WARN_ON(!list_empty(&worker->scheduled)) ||
1972 WARN_ON(!(worker->flags & WORKER_IDLE)))
1973 return;
1974
1975 pool->nr_workers--;
1976 pool->nr_idle--;
1977
1978 list_del_init(&worker->entry);
1979 worker->flags |= WORKER_DIE;
1980 wake_up_process(worker->task);
1981 }
1982
1983 static void idle_worker_timeout(struct timer_list *t)
1984 {
1985 struct worker_pool *pool = from_timer(pool, t, idle_timer);
1986
1987 spin_lock_irq(&pool->lock);
1988
1989 while (too_many_workers(pool)) {
1990 struct worker *worker;
1991 unsigned long expires;
1992
1993 /* idle_list is kept in LIFO order, check the last one */
1994 worker = list_entry(pool->idle_list.prev, struct worker, entry);
1995 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
1996
1997 if (time_before(jiffies, expires)) {
1998 mod_timer(&pool->idle_timer, expires);
1999 break;
2000 }
2001
2002 destroy_worker(worker);
2003 }
2004
2005 spin_unlock_irq(&pool->lock);
2006 }
2007
2008 static void send_mayday(struct work_struct *work)
2009 {
2010 struct pool_workqueue *pwq = get_work_pwq(work);
2011 struct workqueue_struct *wq = pwq->wq;
2012
2013 lockdep_assert_held(&wq_mayday_lock);
2014
2015 if (!wq->rescuer)
2016 return;
2017
2018 /* mayday mayday mayday */
2019 if (list_empty(&pwq->mayday_node)) {
2020 /*
2021 * If @pwq is for an unbound wq, its base ref may be put at
2022 * any time due to an attribute change. Pin @pwq until the
2023 * rescuer is done with it.
2024 */
2025 get_pwq(pwq);
2026 list_add_tail(&pwq->mayday_node, &wq->maydays);
2027 wake_up_process(wq->rescuer->task);
2028 }
2029 }
2030
2031 static void pool_mayday_timeout(struct timer_list *t)
2032 {
2033 struct worker_pool *pool = from_timer(pool, t, mayday_timer);
2034 struct work_struct *work;
2035
2036 spin_lock_irq(&pool->lock);
2037 spin_lock(&wq_mayday_lock); /* for wq->maydays */
2038
2039 if (need_to_create_worker(pool)) {
2040 /*
2041 * We've been trying to create a new worker but
2042 * haven't been successful. We might be hitting an
2043 * allocation deadlock. Send distress signals to
2044 * rescuers.
2045 */
2046 list_for_each_entry(work, &pool->worklist, entry)
2047 send_mayday(work);
2048 }
2049
2050 spin_unlock(&wq_mayday_lock);
2051 spin_unlock_irq(&pool->lock);
2052
2053 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
2054 }
2055
2056 /**
2057 * maybe_create_worker - create a new worker if necessary
2058 * @pool: pool to create a new worker for
2059 *
2060 * Create a new worker for @pool if necessary. @pool is guaranteed to
2061 * have at least one idle worker on return from this function. If
2062 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
2063 * sent to all rescuers with works scheduled on @pool to resolve
2064 * possible allocation deadlock.
2065 *
2066 * On return, need_to_create_worker() is guaranteed to be %false and
2067 * may_start_working() %true.
2068 *
2069 * LOCKING:
2070 * spin_lock_irq(pool->lock) which may be released and regrabbed
2071 * multiple times. Does GFP_KERNEL allocations. Called only from
2072 * manager.
2073 */
2074 static void maybe_create_worker(struct worker_pool *pool)
2075 __releases(&pool->lock)
2076 __acquires(&pool->lock)
2077 {
2078 restart:
2079 spin_unlock_irq(&pool->lock);
2080
2081 /* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
2082 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
2083
2084 while (true) {
2085 if (create_worker(pool) || !need_to_create_worker(pool))
2086 break;
2087
2088 schedule_timeout_interruptible(CREATE_COOLDOWN);
2089
2090 if (!need_to_create_worker(pool))
2091 break;
2092 }
2093
2094 del_timer_sync(&pool->mayday_timer);
2095 spin_lock_irq(&pool->lock);
2096 /*
2097 * This is necessary even after a new worker was just successfully
2098 * created as @pool->lock was dropped and the new worker might have
2099 * already become busy.
2100 */
2101 if (need_to_create_worker(pool))
2102 goto restart;
2103 }
2104
2105 /**
2106 * manage_workers - manage worker pool
2107 * @worker: self
2108 *
2109 * Assume the manager role and manage the worker pool @worker belongs
2110 * to. At any given time, there can be only zero or one manager per
2111 * pool. The exclusion is handled automatically by this function.
2112 *
2113 * The caller can safely start processing works on false return. On
2114 * true return, it's guaranteed that need_to_create_worker() is false
2115 * and may_start_working() is true.
2116 *
2117 * CONTEXT:
2118 * spin_lock_irq(pool->lock) which may be released and regrabbed
2119 * multiple times. Does GFP_KERNEL allocations.
2120 *
2121 * Return:
2122 * %false if the pool doesn't need management and the caller can safely
2123 * start processing works, %true if management function was performed and
2124 * the conditions that the caller verified before calling the function may
2125 * no longer be true.
2126 */
2127 static bool manage_workers(struct worker *worker)
2128 {
2129 struct worker_pool *pool = worker->pool;
2130
2131 if (pool->flags & POOL_MANAGER_ACTIVE)
2132 return false;
2133
2134 pool->flags |= POOL_MANAGER_ACTIVE;
2135 pool->manager = worker;
2136
2137 maybe_create_worker(pool);
2138
2139 pool->manager = NULL;
2140 pool->flags &= ~POOL_MANAGER_ACTIVE;
2141 wake_up(&wq_manager_wait);
2142 return true;
2143 }
2144
2145 /**
2146 * process_one_work - process single work
2147 * @worker: self
2148 * @work: work to process
2149 *
2150 * Process @work. This function contains all the logics necessary to
2151 * process a single work including synchronization against and
2152 * interaction with other workers on the same cpu, queueing and
2153 * flushing. As long as context requirement is met, any worker can
2154 * call this function to process a work.
2155 *
2156 * CONTEXT:
2157 * spin_lock_irq(pool->lock) which is released and regrabbed.
2158 */
2159 static void process_one_work(struct worker *worker, struct work_struct *work)
2160 __releases(&pool->lock)
2161 __acquires(&pool->lock)
2162 {
2163 struct pool_workqueue *pwq = get_work_pwq(work);
2164 struct worker_pool *pool = worker->pool;
2165 bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE;
2166 int work_color;
2167 struct worker *collision;
2168 #ifdef CONFIG_LOCKDEP
2169 /*
2170 * It is permissible to free the struct work_struct from
2171 * inside the function that is called from it, this we need to
2172 * take into account for lockdep too. To avoid bogus "held
2173 * lock freed" warnings as well as problems when looking into
2174 * work->lockdep_map, make a copy and use that here.
2175 */
2176 struct lockdep_map lockdep_map;
2177
2178 lockdep_copy_map(&lockdep_map, &work->lockdep_map);
2179 #endif
2180 /* ensure we're on the correct CPU */
2181 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
2182 raw_smp_processor_id() != pool->cpu);
2183
2184 /*
2185 * A single work shouldn't be executed concurrently by
2186 * multiple workers on a single cpu. Check whether anyone is
2187 * already processing the work. If so, defer the work to the
2188 * currently executing one.
2189 */
2190 collision = find_worker_executing_work(pool, work);
2191 if (unlikely(collision)) {
2192 move_linked_works(work, &collision->scheduled, NULL);
2193 return;
2194 }
2195
2196 /* claim and dequeue */
2197 debug_work_deactivate(work);
2198 hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
2199 worker->current_work = work;
2200 worker->current_func = work->func;
2201 worker->current_pwq = pwq;
2202 work_color = get_work_color(work);
2203
2204 /*
2205 * Record wq name for cmdline and debug reporting, may get
2206 * overridden through set_worker_desc().
2207 */
2208 strscpy(worker->desc, pwq->wq->name, WORKER_DESC_LEN);
2209
2210 list_del_init(&work->entry);
2211
2212 /*
2213 * CPU intensive works don't participate in concurrency management.
2214 * They're the scheduler's responsibility. This takes @worker out
2215 * of concurrency management and the next code block will chain
2216 * execution of the pending work items.
2217 */
2218 if (unlikely(cpu_intensive))
2219 worker_set_flags(worker, WORKER_CPU_INTENSIVE);
2220
2221 /*
2222 * Wake up another worker if necessary. The condition is always
2223 * false for normal per-cpu workers since nr_running would always
2224 * be >= 1 at this point. This is used to chain execution of the
2225 * pending work items for WORKER_NOT_RUNNING workers such as the
2226 * UNBOUND and CPU_INTENSIVE ones.
2227 */
2228 if (need_more_worker(pool))
2229 wake_up_worker(pool);
2230
2231 /*
2232 * Record the last pool and clear PENDING which should be the last
2233 * update to @work. Also, do this inside @pool->lock so that
2234 * PENDING and queued state changes happen together while IRQ is
2235 * disabled.
2236 */
2237 set_work_pool_and_clear_pending(work, pool->id);
2238
2239 spin_unlock_irq(&pool->lock);
2240
2241 lock_map_acquire(&pwq->wq->lockdep_map);
2242 lock_map_acquire(&lockdep_map);
2243 /*
2244 * Strictly speaking we should mark the invariant state without holding
2245 * any locks, that is, before these two lock_map_acquire()'s.
2246 *
2247 * However, that would result in:
2248 *
2249 * A(W1)
2250 * WFC(C)
2251 * A(W1)
2252 * C(C)
2253 *
2254 * Which would create W1->C->W1 dependencies, even though there is no
2255 * actual deadlock possible. There are two solutions, using a
2256 * read-recursive acquire on the work(queue) 'locks', but this will then
2257 * hit the lockdep limitation on recursive locks, or simply discard
2258 * these locks.
2259 *
2260 * AFAICT there is no possible deadlock scenario between the
2261 * flush_work() and complete() primitives (except for single-threaded
2262 * workqueues), so hiding them isn't a problem.
2263 */
2264 lockdep_invariant_state(true);
2265 trace_workqueue_execute_start(work);
2266 worker->current_func(work);
2267 /*
2268 * While we must be careful to not use "work" after this, the trace
2269 * point will only record its address.
2270 */
2271 trace_workqueue_execute_end(work, worker->current_func);
2272 lock_map_release(&lockdep_map);
2273 lock_map_release(&pwq->wq->lockdep_map);
2274
2275 if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
2276 pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
2277 " last function: %ps\n",
2278 current->comm, preempt_count(), task_pid_nr(current),
2279 worker->current_func);
2280 debug_show_held_locks(current);
2281 dump_stack();
2282 }
2283
2284 /*
2285 * The following prevents a kworker from hogging CPU on !PREEMPTION
2286 * kernels, where a requeueing work item waiting for something to
2287 * happen could deadlock with stop_machine as such work item could
2288 * indefinitely requeue itself while all other CPUs are trapped in
2289 * stop_machine. At the same time, report a quiescent RCU state so
2290 * the same condition doesn't freeze RCU.
2291 */
2292 cond_resched();
2293
2294 spin_lock_irq(&pool->lock);
2295
2296 /* clear cpu intensive status */
2297 if (unlikely(cpu_intensive))
2298 worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
2299
2300 /* tag the worker for identification in schedule() */
2301 worker->last_func = worker->current_func;
2302
2303 /* we're done with it, release */
2304 hash_del(&worker->hentry);
2305 worker->current_work = NULL;
2306 worker->current_func = NULL;
2307 worker->current_pwq = NULL;
2308 pwq_dec_nr_in_flight(pwq, work_color);
2309 }
2310
2311 /**
2312 * process_scheduled_works - process scheduled works
2313 * @worker: self
2314 *
2315 * Process all scheduled works. Please note that the scheduled list
2316 * may change while processing a work, so this function repeatedly
2317 * fetches a work from the top and executes it.
2318 *
2319 * CONTEXT:
2320 * spin_lock_irq(pool->lock) which may be released and regrabbed
2321 * multiple times.
2322 */
2323 static void process_scheduled_works(struct worker *worker)
2324 {
2325 while (!list_empty(&worker->scheduled)) {
2326 struct work_struct *work = list_first_entry(&worker->scheduled,
2327 struct work_struct, entry);
2328 process_one_work(worker, work);
2329 }
2330 }
2331
2332 static void set_pf_worker(bool val)
2333 {
2334 mutex_lock(&wq_pool_attach_mutex);
2335 if (val)
2336 current->flags |= PF_WQ_WORKER;
2337 else
2338 current->flags &= ~PF_WQ_WORKER;
2339 mutex_unlock(&wq_pool_attach_mutex);
2340 }
2341
2342 /**
2343 * worker_thread - the worker thread function
2344 * @__worker: self
2345 *
2346 * The worker thread function. All workers belong to a worker_pool -
2347 * either a per-cpu one or dynamic unbound one. These workers process all
2348 * work items regardless of their specific target workqueue. The only
2349 * exception is work items which belong to workqueues with a rescuer which
2350 * will be explained in rescuer_thread().
2351 *
2352 * Return: 0
2353 */
2354 static int worker_thread(void *__worker)
2355 {
2356 struct worker *worker = __worker;
2357 struct worker_pool *pool = worker->pool;
2358
2359 /* tell the scheduler that this is a workqueue worker */
2360 set_pf_worker(true);
2361 woke_up:
2362 spin_lock_irq(&pool->lock);
2363
2364 /* am I supposed to die? */
2365 if (unlikely(worker->flags & WORKER_DIE)) {
2366 spin_unlock_irq(&pool->lock);
2367 WARN_ON_ONCE(!list_empty(&worker->entry));
2368 set_pf_worker(false);
2369
2370 set_task_comm(worker->task, "kworker/dying");
2371 ida_simple_remove(&pool->worker_ida, worker->id);
2372 worker_detach_from_pool(worker);
2373 kfree(worker);
2374 return 0;
2375 }
2376
2377 worker_leave_idle(worker);
2378 recheck:
2379 /* no more worker necessary? */
2380 if (!need_more_worker(pool))
2381 goto sleep;
2382
2383 /* do we need to manage? */
2384 if (unlikely(!may_start_working(pool)) && manage_workers(worker))
2385 goto recheck;
2386
2387 /*
2388 * ->scheduled list can only be filled while a worker is
2389 * preparing to process a work or actually processing it.
2390 * Make sure nobody diddled with it while I was sleeping.
2391 */
2392 WARN_ON_ONCE(!list_empty(&worker->scheduled));
2393
2394 /*
2395 * Finish PREP stage. We're guaranteed to have at least one idle
2396 * worker or that someone else has already assumed the manager
2397 * role. This is where @worker starts participating in concurrency
2398 * management if applicable and concurrency management is restored
2399 * after being rebound. See rebind_workers() for details.
2400 */
2401 worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND);
2402
2403 do {
2404 struct work_struct *work =
2405 list_first_entry(&pool->worklist,
2406 struct work_struct, entry);
2407
2408 pool->watchdog_ts = jiffies;
2409
2410 if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
2411 /* optimization path, not strictly necessary */
2412 process_one_work(worker, work);
2413 if (unlikely(!list_empty(&worker->scheduled)))
2414 process_scheduled_works(worker);
2415 } else {
2416 move_linked_works(work, &worker->scheduled, NULL);
2417 process_scheduled_works(worker);
2418 }
2419 } while (keep_working(pool));
2420
2421 worker_set_flags(worker, WORKER_PREP);
2422 sleep:
2423 /*
2424 * pool->lock is held and there's no work to process and no need to
2425 * manage, sleep. Workers are woken up only while holding
2426 * pool->lock or from local cpu, so setting the current state
2427 * before releasing pool->lock is enough to prevent losing any
2428 * event.
2429 */
2430 worker_enter_idle(worker);
2431 __set_current_state(TASK_IDLE);
2432 spin_unlock_irq(&pool->lock);
2433 schedule();
2434 goto woke_up;
2435 }
2436
2437 /**
2438 * rescuer_thread - the rescuer thread function
2439 * @__rescuer: self
2440 *
2441 * Workqueue rescuer thread function. There's one rescuer for each
2442 * workqueue which has WQ_MEM_RECLAIM set.
2443 *
2444 * Regular work processing on a pool may block trying to create a new
2445 * worker which uses GFP_KERNEL allocation which has slight chance of
2446 * developing into deadlock if some works currently on the same queue
2447 * need to be processed to satisfy the GFP_KERNEL allocation. This is
2448 * the problem rescuer solves.
2449 *
2450 * When such condition is possible, the pool summons rescuers of all
2451 * workqueues which have works queued on the pool and let them process
2452 * those works so that forward progress can be guaranteed.
2453 *
2454 * This should happen rarely.
2455 *
2456 * Return: 0
2457 */
2458 static int rescuer_thread(void *__rescuer)
2459 {
2460 struct worker *rescuer = __rescuer;
2461 struct workqueue_struct *wq = rescuer->rescue_wq;
2462 struct list_head *scheduled = &rescuer->scheduled;
2463 bool should_stop;
2464
2465 set_user_nice(current, RESCUER_NICE_LEVEL);
2466
2467 /*
2468 * Mark rescuer as worker too. As WORKER_PREP is never cleared, it
2469 * doesn't participate in concurrency management.
2470 */
2471 set_pf_worker(true);
2472 repeat:
2473 set_current_state(TASK_IDLE);
2474
2475 /*
2476 * By the time the rescuer is requested to stop, the workqueue
2477 * shouldn't have any work pending, but @wq->maydays may still have
2478 * pwq(s) queued. This can happen by non-rescuer workers consuming
2479 * all the work items before the rescuer got to them. Go through
2480 * @wq->maydays processing before acting on should_stop so that the
2481 * list is always empty on exit.
2482 */
2483 should_stop = kthread_should_stop();
2484
2485 /* see whether any pwq is asking for help */
2486 spin_lock_irq(&wq_mayday_lock);
2487
2488 while (!list_empty(&wq->maydays)) {
2489 struct pool_workqueue *pwq = list_first_entry(&wq->maydays,
2490 struct pool_workqueue, mayday_node);
2491 struct worker_pool *pool = pwq->pool;
2492 struct work_struct *work, *n;
2493 bool first = true;
2494
2495 __set_current_state(TASK_RUNNING);
2496 list_del_init(&pwq->mayday_node);
2497
2498 spin_unlock_irq(&wq_mayday_lock);
2499
2500 worker_attach_to_pool(rescuer, pool);
2501
2502 spin_lock_irq(&pool->lock);
2503
2504 /*
2505 * Slurp in all works issued via this workqueue and
2506 * process'em.
2507 */
2508 WARN_ON_ONCE(!list_empty(scheduled));
2509 list_for_each_entry_safe(work, n, &pool->worklist, entry) {
2510 if (get_work_pwq(work) == pwq) {
2511 if (first)
2512 pool->watchdog_ts = jiffies;
2513 move_linked_works(work, scheduled, &n);
2514 }
2515 first = false;
2516 }
2517
2518 if (!list_empty(scheduled)) {
2519 process_scheduled_works(rescuer);
2520
2521 /*
2522 * The above execution of rescued work items could
2523 * have created more to rescue through
2524 * pwq_activate_first_delayed() or chained
2525 * queueing. Let's put @pwq back on mayday list so
2526 * that such back-to-back work items, which may be
2527 * being used to relieve memory pressure, don't
2528 * incur MAYDAY_INTERVAL delay inbetween.
2529 */
2530 if (need_to_create_worker(pool)) {
2531 spin_lock(&wq_mayday_lock);
2532 /*
2533 * Queue iff we aren't racing destruction
2534 * and somebody else hasn't queued it already.
2535 */
2536 if (wq->rescuer && list_empty(&pwq->mayday_node)) {
2537 get_pwq(pwq);
2538 list_add_tail(&pwq->mayday_node, &wq->maydays);
2539 }
2540 spin_unlock(&wq_mayday_lock);
2541 }
2542 }
2543
2544 /*
2545 * Put the reference grabbed by send_mayday(). @pool won't
2546 * go away while we're still attached to it.
2547 */
2548 put_pwq(pwq);
2549
2550 /*
2551 * Leave this pool. If need_more_worker() is %true, notify a
2552 * regular worker; otherwise, we end up with 0 concurrency
2553 * and stalling the execution.
2554 */
2555 if (need_more_worker(pool))
2556 wake_up_worker(pool);
2557
2558 spin_unlock_irq(&pool->lock);
2559
2560 worker_detach_from_pool(rescuer);
2561
2562 spin_lock_irq(&wq_mayday_lock);
2563 }
2564
2565 spin_unlock_irq(&wq_mayday_lock);
2566
2567 if (should_stop) {
2568 __set_current_state(TASK_RUNNING);
2569 set_pf_worker(false);
2570 return 0;
2571 }
2572
2573 /* rescuers should never participate in concurrency management */
2574 WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
2575 schedule();
2576 goto repeat;
2577 }
2578
2579 /**
2580 * check_flush_dependency - check for flush dependency sanity
2581 * @target_wq: workqueue being flushed
2582 * @target_work: work item being flushed (NULL for workqueue flushes)
2583 *
2584 * %current is trying to flush the whole @target_wq or @target_work on it.
2585 * If @target_wq doesn't have %WQ_MEM_RECLAIM, verify that %current is not
2586 * reclaiming memory or running on a workqueue which doesn't have
2587 * %WQ_MEM_RECLAIM as that can break forward-progress guarantee leading to
2588 * a deadlock.
2589 */
2590 static void check_flush_dependency(struct workqueue_struct *target_wq,
2591 struct work_struct *target_work)
2592 {
2593 work_func_t target_func = target_work ? target_work->func : NULL;
2594 struct worker *worker;
2595
2596 if (target_wq->flags & WQ_MEM_RECLAIM)
2597 return;
2598
2599 worker = current_wq_worker();
2600
2601 WARN_ONCE(current->flags & PF_MEMALLOC,
2602 "workqueue: PF_MEMALLOC task %d(%s) is flushing !WQ_MEM_RECLAIM %s:%ps",
2603 current->pid, current->comm, target_wq->name, target_func);
2604 WARN_ONCE(worker && ((worker->current_pwq->wq->flags &
2605 (WQ_MEM_RECLAIM | __WQ_LEGACY)) == WQ_MEM_RECLAIM),
2606 "workqueue: WQ_MEM_RECLAIM %s:%ps is flushing !WQ_MEM_RECLAIM %s:%ps",
2607 worker->current_pwq->wq->name, worker->current_func,
2608 target_wq->name, target_func);
2609 }
2610
2611 struct wq_barrier {
2612 struct work_struct work;
2613 struct completion done;
2614 struct task_struct *task; /* purely informational */
2615 };
2616
2617 static void wq_barrier_func(struct work_struct *work)
2618 {
2619 struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
2620 complete(&barr->done);
2621 }
2622
2623 /**
2624 * insert_wq_barrier - insert a barrier work
2625 * @pwq: pwq to insert barrier into
2626 * @barr: wq_barrier to insert
2627 * @target: target work to attach @barr to
2628 * @worker: worker currently executing @target, NULL if @target is not executing
2629 *
2630 * @barr is linked to @target such that @barr is completed only after
2631 * @target finishes execution. Please note that the ordering
2632 * guarantee is observed only with respect to @target and on the local
2633 * cpu.
2634 *
2635 * Currently, a queued barrier can't be canceled. This is because
2636 * try_to_grab_pending() can't determine whether the work to be
2637 * grabbed is at the head of the queue and thus can't clear LINKED
2638 * flag of the previous work while there must be a valid next work
2639 * after a work with LINKED flag set.
2640 *
2641 * Note that when @worker is non-NULL, @target may be modified
2642 * underneath us, so we can't reliably determine pwq from @target.
2643 *
2644 * CONTEXT:
2645 * spin_lock_irq(pool->lock).
2646 */
2647 static void insert_wq_barrier(struct pool_workqueue *pwq,
2648 struct wq_barrier *barr,
2649 struct work_struct *target, struct worker *worker)
2650 {
2651 struct list_head *head;
2652 unsigned int linked = 0;
2653
2654 /*
2655 * debugobject calls are safe here even with pool->lock locked
2656 * as we know for sure that this will not trigger any of the
2657 * checks and call back into the fixup functions where we
2658 * might deadlock.
2659 */
2660 INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
2661 __set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
2662
2663 init_completion_map(&barr->done, &target->lockdep_map);
2664
2665 barr->task = current;
2666
2667 /*
2668 * If @target is currently being executed, schedule the
2669 * barrier to the worker; otherwise, put it after @target.
2670 */
2671 if (worker)
2672 head = worker->scheduled.next;
2673 else {
2674 unsigned long *bits = work_data_bits(target);
2675
2676 head = target->entry.next;
2677 /* there can already be other linked works, inherit and set */
2678 linked = *bits & WORK_STRUCT_LINKED;
2679 __set_bit(WORK_STRUCT_LINKED_BIT, bits);
2680 }
2681
2682 debug_work_activate(&barr->work);
2683 insert_work(pwq, &barr->work, head,
2684 work_color_to_flags(WORK_NO_COLOR) | linked);
2685 }
2686
2687 /**
2688 * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing
2689 * @wq: workqueue being flushed
2690 * @flush_color: new flush color, < 0 for no-op
2691 * @work_color: new work color, < 0 for no-op
2692 *
2693 * Prepare pwqs for workqueue flushing.
2694 *
2695 * If @flush_color is non-negative, flush_color on all pwqs should be
2696 * -1. If no pwq has in-flight commands at the specified color, all
2697 * pwq->flush_color's stay at -1 and %false is returned. If any pwq
2698 * has in flight commands, its pwq->flush_color is set to
2699 * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq
2700 * wakeup logic is armed and %true is returned.
2701 *
2702 * The caller should have initialized @wq->first_flusher prior to
2703 * calling this function with non-negative @flush_color. If
2704 * @flush_color is negative, no flush color update is done and %false
2705 * is returned.
2706 *
2707 * If @work_color is non-negative, all pwqs should have the same
2708 * work_color which is previous to @work_color and all will be
2709 * advanced to @work_color.
2710 *
2711 * CONTEXT:
2712 * mutex_lock(wq->mutex).
2713 *
2714 * Return:
2715 * %true if @flush_color >= 0 and there's something to flush. %false
2716 * otherwise.
2717 */
2718 static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq,
2719 int flush_color, int work_color)
2720 {
2721 bool wait = false;
2722 struct pool_workqueue *pwq;
2723
2724 if (flush_color >= 0) {
2725 WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush));
2726 atomic_set(&wq->nr_pwqs_to_flush, 1);
2727 }
2728
2729 for_each_pwq(pwq, wq) {
2730 struct worker_pool *pool = pwq->pool;
2731
2732 spin_lock_irq(&pool->lock);
2733
2734 if (flush_color >= 0) {
2735 WARN_ON_ONCE(pwq->flush_color != -1);
2736
2737 if (pwq->nr_in_flight[flush_color]) {
2738 pwq->flush_color = flush_color;
2739 atomic_inc(&wq->nr_pwqs_to_flush);
2740 wait = true;
2741 }
2742 }
2743
2744 if (work_color >= 0) {
2745 WARN_ON_ONCE(work_color != work_next_color(pwq->work_color));
2746 pwq->work_color = work_color;
2747 }
2748
2749 spin_unlock_irq(&pool->lock);
2750 }
2751
2752 if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush))
2753 complete(&wq->first_flusher->done);
2754
2755 return wait;
2756 }
2757
2758 /**
2759 * flush_workqueue - ensure that any scheduled work has run to completion.
2760 * @wq: workqueue to flush
2761 *
2762 * This function sleeps until all work items which were queued on entry
2763 * have finished execution, but it is not livelocked by new incoming ones.
2764 */
2765 void flush_workqueue(struct workqueue_struct *wq)
2766 {
2767 struct wq_flusher this_flusher = {
2768 .list = LIST_HEAD_INIT(this_flusher.list),
2769 .flush_color = -1,
2770 .done = COMPLETION_INITIALIZER_ONSTACK_MAP(this_flusher.done, wq->lockdep_map),
2771 };
2772 int next_color;
2773
2774 if (WARN_ON(!wq_online))
2775 return;
2776
2777 lock_map_acquire(&wq->lockdep_map);
2778 lock_map_release(&wq->lockdep_map);
2779
2780 mutex_lock(&wq->mutex);
2781
2782 /*
2783 * Start-to-wait phase
2784 */
2785 next_color = work_next_color(wq->work_color);
2786
2787 if (next_color != wq->flush_color) {
2788 /*
2789 * Color space is not full. The current work_color
2790 * becomes our flush_color and work_color is advanced
2791 * by one.
2792 */
2793 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow));
2794 this_flusher.flush_color = wq->work_color;
2795 wq->work_color = next_color;
2796
2797 if (!wq->first_flusher) {
2798 /* no flush in progress, become the first flusher */
2799 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2800
2801 wq->first_flusher = &this_flusher;
2802
2803 if (!flush_workqueue_prep_pwqs(wq, wq->flush_color,
2804 wq->work_color)) {
2805 /* nothing to flush, done */
2806 wq->flush_color = next_color;
2807 wq->first_flusher = NULL;
2808 goto out_unlock;
2809 }
2810 } else {
2811 /* wait in queue */
2812 WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color);
2813 list_add_tail(&this_flusher.list, &wq->flusher_queue);
2814 flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2815 }
2816 } else {
2817 /*
2818 * Oops, color space is full, wait on overflow queue.
2819 * The next flush completion will assign us
2820 * flush_color and transfer to flusher_queue.
2821 */
2822 list_add_tail(&this_flusher.list, &wq->flusher_overflow);
2823 }
2824
2825 check_flush_dependency(wq, NULL);
2826
2827 mutex_unlock(&wq->mutex);
2828
2829 wait_for_completion(&this_flusher.done);
2830
2831 /*
2832 * Wake-up-and-cascade phase
2833 *
2834 * First flushers are responsible for cascading flushes and
2835 * handling overflow. Non-first flushers can simply return.
2836 */
2837 if (READ_ONCE(wq->first_flusher) != &this_flusher)
2838 return;
2839
2840 mutex_lock(&wq->mutex);
2841
2842 /* we might have raced, check again with mutex held */
2843 if (wq->first_flusher != &this_flusher)
2844 goto out_unlock;
2845
2846 WRITE_ONCE(wq->first_flusher, NULL);
2847
2848 WARN_ON_ONCE(!list_empty(&this_flusher.list));
2849 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2850
2851 while (true) {
2852 struct wq_flusher *next, *tmp;
2853
2854 /* complete all the flushers sharing the current flush color */
2855 list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
2856 if (next->flush_color != wq->flush_color)
2857 break;
2858 list_del_init(&next->list);
2859 complete(&next->done);
2860 }
2861
2862 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) &&
2863 wq->flush_color != work_next_color(wq->work_color));
2864
2865 /* this flush_color is finished, advance by one */
2866 wq->flush_color = work_next_color(wq->flush_color);
2867
2868 /* one color has been freed, handle overflow queue */
2869 if (!list_empty(&wq->flusher_overflow)) {
2870 /*
2871 * Assign the same color to all overflowed
2872 * flushers, advance work_color and append to
2873 * flusher_queue. This is the start-to-wait
2874 * phase for these overflowed flushers.
2875 */
2876 list_for_each_entry(tmp, &wq->flusher_overflow, list)
2877 tmp->flush_color = wq->work_color;
2878
2879 wq->work_color = work_next_color(wq->work_color);
2880
2881 list_splice_tail_init(&wq->flusher_overflow,
2882 &wq->flusher_queue);
2883 flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2884 }
2885
2886 if (list_empty(&wq->flusher_queue)) {
2887 WARN_ON_ONCE(wq->flush_color != wq->work_color);
2888 break;
2889 }
2890
2891 /*
2892 * Need to flush more colors. Make the next flusher
2893 * the new first flusher and arm pwqs.
2894 */
2895 WARN_ON_ONCE(wq->flush_color == wq->work_color);
2896 WARN_ON_ONCE(wq->flush_color != next->flush_color);
2897
2898 list_del_init(&next->list);
2899 wq->first_flusher = next;
2900
2901 if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1))
2902 break;
2903
2904 /*
2905 * Meh... this color is already done, clear first
2906 * flusher and repeat cascading.
2907 */
2908 wq->first_flusher = NULL;
2909 }
2910
2911 out_unlock:
2912 mutex_unlock(&wq->mutex);
2913 }
2914 EXPORT_SYMBOL(flush_workqueue);
2915
2916 /**
2917 * drain_workqueue - drain a workqueue
2918 * @wq: workqueue to drain
2919 *
2920 * Wait until the workqueue becomes empty. While draining is in progress,
2921 * only chain queueing is allowed. IOW, only currently pending or running
2922 * work items on @wq can queue further work items on it. @wq is flushed
2923 * repeatedly until it becomes empty. The number of flushing is determined
2924 * by the depth of chaining and should be relatively short. Whine if it
2925 * takes too long.
2926 */
2927 void drain_workqueue(struct workqueue_struct *wq)
2928 {
2929 unsigned int flush_cnt = 0;
2930 struct pool_workqueue *pwq;
2931
2932 /*
2933 * __queue_work() needs to test whether there are drainers, is much
2934 * hotter than drain_workqueue() and already looks at @wq->flags.
2935 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers.
2936 */
2937 mutex_lock(&wq->mutex);
2938 if (!wq->nr_drainers++)
2939 wq->flags |= __WQ_DRAINING;
2940 mutex_unlock(&wq->mutex);
2941 reflush:
2942 flush_workqueue(wq);
2943
2944 mutex_lock(&wq->mutex);
2945
2946 for_each_pwq(pwq, wq) {
2947 bool drained;
2948
2949 spin_lock_irq(&pwq->pool->lock);
2950 drained = !pwq->nr_active && list_empty(&pwq->delayed_works);
2951 spin_unlock_irq(&pwq->pool->lock);
2952
2953 if (drained)
2954 continue;
2955
2956 if (++flush_cnt == 10 ||
2957 (flush_cnt % 100 == 0 && flush_cnt <= 1000))
2958 pr_warn("workqueue %s: drain_workqueue() isn't complete after %u tries\n",
2959 wq->name, flush_cnt);
2960
2961 mutex_unlock(&wq->mutex);
2962 goto reflush;
2963 }
2964
2965 if (!--wq->nr_drainers)
2966 wq->flags &= ~__WQ_DRAINING;
2967 mutex_unlock(&wq->mutex);
2968 }
2969 EXPORT_SYMBOL_GPL(drain_workqueue);
2970
2971 static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr,
2972 bool from_cancel)
2973 {
2974 struct worker *worker = NULL;
2975 struct worker_pool *pool;
2976 struct pool_workqueue *pwq;
2977
2978 might_sleep();
2979
2980 rcu_read_lock();
2981 pool = get_work_pool(work);
2982 if (!pool) {
2983 rcu_read_unlock();
2984 return false;
2985 }
2986
2987 spin_lock_irq(&pool->lock);
2988 /* see the comment in try_to_grab_pending() with the same code */
2989 pwq = get_work_pwq(work);
2990 if (pwq) {
2991 if (unlikely(pwq->pool != pool))
2992 goto already_gone;
2993 } else {
2994 worker = find_worker_executing_work(pool, work);
2995 if (!worker)
2996 goto already_gone;
2997 pwq = worker->current_pwq;
2998 }
2999
3000 check_flush_dependency(pwq->wq, work);
3001
3002 insert_wq_barrier(pwq, barr, work, worker);
3003 spin_unlock_irq(&pool->lock);
3004
3005 /*
3006 * Force a lock recursion deadlock when using flush_work() inside a
3007 * single-threaded or rescuer equipped workqueue.
3008 *
3009 * For single threaded workqueues the deadlock happens when the work
3010 * is after the work issuing the flush_work(). For rescuer equipped
3011 * workqueues the deadlock happens when the rescuer stalls, blocking
3012 * forward progress.
3013 */
3014 if (!from_cancel &&
3015 (pwq->wq->saved_max_active == 1 || pwq->wq->rescuer)) {
3016 lock_map_acquire(&pwq->wq->lockdep_map);
3017 lock_map_release(&pwq->wq->lockdep_map);
3018 }
3019 rcu_read_unlock();
3020 return true;
3021 already_gone:
3022 spin_unlock_irq(&pool->lock);
3023 rcu_read_unlock();
3024 return false;
3025 }
3026
3027 static bool __flush_work(struct work_struct *work, bool from_cancel)
3028 {
3029 struct wq_barrier barr;
3030
3031 if (WARN_ON(!wq_online))
3032 return false;
3033
3034 if (WARN_ON(!work->func))
3035 return false;
3036
3037 if (!from_cancel) {
3038 lock_map_acquire(&work->lockdep_map);
3039 lock_map_release(&work->lockdep_map);
3040 }
3041
3042 if (start_flush_work(work, &barr, from_cancel)) {
3043 wait_for_completion(&barr.done);
3044 destroy_work_on_stack(&barr.work);
3045 return true;
3046 } else {
3047 return false;
3048 }
3049 }
3050
3051 /**
3052 * flush_work - wait for a work to finish executing the last queueing instance
3053 * @work: the work to flush
3054 *
3055 * Wait until @work has finished execution. @work is guaranteed to be idle
3056 * on return if it hasn't been requeued since flush started.
3057 *
3058 * Return:
3059 * %true if flush_work() waited for the work to finish execution,
3060 * %false if it was already idle.
3061 */
3062 bool flush_work(struct work_struct *work)
3063 {
3064 return __flush_work(work, false);
3065 }
3066 EXPORT_SYMBOL_GPL(flush_work);
3067
3068 struct cwt_wait {
3069 wait_queue_entry_t wait;
3070 struct work_struct *work;
3071 };
3072
3073 static int cwt_wakefn(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
3074 {
3075 struct cwt_wait *cwait = container_of(wait, struct cwt_wait, wait);
3076
3077 if (cwait->work != key)
3078 return 0;
3079 return autoremove_wake_function(wait, mode, sync, key);
3080 }
3081
3082 static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
3083 {
3084 static DECLARE_WAIT_QUEUE_HEAD(cancel_waitq);
3085 unsigned long flags;
3086 int ret;
3087
3088 do {
3089 ret = try_to_grab_pending(work, is_dwork, &flags);
3090 /*
3091 * If someone else is already canceling, wait for it to
3092 * finish. flush_work() doesn't work for PREEMPT_NONE
3093 * because we may get scheduled between @work's completion
3094 * and the other canceling task resuming and clearing
3095 * CANCELING - flush_work() will return false immediately
3096 * as @work is no longer busy, try_to_grab_pending() will
3097 * return -ENOENT as @work is still being canceled and the
3098 * other canceling task won't be able to clear CANCELING as
3099 * we're hogging the CPU.
3100 *
3101 * Let's wait for completion using a waitqueue. As this
3102 * may lead to the thundering herd problem, use a custom
3103 * wake function which matches @work along with exclusive
3104 * wait and wakeup.
3105 */
3106 if (unlikely(ret == -ENOENT)) {
3107 struct cwt_wait cwait;
3108
3109 init_wait(&cwait.wait);
3110 cwait.wait.func = cwt_wakefn;
3111 cwait.work = work;
3112
3113 prepare_to_wait_exclusive(&cancel_waitq, &cwait.wait,
3114 TASK_UNINTERRUPTIBLE);
3115 if (work_is_canceling(work))
3116 schedule();
3117 finish_wait(&cancel_waitq, &cwait.wait);
3118 }
3119 } while (unlikely(ret < 0));
3120
3121 /* tell other tasks trying to grab @work to back off */
3122 mark_work_canceling(work);
3123 local_irq_restore(flags);
3124
3125 /*
3126 * This allows canceling during early boot. We know that @work
3127 * isn't executing.
3128 */
3129 if (wq_online)
3130 __flush_work(work, true);
3131
3132 clear_work_data(work);
3133
3134 /*
3135 * Paired with prepare_to_wait() above so that either
3136 * waitqueue_active() is visible here or !work_is_canceling() is
3137 * visible there.
3138 */
3139 smp_mb();
3140 if (waitqueue_active(&cancel_waitq))
3141 __wake_up(&cancel_waitq, TASK_NORMAL, 1, work);
3142
3143 return ret;
3144 }
3145
3146 /**
3147 * cancel_work_sync - cancel a work and wait for it to finish
3148 * @work: the work to cancel
3149 *
3150 * Cancel @work and wait for its execution to finish. This function
3151 * can be used even if the work re-queues itself or migrates to
3152 * another workqueue. On return from this function, @work is
3153 * guaranteed to be not pending or executing on any CPU.
3154 *
3155 * cancel_work_sync(&delayed_work->work) must not be used for
3156 * delayed_work's. Use cancel_delayed_work_sync() instead.
3157 *
3158 * The caller must ensure that the workqueue on which @work was last
3159 * queued can't be destroyed before this function returns.
3160 *
3161 * Return:
3162 * %true if @work was pending, %false otherwise.
3163 */
3164 bool cancel_work_sync(struct work_struct *work)
3165 {
3166 return __cancel_work_timer(work, false);
3167 }
3168 EXPORT_SYMBOL_GPL(cancel_work_sync);
3169
3170 /**
3171 * flush_delayed_work - wait for a dwork to finish executing the last queueing
3172 * @dwork: the delayed work to flush
3173 *
3174 * Delayed timer is cancelled and the pending work is queued for
3175 * immediate execution. Like flush_work(), this function only
3176 * considers the last queueing instance of @dwork.
3177 *
3178 * Return:
3179 * %true if flush_work() waited for the work to finish execution,
3180 * %false if it was already idle.
3181 */
3182 bool flush_delayed_work(struct delayed_work *dwork)
3183 {
3184 local_irq_disable();
3185 if (del_timer_sync(&dwork->timer))
3186 __queue_work(dwork->cpu, dwork->wq, &dwork->work);
3187 local_irq_enable();
3188 return flush_work(&dwork->work);
3189 }
3190 EXPORT_SYMBOL(flush_delayed_work);
3191
3192 /**
3193 * flush_rcu_work - wait for a rwork to finish executing the last queueing
3194 * @rwork: the rcu work to flush
3195 *
3196 * Return:
3197 * %true if flush_rcu_work() waited for the work to finish execution,
3198 * %false if it was already idle.
3199 */
3200 bool flush_rcu_work(struct rcu_work *rwork)
3201 {
3202 if (test_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&rwork->work))) {
3203 rcu_barrier();
3204 flush_work(&rwork->work);
3205 return true;
3206 } else {
3207 return flush_work(&rwork->work);
3208 }
3209 }
3210 EXPORT_SYMBOL(flush_rcu_work);
3211
3212 static bool __cancel_work(struct work_struct *work, bool is_dwork)
3213 {
3214 unsigned long flags;
3215 int ret;
3216
3217 do {
3218 ret = try_to_grab_pending(work, is_dwork, &flags);
3219 } while (unlikely(ret == -EAGAIN));
3220
3221 if (unlikely(ret < 0))
3222 return false;
3223
3224 set_work_pool_and_clear_pending(work, get_work_pool_id(work));
3225 local_irq_restore(flags);
3226 return ret;
3227 }
3228
3229 /**
3230 * cancel_delayed_work - cancel a delayed work
3231 * @dwork: delayed_work to cancel
3232 *
3233 * Kill off a pending delayed_work.
3234 *
3235 * Return: %true if @dwork was pending and canceled; %false if it wasn't
3236 * pending.
3237 *
3238 * Note:
3239 * The work callback function may still be running on return, unless
3240 * it returns %true and the work doesn't re-arm itself. Explicitly flush or
3241 * use cancel_delayed_work_sync() to wait on it.
3242 *
3243 * This function is safe to call from any context including IRQ handler.
3244 */
3245 bool cancel_delayed_work(struct delayed_work *dwork)
3246 {
3247 return __cancel_work(&dwork->work, true);
3248 }
3249 EXPORT_SYMBOL(cancel_delayed_work);
3250
3251 /**
3252 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
3253 * @dwork: the delayed work cancel
3254 *
3255 * This is cancel_work_sync() for delayed works.
3256 *
3257 * Return:
3258 * %true if @dwork was pending, %false otherwise.
3259 */
3260 bool cancel_delayed_work_sync(struct delayed_work *dwork)
3261 {
3262 return __cancel_work_timer(&dwork->work, true);
3263 }
3264 EXPORT_SYMBOL(cancel_delayed_work_sync);
3265
3266 /**
3267 * schedule_on_each_cpu - execute a function synchronously on each online CPU
3268 * @func: the function to call
3269 *
3270 * schedule_on_each_cpu() executes @func on each online CPU using the
3271 * system workqueue and blocks until all CPUs have completed.
3272 * schedule_on_each_cpu() is very slow.
3273 *
3274 * Return:
3275 * 0 on success, -errno on failure.
3276 */
3277 int schedule_on_each_cpu(work_func_t func)
3278 {
3279 int cpu;
3280 struct work_struct __percpu *works;
3281
3282 works = alloc_percpu(struct work_struct);
3283 if (!works)
3284 return -ENOMEM;
3285
3286 get_online_cpus();
3287
3288 for_each_online_cpu(cpu) {
3289 struct work_struct *work = per_cpu_ptr(works, cpu);
3290
3291 INIT_WORK(work, func);
3292 schedule_work_on(cpu, work);
3293 }
3294
3295 for_each_online_cpu(cpu)
3296 flush_work(per_cpu_ptr(works, cpu));
3297
3298 put_online_cpus();
3299 free_percpu(works);
3300 return 0;
3301 }
3302
3303 /**
3304 * execute_in_process_context - reliably execute the routine with user context
3305 * @fn: the function to execute
3306 * @ew: guaranteed storage for the execute work structure (must
3307 * be available when the work executes)
3308 *
3309 * Executes the function immediately if process context is available,
3310 * otherwise schedules the function for delayed execution.
3311 *
3312 * Return: 0 - function was executed
3313 * 1 - function was scheduled for execution
3314 */
3315 int execute_in_process_context(work_func_t fn, struct execute_work *ew)
3316 {
3317 if (!in_interrupt()) {
3318 fn(&ew->work);
3319 return 0;
3320 }
3321
3322 INIT_WORK(&ew->work, fn);
3323 schedule_work(&ew->work);
3324
3325 return 1;
3326 }
3327 EXPORT_SYMBOL_GPL(execute_in_process_context);
3328
3329 /**
3330 * free_workqueue_attrs - free a workqueue_attrs
3331 * @attrs: workqueue_attrs to free
3332 *
3333 * Undo alloc_workqueue_attrs().
3334 */
3335 void free_workqueue_attrs(struct workqueue_attrs *attrs)
3336 {
3337 if (attrs) {
3338 free_cpumask_var(attrs->cpumask);
3339 kfree(attrs);
3340 }
3341 }
3342
3343 /**
3344 * alloc_workqueue_attrs - allocate a workqueue_attrs
3345 *
3346 * Allocate a new workqueue_attrs, initialize with default settings and
3347 * return it.
3348 *
3349 * Return: The allocated new workqueue_attr on success. %NULL on failure.
3350 */
3351 struct workqueue_attrs *alloc_workqueue_attrs(void)
3352 {
3353 struct workqueue_attrs *attrs;
3354
3355 attrs = kzalloc(sizeof(*attrs), GFP_KERNEL);
3356 if (!attrs)
3357 goto fail;
3358 if (!alloc_cpumask_var(&attrs->cpumask, GFP_KERNEL))
3359 goto fail;
3360
3361 cpumask_copy(attrs->cpumask, cpu_possible_mask);
3362 return attrs;
3363 fail:
3364 free_workqueue_attrs(attrs);
3365 return NULL;
3366 }
3367
3368 static void copy_workqueue_attrs(struct workqueue_attrs *to,
3369 const struct workqueue_attrs *from)
3370 {
3371 to->nice = from->nice;
3372 cpumask_copy(to->cpumask, from->cpumask);
3373 /*
3374 * Unlike hash and equality test, this function doesn't ignore
3375 * ->no_numa as it is used for both pool and wq attrs. Instead,
3376 * get_unbound_pool() explicitly clears ->no_numa after copying.
3377 */
3378 to->no_numa = from->no_numa;
3379 }
3380
3381 /* hash value of the content of @attr */
3382 static u32 wqattrs_hash(const struct workqueue_attrs *attrs)
3383 {
3384 u32 hash = 0;
3385
3386 hash = jhash_1word(attrs->nice, hash);
3387 hash = jhash(cpumask_bits(attrs->cpumask),
3388 BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash);
3389 return hash;
3390 }
3391
3392 /* content equality test */
3393 static bool wqattrs_equal(const struct workqueue_attrs *a,
3394 const struct workqueue_attrs *b)
3395 {
3396 if (a->nice != b->nice)
3397 return false;
3398 if (!cpumask_equal(a->cpumask, b->cpumask))
3399 return false;
3400 return true;
3401 }
3402
3403 /**
3404 * init_worker_pool - initialize a newly zalloc'd worker_pool
3405 * @pool: worker_pool to initialize
3406 *
3407 * Initialize a newly zalloc'd @pool. It also allocates @pool->attrs.
3408 *
3409 * Return: 0 on success, -errno on failure. Even on failure, all fields
3410 * inside @pool proper are initialized and put_unbound_pool() can be called
3411 * on @pool safely to release it.
3412 */
3413 static int init_worker_pool(struct worker_pool *pool)
3414 {
3415 spin_lock_init(&pool->lock);
3416 pool->id = -1;
3417 pool->cpu = -1;
3418 pool->node = NUMA_NO_NODE;
3419 pool->flags |= POOL_DISASSOCIATED;
3420 pool->watchdog_ts = jiffies;
3421 INIT_LIST_HEAD(&pool->worklist);
3422 INIT_LIST_HEAD(&pool->idle_list);
3423 hash_init(pool->busy_hash);
3424
3425 timer_setup(&pool->idle_timer, idle_worker_timeout, TIMER_DEFERRABLE);
3426
3427 timer_setup(&pool->mayday_timer, pool_mayday_timeout, 0);
3428
3429 INIT_LIST_HEAD(&pool->workers);
3430
3431 ida_init(&pool->worker_ida);
3432 INIT_HLIST_NODE(&pool->hash_node);
3433 pool->refcnt = 1;
3434
3435 /* shouldn't fail above this point */
3436 pool->attrs = alloc_workqueue_attrs();
3437 if (!pool->attrs)
3438 return -ENOMEM;
3439 return 0;
3440 }
3441
3442 #ifdef CONFIG_LOCKDEP
3443 static void wq_init_lockdep(struct workqueue_struct *wq)
3444 {
3445 char *lock_name;
3446
3447 lockdep_register_key(&wq->key);
3448 lock_name = kasprintf(GFP_KERNEL, "%s%s", "(wq_completion)", wq->name);
3449 if (!lock_name)
3450 lock_name = wq->name;
3451
3452 wq->lock_name = lock_name;
3453 lockdep_init_map(&wq->lockdep_map, lock_name, &wq->key, 0);
3454 }
3455
3456 static void wq_unregister_lockdep(struct workqueue_struct *wq)
3457 {
3458 lockdep_unregister_key(&wq->key);
3459 }
3460
3461 static void wq_free_lockdep(struct workqueue_struct *wq)
3462 {
3463 if (wq->lock_name != wq->name)
3464 kfree(wq->lock_name);
3465 }
3466 #else
3467 static void wq_init_lockdep(struct workqueue_struct *wq)
3468 {
3469 }
3470
3471 static void wq_unregister_lockdep(struct workqueue_struct *wq)
3472 {
3473 }
3474
3475 static void wq_free_lockdep(struct workqueue_struct *wq)
3476 {
3477 }
3478 #endif
3479
3480 static void rcu_free_wq(struct rcu_head *rcu)
3481 {
3482 struct workqueue_struct *wq =
3483 container_of(rcu, struct workqueue_struct, rcu);
3484
3485 wq_free_lockdep(wq);
3486
3487 if (!(wq->flags & WQ_UNBOUND))
3488 free_percpu(wq->cpu_pwqs);
3489 else
3490 free_workqueue_attrs(wq->unbound_attrs);
3491
3492 kfree(wq->rescuer);
3493 kfree(wq);
3494 }
3495
3496 static void rcu_free_pool(struct rcu_head *rcu)
3497 {
3498 struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu);
3499
3500 ida_destroy(&pool->worker_ida);
3501 free_workqueue_attrs(pool->attrs);
3502 kfree(pool);
3503 }
3504
3505 /**
3506 * put_unbound_pool - put a worker_pool
3507 * @pool: worker_pool to put
3508 *
3509 * Put @pool. If its refcnt reaches zero, it gets destroyed in RCU
3510 * safe manner. get_unbound_pool() calls this function on its failure path
3511 * and this function should be able to release pools which went through,
3512 * successfully or not, init_worker_pool().
3513 *
3514 * Should be called with wq_pool_mutex held.
3515 */
3516 static void put_unbound_pool(struct worker_pool *pool)
3517 {
3518 DECLARE_COMPLETION_ONSTACK(detach_completion);
3519 struct worker *worker;
3520
3521 lockdep_assert_held(&wq_pool_mutex);
3522
3523 if (--pool->refcnt)
3524 return;
3525
3526 /* sanity checks */
3527 if (WARN_ON(!(pool->cpu < 0)) ||
3528 WARN_ON(!list_empty(&pool->worklist)))
3529 return;
3530
3531 /* release id and unhash */
3532 if (pool->id >= 0)
3533 idr_remove(&worker_pool_idr, pool->id);
3534 hash_del(&pool->hash_node);
3535
3536 /*
3537 * Become the manager and destroy all workers. This prevents
3538 * @pool's workers from blocking on attach_mutex. We're the last
3539 * manager and @pool gets freed with the flag set.
3540 */
3541 spin_lock_irq(&pool->lock);
3542 wait_event_lock_irq(wq_manager_wait,
3543 !(pool->flags & POOL_MANAGER_ACTIVE), pool->lock);
3544 pool->flags |= POOL_MANAGER_ACTIVE;
3545
3546 while ((worker = first_idle_worker(pool)))
3547 destroy_worker(worker);
3548 WARN_ON(pool->nr_workers || pool->nr_idle);
3549 spin_unlock_irq(&pool->lock);
3550
3551 mutex_lock(&wq_pool_attach_mutex);
3552 if (!list_empty(&pool->workers))
3553 pool->detach_completion = &detach_completion;
3554 mutex_unlock(&wq_pool_attach_mutex);
3555
3556 if (pool->detach_completion)
3557 wait_for_completion(pool->detach_completion);
3558
3559 /* shut down the timers */
3560 del_timer_sync(&pool->idle_timer);
3561 del_timer_sync(&pool->mayday_timer);
3562
3563 /* RCU protected to allow dereferences from get_work_pool() */
3564 call_rcu(&pool->rcu, rcu_free_pool);
3565 }
3566
3567 /**
3568 * get_unbound_pool - get a worker_pool with the specified attributes
3569 * @attrs: the attributes of the worker_pool to get
3570 *
3571 * Obtain a worker_pool which has the same attributes as @attrs, bump the
3572 * reference count and return it. If there already is a matching
3573 * worker_pool, it will be used; otherwise, this function attempts to
3574 * create a new one.
3575 *
3576 * Should be called with wq_pool_mutex held.
3577 *
3578 * Return: On success, a worker_pool with the same attributes as @attrs.
3579 * On failure, %NULL.
3580 */
3581 static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs)
3582 {
3583 u32 hash = wqattrs_hash(attrs);
3584 struct worker_pool *pool;
3585 int node;
3586 int target_node = NUMA_NO_NODE;
3587
3588 lockdep_assert_held(&wq_pool_mutex);
3589
3590 /* do we already have a matching pool? */
3591 hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) {
3592 if (wqattrs_equal(pool->attrs, attrs)) {
3593 pool->refcnt++;
3594 return pool;
3595 }
3596 }
3597
3598 /* if cpumask is contained inside a NUMA node, we belong to that node */
3599 if (wq_numa_enabled) {
3600 for_each_node(node) {
3601 if (cpumask_subset(attrs->cpumask,
3602 wq_numa_possible_cpumask[node])) {
3603 target_node = node;
3604 break;
3605 }
3606 }
3607 }
3608
3609 /* nope, create a new one */
3610 pool = kzalloc_node(sizeof(*pool), GFP_KERNEL, target_node);
3611 if (!pool || init_worker_pool(pool) < 0)
3612 goto fail;
3613
3614 lockdep_set_subclass(&pool->lock, 1); /* see put_pwq() */
3615 copy_workqueue_attrs(pool->attrs, attrs);
3616 pool->node = target_node;
3617
3618 /*
3619 * no_numa isn't a worker_pool attribute, always clear it. See
3620 * 'struct workqueue_attrs' comments for detail.
3621 */
3622 pool->attrs->no_numa = false;
3623
3624 if (worker_pool_assign_id(pool) < 0)
3625 goto fail;
3626
3627 /* create and start the initial worker */
3628 if (wq_online && !create_worker(pool))
3629 goto fail;
3630
3631 /* install */
3632 hash_add(unbound_pool_hash, &pool->hash_node, hash);
3633
3634 return pool;
3635 fail:
3636 if (pool)
3637 put_unbound_pool(pool);
3638 return NULL;
3639 }
3640
3641 static void rcu_free_pwq(struct rcu_head *rcu)
3642 {
3643 kmem_cache_free(pwq_cache,
3644 container_of(rcu, struct pool_workqueue, rcu));
3645 }
3646
3647 /*
3648 * Scheduled on system_wq by put_pwq() when an unbound pwq hits zero refcnt
3649 * and needs to be destroyed.
3650 */
3651 static void pwq_unbound_release_workfn(struct work_struct *work)
3652 {
3653 struct pool_workqueue *pwq = container_of(work, struct pool_workqueue,
3654 unbound_release_work);
3655 struct workqueue_struct *wq = pwq->wq;
3656 struct worker_pool *pool = pwq->pool;
3657 bool is_last;
3658
3659 if (WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND)))
3660 return;
3661
3662 mutex_lock(&wq->mutex);
3663 list_del_rcu(&pwq->pwqs_node);
3664 is_last = list_empty(&wq->pwqs);
3665 mutex_unlock(&wq->mutex);
3666
3667 mutex_lock(&wq_pool_mutex);
3668 put_unbound_pool(pool);
3669 mutex_unlock(&wq_pool_mutex);
3670
3671 call_rcu(&pwq->rcu, rcu_free_pwq);
3672
3673 /*
3674 * If we're the last pwq going away, @wq is already dead and no one
3675 * is gonna access it anymore. Schedule RCU free.
3676 */
3677 if (is_last) {
3678 wq_unregister_lockdep(wq);
3679 call_rcu(&wq->rcu, rcu_free_wq);
3680 }
3681 }
3682
3683 /**
3684 * pwq_adjust_max_active - update a pwq's max_active to the current setting
3685 * @pwq: target pool_workqueue
3686 *
3687 * If @pwq isn't freezing, set @pwq->max_active to the associated
3688 * workqueue's saved_max_active and activate delayed work items
3689 * accordingly. If @pwq is freezing, clear @pwq->max_active to zero.
3690 */
3691 static void pwq_adjust_max_active(struct pool_workqueue *pwq)
3692 {
3693 struct workqueue_struct *wq = pwq->wq;
3694 bool freezable = wq->flags & WQ_FREEZABLE;
3695 unsigned long flags;
3696
3697 /* for @wq->saved_max_active */
3698 lockdep_assert_held(&wq->mutex);
3699
3700 /* fast exit for non-freezable wqs */
3701 if (!freezable && pwq->max_active == wq->saved_max_active)
3702 return;
3703
3704 /* this function can be called during early boot w/ irq disabled */
3705 spin_lock_irqsave(&pwq->pool->lock, flags);
3706
3707 /*
3708 * During [un]freezing, the caller is responsible for ensuring that
3709 * this function is called at least once after @workqueue_freezing
3710 * is updated and visible.
3711 */
3712 if (!freezable || !workqueue_freezing) {
3713 pwq->max_active = wq->saved_max_active;
3714
3715 while (!list_empty(&pwq->delayed_works) &&
3716 pwq->nr_active < pwq->max_active)
3717 pwq_activate_first_delayed(pwq);
3718
3719 /*
3720 * Need to kick a worker after thawed or an unbound wq's
3721 * max_active is bumped. It's a slow path. Do it always.
3722 */
3723 wake_up_worker(pwq->pool);
3724 } else {
3725 pwq->max_active = 0;
3726 }
3727
3728 spin_unlock_irqrestore(&pwq->pool->lock, flags);
3729 }
3730
3731 /* initialize newly alloced @pwq which is associated with @wq and @pool */
3732 static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq,
3733 struct worker_pool *pool)
3734 {
3735 BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK);
3736
3737 memset(pwq, 0, sizeof(*pwq));
3738
3739 pwq->pool = pool;
3740 pwq->wq = wq;
3741 pwq->flush_color = -1;
3742 pwq->refcnt = 1;
3743 INIT_LIST_HEAD(&pwq->delayed_works);
3744 INIT_LIST_HEAD(&pwq->pwqs_node);
3745 INIT_LIST_HEAD(&pwq->mayday_node);
3746 INIT_WORK(&pwq->unbound_release_work, pwq_unbound_release_workfn);
3747 }
3748
3749 /* sync @pwq with the current state of its associated wq and link it */
3750 static void link_pwq(struct pool_workqueue *pwq)
3751 {
3752 struct workqueue_struct *wq = pwq->wq;
3753
3754 lockdep_assert_held(&wq->mutex);
3755
3756 /* may be called multiple times, ignore if already linked */
3757 if (!list_empty(&pwq->pwqs_node))
3758 return;
3759
3760 /* set the matching work_color */
3761 pwq->work_color = wq->work_color;
3762
3763 /* sync max_active to the current setting */
3764 pwq_adjust_max_active(pwq);
3765
3766 /* link in @pwq */
3767 list_add_rcu(&pwq->pwqs_node, &wq->pwqs);
3768 }
3769
3770 /* obtain a pool matching @attr and create a pwq associating the pool and @wq */
3771 static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq,
3772 const struct workqueue_attrs *attrs)
3773 {
3774 struct worker_pool *pool;
3775 struct pool_workqueue *pwq;
3776
3777 lockdep_assert_held(&wq_pool_mutex);
3778
3779 pool = get_unbound_pool(attrs);
3780 if (!pool)
3781 return NULL;
3782
3783 pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node);
3784 if (!pwq) {
3785 put_unbound_pool(pool);
3786 return NULL;
3787 }
3788
3789 init_pwq(pwq, wq, pool);
3790 return pwq;
3791 }
3792
3793 /**
3794 * wq_calc_node_cpumask - calculate a wq_attrs' cpumask for the specified node
3795 * @attrs: the wq_attrs of the default pwq of the target workqueue
3796 * @node: the target NUMA node
3797 * @cpu_going_down: if >= 0, the CPU to consider as offline
3798 * @cpumask: outarg, the resulting cpumask
3799 *
3800 * Calculate the cpumask a workqueue with @attrs should use on @node. If
3801 * @cpu_going_down is >= 0, that cpu is considered offline during
3802 * calculation. The result is stored in @cpumask.
3803 *
3804 * If NUMA affinity is not enabled, @attrs->cpumask is always used. If
3805 * enabled and @node has online CPUs requested by @attrs, the returned
3806 * cpumask is the intersection of the possible CPUs of @node and
3807 * @attrs->cpumask.
3808 *
3809 * The caller is responsible for ensuring that the cpumask of @node stays
3810 * stable.
3811 *
3812 * Return: %true if the resulting @cpumask is different from @attrs->cpumask,
3813 * %false if equal.
3814 */
3815 static bool wq_calc_node_cpumask(const struct workqueue_attrs *attrs, int node,
3816 int cpu_going_down, cpumask_t *cpumask)
3817 {
3818 if (!wq_numa_enabled || attrs->no_numa)
3819 goto use_dfl;
3820
3821 /* does @node have any online CPUs @attrs wants? */
3822 cpumask_and(cpumask, cpumask_of_node(node), attrs->cpumask);
3823 if (cpu_going_down >= 0)
3824 cpumask_clear_cpu(cpu_going_down, cpumask);
3825
3826 if (cpumask_empty(cpumask))
3827 goto use_dfl;
3828
3829 /* yeap, return possible CPUs in @node that @attrs wants */
3830 cpumask_and(cpumask, attrs->cpumask, wq_numa_possible_cpumask[node]);
3831
3832 if (cpumask_empty(cpumask)) {
3833 pr_warn_once("WARNING: workqueue cpumask: online intersect > "
3834 "possible intersect\n");
3835 return false;
3836 }
3837
3838 return !cpumask_equal(cpumask, attrs->cpumask);
3839
3840 use_dfl:
3841 cpumask_copy(cpumask, attrs->cpumask);
3842 return false;
3843 }
3844
3845 /* install @pwq into @wq's numa_pwq_tbl[] for @node and return the old pwq */
3846 static struct pool_workqueue *numa_pwq_tbl_install(struct workqueue_struct *wq,
3847 int node,
3848 struct pool_workqueue *pwq)
3849 {
3850 struct pool_workqueue *old_pwq;
3851
3852 lockdep_assert_held(&wq_pool_mutex);
3853 lockdep_assert_held(&wq->mutex);
3854
3855 /* link_pwq() can handle duplicate calls */
3856 link_pwq(pwq);
3857
3858 old_pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
3859 rcu_assign_pointer(wq->numa_pwq_tbl[node], pwq);
3860 return old_pwq;
3861 }
3862
3863 /* context to store the prepared attrs & pwqs before applying */
3864 struct apply_wqattrs_ctx {
3865 struct workqueue_struct *wq; /* target workqueue */
3866 struct workqueue_attrs *attrs; /* attrs to apply */
3867 struct list_head list; /* queued for batching commit */
3868 struct pool_workqueue *dfl_pwq;
3869 struct pool_workqueue *pwq_tbl[];
3870 };
3871
3872 /* free the resources after success or abort */
3873 static void apply_wqattrs_cleanup(struct apply_wqattrs_ctx *ctx)
3874 {
3875 if (ctx) {
3876 int node;
3877
3878 for_each_node(node)
3879 put_pwq_unlocked(ctx->pwq_tbl[node]);
3880 put_pwq_unlocked(ctx->dfl_pwq);
3881
3882 free_workqueue_attrs(ctx->attrs);
3883
3884 kfree(ctx);
3885 }
3886 }
3887
3888 /* allocate the attrs and pwqs for later installation */
3889 static struct apply_wqattrs_ctx *
3890 apply_wqattrs_prepare(struct workqueue_struct *wq,
3891 const struct workqueue_attrs *attrs)
3892 {
3893 struct apply_wqattrs_ctx *ctx;
3894 struct workqueue_attrs *new_attrs, *tmp_attrs;
3895 int node;
3896
3897 lockdep_assert_held(&wq_pool_mutex);
3898
3899 ctx = kzalloc(struct_size(ctx, pwq_tbl, nr_node_ids), GFP_KERNEL);
3900
3901 new_attrs = alloc_workqueue_attrs();
3902 tmp_attrs = alloc_workqueue_attrs();
3903 if (!ctx || !new_attrs || !tmp_attrs)
3904 goto out_free;
3905
3906 /*
3907 * Calculate the attrs of the default pwq.
3908 * If the user configured cpumask doesn't overlap with the
3909 * wq_unbound_cpumask, we fallback to the wq_unbound_cpumask.
3910 */
3911 copy_workqueue_attrs(new_attrs, attrs);
3912 cpumask_and(new_attrs->cpumask, new_attrs->cpumask, wq_unbound_cpumask);
3913 if (unlikely(cpumask_empty(new_attrs->cpumask)))
3914 cpumask_copy(new_attrs->cpumask, wq_unbound_cpumask);
3915
3916 /*
3917 * We may create multiple pwqs with differing cpumasks. Make a
3918 * copy of @new_attrs which will be modified and used to obtain
3919 * pools.
3920 */
3921 copy_workqueue_attrs(tmp_attrs, new_attrs);
3922
3923 /*
3924 * If something goes wrong during CPU up/down, we'll fall back to
3925 * the default pwq covering whole @attrs->cpumask. Always create
3926 * it even if we don't use it immediately.
3927 */
3928 ctx->dfl_pwq = alloc_unbound_pwq(wq, new_attrs);
3929 if (!ctx->dfl_pwq)
3930 goto out_free;
3931
3932 for_each_node(node) {
3933 if (wq_calc_node_cpumask(new_attrs, node, -1, tmp_attrs->cpumask)) {
3934 ctx->pwq_tbl[node] = alloc_unbound_pwq(wq, tmp_attrs);
3935 if (!ctx->pwq_tbl[node])
3936 goto out_free;
3937 } else {
3938 ctx->dfl_pwq->refcnt++;
3939 ctx->pwq_tbl[node] = ctx->dfl_pwq;
3940 }
3941 }
3942
3943 /* save the user configured attrs and sanitize it. */
3944 copy_workqueue_attrs(new_attrs, attrs);
3945 cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask);
3946 ctx->attrs = new_attrs;
3947
3948 ctx->wq = wq;
3949 free_workqueue_attrs(tmp_attrs);
3950 return ctx;
3951
3952 out_free:
3953 free_workqueue_attrs(tmp_attrs);
3954 free_workqueue_attrs(new_attrs);
3955 apply_wqattrs_cleanup(ctx);
3956 return NULL;
3957 }
3958
3959 /* set attrs and install prepared pwqs, @ctx points to old pwqs on return */
3960 static void apply_wqattrs_commit(struct apply_wqattrs_ctx *ctx)
3961 {
3962 int node;
3963
3964 /* all pwqs have been created successfully, let's install'em */
3965 mutex_lock(&ctx->wq->mutex);
3966
3967 copy_workqueue_attrs(ctx->wq->unbound_attrs, ctx->attrs);
3968
3969 /* save the previous pwq and install the new one */
3970 for_each_node(node)
3971 ctx->pwq_tbl[node] = numa_pwq_tbl_install(ctx->wq, node,
3972 ctx->pwq_tbl[node]);
3973
3974 /* @dfl_pwq might not have been used, ensure it's linked */
3975 link_pwq(ctx->dfl_pwq);
3976 swap(ctx->wq->dfl_pwq, ctx->dfl_pwq);
3977
3978 mutex_unlock(&ctx->wq->mutex);
3979 }
3980
3981 static void apply_wqattrs_lock(void)
3982 {
3983 /* CPUs should stay stable across pwq creations and installations */
3984 get_online_cpus();
3985 mutex_lock(&wq_pool_mutex);
3986 }
3987
3988 static void apply_wqattrs_unlock(void)
3989 {
3990 mutex_unlock(&wq_pool_mutex);
3991 put_online_cpus();
3992 }
3993
3994 static int apply_workqueue_attrs_locked(struct workqueue_struct *wq,
3995 const struct workqueue_attrs *attrs)
3996 {
3997 struct apply_wqattrs_ctx *ctx;
3998
3999 /* only unbound workqueues can change attributes */
4000 if (WARN_ON(!(wq->flags & WQ_UNBOUND)))
4001 return -EINVAL;
4002
4003 /* creating multiple pwqs breaks ordering guarantee */
4004 if (!list_empty(&wq->pwqs)) {
4005 if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
4006 return -EINVAL;
4007
4008 wq->flags &= ~__WQ_ORDERED;
4009 }
4010
4011 ctx = apply_wqattrs_prepare(wq, attrs);
4012 if (!ctx)
4013 return -ENOMEM;
4014
4015 /* the ctx has been prepared successfully, let's commit it */
4016 apply_wqattrs_commit(ctx);
4017 apply_wqattrs_cleanup(ctx);
4018
4019 return 0;
4020 }
4021
4022 /**
4023 * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue
4024 * @wq: the target workqueue
4025 * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs()
4026 *
4027 * Apply @attrs to an unbound workqueue @wq. Unless disabled, on NUMA
4028 * machines, this function maps a separate pwq to each NUMA node with
4029 * possibles CPUs in @attrs->cpumask so that work items are affine to the
4030 * NUMA node it was issued on. Older pwqs are released as in-flight work
4031 * items finish. Note that a work item which repeatedly requeues itself
4032 * back-to-back will stay on its current pwq.
4033 *
4034 * Performs GFP_KERNEL allocations.
4035 *
4036 * Assumes caller has CPU hotplug read exclusion, i.e. get_online_cpus().
4037 *
4038 * Return: 0 on success and -errno on failure.
4039 */
4040 int apply_workqueue_attrs(struct workqueue_struct *wq,
4041 const struct workqueue_attrs *attrs)
4042 {
4043 int ret;
4044
4045 lockdep_assert_cpus_held();
4046
4047 mutex_lock(&wq_pool_mutex);
4048 ret = apply_workqueue_attrs_locked(wq, attrs);
4049 mutex_unlock(&wq_pool_mutex);
4050
4051 return ret;
4052 }
4053
4054 /**
4055 * wq_update_unbound_numa - update NUMA affinity of a wq for CPU hot[un]plug
4056 * @wq: the target workqueue
4057 * @cpu: the CPU coming up or going down
4058 * @online: whether @cpu is coming up or going down
4059 *
4060 * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and
4061 * %CPU_DOWN_FAILED. @cpu is being hot[un]plugged, update NUMA affinity of
4062 * @wq accordingly.
4063 *
4064 * If NUMA affinity can't be adjusted due to memory allocation failure, it
4065 * falls back to @wq->dfl_pwq which may not be optimal but is always
4066 * correct.
4067 *
4068 * Note that when the last allowed CPU of a NUMA node goes offline for a
4069 * workqueue with a cpumask spanning multiple nodes, the workers which were
4070 * already executing the work items for the workqueue will lose their CPU
4071 * affinity and may execute on any CPU. This is similar to how per-cpu
4072 * workqueues behave on CPU_DOWN. If a workqueue user wants strict
4073 * affinity, it's the user's responsibility to flush the work item from
4074 * CPU_DOWN_PREPARE.
4075 */
4076 static void wq_update_unbound_numa(struct workqueue_struct *wq, int cpu,
4077 bool online)
4078 {
4079 int node = cpu_to_node(cpu);
4080 int cpu_off = online ? -1 : cpu;
4081 struct pool_workqueue *old_pwq = NULL, *pwq;
4082 struct workqueue_attrs *target_attrs;
4083 cpumask_t *cpumask;
4084
4085 lockdep_assert_held(&wq_pool_mutex);
4086
4087 if (!wq_numa_enabled || !(wq->flags & WQ_UNBOUND) ||
4088 wq->unbound_attrs->no_numa)
4089 return;
4090
4091 /*
4092 * We don't wanna alloc/free wq_attrs for each wq for each CPU.
4093 * Let's use a preallocated one. The following buf is protected by
4094 * CPU hotplug exclusion.
4095 */
4096 target_attrs = wq_update_unbound_numa_attrs_buf;
4097 cpumask = target_attrs->cpumask;
4098
4099 copy_workqueue_attrs(target_attrs, wq->unbound_attrs);
4100 pwq = unbound_pwq_by_node(wq, node);
4101
4102 /*
4103 * Let's determine what needs to be done. If the target cpumask is
4104 * different from the default pwq's, we need to compare it to @pwq's
4105 * and create a new one if they don't match. If the target cpumask
4106 * equals the default pwq's, the default pwq should be used.
4107 */
4108 if (wq_calc_node_cpumask(wq->dfl_pwq->pool->attrs, node, cpu_off, cpumask)) {
4109 if (cpumask_equal(cpumask, pwq->pool->attrs->cpumask))
4110 return;
4111 } else {
4112 goto use_dfl_pwq;
4113 }
4114
4115 /* create a new pwq */
4116 pwq = alloc_unbound_pwq(wq, target_attrs);
4117 if (!pwq) {
4118 pr_warn("workqueue: allocation failed while updating NUMA affinity of \"%s\"\n",
4119 wq->name);
4120 goto use_dfl_pwq;
4121 }
4122
4123 /* Install the new pwq. */
4124 mutex_lock(&wq->mutex);
4125 old_pwq = numa_pwq_tbl_install(wq, node, pwq);
4126 goto out_unlock;
4127
4128 use_dfl_pwq:
4129 mutex_lock(&wq->mutex);
4130 spin_lock_irq(&wq->dfl_pwq->pool->lock);
4131 get_pwq(wq->dfl_pwq);
4132 spin_unlock_irq(&wq->dfl_pwq->pool->lock);
4133 old_pwq = numa_pwq_tbl_install(wq, node, wq->dfl_pwq);
4134 out_unlock:
4135 mutex_unlock(&wq->mutex);
4136 put_pwq_unlocked(old_pwq);
4137 }
4138
4139 static int alloc_and_link_pwqs(struct workqueue_struct *wq)
4140 {
4141 bool highpri = wq->flags & WQ_HIGHPRI;
4142 int cpu, ret;
4143
4144 if (!(wq->flags & WQ_UNBOUND)) {
4145 wq->cpu_pwqs = alloc_percpu(struct pool_workqueue);
4146 if (!wq->cpu_pwqs)
4147 return -ENOMEM;
4148
4149 for_each_possible_cpu(cpu) {
4150 struct pool_workqueue *pwq =
4151 per_cpu_ptr(wq->cpu_pwqs, cpu);
4152 struct worker_pool *cpu_pools =
4153 per_cpu(cpu_worker_pools, cpu);
4154
4155 init_pwq(pwq, wq, &cpu_pools[highpri]);
4156
4157 mutex_lock(&wq->mutex);
4158 link_pwq(pwq);
4159 mutex_unlock(&wq->mutex);
4160 }
4161 return 0;
4162 }
4163
4164 get_online_cpus();
4165 if (wq->flags & __WQ_ORDERED) {
4166 ret = apply_workqueue_attrs(wq, ordered_wq_attrs[highpri]);
4167 /* there should only be single pwq for ordering guarantee */
4168 WARN(!ret && (wq->pwqs.next != &wq->dfl_pwq->pwqs_node ||
4169 wq->pwqs.prev != &wq->dfl_pwq->pwqs_node),
4170 "ordering guarantee broken for workqueue %s\n", wq->name);
4171 } else {
4172 ret = apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]);
4173 }
4174 put_online_cpus();
4175
4176 return ret;
4177 }
4178
4179 static int wq_clamp_max_active(int max_active, unsigned int flags,
4180 const char *name)
4181 {
4182 int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;
4183
4184 if (max_active < 1 || max_active > lim)
4185 pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
4186 max_active, name, 1, lim);
4187
4188 return clamp_val(max_active, 1, lim);
4189 }
4190
4191 /*
4192 * Workqueues which may be used during memory reclaim should have a rescuer
4193 * to guarantee forward progress.
4194 */
4195 static int init_rescuer(struct workqueue_struct *wq)
4196 {
4197 struct worker *rescuer;
4198 int ret;
4199
4200 if (!(wq->flags & WQ_MEM_RECLAIM))
4201 return 0;
4202
4203 rescuer = alloc_worker(NUMA_NO_NODE);
4204 if (!rescuer)
4205 return -ENOMEM;
4206
4207 rescuer->rescue_wq = wq;
4208 rescuer->task = kthread_create(rescuer_thread, rescuer, "%s", wq->name);
4209 ret = PTR_ERR_OR_ZERO(rescuer->task);
4210 if (ret) {
4211 kfree(rescuer);
4212 return ret;
4213 }
4214
4215 wq->rescuer = rescuer;
4216 kthread_bind_mask(rescuer->task, cpu_possible_mask);
4217 wake_up_process(rescuer->task);
4218
4219 return 0;
4220 }
4221
4222 __printf(1, 4)
4223 struct workqueue_struct *alloc_workqueue(const char *fmt,
4224 unsigned int flags,
4225 int max_active, ...)
4226 {
4227 size_t tbl_size = 0;
4228 va_list args;
4229 struct workqueue_struct *wq;
4230 struct pool_workqueue *pwq;
4231
4232 /*
4233 * Unbound && max_active == 1 used to imply ordered, which is no
4234 * longer the case on NUMA machines due to per-node pools. While
4235 * alloc_ordered_workqueue() is the right way to create an ordered
4236 * workqueue, keep the previous behavior to avoid subtle breakages
4237 * on NUMA.
4238 */
4239 if ((flags & WQ_UNBOUND) && max_active == 1)
4240 flags |= __WQ_ORDERED;
4241
4242 /* see the comment above the definition of WQ_POWER_EFFICIENT */
4243 if ((flags & WQ_POWER_EFFICIENT) && wq_power_efficient)
4244 flags |= WQ_UNBOUND;
4245
4246 /* allocate wq and format name */
4247 if (flags & WQ_UNBOUND)
4248 tbl_size = nr_node_ids * sizeof(wq->numa_pwq_tbl[0]);
4249
4250 wq = kzalloc(sizeof(*wq) + tbl_size, GFP_KERNEL);
4251 if (!wq)
4252 return NULL;
4253
4254 if (flags & WQ_UNBOUND) {
4255 wq->unbound_attrs = alloc_workqueue_attrs();
4256 if (!wq->unbound_attrs)
4257 goto err_free_wq;
4258 }
4259
4260 va_start(args, max_active);
4261 vsnprintf(wq->name, sizeof(wq->name), fmt, args);
4262 va_end(args);
4263
4264 max_active = max_active ?: WQ_DFL_ACTIVE;
4265 max_active = wq_clamp_max_active(max_active, flags, wq->name);
4266
4267 /* init wq */
4268 wq->flags = flags;
4269 wq->saved_max_active = max_active;
4270 mutex_init(&wq->mutex);
4271 atomic_set(&wq->nr_pwqs_to_flush, 0);
4272 INIT_LIST_HEAD(&wq->pwqs);
4273 INIT_LIST_HEAD(&wq->flusher_queue);
4274 INIT_LIST_HEAD(&wq->flusher_overflow);
4275 INIT_LIST_HEAD(&wq->maydays);
4276
4277 wq_init_lockdep(wq);
4278 INIT_LIST_HEAD(&wq->list);
4279
4280 if (alloc_and_link_pwqs(wq) < 0)
4281 goto err_unreg_lockdep;
4282
4283 if (wq_online && init_rescuer(wq) < 0)
4284 goto err_destroy;
4285
4286 if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq))
4287 goto err_destroy;
4288
4289 /*
4290 * wq_pool_mutex protects global freeze state and workqueues list.
4291 * Grab it, adjust max_active and add the new @wq to workqueues
4292 * list.
4293 */
4294 mutex_lock(&wq_pool_mutex);
4295
4296 mutex_lock(&wq->mutex);
4297 for_each_pwq(pwq, wq)
4298 pwq_adjust_max_active(pwq);
4299 mutex_unlock(&wq->mutex);
4300
4301 list_add_tail_rcu(&wq->list, &workqueues);
4302
4303 mutex_unlock(&wq_pool_mutex);
4304
4305 return wq;
4306
4307 err_unreg_lockdep:
4308 wq_unregister_lockdep(wq);
4309 wq_free_lockdep(wq);
4310 err_free_wq:
4311 free_workqueue_attrs(wq->unbound_attrs);
4312 kfree(wq);
4313 return NULL;
4314 err_destroy:
4315 destroy_workqueue(wq);
4316 return NULL;
4317 }
4318 EXPORT_SYMBOL_GPL(alloc_workqueue);
4319
4320 static bool pwq_busy(struct pool_workqueue *pwq)
4321 {
4322 int i;
4323
4324 for (i = 0; i < WORK_NR_COLORS; i++)
4325 if (pwq->nr_in_flight[i])
4326 return true;
4327
4328 if ((pwq != pwq->wq->dfl_pwq) && (pwq->refcnt > 1))
4329 return true;
4330 if (pwq->nr_active || !list_empty(&pwq->delayed_works))
4331 return true;
4332
4333 return false;
4334 }
4335
4336 /**
4337 * destroy_workqueue - safely terminate a workqueue
4338 * @wq: target workqueue
4339 *
4340 * Safely destroy a workqueue. All work currently pending will be done first.
4341 */
4342 void destroy_workqueue(struct workqueue_struct *wq)
4343 {
4344 struct pool_workqueue *pwq;
4345 int node;
4346
4347 /*
4348 * Remove it from sysfs first so that sanity check failure doesn't
4349 * lead to sysfs name conflicts.
4350 */
4351 workqueue_sysfs_unregister(wq);
4352
4353 /* drain it before proceeding with destruction */
4354 drain_workqueue(wq);
4355
4356 /* kill rescuer, if sanity checks fail, leave it w/o rescuer */
4357 if (wq->rescuer) {
4358 struct worker *rescuer = wq->rescuer;
4359
4360 /* this prevents new queueing */
4361 spin_lock_irq(&wq_mayday_lock);
4362 wq->rescuer = NULL;
4363 spin_unlock_irq(&wq_mayday_lock);
4364
4365 /* rescuer will empty maydays list before exiting */
4366 kthread_stop(rescuer->task);
4367 kfree(rescuer);
4368 }
4369
4370 /*
4371 * Sanity checks - grab all the locks so that we wait for all
4372 * in-flight operations which may do put_pwq().
4373 */
4374 mutex_lock(&wq_pool_mutex);
4375 mutex_lock(&wq->mutex);
4376 for_each_pwq(pwq, wq) {
4377 spin_lock_irq(&pwq->pool->lock);
4378 if (WARN_ON(pwq_busy(pwq))) {
4379 pr_warn("%s: %s has the following busy pwq\n",
4380 __func__, wq->name);
4381 show_pwq(pwq);
4382 spin_unlock_irq(&pwq->pool->lock);
4383 mutex_unlock(&wq->mutex);
4384 mutex_unlock(&wq_pool_mutex);
4385 show_workqueue_state();
4386 return;
4387 }
4388 spin_unlock_irq(&pwq->pool->lock);
4389 }
4390 mutex_unlock(&wq->mutex);
4391 mutex_unlock(&wq_pool_mutex);
4392
4393 /*
4394 * wq list is used to freeze wq, remove from list after
4395 * flushing is complete in case freeze races us.
4396 */
4397 mutex_lock(&wq_pool_mutex);
4398 list_del_rcu(&wq->list);
4399 mutex_unlock(&wq_pool_mutex);
4400
4401 if (!(wq->flags & WQ_UNBOUND)) {
4402 wq_unregister_lockdep(wq);
4403 /*
4404 * The base ref is never dropped on per-cpu pwqs. Directly
4405 * schedule RCU free.
4406 */
4407 call_rcu(&wq->rcu, rcu_free_wq);
4408 } else {
4409 /*
4410 * We're the sole accessor of @wq at this point. Directly
4411 * access numa_pwq_tbl[] and dfl_pwq to put the base refs.
4412 * @wq will be freed when the last pwq is released.
4413 */
4414 for_each_node(node) {
4415 pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
4416 RCU_INIT_POINTER(wq->numa_pwq_tbl[node], NULL);
4417 put_pwq_unlocked(pwq);
4418 }
4419
4420 /*
4421 * Put dfl_pwq. @wq may be freed any time after dfl_pwq is
4422 * put. Don't access it afterwards.
4423 */
4424 pwq = wq->dfl_pwq;
4425 wq->dfl_pwq = NULL;
4426 put_pwq_unlocked(pwq);
4427 }
4428 }
4429 EXPORT_SYMBOL_GPL(destroy_workqueue);
4430
4431 /**
4432 * workqueue_set_max_active - adjust max_active of a workqueue
4433 * @wq: target workqueue
4434 * @max_active: new max_active value.
4435 *
4436 * Set max_active of @wq to @max_active.
4437 *
4438 * CONTEXT:
4439 * Don't call from IRQ context.
4440 */
4441 void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
4442 {
4443 struct pool_workqueue *pwq;
4444
4445 /* disallow meddling with max_active for ordered workqueues */
4446 if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
4447 return;
4448
4449 max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
4450
4451 mutex_lock(&wq->mutex);
4452
4453 wq->flags &= ~__WQ_ORDERED;
4454 wq->saved_max_active = max_active;
4455
4456 for_each_pwq(pwq, wq)
4457 pwq_adjust_max_active(pwq);
4458
4459 mutex_unlock(&wq->mutex);
4460 }
4461 EXPORT_SYMBOL_GPL(workqueue_set_max_active);
4462
4463 /**
4464 * current_work - retrieve %current task's work struct
4465 *
4466 * Determine if %current task is a workqueue worker and what it's working on.
4467 * Useful to find out the context that the %current task is running in.
4468 *
4469 * Return: work struct if %current task is a workqueue worker, %NULL otherwise.
4470 */
4471 struct work_struct *current_work(void)
4472 {
4473 struct worker *worker = current_wq_worker();
4474
4475 return worker ? worker->current_work : NULL;
4476 }
4477 EXPORT_SYMBOL(current_work);
4478
4479 /**
4480 * current_is_workqueue_rescuer - is %current workqueue rescuer?
4481 *
4482 * Determine whether %current is a workqueue rescuer. Can be used from
4483 * work functions to determine whether it's being run off the rescuer task.
4484 *
4485 * Return: %true if %current is a workqueue rescuer. %false otherwise.
4486 */
4487 bool current_is_workqueue_rescuer(void)
4488 {
4489 struct worker *worker = current_wq_worker();
4490
4491 return worker && worker->rescue_wq;
4492 }
4493
4494 /**
4495 * workqueue_congested - test whether a workqueue is congested
4496 * @cpu: CPU in question
4497 * @wq: target workqueue
4498 *
4499 * Test whether @wq's cpu workqueue for @cpu is congested. There is
4500 * no synchronization around this function and the test result is
4501 * unreliable and only useful as advisory hints or for debugging.
4502 *
4503 * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU.
4504 * Note that both per-cpu and unbound workqueues may be associated with
4505 * multiple pool_workqueues which have separate congested states. A
4506 * workqueue being congested on one CPU doesn't mean the workqueue is also
4507 * contested on other CPUs / NUMA nodes.
4508 *
4509 * Return:
4510 * %true if congested, %false otherwise.
4511 */
4512 bool workqueue_congested(int cpu, struct workqueue_struct *wq)
4513 {
4514 struct pool_workqueue *pwq;
4515 bool ret;
4516
4517 rcu_read_lock();
4518 preempt_disable();
4519
4520 if (cpu == WORK_CPU_UNBOUND)
4521 cpu = smp_processor_id();
4522
4523 if (!(wq->flags & WQ_UNBOUND))
4524 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
4525 else
4526 pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
4527
4528 ret = !list_empty(&pwq->delayed_works);
4529 preempt_enable();
4530 rcu_read_unlock();
4531
4532 return ret;
4533 }
4534 EXPORT_SYMBOL_GPL(workqueue_congested);
4535
4536 /**
4537 * work_busy - test whether a work is currently pending or running
4538 * @work: the work to be tested
4539 *
4540 * Test whether @work is currently pending or running. There is no
4541 * synchronization around this function and the test result is
4542 * unreliable and only useful as advisory hints or for debugging.
4543 *
4544 * Return:
4545 * OR'd bitmask of WORK_BUSY_* bits.
4546 */
4547 unsigned int work_busy(struct work_struct *work)
4548 {
4549 struct worker_pool *pool;
4550 unsigned long flags;
4551 unsigned int ret = 0;
4552
4553 if (work_pending(work))
4554 ret |= WORK_BUSY_PENDING;
4555
4556 rcu_read_lock();
4557 pool = get_work_pool(work);
4558 if (pool) {
4559 spin_lock_irqsave(&pool->lock, flags);
4560 if (find_worker_executing_work(pool, work))
4561 ret |= WORK_BUSY_RUNNING;
4562 spin_unlock_irqrestore(&pool->lock, flags);
4563 }
4564 rcu_read_unlock();
4565
4566 return ret;
4567 }
4568 EXPORT_SYMBOL_GPL(work_busy);
4569
4570 /**
4571 * set_worker_desc - set description for the current work item
4572 * @fmt: printf-style format string
4573 * @...: arguments for the format string
4574 *
4575 * This function can be called by a running work function to describe what
4576 * the work item is about. If the worker task gets dumped, this
4577 * information will be printed out together to help debugging. The
4578 * description can be at most WORKER_DESC_LEN including the trailing '\0'.
4579 */
4580 void set_worker_desc(const char *fmt, ...)
4581 {
4582 struct worker *worker = current_wq_worker();
4583 va_list args;
4584
4585 if (worker) {
4586 va_start(args, fmt);
4587 vsnprintf(worker->desc, sizeof(worker->desc), fmt, args);
4588 va_end(args);
4589 }
4590 }
4591 EXPORT_SYMBOL_GPL(set_worker_desc);
4592
4593 /**
4594 * print_worker_info - print out worker information and description
4595 * @log_lvl: the log level to use when printing
4596 * @task: target task
4597 *
4598 * If @task is a worker and currently executing a work item, print out the
4599 * name of the workqueue being serviced and worker description set with
4600 * set_worker_desc() by the currently executing work item.
4601 *
4602 * This function can be safely called on any task as long as the
4603 * task_struct itself is accessible. While safe, this function isn't
4604 * synchronized and may print out mixups or garbages of limited length.
4605 */
4606 void print_worker_info(const char *log_lvl, struct task_struct *task)
4607 {
4608 work_func_t *fn = NULL;
4609 char name[WQ_NAME_LEN] = { };
4610 char desc[WORKER_DESC_LEN] = { };
4611 struct pool_workqueue *pwq = NULL;
4612 struct workqueue_struct *wq = NULL;
4613 struct worker *worker;
4614
4615 if (!(task->flags & PF_WQ_WORKER))
4616 return;
4617
4618 /*
4619 * This function is called without any synchronization and @task
4620 * could be in any state. Be careful with dereferences.
4621 */
4622 worker = kthread_probe_data(task);
4623
4624 /*
4625 * Carefully copy the associated workqueue's workfn, name and desc.
4626 * Keep the original last '\0' in case the original is garbage.
4627 */
4628 probe_kernel_read(&fn, &worker->current_func, sizeof(fn));
4629 probe_kernel_read(&pwq, &worker->current_pwq, sizeof(pwq));
4630 probe_kernel_read(&wq, &pwq->wq, sizeof(wq));
4631 probe_kernel_read(name, wq->name, sizeof(name) - 1);
4632 probe_kernel_read(desc, worker->desc, sizeof(desc) - 1);
4633
4634 if (fn || name[0] || desc[0]) {
4635 printk("%sWorkqueue: %s %ps", log_lvl, name, fn);
4636 if (strcmp(name, desc))
4637 pr_cont(" (%s)", desc);
4638 pr_cont("\n");
4639 }
4640 }
4641
4642 static void pr_cont_pool_info(struct worker_pool *pool)
4643 {
4644 pr_cont(" cpus=%*pbl", nr_cpumask_bits, pool->attrs->cpumask);
4645 if (pool->node != NUMA_NO_NODE)
4646 pr_cont(" node=%d", pool->node);
4647 pr_cont(" flags=0x%x nice=%d", pool->flags, pool->attrs->nice);
4648 }
4649
4650 static void pr_cont_work(bool comma, struct work_struct *work)
4651 {
4652 if (work->func == wq_barrier_func) {
4653 struct wq_barrier *barr;
4654
4655 barr = container_of(work, struct wq_barrier, work);
4656
4657 pr_cont("%s BAR(%d)", comma ? "," : "",
4658 task_pid_nr(barr->task));
4659 } else {
4660 pr_cont("%s %ps", comma ? "," : "", work->func);
4661 }
4662 }
4663
4664 static void show_pwq(struct pool_workqueue *pwq)
4665 {
4666 struct worker_pool *pool = pwq->pool;
4667 struct work_struct *work;
4668 struct worker *worker;
4669 bool has_in_flight = false, has_pending = false;
4670 int bkt;
4671
4672 pr_info(" pwq %d:", pool->id);
4673 pr_cont_pool_info(pool);
4674
4675 pr_cont(" active=%d/%d refcnt=%d%s\n",
4676 pwq->nr_active, pwq->max_active, pwq->refcnt,
4677 !list_empty(&pwq->mayday_node) ? " MAYDAY" : "");
4678
4679 hash_for_each(pool->busy_hash, bkt, worker, hentry) {
4680 if (worker->current_pwq == pwq) {
4681 has_in_flight = true;
4682 break;
4683 }
4684 }
4685 if (has_in_flight) {
4686 bool comma = false;
4687
4688 pr_info(" in-flight:");
4689 hash_for_each(pool->busy_hash, bkt, worker, hentry) {
4690 if (worker->current_pwq != pwq)
4691 continue;
4692
4693 pr_cont("%s %d%s:%ps", comma ? "," : "",
4694 task_pid_nr(worker->task),
4695 worker->rescue_wq ? "(RESCUER)" : "",
4696 worker->current_func);
4697 list_for_each_entry(work, &worker->scheduled, entry)
4698 pr_cont_work(false, work);
4699 comma = true;
4700 }
4701 pr_cont("\n");
4702 }
4703
4704 list_for_each_entry(work, &pool->worklist, entry) {
4705 if (get_work_pwq(work) == pwq) {
4706 has_pending = true;
4707 break;
4708 }
4709 }
4710 if (has_pending) {
4711 bool comma = false;
4712
4713 pr_info(" pending:");
4714 list_for_each_entry(work, &pool->worklist, entry) {
4715 if (get_work_pwq(work) != pwq)
4716 continue;
4717
4718 pr_cont_work(comma, work);
4719 comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
4720 }
4721 pr_cont("\n");
4722 }
4723
4724 if (!list_empty(&pwq->delayed_works)) {
4725 bool comma = false;
4726
4727 pr_info(" delayed:");
4728 list_for_each_entry(work, &pwq->delayed_works, entry) {
4729 pr_cont_work(comma, work);
4730 comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
4731 }
4732 pr_cont("\n");
4733 }
4734 }
4735
4736 /**
4737 * show_workqueue_state - dump workqueue state
4738 *
4739 * Called from a sysrq handler or try_to_freeze_tasks() and prints out
4740 * all busy workqueues and pools.
4741 */
4742 void show_workqueue_state(void)
4743 {
4744 struct workqueue_struct *wq;
4745 struct worker_pool *pool;
4746 unsigned long flags;
4747 int pi;
4748
4749 rcu_read_lock();
4750
4751 pr_info("Showing busy workqueues and worker pools:\n");
4752
4753 list_for_each_entry_rcu(wq, &workqueues, list) {
4754 struct pool_workqueue *pwq;
4755 bool idle = true;
4756
4757 for_each_pwq(pwq, wq) {
4758 if (pwq->nr_active || !list_empty(&pwq->delayed_works)) {
4759 idle = false;
4760 break;
4761 }
4762 }
4763 if (idle)
4764 continue;
4765
4766 pr_info("workqueue %s: flags=0x%x\n", wq->name, wq->flags);
4767
4768 for_each_pwq(pwq, wq) {
4769 spin_lock_irqsave(&pwq->pool->lock, flags);
4770 if (pwq->nr_active || !list_empty(&pwq->delayed_works))
4771 show_pwq(pwq);
4772 spin_unlock_irqrestore(&pwq->pool->lock, flags);
4773 /*
4774 * We could be printing a lot from atomic context, e.g.
4775 * sysrq-t -> show_workqueue_state(). Avoid triggering
4776 * hard lockup.
4777 */
4778 touch_nmi_watchdog();
4779 }
4780 }
4781
4782 for_each_pool(pool, pi) {
4783 struct worker *worker;
4784 bool first = true;
4785
4786 spin_lock_irqsave(&pool->lock, flags);
4787 if (pool->nr_workers == pool->nr_idle)
4788 goto next_pool;
4789
4790 pr_info("pool %d:", pool->id);
4791 pr_cont_pool_info(pool);
4792 pr_cont(" hung=%us workers=%d",
4793 jiffies_to_msecs(jiffies - pool->watchdog_ts) / 1000,
4794 pool->nr_workers);
4795 if (pool->manager)
4796 pr_cont(" manager: %d",
4797 task_pid_nr(pool->manager->task));
4798 list_for_each_entry(worker, &pool->idle_list, entry) {
4799 pr_cont(" %s%d", first ? "idle: " : "",
4800 task_pid_nr(worker->task));
4801 first = false;
4802 }
4803 pr_cont("\n");
4804 next_pool:
4805 spin_unlock_irqrestore(&pool->lock, flags);
4806 /*
4807 * We could be printing a lot from atomic context, e.g.
4808 * sysrq-t -> show_workqueue_state(). Avoid triggering
4809 * hard lockup.
4810 */
4811 touch_nmi_watchdog();
4812 }
4813
4814 rcu_read_unlock();
4815 }
4816
4817 /* used to show worker information through /proc/PID/{comm,stat,status} */
4818 void wq_worker_comm(char *buf, size_t size, struct task_struct *task)
4819 {
4820 int off;
4821
4822 /* always show the actual comm */
4823 off = strscpy(buf, task->comm, size);
4824 if (off < 0)
4825 return;
4826
4827 /* stabilize PF_WQ_WORKER and worker pool association */
4828 mutex_lock(&wq_pool_attach_mutex);
4829
4830 if (task->flags & PF_WQ_WORKER) {
4831 struct worker *worker = kthread_data(task);
4832 struct worker_pool *pool = worker->pool;
4833
4834 if (pool) {
4835 spin_lock_irq(&pool->lock);
4836 /*
4837 * ->desc tracks information (wq name or
4838 * set_worker_desc()) for the latest execution. If
4839 * current, prepend '+', otherwise '-'.
4840 */
4841 if (worker->desc[0] != '\0') {
4842 if (worker->current_work)
4843 scnprintf(buf + off, size - off, "+%s",
4844 worker->desc);
4845 else
4846 scnprintf(buf + off, size - off, "-%s",
4847 worker->desc);
4848 }
4849 spin_unlock_irq(&pool->lock);
4850 }
4851 }
4852
4853 mutex_unlock(&wq_pool_attach_mutex);
4854 }
4855
4856 #ifdef CONFIG_SMP
4857
4858 /*
4859 * CPU hotplug.
4860 *
4861 * There are two challenges in supporting CPU hotplug. Firstly, there
4862 * are a lot of assumptions on strong associations among work, pwq and
4863 * pool which make migrating pending and scheduled works very
4864 * difficult to implement without impacting hot paths. Secondly,
4865 * worker pools serve mix of short, long and very long running works making
4866 * blocked draining impractical.
4867 *
4868 * This is solved by allowing the pools to be disassociated from the CPU
4869 * running as an unbound one and allowing it to be reattached later if the
4870 * cpu comes back online.
4871 */
4872
4873 static void unbind_workers(int cpu)
4874 {
4875 struct worker_pool *pool;
4876 struct worker *worker;
4877
4878 for_each_cpu_worker_pool(pool, cpu) {
4879 mutex_lock(&wq_pool_attach_mutex);
4880 spin_lock_irq(&pool->lock);
4881
4882 /*
4883 * We've blocked all attach/detach operations. Make all workers
4884 * unbound and set DISASSOCIATED. Before this, all workers
4885 * except for the ones which are still executing works from
4886 * before the last CPU down must be on the cpu. After
4887 * this, they may become diasporas.
4888 */
4889 for_each_pool_worker(worker, pool)
4890 worker->flags |= WORKER_UNBOUND;
4891
4892 pool->flags |= POOL_DISASSOCIATED;
4893
4894 spin_unlock_irq(&pool->lock);
4895 mutex_unlock(&wq_pool_attach_mutex);
4896
4897 /*
4898 * Call schedule() so that we cross rq->lock and thus can
4899 * guarantee sched callbacks see the %WORKER_UNBOUND flag.
4900 * This is necessary as scheduler callbacks may be invoked
4901 * from other cpus.
4902 */
4903 schedule();
4904
4905 /*
4906 * Sched callbacks are disabled now. Zap nr_running.
4907 * After this, nr_running stays zero and need_more_worker()
4908 * and keep_working() are always true as long as the
4909 * worklist is not empty. This pool now behaves as an
4910 * unbound (in terms of concurrency management) pool which
4911 * are served by workers tied to the pool.
4912 */
4913 atomic_set(&pool->nr_running, 0);
4914
4915 /*
4916 * With concurrency management just turned off, a busy
4917 * worker blocking could lead to lengthy stalls. Kick off
4918 * unbound chain execution of currently pending work items.
4919 */
4920 spin_lock_irq(&pool->lock);
4921 wake_up_worker(pool);
4922 spin_unlock_irq(&pool->lock);
4923 }
4924 }
4925
4926 /**
4927 * rebind_workers - rebind all workers of a pool to the associated CPU
4928 * @pool: pool of interest
4929 *
4930 * @pool->cpu is coming online. Rebind all workers to the CPU.
4931 */
4932 static void rebind_workers(struct worker_pool *pool)
4933 {
4934 struct worker *worker;
4935
4936 lockdep_assert_held(&wq_pool_attach_mutex);
4937
4938 /*
4939 * Restore CPU affinity of all workers. As all idle workers should
4940 * be on the run-queue of the associated CPU before any local
4941 * wake-ups for concurrency management happen, restore CPU affinity
4942 * of all workers first and then clear UNBOUND. As we're called
4943 * from CPU_ONLINE, the following shouldn't fail.
4944 */
4945 for_each_pool_worker(worker, pool)
4946 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
4947 pool->attrs->cpumask) < 0);
4948
4949 spin_lock_irq(&pool->lock);
4950
4951 pool->flags &= ~POOL_DISASSOCIATED;
4952
4953 for_each_pool_worker(worker, pool) {
4954 unsigned int worker_flags = worker->flags;
4955
4956 /*
4957 * A bound idle worker should actually be on the runqueue
4958 * of the associated CPU for local wake-ups targeting it to
4959 * work. Kick all idle workers so that they migrate to the
4960 * associated CPU. Doing this in the same loop as
4961 * replacing UNBOUND with REBOUND is safe as no worker will
4962 * be bound before @pool->lock is released.
4963 */
4964 if (worker_flags & WORKER_IDLE)
4965 wake_up_process(worker->task);
4966
4967 /*
4968 * We want to clear UNBOUND but can't directly call
4969 * worker_clr_flags() or adjust nr_running. Atomically
4970 * replace UNBOUND with another NOT_RUNNING flag REBOUND.
4971 * @worker will clear REBOUND using worker_clr_flags() when
4972 * it initiates the next execution cycle thus restoring
4973 * concurrency management. Note that when or whether
4974 * @worker clears REBOUND doesn't affect correctness.
4975 *
4976 * WRITE_ONCE() is necessary because @worker->flags may be
4977 * tested without holding any lock in
4978 * wq_worker_running(). Without it, NOT_RUNNING test may
4979 * fail incorrectly leading to premature concurrency
4980 * management operations.
4981 */
4982 WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND));
4983 worker_flags |= WORKER_REBOUND;
4984 worker_flags &= ~WORKER_UNBOUND;
4985 WRITE_ONCE(worker->flags, worker_flags);
4986 }
4987
4988 spin_unlock_irq(&pool->lock);
4989 }
4990
4991 /**
4992 * restore_unbound_workers_cpumask - restore cpumask of unbound workers
4993 * @pool: unbound pool of interest
4994 * @cpu: the CPU which is coming up
4995 *
4996 * An unbound pool may end up with a cpumask which doesn't have any online
4997 * CPUs. When a worker of such pool get scheduled, the scheduler resets
4998 * its cpus_allowed. If @cpu is in @pool's cpumask which didn't have any
4999 * online CPU before, cpus_allowed of all its workers should be restored.
5000 */
5001 static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu)
5002 {
5003 static cpumask_t cpumask;
5004 struct worker *worker;
5005
5006 lockdep_assert_held(&wq_pool_attach_mutex);
5007
5008 /* is @cpu allowed for @pool? */
5009 if (!cpumask_test_cpu(cpu, pool->attrs->cpumask))
5010 return;
5011
5012 cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask);
5013
5014 /* as we're called from CPU_ONLINE, the following shouldn't fail */
5015 for_each_pool_worker(worker, pool)
5016 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, &cpumask) < 0);
5017 }
5018
5019 int workqueue_prepare_cpu(unsigned int cpu)
5020 {
5021 struct worker_pool *pool;
5022
5023 for_each_cpu_worker_pool(pool, cpu) {
5024 if (pool->nr_workers)
5025 continue;
5026 if (!create_worker(pool))
5027 return -ENOMEM;
5028 }
5029 return 0;
5030 }
5031
5032 int workqueue_online_cpu(unsigned int cpu)
5033 {
5034 struct worker_pool *pool;
5035 struct workqueue_struct *wq;
5036 int pi;
5037
5038 mutex_lock(&wq_pool_mutex);
5039
5040 for_each_pool(pool, pi) {
5041 mutex_lock(&wq_pool_attach_mutex);
5042
5043 if (pool->cpu == cpu)
5044 rebind_workers(pool);
5045 else if (pool->cpu < 0)
5046 restore_unbound_workers_cpumask(pool, cpu);
5047
5048 mutex_unlock(&wq_pool_attach_mutex);
5049 }
5050
5051 /* update NUMA affinity of unbound workqueues */
5052 list_for_each_entry(wq, &workqueues, list)
5053 wq_update_unbound_numa(wq, cpu, true);
5054
5055 mutex_unlock(&wq_pool_mutex);
5056 return 0;
5057 }
5058
5059 int workqueue_offline_cpu(unsigned int cpu)
5060 {
5061 struct workqueue_struct *wq;
5062
5063 /* unbinding per-cpu workers should happen on the local CPU */
5064 if (WARN_ON(cpu != smp_processor_id()))
5065 return -1;
5066
5067 unbind_workers(cpu);
5068
5069 /* update NUMA affinity of unbound workqueues */
5070 mutex_lock(&wq_pool_mutex);
5071 list_for_each_entry(wq, &workqueues, list)
5072 wq_update_unbound_numa(wq, cpu, false);
5073 mutex_unlock(&wq_pool_mutex);
5074
5075 return 0;
5076 }
5077
5078 struct work_for_cpu {
5079 struct work_struct work;
5080 long (*fn)(void *);
5081 void *arg;
5082 long ret;
5083 };
5084
5085 static void work_for_cpu_fn(struct work_struct *work)
5086 {
5087 struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);
5088
5089 wfc->ret = wfc->fn(wfc->arg);
5090 }
5091
5092 /**
5093 * work_on_cpu - run a function in thread context on a particular cpu
5094 * @cpu: the cpu to run on
5095 * @fn: the function to run
5096 * @arg: the function arg
5097 *
5098 * It is up to the caller to ensure that the cpu doesn't go offline.
5099 * The caller must not hold any locks which would prevent @fn from completing.
5100 *
5101 * Return: The value @fn returns.
5102 */
5103 long work_on_cpu(int cpu, long (*fn)(void *), void *arg)
5104 {
5105 struct work_for_cpu wfc = { .fn = fn, .arg = arg };
5106
5107 INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn);
5108 schedule_work_on(cpu, &wfc.work);
5109 flush_work(&wfc.work);
5110 destroy_work_on_stack(&wfc.work);
5111 return wfc.ret;
5112 }
5113 EXPORT_SYMBOL_GPL(work_on_cpu);
5114
5115 /**
5116 * work_on_cpu_safe - run a function in thread context on a particular cpu
5117 * @cpu: the cpu to run on
5118 * @fn: the function to run
5119 * @arg: the function argument
5120 *
5121 * Disables CPU hotplug and calls work_on_cpu(). The caller must not hold
5122 * any locks which would prevent @fn from completing.
5123 *
5124 * Return: The value @fn returns.
5125 */
5126 long work_on_cpu_safe(int cpu, long (*fn)(void *), void *arg)
5127 {
5128 long ret = -ENODEV;
5129
5130 get_online_cpus();
5131 if (cpu_online(cpu))
5132 ret = work_on_cpu(cpu, fn, arg);
5133 put_online_cpus();
5134 return ret;
5135 }
5136 EXPORT_SYMBOL_GPL(work_on_cpu_safe);
5137 #endif /* CONFIG_SMP */
5138
5139 #ifdef CONFIG_FREEZER
5140
5141 /**
5142 * freeze_workqueues_begin - begin freezing workqueues
5143 *
5144 * Start freezing workqueues. After this function returns, all freezable
5145 * workqueues will queue new works to their delayed_works list instead of
5146 * pool->worklist.
5147 *
5148 * CONTEXT:
5149 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
5150 */
5151 void freeze_workqueues_begin(void)
5152 {
5153 struct workqueue_struct *wq;
5154 struct pool_workqueue *pwq;
5155
5156 mutex_lock(&wq_pool_mutex);
5157
5158 WARN_ON_ONCE(workqueue_freezing);
5159 workqueue_freezing = true;
5160
5161 list_for_each_entry(wq, &workqueues, list) {
5162 mutex_lock(&wq->mutex);
5163 for_each_pwq(pwq, wq)
5164 pwq_adjust_max_active(pwq);
5165 mutex_unlock(&wq->mutex);
5166 }
5167
5168 mutex_unlock(&wq_pool_mutex);
5169 }
5170
5171 /**
5172 * freeze_workqueues_busy - are freezable workqueues still busy?
5173 *
5174 * Check whether freezing is complete. This function must be called
5175 * between freeze_workqueues_begin() and thaw_workqueues().
5176 *
5177 * CONTEXT:
5178 * Grabs and releases wq_pool_mutex.
5179 *
5180 * Return:
5181 * %true if some freezable workqueues are still busy. %false if freezing
5182 * is complete.
5183 */
5184 bool freeze_workqueues_busy(void)
5185 {
5186 bool busy = false;
5187 struct workqueue_struct *wq;
5188 struct pool_workqueue *pwq;
5189
5190 mutex_lock(&wq_pool_mutex);
5191
5192 WARN_ON_ONCE(!workqueue_freezing);
5193
5194 list_for_each_entry(wq, &workqueues, list) {
5195 if (!(wq->flags & WQ_FREEZABLE))
5196 continue;
5197 /*
5198 * nr_active is monotonically decreasing. It's safe
5199 * to peek without lock.
5200 */
5201 rcu_read_lock();
5202 for_each_pwq(pwq, wq) {
5203 WARN_ON_ONCE(pwq->nr_active < 0);
5204 if (pwq->nr_active) {
5205 busy = true;
5206 rcu_read_unlock();
5207 goto out_unlock;
5208 }
5209 }
5210 rcu_read_unlock();
5211 }
5212 out_unlock:
5213 mutex_unlock(&wq_pool_mutex);
5214 return busy;
5215 }
5216
5217 /**
5218 * thaw_workqueues - thaw workqueues
5219 *
5220 * Thaw workqueues. Normal queueing is restored and all collected
5221 * frozen works are transferred to their respective pool worklists.
5222 *
5223 * CONTEXT:
5224 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
5225 */
5226 void thaw_workqueues(void)
5227 {
5228 struct workqueue_struct *wq;
5229 struct pool_workqueue *pwq;
5230
5231 mutex_lock(&wq_pool_mutex);
5232
5233 if (!workqueue_freezing)
5234 goto out_unlock;
5235
5236 workqueue_freezing = false;
5237
5238 /* restore max_active and repopulate worklist */
5239 list_for_each_entry(wq, &workqueues, list) {
5240 mutex_lock(&wq->mutex);
5241 for_each_pwq(pwq, wq)
5242 pwq_adjust_max_active(pwq);
5243 mutex_unlock(&wq->mutex);
5244 }
5245
5246 out_unlock:
5247 mutex_unlock(&wq_pool_mutex);
5248 }
5249 #endif /* CONFIG_FREEZER */
5250
5251 static int workqueue_apply_unbound_cpumask(void)
5252 {
5253 LIST_HEAD(ctxs);
5254 int ret = 0;
5255 struct workqueue_struct *wq;
5256 struct apply_wqattrs_ctx *ctx, *n;
5257
5258 lockdep_assert_held(&wq_pool_mutex);
5259
5260 list_for_each_entry(wq, &workqueues, list) {
5261 if (!(wq->flags & WQ_UNBOUND))
5262 continue;
5263 /* creating multiple pwqs breaks ordering guarantee */
5264 if (wq->flags & __WQ_ORDERED)
5265 continue;
5266
5267 ctx = apply_wqattrs_prepare(wq, wq->unbound_attrs);
5268 if (!ctx) {
5269 ret = -ENOMEM;
5270 break;
5271 }
5272
5273 list_add_tail(&ctx->list, &ctxs);
5274 }
5275
5276 list_for_each_entry_safe(ctx, n, &ctxs, list) {
5277 if (!ret)
5278 apply_wqattrs_commit(ctx);
5279 apply_wqattrs_cleanup(ctx);
5280 }
5281
5282 return ret;
5283 }
5284
5285 /**
5286 * workqueue_set_unbound_cpumask - Set the low-level unbound cpumask
5287 * @cpumask: the cpumask to set
5288 *
5289 * The low-level workqueues cpumask is a global cpumask that limits
5290 * the affinity of all unbound workqueues. This function check the @cpumask
5291 * and apply it to all unbound workqueues and updates all pwqs of them.
5292 *
5293 * Retun: 0 - Success
5294 * -EINVAL - Invalid @cpumask
5295 * -ENOMEM - Failed to allocate memory for attrs or pwqs.
5296 */
5297 int workqueue_set_unbound_cpumask(cpumask_var_t cpumask)
5298 {
5299 int ret = -EINVAL;
5300 cpumask_var_t saved_cpumask;
5301
5302 if (!zalloc_cpumask_var(&saved_cpumask, GFP_KERNEL))
5303 return -ENOMEM;
5304
5305 /*
5306 * Not excluding isolated cpus on purpose.
5307 * If the user wishes to include them, we allow that.
5308 */
5309 cpumask_and(cpumask, cpumask, cpu_possible_mask);
5310 if (!cpumask_empty(cpumask)) {
5311 apply_wqattrs_lock();
5312
5313 /* save the old wq_unbound_cpumask. */
5314 cpumask_copy(saved_cpumask, wq_unbound_cpumask);
5315
5316 /* update wq_unbound_cpumask at first and apply it to wqs. */
5317 cpumask_copy(wq_unbound_cpumask, cpumask);
5318 ret = workqueue_apply_unbound_cpumask();
5319
5320 /* restore the wq_unbound_cpumask when failed. */
5321 if (ret < 0)
5322 cpumask_copy(wq_unbound_cpumask, saved_cpumask);
5323
5324 apply_wqattrs_unlock();
5325 }
5326
5327 free_cpumask_var(saved_cpumask);
5328 return ret;
5329 }
5330
5331 #ifdef CONFIG_SYSFS
5332 /*
5333 * Workqueues with WQ_SYSFS flag set is visible to userland via
5334 * /sys/bus/workqueue/devices/WQ_NAME. All visible workqueues have the
5335 * following attributes.
5336 *
5337 * per_cpu RO bool : whether the workqueue is per-cpu or unbound
5338 * max_active RW int : maximum number of in-flight work items
5339 *
5340 * Unbound workqueues have the following extra attributes.
5341 *
5342 * pool_ids RO int : the associated pool IDs for each node
5343 * nice RW int : nice value of the workers
5344 * cpumask RW mask : bitmask of allowed CPUs for the workers
5345 * numa RW bool : whether enable NUMA affinity
5346 */
5347 struct wq_device {
5348 struct workqueue_struct *wq;
5349 struct device dev;
5350 };
5351
5352 static struct workqueue_struct *dev_to_wq(struct device *dev)
5353 {
5354 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
5355
5356 return wq_dev->wq;
5357 }
5358
5359 static ssize_t per_cpu_show(struct device *dev, struct device_attribute *attr,
5360 char *buf)
5361 {
5362 struct workqueue_struct *wq = dev_to_wq(dev);
5363
5364 return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND));
5365 }
5366 static DEVICE_ATTR_RO(per_cpu);
5367
5368 static ssize_t max_active_show(struct device *dev,
5369 struct device_attribute *attr, char *buf)
5370 {
5371 struct workqueue_struct *wq = dev_to_wq(dev);
5372
5373 return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active);
5374 }
5375
5376 static ssize_t max_active_store(struct device *dev,
5377 struct device_attribute *attr, const char *buf,
5378 size_t count)
5379 {
5380 struct workqueue_struct *wq = dev_to_wq(dev);
5381 int val;
5382
5383 if (sscanf(buf, "%d", &val) != 1 || val <= 0)
5384 return -EINVAL;
5385
5386 workqueue_set_max_active(wq, val);
5387 return count;
5388 }
5389 static DEVICE_ATTR_RW(max_active);
5390
5391 static struct attribute *wq_sysfs_attrs[] = {
5392 &dev_attr_per_cpu.attr,
5393 &dev_attr_max_active.attr,
5394 NULL,
5395 };
5396 ATTRIBUTE_GROUPS(wq_sysfs);
5397
5398 static ssize_t wq_pool_ids_show(struct device *dev,
5399 struct device_attribute *attr, char *buf)
5400 {
5401 struct workqueue_struct *wq = dev_to_wq(dev);
5402 const char *delim = "";
5403 int node, written = 0;
5404
5405 get_online_cpus();
5406 rcu_read_lock();
5407 for_each_node(node) {
5408 written += scnprintf(buf + written, PAGE_SIZE - written,
5409 "%s%d:%d", delim, node,
5410 unbound_pwq_by_node(wq, node)->pool->id);
5411 delim = " ";
5412 }
5413 written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
5414 rcu_read_unlock();
5415 put_online_cpus();
5416
5417 return written;
5418 }
5419
5420 static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr,
5421 char *buf)
5422 {
5423 struct workqueue_struct *wq = dev_to_wq(dev);
5424 int written;
5425
5426 mutex_lock(&wq->mutex);
5427 written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice);
5428 mutex_unlock(&wq->mutex);
5429
5430 return written;
5431 }
5432
5433 /* prepare workqueue_attrs for sysfs store operations */
5434 static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq)
5435 {
5436 struct workqueue_attrs *attrs;
5437
5438 lockdep_assert_held(&wq_pool_mutex);
5439
5440 attrs = alloc_workqueue_attrs();
5441 if (!attrs)
5442 return NULL;
5443
5444 copy_workqueue_attrs(attrs, wq->unbound_attrs);
5445 return attrs;
5446 }
5447
5448 static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr,
5449 const char *buf, size_t count)
5450 {
5451 struct workqueue_struct *wq = dev_to_wq(dev);
5452 struct workqueue_attrs *attrs;
5453 int ret = -ENOMEM;
5454
5455 apply_wqattrs_lock();
5456
5457 attrs = wq_sysfs_prep_attrs(wq);
5458 if (!attrs)
5459 goto out_unlock;
5460
5461 if (sscanf(buf, "%d", &attrs->nice) == 1 &&
5462 attrs->nice >= MIN_NICE && attrs->nice <= MAX_NICE)
5463 ret = apply_workqueue_attrs_locked(wq, attrs);
5464 else
5465 ret = -EINVAL;
5466
5467 out_unlock:
5468 apply_wqattrs_unlock();
5469 free_workqueue_attrs(attrs);
5470 return ret ?: count;
5471 }
5472
5473 static ssize_t wq_cpumask_show(struct device *dev,
5474 struct device_attribute *attr, char *buf)
5475 {
5476 struct workqueue_struct *wq = dev_to_wq(dev);
5477 int written;
5478
5479 mutex_lock(&wq->mutex);
5480 written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
5481 cpumask_pr_args(wq->unbound_attrs->cpumask));
5482 mutex_unlock(&wq->mutex);
5483 return written;
5484 }
5485
5486 static ssize_t wq_cpumask_store(struct device *dev,
5487 struct device_attribute *attr,
5488 const char *buf, size_t count)
5489 {
5490 struct workqueue_struct *wq = dev_to_wq(dev);
5491 struct workqueue_attrs *attrs;
5492 int ret = -ENOMEM;
5493
5494 apply_wqattrs_lock();
5495
5496 attrs = wq_sysfs_prep_attrs(wq);
5497 if (!attrs)
5498 goto out_unlock;
5499
5500 ret = cpumask_parse(buf, attrs->cpumask);
5501 if (!ret)
5502 ret = apply_workqueue_attrs_locked(wq, attrs);
5503
5504 out_unlock:
5505 apply_wqattrs_unlock();
5506 free_workqueue_attrs(attrs);
5507 return ret ?: count;
5508 }
5509
5510 static ssize_t wq_numa_show(struct device *dev, struct device_attribute *attr,
5511 char *buf)
5512 {
5513 struct workqueue_struct *wq = dev_to_wq(dev);
5514 int written;
5515
5516 mutex_lock(&wq->mutex);
5517 written = scnprintf(buf, PAGE_SIZE, "%d\n",
5518 !wq->unbound_attrs->no_numa);
5519 mutex_unlock(&wq->mutex);
5520
5521 return written;
5522 }
5523
5524 static ssize_t wq_numa_store(struct device *dev, struct device_attribute *attr,
5525 const char *buf, size_t count)
5526 {
5527 struct workqueue_struct *wq = dev_to_wq(dev);
5528 struct workqueue_attrs *attrs;
5529 int v, ret = -ENOMEM;
5530
5531 apply_wqattrs_lock();
5532
5533 attrs = wq_sysfs_prep_attrs(wq);
5534 if (!attrs)
5535 goto out_unlock;
5536
5537 ret = -EINVAL;
5538 if (sscanf(buf, "%d", &v) == 1) {
5539 attrs->no_numa = !v;
5540 ret = apply_workqueue_attrs_locked(wq, attrs);
5541 }
5542
5543 out_unlock:
5544 apply_wqattrs_unlock();
5545 free_workqueue_attrs(attrs);
5546 return ret ?: count;
5547 }
5548
5549 static struct device_attribute wq_sysfs_unbound_attrs[] = {
5550 __ATTR(pool_ids, 0444, wq_pool_ids_show, NULL),
5551 __ATTR(nice, 0644, wq_nice_show, wq_nice_store),
5552 __ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store),
5553 __ATTR(numa, 0644, wq_numa_show, wq_numa_store),
5554 __ATTR_NULL,
5555 };
5556
5557 static struct bus_type wq_subsys = {
5558 .name = "workqueue",
5559 .dev_groups = wq_sysfs_groups,
5560 };
5561
5562 static ssize_t wq_unbound_cpumask_show(struct device *dev,
5563 struct device_attribute *attr, char *buf)
5564 {
5565 int written;
5566
5567 mutex_lock(&wq_pool_mutex);
5568 written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
5569 cpumask_pr_args(wq_unbound_cpumask));
5570 mutex_unlock(&wq_pool_mutex);
5571
5572 return written;
5573 }
5574
5575 static ssize_t wq_unbound_cpumask_store(struct device *dev,
5576 struct device_attribute *attr, const char *buf, size_t count)
5577 {
5578 cpumask_var_t cpumask;
5579 int ret;
5580
5581 if (!zalloc_cpumask_var(&cpumask, GFP_KERNEL))
5582 return -ENOMEM;
5583
5584 ret = cpumask_parse(buf, cpumask);
5585 if (!ret)
5586 ret = workqueue_set_unbound_cpumask(cpumask);
5587
5588 free_cpumask_var(cpumask);
5589 return ret ? ret : count;
5590 }
5591
5592 static struct device_attribute wq_sysfs_cpumask_attr =
5593 __ATTR(cpumask, 0644, wq_unbound_cpumask_show,
5594 wq_unbound_cpumask_store);
5595
5596 static int __init wq_sysfs_init(void)
5597 {
5598 int err;
5599
5600 err = subsys_virtual_register(&wq_subsys, NULL);
5601 if (err)
5602 return err;
5603
5604 return device_create_file(wq_subsys.dev_root, &wq_sysfs_cpumask_attr);
5605 }
5606 core_initcall(wq_sysfs_init);
5607
5608 static void wq_device_release(struct device *dev)
5609 {
5610 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
5611
5612 kfree(wq_dev);
5613 }
5614
5615 /**
5616 * workqueue_sysfs_register - make a workqueue visible in sysfs
5617 * @wq: the workqueue to register
5618 *
5619 * Expose @wq in sysfs under /sys/bus/workqueue/devices.
5620 * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set
5621 * which is the preferred method.
5622 *
5623 * Workqueue user should use this function directly iff it wants to apply
5624 * workqueue_attrs before making the workqueue visible in sysfs; otherwise,
5625 * apply_workqueue_attrs() may race against userland updating the
5626 * attributes.
5627 *
5628 * Return: 0 on success, -errno on failure.
5629 */
5630 int workqueue_sysfs_register(struct workqueue_struct *wq)
5631 {
5632 struct wq_device *wq_dev;
5633 int ret;
5634
5635 /*
5636 * Adjusting max_active or creating new pwqs by applying
5637 * attributes breaks ordering guarantee. Disallow exposing ordered
5638 * workqueues.
5639 */
5640 if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
5641 return -EINVAL;
5642
5643 wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL);
5644 if (!wq_dev)
5645 return -ENOMEM;
5646
5647 wq_dev->wq = wq;
5648 wq_dev->dev.bus = &wq_subsys;
5649 wq_dev->dev.release = wq_device_release;
5650 dev_set_name(&wq_dev->dev, "%s", wq->name);
5651
5652 /*
5653 * unbound_attrs are created separately. Suppress uevent until
5654 * everything is ready.
5655 */
5656 dev_set_uevent_suppress(&wq_dev->dev, true);
5657
5658 ret = device_register(&wq_dev->dev);
5659 if (ret) {
5660 put_device(&wq_dev->dev);
5661 wq->wq_dev = NULL;
5662 return ret;
5663 }
5664
5665 if (wq->flags & WQ_UNBOUND) {
5666 struct device_attribute *attr;
5667
5668 for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) {
5669 ret = device_create_file(&wq_dev->dev, attr);
5670 if (ret) {
5671 device_unregister(&wq_dev->dev);
5672 wq->wq_dev = NULL;
5673 return ret;
5674 }
5675 }
5676 }
5677
5678 dev_set_uevent_suppress(&wq_dev->dev, false);
5679 kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD);
5680 return 0;
5681 }
5682
5683 /**
5684 * workqueue_sysfs_unregister - undo workqueue_sysfs_register()
5685 * @wq: the workqueue to unregister
5686 *
5687 * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister.
5688 */
5689 static void workqueue_sysfs_unregister(struct workqueue_struct *wq)
5690 {
5691 struct wq_device *wq_dev = wq->wq_dev;
5692
5693 if (!wq->wq_dev)
5694 return;
5695
5696 wq->wq_dev = NULL;
5697 device_unregister(&wq_dev->dev);
5698 }
5699 #else /* CONFIG_SYSFS */
5700 static void workqueue_sysfs_unregister(struct workqueue_struct *wq) { }
5701 #endif /* CONFIG_SYSFS */
5702
5703 /*
5704 * Workqueue watchdog.
5705 *
5706 * Stall may be caused by various bugs - missing WQ_MEM_RECLAIM, illegal
5707 * flush dependency, a concurrency managed work item which stays RUNNING
5708 * indefinitely. Workqueue stalls can be very difficult to debug as the
5709 * usual warning mechanisms don't trigger and internal workqueue state is
5710 * largely opaque.
5711 *
5712 * Workqueue watchdog monitors all worker pools periodically and dumps
5713 * state if some pools failed to make forward progress for a while where
5714 * forward progress is defined as the first item on ->worklist changing.
5715 *
5716 * This mechanism is controlled through the kernel parameter
5717 * "workqueue.watchdog_thresh" which can be updated at runtime through the
5718 * corresponding sysfs parameter file.
5719 */
5720 #ifdef CONFIG_WQ_WATCHDOG
5721
5722 static unsigned long wq_watchdog_thresh = 30;
5723 static struct timer_list wq_watchdog_timer;
5724
5725 static unsigned long wq_watchdog_touched = INITIAL_JIFFIES;
5726 static DEFINE_PER_CPU(unsigned long, wq_watchdog_touched_cpu) = INITIAL_JIFFIES;
5727
5728 static void wq_watchdog_reset_touched(void)
5729 {
5730 int cpu;
5731
5732 wq_watchdog_touched = jiffies;
5733 for_each_possible_cpu(cpu)
5734 per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
5735 }
5736
5737 static void wq_watchdog_timer_fn(struct timer_list *unused)
5738 {
5739 unsigned long thresh = READ_ONCE(wq_watchdog_thresh) * HZ;
5740 bool lockup_detected = false;
5741 struct worker_pool *pool;
5742 int pi;
5743
5744 if (!thresh)
5745 return;
5746
5747 rcu_read_lock();
5748
5749 for_each_pool(pool, pi) {
5750 unsigned long pool_ts, touched, ts;
5751
5752 if (list_empty(&pool->worklist))
5753 continue;
5754
5755 /* get the latest of pool and touched timestamps */
5756 pool_ts = READ_ONCE(pool->watchdog_ts);
5757 touched = READ_ONCE(wq_watchdog_touched);
5758
5759 if (time_after(pool_ts, touched))
5760 ts = pool_ts;
5761 else
5762 ts = touched;
5763
5764 if (pool->cpu >= 0) {
5765 unsigned long cpu_touched =
5766 READ_ONCE(per_cpu(wq_watchdog_touched_cpu,
5767 pool->cpu));
5768 if (time_after(cpu_touched, ts))
5769 ts = cpu_touched;
5770 }
5771
5772 /* did we stall? */
5773 if (time_after(jiffies, ts + thresh)) {
5774 lockup_detected = true;
5775 pr_emerg("BUG: workqueue lockup - pool");
5776 pr_cont_pool_info(pool);
5777 pr_cont(" stuck for %us!\n",
5778 jiffies_to_msecs(jiffies - pool_ts) / 1000);
5779 }
5780 }
5781
5782 rcu_read_unlock();
5783
5784 if (lockup_detected)
5785 show_workqueue_state();
5786
5787 wq_watchdog_reset_touched();
5788 mod_timer(&wq_watchdog_timer, jiffies + thresh);
5789 }
5790
5791 notrace void wq_watchdog_touch(int cpu)
5792 {
5793 if (cpu >= 0)
5794 per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
5795 else
5796 wq_watchdog_touched = jiffies;
5797 }
5798
5799 static void wq_watchdog_set_thresh(unsigned long thresh)
5800 {
5801 wq_watchdog_thresh = 0;
5802 del_timer_sync(&wq_watchdog_timer);
5803
5804 if (thresh) {
5805 wq_watchdog_thresh = thresh;
5806 wq_watchdog_reset_touched();
5807 mod_timer(&wq_watchdog_timer, jiffies + thresh * HZ);
5808 }
5809 }
5810
5811 static int wq_watchdog_param_set_thresh(const char *val,
5812 const struct kernel_param *kp)
5813 {
5814 unsigned long thresh;
5815 int ret;
5816
5817 ret = kstrtoul(val, 0, &thresh);
5818 if (ret)
5819 return ret;
5820
5821 if (system_wq)
5822 wq_watchdog_set_thresh(thresh);
5823 else
5824 wq_watchdog_thresh = thresh;
5825
5826 return 0;
5827 }
5828
5829 static const struct kernel_param_ops wq_watchdog_thresh_ops = {
5830 .set = wq_watchdog_param_set_thresh,
5831 .get = param_get_ulong,
5832 };
5833
5834 module_param_cb(watchdog_thresh, &wq_watchdog_thresh_ops, &wq_watchdog_thresh,
5835 0644);
5836
5837 static void wq_watchdog_init(void)
5838 {
5839 timer_setup(&wq_watchdog_timer, wq_watchdog_timer_fn, TIMER_DEFERRABLE);
5840 wq_watchdog_set_thresh(wq_watchdog_thresh);
5841 }
5842
5843 #else /* CONFIG_WQ_WATCHDOG */
5844
5845 static inline void wq_watchdog_init(void) { }
5846
5847 #endif /* CONFIG_WQ_WATCHDOG */
5848
5849 static void __init wq_numa_init(void)
5850 {
5851 cpumask_var_t *tbl;
5852 int node, cpu;
5853
5854 if (num_possible_nodes() <= 1)
5855 return;
5856
5857 if (wq_disable_numa) {
5858 pr_info("workqueue: NUMA affinity support disabled\n");
5859 return;
5860 }
5861
5862 wq_update_unbound_numa_attrs_buf = alloc_workqueue_attrs();
5863 BUG_ON(!wq_update_unbound_numa_attrs_buf);
5864
5865 /*
5866 * We want masks of possible CPUs of each node which isn't readily
5867 * available. Build one from cpu_to_node() which should have been
5868 * fully initialized by now.
5869 */
5870 tbl = kcalloc(nr_node_ids, sizeof(tbl[0]), GFP_KERNEL);
5871 BUG_ON(!tbl);
5872
5873 for_each_node(node)
5874 BUG_ON(!zalloc_cpumask_var_node(&tbl[node], GFP_KERNEL,
5875 node_online(node) ? node : NUMA_NO_NODE));
5876
5877 for_each_possible_cpu(cpu) {
5878 node = cpu_to_node(cpu);
5879 if (WARN_ON(node == NUMA_NO_NODE)) {
5880 pr_warn("workqueue: NUMA node mapping not available for cpu%d, disabling NUMA support\n", cpu);
5881 /* happens iff arch is bonkers, let's just proceed */
5882 return;
5883 }
5884 cpumask_set_cpu(cpu, tbl[node]);
5885 }
5886
5887 wq_numa_possible_cpumask = tbl;
5888 wq_numa_enabled = true;
5889 }
5890
5891 /**
5892 * workqueue_init_early - early init for workqueue subsystem
5893 *
5894 * This is the first half of two-staged workqueue subsystem initialization
5895 * and invoked as soon as the bare basics - memory allocation, cpumasks and
5896 * idr are up. It sets up all the data structures and system workqueues
5897 * and allows early boot code to create workqueues and queue/cancel work
5898 * items. Actual work item execution starts only after kthreads can be
5899 * created and scheduled right before early initcalls.
5900 */
5901 void __init workqueue_init_early(void)
5902 {
5903 int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL };
5904 int hk_flags = HK_FLAG_DOMAIN | HK_FLAG_WQ;
5905 int i, cpu;
5906
5907 WARN_ON(__alignof__(struct pool_workqueue) < __alignof__(long long));
5908
5909 BUG_ON(!alloc_cpumask_var(&wq_unbound_cpumask, GFP_KERNEL));
5910 cpumask_copy(wq_unbound_cpumask, housekeeping_cpumask(hk_flags));
5911
5912 pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC);
5913
5914 /* initialize CPU pools */
5915 for_each_possible_cpu(cpu) {
5916 struct worker_pool *pool;
5917
5918 i = 0;
5919 for_each_cpu_worker_pool(pool, cpu) {
5920 BUG_ON(init_worker_pool(pool));
5921 pool->cpu = cpu;
5922 cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu));
5923 pool->attrs->nice = std_nice[i++];
5924 pool->node = cpu_to_node(cpu);
5925
5926 /* alloc pool ID */
5927 mutex_lock(&wq_pool_mutex);
5928 BUG_ON(worker_pool_assign_id(pool));
5929 mutex_unlock(&wq_pool_mutex);
5930 }
5931 }
5932
5933 /* create default unbound and ordered wq attrs */
5934 for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
5935 struct workqueue_attrs *attrs;
5936
5937 BUG_ON(!(attrs = alloc_workqueue_attrs()));
5938 attrs->nice = std_nice[i];
5939 unbound_std_wq_attrs[i] = attrs;
5940
5941 /*
5942 * An ordered wq should have only one pwq as ordering is
5943 * guaranteed by max_active which is enforced by pwqs.
5944 * Turn off NUMA so that dfl_pwq is used for all nodes.
5945 */
5946 BUG_ON(!(attrs = alloc_workqueue_attrs()));
5947 attrs->nice = std_nice[i];
5948 attrs->no_numa = true;
5949 ordered_wq_attrs[i] = attrs;
5950 }
5951
5952 system_wq = alloc_workqueue("events", 0, 0);
5953 system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
5954 system_long_wq = alloc_workqueue("events_long", 0, 0);
5955 system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
5956 WQ_UNBOUND_MAX_ACTIVE);
5957 system_freezable_wq = alloc_workqueue("events_freezable",
5958 WQ_FREEZABLE, 0);
5959 system_power_efficient_wq = alloc_workqueue("events_power_efficient",
5960 WQ_POWER_EFFICIENT, 0);
5961 system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_power_efficient",
5962 WQ_FREEZABLE | WQ_POWER_EFFICIENT,
5963 0);
5964 BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
5965 !system_unbound_wq || !system_freezable_wq ||
5966 !system_power_efficient_wq ||
5967 !system_freezable_power_efficient_wq);
5968 }
5969
5970 /**
5971 * workqueue_init - bring workqueue subsystem fully online
5972 *
5973 * This is the latter half of two-staged workqueue subsystem initialization
5974 * and invoked as soon as kthreads can be created and scheduled.
5975 * Workqueues have been created and work items queued on them, but there
5976 * are no kworkers executing the work items yet. Populate the worker pools
5977 * with the initial workers and enable future kworker creations.
5978 */
5979 void __init workqueue_init(void)
5980 {
5981 struct workqueue_struct *wq;
5982 struct worker_pool *pool;
5983 int cpu, bkt;
5984
5985 /*
5986 * It'd be simpler to initialize NUMA in workqueue_init_early() but
5987 * CPU to node mapping may not be available that early on some
5988 * archs such as power and arm64. As per-cpu pools created
5989 * previously could be missing node hint and unbound pools NUMA
5990 * affinity, fix them up.
5991 *
5992 * Also, while iterating workqueues, create rescuers if requested.
5993 */
5994 wq_numa_init();
5995
5996 mutex_lock(&wq_pool_mutex);
5997
5998 for_each_possible_cpu(cpu) {
5999 for_each_cpu_worker_pool(pool, cpu) {
6000 pool->node = cpu_to_node(cpu);
6001 }
6002 }
6003
6004 list_for_each_entry(wq, &workqueues, list) {
6005 wq_update_unbound_numa(wq, smp_processor_id(), true);
6006 WARN(init_rescuer(wq),
6007 "workqueue: failed to create early rescuer for %s",
6008 wq->name);
6009 }
6010
6011 mutex_unlock(&wq_pool_mutex);
6012
6013 /* create the initial workers */
6014 for_each_online_cpu(cpu) {
6015 for_each_cpu_worker_pool(pool, cpu) {
6016 pool->flags &= ~POOL_DISASSOCIATED;
6017 BUG_ON(!create_worker(pool));
6018 }
6019 }
6020
6021 hash_for_each(unbound_pool_hash, bkt, pool, hash_node)
6022 BUG_ON(!create_worker(pool));
6023
6024 wq_online = true;
6025 wq_watchdog_init();
6026 }