]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - kernel/workqueue.c
Merge tag 'mac80211-for-net-2021-10-21' of git://git.kernel.org/pub/scm/linux/kernel...
[mirror_ubuntu-jammy-kernel.git] / kernel / workqueue.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * kernel/workqueue.c - generic async execution with shared worker pool
4 *
5 * Copyright (C) 2002 Ingo Molnar
6 *
7 * Derived from the taskqueue/keventd code by:
8 * David Woodhouse <dwmw2@infradead.org>
9 * Andrew Morton
10 * Kai Petzke <wpp@marie.physik.tu-berlin.de>
11 * Theodore Ts'o <tytso@mit.edu>
12 *
13 * Made to use alloc_percpu by Christoph Lameter.
14 *
15 * Copyright (C) 2010 SUSE Linux Products GmbH
16 * Copyright (C) 2010 Tejun Heo <tj@kernel.org>
17 *
18 * This is the generic async execution mechanism. Work items as are
19 * executed in process context. The worker pool is shared and
20 * automatically managed. There are two worker pools for each CPU (one for
21 * normal work items and the other for high priority ones) and some extra
22 * pools for workqueues which are not bound to any specific CPU - the
23 * number of these backing pools is dynamic.
24 *
25 * Please read Documentation/core-api/workqueue.rst for details.
26 */
27
28 #include <linux/export.h>
29 #include <linux/kernel.h>
30 #include <linux/sched.h>
31 #include <linux/init.h>
32 #include <linux/signal.h>
33 #include <linux/completion.h>
34 #include <linux/workqueue.h>
35 #include <linux/slab.h>
36 #include <linux/cpu.h>
37 #include <linux/notifier.h>
38 #include <linux/kthread.h>
39 #include <linux/hardirq.h>
40 #include <linux/mempolicy.h>
41 #include <linux/freezer.h>
42 #include <linux/debug_locks.h>
43 #include <linux/lockdep.h>
44 #include <linux/idr.h>
45 #include <linux/jhash.h>
46 #include <linux/hashtable.h>
47 #include <linux/rculist.h>
48 #include <linux/nodemask.h>
49 #include <linux/moduleparam.h>
50 #include <linux/uaccess.h>
51 #include <linux/sched/isolation.h>
52 #include <linux/nmi.h>
53 #include <linux/kvm_para.h>
54
55 #include "workqueue_internal.h"
56
57 enum {
58 /*
59 * worker_pool flags
60 *
61 * A bound pool is either associated or disassociated with its CPU.
62 * While associated (!DISASSOCIATED), all workers are bound to the
63 * CPU and none has %WORKER_UNBOUND set and concurrency management
64 * is in effect.
65 *
66 * While DISASSOCIATED, the cpu may be offline and all workers have
67 * %WORKER_UNBOUND set and concurrency management disabled, and may
68 * be executing on any CPU. The pool behaves as an unbound one.
69 *
70 * Note that DISASSOCIATED should be flipped only while holding
71 * wq_pool_attach_mutex to avoid changing binding state while
72 * worker_attach_to_pool() is in progress.
73 */
74 POOL_MANAGER_ACTIVE = 1 << 0, /* being managed */
75 POOL_DISASSOCIATED = 1 << 2, /* cpu can't serve workers */
76
77 /* worker flags */
78 WORKER_DIE = 1 << 1, /* die die die */
79 WORKER_IDLE = 1 << 2, /* is idle */
80 WORKER_PREP = 1 << 3, /* preparing to run works */
81 WORKER_CPU_INTENSIVE = 1 << 6, /* cpu intensive */
82 WORKER_UNBOUND = 1 << 7, /* worker is unbound */
83 WORKER_REBOUND = 1 << 8, /* worker was rebound */
84
85 WORKER_NOT_RUNNING = WORKER_PREP | WORKER_CPU_INTENSIVE |
86 WORKER_UNBOUND | WORKER_REBOUND,
87
88 NR_STD_WORKER_POOLS = 2, /* # standard pools per cpu */
89
90 UNBOUND_POOL_HASH_ORDER = 6, /* hashed by pool->attrs */
91 BUSY_WORKER_HASH_ORDER = 6, /* 64 pointers */
92
93 MAX_IDLE_WORKERS_RATIO = 4, /* 1/4 of busy can be idle */
94 IDLE_WORKER_TIMEOUT = 300 * HZ, /* keep idle ones for 5 mins */
95
96 MAYDAY_INITIAL_TIMEOUT = HZ / 100 >= 2 ? HZ / 100 : 2,
97 /* call for help after 10ms
98 (min two ticks) */
99 MAYDAY_INTERVAL = HZ / 10, /* and then every 100ms */
100 CREATE_COOLDOWN = HZ, /* time to breath after fail */
101
102 /*
103 * Rescue workers are used only on emergencies and shared by
104 * all cpus. Give MIN_NICE.
105 */
106 RESCUER_NICE_LEVEL = MIN_NICE,
107 HIGHPRI_NICE_LEVEL = MIN_NICE,
108
109 WQ_NAME_LEN = 24,
110 };
111
112 /*
113 * Structure fields follow one of the following exclusion rules.
114 *
115 * I: Modifiable by initialization/destruction paths and read-only for
116 * everyone else.
117 *
118 * P: Preemption protected. Disabling preemption is enough and should
119 * only be modified and accessed from the local cpu.
120 *
121 * L: pool->lock protected. Access with pool->lock held.
122 *
123 * X: During normal operation, modification requires pool->lock and should
124 * be done only from local cpu. Either disabling preemption on local
125 * cpu or grabbing pool->lock is enough for read access. If
126 * POOL_DISASSOCIATED is set, it's identical to L.
127 *
128 * A: wq_pool_attach_mutex protected.
129 *
130 * PL: wq_pool_mutex protected.
131 *
132 * PR: wq_pool_mutex protected for writes. RCU protected for reads.
133 *
134 * PW: wq_pool_mutex and wq->mutex protected for writes. Either for reads.
135 *
136 * PWR: wq_pool_mutex and wq->mutex protected for writes. Either or
137 * RCU for reads.
138 *
139 * WQ: wq->mutex protected.
140 *
141 * WR: wq->mutex protected for writes. RCU protected for reads.
142 *
143 * MD: wq_mayday_lock protected.
144 */
145
146 /* struct worker is defined in workqueue_internal.h */
147
148 struct worker_pool {
149 raw_spinlock_t lock; /* the pool lock */
150 int cpu; /* I: the associated cpu */
151 int node; /* I: the associated node ID */
152 int id; /* I: pool ID */
153 unsigned int flags; /* X: flags */
154
155 unsigned long watchdog_ts; /* L: watchdog timestamp */
156
157 struct list_head worklist; /* L: list of pending works */
158
159 int nr_workers; /* L: total number of workers */
160 int nr_idle; /* L: currently idle workers */
161
162 struct list_head idle_list; /* X: list of idle workers */
163 struct timer_list idle_timer; /* L: worker idle timeout */
164 struct timer_list mayday_timer; /* L: SOS timer for workers */
165
166 /* a workers is either on busy_hash or idle_list, or the manager */
167 DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
168 /* L: hash of busy workers */
169
170 struct worker *manager; /* L: purely informational */
171 struct list_head workers; /* A: attached workers */
172 struct completion *detach_completion; /* all workers detached */
173
174 struct ida worker_ida; /* worker IDs for task name */
175
176 struct workqueue_attrs *attrs; /* I: worker attributes */
177 struct hlist_node hash_node; /* PL: unbound_pool_hash node */
178 int refcnt; /* PL: refcnt for unbound pools */
179
180 /*
181 * The current concurrency level. As it's likely to be accessed
182 * from other CPUs during try_to_wake_up(), put it in a separate
183 * cacheline.
184 */
185 atomic_t nr_running ____cacheline_aligned_in_smp;
186
187 /*
188 * Destruction of pool is RCU protected to allow dereferences
189 * from get_work_pool().
190 */
191 struct rcu_head rcu;
192 } ____cacheline_aligned_in_smp;
193
194 /*
195 * The per-pool workqueue. While queued, the lower WORK_STRUCT_FLAG_BITS
196 * of work_struct->data are used for flags and the remaining high bits
197 * point to the pwq; thus, pwqs need to be aligned at two's power of the
198 * number of flag bits.
199 */
200 struct pool_workqueue {
201 struct worker_pool *pool; /* I: the associated pool */
202 struct workqueue_struct *wq; /* I: the owning workqueue */
203 int work_color; /* L: current color */
204 int flush_color; /* L: flushing color */
205 int refcnt; /* L: reference count */
206 int nr_in_flight[WORK_NR_COLORS];
207 /* L: nr of in_flight works */
208
209 /*
210 * nr_active management and WORK_STRUCT_INACTIVE:
211 *
212 * When pwq->nr_active >= max_active, new work item is queued to
213 * pwq->inactive_works instead of pool->worklist and marked with
214 * WORK_STRUCT_INACTIVE.
215 *
216 * All work items marked with WORK_STRUCT_INACTIVE do not participate
217 * in pwq->nr_active and all work items in pwq->inactive_works are
218 * marked with WORK_STRUCT_INACTIVE. But not all WORK_STRUCT_INACTIVE
219 * work items are in pwq->inactive_works. Some of them are ready to
220 * run in pool->worklist or worker->scheduled. Those work itmes are
221 * only struct wq_barrier which is used for flush_work() and should
222 * not participate in pwq->nr_active. For non-barrier work item, it
223 * is marked with WORK_STRUCT_INACTIVE iff it is in pwq->inactive_works.
224 */
225 int nr_active; /* L: nr of active works */
226 int max_active; /* L: max active works */
227 struct list_head inactive_works; /* L: inactive works */
228 struct list_head pwqs_node; /* WR: node on wq->pwqs */
229 struct list_head mayday_node; /* MD: node on wq->maydays */
230
231 /*
232 * Release of unbound pwq is punted to system_wq. See put_pwq()
233 * and pwq_unbound_release_workfn() for details. pool_workqueue
234 * itself is also RCU protected so that the first pwq can be
235 * determined without grabbing wq->mutex.
236 */
237 struct work_struct unbound_release_work;
238 struct rcu_head rcu;
239 } __aligned(1 << WORK_STRUCT_FLAG_BITS);
240
241 /*
242 * Structure used to wait for workqueue flush.
243 */
244 struct wq_flusher {
245 struct list_head list; /* WQ: list of flushers */
246 int flush_color; /* WQ: flush color waiting for */
247 struct completion done; /* flush completion */
248 };
249
250 struct wq_device;
251
252 /*
253 * The externally visible workqueue. It relays the issued work items to
254 * the appropriate worker_pool through its pool_workqueues.
255 */
256 struct workqueue_struct {
257 struct list_head pwqs; /* WR: all pwqs of this wq */
258 struct list_head list; /* PR: list of all workqueues */
259
260 struct mutex mutex; /* protects this wq */
261 int work_color; /* WQ: current work color */
262 int flush_color; /* WQ: current flush color */
263 atomic_t nr_pwqs_to_flush; /* flush in progress */
264 struct wq_flusher *first_flusher; /* WQ: first flusher */
265 struct list_head flusher_queue; /* WQ: flush waiters */
266 struct list_head flusher_overflow; /* WQ: flush overflow list */
267
268 struct list_head maydays; /* MD: pwqs requesting rescue */
269 struct worker *rescuer; /* MD: rescue worker */
270
271 int nr_drainers; /* WQ: drain in progress */
272 int saved_max_active; /* WQ: saved pwq max_active */
273
274 struct workqueue_attrs *unbound_attrs; /* PW: only for unbound wqs */
275 struct pool_workqueue *dfl_pwq; /* PW: only for unbound wqs */
276
277 #ifdef CONFIG_SYSFS
278 struct wq_device *wq_dev; /* I: for sysfs interface */
279 #endif
280 #ifdef CONFIG_LOCKDEP
281 char *lock_name;
282 struct lock_class_key key;
283 struct lockdep_map lockdep_map;
284 #endif
285 char name[WQ_NAME_LEN]; /* I: workqueue name */
286
287 /*
288 * Destruction of workqueue_struct is RCU protected to allow walking
289 * the workqueues list without grabbing wq_pool_mutex.
290 * This is used to dump all workqueues from sysrq.
291 */
292 struct rcu_head rcu;
293
294 /* hot fields used during command issue, aligned to cacheline */
295 unsigned int flags ____cacheline_aligned; /* WQ: WQ_* flags */
296 struct pool_workqueue __percpu *cpu_pwqs; /* I: per-cpu pwqs */
297 struct pool_workqueue __rcu *numa_pwq_tbl[]; /* PWR: unbound pwqs indexed by node */
298 };
299
300 static struct kmem_cache *pwq_cache;
301
302 static cpumask_var_t *wq_numa_possible_cpumask;
303 /* possible CPUs of each node */
304
305 static bool wq_disable_numa;
306 module_param_named(disable_numa, wq_disable_numa, bool, 0444);
307
308 /* see the comment above the definition of WQ_POWER_EFFICIENT */
309 static bool wq_power_efficient = IS_ENABLED(CONFIG_WQ_POWER_EFFICIENT_DEFAULT);
310 module_param_named(power_efficient, wq_power_efficient, bool, 0444);
311
312 static bool wq_online; /* can kworkers be created yet? */
313
314 static bool wq_numa_enabled; /* unbound NUMA affinity enabled */
315
316 /* buf for wq_update_unbound_numa_attrs(), protected by CPU hotplug exclusion */
317 static struct workqueue_attrs *wq_update_unbound_numa_attrs_buf;
318
319 static DEFINE_MUTEX(wq_pool_mutex); /* protects pools and workqueues list */
320 static DEFINE_MUTEX(wq_pool_attach_mutex); /* protects worker attach/detach */
321 static DEFINE_RAW_SPINLOCK(wq_mayday_lock); /* protects wq->maydays list */
322 /* wait for manager to go away */
323 static struct rcuwait manager_wait = __RCUWAIT_INITIALIZER(manager_wait);
324
325 static LIST_HEAD(workqueues); /* PR: list of all workqueues */
326 static bool workqueue_freezing; /* PL: have wqs started freezing? */
327
328 /* PL: allowable cpus for unbound wqs and work items */
329 static cpumask_var_t wq_unbound_cpumask;
330
331 /* CPU where unbound work was last round robin scheduled from this CPU */
332 static DEFINE_PER_CPU(int, wq_rr_cpu_last);
333
334 /*
335 * Local execution of unbound work items is no longer guaranteed. The
336 * following always forces round-robin CPU selection on unbound work items
337 * to uncover usages which depend on it.
338 */
339 #ifdef CONFIG_DEBUG_WQ_FORCE_RR_CPU
340 static bool wq_debug_force_rr_cpu = true;
341 #else
342 static bool wq_debug_force_rr_cpu = false;
343 #endif
344 module_param_named(debug_force_rr_cpu, wq_debug_force_rr_cpu, bool, 0644);
345
346 /* the per-cpu worker pools */
347 static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS], cpu_worker_pools);
348
349 static DEFINE_IDR(worker_pool_idr); /* PR: idr of all pools */
350
351 /* PL: hash of all unbound pools keyed by pool->attrs */
352 static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER);
353
354 /* I: attributes used when instantiating standard unbound pools on demand */
355 static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS];
356
357 /* I: attributes used when instantiating ordered pools on demand */
358 static struct workqueue_attrs *ordered_wq_attrs[NR_STD_WORKER_POOLS];
359
360 struct workqueue_struct *system_wq __read_mostly;
361 EXPORT_SYMBOL(system_wq);
362 struct workqueue_struct *system_highpri_wq __read_mostly;
363 EXPORT_SYMBOL_GPL(system_highpri_wq);
364 struct workqueue_struct *system_long_wq __read_mostly;
365 EXPORT_SYMBOL_GPL(system_long_wq);
366 struct workqueue_struct *system_unbound_wq __read_mostly;
367 EXPORT_SYMBOL_GPL(system_unbound_wq);
368 struct workqueue_struct *system_freezable_wq __read_mostly;
369 EXPORT_SYMBOL_GPL(system_freezable_wq);
370 struct workqueue_struct *system_power_efficient_wq __read_mostly;
371 EXPORT_SYMBOL_GPL(system_power_efficient_wq);
372 struct workqueue_struct *system_freezable_power_efficient_wq __read_mostly;
373 EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq);
374
375 static int worker_thread(void *__worker);
376 static void workqueue_sysfs_unregister(struct workqueue_struct *wq);
377 static void show_pwq(struct pool_workqueue *pwq);
378
379 #define CREATE_TRACE_POINTS
380 #include <trace/events/workqueue.h>
381
382 #define assert_rcu_or_pool_mutex() \
383 RCU_LOCKDEP_WARN(!rcu_read_lock_held() && \
384 !lockdep_is_held(&wq_pool_mutex), \
385 "RCU or wq_pool_mutex should be held")
386
387 #define assert_rcu_or_wq_mutex_or_pool_mutex(wq) \
388 RCU_LOCKDEP_WARN(!rcu_read_lock_held() && \
389 !lockdep_is_held(&wq->mutex) && \
390 !lockdep_is_held(&wq_pool_mutex), \
391 "RCU, wq->mutex or wq_pool_mutex should be held")
392
393 #define for_each_cpu_worker_pool(pool, cpu) \
394 for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0]; \
395 (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
396 (pool)++)
397
398 /**
399 * for_each_pool - iterate through all worker_pools in the system
400 * @pool: iteration cursor
401 * @pi: integer used for iteration
402 *
403 * This must be called either with wq_pool_mutex held or RCU read
404 * locked. If the pool needs to be used beyond the locking in effect, the
405 * caller is responsible for guaranteeing that the pool stays online.
406 *
407 * The if/else clause exists only for the lockdep assertion and can be
408 * ignored.
409 */
410 #define for_each_pool(pool, pi) \
411 idr_for_each_entry(&worker_pool_idr, pool, pi) \
412 if (({ assert_rcu_or_pool_mutex(); false; })) { } \
413 else
414
415 /**
416 * for_each_pool_worker - iterate through all workers of a worker_pool
417 * @worker: iteration cursor
418 * @pool: worker_pool to iterate workers of
419 *
420 * This must be called with wq_pool_attach_mutex.
421 *
422 * The if/else clause exists only for the lockdep assertion and can be
423 * ignored.
424 */
425 #define for_each_pool_worker(worker, pool) \
426 list_for_each_entry((worker), &(pool)->workers, node) \
427 if (({ lockdep_assert_held(&wq_pool_attach_mutex); false; })) { } \
428 else
429
430 /**
431 * for_each_pwq - iterate through all pool_workqueues of the specified workqueue
432 * @pwq: iteration cursor
433 * @wq: the target workqueue
434 *
435 * This must be called either with wq->mutex held or RCU read locked.
436 * If the pwq needs to be used beyond the locking in effect, the caller is
437 * responsible for guaranteeing that the pwq stays online.
438 *
439 * The if/else clause exists only for the lockdep assertion and can be
440 * ignored.
441 */
442 #define for_each_pwq(pwq, wq) \
443 list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node, \
444 lockdep_is_held(&(wq->mutex)))
445
446 #ifdef CONFIG_DEBUG_OBJECTS_WORK
447
448 static const struct debug_obj_descr work_debug_descr;
449
450 static void *work_debug_hint(void *addr)
451 {
452 return ((struct work_struct *) addr)->func;
453 }
454
455 static bool work_is_static_object(void *addr)
456 {
457 struct work_struct *work = addr;
458
459 return test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work));
460 }
461
462 /*
463 * fixup_init is called when:
464 * - an active object is initialized
465 */
466 static bool work_fixup_init(void *addr, enum debug_obj_state state)
467 {
468 struct work_struct *work = addr;
469
470 switch (state) {
471 case ODEBUG_STATE_ACTIVE:
472 cancel_work_sync(work);
473 debug_object_init(work, &work_debug_descr);
474 return true;
475 default:
476 return false;
477 }
478 }
479
480 /*
481 * fixup_free is called when:
482 * - an active object is freed
483 */
484 static bool work_fixup_free(void *addr, enum debug_obj_state state)
485 {
486 struct work_struct *work = addr;
487
488 switch (state) {
489 case ODEBUG_STATE_ACTIVE:
490 cancel_work_sync(work);
491 debug_object_free(work, &work_debug_descr);
492 return true;
493 default:
494 return false;
495 }
496 }
497
498 static const struct debug_obj_descr work_debug_descr = {
499 .name = "work_struct",
500 .debug_hint = work_debug_hint,
501 .is_static_object = work_is_static_object,
502 .fixup_init = work_fixup_init,
503 .fixup_free = work_fixup_free,
504 };
505
506 static inline void debug_work_activate(struct work_struct *work)
507 {
508 debug_object_activate(work, &work_debug_descr);
509 }
510
511 static inline void debug_work_deactivate(struct work_struct *work)
512 {
513 debug_object_deactivate(work, &work_debug_descr);
514 }
515
516 void __init_work(struct work_struct *work, int onstack)
517 {
518 if (onstack)
519 debug_object_init_on_stack(work, &work_debug_descr);
520 else
521 debug_object_init(work, &work_debug_descr);
522 }
523 EXPORT_SYMBOL_GPL(__init_work);
524
525 void destroy_work_on_stack(struct work_struct *work)
526 {
527 debug_object_free(work, &work_debug_descr);
528 }
529 EXPORT_SYMBOL_GPL(destroy_work_on_stack);
530
531 void destroy_delayed_work_on_stack(struct delayed_work *work)
532 {
533 destroy_timer_on_stack(&work->timer);
534 debug_object_free(&work->work, &work_debug_descr);
535 }
536 EXPORT_SYMBOL_GPL(destroy_delayed_work_on_stack);
537
538 #else
539 static inline void debug_work_activate(struct work_struct *work) { }
540 static inline void debug_work_deactivate(struct work_struct *work) { }
541 #endif
542
543 /**
544 * worker_pool_assign_id - allocate ID and assign it to @pool
545 * @pool: the pool pointer of interest
546 *
547 * Returns 0 if ID in [0, WORK_OFFQ_POOL_NONE) is allocated and assigned
548 * successfully, -errno on failure.
549 */
550 static int worker_pool_assign_id(struct worker_pool *pool)
551 {
552 int ret;
553
554 lockdep_assert_held(&wq_pool_mutex);
555
556 ret = idr_alloc(&worker_pool_idr, pool, 0, WORK_OFFQ_POOL_NONE,
557 GFP_KERNEL);
558 if (ret >= 0) {
559 pool->id = ret;
560 return 0;
561 }
562 return ret;
563 }
564
565 /**
566 * unbound_pwq_by_node - return the unbound pool_workqueue for the given node
567 * @wq: the target workqueue
568 * @node: the node ID
569 *
570 * This must be called with any of wq_pool_mutex, wq->mutex or RCU
571 * read locked.
572 * If the pwq needs to be used beyond the locking in effect, the caller is
573 * responsible for guaranteeing that the pwq stays online.
574 *
575 * Return: The unbound pool_workqueue for @node.
576 */
577 static struct pool_workqueue *unbound_pwq_by_node(struct workqueue_struct *wq,
578 int node)
579 {
580 assert_rcu_or_wq_mutex_or_pool_mutex(wq);
581
582 /*
583 * XXX: @node can be NUMA_NO_NODE if CPU goes offline while a
584 * delayed item is pending. The plan is to keep CPU -> NODE
585 * mapping valid and stable across CPU on/offlines. Once that
586 * happens, this workaround can be removed.
587 */
588 if (unlikely(node == NUMA_NO_NODE))
589 return wq->dfl_pwq;
590
591 return rcu_dereference_raw(wq->numa_pwq_tbl[node]);
592 }
593
594 static unsigned int work_color_to_flags(int color)
595 {
596 return color << WORK_STRUCT_COLOR_SHIFT;
597 }
598
599 static int get_work_color(unsigned long work_data)
600 {
601 return (work_data >> WORK_STRUCT_COLOR_SHIFT) &
602 ((1 << WORK_STRUCT_COLOR_BITS) - 1);
603 }
604
605 static int work_next_color(int color)
606 {
607 return (color + 1) % WORK_NR_COLORS;
608 }
609
610 /*
611 * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
612 * contain the pointer to the queued pwq. Once execution starts, the flag
613 * is cleared and the high bits contain OFFQ flags and pool ID.
614 *
615 * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling()
616 * and clear_work_data() can be used to set the pwq, pool or clear
617 * work->data. These functions should only be called while the work is
618 * owned - ie. while the PENDING bit is set.
619 *
620 * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
621 * corresponding to a work. Pool is available once the work has been
622 * queued anywhere after initialization until it is sync canceled. pwq is
623 * available only while the work item is queued.
624 *
625 * %WORK_OFFQ_CANCELING is used to mark a work item which is being
626 * canceled. While being canceled, a work item may have its PENDING set
627 * but stay off timer and worklist for arbitrarily long and nobody should
628 * try to steal the PENDING bit.
629 */
630 static inline void set_work_data(struct work_struct *work, unsigned long data,
631 unsigned long flags)
632 {
633 WARN_ON_ONCE(!work_pending(work));
634 atomic_long_set(&work->data, data | flags | work_static(work));
635 }
636
637 static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq,
638 unsigned long extra_flags)
639 {
640 set_work_data(work, (unsigned long)pwq,
641 WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags);
642 }
643
644 static void set_work_pool_and_keep_pending(struct work_struct *work,
645 int pool_id)
646 {
647 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT,
648 WORK_STRUCT_PENDING);
649 }
650
651 static void set_work_pool_and_clear_pending(struct work_struct *work,
652 int pool_id)
653 {
654 /*
655 * The following wmb is paired with the implied mb in
656 * test_and_set_bit(PENDING) and ensures all updates to @work made
657 * here are visible to and precede any updates by the next PENDING
658 * owner.
659 */
660 smp_wmb();
661 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0);
662 /*
663 * The following mb guarantees that previous clear of a PENDING bit
664 * will not be reordered with any speculative LOADS or STORES from
665 * work->current_func, which is executed afterwards. This possible
666 * reordering can lead to a missed execution on attempt to queue
667 * the same @work. E.g. consider this case:
668 *
669 * CPU#0 CPU#1
670 * ---------------------------- --------------------------------
671 *
672 * 1 STORE event_indicated
673 * 2 queue_work_on() {
674 * 3 test_and_set_bit(PENDING)
675 * 4 } set_..._and_clear_pending() {
676 * 5 set_work_data() # clear bit
677 * 6 smp_mb()
678 * 7 work->current_func() {
679 * 8 LOAD event_indicated
680 * }
681 *
682 * Without an explicit full barrier speculative LOAD on line 8 can
683 * be executed before CPU#0 does STORE on line 1. If that happens,
684 * CPU#0 observes the PENDING bit is still set and new execution of
685 * a @work is not queued in a hope, that CPU#1 will eventually
686 * finish the queued @work. Meanwhile CPU#1 does not see
687 * event_indicated is set, because speculative LOAD was executed
688 * before actual STORE.
689 */
690 smp_mb();
691 }
692
693 static void clear_work_data(struct work_struct *work)
694 {
695 smp_wmb(); /* see set_work_pool_and_clear_pending() */
696 set_work_data(work, WORK_STRUCT_NO_POOL, 0);
697 }
698
699 static struct pool_workqueue *get_work_pwq(struct work_struct *work)
700 {
701 unsigned long data = atomic_long_read(&work->data);
702
703 if (data & WORK_STRUCT_PWQ)
704 return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
705 else
706 return NULL;
707 }
708
709 /**
710 * get_work_pool - return the worker_pool a given work was associated with
711 * @work: the work item of interest
712 *
713 * Pools are created and destroyed under wq_pool_mutex, and allows read
714 * access under RCU read lock. As such, this function should be
715 * called under wq_pool_mutex or inside of a rcu_read_lock() region.
716 *
717 * All fields of the returned pool are accessible as long as the above
718 * mentioned locking is in effect. If the returned pool needs to be used
719 * beyond the critical section, the caller is responsible for ensuring the
720 * returned pool is and stays online.
721 *
722 * Return: The worker_pool @work was last associated with. %NULL if none.
723 */
724 static struct worker_pool *get_work_pool(struct work_struct *work)
725 {
726 unsigned long data = atomic_long_read(&work->data);
727 int pool_id;
728
729 assert_rcu_or_pool_mutex();
730
731 if (data & WORK_STRUCT_PWQ)
732 return ((struct pool_workqueue *)
733 (data & WORK_STRUCT_WQ_DATA_MASK))->pool;
734
735 pool_id = data >> WORK_OFFQ_POOL_SHIFT;
736 if (pool_id == WORK_OFFQ_POOL_NONE)
737 return NULL;
738
739 return idr_find(&worker_pool_idr, pool_id);
740 }
741
742 /**
743 * get_work_pool_id - return the worker pool ID a given work is associated with
744 * @work: the work item of interest
745 *
746 * Return: The worker_pool ID @work was last associated with.
747 * %WORK_OFFQ_POOL_NONE if none.
748 */
749 static int get_work_pool_id(struct work_struct *work)
750 {
751 unsigned long data = atomic_long_read(&work->data);
752
753 if (data & WORK_STRUCT_PWQ)
754 return ((struct pool_workqueue *)
755 (data & WORK_STRUCT_WQ_DATA_MASK))->pool->id;
756
757 return data >> WORK_OFFQ_POOL_SHIFT;
758 }
759
760 static void mark_work_canceling(struct work_struct *work)
761 {
762 unsigned long pool_id = get_work_pool_id(work);
763
764 pool_id <<= WORK_OFFQ_POOL_SHIFT;
765 set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING);
766 }
767
768 static bool work_is_canceling(struct work_struct *work)
769 {
770 unsigned long data = atomic_long_read(&work->data);
771
772 return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING);
773 }
774
775 /*
776 * Policy functions. These define the policies on how the global worker
777 * pools are managed. Unless noted otherwise, these functions assume that
778 * they're being called with pool->lock held.
779 */
780
781 static bool __need_more_worker(struct worker_pool *pool)
782 {
783 return !atomic_read(&pool->nr_running);
784 }
785
786 /*
787 * Need to wake up a worker? Called from anything but currently
788 * running workers.
789 *
790 * Note that, because unbound workers never contribute to nr_running, this
791 * function will always return %true for unbound pools as long as the
792 * worklist isn't empty.
793 */
794 static bool need_more_worker(struct worker_pool *pool)
795 {
796 return !list_empty(&pool->worklist) && __need_more_worker(pool);
797 }
798
799 /* Can I start working? Called from busy but !running workers. */
800 static bool may_start_working(struct worker_pool *pool)
801 {
802 return pool->nr_idle;
803 }
804
805 /* Do I need to keep working? Called from currently running workers. */
806 static bool keep_working(struct worker_pool *pool)
807 {
808 return !list_empty(&pool->worklist) &&
809 atomic_read(&pool->nr_running) <= 1;
810 }
811
812 /* Do we need a new worker? Called from manager. */
813 static bool need_to_create_worker(struct worker_pool *pool)
814 {
815 return need_more_worker(pool) && !may_start_working(pool);
816 }
817
818 /* Do we have too many workers and should some go away? */
819 static bool too_many_workers(struct worker_pool *pool)
820 {
821 bool managing = pool->flags & POOL_MANAGER_ACTIVE;
822 int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
823 int nr_busy = pool->nr_workers - nr_idle;
824
825 return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
826 }
827
828 /*
829 * Wake up functions.
830 */
831
832 /* Return the first idle worker. Safe with preemption disabled */
833 static struct worker *first_idle_worker(struct worker_pool *pool)
834 {
835 if (unlikely(list_empty(&pool->idle_list)))
836 return NULL;
837
838 return list_first_entry(&pool->idle_list, struct worker, entry);
839 }
840
841 /**
842 * wake_up_worker - wake up an idle worker
843 * @pool: worker pool to wake worker from
844 *
845 * Wake up the first idle worker of @pool.
846 *
847 * CONTEXT:
848 * raw_spin_lock_irq(pool->lock).
849 */
850 static void wake_up_worker(struct worker_pool *pool)
851 {
852 struct worker *worker = first_idle_worker(pool);
853
854 if (likely(worker))
855 wake_up_process(worker->task);
856 }
857
858 /**
859 * wq_worker_running - a worker is running again
860 * @task: task waking up
861 *
862 * This function is called when a worker returns from schedule()
863 */
864 void wq_worker_running(struct task_struct *task)
865 {
866 struct worker *worker = kthread_data(task);
867
868 if (!worker->sleeping)
869 return;
870 if (!(worker->flags & WORKER_NOT_RUNNING))
871 atomic_inc(&worker->pool->nr_running);
872 worker->sleeping = 0;
873 }
874
875 /**
876 * wq_worker_sleeping - a worker is going to sleep
877 * @task: task going to sleep
878 *
879 * This function is called from schedule() when a busy worker is
880 * going to sleep. Preemption needs to be disabled to protect ->sleeping
881 * assignment.
882 */
883 void wq_worker_sleeping(struct task_struct *task)
884 {
885 struct worker *next, *worker = kthread_data(task);
886 struct worker_pool *pool;
887
888 /*
889 * Rescuers, which may not have all the fields set up like normal
890 * workers, also reach here, let's not access anything before
891 * checking NOT_RUNNING.
892 */
893 if (worker->flags & WORKER_NOT_RUNNING)
894 return;
895
896 pool = worker->pool;
897
898 /* Return if preempted before wq_worker_running() was reached */
899 if (worker->sleeping)
900 return;
901
902 worker->sleeping = 1;
903 raw_spin_lock_irq(&pool->lock);
904
905 /*
906 * The counterpart of the following dec_and_test, implied mb,
907 * worklist not empty test sequence is in insert_work().
908 * Please read comment there.
909 *
910 * NOT_RUNNING is clear. This means that we're bound to and
911 * running on the local cpu w/ rq lock held and preemption
912 * disabled, which in turn means that none else could be
913 * manipulating idle_list, so dereferencing idle_list without pool
914 * lock is safe.
915 */
916 if (atomic_dec_and_test(&pool->nr_running) &&
917 !list_empty(&pool->worklist)) {
918 next = first_idle_worker(pool);
919 if (next)
920 wake_up_process(next->task);
921 }
922 raw_spin_unlock_irq(&pool->lock);
923 }
924
925 /**
926 * wq_worker_last_func - retrieve worker's last work function
927 * @task: Task to retrieve last work function of.
928 *
929 * Determine the last function a worker executed. This is called from
930 * the scheduler to get a worker's last known identity.
931 *
932 * CONTEXT:
933 * raw_spin_lock_irq(rq->lock)
934 *
935 * This function is called during schedule() when a kworker is going
936 * to sleep. It's used by psi to identify aggregation workers during
937 * dequeuing, to allow periodic aggregation to shut-off when that
938 * worker is the last task in the system or cgroup to go to sleep.
939 *
940 * As this function doesn't involve any workqueue-related locking, it
941 * only returns stable values when called from inside the scheduler's
942 * queuing and dequeuing paths, when @task, which must be a kworker,
943 * is guaranteed to not be processing any works.
944 *
945 * Return:
946 * The last work function %current executed as a worker, NULL if it
947 * hasn't executed any work yet.
948 */
949 work_func_t wq_worker_last_func(struct task_struct *task)
950 {
951 struct worker *worker = kthread_data(task);
952
953 return worker->last_func;
954 }
955
956 /**
957 * worker_set_flags - set worker flags and adjust nr_running accordingly
958 * @worker: self
959 * @flags: flags to set
960 *
961 * Set @flags in @worker->flags and adjust nr_running accordingly.
962 *
963 * CONTEXT:
964 * raw_spin_lock_irq(pool->lock)
965 */
966 static inline void worker_set_flags(struct worker *worker, unsigned int flags)
967 {
968 struct worker_pool *pool = worker->pool;
969
970 WARN_ON_ONCE(worker->task != current);
971
972 /* If transitioning into NOT_RUNNING, adjust nr_running. */
973 if ((flags & WORKER_NOT_RUNNING) &&
974 !(worker->flags & WORKER_NOT_RUNNING)) {
975 atomic_dec(&pool->nr_running);
976 }
977
978 worker->flags |= flags;
979 }
980
981 /**
982 * worker_clr_flags - clear worker flags and adjust nr_running accordingly
983 * @worker: self
984 * @flags: flags to clear
985 *
986 * Clear @flags in @worker->flags and adjust nr_running accordingly.
987 *
988 * CONTEXT:
989 * raw_spin_lock_irq(pool->lock)
990 */
991 static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
992 {
993 struct worker_pool *pool = worker->pool;
994 unsigned int oflags = worker->flags;
995
996 WARN_ON_ONCE(worker->task != current);
997
998 worker->flags &= ~flags;
999
1000 /*
1001 * If transitioning out of NOT_RUNNING, increment nr_running. Note
1002 * that the nested NOT_RUNNING is not a noop. NOT_RUNNING is mask
1003 * of multiple flags, not a single flag.
1004 */
1005 if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
1006 if (!(worker->flags & WORKER_NOT_RUNNING))
1007 atomic_inc(&pool->nr_running);
1008 }
1009
1010 /**
1011 * find_worker_executing_work - find worker which is executing a work
1012 * @pool: pool of interest
1013 * @work: work to find worker for
1014 *
1015 * Find a worker which is executing @work on @pool by searching
1016 * @pool->busy_hash which is keyed by the address of @work. For a worker
1017 * to match, its current execution should match the address of @work and
1018 * its work function. This is to avoid unwanted dependency between
1019 * unrelated work executions through a work item being recycled while still
1020 * being executed.
1021 *
1022 * This is a bit tricky. A work item may be freed once its execution
1023 * starts and nothing prevents the freed area from being recycled for
1024 * another work item. If the same work item address ends up being reused
1025 * before the original execution finishes, workqueue will identify the
1026 * recycled work item as currently executing and make it wait until the
1027 * current execution finishes, introducing an unwanted dependency.
1028 *
1029 * This function checks the work item address and work function to avoid
1030 * false positives. Note that this isn't complete as one may construct a
1031 * work function which can introduce dependency onto itself through a
1032 * recycled work item. Well, if somebody wants to shoot oneself in the
1033 * foot that badly, there's only so much we can do, and if such deadlock
1034 * actually occurs, it should be easy to locate the culprit work function.
1035 *
1036 * CONTEXT:
1037 * raw_spin_lock_irq(pool->lock).
1038 *
1039 * Return:
1040 * Pointer to worker which is executing @work if found, %NULL
1041 * otherwise.
1042 */
1043 static struct worker *find_worker_executing_work(struct worker_pool *pool,
1044 struct work_struct *work)
1045 {
1046 struct worker *worker;
1047
1048 hash_for_each_possible(pool->busy_hash, worker, hentry,
1049 (unsigned long)work)
1050 if (worker->current_work == work &&
1051 worker->current_func == work->func)
1052 return worker;
1053
1054 return NULL;
1055 }
1056
1057 /**
1058 * move_linked_works - move linked works to a list
1059 * @work: start of series of works to be scheduled
1060 * @head: target list to append @work to
1061 * @nextp: out parameter for nested worklist walking
1062 *
1063 * Schedule linked works starting from @work to @head. Work series to
1064 * be scheduled starts at @work and includes any consecutive work with
1065 * WORK_STRUCT_LINKED set in its predecessor.
1066 *
1067 * If @nextp is not NULL, it's updated to point to the next work of
1068 * the last scheduled work. This allows move_linked_works() to be
1069 * nested inside outer list_for_each_entry_safe().
1070 *
1071 * CONTEXT:
1072 * raw_spin_lock_irq(pool->lock).
1073 */
1074 static void move_linked_works(struct work_struct *work, struct list_head *head,
1075 struct work_struct **nextp)
1076 {
1077 struct work_struct *n;
1078
1079 /*
1080 * Linked worklist will always end before the end of the list,
1081 * use NULL for list head.
1082 */
1083 list_for_each_entry_safe_from(work, n, NULL, entry) {
1084 list_move_tail(&work->entry, head);
1085 if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
1086 break;
1087 }
1088
1089 /*
1090 * If we're already inside safe list traversal and have moved
1091 * multiple works to the scheduled queue, the next position
1092 * needs to be updated.
1093 */
1094 if (nextp)
1095 *nextp = n;
1096 }
1097
1098 /**
1099 * get_pwq - get an extra reference on the specified pool_workqueue
1100 * @pwq: pool_workqueue to get
1101 *
1102 * Obtain an extra reference on @pwq. The caller should guarantee that
1103 * @pwq has positive refcnt and be holding the matching pool->lock.
1104 */
1105 static void get_pwq(struct pool_workqueue *pwq)
1106 {
1107 lockdep_assert_held(&pwq->pool->lock);
1108 WARN_ON_ONCE(pwq->refcnt <= 0);
1109 pwq->refcnt++;
1110 }
1111
1112 /**
1113 * put_pwq - put a pool_workqueue reference
1114 * @pwq: pool_workqueue to put
1115 *
1116 * Drop a reference of @pwq. If its refcnt reaches zero, schedule its
1117 * destruction. The caller should be holding the matching pool->lock.
1118 */
1119 static void put_pwq(struct pool_workqueue *pwq)
1120 {
1121 lockdep_assert_held(&pwq->pool->lock);
1122 if (likely(--pwq->refcnt))
1123 return;
1124 if (WARN_ON_ONCE(!(pwq->wq->flags & WQ_UNBOUND)))
1125 return;
1126 /*
1127 * @pwq can't be released under pool->lock, bounce to
1128 * pwq_unbound_release_workfn(). This never recurses on the same
1129 * pool->lock as this path is taken only for unbound workqueues and
1130 * the release work item is scheduled on a per-cpu workqueue. To
1131 * avoid lockdep warning, unbound pool->locks are given lockdep
1132 * subclass of 1 in get_unbound_pool().
1133 */
1134 schedule_work(&pwq->unbound_release_work);
1135 }
1136
1137 /**
1138 * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock
1139 * @pwq: pool_workqueue to put (can be %NULL)
1140 *
1141 * put_pwq() with locking. This function also allows %NULL @pwq.
1142 */
1143 static void put_pwq_unlocked(struct pool_workqueue *pwq)
1144 {
1145 if (pwq) {
1146 /*
1147 * As both pwqs and pools are RCU protected, the
1148 * following lock operations are safe.
1149 */
1150 raw_spin_lock_irq(&pwq->pool->lock);
1151 put_pwq(pwq);
1152 raw_spin_unlock_irq(&pwq->pool->lock);
1153 }
1154 }
1155
1156 static void pwq_activate_inactive_work(struct work_struct *work)
1157 {
1158 struct pool_workqueue *pwq = get_work_pwq(work);
1159
1160 trace_workqueue_activate_work(work);
1161 if (list_empty(&pwq->pool->worklist))
1162 pwq->pool->watchdog_ts = jiffies;
1163 move_linked_works(work, &pwq->pool->worklist, NULL);
1164 __clear_bit(WORK_STRUCT_INACTIVE_BIT, work_data_bits(work));
1165 pwq->nr_active++;
1166 }
1167
1168 static void pwq_activate_first_inactive(struct pool_workqueue *pwq)
1169 {
1170 struct work_struct *work = list_first_entry(&pwq->inactive_works,
1171 struct work_struct, entry);
1172
1173 pwq_activate_inactive_work(work);
1174 }
1175
1176 /**
1177 * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
1178 * @pwq: pwq of interest
1179 * @work_data: work_data of work which left the queue
1180 *
1181 * A work either has completed or is removed from pending queue,
1182 * decrement nr_in_flight of its pwq and handle workqueue flushing.
1183 *
1184 * CONTEXT:
1185 * raw_spin_lock_irq(pool->lock).
1186 */
1187 static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, unsigned long work_data)
1188 {
1189 int color = get_work_color(work_data);
1190
1191 if (!(work_data & WORK_STRUCT_INACTIVE)) {
1192 pwq->nr_active--;
1193 if (!list_empty(&pwq->inactive_works)) {
1194 /* one down, submit an inactive one */
1195 if (pwq->nr_active < pwq->max_active)
1196 pwq_activate_first_inactive(pwq);
1197 }
1198 }
1199
1200 pwq->nr_in_flight[color]--;
1201
1202 /* is flush in progress and are we at the flushing tip? */
1203 if (likely(pwq->flush_color != color))
1204 goto out_put;
1205
1206 /* are there still in-flight works? */
1207 if (pwq->nr_in_flight[color])
1208 goto out_put;
1209
1210 /* this pwq is done, clear flush_color */
1211 pwq->flush_color = -1;
1212
1213 /*
1214 * If this was the last pwq, wake up the first flusher. It
1215 * will handle the rest.
1216 */
1217 if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush))
1218 complete(&pwq->wq->first_flusher->done);
1219 out_put:
1220 put_pwq(pwq);
1221 }
1222
1223 /**
1224 * try_to_grab_pending - steal work item from worklist and disable irq
1225 * @work: work item to steal
1226 * @is_dwork: @work is a delayed_work
1227 * @flags: place to store irq state
1228 *
1229 * Try to grab PENDING bit of @work. This function can handle @work in any
1230 * stable state - idle, on timer or on worklist.
1231 *
1232 * Return:
1233 *
1234 * ======== ================================================================
1235 * 1 if @work was pending and we successfully stole PENDING
1236 * 0 if @work was idle and we claimed PENDING
1237 * -EAGAIN if PENDING couldn't be grabbed at the moment, safe to busy-retry
1238 * -ENOENT if someone else is canceling @work, this state may persist
1239 * for arbitrarily long
1240 * ======== ================================================================
1241 *
1242 * Note:
1243 * On >= 0 return, the caller owns @work's PENDING bit. To avoid getting
1244 * interrupted while holding PENDING and @work off queue, irq must be
1245 * disabled on entry. This, combined with delayed_work->timer being
1246 * irqsafe, ensures that we return -EAGAIN for finite short period of time.
1247 *
1248 * On successful return, >= 0, irq is disabled and the caller is
1249 * responsible for releasing it using local_irq_restore(*@flags).
1250 *
1251 * This function is safe to call from any context including IRQ handler.
1252 */
1253 static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
1254 unsigned long *flags)
1255 {
1256 struct worker_pool *pool;
1257 struct pool_workqueue *pwq;
1258
1259 local_irq_save(*flags);
1260
1261 /* try to steal the timer if it exists */
1262 if (is_dwork) {
1263 struct delayed_work *dwork = to_delayed_work(work);
1264
1265 /*
1266 * dwork->timer is irqsafe. If del_timer() fails, it's
1267 * guaranteed that the timer is not queued anywhere and not
1268 * running on the local CPU.
1269 */
1270 if (likely(del_timer(&dwork->timer)))
1271 return 1;
1272 }
1273
1274 /* try to claim PENDING the normal way */
1275 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
1276 return 0;
1277
1278 rcu_read_lock();
1279 /*
1280 * The queueing is in progress, or it is already queued. Try to
1281 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
1282 */
1283 pool = get_work_pool(work);
1284 if (!pool)
1285 goto fail;
1286
1287 raw_spin_lock(&pool->lock);
1288 /*
1289 * work->data is guaranteed to point to pwq only while the work
1290 * item is queued on pwq->wq, and both updating work->data to point
1291 * to pwq on queueing and to pool on dequeueing are done under
1292 * pwq->pool->lock. This in turn guarantees that, if work->data
1293 * points to pwq which is associated with a locked pool, the work
1294 * item is currently queued on that pool.
1295 */
1296 pwq = get_work_pwq(work);
1297 if (pwq && pwq->pool == pool) {
1298 debug_work_deactivate(work);
1299
1300 /*
1301 * A cancelable inactive work item must be in the
1302 * pwq->inactive_works since a queued barrier can't be
1303 * canceled (see the comments in insert_wq_barrier()).
1304 *
1305 * An inactive work item cannot be grabbed directly because
1306 * it might have linked barrier work items which, if left
1307 * on the inactive_works list, will confuse pwq->nr_active
1308 * management later on and cause stall. Make sure the work
1309 * item is activated before grabbing.
1310 */
1311 if (*work_data_bits(work) & WORK_STRUCT_INACTIVE)
1312 pwq_activate_inactive_work(work);
1313
1314 list_del_init(&work->entry);
1315 pwq_dec_nr_in_flight(pwq, *work_data_bits(work));
1316
1317 /* work->data points to pwq iff queued, point to pool */
1318 set_work_pool_and_keep_pending(work, pool->id);
1319
1320 raw_spin_unlock(&pool->lock);
1321 rcu_read_unlock();
1322 return 1;
1323 }
1324 raw_spin_unlock(&pool->lock);
1325 fail:
1326 rcu_read_unlock();
1327 local_irq_restore(*flags);
1328 if (work_is_canceling(work))
1329 return -ENOENT;
1330 cpu_relax();
1331 return -EAGAIN;
1332 }
1333
1334 /**
1335 * insert_work - insert a work into a pool
1336 * @pwq: pwq @work belongs to
1337 * @work: work to insert
1338 * @head: insertion point
1339 * @extra_flags: extra WORK_STRUCT_* flags to set
1340 *
1341 * Insert @work which belongs to @pwq after @head. @extra_flags is or'd to
1342 * work_struct flags.
1343 *
1344 * CONTEXT:
1345 * raw_spin_lock_irq(pool->lock).
1346 */
1347 static void insert_work(struct pool_workqueue *pwq, struct work_struct *work,
1348 struct list_head *head, unsigned int extra_flags)
1349 {
1350 struct worker_pool *pool = pwq->pool;
1351
1352 /* record the work call stack in order to print it in KASAN reports */
1353 kasan_record_aux_stack(work);
1354
1355 /* we own @work, set data and link */
1356 set_work_pwq(work, pwq, extra_flags);
1357 list_add_tail(&work->entry, head);
1358 get_pwq(pwq);
1359
1360 /*
1361 * Ensure either wq_worker_sleeping() sees the above
1362 * list_add_tail() or we see zero nr_running to avoid workers lying
1363 * around lazily while there are works to be processed.
1364 */
1365 smp_mb();
1366
1367 if (__need_more_worker(pool))
1368 wake_up_worker(pool);
1369 }
1370
1371 /*
1372 * Test whether @work is being queued from another work executing on the
1373 * same workqueue.
1374 */
1375 static bool is_chained_work(struct workqueue_struct *wq)
1376 {
1377 struct worker *worker;
1378
1379 worker = current_wq_worker();
1380 /*
1381 * Return %true iff I'm a worker executing a work item on @wq. If
1382 * I'm @worker, it's safe to dereference it without locking.
1383 */
1384 return worker && worker->current_pwq->wq == wq;
1385 }
1386
1387 /*
1388 * When queueing an unbound work item to a wq, prefer local CPU if allowed
1389 * by wq_unbound_cpumask. Otherwise, round robin among the allowed ones to
1390 * avoid perturbing sensitive tasks.
1391 */
1392 static int wq_select_unbound_cpu(int cpu)
1393 {
1394 static bool printed_dbg_warning;
1395 int new_cpu;
1396
1397 if (likely(!wq_debug_force_rr_cpu)) {
1398 if (cpumask_test_cpu(cpu, wq_unbound_cpumask))
1399 return cpu;
1400 } else if (!printed_dbg_warning) {
1401 pr_warn("workqueue: round-robin CPU selection forced, expect performance impact\n");
1402 printed_dbg_warning = true;
1403 }
1404
1405 if (cpumask_empty(wq_unbound_cpumask))
1406 return cpu;
1407
1408 new_cpu = __this_cpu_read(wq_rr_cpu_last);
1409 new_cpu = cpumask_next_and(new_cpu, wq_unbound_cpumask, cpu_online_mask);
1410 if (unlikely(new_cpu >= nr_cpu_ids)) {
1411 new_cpu = cpumask_first_and(wq_unbound_cpumask, cpu_online_mask);
1412 if (unlikely(new_cpu >= nr_cpu_ids))
1413 return cpu;
1414 }
1415 __this_cpu_write(wq_rr_cpu_last, new_cpu);
1416
1417 return new_cpu;
1418 }
1419
1420 static void __queue_work(int cpu, struct workqueue_struct *wq,
1421 struct work_struct *work)
1422 {
1423 struct pool_workqueue *pwq;
1424 struct worker_pool *last_pool;
1425 struct list_head *worklist;
1426 unsigned int work_flags;
1427 unsigned int req_cpu = cpu;
1428
1429 /*
1430 * While a work item is PENDING && off queue, a task trying to
1431 * steal the PENDING will busy-loop waiting for it to either get
1432 * queued or lose PENDING. Grabbing PENDING and queueing should
1433 * happen with IRQ disabled.
1434 */
1435 lockdep_assert_irqs_disabled();
1436
1437
1438 /* if draining, only works from the same workqueue are allowed */
1439 if (unlikely(wq->flags & __WQ_DRAINING) &&
1440 WARN_ON_ONCE(!is_chained_work(wq)))
1441 return;
1442 rcu_read_lock();
1443 retry:
1444 /* pwq which will be used unless @work is executing elsewhere */
1445 if (wq->flags & WQ_UNBOUND) {
1446 if (req_cpu == WORK_CPU_UNBOUND)
1447 cpu = wq_select_unbound_cpu(raw_smp_processor_id());
1448 pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
1449 } else {
1450 if (req_cpu == WORK_CPU_UNBOUND)
1451 cpu = raw_smp_processor_id();
1452 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
1453 }
1454
1455 /*
1456 * If @work was previously on a different pool, it might still be
1457 * running there, in which case the work needs to be queued on that
1458 * pool to guarantee non-reentrancy.
1459 */
1460 last_pool = get_work_pool(work);
1461 if (last_pool && last_pool != pwq->pool) {
1462 struct worker *worker;
1463
1464 raw_spin_lock(&last_pool->lock);
1465
1466 worker = find_worker_executing_work(last_pool, work);
1467
1468 if (worker && worker->current_pwq->wq == wq) {
1469 pwq = worker->current_pwq;
1470 } else {
1471 /* meh... not running there, queue here */
1472 raw_spin_unlock(&last_pool->lock);
1473 raw_spin_lock(&pwq->pool->lock);
1474 }
1475 } else {
1476 raw_spin_lock(&pwq->pool->lock);
1477 }
1478
1479 /*
1480 * pwq is determined and locked. For unbound pools, we could have
1481 * raced with pwq release and it could already be dead. If its
1482 * refcnt is zero, repeat pwq selection. Note that pwqs never die
1483 * without another pwq replacing it in the numa_pwq_tbl or while
1484 * work items are executing on it, so the retrying is guaranteed to
1485 * make forward-progress.
1486 */
1487 if (unlikely(!pwq->refcnt)) {
1488 if (wq->flags & WQ_UNBOUND) {
1489 raw_spin_unlock(&pwq->pool->lock);
1490 cpu_relax();
1491 goto retry;
1492 }
1493 /* oops */
1494 WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt",
1495 wq->name, cpu);
1496 }
1497
1498 /* pwq determined, queue */
1499 trace_workqueue_queue_work(req_cpu, pwq, work);
1500
1501 if (WARN_ON(!list_empty(&work->entry)))
1502 goto out;
1503
1504 pwq->nr_in_flight[pwq->work_color]++;
1505 work_flags = work_color_to_flags(pwq->work_color);
1506
1507 if (likely(pwq->nr_active < pwq->max_active)) {
1508 trace_workqueue_activate_work(work);
1509 pwq->nr_active++;
1510 worklist = &pwq->pool->worklist;
1511 if (list_empty(worklist))
1512 pwq->pool->watchdog_ts = jiffies;
1513 } else {
1514 work_flags |= WORK_STRUCT_INACTIVE;
1515 worklist = &pwq->inactive_works;
1516 }
1517
1518 debug_work_activate(work);
1519 insert_work(pwq, work, worklist, work_flags);
1520
1521 out:
1522 raw_spin_unlock(&pwq->pool->lock);
1523 rcu_read_unlock();
1524 }
1525
1526 /**
1527 * queue_work_on - queue work on specific cpu
1528 * @cpu: CPU number to execute work on
1529 * @wq: workqueue to use
1530 * @work: work to queue
1531 *
1532 * We queue the work to a specific CPU, the caller must ensure it
1533 * can't go away.
1534 *
1535 * Return: %false if @work was already on a queue, %true otherwise.
1536 */
1537 bool queue_work_on(int cpu, struct workqueue_struct *wq,
1538 struct work_struct *work)
1539 {
1540 bool ret = false;
1541 unsigned long flags;
1542
1543 local_irq_save(flags);
1544
1545 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1546 __queue_work(cpu, wq, work);
1547 ret = true;
1548 }
1549
1550 local_irq_restore(flags);
1551 return ret;
1552 }
1553 EXPORT_SYMBOL(queue_work_on);
1554
1555 /**
1556 * workqueue_select_cpu_near - Select a CPU based on NUMA node
1557 * @node: NUMA node ID that we want to select a CPU from
1558 *
1559 * This function will attempt to find a "random" cpu available on a given
1560 * node. If there are no CPUs available on the given node it will return
1561 * WORK_CPU_UNBOUND indicating that we should just schedule to any
1562 * available CPU if we need to schedule this work.
1563 */
1564 static int workqueue_select_cpu_near(int node)
1565 {
1566 int cpu;
1567
1568 /* No point in doing this if NUMA isn't enabled for workqueues */
1569 if (!wq_numa_enabled)
1570 return WORK_CPU_UNBOUND;
1571
1572 /* Delay binding to CPU if node is not valid or online */
1573 if (node < 0 || node >= MAX_NUMNODES || !node_online(node))
1574 return WORK_CPU_UNBOUND;
1575
1576 /* Use local node/cpu if we are already there */
1577 cpu = raw_smp_processor_id();
1578 if (node == cpu_to_node(cpu))
1579 return cpu;
1580
1581 /* Use "random" otherwise know as "first" online CPU of node */
1582 cpu = cpumask_any_and(cpumask_of_node(node), cpu_online_mask);
1583
1584 /* If CPU is valid return that, otherwise just defer */
1585 return cpu < nr_cpu_ids ? cpu : WORK_CPU_UNBOUND;
1586 }
1587
1588 /**
1589 * queue_work_node - queue work on a "random" cpu for a given NUMA node
1590 * @node: NUMA node that we are targeting the work for
1591 * @wq: workqueue to use
1592 * @work: work to queue
1593 *
1594 * We queue the work to a "random" CPU within a given NUMA node. The basic
1595 * idea here is to provide a way to somehow associate work with a given
1596 * NUMA node.
1597 *
1598 * This function will only make a best effort attempt at getting this onto
1599 * the right NUMA node. If no node is requested or the requested node is
1600 * offline then we just fall back to standard queue_work behavior.
1601 *
1602 * Currently the "random" CPU ends up being the first available CPU in the
1603 * intersection of cpu_online_mask and the cpumask of the node, unless we
1604 * are running on the node. In that case we just use the current CPU.
1605 *
1606 * Return: %false if @work was already on a queue, %true otherwise.
1607 */
1608 bool queue_work_node(int node, struct workqueue_struct *wq,
1609 struct work_struct *work)
1610 {
1611 unsigned long flags;
1612 bool ret = false;
1613
1614 /*
1615 * This current implementation is specific to unbound workqueues.
1616 * Specifically we only return the first available CPU for a given
1617 * node instead of cycling through individual CPUs within the node.
1618 *
1619 * If this is used with a per-cpu workqueue then the logic in
1620 * workqueue_select_cpu_near would need to be updated to allow for
1621 * some round robin type logic.
1622 */
1623 WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND));
1624
1625 local_irq_save(flags);
1626
1627 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1628 int cpu = workqueue_select_cpu_near(node);
1629
1630 __queue_work(cpu, wq, work);
1631 ret = true;
1632 }
1633
1634 local_irq_restore(flags);
1635 return ret;
1636 }
1637 EXPORT_SYMBOL_GPL(queue_work_node);
1638
1639 void delayed_work_timer_fn(struct timer_list *t)
1640 {
1641 struct delayed_work *dwork = from_timer(dwork, t, timer);
1642
1643 /* should have been called from irqsafe timer with irq already off */
1644 __queue_work(dwork->cpu, dwork->wq, &dwork->work);
1645 }
1646 EXPORT_SYMBOL(delayed_work_timer_fn);
1647
1648 static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
1649 struct delayed_work *dwork, unsigned long delay)
1650 {
1651 struct timer_list *timer = &dwork->timer;
1652 struct work_struct *work = &dwork->work;
1653
1654 WARN_ON_ONCE(!wq);
1655 WARN_ON_FUNCTION_MISMATCH(timer->function, delayed_work_timer_fn);
1656 WARN_ON_ONCE(timer_pending(timer));
1657 WARN_ON_ONCE(!list_empty(&work->entry));
1658
1659 /*
1660 * If @delay is 0, queue @dwork->work immediately. This is for
1661 * both optimization and correctness. The earliest @timer can
1662 * expire is on the closest next tick and delayed_work users depend
1663 * on that there's no such delay when @delay is 0.
1664 */
1665 if (!delay) {
1666 __queue_work(cpu, wq, &dwork->work);
1667 return;
1668 }
1669
1670 dwork->wq = wq;
1671 dwork->cpu = cpu;
1672 timer->expires = jiffies + delay;
1673
1674 if (unlikely(cpu != WORK_CPU_UNBOUND))
1675 add_timer_on(timer, cpu);
1676 else
1677 add_timer(timer);
1678 }
1679
1680 /**
1681 * queue_delayed_work_on - queue work on specific CPU after delay
1682 * @cpu: CPU number to execute work on
1683 * @wq: workqueue to use
1684 * @dwork: work to queue
1685 * @delay: number of jiffies to wait before queueing
1686 *
1687 * Return: %false if @work was already on a queue, %true otherwise. If
1688 * @delay is zero and @dwork is idle, it will be scheduled for immediate
1689 * execution.
1690 */
1691 bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
1692 struct delayed_work *dwork, unsigned long delay)
1693 {
1694 struct work_struct *work = &dwork->work;
1695 bool ret = false;
1696 unsigned long flags;
1697
1698 /* read the comment in __queue_work() */
1699 local_irq_save(flags);
1700
1701 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1702 __queue_delayed_work(cpu, wq, dwork, delay);
1703 ret = true;
1704 }
1705
1706 local_irq_restore(flags);
1707 return ret;
1708 }
1709 EXPORT_SYMBOL(queue_delayed_work_on);
1710
1711 /**
1712 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
1713 * @cpu: CPU number to execute work on
1714 * @wq: workqueue to use
1715 * @dwork: work to queue
1716 * @delay: number of jiffies to wait before queueing
1717 *
1718 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
1719 * modify @dwork's timer so that it expires after @delay. If @delay is
1720 * zero, @work is guaranteed to be scheduled immediately regardless of its
1721 * current state.
1722 *
1723 * Return: %false if @dwork was idle and queued, %true if @dwork was
1724 * pending and its timer was modified.
1725 *
1726 * This function is safe to call from any context including IRQ handler.
1727 * See try_to_grab_pending() for details.
1728 */
1729 bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
1730 struct delayed_work *dwork, unsigned long delay)
1731 {
1732 unsigned long flags;
1733 int ret;
1734
1735 do {
1736 ret = try_to_grab_pending(&dwork->work, true, &flags);
1737 } while (unlikely(ret == -EAGAIN));
1738
1739 if (likely(ret >= 0)) {
1740 __queue_delayed_work(cpu, wq, dwork, delay);
1741 local_irq_restore(flags);
1742 }
1743
1744 /* -ENOENT from try_to_grab_pending() becomes %true */
1745 return ret;
1746 }
1747 EXPORT_SYMBOL_GPL(mod_delayed_work_on);
1748
1749 static void rcu_work_rcufn(struct rcu_head *rcu)
1750 {
1751 struct rcu_work *rwork = container_of(rcu, struct rcu_work, rcu);
1752
1753 /* read the comment in __queue_work() */
1754 local_irq_disable();
1755 __queue_work(WORK_CPU_UNBOUND, rwork->wq, &rwork->work);
1756 local_irq_enable();
1757 }
1758
1759 /**
1760 * queue_rcu_work - queue work after a RCU grace period
1761 * @wq: workqueue to use
1762 * @rwork: work to queue
1763 *
1764 * Return: %false if @rwork was already pending, %true otherwise. Note
1765 * that a full RCU grace period is guaranteed only after a %true return.
1766 * While @rwork is guaranteed to be executed after a %false return, the
1767 * execution may happen before a full RCU grace period has passed.
1768 */
1769 bool queue_rcu_work(struct workqueue_struct *wq, struct rcu_work *rwork)
1770 {
1771 struct work_struct *work = &rwork->work;
1772
1773 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1774 rwork->wq = wq;
1775 call_rcu(&rwork->rcu, rcu_work_rcufn);
1776 return true;
1777 }
1778
1779 return false;
1780 }
1781 EXPORT_SYMBOL(queue_rcu_work);
1782
1783 /**
1784 * worker_enter_idle - enter idle state
1785 * @worker: worker which is entering idle state
1786 *
1787 * @worker is entering idle state. Update stats and idle timer if
1788 * necessary.
1789 *
1790 * LOCKING:
1791 * raw_spin_lock_irq(pool->lock).
1792 */
1793 static void worker_enter_idle(struct worker *worker)
1794 {
1795 struct worker_pool *pool = worker->pool;
1796
1797 if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) ||
1798 WARN_ON_ONCE(!list_empty(&worker->entry) &&
1799 (worker->hentry.next || worker->hentry.pprev)))
1800 return;
1801
1802 /* can't use worker_set_flags(), also called from create_worker() */
1803 worker->flags |= WORKER_IDLE;
1804 pool->nr_idle++;
1805 worker->last_active = jiffies;
1806
1807 /* idle_list is LIFO */
1808 list_add(&worker->entry, &pool->idle_list);
1809
1810 if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
1811 mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
1812
1813 /*
1814 * Sanity check nr_running. Because unbind_workers() releases
1815 * pool->lock between setting %WORKER_UNBOUND and zapping
1816 * nr_running, the warning may trigger spuriously. Check iff
1817 * unbind is not in progress.
1818 */
1819 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
1820 pool->nr_workers == pool->nr_idle &&
1821 atomic_read(&pool->nr_running));
1822 }
1823
1824 /**
1825 * worker_leave_idle - leave idle state
1826 * @worker: worker which is leaving idle state
1827 *
1828 * @worker is leaving idle state. Update stats.
1829 *
1830 * LOCKING:
1831 * raw_spin_lock_irq(pool->lock).
1832 */
1833 static void worker_leave_idle(struct worker *worker)
1834 {
1835 struct worker_pool *pool = worker->pool;
1836
1837 if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE)))
1838 return;
1839 worker_clr_flags(worker, WORKER_IDLE);
1840 pool->nr_idle--;
1841 list_del_init(&worker->entry);
1842 }
1843
1844 static struct worker *alloc_worker(int node)
1845 {
1846 struct worker *worker;
1847
1848 worker = kzalloc_node(sizeof(*worker), GFP_KERNEL, node);
1849 if (worker) {
1850 INIT_LIST_HEAD(&worker->entry);
1851 INIT_LIST_HEAD(&worker->scheduled);
1852 INIT_LIST_HEAD(&worker->node);
1853 /* on creation a worker is in !idle && prep state */
1854 worker->flags = WORKER_PREP;
1855 }
1856 return worker;
1857 }
1858
1859 /**
1860 * worker_attach_to_pool() - attach a worker to a pool
1861 * @worker: worker to be attached
1862 * @pool: the target pool
1863 *
1864 * Attach @worker to @pool. Once attached, the %WORKER_UNBOUND flag and
1865 * cpu-binding of @worker are kept coordinated with the pool across
1866 * cpu-[un]hotplugs.
1867 */
1868 static void worker_attach_to_pool(struct worker *worker,
1869 struct worker_pool *pool)
1870 {
1871 mutex_lock(&wq_pool_attach_mutex);
1872
1873 /*
1874 * The wq_pool_attach_mutex ensures %POOL_DISASSOCIATED remains
1875 * stable across this function. See the comments above the flag
1876 * definition for details.
1877 */
1878 if (pool->flags & POOL_DISASSOCIATED)
1879 worker->flags |= WORKER_UNBOUND;
1880 else
1881 kthread_set_per_cpu(worker->task, pool->cpu);
1882
1883 if (worker->rescue_wq)
1884 set_cpus_allowed_ptr(worker->task, pool->attrs->cpumask);
1885
1886 list_add_tail(&worker->node, &pool->workers);
1887 worker->pool = pool;
1888
1889 mutex_unlock(&wq_pool_attach_mutex);
1890 }
1891
1892 /**
1893 * worker_detach_from_pool() - detach a worker from its pool
1894 * @worker: worker which is attached to its pool
1895 *
1896 * Undo the attaching which had been done in worker_attach_to_pool(). The
1897 * caller worker shouldn't access to the pool after detached except it has
1898 * other reference to the pool.
1899 */
1900 static void worker_detach_from_pool(struct worker *worker)
1901 {
1902 struct worker_pool *pool = worker->pool;
1903 struct completion *detach_completion = NULL;
1904
1905 mutex_lock(&wq_pool_attach_mutex);
1906
1907 kthread_set_per_cpu(worker->task, -1);
1908 list_del(&worker->node);
1909 worker->pool = NULL;
1910
1911 if (list_empty(&pool->workers))
1912 detach_completion = pool->detach_completion;
1913 mutex_unlock(&wq_pool_attach_mutex);
1914
1915 /* clear leftover flags without pool->lock after it is detached */
1916 worker->flags &= ~(WORKER_UNBOUND | WORKER_REBOUND);
1917
1918 if (detach_completion)
1919 complete(detach_completion);
1920 }
1921
1922 /**
1923 * create_worker - create a new workqueue worker
1924 * @pool: pool the new worker will belong to
1925 *
1926 * Create and start a new worker which is attached to @pool.
1927 *
1928 * CONTEXT:
1929 * Might sleep. Does GFP_KERNEL allocations.
1930 *
1931 * Return:
1932 * Pointer to the newly created worker.
1933 */
1934 static struct worker *create_worker(struct worker_pool *pool)
1935 {
1936 struct worker *worker;
1937 int id;
1938 char id_buf[16];
1939
1940 /* ID is needed to determine kthread name */
1941 id = ida_alloc(&pool->worker_ida, GFP_KERNEL);
1942 if (id < 0)
1943 return NULL;
1944
1945 worker = alloc_worker(pool->node);
1946 if (!worker)
1947 goto fail;
1948
1949 worker->id = id;
1950
1951 if (pool->cpu >= 0)
1952 snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id,
1953 pool->attrs->nice < 0 ? "H" : "");
1954 else
1955 snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id);
1956
1957 worker->task = kthread_create_on_node(worker_thread, worker, pool->node,
1958 "kworker/%s", id_buf);
1959 if (IS_ERR(worker->task))
1960 goto fail;
1961
1962 set_user_nice(worker->task, pool->attrs->nice);
1963 kthread_bind_mask(worker->task, pool->attrs->cpumask);
1964
1965 /* successful, attach the worker to the pool */
1966 worker_attach_to_pool(worker, pool);
1967
1968 /* start the newly created worker */
1969 raw_spin_lock_irq(&pool->lock);
1970 worker->pool->nr_workers++;
1971 worker_enter_idle(worker);
1972 wake_up_process(worker->task);
1973 raw_spin_unlock_irq(&pool->lock);
1974
1975 return worker;
1976
1977 fail:
1978 ida_free(&pool->worker_ida, id);
1979 kfree(worker);
1980 return NULL;
1981 }
1982
1983 /**
1984 * destroy_worker - destroy a workqueue worker
1985 * @worker: worker to be destroyed
1986 *
1987 * Destroy @worker and adjust @pool stats accordingly. The worker should
1988 * be idle.
1989 *
1990 * CONTEXT:
1991 * raw_spin_lock_irq(pool->lock).
1992 */
1993 static void destroy_worker(struct worker *worker)
1994 {
1995 struct worker_pool *pool = worker->pool;
1996
1997 lockdep_assert_held(&pool->lock);
1998
1999 /* sanity check frenzy */
2000 if (WARN_ON(worker->current_work) ||
2001 WARN_ON(!list_empty(&worker->scheduled)) ||
2002 WARN_ON(!(worker->flags & WORKER_IDLE)))
2003 return;
2004
2005 pool->nr_workers--;
2006 pool->nr_idle--;
2007
2008 list_del_init(&worker->entry);
2009 worker->flags |= WORKER_DIE;
2010 wake_up_process(worker->task);
2011 }
2012
2013 static void idle_worker_timeout(struct timer_list *t)
2014 {
2015 struct worker_pool *pool = from_timer(pool, t, idle_timer);
2016
2017 raw_spin_lock_irq(&pool->lock);
2018
2019 while (too_many_workers(pool)) {
2020 struct worker *worker;
2021 unsigned long expires;
2022
2023 /* idle_list is kept in LIFO order, check the last one */
2024 worker = list_entry(pool->idle_list.prev, struct worker, entry);
2025 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
2026
2027 if (time_before(jiffies, expires)) {
2028 mod_timer(&pool->idle_timer, expires);
2029 break;
2030 }
2031
2032 destroy_worker(worker);
2033 }
2034
2035 raw_spin_unlock_irq(&pool->lock);
2036 }
2037
2038 static void send_mayday(struct work_struct *work)
2039 {
2040 struct pool_workqueue *pwq = get_work_pwq(work);
2041 struct workqueue_struct *wq = pwq->wq;
2042
2043 lockdep_assert_held(&wq_mayday_lock);
2044
2045 if (!wq->rescuer)
2046 return;
2047
2048 /* mayday mayday mayday */
2049 if (list_empty(&pwq->mayday_node)) {
2050 /*
2051 * If @pwq is for an unbound wq, its base ref may be put at
2052 * any time due to an attribute change. Pin @pwq until the
2053 * rescuer is done with it.
2054 */
2055 get_pwq(pwq);
2056 list_add_tail(&pwq->mayday_node, &wq->maydays);
2057 wake_up_process(wq->rescuer->task);
2058 }
2059 }
2060
2061 static void pool_mayday_timeout(struct timer_list *t)
2062 {
2063 struct worker_pool *pool = from_timer(pool, t, mayday_timer);
2064 struct work_struct *work;
2065
2066 raw_spin_lock_irq(&pool->lock);
2067 raw_spin_lock(&wq_mayday_lock); /* for wq->maydays */
2068
2069 if (need_to_create_worker(pool)) {
2070 /*
2071 * We've been trying to create a new worker but
2072 * haven't been successful. We might be hitting an
2073 * allocation deadlock. Send distress signals to
2074 * rescuers.
2075 */
2076 list_for_each_entry(work, &pool->worklist, entry)
2077 send_mayday(work);
2078 }
2079
2080 raw_spin_unlock(&wq_mayday_lock);
2081 raw_spin_unlock_irq(&pool->lock);
2082
2083 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
2084 }
2085
2086 /**
2087 * maybe_create_worker - create a new worker if necessary
2088 * @pool: pool to create a new worker for
2089 *
2090 * Create a new worker for @pool if necessary. @pool is guaranteed to
2091 * have at least one idle worker on return from this function. If
2092 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
2093 * sent to all rescuers with works scheduled on @pool to resolve
2094 * possible allocation deadlock.
2095 *
2096 * On return, need_to_create_worker() is guaranteed to be %false and
2097 * may_start_working() %true.
2098 *
2099 * LOCKING:
2100 * raw_spin_lock_irq(pool->lock) which may be released and regrabbed
2101 * multiple times. Does GFP_KERNEL allocations. Called only from
2102 * manager.
2103 */
2104 static void maybe_create_worker(struct worker_pool *pool)
2105 __releases(&pool->lock)
2106 __acquires(&pool->lock)
2107 {
2108 restart:
2109 raw_spin_unlock_irq(&pool->lock);
2110
2111 /* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
2112 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
2113
2114 while (true) {
2115 if (create_worker(pool) || !need_to_create_worker(pool))
2116 break;
2117
2118 schedule_timeout_interruptible(CREATE_COOLDOWN);
2119
2120 if (!need_to_create_worker(pool))
2121 break;
2122 }
2123
2124 del_timer_sync(&pool->mayday_timer);
2125 raw_spin_lock_irq(&pool->lock);
2126 /*
2127 * This is necessary even after a new worker was just successfully
2128 * created as @pool->lock was dropped and the new worker might have
2129 * already become busy.
2130 */
2131 if (need_to_create_worker(pool))
2132 goto restart;
2133 }
2134
2135 /**
2136 * manage_workers - manage worker pool
2137 * @worker: self
2138 *
2139 * Assume the manager role and manage the worker pool @worker belongs
2140 * to. At any given time, there can be only zero or one manager per
2141 * pool. The exclusion is handled automatically by this function.
2142 *
2143 * The caller can safely start processing works on false return. On
2144 * true return, it's guaranteed that need_to_create_worker() is false
2145 * and may_start_working() is true.
2146 *
2147 * CONTEXT:
2148 * raw_spin_lock_irq(pool->lock) which may be released and regrabbed
2149 * multiple times. Does GFP_KERNEL allocations.
2150 *
2151 * Return:
2152 * %false if the pool doesn't need management and the caller can safely
2153 * start processing works, %true if management function was performed and
2154 * the conditions that the caller verified before calling the function may
2155 * no longer be true.
2156 */
2157 static bool manage_workers(struct worker *worker)
2158 {
2159 struct worker_pool *pool = worker->pool;
2160
2161 if (pool->flags & POOL_MANAGER_ACTIVE)
2162 return false;
2163
2164 pool->flags |= POOL_MANAGER_ACTIVE;
2165 pool->manager = worker;
2166
2167 maybe_create_worker(pool);
2168
2169 pool->manager = NULL;
2170 pool->flags &= ~POOL_MANAGER_ACTIVE;
2171 rcuwait_wake_up(&manager_wait);
2172 return true;
2173 }
2174
2175 /**
2176 * process_one_work - process single work
2177 * @worker: self
2178 * @work: work to process
2179 *
2180 * Process @work. This function contains all the logics necessary to
2181 * process a single work including synchronization against and
2182 * interaction with other workers on the same cpu, queueing and
2183 * flushing. As long as context requirement is met, any worker can
2184 * call this function to process a work.
2185 *
2186 * CONTEXT:
2187 * raw_spin_lock_irq(pool->lock) which is released and regrabbed.
2188 */
2189 static void process_one_work(struct worker *worker, struct work_struct *work)
2190 __releases(&pool->lock)
2191 __acquires(&pool->lock)
2192 {
2193 struct pool_workqueue *pwq = get_work_pwq(work);
2194 struct worker_pool *pool = worker->pool;
2195 bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE;
2196 unsigned long work_data;
2197 struct worker *collision;
2198 #ifdef CONFIG_LOCKDEP
2199 /*
2200 * It is permissible to free the struct work_struct from
2201 * inside the function that is called from it, this we need to
2202 * take into account for lockdep too. To avoid bogus "held
2203 * lock freed" warnings as well as problems when looking into
2204 * work->lockdep_map, make a copy and use that here.
2205 */
2206 struct lockdep_map lockdep_map;
2207
2208 lockdep_copy_map(&lockdep_map, &work->lockdep_map);
2209 #endif
2210 /* ensure we're on the correct CPU */
2211 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
2212 raw_smp_processor_id() != pool->cpu);
2213
2214 /*
2215 * A single work shouldn't be executed concurrently by
2216 * multiple workers on a single cpu. Check whether anyone is
2217 * already processing the work. If so, defer the work to the
2218 * currently executing one.
2219 */
2220 collision = find_worker_executing_work(pool, work);
2221 if (unlikely(collision)) {
2222 move_linked_works(work, &collision->scheduled, NULL);
2223 return;
2224 }
2225
2226 /* claim and dequeue */
2227 debug_work_deactivate(work);
2228 hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
2229 worker->current_work = work;
2230 worker->current_func = work->func;
2231 worker->current_pwq = pwq;
2232 work_data = *work_data_bits(work);
2233 worker->current_color = get_work_color(work_data);
2234
2235 /*
2236 * Record wq name for cmdline and debug reporting, may get
2237 * overridden through set_worker_desc().
2238 */
2239 strscpy(worker->desc, pwq->wq->name, WORKER_DESC_LEN);
2240
2241 list_del_init(&work->entry);
2242
2243 /*
2244 * CPU intensive works don't participate in concurrency management.
2245 * They're the scheduler's responsibility. This takes @worker out
2246 * of concurrency management and the next code block will chain
2247 * execution of the pending work items.
2248 */
2249 if (unlikely(cpu_intensive))
2250 worker_set_flags(worker, WORKER_CPU_INTENSIVE);
2251
2252 /*
2253 * Wake up another worker if necessary. The condition is always
2254 * false for normal per-cpu workers since nr_running would always
2255 * be >= 1 at this point. This is used to chain execution of the
2256 * pending work items for WORKER_NOT_RUNNING workers such as the
2257 * UNBOUND and CPU_INTENSIVE ones.
2258 */
2259 if (need_more_worker(pool))
2260 wake_up_worker(pool);
2261
2262 /*
2263 * Record the last pool and clear PENDING which should be the last
2264 * update to @work. Also, do this inside @pool->lock so that
2265 * PENDING and queued state changes happen together while IRQ is
2266 * disabled.
2267 */
2268 set_work_pool_and_clear_pending(work, pool->id);
2269
2270 raw_spin_unlock_irq(&pool->lock);
2271
2272 lock_map_acquire(&pwq->wq->lockdep_map);
2273 lock_map_acquire(&lockdep_map);
2274 /*
2275 * Strictly speaking we should mark the invariant state without holding
2276 * any locks, that is, before these two lock_map_acquire()'s.
2277 *
2278 * However, that would result in:
2279 *
2280 * A(W1)
2281 * WFC(C)
2282 * A(W1)
2283 * C(C)
2284 *
2285 * Which would create W1->C->W1 dependencies, even though there is no
2286 * actual deadlock possible. There are two solutions, using a
2287 * read-recursive acquire on the work(queue) 'locks', but this will then
2288 * hit the lockdep limitation on recursive locks, or simply discard
2289 * these locks.
2290 *
2291 * AFAICT there is no possible deadlock scenario between the
2292 * flush_work() and complete() primitives (except for single-threaded
2293 * workqueues), so hiding them isn't a problem.
2294 */
2295 lockdep_invariant_state(true);
2296 trace_workqueue_execute_start(work);
2297 worker->current_func(work);
2298 /*
2299 * While we must be careful to not use "work" after this, the trace
2300 * point will only record its address.
2301 */
2302 trace_workqueue_execute_end(work, worker->current_func);
2303 lock_map_release(&lockdep_map);
2304 lock_map_release(&pwq->wq->lockdep_map);
2305
2306 if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
2307 pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
2308 " last function: %ps\n",
2309 current->comm, preempt_count(), task_pid_nr(current),
2310 worker->current_func);
2311 debug_show_held_locks(current);
2312 dump_stack();
2313 }
2314
2315 /*
2316 * The following prevents a kworker from hogging CPU on !PREEMPTION
2317 * kernels, where a requeueing work item waiting for something to
2318 * happen could deadlock with stop_machine as such work item could
2319 * indefinitely requeue itself while all other CPUs are trapped in
2320 * stop_machine. At the same time, report a quiescent RCU state so
2321 * the same condition doesn't freeze RCU.
2322 */
2323 cond_resched();
2324
2325 raw_spin_lock_irq(&pool->lock);
2326
2327 /* clear cpu intensive status */
2328 if (unlikely(cpu_intensive))
2329 worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
2330
2331 /* tag the worker for identification in schedule() */
2332 worker->last_func = worker->current_func;
2333
2334 /* we're done with it, release */
2335 hash_del(&worker->hentry);
2336 worker->current_work = NULL;
2337 worker->current_func = NULL;
2338 worker->current_pwq = NULL;
2339 worker->current_color = INT_MAX;
2340 pwq_dec_nr_in_flight(pwq, work_data);
2341 }
2342
2343 /**
2344 * process_scheduled_works - process scheduled works
2345 * @worker: self
2346 *
2347 * Process all scheduled works. Please note that the scheduled list
2348 * may change while processing a work, so this function repeatedly
2349 * fetches a work from the top and executes it.
2350 *
2351 * CONTEXT:
2352 * raw_spin_lock_irq(pool->lock) which may be released and regrabbed
2353 * multiple times.
2354 */
2355 static void process_scheduled_works(struct worker *worker)
2356 {
2357 while (!list_empty(&worker->scheduled)) {
2358 struct work_struct *work = list_first_entry(&worker->scheduled,
2359 struct work_struct, entry);
2360 process_one_work(worker, work);
2361 }
2362 }
2363
2364 static void set_pf_worker(bool val)
2365 {
2366 mutex_lock(&wq_pool_attach_mutex);
2367 if (val)
2368 current->flags |= PF_WQ_WORKER;
2369 else
2370 current->flags &= ~PF_WQ_WORKER;
2371 mutex_unlock(&wq_pool_attach_mutex);
2372 }
2373
2374 /**
2375 * worker_thread - the worker thread function
2376 * @__worker: self
2377 *
2378 * The worker thread function. All workers belong to a worker_pool -
2379 * either a per-cpu one or dynamic unbound one. These workers process all
2380 * work items regardless of their specific target workqueue. The only
2381 * exception is work items which belong to workqueues with a rescuer which
2382 * will be explained in rescuer_thread().
2383 *
2384 * Return: 0
2385 */
2386 static int worker_thread(void *__worker)
2387 {
2388 struct worker *worker = __worker;
2389 struct worker_pool *pool = worker->pool;
2390
2391 /* tell the scheduler that this is a workqueue worker */
2392 set_pf_worker(true);
2393 woke_up:
2394 raw_spin_lock_irq(&pool->lock);
2395
2396 /* am I supposed to die? */
2397 if (unlikely(worker->flags & WORKER_DIE)) {
2398 raw_spin_unlock_irq(&pool->lock);
2399 WARN_ON_ONCE(!list_empty(&worker->entry));
2400 set_pf_worker(false);
2401
2402 set_task_comm(worker->task, "kworker/dying");
2403 ida_free(&pool->worker_ida, worker->id);
2404 worker_detach_from_pool(worker);
2405 kfree(worker);
2406 return 0;
2407 }
2408
2409 worker_leave_idle(worker);
2410 recheck:
2411 /* no more worker necessary? */
2412 if (!need_more_worker(pool))
2413 goto sleep;
2414
2415 /* do we need to manage? */
2416 if (unlikely(!may_start_working(pool)) && manage_workers(worker))
2417 goto recheck;
2418
2419 /*
2420 * ->scheduled list can only be filled while a worker is
2421 * preparing to process a work or actually processing it.
2422 * Make sure nobody diddled with it while I was sleeping.
2423 */
2424 WARN_ON_ONCE(!list_empty(&worker->scheduled));
2425
2426 /*
2427 * Finish PREP stage. We're guaranteed to have at least one idle
2428 * worker or that someone else has already assumed the manager
2429 * role. This is where @worker starts participating in concurrency
2430 * management if applicable and concurrency management is restored
2431 * after being rebound. See rebind_workers() for details.
2432 */
2433 worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND);
2434
2435 do {
2436 struct work_struct *work =
2437 list_first_entry(&pool->worklist,
2438 struct work_struct, entry);
2439
2440 pool->watchdog_ts = jiffies;
2441
2442 if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
2443 /* optimization path, not strictly necessary */
2444 process_one_work(worker, work);
2445 if (unlikely(!list_empty(&worker->scheduled)))
2446 process_scheduled_works(worker);
2447 } else {
2448 move_linked_works(work, &worker->scheduled, NULL);
2449 process_scheduled_works(worker);
2450 }
2451 } while (keep_working(pool));
2452
2453 worker_set_flags(worker, WORKER_PREP);
2454 sleep:
2455 /*
2456 * pool->lock is held and there's no work to process and no need to
2457 * manage, sleep. Workers are woken up only while holding
2458 * pool->lock or from local cpu, so setting the current state
2459 * before releasing pool->lock is enough to prevent losing any
2460 * event.
2461 */
2462 worker_enter_idle(worker);
2463 __set_current_state(TASK_IDLE);
2464 raw_spin_unlock_irq(&pool->lock);
2465 schedule();
2466 goto woke_up;
2467 }
2468
2469 /**
2470 * rescuer_thread - the rescuer thread function
2471 * @__rescuer: self
2472 *
2473 * Workqueue rescuer thread function. There's one rescuer for each
2474 * workqueue which has WQ_MEM_RECLAIM set.
2475 *
2476 * Regular work processing on a pool may block trying to create a new
2477 * worker which uses GFP_KERNEL allocation which has slight chance of
2478 * developing into deadlock if some works currently on the same queue
2479 * need to be processed to satisfy the GFP_KERNEL allocation. This is
2480 * the problem rescuer solves.
2481 *
2482 * When such condition is possible, the pool summons rescuers of all
2483 * workqueues which have works queued on the pool and let them process
2484 * those works so that forward progress can be guaranteed.
2485 *
2486 * This should happen rarely.
2487 *
2488 * Return: 0
2489 */
2490 static int rescuer_thread(void *__rescuer)
2491 {
2492 struct worker *rescuer = __rescuer;
2493 struct workqueue_struct *wq = rescuer->rescue_wq;
2494 struct list_head *scheduled = &rescuer->scheduled;
2495 bool should_stop;
2496
2497 set_user_nice(current, RESCUER_NICE_LEVEL);
2498
2499 /*
2500 * Mark rescuer as worker too. As WORKER_PREP is never cleared, it
2501 * doesn't participate in concurrency management.
2502 */
2503 set_pf_worker(true);
2504 repeat:
2505 set_current_state(TASK_IDLE);
2506
2507 /*
2508 * By the time the rescuer is requested to stop, the workqueue
2509 * shouldn't have any work pending, but @wq->maydays may still have
2510 * pwq(s) queued. This can happen by non-rescuer workers consuming
2511 * all the work items before the rescuer got to them. Go through
2512 * @wq->maydays processing before acting on should_stop so that the
2513 * list is always empty on exit.
2514 */
2515 should_stop = kthread_should_stop();
2516
2517 /* see whether any pwq is asking for help */
2518 raw_spin_lock_irq(&wq_mayday_lock);
2519
2520 while (!list_empty(&wq->maydays)) {
2521 struct pool_workqueue *pwq = list_first_entry(&wq->maydays,
2522 struct pool_workqueue, mayday_node);
2523 struct worker_pool *pool = pwq->pool;
2524 struct work_struct *work, *n;
2525 bool first = true;
2526
2527 __set_current_state(TASK_RUNNING);
2528 list_del_init(&pwq->mayday_node);
2529
2530 raw_spin_unlock_irq(&wq_mayday_lock);
2531
2532 worker_attach_to_pool(rescuer, pool);
2533
2534 raw_spin_lock_irq(&pool->lock);
2535
2536 /*
2537 * Slurp in all works issued via this workqueue and
2538 * process'em.
2539 */
2540 WARN_ON_ONCE(!list_empty(scheduled));
2541 list_for_each_entry_safe(work, n, &pool->worklist, entry) {
2542 if (get_work_pwq(work) == pwq) {
2543 if (first)
2544 pool->watchdog_ts = jiffies;
2545 move_linked_works(work, scheduled, &n);
2546 }
2547 first = false;
2548 }
2549
2550 if (!list_empty(scheduled)) {
2551 process_scheduled_works(rescuer);
2552
2553 /*
2554 * The above execution of rescued work items could
2555 * have created more to rescue through
2556 * pwq_activate_first_inactive() or chained
2557 * queueing. Let's put @pwq back on mayday list so
2558 * that such back-to-back work items, which may be
2559 * being used to relieve memory pressure, don't
2560 * incur MAYDAY_INTERVAL delay inbetween.
2561 */
2562 if (pwq->nr_active && need_to_create_worker(pool)) {
2563 raw_spin_lock(&wq_mayday_lock);
2564 /*
2565 * Queue iff we aren't racing destruction
2566 * and somebody else hasn't queued it already.
2567 */
2568 if (wq->rescuer && list_empty(&pwq->mayday_node)) {
2569 get_pwq(pwq);
2570 list_add_tail(&pwq->mayday_node, &wq->maydays);
2571 }
2572 raw_spin_unlock(&wq_mayday_lock);
2573 }
2574 }
2575
2576 /*
2577 * Put the reference grabbed by send_mayday(). @pool won't
2578 * go away while we're still attached to it.
2579 */
2580 put_pwq(pwq);
2581
2582 /*
2583 * Leave this pool. If need_more_worker() is %true, notify a
2584 * regular worker; otherwise, we end up with 0 concurrency
2585 * and stalling the execution.
2586 */
2587 if (need_more_worker(pool))
2588 wake_up_worker(pool);
2589
2590 raw_spin_unlock_irq(&pool->lock);
2591
2592 worker_detach_from_pool(rescuer);
2593
2594 raw_spin_lock_irq(&wq_mayday_lock);
2595 }
2596
2597 raw_spin_unlock_irq(&wq_mayday_lock);
2598
2599 if (should_stop) {
2600 __set_current_state(TASK_RUNNING);
2601 set_pf_worker(false);
2602 return 0;
2603 }
2604
2605 /* rescuers should never participate in concurrency management */
2606 WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
2607 schedule();
2608 goto repeat;
2609 }
2610
2611 /**
2612 * check_flush_dependency - check for flush dependency sanity
2613 * @target_wq: workqueue being flushed
2614 * @target_work: work item being flushed (NULL for workqueue flushes)
2615 *
2616 * %current is trying to flush the whole @target_wq or @target_work on it.
2617 * If @target_wq doesn't have %WQ_MEM_RECLAIM, verify that %current is not
2618 * reclaiming memory or running on a workqueue which doesn't have
2619 * %WQ_MEM_RECLAIM as that can break forward-progress guarantee leading to
2620 * a deadlock.
2621 */
2622 static void check_flush_dependency(struct workqueue_struct *target_wq,
2623 struct work_struct *target_work)
2624 {
2625 work_func_t target_func = target_work ? target_work->func : NULL;
2626 struct worker *worker;
2627
2628 if (target_wq->flags & WQ_MEM_RECLAIM)
2629 return;
2630
2631 worker = current_wq_worker();
2632
2633 WARN_ONCE(current->flags & PF_MEMALLOC,
2634 "workqueue: PF_MEMALLOC task %d(%s) is flushing !WQ_MEM_RECLAIM %s:%ps",
2635 current->pid, current->comm, target_wq->name, target_func);
2636 WARN_ONCE(worker && ((worker->current_pwq->wq->flags &
2637 (WQ_MEM_RECLAIM | __WQ_LEGACY)) == WQ_MEM_RECLAIM),
2638 "workqueue: WQ_MEM_RECLAIM %s:%ps is flushing !WQ_MEM_RECLAIM %s:%ps",
2639 worker->current_pwq->wq->name, worker->current_func,
2640 target_wq->name, target_func);
2641 }
2642
2643 struct wq_barrier {
2644 struct work_struct work;
2645 struct completion done;
2646 struct task_struct *task; /* purely informational */
2647 };
2648
2649 static void wq_barrier_func(struct work_struct *work)
2650 {
2651 struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
2652 complete(&barr->done);
2653 }
2654
2655 /**
2656 * insert_wq_barrier - insert a barrier work
2657 * @pwq: pwq to insert barrier into
2658 * @barr: wq_barrier to insert
2659 * @target: target work to attach @barr to
2660 * @worker: worker currently executing @target, NULL if @target is not executing
2661 *
2662 * @barr is linked to @target such that @barr is completed only after
2663 * @target finishes execution. Please note that the ordering
2664 * guarantee is observed only with respect to @target and on the local
2665 * cpu.
2666 *
2667 * Currently, a queued barrier can't be canceled. This is because
2668 * try_to_grab_pending() can't determine whether the work to be
2669 * grabbed is at the head of the queue and thus can't clear LINKED
2670 * flag of the previous work while there must be a valid next work
2671 * after a work with LINKED flag set.
2672 *
2673 * Note that when @worker is non-NULL, @target may be modified
2674 * underneath us, so we can't reliably determine pwq from @target.
2675 *
2676 * CONTEXT:
2677 * raw_spin_lock_irq(pool->lock).
2678 */
2679 static void insert_wq_barrier(struct pool_workqueue *pwq,
2680 struct wq_barrier *barr,
2681 struct work_struct *target, struct worker *worker)
2682 {
2683 unsigned int work_flags = 0;
2684 unsigned int work_color;
2685 struct list_head *head;
2686
2687 /*
2688 * debugobject calls are safe here even with pool->lock locked
2689 * as we know for sure that this will not trigger any of the
2690 * checks and call back into the fixup functions where we
2691 * might deadlock.
2692 */
2693 INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
2694 __set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
2695
2696 init_completion_map(&barr->done, &target->lockdep_map);
2697
2698 barr->task = current;
2699
2700 /* The barrier work item does not participate in pwq->nr_active. */
2701 work_flags |= WORK_STRUCT_INACTIVE;
2702
2703 /*
2704 * If @target is currently being executed, schedule the
2705 * barrier to the worker; otherwise, put it after @target.
2706 */
2707 if (worker) {
2708 head = worker->scheduled.next;
2709 work_color = worker->current_color;
2710 } else {
2711 unsigned long *bits = work_data_bits(target);
2712
2713 head = target->entry.next;
2714 /* there can already be other linked works, inherit and set */
2715 work_flags |= *bits & WORK_STRUCT_LINKED;
2716 work_color = get_work_color(*bits);
2717 __set_bit(WORK_STRUCT_LINKED_BIT, bits);
2718 }
2719
2720 pwq->nr_in_flight[work_color]++;
2721 work_flags |= work_color_to_flags(work_color);
2722
2723 debug_work_activate(&barr->work);
2724 insert_work(pwq, &barr->work, head, work_flags);
2725 }
2726
2727 /**
2728 * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing
2729 * @wq: workqueue being flushed
2730 * @flush_color: new flush color, < 0 for no-op
2731 * @work_color: new work color, < 0 for no-op
2732 *
2733 * Prepare pwqs for workqueue flushing.
2734 *
2735 * If @flush_color is non-negative, flush_color on all pwqs should be
2736 * -1. If no pwq has in-flight commands at the specified color, all
2737 * pwq->flush_color's stay at -1 and %false is returned. If any pwq
2738 * has in flight commands, its pwq->flush_color is set to
2739 * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq
2740 * wakeup logic is armed and %true is returned.
2741 *
2742 * The caller should have initialized @wq->first_flusher prior to
2743 * calling this function with non-negative @flush_color. If
2744 * @flush_color is negative, no flush color update is done and %false
2745 * is returned.
2746 *
2747 * If @work_color is non-negative, all pwqs should have the same
2748 * work_color which is previous to @work_color and all will be
2749 * advanced to @work_color.
2750 *
2751 * CONTEXT:
2752 * mutex_lock(wq->mutex).
2753 *
2754 * Return:
2755 * %true if @flush_color >= 0 and there's something to flush. %false
2756 * otherwise.
2757 */
2758 static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq,
2759 int flush_color, int work_color)
2760 {
2761 bool wait = false;
2762 struct pool_workqueue *pwq;
2763
2764 if (flush_color >= 0) {
2765 WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush));
2766 atomic_set(&wq->nr_pwqs_to_flush, 1);
2767 }
2768
2769 for_each_pwq(pwq, wq) {
2770 struct worker_pool *pool = pwq->pool;
2771
2772 raw_spin_lock_irq(&pool->lock);
2773
2774 if (flush_color >= 0) {
2775 WARN_ON_ONCE(pwq->flush_color != -1);
2776
2777 if (pwq->nr_in_flight[flush_color]) {
2778 pwq->flush_color = flush_color;
2779 atomic_inc(&wq->nr_pwqs_to_flush);
2780 wait = true;
2781 }
2782 }
2783
2784 if (work_color >= 0) {
2785 WARN_ON_ONCE(work_color != work_next_color(pwq->work_color));
2786 pwq->work_color = work_color;
2787 }
2788
2789 raw_spin_unlock_irq(&pool->lock);
2790 }
2791
2792 if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush))
2793 complete(&wq->first_flusher->done);
2794
2795 return wait;
2796 }
2797
2798 /**
2799 * flush_workqueue - ensure that any scheduled work has run to completion.
2800 * @wq: workqueue to flush
2801 *
2802 * This function sleeps until all work items which were queued on entry
2803 * have finished execution, but it is not livelocked by new incoming ones.
2804 */
2805 void flush_workqueue(struct workqueue_struct *wq)
2806 {
2807 struct wq_flusher this_flusher = {
2808 .list = LIST_HEAD_INIT(this_flusher.list),
2809 .flush_color = -1,
2810 .done = COMPLETION_INITIALIZER_ONSTACK_MAP(this_flusher.done, wq->lockdep_map),
2811 };
2812 int next_color;
2813
2814 if (WARN_ON(!wq_online))
2815 return;
2816
2817 lock_map_acquire(&wq->lockdep_map);
2818 lock_map_release(&wq->lockdep_map);
2819
2820 mutex_lock(&wq->mutex);
2821
2822 /*
2823 * Start-to-wait phase
2824 */
2825 next_color = work_next_color(wq->work_color);
2826
2827 if (next_color != wq->flush_color) {
2828 /*
2829 * Color space is not full. The current work_color
2830 * becomes our flush_color and work_color is advanced
2831 * by one.
2832 */
2833 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow));
2834 this_flusher.flush_color = wq->work_color;
2835 wq->work_color = next_color;
2836
2837 if (!wq->first_flusher) {
2838 /* no flush in progress, become the first flusher */
2839 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2840
2841 wq->first_flusher = &this_flusher;
2842
2843 if (!flush_workqueue_prep_pwqs(wq, wq->flush_color,
2844 wq->work_color)) {
2845 /* nothing to flush, done */
2846 wq->flush_color = next_color;
2847 wq->first_flusher = NULL;
2848 goto out_unlock;
2849 }
2850 } else {
2851 /* wait in queue */
2852 WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color);
2853 list_add_tail(&this_flusher.list, &wq->flusher_queue);
2854 flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2855 }
2856 } else {
2857 /*
2858 * Oops, color space is full, wait on overflow queue.
2859 * The next flush completion will assign us
2860 * flush_color and transfer to flusher_queue.
2861 */
2862 list_add_tail(&this_flusher.list, &wq->flusher_overflow);
2863 }
2864
2865 check_flush_dependency(wq, NULL);
2866
2867 mutex_unlock(&wq->mutex);
2868
2869 wait_for_completion(&this_flusher.done);
2870
2871 /*
2872 * Wake-up-and-cascade phase
2873 *
2874 * First flushers are responsible for cascading flushes and
2875 * handling overflow. Non-first flushers can simply return.
2876 */
2877 if (READ_ONCE(wq->first_flusher) != &this_flusher)
2878 return;
2879
2880 mutex_lock(&wq->mutex);
2881
2882 /* we might have raced, check again with mutex held */
2883 if (wq->first_flusher != &this_flusher)
2884 goto out_unlock;
2885
2886 WRITE_ONCE(wq->first_flusher, NULL);
2887
2888 WARN_ON_ONCE(!list_empty(&this_flusher.list));
2889 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2890
2891 while (true) {
2892 struct wq_flusher *next, *tmp;
2893
2894 /* complete all the flushers sharing the current flush color */
2895 list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
2896 if (next->flush_color != wq->flush_color)
2897 break;
2898 list_del_init(&next->list);
2899 complete(&next->done);
2900 }
2901
2902 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) &&
2903 wq->flush_color != work_next_color(wq->work_color));
2904
2905 /* this flush_color is finished, advance by one */
2906 wq->flush_color = work_next_color(wq->flush_color);
2907
2908 /* one color has been freed, handle overflow queue */
2909 if (!list_empty(&wq->flusher_overflow)) {
2910 /*
2911 * Assign the same color to all overflowed
2912 * flushers, advance work_color and append to
2913 * flusher_queue. This is the start-to-wait
2914 * phase for these overflowed flushers.
2915 */
2916 list_for_each_entry(tmp, &wq->flusher_overflow, list)
2917 tmp->flush_color = wq->work_color;
2918
2919 wq->work_color = work_next_color(wq->work_color);
2920
2921 list_splice_tail_init(&wq->flusher_overflow,
2922 &wq->flusher_queue);
2923 flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2924 }
2925
2926 if (list_empty(&wq->flusher_queue)) {
2927 WARN_ON_ONCE(wq->flush_color != wq->work_color);
2928 break;
2929 }
2930
2931 /*
2932 * Need to flush more colors. Make the next flusher
2933 * the new first flusher and arm pwqs.
2934 */
2935 WARN_ON_ONCE(wq->flush_color == wq->work_color);
2936 WARN_ON_ONCE(wq->flush_color != next->flush_color);
2937
2938 list_del_init(&next->list);
2939 wq->first_flusher = next;
2940
2941 if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1))
2942 break;
2943
2944 /*
2945 * Meh... this color is already done, clear first
2946 * flusher and repeat cascading.
2947 */
2948 wq->first_flusher = NULL;
2949 }
2950
2951 out_unlock:
2952 mutex_unlock(&wq->mutex);
2953 }
2954 EXPORT_SYMBOL(flush_workqueue);
2955
2956 /**
2957 * drain_workqueue - drain a workqueue
2958 * @wq: workqueue to drain
2959 *
2960 * Wait until the workqueue becomes empty. While draining is in progress,
2961 * only chain queueing is allowed. IOW, only currently pending or running
2962 * work items on @wq can queue further work items on it. @wq is flushed
2963 * repeatedly until it becomes empty. The number of flushing is determined
2964 * by the depth of chaining and should be relatively short. Whine if it
2965 * takes too long.
2966 */
2967 void drain_workqueue(struct workqueue_struct *wq)
2968 {
2969 unsigned int flush_cnt = 0;
2970 struct pool_workqueue *pwq;
2971
2972 /*
2973 * __queue_work() needs to test whether there are drainers, is much
2974 * hotter than drain_workqueue() and already looks at @wq->flags.
2975 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers.
2976 */
2977 mutex_lock(&wq->mutex);
2978 if (!wq->nr_drainers++)
2979 wq->flags |= __WQ_DRAINING;
2980 mutex_unlock(&wq->mutex);
2981 reflush:
2982 flush_workqueue(wq);
2983
2984 mutex_lock(&wq->mutex);
2985
2986 for_each_pwq(pwq, wq) {
2987 bool drained;
2988
2989 raw_spin_lock_irq(&pwq->pool->lock);
2990 drained = !pwq->nr_active && list_empty(&pwq->inactive_works);
2991 raw_spin_unlock_irq(&pwq->pool->lock);
2992
2993 if (drained)
2994 continue;
2995
2996 if (++flush_cnt == 10 ||
2997 (flush_cnt % 100 == 0 && flush_cnt <= 1000))
2998 pr_warn("workqueue %s: %s() isn't complete after %u tries\n",
2999 wq->name, __func__, flush_cnt);
3000
3001 mutex_unlock(&wq->mutex);
3002 goto reflush;
3003 }
3004
3005 if (!--wq->nr_drainers)
3006 wq->flags &= ~__WQ_DRAINING;
3007 mutex_unlock(&wq->mutex);
3008 }
3009 EXPORT_SYMBOL_GPL(drain_workqueue);
3010
3011 static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr,
3012 bool from_cancel)
3013 {
3014 struct worker *worker = NULL;
3015 struct worker_pool *pool;
3016 struct pool_workqueue *pwq;
3017
3018 might_sleep();
3019
3020 rcu_read_lock();
3021 pool = get_work_pool(work);
3022 if (!pool) {
3023 rcu_read_unlock();
3024 return false;
3025 }
3026
3027 raw_spin_lock_irq(&pool->lock);
3028 /* see the comment in try_to_grab_pending() with the same code */
3029 pwq = get_work_pwq(work);
3030 if (pwq) {
3031 if (unlikely(pwq->pool != pool))
3032 goto already_gone;
3033 } else {
3034 worker = find_worker_executing_work(pool, work);
3035 if (!worker)
3036 goto already_gone;
3037 pwq = worker->current_pwq;
3038 }
3039
3040 check_flush_dependency(pwq->wq, work);
3041
3042 insert_wq_barrier(pwq, barr, work, worker);
3043 raw_spin_unlock_irq(&pool->lock);
3044
3045 /*
3046 * Force a lock recursion deadlock when using flush_work() inside a
3047 * single-threaded or rescuer equipped workqueue.
3048 *
3049 * For single threaded workqueues the deadlock happens when the work
3050 * is after the work issuing the flush_work(). For rescuer equipped
3051 * workqueues the deadlock happens when the rescuer stalls, blocking
3052 * forward progress.
3053 */
3054 if (!from_cancel &&
3055 (pwq->wq->saved_max_active == 1 || pwq->wq->rescuer)) {
3056 lock_map_acquire(&pwq->wq->lockdep_map);
3057 lock_map_release(&pwq->wq->lockdep_map);
3058 }
3059 rcu_read_unlock();
3060 return true;
3061 already_gone:
3062 raw_spin_unlock_irq(&pool->lock);
3063 rcu_read_unlock();
3064 return false;
3065 }
3066
3067 static bool __flush_work(struct work_struct *work, bool from_cancel)
3068 {
3069 struct wq_barrier barr;
3070
3071 if (WARN_ON(!wq_online))
3072 return false;
3073
3074 if (WARN_ON(!work->func))
3075 return false;
3076
3077 if (!from_cancel) {
3078 lock_map_acquire(&work->lockdep_map);
3079 lock_map_release(&work->lockdep_map);
3080 }
3081
3082 if (start_flush_work(work, &barr, from_cancel)) {
3083 wait_for_completion(&barr.done);
3084 destroy_work_on_stack(&barr.work);
3085 return true;
3086 } else {
3087 return false;
3088 }
3089 }
3090
3091 /**
3092 * flush_work - wait for a work to finish executing the last queueing instance
3093 * @work: the work to flush
3094 *
3095 * Wait until @work has finished execution. @work is guaranteed to be idle
3096 * on return if it hasn't been requeued since flush started.
3097 *
3098 * Return:
3099 * %true if flush_work() waited for the work to finish execution,
3100 * %false if it was already idle.
3101 */
3102 bool flush_work(struct work_struct *work)
3103 {
3104 return __flush_work(work, false);
3105 }
3106 EXPORT_SYMBOL_GPL(flush_work);
3107
3108 struct cwt_wait {
3109 wait_queue_entry_t wait;
3110 struct work_struct *work;
3111 };
3112
3113 static int cwt_wakefn(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
3114 {
3115 struct cwt_wait *cwait = container_of(wait, struct cwt_wait, wait);
3116
3117 if (cwait->work != key)
3118 return 0;
3119 return autoremove_wake_function(wait, mode, sync, key);
3120 }
3121
3122 static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
3123 {
3124 static DECLARE_WAIT_QUEUE_HEAD(cancel_waitq);
3125 unsigned long flags;
3126 int ret;
3127
3128 do {
3129 ret = try_to_grab_pending(work, is_dwork, &flags);
3130 /*
3131 * If someone else is already canceling, wait for it to
3132 * finish. flush_work() doesn't work for PREEMPT_NONE
3133 * because we may get scheduled between @work's completion
3134 * and the other canceling task resuming and clearing
3135 * CANCELING - flush_work() will return false immediately
3136 * as @work is no longer busy, try_to_grab_pending() will
3137 * return -ENOENT as @work is still being canceled and the
3138 * other canceling task won't be able to clear CANCELING as
3139 * we're hogging the CPU.
3140 *
3141 * Let's wait for completion using a waitqueue. As this
3142 * may lead to the thundering herd problem, use a custom
3143 * wake function which matches @work along with exclusive
3144 * wait and wakeup.
3145 */
3146 if (unlikely(ret == -ENOENT)) {
3147 struct cwt_wait cwait;
3148
3149 init_wait(&cwait.wait);
3150 cwait.wait.func = cwt_wakefn;
3151 cwait.work = work;
3152
3153 prepare_to_wait_exclusive(&cancel_waitq, &cwait.wait,
3154 TASK_UNINTERRUPTIBLE);
3155 if (work_is_canceling(work))
3156 schedule();
3157 finish_wait(&cancel_waitq, &cwait.wait);
3158 }
3159 } while (unlikely(ret < 0));
3160
3161 /* tell other tasks trying to grab @work to back off */
3162 mark_work_canceling(work);
3163 local_irq_restore(flags);
3164
3165 /*
3166 * This allows canceling during early boot. We know that @work
3167 * isn't executing.
3168 */
3169 if (wq_online)
3170 __flush_work(work, true);
3171
3172 clear_work_data(work);
3173
3174 /*
3175 * Paired with prepare_to_wait() above so that either
3176 * waitqueue_active() is visible here or !work_is_canceling() is
3177 * visible there.
3178 */
3179 smp_mb();
3180 if (waitqueue_active(&cancel_waitq))
3181 __wake_up(&cancel_waitq, TASK_NORMAL, 1, work);
3182
3183 return ret;
3184 }
3185
3186 /**
3187 * cancel_work_sync - cancel a work and wait for it to finish
3188 * @work: the work to cancel
3189 *
3190 * Cancel @work and wait for its execution to finish. This function
3191 * can be used even if the work re-queues itself or migrates to
3192 * another workqueue. On return from this function, @work is
3193 * guaranteed to be not pending or executing on any CPU.
3194 *
3195 * cancel_work_sync(&delayed_work->work) must not be used for
3196 * delayed_work's. Use cancel_delayed_work_sync() instead.
3197 *
3198 * The caller must ensure that the workqueue on which @work was last
3199 * queued can't be destroyed before this function returns.
3200 *
3201 * Return:
3202 * %true if @work was pending, %false otherwise.
3203 */
3204 bool cancel_work_sync(struct work_struct *work)
3205 {
3206 return __cancel_work_timer(work, false);
3207 }
3208 EXPORT_SYMBOL_GPL(cancel_work_sync);
3209
3210 /**
3211 * flush_delayed_work - wait for a dwork to finish executing the last queueing
3212 * @dwork: the delayed work to flush
3213 *
3214 * Delayed timer is cancelled and the pending work is queued for
3215 * immediate execution. Like flush_work(), this function only
3216 * considers the last queueing instance of @dwork.
3217 *
3218 * Return:
3219 * %true if flush_work() waited for the work to finish execution,
3220 * %false if it was already idle.
3221 */
3222 bool flush_delayed_work(struct delayed_work *dwork)
3223 {
3224 local_irq_disable();
3225 if (del_timer_sync(&dwork->timer))
3226 __queue_work(dwork->cpu, dwork->wq, &dwork->work);
3227 local_irq_enable();
3228 return flush_work(&dwork->work);
3229 }
3230 EXPORT_SYMBOL(flush_delayed_work);
3231
3232 /**
3233 * flush_rcu_work - wait for a rwork to finish executing the last queueing
3234 * @rwork: the rcu work to flush
3235 *
3236 * Return:
3237 * %true if flush_rcu_work() waited for the work to finish execution,
3238 * %false if it was already idle.
3239 */
3240 bool flush_rcu_work(struct rcu_work *rwork)
3241 {
3242 if (test_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&rwork->work))) {
3243 rcu_barrier();
3244 flush_work(&rwork->work);
3245 return true;
3246 } else {
3247 return flush_work(&rwork->work);
3248 }
3249 }
3250 EXPORT_SYMBOL(flush_rcu_work);
3251
3252 static bool __cancel_work(struct work_struct *work, bool is_dwork)
3253 {
3254 unsigned long flags;
3255 int ret;
3256
3257 do {
3258 ret = try_to_grab_pending(work, is_dwork, &flags);
3259 } while (unlikely(ret == -EAGAIN));
3260
3261 if (unlikely(ret < 0))
3262 return false;
3263
3264 set_work_pool_and_clear_pending(work, get_work_pool_id(work));
3265 local_irq_restore(flags);
3266 return ret;
3267 }
3268
3269 /**
3270 * cancel_delayed_work - cancel a delayed work
3271 * @dwork: delayed_work to cancel
3272 *
3273 * Kill off a pending delayed_work.
3274 *
3275 * Return: %true if @dwork was pending and canceled; %false if it wasn't
3276 * pending.
3277 *
3278 * Note:
3279 * The work callback function may still be running on return, unless
3280 * it returns %true and the work doesn't re-arm itself. Explicitly flush or
3281 * use cancel_delayed_work_sync() to wait on it.
3282 *
3283 * This function is safe to call from any context including IRQ handler.
3284 */
3285 bool cancel_delayed_work(struct delayed_work *dwork)
3286 {
3287 return __cancel_work(&dwork->work, true);
3288 }
3289 EXPORT_SYMBOL(cancel_delayed_work);
3290
3291 /**
3292 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
3293 * @dwork: the delayed work cancel
3294 *
3295 * This is cancel_work_sync() for delayed works.
3296 *
3297 * Return:
3298 * %true if @dwork was pending, %false otherwise.
3299 */
3300 bool cancel_delayed_work_sync(struct delayed_work *dwork)
3301 {
3302 return __cancel_work_timer(&dwork->work, true);
3303 }
3304 EXPORT_SYMBOL(cancel_delayed_work_sync);
3305
3306 /**
3307 * schedule_on_each_cpu - execute a function synchronously on each online CPU
3308 * @func: the function to call
3309 *
3310 * schedule_on_each_cpu() executes @func on each online CPU using the
3311 * system workqueue and blocks until all CPUs have completed.
3312 * schedule_on_each_cpu() is very slow.
3313 *
3314 * Return:
3315 * 0 on success, -errno on failure.
3316 */
3317 int schedule_on_each_cpu(work_func_t func)
3318 {
3319 int cpu;
3320 struct work_struct __percpu *works;
3321
3322 works = alloc_percpu(struct work_struct);
3323 if (!works)
3324 return -ENOMEM;
3325
3326 cpus_read_lock();
3327
3328 for_each_online_cpu(cpu) {
3329 struct work_struct *work = per_cpu_ptr(works, cpu);
3330
3331 INIT_WORK(work, func);
3332 schedule_work_on(cpu, work);
3333 }
3334
3335 for_each_online_cpu(cpu)
3336 flush_work(per_cpu_ptr(works, cpu));
3337
3338 cpus_read_unlock();
3339 free_percpu(works);
3340 return 0;
3341 }
3342
3343 /**
3344 * execute_in_process_context - reliably execute the routine with user context
3345 * @fn: the function to execute
3346 * @ew: guaranteed storage for the execute work structure (must
3347 * be available when the work executes)
3348 *
3349 * Executes the function immediately if process context is available,
3350 * otherwise schedules the function for delayed execution.
3351 *
3352 * Return: 0 - function was executed
3353 * 1 - function was scheduled for execution
3354 */
3355 int execute_in_process_context(work_func_t fn, struct execute_work *ew)
3356 {
3357 if (!in_interrupt()) {
3358 fn(&ew->work);
3359 return 0;
3360 }
3361
3362 INIT_WORK(&ew->work, fn);
3363 schedule_work(&ew->work);
3364
3365 return 1;
3366 }
3367 EXPORT_SYMBOL_GPL(execute_in_process_context);
3368
3369 /**
3370 * free_workqueue_attrs - free a workqueue_attrs
3371 * @attrs: workqueue_attrs to free
3372 *
3373 * Undo alloc_workqueue_attrs().
3374 */
3375 void free_workqueue_attrs(struct workqueue_attrs *attrs)
3376 {
3377 if (attrs) {
3378 free_cpumask_var(attrs->cpumask);
3379 kfree(attrs);
3380 }
3381 }
3382
3383 /**
3384 * alloc_workqueue_attrs - allocate a workqueue_attrs
3385 *
3386 * Allocate a new workqueue_attrs, initialize with default settings and
3387 * return it.
3388 *
3389 * Return: The allocated new workqueue_attr on success. %NULL on failure.
3390 */
3391 struct workqueue_attrs *alloc_workqueue_attrs(void)
3392 {
3393 struct workqueue_attrs *attrs;
3394
3395 attrs = kzalloc(sizeof(*attrs), GFP_KERNEL);
3396 if (!attrs)
3397 goto fail;
3398 if (!alloc_cpumask_var(&attrs->cpumask, GFP_KERNEL))
3399 goto fail;
3400
3401 cpumask_copy(attrs->cpumask, cpu_possible_mask);
3402 return attrs;
3403 fail:
3404 free_workqueue_attrs(attrs);
3405 return NULL;
3406 }
3407
3408 static void copy_workqueue_attrs(struct workqueue_attrs *to,
3409 const struct workqueue_attrs *from)
3410 {
3411 to->nice = from->nice;
3412 cpumask_copy(to->cpumask, from->cpumask);
3413 /*
3414 * Unlike hash and equality test, this function doesn't ignore
3415 * ->no_numa as it is used for both pool and wq attrs. Instead,
3416 * get_unbound_pool() explicitly clears ->no_numa after copying.
3417 */
3418 to->no_numa = from->no_numa;
3419 }
3420
3421 /* hash value of the content of @attr */
3422 static u32 wqattrs_hash(const struct workqueue_attrs *attrs)
3423 {
3424 u32 hash = 0;
3425
3426 hash = jhash_1word(attrs->nice, hash);
3427 hash = jhash(cpumask_bits(attrs->cpumask),
3428 BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash);
3429 return hash;
3430 }
3431
3432 /* content equality test */
3433 static bool wqattrs_equal(const struct workqueue_attrs *a,
3434 const struct workqueue_attrs *b)
3435 {
3436 if (a->nice != b->nice)
3437 return false;
3438 if (!cpumask_equal(a->cpumask, b->cpumask))
3439 return false;
3440 return true;
3441 }
3442
3443 /**
3444 * init_worker_pool - initialize a newly zalloc'd worker_pool
3445 * @pool: worker_pool to initialize
3446 *
3447 * Initialize a newly zalloc'd @pool. It also allocates @pool->attrs.
3448 *
3449 * Return: 0 on success, -errno on failure. Even on failure, all fields
3450 * inside @pool proper are initialized and put_unbound_pool() can be called
3451 * on @pool safely to release it.
3452 */
3453 static int init_worker_pool(struct worker_pool *pool)
3454 {
3455 raw_spin_lock_init(&pool->lock);
3456 pool->id = -1;
3457 pool->cpu = -1;
3458 pool->node = NUMA_NO_NODE;
3459 pool->flags |= POOL_DISASSOCIATED;
3460 pool->watchdog_ts = jiffies;
3461 INIT_LIST_HEAD(&pool->worklist);
3462 INIT_LIST_HEAD(&pool->idle_list);
3463 hash_init(pool->busy_hash);
3464
3465 timer_setup(&pool->idle_timer, idle_worker_timeout, TIMER_DEFERRABLE);
3466
3467 timer_setup(&pool->mayday_timer, pool_mayday_timeout, 0);
3468
3469 INIT_LIST_HEAD(&pool->workers);
3470
3471 ida_init(&pool->worker_ida);
3472 INIT_HLIST_NODE(&pool->hash_node);
3473 pool->refcnt = 1;
3474
3475 /* shouldn't fail above this point */
3476 pool->attrs = alloc_workqueue_attrs();
3477 if (!pool->attrs)
3478 return -ENOMEM;
3479 return 0;
3480 }
3481
3482 #ifdef CONFIG_LOCKDEP
3483 static void wq_init_lockdep(struct workqueue_struct *wq)
3484 {
3485 char *lock_name;
3486
3487 lockdep_register_key(&wq->key);
3488 lock_name = kasprintf(GFP_KERNEL, "%s%s", "(wq_completion)", wq->name);
3489 if (!lock_name)
3490 lock_name = wq->name;
3491
3492 wq->lock_name = lock_name;
3493 lockdep_init_map(&wq->lockdep_map, lock_name, &wq->key, 0);
3494 }
3495
3496 static void wq_unregister_lockdep(struct workqueue_struct *wq)
3497 {
3498 lockdep_unregister_key(&wq->key);
3499 }
3500
3501 static void wq_free_lockdep(struct workqueue_struct *wq)
3502 {
3503 if (wq->lock_name != wq->name)
3504 kfree(wq->lock_name);
3505 }
3506 #else
3507 static void wq_init_lockdep(struct workqueue_struct *wq)
3508 {
3509 }
3510
3511 static void wq_unregister_lockdep(struct workqueue_struct *wq)
3512 {
3513 }
3514
3515 static void wq_free_lockdep(struct workqueue_struct *wq)
3516 {
3517 }
3518 #endif
3519
3520 static void rcu_free_wq(struct rcu_head *rcu)
3521 {
3522 struct workqueue_struct *wq =
3523 container_of(rcu, struct workqueue_struct, rcu);
3524
3525 wq_free_lockdep(wq);
3526
3527 if (!(wq->flags & WQ_UNBOUND))
3528 free_percpu(wq->cpu_pwqs);
3529 else
3530 free_workqueue_attrs(wq->unbound_attrs);
3531
3532 kfree(wq);
3533 }
3534
3535 static void rcu_free_pool(struct rcu_head *rcu)
3536 {
3537 struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu);
3538
3539 ida_destroy(&pool->worker_ida);
3540 free_workqueue_attrs(pool->attrs);
3541 kfree(pool);
3542 }
3543
3544 /* This returns with the lock held on success (pool manager is inactive). */
3545 static bool wq_manager_inactive(struct worker_pool *pool)
3546 {
3547 raw_spin_lock_irq(&pool->lock);
3548
3549 if (pool->flags & POOL_MANAGER_ACTIVE) {
3550 raw_spin_unlock_irq(&pool->lock);
3551 return false;
3552 }
3553 return true;
3554 }
3555
3556 /**
3557 * put_unbound_pool - put a worker_pool
3558 * @pool: worker_pool to put
3559 *
3560 * Put @pool. If its refcnt reaches zero, it gets destroyed in RCU
3561 * safe manner. get_unbound_pool() calls this function on its failure path
3562 * and this function should be able to release pools which went through,
3563 * successfully or not, init_worker_pool().
3564 *
3565 * Should be called with wq_pool_mutex held.
3566 */
3567 static void put_unbound_pool(struct worker_pool *pool)
3568 {
3569 DECLARE_COMPLETION_ONSTACK(detach_completion);
3570 struct worker *worker;
3571
3572 lockdep_assert_held(&wq_pool_mutex);
3573
3574 if (--pool->refcnt)
3575 return;
3576
3577 /* sanity checks */
3578 if (WARN_ON(!(pool->cpu < 0)) ||
3579 WARN_ON(!list_empty(&pool->worklist)))
3580 return;
3581
3582 /* release id and unhash */
3583 if (pool->id >= 0)
3584 idr_remove(&worker_pool_idr, pool->id);
3585 hash_del(&pool->hash_node);
3586
3587 /*
3588 * Become the manager and destroy all workers. This prevents
3589 * @pool's workers from blocking on attach_mutex. We're the last
3590 * manager and @pool gets freed with the flag set.
3591 * Because of how wq_manager_inactive() works, we will hold the
3592 * spinlock after a successful wait.
3593 */
3594 rcuwait_wait_event(&manager_wait, wq_manager_inactive(pool),
3595 TASK_UNINTERRUPTIBLE);
3596 pool->flags |= POOL_MANAGER_ACTIVE;
3597
3598 while ((worker = first_idle_worker(pool)))
3599 destroy_worker(worker);
3600 WARN_ON(pool->nr_workers || pool->nr_idle);
3601 raw_spin_unlock_irq(&pool->lock);
3602
3603 mutex_lock(&wq_pool_attach_mutex);
3604 if (!list_empty(&pool->workers))
3605 pool->detach_completion = &detach_completion;
3606 mutex_unlock(&wq_pool_attach_mutex);
3607
3608 if (pool->detach_completion)
3609 wait_for_completion(pool->detach_completion);
3610
3611 /* shut down the timers */
3612 del_timer_sync(&pool->idle_timer);
3613 del_timer_sync(&pool->mayday_timer);
3614
3615 /* RCU protected to allow dereferences from get_work_pool() */
3616 call_rcu(&pool->rcu, rcu_free_pool);
3617 }
3618
3619 /**
3620 * get_unbound_pool - get a worker_pool with the specified attributes
3621 * @attrs: the attributes of the worker_pool to get
3622 *
3623 * Obtain a worker_pool which has the same attributes as @attrs, bump the
3624 * reference count and return it. If there already is a matching
3625 * worker_pool, it will be used; otherwise, this function attempts to
3626 * create a new one.
3627 *
3628 * Should be called with wq_pool_mutex held.
3629 *
3630 * Return: On success, a worker_pool with the same attributes as @attrs.
3631 * On failure, %NULL.
3632 */
3633 static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs)
3634 {
3635 u32 hash = wqattrs_hash(attrs);
3636 struct worker_pool *pool;
3637 int node;
3638 int target_node = NUMA_NO_NODE;
3639
3640 lockdep_assert_held(&wq_pool_mutex);
3641
3642 /* do we already have a matching pool? */
3643 hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) {
3644 if (wqattrs_equal(pool->attrs, attrs)) {
3645 pool->refcnt++;
3646 return pool;
3647 }
3648 }
3649
3650 /* if cpumask is contained inside a NUMA node, we belong to that node */
3651 if (wq_numa_enabled) {
3652 for_each_node(node) {
3653 if (cpumask_subset(attrs->cpumask,
3654 wq_numa_possible_cpumask[node])) {
3655 target_node = node;
3656 break;
3657 }
3658 }
3659 }
3660
3661 /* nope, create a new one */
3662 pool = kzalloc_node(sizeof(*pool), GFP_KERNEL, target_node);
3663 if (!pool || init_worker_pool(pool) < 0)
3664 goto fail;
3665
3666 lockdep_set_subclass(&pool->lock, 1); /* see put_pwq() */
3667 copy_workqueue_attrs(pool->attrs, attrs);
3668 pool->node = target_node;
3669
3670 /*
3671 * no_numa isn't a worker_pool attribute, always clear it. See
3672 * 'struct workqueue_attrs' comments for detail.
3673 */
3674 pool->attrs->no_numa = false;
3675
3676 if (worker_pool_assign_id(pool) < 0)
3677 goto fail;
3678
3679 /* create and start the initial worker */
3680 if (wq_online && !create_worker(pool))
3681 goto fail;
3682
3683 /* install */
3684 hash_add(unbound_pool_hash, &pool->hash_node, hash);
3685
3686 return pool;
3687 fail:
3688 if (pool)
3689 put_unbound_pool(pool);
3690 return NULL;
3691 }
3692
3693 static void rcu_free_pwq(struct rcu_head *rcu)
3694 {
3695 kmem_cache_free(pwq_cache,
3696 container_of(rcu, struct pool_workqueue, rcu));
3697 }
3698
3699 /*
3700 * Scheduled on system_wq by put_pwq() when an unbound pwq hits zero refcnt
3701 * and needs to be destroyed.
3702 */
3703 static void pwq_unbound_release_workfn(struct work_struct *work)
3704 {
3705 struct pool_workqueue *pwq = container_of(work, struct pool_workqueue,
3706 unbound_release_work);
3707 struct workqueue_struct *wq = pwq->wq;
3708 struct worker_pool *pool = pwq->pool;
3709 bool is_last = false;
3710
3711 /*
3712 * when @pwq is not linked, it doesn't hold any reference to the
3713 * @wq, and @wq is invalid to access.
3714 */
3715 if (!list_empty(&pwq->pwqs_node)) {
3716 if (WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND)))
3717 return;
3718
3719 mutex_lock(&wq->mutex);
3720 list_del_rcu(&pwq->pwqs_node);
3721 is_last = list_empty(&wq->pwqs);
3722 mutex_unlock(&wq->mutex);
3723 }
3724
3725 mutex_lock(&wq_pool_mutex);
3726 put_unbound_pool(pool);
3727 mutex_unlock(&wq_pool_mutex);
3728
3729 call_rcu(&pwq->rcu, rcu_free_pwq);
3730
3731 /*
3732 * If we're the last pwq going away, @wq is already dead and no one
3733 * is gonna access it anymore. Schedule RCU free.
3734 */
3735 if (is_last) {
3736 wq_unregister_lockdep(wq);
3737 call_rcu(&wq->rcu, rcu_free_wq);
3738 }
3739 }
3740
3741 /**
3742 * pwq_adjust_max_active - update a pwq's max_active to the current setting
3743 * @pwq: target pool_workqueue
3744 *
3745 * If @pwq isn't freezing, set @pwq->max_active to the associated
3746 * workqueue's saved_max_active and activate inactive work items
3747 * accordingly. If @pwq is freezing, clear @pwq->max_active to zero.
3748 */
3749 static void pwq_adjust_max_active(struct pool_workqueue *pwq)
3750 {
3751 struct workqueue_struct *wq = pwq->wq;
3752 bool freezable = wq->flags & WQ_FREEZABLE;
3753 unsigned long flags;
3754
3755 /* for @wq->saved_max_active */
3756 lockdep_assert_held(&wq->mutex);
3757
3758 /* fast exit for non-freezable wqs */
3759 if (!freezable && pwq->max_active == wq->saved_max_active)
3760 return;
3761
3762 /* this function can be called during early boot w/ irq disabled */
3763 raw_spin_lock_irqsave(&pwq->pool->lock, flags);
3764
3765 /*
3766 * During [un]freezing, the caller is responsible for ensuring that
3767 * this function is called at least once after @workqueue_freezing
3768 * is updated and visible.
3769 */
3770 if (!freezable || !workqueue_freezing) {
3771 bool kick = false;
3772
3773 pwq->max_active = wq->saved_max_active;
3774
3775 while (!list_empty(&pwq->inactive_works) &&
3776 pwq->nr_active < pwq->max_active) {
3777 pwq_activate_first_inactive(pwq);
3778 kick = true;
3779 }
3780
3781 /*
3782 * Need to kick a worker after thawed or an unbound wq's
3783 * max_active is bumped. In realtime scenarios, always kicking a
3784 * worker will cause interference on the isolated cpu cores, so
3785 * let's kick iff work items were activated.
3786 */
3787 if (kick)
3788 wake_up_worker(pwq->pool);
3789 } else {
3790 pwq->max_active = 0;
3791 }
3792
3793 raw_spin_unlock_irqrestore(&pwq->pool->lock, flags);
3794 }
3795
3796 /* initialize newly allocated @pwq which is associated with @wq and @pool */
3797 static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq,
3798 struct worker_pool *pool)
3799 {
3800 BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK);
3801
3802 memset(pwq, 0, sizeof(*pwq));
3803
3804 pwq->pool = pool;
3805 pwq->wq = wq;
3806 pwq->flush_color = -1;
3807 pwq->refcnt = 1;
3808 INIT_LIST_HEAD(&pwq->inactive_works);
3809 INIT_LIST_HEAD(&pwq->pwqs_node);
3810 INIT_LIST_HEAD(&pwq->mayday_node);
3811 INIT_WORK(&pwq->unbound_release_work, pwq_unbound_release_workfn);
3812 }
3813
3814 /* sync @pwq with the current state of its associated wq and link it */
3815 static void link_pwq(struct pool_workqueue *pwq)
3816 {
3817 struct workqueue_struct *wq = pwq->wq;
3818
3819 lockdep_assert_held(&wq->mutex);
3820
3821 /* may be called multiple times, ignore if already linked */
3822 if (!list_empty(&pwq->pwqs_node))
3823 return;
3824
3825 /* set the matching work_color */
3826 pwq->work_color = wq->work_color;
3827
3828 /* sync max_active to the current setting */
3829 pwq_adjust_max_active(pwq);
3830
3831 /* link in @pwq */
3832 list_add_rcu(&pwq->pwqs_node, &wq->pwqs);
3833 }
3834
3835 /* obtain a pool matching @attr and create a pwq associating the pool and @wq */
3836 static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq,
3837 const struct workqueue_attrs *attrs)
3838 {
3839 struct worker_pool *pool;
3840 struct pool_workqueue *pwq;
3841
3842 lockdep_assert_held(&wq_pool_mutex);
3843
3844 pool = get_unbound_pool(attrs);
3845 if (!pool)
3846 return NULL;
3847
3848 pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node);
3849 if (!pwq) {
3850 put_unbound_pool(pool);
3851 return NULL;
3852 }
3853
3854 init_pwq(pwq, wq, pool);
3855 return pwq;
3856 }
3857
3858 /**
3859 * wq_calc_node_cpumask - calculate a wq_attrs' cpumask for the specified node
3860 * @attrs: the wq_attrs of the default pwq of the target workqueue
3861 * @node: the target NUMA node
3862 * @cpu_going_down: if >= 0, the CPU to consider as offline
3863 * @cpumask: outarg, the resulting cpumask
3864 *
3865 * Calculate the cpumask a workqueue with @attrs should use on @node. If
3866 * @cpu_going_down is >= 0, that cpu is considered offline during
3867 * calculation. The result is stored in @cpumask.
3868 *
3869 * If NUMA affinity is not enabled, @attrs->cpumask is always used. If
3870 * enabled and @node has online CPUs requested by @attrs, the returned
3871 * cpumask is the intersection of the possible CPUs of @node and
3872 * @attrs->cpumask.
3873 *
3874 * The caller is responsible for ensuring that the cpumask of @node stays
3875 * stable.
3876 *
3877 * Return: %true if the resulting @cpumask is different from @attrs->cpumask,
3878 * %false if equal.
3879 */
3880 static bool wq_calc_node_cpumask(const struct workqueue_attrs *attrs, int node,
3881 int cpu_going_down, cpumask_t *cpumask)
3882 {
3883 if (!wq_numa_enabled || attrs->no_numa)
3884 goto use_dfl;
3885
3886 /* does @node have any online CPUs @attrs wants? */
3887 cpumask_and(cpumask, cpumask_of_node(node), attrs->cpumask);
3888 if (cpu_going_down >= 0)
3889 cpumask_clear_cpu(cpu_going_down, cpumask);
3890
3891 if (cpumask_empty(cpumask))
3892 goto use_dfl;
3893
3894 /* yeap, return possible CPUs in @node that @attrs wants */
3895 cpumask_and(cpumask, attrs->cpumask, wq_numa_possible_cpumask[node]);
3896
3897 if (cpumask_empty(cpumask)) {
3898 pr_warn_once("WARNING: workqueue cpumask: online intersect > "
3899 "possible intersect\n");
3900 return false;
3901 }
3902
3903 return !cpumask_equal(cpumask, attrs->cpumask);
3904
3905 use_dfl:
3906 cpumask_copy(cpumask, attrs->cpumask);
3907 return false;
3908 }
3909
3910 /* install @pwq into @wq's numa_pwq_tbl[] for @node and return the old pwq */
3911 static struct pool_workqueue *numa_pwq_tbl_install(struct workqueue_struct *wq,
3912 int node,
3913 struct pool_workqueue *pwq)
3914 {
3915 struct pool_workqueue *old_pwq;
3916
3917 lockdep_assert_held(&wq_pool_mutex);
3918 lockdep_assert_held(&wq->mutex);
3919
3920 /* link_pwq() can handle duplicate calls */
3921 link_pwq(pwq);
3922
3923 old_pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
3924 rcu_assign_pointer(wq->numa_pwq_tbl[node], pwq);
3925 return old_pwq;
3926 }
3927
3928 /* context to store the prepared attrs & pwqs before applying */
3929 struct apply_wqattrs_ctx {
3930 struct workqueue_struct *wq; /* target workqueue */
3931 struct workqueue_attrs *attrs; /* attrs to apply */
3932 struct list_head list; /* queued for batching commit */
3933 struct pool_workqueue *dfl_pwq;
3934 struct pool_workqueue *pwq_tbl[];
3935 };
3936
3937 /* free the resources after success or abort */
3938 static void apply_wqattrs_cleanup(struct apply_wqattrs_ctx *ctx)
3939 {
3940 if (ctx) {
3941 int node;
3942
3943 for_each_node(node)
3944 put_pwq_unlocked(ctx->pwq_tbl[node]);
3945 put_pwq_unlocked(ctx->dfl_pwq);
3946
3947 free_workqueue_attrs(ctx->attrs);
3948
3949 kfree(ctx);
3950 }
3951 }
3952
3953 /* allocate the attrs and pwqs for later installation */
3954 static struct apply_wqattrs_ctx *
3955 apply_wqattrs_prepare(struct workqueue_struct *wq,
3956 const struct workqueue_attrs *attrs)
3957 {
3958 struct apply_wqattrs_ctx *ctx;
3959 struct workqueue_attrs *new_attrs, *tmp_attrs;
3960 int node;
3961
3962 lockdep_assert_held(&wq_pool_mutex);
3963
3964 ctx = kzalloc(struct_size(ctx, pwq_tbl, nr_node_ids), GFP_KERNEL);
3965
3966 new_attrs = alloc_workqueue_attrs();
3967 tmp_attrs = alloc_workqueue_attrs();
3968 if (!ctx || !new_attrs || !tmp_attrs)
3969 goto out_free;
3970
3971 /*
3972 * Calculate the attrs of the default pwq.
3973 * If the user configured cpumask doesn't overlap with the
3974 * wq_unbound_cpumask, we fallback to the wq_unbound_cpumask.
3975 */
3976 copy_workqueue_attrs(new_attrs, attrs);
3977 cpumask_and(new_attrs->cpumask, new_attrs->cpumask, wq_unbound_cpumask);
3978 if (unlikely(cpumask_empty(new_attrs->cpumask)))
3979 cpumask_copy(new_attrs->cpumask, wq_unbound_cpumask);
3980
3981 /*
3982 * We may create multiple pwqs with differing cpumasks. Make a
3983 * copy of @new_attrs which will be modified and used to obtain
3984 * pools.
3985 */
3986 copy_workqueue_attrs(tmp_attrs, new_attrs);
3987
3988 /*
3989 * If something goes wrong during CPU up/down, we'll fall back to
3990 * the default pwq covering whole @attrs->cpumask. Always create
3991 * it even if we don't use it immediately.
3992 */
3993 ctx->dfl_pwq = alloc_unbound_pwq(wq, new_attrs);
3994 if (!ctx->dfl_pwq)
3995 goto out_free;
3996
3997 for_each_node(node) {
3998 if (wq_calc_node_cpumask(new_attrs, node, -1, tmp_attrs->cpumask)) {
3999 ctx->pwq_tbl[node] = alloc_unbound_pwq(wq, tmp_attrs);
4000 if (!ctx->pwq_tbl[node])
4001 goto out_free;
4002 } else {
4003 ctx->dfl_pwq->refcnt++;
4004 ctx->pwq_tbl[node] = ctx->dfl_pwq;
4005 }
4006 }
4007
4008 /* save the user configured attrs and sanitize it. */
4009 copy_workqueue_attrs(new_attrs, attrs);
4010 cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask);
4011 ctx->attrs = new_attrs;
4012
4013 ctx->wq = wq;
4014 free_workqueue_attrs(tmp_attrs);
4015 return ctx;
4016
4017 out_free:
4018 free_workqueue_attrs(tmp_attrs);
4019 free_workqueue_attrs(new_attrs);
4020 apply_wqattrs_cleanup(ctx);
4021 return NULL;
4022 }
4023
4024 /* set attrs and install prepared pwqs, @ctx points to old pwqs on return */
4025 static void apply_wqattrs_commit(struct apply_wqattrs_ctx *ctx)
4026 {
4027 int node;
4028
4029 /* all pwqs have been created successfully, let's install'em */
4030 mutex_lock(&ctx->wq->mutex);
4031
4032 copy_workqueue_attrs(ctx->wq->unbound_attrs, ctx->attrs);
4033
4034 /* save the previous pwq and install the new one */
4035 for_each_node(node)
4036 ctx->pwq_tbl[node] = numa_pwq_tbl_install(ctx->wq, node,
4037 ctx->pwq_tbl[node]);
4038
4039 /* @dfl_pwq might not have been used, ensure it's linked */
4040 link_pwq(ctx->dfl_pwq);
4041 swap(ctx->wq->dfl_pwq, ctx->dfl_pwq);
4042
4043 mutex_unlock(&ctx->wq->mutex);
4044 }
4045
4046 static void apply_wqattrs_lock(void)
4047 {
4048 /* CPUs should stay stable across pwq creations and installations */
4049 cpus_read_lock();
4050 mutex_lock(&wq_pool_mutex);
4051 }
4052
4053 static void apply_wqattrs_unlock(void)
4054 {
4055 mutex_unlock(&wq_pool_mutex);
4056 cpus_read_unlock();
4057 }
4058
4059 static int apply_workqueue_attrs_locked(struct workqueue_struct *wq,
4060 const struct workqueue_attrs *attrs)
4061 {
4062 struct apply_wqattrs_ctx *ctx;
4063
4064 /* only unbound workqueues can change attributes */
4065 if (WARN_ON(!(wq->flags & WQ_UNBOUND)))
4066 return -EINVAL;
4067
4068 /* creating multiple pwqs breaks ordering guarantee */
4069 if (!list_empty(&wq->pwqs)) {
4070 if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
4071 return -EINVAL;
4072
4073 wq->flags &= ~__WQ_ORDERED;
4074 }
4075
4076 ctx = apply_wqattrs_prepare(wq, attrs);
4077 if (!ctx)
4078 return -ENOMEM;
4079
4080 /* the ctx has been prepared successfully, let's commit it */
4081 apply_wqattrs_commit(ctx);
4082 apply_wqattrs_cleanup(ctx);
4083
4084 return 0;
4085 }
4086
4087 /**
4088 * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue
4089 * @wq: the target workqueue
4090 * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs()
4091 *
4092 * Apply @attrs to an unbound workqueue @wq. Unless disabled, on NUMA
4093 * machines, this function maps a separate pwq to each NUMA node with
4094 * possibles CPUs in @attrs->cpumask so that work items are affine to the
4095 * NUMA node it was issued on. Older pwqs are released as in-flight work
4096 * items finish. Note that a work item which repeatedly requeues itself
4097 * back-to-back will stay on its current pwq.
4098 *
4099 * Performs GFP_KERNEL allocations.
4100 *
4101 * Assumes caller has CPU hotplug read exclusion, i.e. cpus_read_lock().
4102 *
4103 * Return: 0 on success and -errno on failure.
4104 */
4105 int apply_workqueue_attrs(struct workqueue_struct *wq,
4106 const struct workqueue_attrs *attrs)
4107 {
4108 int ret;
4109
4110 lockdep_assert_cpus_held();
4111
4112 mutex_lock(&wq_pool_mutex);
4113 ret = apply_workqueue_attrs_locked(wq, attrs);
4114 mutex_unlock(&wq_pool_mutex);
4115
4116 return ret;
4117 }
4118
4119 /**
4120 * wq_update_unbound_numa - update NUMA affinity of a wq for CPU hot[un]plug
4121 * @wq: the target workqueue
4122 * @cpu: the CPU coming up or going down
4123 * @online: whether @cpu is coming up or going down
4124 *
4125 * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and
4126 * %CPU_DOWN_FAILED. @cpu is being hot[un]plugged, update NUMA affinity of
4127 * @wq accordingly.
4128 *
4129 * If NUMA affinity can't be adjusted due to memory allocation failure, it
4130 * falls back to @wq->dfl_pwq which may not be optimal but is always
4131 * correct.
4132 *
4133 * Note that when the last allowed CPU of a NUMA node goes offline for a
4134 * workqueue with a cpumask spanning multiple nodes, the workers which were
4135 * already executing the work items for the workqueue will lose their CPU
4136 * affinity and may execute on any CPU. This is similar to how per-cpu
4137 * workqueues behave on CPU_DOWN. If a workqueue user wants strict
4138 * affinity, it's the user's responsibility to flush the work item from
4139 * CPU_DOWN_PREPARE.
4140 */
4141 static void wq_update_unbound_numa(struct workqueue_struct *wq, int cpu,
4142 bool online)
4143 {
4144 int node = cpu_to_node(cpu);
4145 int cpu_off = online ? -1 : cpu;
4146 struct pool_workqueue *old_pwq = NULL, *pwq;
4147 struct workqueue_attrs *target_attrs;
4148 cpumask_t *cpumask;
4149
4150 lockdep_assert_held(&wq_pool_mutex);
4151
4152 if (!wq_numa_enabled || !(wq->flags & WQ_UNBOUND) ||
4153 wq->unbound_attrs->no_numa)
4154 return;
4155
4156 /*
4157 * We don't wanna alloc/free wq_attrs for each wq for each CPU.
4158 * Let's use a preallocated one. The following buf is protected by
4159 * CPU hotplug exclusion.
4160 */
4161 target_attrs = wq_update_unbound_numa_attrs_buf;
4162 cpumask = target_attrs->cpumask;
4163
4164 copy_workqueue_attrs(target_attrs, wq->unbound_attrs);
4165 pwq = unbound_pwq_by_node(wq, node);
4166
4167 /*
4168 * Let's determine what needs to be done. If the target cpumask is
4169 * different from the default pwq's, we need to compare it to @pwq's
4170 * and create a new one if they don't match. If the target cpumask
4171 * equals the default pwq's, the default pwq should be used.
4172 */
4173 if (wq_calc_node_cpumask(wq->dfl_pwq->pool->attrs, node, cpu_off, cpumask)) {
4174 if (cpumask_equal(cpumask, pwq->pool->attrs->cpumask))
4175 return;
4176 } else {
4177 goto use_dfl_pwq;
4178 }
4179
4180 /* create a new pwq */
4181 pwq = alloc_unbound_pwq(wq, target_attrs);
4182 if (!pwq) {
4183 pr_warn("workqueue: allocation failed while updating NUMA affinity of \"%s\"\n",
4184 wq->name);
4185 goto use_dfl_pwq;
4186 }
4187
4188 /* Install the new pwq. */
4189 mutex_lock(&wq->mutex);
4190 old_pwq = numa_pwq_tbl_install(wq, node, pwq);
4191 goto out_unlock;
4192
4193 use_dfl_pwq:
4194 mutex_lock(&wq->mutex);
4195 raw_spin_lock_irq(&wq->dfl_pwq->pool->lock);
4196 get_pwq(wq->dfl_pwq);
4197 raw_spin_unlock_irq(&wq->dfl_pwq->pool->lock);
4198 old_pwq = numa_pwq_tbl_install(wq, node, wq->dfl_pwq);
4199 out_unlock:
4200 mutex_unlock(&wq->mutex);
4201 put_pwq_unlocked(old_pwq);
4202 }
4203
4204 static int alloc_and_link_pwqs(struct workqueue_struct *wq)
4205 {
4206 bool highpri = wq->flags & WQ_HIGHPRI;
4207 int cpu, ret;
4208
4209 if (!(wq->flags & WQ_UNBOUND)) {
4210 wq->cpu_pwqs = alloc_percpu(struct pool_workqueue);
4211 if (!wq->cpu_pwqs)
4212 return -ENOMEM;
4213
4214 for_each_possible_cpu(cpu) {
4215 struct pool_workqueue *pwq =
4216 per_cpu_ptr(wq->cpu_pwqs, cpu);
4217 struct worker_pool *cpu_pools =
4218 per_cpu(cpu_worker_pools, cpu);
4219
4220 init_pwq(pwq, wq, &cpu_pools[highpri]);
4221
4222 mutex_lock(&wq->mutex);
4223 link_pwq(pwq);
4224 mutex_unlock(&wq->mutex);
4225 }
4226 return 0;
4227 }
4228
4229 cpus_read_lock();
4230 if (wq->flags & __WQ_ORDERED) {
4231 ret = apply_workqueue_attrs(wq, ordered_wq_attrs[highpri]);
4232 /* there should only be single pwq for ordering guarantee */
4233 WARN(!ret && (wq->pwqs.next != &wq->dfl_pwq->pwqs_node ||
4234 wq->pwqs.prev != &wq->dfl_pwq->pwqs_node),
4235 "ordering guarantee broken for workqueue %s\n", wq->name);
4236 } else {
4237 ret = apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]);
4238 }
4239 cpus_read_unlock();
4240
4241 return ret;
4242 }
4243
4244 static int wq_clamp_max_active(int max_active, unsigned int flags,
4245 const char *name)
4246 {
4247 int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;
4248
4249 if (max_active < 1 || max_active > lim)
4250 pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
4251 max_active, name, 1, lim);
4252
4253 return clamp_val(max_active, 1, lim);
4254 }
4255
4256 /*
4257 * Workqueues which may be used during memory reclaim should have a rescuer
4258 * to guarantee forward progress.
4259 */
4260 static int init_rescuer(struct workqueue_struct *wq)
4261 {
4262 struct worker *rescuer;
4263 int ret;
4264
4265 if (!(wq->flags & WQ_MEM_RECLAIM))
4266 return 0;
4267
4268 rescuer = alloc_worker(NUMA_NO_NODE);
4269 if (!rescuer)
4270 return -ENOMEM;
4271
4272 rescuer->rescue_wq = wq;
4273 rescuer->task = kthread_create(rescuer_thread, rescuer, "%s", wq->name);
4274 if (IS_ERR(rescuer->task)) {
4275 ret = PTR_ERR(rescuer->task);
4276 kfree(rescuer);
4277 return ret;
4278 }
4279
4280 wq->rescuer = rescuer;
4281 kthread_bind_mask(rescuer->task, cpu_possible_mask);
4282 wake_up_process(rescuer->task);
4283
4284 return 0;
4285 }
4286
4287 __printf(1, 4)
4288 struct workqueue_struct *alloc_workqueue(const char *fmt,
4289 unsigned int flags,
4290 int max_active, ...)
4291 {
4292 size_t tbl_size = 0;
4293 va_list args;
4294 struct workqueue_struct *wq;
4295 struct pool_workqueue *pwq;
4296
4297 /*
4298 * Unbound && max_active == 1 used to imply ordered, which is no
4299 * longer the case on NUMA machines due to per-node pools. While
4300 * alloc_ordered_workqueue() is the right way to create an ordered
4301 * workqueue, keep the previous behavior to avoid subtle breakages
4302 * on NUMA.
4303 */
4304 if ((flags & WQ_UNBOUND) && max_active == 1)
4305 flags |= __WQ_ORDERED;
4306
4307 /* see the comment above the definition of WQ_POWER_EFFICIENT */
4308 if ((flags & WQ_POWER_EFFICIENT) && wq_power_efficient)
4309 flags |= WQ_UNBOUND;
4310
4311 /* allocate wq and format name */
4312 if (flags & WQ_UNBOUND)
4313 tbl_size = nr_node_ids * sizeof(wq->numa_pwq_tbl[0]);
4314
4315 wq = kzalloc(sizeof(*wq) + tbl_size, GFP_KERNEL);
4316 if (!wq)
4317 return NULL;
4318
4319 if (flags & WQ_UNBOUND) {
4320 wq->unbound_attrs = alloc_workqueue_attrs();
4321 if (!wq->unbound_attrs)
4322 goto err_free_wq;
4323 }
4324
4325 va_start(args, max_active);
4326 vsnprintf(wq->name, sizeof(wq->name), fmt, args);
4327 va_end(args);
4328
4329 max_active = max_active ?: WQ_DFL_ACTIVE;
4330 max_active = wq_clamp_max_active(max_active, flags, wq->name);
4331
4332 /* init wq */
4333 wq->flags = flags;
4334 wq->saved_max_active = max_active;
4335 mutex_init(&wq->mutex);
4336 atomic_set(&wq->nr_pwqs_to_flush, 0);
4337 INIT_LIST_HEAD(&wq->pwqs);
4338 INIT_LIST_HEAD(&wq->flusher_queue);
4339 INIT_LIST_HEAD(&wq->flusher_overflow);
4340 INIT_LIST_HEAD(&wq->maydays);
4341
4342 wq_init_lockdep(wq);
4343 INIT_LIST_HEAD(&wq->list);
4344
4345 if (alloc_and_link_pwqs(wq) < 0)
4346 goto err_unreg_lockdep;
4347
4348 if (wq_online && init_rescuer(wq) < 0)
4349 goto err_destroy;
4350
4351 if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq))
4352 goto err_destroy;
4353
4354 /*
4355 * wq_pool_mutex protects global freeze state and workqueues list.
4356 * Grab it, adjust max_active and add the new @wq to workqueues
4357 * list.
4358 */
4359 mutex_lock(&wq_pool_mutex);
4360
4361 mutex_lock(&wq->mutex);
4362 for_each_pwq(pwq, wq)
4363 pwq_adjust_max_active(pwq);
4364 mutex_unlock(&wq->mutex);
4365
4366 list_add_tail_rcu(&wq->list, &workqueues);
4367
4368 mutex_unlock(&wq_pool_mutex);
4369
4370 return wq;
4371
4372 err_unreg_lockdep:
4373 wq_unregister_lockdep(wq);
4374 wq_free_lockdep(wq);
4375 err_free_wq:
4376 free_workqueue_attrs(wq->unbound_attrs);
4377 kfree(wq);
4378 return NULL;
4379 err_destroy:
4380 destroy_workqueue(wq);
4381 return NULL;
4382 }
4383 EXPORT_SYMBOL_GPL(alloc_workqueue);
4384
4385 static bool pwq_busy(struct pool_workqueue *pwq)
4386 {
4387 int i;
4388
4389 for (i = 0; i < WORK_NR_COLORS; i++)
4390 if (pwq->nr_in_flight[i])
4391 return true;
4392
4393 if ((pwq != pwq->wq->dfl_pwq) && (pwq->refcnt > 1))
4394 return true;
4395 if (pwq->nr_active || !list_empty(&pwq->inactive_works))
4396 return true;
4397
4398 return false;
4399 }
4400
4401 /**
4402 * destroy_workqueue - safely terminate a workqueue
4403 * @wq: target workqueue
4404 *
4405 * Safely destroy a workqueue. All work currently pending will be done first.
4406 */
4407 void destroy_workqueue(struct workqueue_struct *wq)
4408 {
4409 struct pool_workqueue *pwq;
4410 int node;
4411
4412 /*
4413 * Remove it from sysfs first so that sanity check failure doesn't
4414 * lead to sysfs name conflicts.
4415 */
4416 workqueue_sysfs_unregister(wq);
4417
4418 /* drain it before proceeding with destruction */
4419 drain_workqueue(wq);
4420
4421 /* kill rescuer, if sanity checks fail, leave it w/o rescuer */
4422 if (wq->rescuer) {
4423 struct worker *rescuer = wq->rescuer;
4424
4425 /* this prevents new queueing */
4426 raw_spin_lock_irq(&wq_mayday_lock);
4427 wq->rescuer = NULL;
4428 raw_spin_unlock_irq(&wq_mayday_lock);
4429
4430 /* rescuer will empty maydays list before exiting */
4431 kthread_stop(rescuer->task);
4432 kfree(rescuer);
4433 }
4434
4435 /*
4436 * Sanity checks - grab all the locks so that we wait for all
4437 * in-flight operations which may do put_pwq().
4438 */
4439 mutex_lock(&wq_pool_mutex);
4440 mutex_lock(&wq->mutex);
4441 for_each_pwq(pwq, wq) {
4442 raw_spin_lock_irq(&pwq->pool->lock);
4443 if (WARN_ON(pwq_busy(pwq))) {
4444 pr_warn("%s: %s has the following busy pwq\n",
4445 __func__, wq->name);
4446 show_pwq(pwq);
4447 raw_spin_unlock_irq(&pwq->pool->lock);
4448 mutex_unlock(&wq->mutex);
4449 mutex_unlock(&wq_pool_mutex);
4450 show_workqueue_state();
4451 return;
4452 }
4453 raw_spin_unlock_irq(&pwq->pool->lock);
4454 }
4455 mutex_unlock(&wq->mutex);
4456
4457 /*
4458 * wq list is used to freeze wq, remove from list after
4459 * flushing is complete in case freeze races us.
4460 */
4461 list_del_rcu(&wq->list);
4462 mutex_unlock(&wq_pool_mutex);
4463
4464 if (!(wq->flags & WQ_UNBOUND)) {
4465 wq_unregister_lockdep(wq);
4466 /*
4467 * The base ref is never dropped on per-cpu pwqs. Directly
4468 * schedule RCU free.
4469 */
4470 call_rcu(&wq->rcu, rcu_free_wq);
4471 } else {
4472 /*
4473 * We're the sole accessor of @wq at this point. Directly
4474 * access numa_pwq_tbl[] and dfl_pwq to put the base refs.
4475 * @wq will be freed when the last pwq is released.
4476 */
4477 for_each_node(node) {
4478 pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
4479 RCU_INIT_POINTER(wq->numa_pwq_tbl[node], NULL);
4480 put_pwq_unlocked(pwq);
4481 }
4482
4483 /*
4484 * Put dfl_pwq. @wq may be freed any time after dfl_pwq is
4485 * put. Don't access it afterwards.
4486 */
4487 pwq = wq->dfl_pwq;
4488 wq->dfl_pwq = NULL;
4489 put_pwq_unlocked(pwq);
4490 }
4491 }
4492 EXPORT_SYMBOL_GPL(destroy_workqueue);
4493
4494 /**
4495 * workqueue_set_max_active - adjust max_active of a workqueue
4496 * @wq: target workqueue
4497 * @max_active: new max_active value.
4498 *
4499 * Set max_active of @wq to @max_active.
4500 *
4501 * CONTEXT:
4502 * Don't call from IRQ context.
4503 */
4504 void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
4505 {
4506 struct pool_workqueue *pwq;
4507
4508 /* disallow meddling with max_active for ordered workqueues */
4509 if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
4510 return;
4511
4512 max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
4513
4514 mutex_lock(&wq->mutex);
4515
4516 wq->flags &= ~__WQ_ORDERED;
4517 wq->saved_max_active = max_active;
4518
4519 for_each_pwq(pwq, wq)
4520 pwq_adjust_max_active(pwq);
4521
4522 mutex_unlock(&wq->mutex);
4523 }
4524 EXPORT_SYMBOL_GPL(workqueue_set_max_active);
4525
4526 /**
4527 * current_work - retrieve %current task's work struct
4528 *
4529 * Determine if %current task is a workqueue worker and what it's working on.
4530 * Useful to find out the context that the %current task is running in.
4531 *
4532 * Return: work struct if %current task is a workqueue worker, %NULL otherwise.
4533 */
4534 struct work_struct *current_work(void)
4535 {
4536 struct worker *worker = current_wq_worker();
4537
4538 return worker ? worker->current_work : NULL;
4539 }
4540 EXPORT_SYMBOL(current_work);
4541
4542 /**
4543 * current_is_workqueue_rescuer - is %current workqueue rescuer?
4544 *
4545 * Determine whether %current is a workqueue rescuer. Can be used from
4546 * work functions to determine whether it's being run off the rescuer task.
4547 *
4548 * Return: %true if %current is a workqueue rescuer. %false otherwise.
4549 */
4550 bool current_is_workqueue_rescuer(void)
4551 {
4552 struct worker *worker = current_wq_worker();
4553
4554 return worker && worker->rescue_wq;
4555 }
4556
4557 /**
4558 * workqueue_congested - test whether a workqueue is congested
4559 * @cpu: CPU in question
4560 * @wq: target workqueue
4561 *
4562 * Test whether @wq's cpu workqueue for @cpu is congested. There is
4563 * no synchronization around this function and the test result is
4564 * unreliable and only useful as advisory hints or for debugging.
4565 *
4566 * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU.
4567 * Note that both per-cpu and unbound workqueues may be associated with
4568 * multiple pool_workqueues which have separate congested states. A
4569 * workqueue being congested on one CPU doesn't mean the workqueue is also
4570 * contested on other CPUs / NUMA nodes.
4571 *
4572 * Return:
4573 * %true if congested, %false otherwise.
4574 */
4575 bool workqueue_congested(int cpu, struct workqueue_struct *wq)
4576 {
4577 struct pool_workqueue *pwq;
4578 bool ret;
4579
4580 rcu_read_lock();
4581 preempt_disable();
4582
4583 if (cpu == WORK_CPU_UNBOUND)
4584 cpu = smp_processor_id();
4585
4586 if (!(wq->flags & WQ_UNBOUND))
4587 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
4588 else
4589 pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
4590
4591 ret = !list_empty(&pwq->inactive_works);
4592 preempt_enable();
4593 rcu_read_unlock();
4594
4595 return ret;
4596 }
4597 EXPORT_SYMBOL_GPL(workqueue_congested);
4598
4599 /**
4600 * work_busy - test whether a work is currently pending or running
4601 * @work: the work to be tested
4602 *
4603 * Test whether @work is currently pending or running. There is no
4604 * synchronization around this function and the test result is
4605 * unreliable and only useful as advisory hints or for debugging.
4606 *
4607 * Return:
4608 * OR'd bitmask of WORK_BUSY_* bits.
4609 */
4610 unsigned int work_busy(struct work_struct *work)
4611 {
4612 struct worker_pool *pool;
4613 unsigned long flags;
4614 unsigned int ret = 0;
4615
4616 if (work_pending(work))
4617 ret |= WORK_BUSY_PENDING;
4618
4619 rcu_read_lock();
4620 pool = get_work_pool(work);
4621 if (pool) {
4622 raw_spin_lock_irqsave(&pool->lock, flags);
4623 if (find_worker_executing_work(pool, work))
4624 ret |= WORK_BUSY_RUNNING;
4625 raw_spin_unlock_irqrestore(&pool->lock, flags);
4626 }
4627 rcu_read_unlock();
4628
4629 return ret;
4630 }
4631 EXPORT_SYMBOL_GPL(work_busy);
4632
4633 /**
4634 * set_worker_desc - set description for the current work item
4635 * @fmt: printf-style format string
4636 * @...: arguments for the format string
4637 *
4638 * This function can be called by a running work function to describe what
4639 * the work item is about. If the worker task gets dumped, this
4640 * information will be printed out together to help debugging. The
4641 * description can be at most WORKER_DESC_LEN including the trailing '\0'.
4642 */
4643 void set_worker_desc(const char *fmt, ...)
4644 {
4645 struct worker *worker = current_wq_worker();
4646 va_list args;
4647
4648 if (worker) {
4649 va_start(args, fmt);
4650 vsnprintf(worker->desc, sizeof(worker->desc), fmt, args);
4651 va_end(args);
4652 }
4653 }
4654 EXPORT_SYMBOL_GPL(set_worker_desc);
4655
4656 /**
4657 * print_worker_info - print out worker information and description
4658 * @log_lvl: the log level to use when printing
4659 * @task: target task
4660 *
4661 * If @task is a worker and currently executing a work item, print out the
4662 * name of the workqueue being serviced and worker description set with
4663 * set_worker_desc() by the currently executing work item.
4664 *
4665 * This function can be safely called on any task as long as the
4666 * task_struct itself is accessible. While safe, this function isn't
4667 * synchronized and may print out mixups or garbages of limited length.
4668 */
4669 void print_worker_info(const char *log_lvl, struct task_struct *task)
4670 {
4671 work_func_t *fn = NULL;
4672 char name[WQ_NAME_LEN] = { };
4673 char desc[WORKER_DESC_LEN] = { };
4674 struct pool_workqueue *pwq = NULL;
4675 struct workqueue_struct *wq = NULL;
4676 struct worker *worker;
4677
4678 if (!(task->flags & PF_WQ_WORKER))
4679 return;
4680
4681 /*
4682 * This function is called without any synchronization and @task
4683 * could be in any state. Be careful with dereferences.
4684 */
4685 worker = kthread_probe_data(task);
4686
4687 /*
4688 * Carefully copy the associated workqueue's workfn, name and desc.
4689 * Keep the original last '\0' in case the original is garbage.
4690 */
4691 copy_from_kernel_nofault(&fn, &worker->current_func, sizeof(fn));
4692 copy_from_kernel_nofault(&pwq, &worker->current_pwq, sizeof(pwq));
4693 copy_from_kernel_nofault(&wq, &pwq->wq, sizeof(wq));
4694 copy_from_kernel_nofault(name, wq->name, sizeof(name) - 1);
4695 copy_from_kernel_nofault(desc, worker->desc, sizeof(desc) - 1);
4696
4697 if (fn || name[0] || desc[0]) {
4698 printk("%sWorkqueue: %s %ps", log_lvl, name, fn);
4699 if (strcmp(name, desc))
4700 pr_cont(" (%s)", desc);
4701 pr_cont("\n");
4702 }
4703 }
4704
4705 static void pr_cont_pool_info(struct worker_pool *pool)
4706 {
4707 pr_cont(" cpus=%*pbl", nr_cpumask_bits, pool->attrs->cpumask);
4708 if (pool->node != NUMA_NO_NODE)
4709 pr_cont(" node=%d", pool->node);
4710 pr_cont(" flags=0x%x nice=%d", pool->flags, pool->attrs->nice);
4711 }
4712
4713 static void pr_cont_work(bool comma, struct work_struct *work)
4714 {
4715 if (work->func == wq_barrier_func) {
4716 struct wq_barrier *barr;
4717
4718 barr = container_of(work, struct wq_barrier, work);
4719
4720 pr_cont("%s BAR(%d)", comma ? "," : "",
4721 task_pid_nr(barr->task));
4722 } else {
4723 pr_cont("%s %ps", comma ? "," : "", work->func);
4724 }
4725 }
4726
4727 static void show_pwq(struct pool_workqueue *pwq)
4728 {
4729 struct worker_pool *pool = pwq->pool;
4730 struct work_struct *work;
4731 struct worker *worker;
4732 bool has_in_flight = false, has_pending = false;
4733 int bkt;
4734
4735 pr_info(" pwq %d:", pool->id);
4736 pr_cont_pool_info(pool);
4737
4738 pr_cont(" active=%d/%d refcnt=%d%s\n",
4739 pwq->nr_active, pwq->max_active, pwq->refcnt,
4740 !list_empty(&pwq->mayday_node) ? " MAYDAY" : "");
4741
4742 hash_for_each(pool->busy_hash, bkt, worker, hentry) {
4743 if (worker->current_pwq == pwq) {
4744 has_in_flight = true;
4745 break;
4746 }
4747 }
4748 if (has_in_flight) {
4749 bool comma = false;
4750
4751 pr_info(" in-flight:");
4752 hash_for_each(pool->busy_hash, bkt, worker, hentry) {
4753 if (worker->current_pwq != pwq)
4754 continue;
4755
4756 pr_cont("%s %d%s:%ps", comma ? "," : "",
4757 task_pid_nr(worker->task),
4758 worker->rescue_wq ? "(RESCUER)" : "",
4759 worker->current_func);
4760 list_for_each_entry(work, &worker->scheduled, entry)
4761 pr_cont_work(false, work);
4762 comma = true;
4763 }
4764 pr_cont("\n");
4765 }
4766
4767 list_for_each_entry(work, &pool->worklist, entry) {
4768 if (get_work_pwq(work) == pwq) {
4769 has_pending = true;
4770 break;
4771 }
4772 }
4773 if (has_pending) {
4774 bool comma = false;
4775
4776 pr_info(" pending:");
4777 list_for_each_entry(work, &pool->worklist, entry) {
4778 if (get_work_pwq(work) != pwq)
4779 continue;
4780
4781 pr_cont_work(comma, work);
4782 comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
4783 }
4784 pr_cont("\n");
4785 }
4786
4787 if (!list_empty(&pwq->inactive_works)) {
4788 bool comma = false;
4789
4790 pr_info(" inactive:");
4791 list_for_each_entry(work, &pwq->inactive_works, entry) {
4792 pr_cont_work(comma, work);
4793 comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
4794 }
4795 pr_cont("\n");
4796 }
4797 }
4798
4799 /**
4800 * show_workqueue_state - dump workqueue state
4801 *
4802 * Called from a sysrq handler or try_to_freeze_tasks() and prints out
4803 * all busy workqueues and pools.
4804 */
4805 void show_workqueue_state(void)
4806 {
4807 struct workqueue_struct *wq;
4808 struct worker_pool *pool;
4809 unsigned long flags;
4810 int pi;
4811
4812 rcu_read_lock();
4813
4814 pr_info("Showing busy workqueues and worker pools:\n");
4815
4816 list_for_each_entry_rcu(wq, &workqueues, list) {
4817 struct pool_workqueue *pwq;
4818 bool idle = true;
4819
4820 for_each_pwq(pwq, wq) {
4821 if (pwq->nr_active || !list_empty(&pwq->inactive_works)) {
4822 idle = false;
4823 break;
4824 }
4825 }
4826 if (idle)
4827 continue;
4828
4829 pr_info("workqueue %s: flags=0x%x\n", wq->name, wq->flags);
4830
4831 for_each_pwq(pwq, wq) {
4832 raw_spin_lock_irqsave(&pwq->pool->lock, flags);
4833 if (pwq->nr_active || !list_empty(&pwq->inactive_works)) {
4834 /*
4835 * Defer printing to avoid deadlocks in console
4836 * drivers that queue work while holding locks
4837 * also taken in their write paths.
4838 */
4839 printk_deferred_enter();
4840 show_pwq(pwq);
4841 printk_deferred_exit();
4842 }
4843 raw_spin_unlock_irqrestore(&pwq->pool->lock, flags);
4844 /*
4845 * We could be printing a lot from atomic context, e.g.
4846 * sysrq-t -> show_workqueue_state(). Avoid triggering
4847 * hard lockup.
4848 */
4849 touch_nmi_watchdog();
4850 }
4851 }
4852
4853 for_each_pool(pool, pi) {
4854 struct worker *worker;
4855 bool first = true;
4856
4857 raw_spin_lock_irqsave(&pool->lock, flags);
4858 if (pool->nr_workers == pool->nr_idle)
4859 goto next_pool;
4860 /*
4861 * Defer printing to avoid deadlocks in console drivers that
4862 * queue work while holding locks also taken in their write
4863 * paths.
4864 */
4865 printk_deferred_enter();
4866 pr_info("pool %d:", pool->id);
4867 pr_cont_pool_info(pool);
4868 pr_cont(" hung=%us workers=%d",
4869 jiffies_to_msecs(jiffies - pool->watchdog_ts) / 1000,
4870 pool->nr_workers);
4871 if (pool->manager)
4872 pr_cont(" manager: %d",
4873 task_pid_nr(pool->manager->task));
4874 list_for_each_entry(worker, &pool->idle_list, entry) {
4875 pr_cont(" %s%d", first ? "idle: " : "",
4876 task_pid_nr(worker->task));
4877 first = false;
4878 }
4879 pr_cont("\n");
4880 printk_deferred_exit();
4881 next_pool:
4882 raw_spin_unlock_irqrestore(&pool->lock, flags);
4883 /*
4884 * We could be printing a lot from atomic context, e.g.
4885 * sysrq-t -> show_workqueue_state(). Avoid triggering
4886 * hard lockup.
4887 */
4888 touch_nmi_watchdog();
4889 }
4890
4891 rcu_read_unlock();
4892 }
4893
4894 /* used to show worker information through /proc/PID/{comm,stat,status} */
4895 void wq_worker_comm(char *buf, size_t size, struct task_struct *task)
4896 {
4897 int off;
4898
4899 /* always show the actual comm */
4900 off = strscpy(buf, task->comm, size);
4901 if (off < 0)
4902 return;
4903
4904 /* stabilize PF_WQ_WORKER and worker pool association */
4905 mutex_lock(&wq_pool_attach_mutex);
4906
4907 if (task->flags & PF_WQ_WORKER) {
4908 struct worker *worker = kthread_data(task);
4909 struct worker_pool *pool = worker->pool;
4910
4911 if (pool) {
4912 raw_spin_lock_irq(&pool->lock);
4913 /*
4914 * ->desc tracks information (wq name or
4915 * set_worker_desc()) for the latest execution. If
4916 * current, prepend '+', otherwise '-'.
4917 */
4918 if (worker->desc[0] != '\0') {
4919 if (worker->current_work)
4920 scnprintf(buf + off, size - off, "+%s",
4921 worker->desc);
4922 else
4923 scnprintf(buf + off, size - off, "-%s",
4924 worker->desc);
4925 }
4926 raw_spin_unlock_irq(&pool->lock);
4927 }
4928 }
4929
4930 mutex_unlock(&wq_pool_attach_mutex);
4931 }
4932
4933 #ifdef CONFIG_SMP
4934
4935 /*
4936 * CPU hotplug.
4937 *
4938 * There are two challenges in supporting CPU hotplug. Firstly, there
4939 * are a lot of assumptions on strong associations among work, pwq and
4940 * pool which make migrating pending and scheduled works very
4941 * difficult to implement without impacting hot paths. Secondly,
4942 * worker pools serve mix of short, long and very long running works making
4943 * blocked draining impractical.
4944 *
4945 * This is solved by allowing the pools to be disassociated from the CPU
4946 * running as an unbound one and allowing it to be reattached later if the
4947 * cpu comes back online.
4948 */
4949
4950 static void unbind_workers(int cpu)
4951 {
4952 struct worker_pool *pool;
4953 struct worker *worker;
4954
4955 for_each_cpu_worker_pool(pool, cpu) {
4956 mutex_lock(&wq_pool_attach_mutex);
4957 raw_spin_lock_irq(&pool->lock);
4958
4959 /*
4960 * We've blocked all attach/detach operations. Make all workers
4961 * unbound and set DISASSOCIATED. Before this, all workers
4962 * except for the ones which are still executing works from
4963 * before the last CPU down must be on the cpu. After
4964 * this, they may become diasporas.
4965 */
4966 for_each_pool_worker(worker, pool)
4967 worker->flags |= WORKER_UNBOUND;
4968
4969 pool->flags |= POOL_DISASSOCIATED;
4970
4971 raw_spin_unlock_irq(&pool->lock);
4972
4973 for_each_pool_worker(worker, pool) {
4974 kthread_set_per_cpu(worker->task, -1);
4975 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, cpu_possible_mask) < 0);
4976 }
4977
4978 mutex_unlock(&wq_pool_attach_mutex);
4979
4980 /*
4981 * Call schedule() so that we cross rq->lock and thus can
4982 * guarantee sched callbacks see the %WORKER_UNBOUND flag.
4983 * This is necessary as scheduler callbacks may be invoked
4984 * from other cpus.
4985 */
4986 schedule();
4987
4988 /*
4989 * Sched callbacks are disabled now. Zap nr_running.
4990 * After this, nr_running stays zero and need_more_worker()
4991 * and keep_working() are always true as long as the
4992 * worklist is not empty. This pool now behaves as an
4993 * unbound (in terms of concurrency management) pool which
4994 * are served by workers tied to the pool.
4995 */
4996 atomic_set(&pool->nr_running, 0);
4997
4998 /*
4999 * With concurrency management just turned off, a busy
5000 * worker blocking could lead to lengthy stalls. Kick off
5001 * unbound chain execution of currently pending work items.
5002 */
5003 raw_spin_lock_irq(&pool->lock);
5004 wake_up_worker(pool);
5005 raw_spin_unlock_irq(&pool->lock);
5006 }
5007 }
5008
5009 /**
5010 * rebind_workers - rebind all workers of a pool to the associated CPU
5011 * @pool: pool of interest
5012 *
5013 * @pool->cpu is coming online. Rebind all workers to the CPU.
5014 */
5015 static void rebind_workers(struct worker_pool *pool)
5016 {
5017 struct worker *worker;
5018
5019 lockdep_assert_held(&wq_pool_attach_mutex);
5020
5021 /*
5022 * Restore CPU affinity of all workers. As all idle workers should
5023 * be on the run-queue of the associated CPU before any local
5024 * wake-ups for concurrency management happen, restore CPU affinity
5025 * of all workers first and then clear UNBOUND. As we're called
5026 * from CPU_ONLINE, the following shouldn't fail.
5027 */
5028 for_each_pool_worker(worker, pool) {
5029 kthread_set_per_cpu(worker->task, pool->cpu);
5030 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
5031 pool->attrs->cpumask) < 0);
5032 }
5033
5034 raw_spin_lock_irq(&pool->lock);
5035
5036 pool->flags &= ~POOL_DISASSOCIATED;
5037
5038 for_each_pool_worker(worker, pool) {
5039 unsigned int worker_flags = worker->flags;
5040
5041 /*
5042 * A bound idle worker should actually be on the runqueue
5043 * of the associated CPU for local wake-ups targeting it to
5044 * work. Kick all idle workers so that they migrate to the
5045 * associated CPU. Doing this in the same loop as
5046 * replacing UNBOUND with REBOUND is safe as no worker will
5047 * be bound before @pool->lock is released.
5048 */
5049 if (worker_flags & WORKER_IDLE)
5050 wake_up_process(worker->task);
5051
5052 /*
5053 * We want to clear UNBOUND but can't directly call
5054 * worker_clr_flags() or adjust nr_running. Atomically
5055 * replace UNBOUND with another NOT_RUNNING flag REBOUND.
5056 * @worker will clear REBOUND using worker_clr_flags() when
5057 * it initiates the next execution cycle thus restoring
5058 * concurrency management. Note that when or whether
5059 * @worker clears REBOUND doesn't affect correctness.
5060 *
5061 * WRITE_ONCE() is necessary because @worker->flags may be
5062 * tested without holding any lock in
5063 * wq_worker_running(). Without it, NOT_RUNNING test may
5064 * fail incorrectly leading to premature concurrency
5065 * management operations.
5066 */
5067 WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND));
5068 worker_flags |= WORKER_REBOUND;
5069 worker_flags &= ~WORKER_UNBOUND;
5070 WRITE_ONCE(worker->flags, worker_flags);
5071 }
5072
5073 raw_spin_unlock_irq(&pool->lock);
5074 }
5075
5076 /**
5077 * restore_unbound_workers_cpumask - restore cpumask of unbound workers
5078 * @pool: unbound pool of interest
5079 * @cpu: the CPU which is coming up
5080 *
5081 * An unbound pool may end up with a cpumask which doesn't have any online
5082 * CPUs. When a worker of such pool get scheduled, the scheduler resets
5083 * its cpus_allowed. If @cpu is in @pool's cpumask which didn't have any
5084 * online CPU before, cpus_allowed of all its workers should be restored.
5085 */
5086 static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu)
5087 {
5088 static cpumask_t cpumask;
5089 struct worker *worker;
5090
5091 lockdep_assert_held(&wq_pool_attach_mutex);
5092
5093 /* is @cpu allowed for @pool? */
5094 if (!cpumask_test_cpu(cpu, pool->attrs->cpumask))
5095 return;
5096
5097 cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask);
5098
5099 /* as we're called from CPU_ONLINE, the following shouldn't fail */
5100 for_each_pool_worker(worker, pool)
5101 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, &cpumask) < 0);
5102 }
5103
5104 int workqueue_prepare_cpu(unsigned int cpu)
5105 {
5106 struct worker_pool *pool;
5107
5108 for_each_cpu_worker_pool(pool, cpu) {
5109 if (pool->nr_workers)
5110 continue;
5111 if (!create_worker(pool))
5112 return -ENOMEM;
5113 }
5114 return 0;
5115 }
5116
5117 int workqueue_online_cpu(unsigned int cpu)
5118 {
5119 struct worker_pool *pool;
5120 struct workqueue_struct *wq;
5121 int pi;
5122
5123 mutex_lock(&wq_pool_mutex);
5124
5125 for_each_pool(pool, pi) {
5126 mutex_lock(&wq_pool_attach_mutex);
5127
5128 if (pool->cpu == cpu)
5129 rebind_workers(pool);
5130 else if (pool->cpu < 0)
5131 restore_unbound_workers_cpumask(pool, cpu);
5132
5133 mutex_unlock(&wq_pool_attach_mutex);
5134 }
5135
5136 /* update NUMA affinity of unbound workqueues */
5137 list_for_each_entry(wq, &workqueues, list)
5138 wq_update_unbound_numa(wq, cpu, true);
5139
5140 mutex_unlock(&wq_pool_mutex);
5141 return 0;
5142 }
5143
5144 int workqueue_offline_cpu(unsigned int cpu)
5145 {
5146 struct workqueue_struct *wq;
5147
5148 /* unbinding per-cpu workers should happen on the local CPU */
5149 if (WARN_ON(cpu != smp_processor_id()))
5150 return -1;
5151
5152 unbind_workers(cpu);
5153
5154 /* update NUMA affinity of unbound workqueues */
5155 mutex_lock(&wq_pool_mutex);
5156 list_for_each_entry(wq, &workqueues, list)
5157 wq_update_unbound_numa(wq, cpu, false);
5158 mutex_unlock(&wq_pool_mutex);
5159
5160 return 0;
5161 }
5162
5163 struct work_for_cpu {
5164 struct work_struct work;
5165 long (*fn)(void *);
5166 void *arg;
5167 long ret;
5168 };
5169
5170 static void work_for_cpu_fn(struct work_struct *work)
5171 {
5172 struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);
5173
5174 wfc->ret = wfc->fn(wfc->arg);
5175 }
5176
5177 /**
5178 * work_on_cpu - run a function in thread context on a particular cpu
5179 * @cpu: the cpu to run on
5180 * @fn: the function to run
5181 * @arg: the function arg
5182 *
5183 * It is up to the caller to ensure that the cpu doesn't go offline.
5184 * The caller must not hold any locks which would prevent @fn from completing.
5185 *
5186 * Return: The value @fn returns.
5187 */
5188 long work_on_cpu(int cpu, long (*fn)(void *), void *arg)
5189 {
5190 struct work_for_cpu wfc = { .fn = fn, .arg = arg };
5191
5192 INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn);
5193 schedule_work_on(cpu, &wfc.work);
5194 flush_work(&wfc.work);
5195 destroy_work_on_stack(&wfc.work);
5196 return wfc.ret;
5197 }
5198 EXPORT_SYMBOL_GPL(work_on_cpu);
5199
5200 /**
5201 * work_on_cpu_safe - run a function in thread context on a particular cpu
5202 * @cpu: the cpu to run on
5203 * @fn: the function to run
5204 * @arg: the function argument
5205 *
5206 * Disables CPU hotplug and calls work_on_cpu(). The caller must not hold
5207 * any locks which would prevent @fn from completing.
5208 *
5209 * Return: The value @fn returns.
5210 */
5211 long work_on_cpu_safe(int cpu, long (*fn)(void *), void *arg)
5212 {
5213 long ret = -ENODEV;
5214
5215 cpus_read_lock();
5216 if (cpu_online(cpu))
5217 ret = work_on_cpu(cpu, fn, arg);
5218 cpus_read_unlock();
5219 return ret;
5220 }
5221 EXPORT_SYMBOL_GPL(work_on_cpu_safe);
5222 #endif /* CONFIG_SMP */
5223
5224 #ifdef CONFIG_FREEZER
5225
5226 /**
5227 * freeze_workqueues_begin - begin freezing workqueues
5228 *
5229 * Start freezing workqueues. After this function returns, all freezable
5230 * workqueues will queue new works to their inactive_works list instead of
5231 * pool->worklist.
5232 *
5233 * CONTEXT:
5234 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
5235 */
5236 void freeze_workqueues_begin(void)
5237 {
5238 struct workqueue_struct *wq;
5239 struct pool_workqueue *pwq;
5240
5241 mutex_lock(&wq_pool_mutex);
5242
5243 WARN_ON_ONCE(workqueue_freezing);
5244 workqueue_freezing = true;
5245
5246 list_for_each_entry(wq, &workqueues, list) {
5247 mutex_lock(&wq->mutex);
5248 for_each_pwq(pwq, wq)
5249 pwq_adjust_max_active(pwq);
5250 mutex_unlock(&wq->mutex);
5251 }
5252
5253 mutex_unlock(&wq_pool_mutex);
5254 }
5255
5256 /**
5257 * freeze_workqueues_busy - are freezable workqueues still busy?
5258 *
5259 * Check whether freezing is complete. This function must be called
5260 * between freeze_workqueues_begin() and thaw_workqueues().
5261 *
5262 * CONTEXT:
5263 * Grabs and releases wq_pool_mutex.
5264 *
5265 * Return:
5266 * %true if some freezable workqueues are still busy. %false if freezing
5267 * is complete.
5268 */
5269 bool freeze_workqueues_busy(void)
5270 {
5271 bool busy = false;
5272 struct workqueue_struct *wq;
5273 struct pool_workqueue *pwq;
5274
5275 mutex_lock(&wq_pool_mutex);
5276
5277 WARN_ON_ONCE(!workqueue_freezing);
5278
5279 list_for_each_entry(wq, &workqueues, list) {
5280 if (!(wq->flags & WQ_FREEZABLE))
5281 continue;
5282 /*
5283 * nr_active is monotonically decreasing. It's safe
5284 * to peek without lock.
5285 */
5286 rcu_read_lock();
5287 for_each_pwq(pwq, wq) {
5288 WARN_ON_ONCE(pwq->nr_active < 0);
5289 if (pwq->nr_active) {
5290 busy = true;
5291 rcu_read_unlock();
5292 goto out_unlock;
5293 }
5294 }
5295 rcu_read_unlock();
5296 }
5297 out_unlock:
5298 mutex_unlock(&wq_pool_mutex);
5299 return busy;
5300 }
5301
5302 /**
5303 * thaw_workqueues - thaw workqueues
5304 *
5305 * Thaw workqueues. Normal queueing is restored and all collected
5306 * frozen works are transferred to their respective pool worklists.
5307 *
5308 * CONTEXT:
5309 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
5310 */
5311 void thaw_workqueues(void)
5312 {
5313 struct workqueue_struct *wq;
5314 struct pool_workqueue *pwq;
5315
5316 mutex_lock(&wq_pool_mutex);
5317
5318 if (!workqueue_freezing)
5319 goto out_unlock;
5320
5321 workqueue_freezing = false;
5322
5323 /* restore max_active and repopulate worklist */
5324 list_for_each_entry(wq, &workqueues, list) {
5325 mutex_lock(&wq->mutex);
5326 for_each_pwq(pwq, wq)
5327 pwq_adjust_max_active(pwq);
5328 mutex_unlock(&wq->mutex);
5329 }
5330
5331 out_unlock:
5332 mutex_unlock(&wq_pool_mutex);
5333 }
5334 #endif /* CONFIG_FREEZER */
5335
5336 static int workqueue_apply_unbound_cpumask(void)
5337 {
5338 LIST_HEAD(ctxs);
5339 int ret = 0;
5340 struct workqueue_struct *wq;
5341 struct apply_wqattrs_ctx *ctx, *n;
5342
5343 lockdep_assert_held(&wq_pool_mutex);
5344
5345 list_for_each_entry(wq, &workqueues, list) {
5346 if (!(wq->flags & WQ_UNBOUND))
5347 continue;
5348 /* creating multiple pwqs breaks ordering guarantee */
5349 if (wq->flags & __WQ_ORDERED)
5350 continue;
5351
5352 ctx = apply_wqattrs_prepare(wq, wq->unbound_attrs);
5353 if (!ctx) {
5354 ret = -ENOMEM;
5355 break;
5356 }
5357
5358 list_add_tail(&ctx->list, &ctxs);
5359 }
5360
5361 list_for_each_entry_safe(ctx, n, &ctxs, list) {
5362 if (!ret)
5363 apply_wqattrs_commit(ctx);
5364 apply_wqattrs_cleanup(ctx);
5365 }
5366
5367 return ret;
5368 }
5369
5370 /**
5371 * workqueue_set_unbound_cpumask - Set the low-level unbound cpumask
5372 * @cpumask: the cpumask to set
5373 *
5374 * The low-level workqueues cpumask is a global cpumask that limits
5375 * the affinity of all unbound workqueues. This function check the @cpumask
5376 * and apply it to all unbound workqueues and updates all pwqs of them.
5377 *
5378 * Return: 0 - Success
5379 * -EINVAL - Invalid @cpumask
5380 * -ENOMEM - Failed to allocate memory for attrs or pwqs.
5381 */
5382 int workqueue_set_unbound_cpumask(cpumask_var_t cpumask)
5383 {
5384 int ret = -EINVAL;
5385 cpumask_var_t saved_cpumask;
5386
5387 if (!zalloc_cpumask_var(&saved_cpumask, GFP_KERNEL))
5388 return -ENOMEM;
5389
5390 /*
5391 * Not excluding isolated cpus on purpose.
5392 * If the user wishes to include them, we allow that.
5393 */
5394 cpumask_and(cpumask, cpumask, cpu_possible_mask);
5395 if (!cpumask_empty(cpumask)) {
5396 apply_wqattrs_lock();
5397
5398 /* save the old wq_unbound_cpumask. */
5399 cpumask_copy(saved_cpumask, wq_unbound_cpumask);
5400
5401 /* update wq_unbound_cpumask at first and apply it to wqs. */
5402 cpumask_copy(wq_unbound_cpumask, cpumask);
5403 ret = workqueue_apply_unbound_cpumask();
5404
5405 /* restore the wq_unbound_cpumask when failed. */
5406 if (ret < 0)
5407 cpumask_copy(wq_unbound_cpumask, saved_cpumask);
5408
5409 apply_wqattrs_unlock();
5410 }
5411
5412 free_cpumask_var(saved_cpumask);
5413 return ret;
5414 }
5415
5416 #ifdef CONFIG_SYSFS
5417 /*
5418 * Workqueues with WQ_SYSFS flag set is visible to userland via
5419 * /sys/bus/workqueue/devices/WQ_NAME. All visible workqueues have the
5420 * following attributes.
5421 *
5422 * per_cpu RO bool : whether the workqueue is per-cpu or unbound
5423 * max_active RW int : maximum number of in-flight work items
5424 *
5425 * Unbound workqueues have the following extra attributes.
5426 *
5427 * pool_ids RO int : the associated pool IDs for each node
5428 * nice RW int : nice value of the workers
5429 * cpumask RW mask : bitmask of allowed CPUs for the workers
5430 * numa RW bool : whether enable NUMA affinity
5431 */
5432 struct wq_device {
5433 struct workqueue_struct *wq;
5434 struct device dev;
5435 };
5436
5437 static struct workqueue_struct *dev_to_wq(struct device *dev)
5438 {
5439 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
5440
5441 return wq_dev->wq;
5442 }
5443
5444 static ssize_t per_cpu_show(struct device *dev, struct device_attribute *attr,
5445 char *buf)
5446 {
5447 struct workqueue_struct *wq = dev_to_wq(dev);
5448
5449 return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND));
5450 }
5451 static DEVICE_ATTR_RO(per_cpu);
5452
5453 static ssize_t max_active_show(struct device *dev,
5454 struct device_attribute *attr, char *buf)
5455 {
5456 struct workqueue_struct *wq = dev_to_wq(dev);
5457
5458 return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active);
5459 }
5460
5461 static ssize_t max_active_store(struct device *dev,
5462 struct device_attribute *attr, const char *buf,
5463 size_t count)
5464 {
5465 struct workqueue_struct *wq = dev_to_wq(dev);
5466 int val;
5467
5468 if (sscanf(buf, "%d", &val) != 1 || val <= 0)
5469 return -EINVAL;
5470
5471 workqueue_set_max_active(wq, val);
5472 return count;
5473 }
5474 static DEVICE_ATTR_RW(max_active);
5475
5476 static struct attribute *wq_sysfs_attrs[] = {
5477 &dev_attr_per_cpu.attr,
5478 &dev_attr_max_active.attr,
5479 NULL,
5480 };
5481 ATTRIBUTE_GROUPS(wq_sysfs);
5482
5483 static ssize_t wq_pool_ids_show(struct device *dev,
5484 struct device_attribute *attr, char *buf)
5485 {
5486 struct workqueue_struct *wq = dev_to_wq(dev);
5487 const char *delim = "";
5488 int node, written = 0;
5489
5490 cpus_read_lock();
5491 rcu_read_lock();
5492 for_each_node(node) {
5493 written += scnprintf(buf + written, PAGE_SIZE - written,
5494 "%s%d:%d", delim, node,
5495 unbound_pwq_by_node(wq, node)->pool->id);
5496 delim = " ";
5497 }
5498 written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
5499 rcu_read_unlock();
5500 cpus_read_unlock();
5501
5502 return written;
5503 }
5504
5505 static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr,
5506 char *buf)
5507 {
5508 struct workqueue_struct *wq = dev_to_wq(dev);
5509 int written;
5510
5511 mutex_lock(&wq->mutex);
5512 written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice);
5513 mutex_unlock(&wq->mutex);
5514
5515 return written;
5516 }
5517
5518 /* prepare workqueue_attrs for sysfs store operations */
5519 static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq)
5520 {
5521 struct workqueue_attrs *attrs;
5522
5523 lockdep_assert_held(&wq_pool_mutex);
5524
5525 attrs = alloc_workqueue_attrs();
5526 if (!attrs)
5527 return NULL;
5528
5529 copy_workqueue_attrs(attrs, wq->unbound_attrs);
5530 return attrs;
5531 }
5532
5533 static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr,
5534 const char *buf, size_t count)
5535 {
5536 struct workqueue_struct *wq = dev_to_wq(dev);
5537 struct workqueue_attrs *attrs;
5538 int ret = -ENOMEM;
5539
5540 apply_wqattrs_lock();
5541
5542 attrs = wq_sysfs_prep_attrs(wq);
5543 if (!attrs)
5544 goto out_unlock;
5545
5546 if (sscanf(buf, "%d", &attrs->nice) == 1 &&
5547 attrs->nice >= MIN_NICE && attrs->nice <= MAX_NICE)
5548 ret = apply_workqueue_attrs_locked(wq, attrs);
5549 else
5550 ret = -EINVAL;
5551
5552 out_unlock:
5553 apply_wqattrs_unlock();
5554 free_workqueue_attrs(attrs);
5555 return ret ?: count;
5556 }
5557
5558 static ssize_t wq_cpumask_show(struct device *dev,
5559 struct device_attribute *attr, char *buf)
5560 {
5561 struct workqueue_struct *wq = dev_to_wq(dev);
5562 int written;
5563
5564 mutex_lock(&wq->mutex);
5565 written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
5566 cpumask_pr_args(wq->unbound_attrs->cpumask));
5567 mutex_unlock(&wq->mutex);
5568 return written;
5569 }
5570
5571 static ssize_t wq_cpumask_store(struct device *dev,
5572 struct device_attribute *attr,
5573 const char *buf, size_t count)
5574 {
5575 struct workqueue_struct *wq = dev_to_wq(dev);
5576 struct workqueue_attrs *attrs;
5577 int ret = -ENOMEM;
5578
5579 apply_wqattrs_lock();
5580
5581 attrs = wq_sysfs_prep_attrs(wq);
5582 if (!attrs)
5583 goto out_unlock;
5584
5585 ret = cpumask_parse(buf, attrs->cpumask);
5586 if (!ret)
5587 ret = apply_workqueue_attrs_locked(wq, attrs);
5588
5589 out_unlock:
5590 apply_wqattrs_unlock();
5591 free_workqueue_attrs(attrs);
5592 return ret ?: count;
5593 }
5594
5595 static ssize_t wq_numa_show(struct device *dev, struct device_attribute *attr,
5596 char *buf)
5597 {
5598 struct workqueue_struct *wq = dev_to_wq(dev);
5599 int written;
5600
5601 mutex_lock(&wq->mutex);
5602 written = scnprintf(buf, PAGE_SIZE, "%d\n",
5603 !wq->unbound_attrs->no_numa);
5604 mutex_unlock(&wq->mutex);
5605
5606 return written;
5607 }
5608
5609 static ssize_t wq_numa_store(struct device *dev, struct device_attribute *attr,
5610 const char *buf, size_t count)
5611 {
5612 struct workqueue_struct *wq = dev_to_wq(dev);
5613 struct workqueue_attrs *attrs;
5614 int v, ret = -ENOMEM;
5615
5616 apply_wqattrs_lock();
5617
5618 attrs = wq_sysfs_prep_attrs(wq);
5619 if (!attrs)
5620 goto out_unlock;
5621
5622 ret = -EINVAL;
5623 if (sscanf(buf, "%d", &v) == 1) {
5624 attrs->no_numa = !v;
5625 ret = apply_workqueue_attrs_locked(wq, attrs);
5626 }
5627
5628 out_unlock:
5629 apply_wqattrs_unlock();
5630 free_workqueue_attrs(attrs);
5631 return ret ?: count;
5632 }
5633
5634 static struct device_attribute wq_sysfs_unbound_attrs[] = {
5635 __ATTR(pool_ids, 0444, wq_pool_ids_show, NULL),
5636 __ATTR(nice, 0644, wq_nice_show, wq_nice_store),
5637 __ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store),
5638 __ATTR(numa, 0644, wq_numa_show, wq_numa_store),
5639 __ATTR_NULL,
5640 };
5641
5642 static struct bus_type wq_subsys = {
5643 .name = "workqueue",
5644 .dev_groups = wq_sysfs_groups,
5645 };
5646
5647 static ssize_t wq_unbound_cpumask_show(struct device *dev,
5648 struct device_attribute *attr, char *buf)
5649 {
5650 int written;
5651
5652 mutex_lock(&wq_pool_mutex);
5653 written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
5654 cpumask_pr_args(wq_unbound_cpumask));
5655 mutex_unlock(&wq_pool_mutex);
5656
5657 return written;
5658 }
5659
5660 static ssize_t wq_unbound_cpumask_store(struct device *dev,
5661 struct device_attribute *attr, const char *buf, size_t count)
5662 {
5663 cpumask_var_t cpumask;
5664 int ret;
5665
5666 if (!zalloc_cpumask_var(&cpumask, GFP_KERNEL))
5667 return -ENOMEM;
5668
5669 ret = cpumask_parse(buf, cpumask);
5670 if (!ret)
5671 ret = workqueue_set_unbound_cpumask(cpumask);
5672
5673 free_cpumask_var(cpumask);
5674 return ret ? ret : count;
5675 }
5676
5677 static struct device_attribute wq_sysfs_cpumask_attr =
5678 __ATTR(cpumask, 0644, wq_unbound_cpumask_show,
5679 wq_unbound_cpumask_store);
5680
5681 static int __init wq_sysfs_init(void)
5682 {
5683 int err;
5684
5685 err = subsys_virtual_register(&wq_subsys, NULL);
5686 if (err)
5687 return err;
5688
5689 return device_create_file(wq_subsys.dev_root, &wq_sysfs_cpumask_attr);
5690 }
5691 core_initcall(wq_sysfs_init);
5692
5693 static void wq_device_release(struct device *dev)
5694 {
5695 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
5696
5697 kfree(wq_dev);
5698 }
5699
5700 /**
5701 * workqueue_sysfs_register - make a workqueue visible in sysfs
5702 * @wq: the workqueue to register
5703 *
5704 * Expose @wq in sysfs under /sys/bus/workqueue/devices.
5705 * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set
5706 * which is the preferred method.
5707 *
5708 * Workqueue user should use this function directly iff it wants to apply
5709 * workqueue_attrs before making the workqueue visible in sysfs; otherwise,
5710 * apply_workqueue_attrs() may race against userland updating the
5711 * attributes.
5712 *
5713 * Return: 0 on success, -errno on failure.
5714 */
5715 int workqueue_sysfs_register(struct workqueue_struct *wq)
5716 {
5717 struct wq_device *wq_dev;
5718 int ret;
5719
5720 /*
5721 * Adjusting max_active or creating new pwqs by applying
5722 * attributes breaks ordering guarantee. Disallow exposing ordered
5723 * workqueues.
5724 */
5725 if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
5726 return -EINVAL;
5727
5728 wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL);
5729 if (!wq_dev)
5730 return -ENOMEM;
5731
5732 wq_dev->wq = wq;
5733 wq_dev->dev.bus = &wq_subsys;
5734 wq_dev->dev.release = wq_device_release;
5735 dev_set_name(&wq_dev->dev, "%s", wq->name);
5736
5737 /*
5738 * unbound_attrs are created separately. Suppress uevent until
5739 * everything is ready.
5740 */
5741 dev_set_uevent_suppress(&wq_dev->dev, true);
5742
5743 ret = device_register(&wq_dev->dev);
5744 if (ret) {
5745 put_device(&wq_dev->dev);
5746 wq->wq_dev = NULL;
5747 return ret;
5748 }
5749
5750 if (wq->flags & WQ_UNBOUND) {
5751 struct device_attribute *attr;
5752
5753 for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) {
5754 ret = device_create_file(&wq_dev->dev, attr);
5755 if (ret) {
5756 device_unregister(&wq_dev->dev);
5757 wq->wq_dev = NULL;
5758 return ret;
5759 }
5760 }
5761 }
5762
5763 dev_set_uevent_suppress(&wq_dev->dev, false);
5764 kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD);
5765 return 0;
5766 }
5767
5768 /**
5769 * workqueue_sysfs_unregister - undo workqueue_sysfs_register()
5770 * @wq: the workqueue to unregister
5771 *
5772 * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister.
5773 */
5774 static void workqueue_sysfs_unregister(struct workqueue_struct *wq)
5775 {
5776 struct wq_device *wq_dev = wq->wq_dev;
5777
5778 if (!wq->wq_dev)
5779 return;
5780
5781 wq->wq_dev = NULL;
5782 device_unregister(&wq_dev->dev);
5783 }
5784 #else /* CONFIG_SYSFS */
5785 static void workqueue_sysfs_unregister(struct workqueue_struct *wq) { }
5786 #endif /* CONFIG_SYSFS */
5787
5788 /*
5789 * Workqueue watchdog.
5790 *
5791 * Stall may be caused by various bugs - missing WQ_MEM_RECLAIM, illegal
5792 * flush dependency, a concurrency managed work item which stays RUNNING
5793 * indefinitely. Workqueue stalls can be very difficult to debug as the
5794 * usual warning mechanisms don't trigger and internal workqueue state is
5795 * largely opaque.
5796 *
5797 * Workqueue watchdog monitors all worker pools periodically and dumps
5798 * state if some pools failed to make forward progress for a while where
5799 * forward progress is defined as the first item on ->worklist changing.
5800 *
5801 * This mechanism is controlled through the kernel parameter
5802 * "workqueue.watchdog_thresh" which can be updated at runtime through the
5803 * corresponding sysfs parameter file.
5804 */
5805 #ifdef CONFIG_WQ_WATCHDOG
5806
5807 static unsigned long wq_watchdog_thresh = 30;
5808 static struct timer_list wq_watchdog_timer;
5809
5810 static unsigned long wq_watchdog_touched = INITIAL_JIFFIES;
5811 static DEFINE_PER_CPU(unsigned long, wq_watchdog_touched_cpu) = INITIAL_JIFFIES;
5812
5813 static void wq_watchdog_reset_touched(void)
5814 {
5815 int cpu;
5816
5817 wq_watchdog_touched = jiffies;
5818 for_each_possible_cpu(cpu)
5819 per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
5820 }
5821
5822 static void wq_watchdog_timer_fn(struct timer_list *unused)
5823 {
5824 unsigned long thresh = READ_ONCE(wq_watchdog_thresh) * HZ;
5825 bool lockup_detected = false;
5826 unsigned long now = jiffies;
5827 struct worker_pool *pool;
5828 int pi;
5829
5830 if (!thresh)
5831 return;
5832
5833 rcu_read_lock();
5834
5835 for_each_pool(pool, pi) {
5836 unsigned long pool_ts, touched, ts;
5837
5838 if (list_empty(&pool->worklist))
5839 continue;
5840
5841 /*
5842 * If a virtual machine is stopped by the host it can look to
5843 * the watchdog like a stall.
5844 */
5845 kvm_check_and_clear_guest_paused();
5846
5847 /* get the latest of pool and touched timestamps */
5848 if (pool->cpu >= 0)
5849 touched = READ_ONCE(per_cpu(wq_watchdog_touched_cpu, pool->cpu));
5850 else
5851 touched = READ_ONCE(wq_watchdog_touched);
5852 pool_ts = READ_ONCE(pool->watchdog_ts);
5853
5854 if (time_after(pool_ts, touched))
5855 ts = pool_ts;
5856 else
5857 ts = touched;
5858
5859 /* did we stall? */
5860 if (time_after(now, ts + thresh)) {
5861 lockup_detected = true;
5862 pr_emerg("BUG: workqueue lockup - pool");
5863 pr_cont_pool_info(pool);
5864 pr_cont(" stuck for %us!\n",
5865 jiffies_to_msecs(now - pool_ts) / 1000);
5866 }
5867 }
5868
5869 rcu_read_unlock();
5870
5871 if (lockup_detected)
5872 show_workqueue_state();
5873
5874 wq_watchdog_reset_touched();
5875 mod_timer(&wq_watchdog_timer, jiffies + thresh);
5876 }
5877
5878 notrace void wq_watchdog_touch(int cpu)
5879 {
5880 if (cpu >= 0)
5881 per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
5882
5883 wq_watchdog_touched = jiffies;
5884 }
5885
5886 static void wq_watchdog_set_thresh(unsigned long thresh)
5887 {
5888 wq_watchdog_thresh = 0;
5889 del_timer_sync(&wq_watchdog_timer);
5890
5891 if (thresh) {
5892 wq_watchdog_thresh = thresh;
5893 wq_watchdog_reset_touched();
5894 mod_timer(&wq_watchdog_timer, jiffies + thresh * HZ);
5895 }
5896 }
5897
5898 static int wq_watchdog_param_set_thresh(const char *val,
5899 const struct kernel_param *kp)
5900 {
5901 unsigned long thresh;
5902 int ret;
5903
5904 ret = kstrtoul(val, 0, &thresh);
5905 if (ret)
5906 return ret;
5907
5908 if (system_wq)
5909 wq_watchdog_set_thresh(thresh);
5910 else
5911 wq_watchdog_thresh = thresh;
5912
5913 return 0;
5914 }
5915
5916 static const struct kernel_param_ops wq_watchdog_thresh_ops = {
5917 .set = wq_watchdog_param_set_thresh,
5918 .get = param_get_ulong,
5919 };
5920
5921 module_param_cb(watchdog_thresh, &wq_watchdog_thresh_ops, &wq_watchdog_thresh,
5922 0644);
5923
5924 static void wq_watchdog_init(void)
5925 {
5926 timer_setup(&wq_watchdog_timer, wq_watchdog_timer_fn, TIMER_DEFERRABLE);
5927 wq_watchdog_set_thresh(wq_watchdog_thresh);
5928 }
5929
5930 #else /* CONFIG_WQ_WATCHDOG */
5931
5932 static inline void wq_watchdog_init(void) { }
5933
5934 #endif /* CONFIG_WQ_WATCHDOG */
5935
5936 static void __init wq_numa_init(void)
5937 {
5938 cpumask_var_t *tbl;
5939 int node, cpu;
5940
5941 if (num_possible_nodes() <= 1)
5942 return;
5943
5944 if (wq_disable_numa) {
5945 pr_info("workqueue: NUMA affinity support disabled\n");
5946 return;
5947 }
5948
5949 for_each_possible_cpu(cpu) {
5950 if (WARN_ON(cpu_to_node(cpu) == NUMA_NO_NODE)) {
5951 pr_warn("workqueue: NUMA node mapping not available for cpu%d, disabling NUMA support\n", cpu);
5952 return;
5953 }
5954 }
5955
5956 wq_update_unbound_numa_attrs_buf = alloc_workqueue_attrs();
5957 BUG_ON(!wq_update_unbound_numa_attrs_buf);
5958
5959 /*
5960 * We want masks of possible CPUs of each node which isn't readily
5961 * available. Build one from cpu_to_node() which should have been
5962 * fully initialized by now.
5963 */
5964 tbl = kcalloc(nr_node_ids, sizeof(tbl[0]), GFP_KERNEL);
5965 BUG_ON(!tbl);
5966
5967 for_each_node(node)
5968 BUG_ON(!zalloc_cpumask_var_node(&tbl[node], GFP_KERNEL,
5969 node_online(node) ? node : NUMA_NO_NODE));
5970
5971 for_each_possible_cpu(cpu) {
5972 node = cpu_to_node(cpu);
5973 cpumask_set_cpu(cpu, tbl[node]);
5974 }
5975
5976 wq_numa_possible_cpumask = tbl;
5977 wq_numa_enabled = true;
5978 }
5979
5980 /**
5981 * workqueue_init_early - early init for workqueue subsystem
5982 *
5983 * This is the first half of two-staged workqueue subsystem initialization
5984 * and invoked as soon as the bare basics - memory allocation, cpumasks and
5985 * idr are up. It sets up all the data structures and system workqueues
5986 * and allows early boot code to create workqueues and queue/cancel work
5987 * items. Actual work item execution starts only after kthreads can be
5988 * created and scheduled right before early initcalls.
5989 */
5990 void __init workqueue_init_early(void)
5991 {
5992 int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL };
5993 int hk_flags = HK_FLAG_DOMAIN | HK_FLAG_WQ;
5994 int i, cpu;
5995
5996 BUILD_BUG_ON(__alignof__(struct pool_workqueue) < __alignof__(long long));
5997
5998 BUG_ON(!alloc_cpumask_var(&wq_unbound_cpumask, GFP_KERNEL));
5999 cpumask_copy(wq_unbound_cpumask, housekeeping_cpumask(hk_flags));
6000
6001 pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC);
6002
6003 /* initialize CPU pools */
6004 for_each_possible_cpu(cpu) {
6005 struct worker_pool *pool;
6006
6007 i = 0;
6008 for_each_cpu_worker_pool(pool, cpu) {
6009 BUG_ON(init_worker_pool(pool));
6010 pool->cpu = cpu;
6011 cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu));
6012 pool->attrs->nice = std_nice[i++];
6013 pool->node = cpu_to_node(cpu);
6014
6015 /* alloc pool ID */
6016 mutex_lock(&wq_pool_mutex);
6017 BUG_ON(worker_pool_assign_id(pool));
6018 mutex_unlock(&wq_pool_mutex);
6019 }
6020 }
6021
6022 /* create default unbound and ordered wq attrs */
6023 for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
6024 struct workqueue_attrs *attrs;
6025
6026 BUG_ON(!(attrs = alloc_workqueue_attrs()));
6027 attrs->nice = std_nice[i];
6028 unbound_std_wq_attrs[i] = attrs;
6029
6030 /*
6031 * An ordered wq should have only one pwq as ordering is
6032 * guaranteed by max_active which is enforced by pwqs.
6033 * Turn off NUMA so that dfl_pwq is used for all nodes.
6034 */
6035 BUG_ON(!(attrs = alloc_workqueue_attrs()));
6036 attrs->nice = std_nice[i];
6037 attrs->no_numa = true;
6038 ordered_wq_attrs[i] = attrs;
6039 }
6040
6041 system_wq = alloc_workqueue("events", 0, 0);
6042 system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
6043 system_long_wq = alloc_workqueue("events_long", 0, 0);
6044 system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
6045 WQ_UNBOUND_MAX_ACTIVE);
6046 system_freezable_wq = alloc_workqueue("events_freezable",
6047 WQ_FREEZABLE, 0);
6048 system_power_efficient_wq = alloc_workqueue("events_power_efficient",
6049 WQ_POWER_EFFICIENT, 0);
6050 system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_power_efficient",
6051 WQ_FREEZABLE | WQ_POWER_EFFICIENT,
6052 0);
6053 BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
6054 !system_unbound_wq || !system_freezable_wq ||
6055 !system_power_efficient_wq ||
6056 !system_freezable_power_efficient_wq);
6057 }
6058
6059 /**
6060 * workqueue_init - bring workqueue subsystem fully online
6061 *
6062 * This is the latter half of two-staged workqueue subsystem initialization
6063 * and invoked as soon as kthreads can be created and scheduled.
6064 * Workqueues have been created and work items queued on them, but there
6065 * are no kworkers executing the work items yet. Populate the worker pools
6066 * with the initial workers and enable future kworker creations.
6067 */
6068 void __init workqueue_init(void)
6069 {
6070 struct workqueue_struct *wq;
6071 struct worker_pool *pool;
6072 int cpu, bkt;
6073
6074 /*
6075 * It'd be simpler to initialize NUMA in workqueue_init_early() but
6076 * CPU to node mapping may not be available that early on some
6077 * archs such as power and arm64. As per-cpu pools created
6078 * previously could be missing node hint and unbound pools NUMA
6079 * affinity, fix them up.
6080 *
6081 * Also, while iterating workqueues, create rescuers if requested.
6082 */
6083 wq_numa_init();
6084
6085 mutex_lock(&wq_pool_mutex);
6086
6087 for_each_possible_cpu(cpu) {
6088 for_each_cpu_worker_pool(pool, cpu) {
6089 pool->node = cpu_to_node(cpu);
6090 }
6091 }
6092
6093 list_for_each_entry(wq, &workqueues, list) {
6094 wq_update_unbound_numa(wq, smp_processor_id(), true);
6095 WARN(init_rescuer(wq),
6096 "workqueue: failed to create early rescuer for %s",
6097 wq->name);
6098 }
6099
6100 mutex_unlock(&wq_pool_mutex);
6101
6102 /* create the initial workers */
6103 for_each_online_cpu(cpu) {
6104 for_each_cpu_worker_pool(pool, cpu) {
6105 pool->flags &= ~POOL_DISASSOCIATED;
6106 BUG_ON(!create_worker(pool));
6107 }
6108 }
6109
6110 hash_for_each(unbound_pool_hash, bkt, pool, hash_node)
6111 BUG_ON(!create_worker(pool));
6112
6113 wq_online = true;
6114 wq_watchdog_init();
6115 }