]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - kernel/workqueue.c
workqueue: convert worker_pool->worker_ida to idr and implement for_each_pool_worker()
[mirror_ubuntu-jammy-kernel.git] / kernel / workqueue.c
1 /*
2 * kernel/workqueue.c - generic async execution with shared worker pool
3 *
4 * Copyright (C) 2002 Ingo Molnar
5 *
6 * Derived from the taskqueue/keventd code by:
7 * David Woodhouse <dwmw2@infradead.org>
8 * Andrew Morton
9 * Kai Petzke <wpp@marie.physik.tu-berlin.de>
10 * Theodore Ts'o <tytso@mit.edu>
11 *
12 * Made to use alloc_percpu by Christoph Lameter.
13 *
14 * Copyright (C) 2010 SUSE Linux Products GmbH
15 * Copyright (C) 2010 Tejun Heo <tj@kernel.org>
16 *
17 * This is the generic async execution mechanism. Work items as are
18 * executed in process context. The worker pool is shared and
19 * automatically managed. There is one worker pool for each CPU and
20 * one extra for works which are better served by workers which are
21 * not bound to any specific CPU.
22 *
23 * Please read Documentation/workqueue.txt for details.
24 */
25
26 #include <linux/export.h>
27 #include <linux/kernel.h>
28 #include <linux/sched.h>
29 #include <linux/init.h>
30 #include <linux/signal.h>
31 #include <linux/completion.h>
32 #include <linux/workqueue.h>
33 #include <linux/slab.h>
34 #include <linux/cpu.h>
35 #include <linux/notifier.h>
36 #include <linux/kthread.h>
37 #include <linux/hardirq.h>
38 #include <linux/mempolicy.h>
39 #include <linux/freezer.h>
40 #include <linux/kallsyms.h>
41 #include <linux/debug_locks.h>
42 #include <linux/lockdep.h>
43 #include <linux/idr.h>
44 #include <linux/jhash.h>
45 #include <linux/hashtable.h>
46 #include <linux/rculist.h>
47
48 #include "workqueue_internal.h"
49
50 enum {
51 /*
52 * worker_pool flags
53 *
54 * A bound pool is either associated or disassociated with its CPU.
55 * While associated (!DISASSOCIATED), all workers are bound to the
56 * CPU and none has %WORKER_UNBOUND set and concurrency management
57 * is in effect.
58 *
59 * While DISASSOCIATED, the cpu may be offline and all workers have
60 * %WORKER_UNBOUND set and concurrency management disabled, and may
61 * be executing on any CPU. The pool behaves as an unbound one.
62 *
63 * Note that DISASSOCIATED should be flipped only while holding
64 * manager_mutex to avoid changing binding state while
65 * create_worker() is in progress.
66 */
67 POOL_MANAGE_WORKERS = 1 << 0, /* need to manage workers */
68 POOL_DISASSOCIATED = 1 << 2, /* cpu can't serve workers */
69 POOL_FREEZING = 1 << 3, /* freeze in progress */
70
71 /* worker flags */
72 WORKER_STARTED = 1 << 0, /* started */
73 WORKER_DIE = 1 << 1, /* die die die */
74 WORKER_IDLE = 1 << 2, /* is idle */
75 WORKER_PREP = 1 << 3, /* preparing to run works */
76 WORKER_CPU_INTENSIVE = 1 << 6, /* cpu intensive */
77 WORKER_UNBOUND = 1 << 7, /* worker is unbound */
78
79 WORKER_NOT_RUNNING = WORKER_PREP | WORKER_UNBOUND |
80 WORKER_CPU_INTENSIVE,
81
82 NR_STD_WORKER_POOLS = 2, /* # standard pools per cpu */
83
84 UNBOUND_POOL_HASH_ORDER = 6, /* hashed by pool->attrs */
85 BUSY_WORKER_HASH_ORDER = 6, /* 64 pointers */
86
87 MAX_IDLE_WORKERS_RATIO = 4, /* 1/4 of busy can be idle */
88 IDLE_WORKER_TIMEOUT = 300 * HZ, /* keep idle ones for 5 mins */
89
90 MAYDAY_INITIAL_TIMEOUT = HZ / 100 >= 2 ? HZ / 100 : 2,
91 /* call for help after 10ms
92 (min two ticks) */
93 MAYDAY_INTERVAL = HZ / 10, /* and then every 100ms */
94 CREATE_COOLDOWN = HZ, /* time to breath after fail */
95
96 /*
97 * Rescue workers are used only on emergencies and shared by
98 * all cpus. Give -20.
99 */
100 RESCUER_NICE_LEVEL = -20,
101 HIGHPRI_NICE_LEVEL = -20,
102 };
103
104 /*
105 * Structure fields follow one of the following exclusion rules.
106 *
107 * I: Modifiable by initialization/destruction paths and read-only for
108 * everyone else.
109 *
110 * P: Preemption protected. Disabling preemption is enough and should
111 * only be modified and accessed from the local cpu.
112 *
113 * L: pool->lock protected. Access with pool->lock held.
114 *
115 * X: During normal operation, modification requires pool->lock and should
116 * be done only from local cpu. Either disabling preemption on local
117 * cpu or grabbing pool->lock is enough for read access. If
118 * POOL_DISASSOCIATED is set, it's identical to L.
119 *
120 * F: wq->flush_mutex protected.
121 *
122 * MG: pool->manager_mutex and pool->lock protected. Writes require both
123 * locks. Reads can happen under either lock.
124 *
125 * WQ: wq_mutex protected.
126 *
127 * WR: wq_mutex protected for writes. Sched-RCU protected for reads.
128 *
129 * PW: pwq_lock protected.
130 *
131 * FR: wq->flush_mutex and pwq_lock protected for writes. Sched-RCU
132 * protected for reads.
133 *
134 * MD: wq_mayday_lock protected.
135 */
136
137 /* struct worker is defined in workqueue_internal.h */
138
139 struct worker_pool {
140 spinlock_t lock; /* the pool lock */
141 int cpu; /* I: the associated cpu */
142 int id; /* I: pool ID */
143 unsigned int flags; /* X: flags */
144
145 struct list_head worklist; /* L: list of pending works */
146 int nr_workers; /* L: total number of workers */
147
148 /* nr_idle includes the ones off idle_list for rebinding */
149 int nr_idle; /* L: currently idle ones */
150
151 struct list_head idle_list; /* X: list of idle workers */
152 struct timer_list idle_timer; /* L: worker idle timeout */
153 struct timer_list mayday_timer; /* L: SOS timer for workers */
154
155 /* a workers is either on busy_hash or idle_list, or the manager */
156 DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
157 /* L: hash of busy workers */
158
159 /* see manage_workers() for details on the two manager mutexes */
160 struct mutex manager_arb; /* manager arbitration */
161 struct mutex manager_mutex; /* manager exclusion */
162 struct idr worker_idr; /* MG: worker IDs and iteration */
163
164 struct workqueue_attrs *attrs; /* I: worker attributes */
165 struct hlist_node hash_node; /* WQ: unbound_pool_hash node */
166 int refcnt; /* WQ: refcnt for unbound pools */
167
168 /*
169 * The current concurrency level. As it's likely to be accessed
170 * from other CPUs during try_to_wake_up(), put it in a separate
171 * cacheline.
172 */
173 atomic_t nr_running ____cacheline_aligned_in_smp;
174
175 /*
176 * Destruction of pool is sched-RCU protected to allow dereferences
177 * from get_work_pool().
178 */
179 struct rcu_head rcu;
180 } ____cacheline_aligned_in_smp;
181
182 /*
183 * The per-pool workqueue. While queued, the lower WORK_STRUCT_FLAG_BITS
184 * of work_struct->data are used for flags and the remaining high bits
185 * point to the pwq; thus, pwqs need to be aligned at two's power of the
186 * number of flag bits.
187 */
188 struct pool_workqueue {
189 struct worker_pool *pool; /* I: the associated pool */
190 struct workqueue_struct *wq; /* I: the owning workqueue */
191 int work_color; /* L: current color */
192 int flush_color; /* L: flushing color */
193 int refcnt; /* L: reference count */
194 int nr_in_flight[WORK_NR_COLORS];
195 /* L: nr of in_flight works */
196 int nr_active; /* L: nr of active works */
197 int max_active; /* L: max active works */
198 struct list_head delayed_works; /* L: delayed works */
199 struct list_head pwqs_node; /* FR: node on wq->pwqs */
200 struct list_head mayday_node; /* MD: node on wq->maydays */
201
202 /*
203 * Release of unbound pwq is punted to system_wq. See put_pwq()
204 * and pwq_unbound_release_workfn() for details. pool_workqueue
205 * itself is also sched-RCU protected so that the first pwq can be
206 * determined without grabbing pwq_lock.
207 */
208 struct work_struct unbound_release_work;
209 struct rcu_head rcu;
210 } __aligned(1 << WORK_STRUCT_FLAG_BITS);
211
212 /*
213 * Structure used to wait for workqueue flush.
214 */
215 struct wq_flusher {
216 struct list_head list; /* F: list of flushers */
217 int flush_color; /* F: flush color waiting for */
218 struct completion done; /* flush completion */
219 };
220
221 struct wq_device;
222
223 /*
224 * The externally visible workqueue. It relays the issued work items to
225 * the appropriate worker_pool through its pool_workqueues.
226 */
227 struct workqueue_struct {
228 unsigned int flags; /* WQ: WQ_* flags */
229 struct pool_workqueue __percpu *cpu_pwqs; /* I: per-cpu pwq's */
230 struct list_head pwqs; /* FR: all pwqs of this wq */
231 struct list_head list; /* WQ: list of all workqueues */
232
233 struct mutex flush_mutex; /* protects wq flushing */
234 int work_color; /* F: current work color */
235 int flush_color; /* F: current flush color */
236 atomic_t nr_pwqs_to_flush; /* flush in progress */
237 struct wq_flusher *first_flusher; /* F: first flusher */
238 struct list_head flusher_queue; /* F: flush waiters */
239 struct list_head flusher_overflow; /* F: flush overflow list */
240
241 struct list_head maydays; /* MD: pwqs requesting rescue */
242 struct worker *rescuer; /* I: rescue worker */
243
244 int nr_drainers; /* WQ: drain in progress */
245 int saved_max_active; /* PW: saved pwq max_active */
246
247 #ifdef CONFIG_SYSFS
248 struct wq_device *wq_dev; /* I: for sysfs interface */
249 #endif
250 #ifdef CONFIG_LOCKDEP
251 struct lockdep_map lockdep_map;
252 #endif
253 char name[]; /* I: workqueue name */
254 };
255
256 static struct kmem_cache *pwq_cache;
257
258 static DEFINE_MUTEX(wq_mutex); /* protects workqueues and pools */
259 static DEFINE_SPINLOCK(pwq_lock); /* protects pool_workqueues */
260 static DEFINE_SPINLOCK(wq_mayday_lock); /* protects wq->maydays list */
261
262 static LIST_HEAD(workqueues); /* WQ: list of all workqueues */
263 static bool workqueue_freezing; /* WQ: have wqs started freezing? */
264
265 /* the per-cpu worker pools */
266 static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS],
267 cpu_worker_pools);
268
269 static DEFINE_IDR(worker_pool_idr); /* WR: idr of all pools */
270
271 /* WQ: hash of all unbound pools keyed by pool->attrs */
272 static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER);
273
274 /* I: attributes used when instantiating standard unbound pools on demand */
275 static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS];
276
277 struct workqueue_struct *system_wq __read_mostly;
278 EXPORT_SYMBOL_GPL(system_wq);
279 struct workqueue_struct *system_highpri_wq __read_mostly;
280 EXPORT_SYMBOL_GPL(system_highpri_wq);
281 struct workqueue_struct *system_long_wq __read_mostly;
282 EXPORT_SYMBOL_GPL(system_long_wq);
283 struct workqueue_struct *system_unbound_wq __read_mostly;
284 EXPORT_SYMBOL_GPL(system_unbound_wq);
285 struct workqueue_struct *system_freezable_wq __read_mostly;
286 EXPORT_SYMBOL_GPL(system_freezable_wq);
287
288 static int worker_thread(void *__worker);
289 static void copy_workqueue_attrs(struct workqueue_attrs *to,
290 const struct workqueue_attrs *from);
291
292 #define CREATE_TRACE_POINTS
293 #include <trace/events/workqueue.h>
294
295 #define assert_rcu_or_wq_mutex() \
296 rcu_lockdep_assert(rcu_read_lock_sched_held() || \
297 lockdep_is_held(&wq_mutex), \
298 "sched RCU or wq_mutex should be held")
299
300 #define assert_rcu_or_pwq_lock() \
301 rcu_lockdep_assert(rcu_read_lock_sched_held() || \
302 lockdep_is_held(&pwq_lock), \
303 "sched RCU or pwq_lock should be held")
304
305 #ifdef CONFIG_LOCKDEP
306 #define assert_manager_or_pool_lock(pool) \
307 WARN_ONCE(!lockdep_is_held(&(pool)->manager_mutex) && \
308 !lockdep_is_held(&(pool)->lock), \
309 "pool->manager_mutex or ->lock should be held")
310 #else
311 #define assert_manager_or_pool_lock(pool) do { } while (0)
312 #endif
313
314 #define for_each_cpu_worker_pool(pool, cpu) \
315 for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0]; \
316 (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
317 (pool)++)
318
319 #define for_each_busy_worker(worker, i, pool) \
320 hash_for_each(pool->busy_hash, i, worker, hentry)
321
322 /**
323 * for_each_pool - iterate through all worker_pools in the system
324 * @pool: iteration cursor
325 * @pi: integer used for iteration
326 *
327 * This must be called either with wq_mutex held or sched RCU read locked.
328 * If the pool needs to be used beyond the locking in effect, the caller is
329 * responsible for guaranteeing that the pool stays online.
330 *
331 * The if/else clause exists only for the lockdep assertion and can be
332 * ignored.
333 */
334 #define for_each_pool(pool, pi) \
335 idr_for_each_entry(&worker_pool_idr, pool, pi) \
336 if (({ assert_rcu_or_wq_mutex(); false; })) { } \
337 else
338
339 /**
340 * for_each_pool_worker - iterate through all workers of a worker_pool
341 * @worker: iteration cursor
342 * @wi: integer used for iteration
343 * @pool: worker_pool to iterate workers of
344 *
345 * This must be called with either @pool->manager_mutex or ->lock held.
346 *
347 * The if/else clause exists only for the lockdep assertion and can be
348 * ignored.
349 */
350 #define for_each_pool_worker(worker, wi, pool) \
351 idr_for_each_entry(&(pool)->worker_idr, (worker), (wi)) \
352 if (({ assert_manager_or_pool_lock((pool)); false; })) { } \
353 else
354
355 /**
356 * for_each_pwq - iterate through all pool_workqueues of the specified workqueue
357 * @pwq: iteration cursor
358 * @wq: the target workqueue
359 *
360 * This must be called either with pwq_lock held or sched RCU read locked.
361 * If the pwq needs to be used beyond the locking in effect, the caller is
362 * responsible for guaranteeing that the pwq stays online.
363 *
364 * The if/else clause exists only for the lockdep assertion and can be
365 * ignored.
366 */
367 #define for_each_pwq(pwq, wq) \
368 list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node) \
369 if (({ assert_rcu_or_pwq_lock(); false; })) { } \
370 else
371
372 #ifdef CONFIG_DEBUG_OBJECTS_WORK
373
374 static struct debug_obj_descr work_debug_descr;
375
376 static void *work_debug_hint(void *addr)
377 {
378 return ((struct work_struct *) addr)->func;
379 }
380
381 /*
382 * fixup_init is called when:
383 * - an active object is initialized
384 */
385 static int work_fixup_init(void *addr, enum debug_obj_state state)
386 {
387 struct work_struct *work = addr;
388
389 switch (state) {
390 case ODEBUG_STATE_ACTIVE:
391 cancel_work_sync(work);
392 debug_object_init(work, &work_debug_descr);
393 return 1;
394 default:
395 return 0;
396 }
397 }
398
399 /*
400 * fixup_activate is called when:
401 * - an active object is activated
402 * - an unknown object is activated (might be a statically initialized object)
403 */
404 static int work_fixup_activate(void *addr, enum debug_obj_state state)
405 {
406 struct work_struct *work = addr;
407
408 switch (state) {
409
410 case ODEBUG_STATE_NOTAVAILABLE:
411 /*
412 * This is not really a fixup. The work struct was
413 * statically initialized. We just make sure that it
414 * is tracked in the object tracker.
415 */
416 if (test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work))) {
417 debug_object_init(work, &work_debug_descr);
418 debug_object_activate(work, &work_debug_descr);
419 return 0;
420 }
421 WARN_ON_ONCE(1);
422 return 0;
423
424 case ODEBUG_STATE_ACTIVE:
425 WARN_ON(1);
426
427 default:
428 return 0;
429 }
430 }
431
432 /*
433 * fixup_free is called when:
434 * - an active object is freed
435 */
436 static int work_fixup_free(void *addr, enum debug_obj_state state)
437 {
438 struct work_struct *work = addr;
439
440 switch (state) {
441 case ODEBUG_STATE_ACTIVE:
442 cancel_work_sync(work);
443 debug_object_free(work, &work_debug_descr);
444 return 1;
445 default:
446 return 0;
447 }
448 }
449
450 static struct debug_obj_descr work_debug_descr = {
451 .name = "work_struct",
452 .debug_hint = work_debug_hint,
453 .fixup_init = work_fixup_init,
454 .fixup_activate = work_fixup_activate,
455 .fixup_free = work_fixup_free,
456 };
457
458 static inline void debug_work_activate(struct work_struct *work)
459 {
460 debug_object_activate(work, &work_debug_descr);
461 }
462
463 static inline void debug_work_deactivate(struct work_struct *work)
464 {
465 debug_object_deactivate(work, &work_debug_descr);
466 }
467
468 void __init_work(struct work_struct *work, int onstack)
469 {
470 if (onstack)
471 debug_object_init_on_stack(work, &work_debug_descr);
472 else
473 debug_object_init(work, &work_debug_descr);
474 }
475 EXPORT_SYMBOL_GPL(__init_work);
476
477 void destroy_work_on_stack(struct work_struct *work)
478 {
479 debug_object_free(work, &work_debug_descr);
480 }
481 EXPORT_SYMBOL_GPL(destroy_work_on_stack);
482
483 #else
484 static inline void debug_work_activate(struct work_struct *work) { }
485 static inline void debug_work_deactivate(struct work_struct *work) { }
486 #endif
487
488 /* allocate ID and assign it to @pool */
489 static int worker_pool_assign_id(struct worker_pool *pool)
490 {
491 int ret;
492
493 lockdep_assert_held(&wq_mutex);
494
495 do {
496 if (!idr_pre_get(&worker_pool_idr, GFP_KERNEL))
497 return -ENOMEM;
498 ret = idr_get_new(&worker_pool_idr, pool, &pool->id);
499 } while (ret == -EAGAIN);
500
501 return ret;
502 }
503
504 /**
505 * first_pwq - return the first pool_workqueue of the specified workqueue
506 * @wq: the target workqueue
507 *
508 * This must be called either with pwq_lock held or sched RCU read locked.
509 * If the pwq needs to be used beyond the locking in effect, the caller is
510 * responsible for guaranteeing that the pwq stays online.
511 */
512 static struct pool_workqueue *first_pwq(struct workqueue_struct *wq)
513 {
514 assert_rcu_or_pwq_lock();
515 return list_first_or_null_rcu(&wq->pwqs, struct pool_workqueue,
516 pwqs_node);
517 }
518
519 static unsigned int work_color_to_flags(int color)
520 {
521 return color << WORK_STRUCT_COLOR_SHIFT;
522 }
523
524 static int get_work_color(struct work_struct *work)
525 {
526 return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
527 ((1 << WORK_STRUCT_COLOR_BITS) - 1);
528 }
529
530 static int work_next_color(int color)
531 {
532 return (color + 1) % WORK_NR_COLORS;
533 }
534
535 /*
536 * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
537 * contain the pointer to the queued pwq. Once execution starts, the flag
538 * is cleared and the high bits contain OFFQ flags and pool ID.
539 *
540 * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling()
541 * and clear_work_data() can be used to set the pwq, pool or clear
542 * work->data. These functions should only be called while the work is
543 * owned - ie. while the PENDING bit is set.
544 *
545 * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
546 * corresponding to a work. Pool is available once the work has been
547 * queued anywhere after initialization until it is sync canceled. pwq is
548 * available only while the work item is queued.
549 *
550 * %WORK_OFFQ_CANCELING is used to mark a work item which is being
551 * canceled. While being canceled, a work item may have its PENDING set
552 * but stay off timer and worklist for arbitrarily long and nobody should
553 * try to steal the PENDING bit.
554 */
555 static inline void set_work_data(struct work_struct *work, unsigned long data,
556 unsigned long flags)
557 {
558 WARN_ON_ONCE(!work_pending(work));
559 atomic_long_set(&work->data, data | flags | work_static(work));
560 }
561
562 static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq,
563 unsigned long extra_flags)
564 {
565 set_work_data(work, (unsigned long)pwq,
566 WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags);
567 }
568
569 static void set_work_pool_and_keep_pending(struct work_struct *work,
570 int pool_id)
571 {
572 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT,
573 WORK_STRUCT_PENDING);
574 }
575
576 static void set_work_pool_and_clear_pending(struct work_struct *work,
577 int pool_id)
578 {
579 /*
580 * The following wmb is paired with the implied mb in
581 * test_and_set_bit(PENDING) and ensures all updates to @work made
582 * here are visible to and precede any updates by the next PENDING
583 * owner.
584 */
585 smp_wmb();
586 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0);
587 }
588
589 static void clear_work_data(struct work_struct *work)
590 {
591 smp_wmb(); /* see set_work_pool_and_clear_pending() */
592 set_work_data(work, WORK_STRUCT_NO_POOL, 0);
593 }
594
595 static struct pool_workqueue *get_work_pwq(struct work_struct *work)
596 {
597 unsigned long data = atomic_long_read(&work->data);
598
599 if (data & WORK_STRUCT_PWQ)
600 return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
601 else
602 return NULL;
603 }
604
605 /**
606 * get_work_pool - return the worker_pool a given work was associated with
607 * @work: the work item of interest
608 *
609 * Return the worker_pool @work was last associated with. %NULL if none.
610 *
611 * Pools are created and destroyed under wq_mutex, and allows read access
612 * under sched-RCU read lock. As such, this function should be called
613 * under wq_mutex or with preemption disabled.
614 *
615 * All fields of the returned pool are accessible as long as the above
616 * mentioned locking is in effect. If the returned pool needs to be used
617 * beyond the critical section, the caller is responsible for ensuring the
618 * returned pool is and stays online.
619 */
620 static struct worker_pool *get_work_pool(struct work_struct *work)
621 {
622 unsigned long data = atomic_long_read(&work->data);
623 int pool_id;
624
625 assert_rcu_or_wq_mutex();
626
627 if (data & WORK_STRUCT_PWQ)
628 return ((struct pool_workqueue *)
629 (data & WORK_STRUCT_WQ_DATA_MASK))->pool;
630
631 pool_id = data >> WORK_OFFQ_POOL_SHIFT;
632 if (pool_id == WORK_OFFQ_POOL_NONE)
633 return NULL;
634
635 return idr_find(&worker_pool_idr, pool_id);
636 }
637
638 /**
639 * get_work_pool_id - return the worker pool ID a given work is associated with
640 * @work: the work item of interest
641 *
642 * Return the worker_pool ID @work was last associated with.
643 * %WORK_OFFQ_POOL_NONE if none.
644 */
645 static int get_work_pool_id(struct work_struct *work)
646 {
647 unsigned long data = atomic_long_read(&work->data);
648
649 if (data & WORK_STRUCT_PWQ)
650 return ((struct pool_workqueue *)
651 (data & WORK_STRUCT_WQ_DATA_MASK))->pool->id;
652
653 return data >> WORK_OFFQ_POOL_SHIFT;
654 }
655
656 static void mark_work_canceling(struct work_struct *work)
657 {
658 unsigned long pool_id = get_work_pool_id(work);
659
660 pool_id <<= WORK_OFFQ_POOL_SHIFT;
661 set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING);
662 }
663
664 static bool work_is_canceling(struct work_struct *work)
665 {
666 unsigned long data = atomic_long_read(&work->data);
667
668 return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING);
669 }
670
671 /*
672 * Policy functions. These define the policies on how the global worker
673 * pools are managed. Unless noted otherwise, these functions assume that
674 * they're being called with pool->lock held.
675 */
676
677 static bool __need_more_worker(struct worker_pool *pool)
678 {
679 return !atomic_read(&pool->nr_running);
680 }
681
682 /*
683 * Need to wake up a worker? Called from anything but currently
684 * running workers.
685 *
686 * Note that, because unbound workers never contribute to nr_running, this
687 * function will always return %true for unbound pools as long as the
688 * worklist isn't empty.
689 */
690 static bool need_more_worker(struct worker_pool *pool)
691 {
692 return !list_empty(&pool->worklist) && __need_more_worker(pool);
693 }
694
695 /* Can I start working? Called from busy but !running workers. */
696 static bool may_start_working(struct worker_pool *pool)
697 {
698 return pool->nr_idle;
699 }
700
701 /* Do I need to keep working? Called from currently running workers. */
702 static bool keep_working(struct worker_pool *pool)
703 {
704 return !list_empty(&pool->worklist) &&
705 atomic_read(&pool->nr_running) <= 1;
706 }
707
708 /* Do we need a new worker? Called from manager. */
709 static bool need_to_create_worker(struct worker_pool *pool)
710 {
711 return need_more_worker(pool) && !may_start_working(pool);
712 }
713
714 /* Do I need to be the manager? */
715 static bool need_to_manage_workers(struct worker_pool *pool)
716 {
717 return need_to_create_worker(pool) ||
718 (pool->flags & POOL_MANAGE_WORKERS);
719 }
720
721 /* Do we have too many workers and should some go away? */
722 static bool too_many_workers(struct worker_pool *pool)
723 {
724 bool managing = mutex_is_locked(&pool->manager_arb);
725 int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
726 int nr_busy = pool->nr_workers - nr_idle;
727
728 /*
729 * nr_idle and idle_list may disagree if idle rebinding is in
730 * progress. Never return %true if idle_list is empty.
731 */
732 if (list_empty(&pool->idle_list))
733 return false;
734
735 return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
736 }
737
738 /*
739 * Wake up functions.
740 */
741
742 /* Return the first worker. Safe with preemption disabled */
743 static struct worker *first_worker(struct worker_pool *pool)
744 {
745 if (unlikely(list_empty(&pool->idle_list)))
746 return NULL;
747
748 return list_first_entry(&pool->idle_list, struct worker, entry);
749 }
750
751 /**
752 * wake_up_worker - wake up an idle worker
753 * @pool: worker pool to wake worker from
754 *
755 * Wake up the first idle worker of @pool.
756 *
757 * CONTEXT:
758 * spin_lock_irq(pool->lock).
759 */
760 static void wake_up_worker(struct worker_pool *pool)
761 {
762 struct worker *worker = first_worker(pool);
763
764 if (likely(worker))
765 wake_up_process(worker->task);
766 }
767
768 /**
769 * wq_worker_waking_up - a worker is waking up
770 * @task: task waking up
771 * @cpu: CPU @task is waking up to
772 *
773 * This function is called during try_to_wake_up() when a worker is
774 * being awoken.
775 *
776 * CONTEXT:
777 * spin_lock_irq(rq->lock)
778 */
779 void wq_worker_waking_up(struct task_struct *task, int cpu)
780 {
781 struct worker *worker = kthread_data(task);
782
783 if (!(worker->flags & WORKER_NOT_RUNNING)) {
784 WARN_ON_ONCE(worker->pool->cpu != cpu);
785 atomic_inc(&worker->pool->nr_running);
786 }
787 }
788
789 /**
790 * wq_worker_sleeping - a worker is going to sleep
791 * @task: task going to sleep
792 * @cpu: CPU in question, must be the current CPU number
793 *
794 * This function is called during schedule() when a busy worker is
795 * going to sleep. Worker on the same cpu can be woken up by
796 * returning pointer to its task.
797 *
798 * CONTEXT:
799 * spin_lock_irq(rq->lock)
800 *
801 * RETURNS:
802 * Worker task on @cpu to wake up, %NULL if none.
803 */
804 struct task_struct *wq_worker_sleeping(struct task_struct *task, int cpu)
805 {
806 struct worker *worker = kthread_data(task), *to_wakeup = NULL;
807 struct worker_pool *pool;
808
809 /*
810 * Rescuers, which may not have all the fields set up like normal
811 * workers, also reach here, let's not access anything before
812 * checking NOT_RUNNING.
813 */
814 if (worker->flags & WORKER_NOT_RUNNING)
815 return NULL;
816
817 pool = worker->pool;
818
819 /* this can only happen on the local cpu */
820 if (WARN_ON_ONCE(cpu != raw_smp_processor_id()))
821 return NULL;
822
823 /*
824 * The counterpart of the following dec_and_test, implied mb,
825 * worklist not empty test sequence is in insert_work().
826 * Please read comment there.
827 *
828 * NOT_RUNNING is clear. This means that we're bound to and
829 * running on the local cpu w/ rq lock held and preemption
830 * disabled, which in turn means that none else could be
831 * manipulating idle_list, so dereferencing idle_list without pool
832 * lock is safe.
833 */
834 if (atomic_dec_and_test(&pool->nr_running) &&
835 !list_empty(&pool->worklist))
836 to_wakeup = first_worker(pool);
837 return to_wakeup ? to_wakeup->task : NULL;
838 }
839
840 /**
841 * worker_set_flags - set worker flags and adjust nr_running accordingly
842 * @worker: self
843 * @flags: flags to set
844 * @wakeup: wakeup an idle worker if necessary
845 *
846 * Set @flags in @worker->flags and adjust nr_running accordingly. If
847 * nr_running becomes zero and @wakeup is %true, an idle worker is
848 * woken up.
849 *
850 * CONTEXT:
851 * spin_lock_irq(pool->lock)
852 */
853 static inline void worker_set_flags(struct worker *worker, unsigned int flags,
854 bool wakeup)
855 {
856 struct worker_pool *pool = worker->pool;
857
858 WARN_ON_ONCE(worker->task != current);
859
860 /*
861 * If transitioning into NOT_RUNNING, adjust nr_running and
862 * wake up an idle worker as necessary if requested by
863 * @wakeup.
864 */
865 if ((flags & WORKER_NOT_RUNNING) &&
866 !(worker->flags & WORKER_NOT_RUNNING)) {
867 if (wakeup) {
868 if (atomic_dec_and_test(&pool->nr_running) &&
869 !list_empty(&pool->worklist))
870 wake_up_worker(pool);
871 } else
872 atomic_dec(&pool->nr_running);
873 }
874
875 worker->flags |= flags;
876 }
877
878 /**
879 * worker_clr_flags - clear worker flags and adjust nr_running accordingly
880 * @worker: self
881 * @flags: flags to clear
882 *
883 * Clear @flags in @worker->flags and adjust nr_running accordingly.
884 *
885 * CONTEXT:
886 * spin_lock_irq(pool->lock)
887 */
888 static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
889 {
890 struct worker_pool *pool = worker->pool;
891 unsigned int oflags = worker->flags;
892
893 WARN_ON_ONCE(worker->task != current);
894
895 worker->flags &= ~flags;
896
897 /*
898 * If transitioning out of NOT_RUNNING, increment nr_running. Note
899 * that the nested NOT_RUNNING is not a noop. NOT_RUNNING is mask
900 * of multiple flags, not a single flag.
901 */
902 if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
903 if (!(worker->flags & WORKER_NOT_RUNNING))
904 atomic_inc(&pool->nr_running);
905 }
906
907 /**
908 * find_worker_executing_work - find worker which is executing a work
909 * @pool: pool of interest
910 * @work: work to find worker for
911 *
912 * Find a worker which is executing @work on @pool by searching
913 * @pool->busy_hash which is keyed by the address of @work. For a worker
914 * to match, its current execution should match the address of @work and
915 * its work function. This is to avoid unwanted dependency between
916 * unrelated work executions through a work item being recycled while still
917 * being executed.
918 *
919 * This is a bit tricky. A work item may be freed once its execution
920 * starts and nothing prevents the freed area from being recycled for
921 * another work item. If the same work item address ends up being reused
922 * before the original execution finishes, workqueue will identify the
923 * recycled work item as currently executing and make it wait until the
924 * current execution finishes, introducing an unwanted dependency.
925 *
926 * This function checks the work item address and work function to avoid
927 * false positives. Note that this isn't complete as one may construct a
928 * work function which can introduce dependency onto itself through a
929 * recycled work item. Well, if somebody wants to shoot oneself in the
930 * foot that badly, there's only so much we can do, and if such deadlock
931 * actually occurs, it should be easy to locate the culprit work function.
932 *
933 * CONTEXT:
934 * spin_lock_irq(pool->lock).
935 *
936 * RETURNS:
937 * Pointer to worker which is executing @work if found, NULL
938 * otherwise.
939 */
940 static struct worker *find_worker_executing_work(struct worker_pool *pool,
941 struct work_struct *work)
942 {
943 struct worker *worker;
944
945 hash_for_each_possible(pool->busy_hash, worker, hentry,
946 (unsigned long)work)
947 if (worker->current_work == work &&
948 worker->current_func == work->func)
949 return worker;
950
951 return NULL;
952 }
953
954 /**
955 * move_linked_works - move linked works to a list
956 * @work: start of series of works to be scheduled
957 * @head: target list to append @work to
958 * @nextp: out paramter for nested worklist walking
959 *
960 * Schedule linked works starting from @work to @head. Work series to
961 * be scheduled starts at @work and includes any consecutive work with
962 * WORK_STRUCT_LINKED set in its predecessor.
963 *
964 * If @nextp is not NULL, it's updated to point to the next work of
965 * the last scheduled work. This allows move_linked_works() to be
966 * nested inside outer list_for_each_entry_safe().
967 *
968 * CONTEXT:
969 * spin_lock_irq(pool->lock).
970 */
971 static void move_linked_works(struct work_struct *work, struct list_head *head,
972 struct work_struct **nextp)
973 {
974 struct work_struct *n;
975
976 /*
977 * Linked worklist will always end before the end of the list,
978 * use NULL for list head.
979 */
980 list_for_each_entry_safe_from(work, n, NULL, entry) {
981 list_move_tail(&work->entry, head);
982 if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
983 break;
984 }
985
986 /*
987 * If we're already inside safe list traversal and have moved
988 * multiple works to the scheduled queue, the next position
989 * needs to be updated.
990 */
991 if (nextp)
992 *nextp = n;
993 }
994
995 /**
996 * get_pwq - get an extra reference on the specified pool_workqueue
997 * @pwq: pool_workqueue to get
998 *
999 * Obtain an extra reference on @pwq. The caller should guarantee that
1000 * @pwq has positive refcnt and be holding the matching pool->lock.
1001 */
1002 static void get_pwq(struct pool_workqueue *pwq)
1003 {
1004 lockdep_assert_held(&pwq->pool->lock);
1005 WARN_ON_ONCE(pwq->refcnt <= 0);
1006 pwq->refcnt++;
1007 }
1008
1009 /**
1010 * put_pwq - put a pool_workqueue reference
1011 * @pwq: pool_workqueue to put
1012 *
1013 * Drop a reference of @pwq. If its refcnt reaches zero, schedule its
1014 * destruction. The caller should be holding the matching pool->lock.
1015 */
1016 static void put_pwq(struct pool_workqueue *pwq)
1017 {
1018 lockdep_assert_held(&pwq->pool->lock);
1019 if (likely(--pwq->refcnt))
1020 return;
1021 if (WARN_ON_ONCE(!(pwq->wq->flags & WQ_UNBOUND)))
1022 return;
1023 /*
1024 * @pwq can't be released under pool->lock, bounce to
1025 * pwq_unbound_release_workfn(). This never recurses on the same
1026 * pool->lock as this path is taken only for unbound workqueues and
1027 * the release work item is scheduled on a per-cpu workqueue. To
1028 * avoid lockdep warning, unbound pool->locks are given lockdep
1029 * subclass of 1 in get_unbound_pool().
1030 */
1031 schedule_work(&pwq->unbound_release_work);
1032 }
1033
1034 static void pwq_activate_delayed_work(struct work_struct *work)
1035 {
1036 struct pool_workqueue *pwq = get_work_pwq(work);
1037
1038 trace_workqueue_activate_work(work);
1039 move_linked_works(work, &pwq->pool->worklist, NULL);
1040 __clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
1041 pwq->nr_active++;
1042 }
1043
1044 static void pwq_activate_first_delayed(struct pool_workqueue *pwq)
1045 {
1046 struct work_struct *work = list_first_entry(&pwq->delayed_works,
1047 struct work_struct, entry);
1048
1049 pwq_activate_delayed_work(work);
1050 }
1051
1052 /**
1053 * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
1054 * @pwq: pwq of interest
1055 * @color: color of work which left the queue
1056 *
1057 * A work either has completed or is removed from pending queue,
1058 * decrement nr_in_flight of its pwq and handle workqueue flushing.
1059 *
1060 * CONTEXT:
1061 * spin_lock_irq(pool->lock).
1062 */
1063 static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, int color)
1064 {
1065 /* uncolored work items don't participate in flushing or nr_active */
1066 if (color == WORK_NO_COLOR)
1067 goto out_put;
1068
1069 pwq->nr_in_flight[color]--;
1070
1071 pwq->nr_active--;
1072 if (!list_empty(&pwq->delayed_works)) {
1073 /* one down, submit a delayed one */
1074 if (pwq->nr_active < pwq->max_active)
1075 pwq_activate_first_delayed(pwq);
1076 }
1077
1078 /* is flush in progress and are we at the flushing tip? */
1079 if (likely(pwq->flush_color != color))
1080 goto out_put;
1081
1082 /* are there still in-flight works? */
1083 if (pwq->nr_in_flight[color])
1084 goto out_put;
1085
1086 /* this pwq is done, clear flush_color */
1087 pwq->flush_color = -1;
1088
1089 /*
1090 * If this was the last pwq, wake up the first flusher. It
1091 * will handle the rest.
1092 */
1093 if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush))
1094 complete(&pwq->wq->first_flusher->done);
1095 out_put:
1096 put_pwq(pwq);
1097 }
1098
1099 /**
1100 * try_to_grab_pending - steal work item from worklist and disable irq
1101 * @work: work item to steal
1102 * @is_dwork: @work is a delayed_work
1103 * @flags: place to store irq state
1104 *
1105 * Try to grab PENDING bit of @work. This function can handle @work in any
1106 * stable state - idle, on timer or on worklist. Return values are
1107 *
1108 * 1 if @work was pending and we successfully stole PENDING
1109 * 0 if @work was idle and we claimed PENDING
1110 * -EAGAIN if PENDING couldn't be grabbed at the moment, safe to busy-retry
1111 * -ENOENT if someone else is canceling @work, this state may persist
1112 * for arbitrarily long
1113 *
1114 * On >= 0 return, the caller owns @work's PENDING bit. To avoid getting
1115 * interrupted while holding PENDING and @work off queue, irq must be
1116 * disabled on entry. This, combined with delayed_work->timer being
1117 * irqsafe, ensures that we return -EAGAIN for finite short period of time.
1118 *
1119 * On successful return, >= 0, irq is disabled and the caller is
1120 * responsible for releasing it using local_irq_restore(*@flags).
1121 *
1122 * This function is safe to call from any context including IRQ handler.
1123 */
1124 static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
1125 unsigned long *flags)
1126 {
1127 struct worker_pool *pool;
1128 struct pool_workqueue *pwq;
1129
1130 local_irq_save(*flags);
1131
1132 /* try to steal the timer if it exists */
1133 if (is_dwork) {
1134 struct delayed_work *dwork = to_delayed_work(work);
1135
1136 /*
1137 * dwork->timer is irqsafe. If del_timer() fails, it's
1138 * guaranteed that the timer is not queued anywhere and not
1139 * running on the local CPU.
1140 */
1141 if (likely(del_timer(&dwork->timer)))
1142 return 1;
1143 }
1144
1145 /* try to claim PENDING the normal way */
1146 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
1147 return 0;
1148
1149 /*
1150 * The queueing is in progress, or it is already queued. Try to
1151 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
1152 */
1153 pool = get_work_pool(work);
1154 if (!pool)
1155 goto fail;
1156
1157 spin_lock(&pool->lock);
1158 /*
1159 * work->data is guaranteed to point to pwq only while the work
1160 * item is queued on pwq->wq, and both updating work->data to point
1161 * to pwq on queueing and to pool on dequeueing are done under
1162 * pwq->pool->lock. This in turn guarantees that, if work->data
1163 * points to pwq which is associated with a locked pool, the work
1164 * item is currently queued on that pool.
1165 */
1166 pwq = get_work_pwq(work);
1167 if (pwq && pwq->pool == pool) {
1168 debug_work_deactivate(work);
1169
1170 /*
1171 * A delayed work item cannot be grabbed directly because
1172 * it might have linked NO_COLOR work items which, if left
1173 * on the delayed_list, will confuse pwq->nr_active
1174 * management later on and cause stall. Make sure the work
1175 * item is activated before grabbing.
1176 */
1177 if (*work_data_bits(work) & WORK_STRUCT_DELAYED)
1178 pwq_activate_delayed_work(work);
1179
1180 list_del_init(&work->entry);
1181 pwq_dec_nr_in_flight(get_work_pwq(work), get_work_color(work));
1182
1183 /* work->data points to pwq iff queued, point to pool */
1184 set_work_pool_and_keep_pending(work, pool->id);
1185
1186 spin_unlock(&pool->lock);
1187 return 1;
1188 }
1189 spin_unlock(&pool->lock);
1190 fail:
1191 local_irq_restore(*flags);
1192 if (work_is_canceling(work))
1193 return -ENOENT;
1194 cpu_relax();
1195 return -EAGAIN;
1196 }
1197
1198 /**
1199 * insert_work - insert a work into a pool
1200 * @pwq: pwq @work belongs to
1201 * @work: work to insert
1202 * @head: insertion point
1203 * @extra_flags: extra WORK_STRUCT_* flags to set
1204 *
1205 * Insert @work which belongs to @pwq after @head. @extra_flags is or'd to
1206 * work_struct flags.
1207 *
1208 * CONTEXT:
1209 * spin_lock_irq(pool->lock).
1210 */
1211 static void insert_work(struct pool_workqueue *pwq, struct work_struct *work,
1212 struct list_head *head, unsigned int extra_flags)
1213 {
1214 struct worker_pool *pool = pwq->pool;
1215
1216 /* we own @work, set data and link */
1217 set_work_pwq(work, pwq, extra_flags);
1218 list_add_tail(&work->entry, head);
1219 get_pwq(pwq);
1220
1221 /*
1222 * Ensure either wq_worker_sleeping() sees the above
1223 * list_add_tail() or we see zero nr_running to avoid workers lying
1224 * around lazily while there are works to be processed.
1225 */
1226 smp_mb();
1227
1228 if (__need_more_worker(pool))
1229 wake_up_worker(pool);
1230 }
1231
1232 /*
1233 * Test whether @work is being queued from another work executing on the
1234 * same workqueue.
1235 */
1236 static bool is_chained_work(struct workqueue_struct *wq)
1237 {
1238 struct worker *worker;
1239
1240 worker = current_wq_worker();
1241 /*
1242 * Return %true iff I'm a worker execuing a work item on @wq. If
1243 * I'm @worker, it's safe to dereference it without locking.
1244 */
1245 return worker && worker->current_pwq->wq == wq;
1246 }
1247
1248 static void __queue_work(int cpu, struct workqueue_struct *wq,
1249 struct work_struct *work)
1250 {
1251 struct pool_workqueue *pwq;
1252 struct worker_pool *last_pool;
1253 struct list_head *worklist;
1254 unsigned int work_flags;
1255 unsigned int req_cpu = cpu;
1256
1257 /*
1258 * While a work item is PENDING && off queue, a task trying to
1259 * steal the PENDING will busy-loop waiting for it to either get
1260 * queued or lose PENDING. Grabbing PENDING and queueing should
1261 * happen with IRQ disabled.
1262 */
1263 WARN_ON_ONCE(!irqs_disabled());
1264
1265 debug_work_activate(work);
1266
1267 /* if dying, only works from the same workqueue are allowed */
1268 if (unlikely(wq->flags & __WQ_DRAINING) &&
1269 WARN_ON_ONCE(!is_chained_work(wq)))
1270 return;
1271 retry:
1272 /* pwq which will be used unless @work is executing elsewhere */
1273 if (!(wq->flags & WQ_UNBOUND)) {
1274 if (cpu == WORK_CPU_UNBOUND)
1275 cpu = raw_smp_processor_id();
1276 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
1277 } else {
1278 pwq = first_pwq(wq);
1279 }
1280
1281 /*
1282 * If @work was previously on a different pool, it might still be
1283 * running there, in which case the work needs to be queued on that
1284 * pool to guarantee non-reentrancy.
1285 */
1286 last_pool = get_work_pool(work);
1287 if (last_pool && last_pool != pwq->pool) {
1288 struct worker *worker;
1289
1290 spin_lock(&last_pool->lock);
1291
1292 worker = find_worker_executing_work(last_pool, work);
1293
1294 if (worker && worker->current_pwq->wq == wq) {
1295 pwq = worker->current_pwq;
1296 } else {
1297 /* meh... not running there, queue here */
1298 spin_unlock(&last_pool->lock);
1299 spin_lock(&pwq->pool->lock);
1300 }
1301 } else {
1302 spin_lock(&pwq->pool->lock);
1303 }
1304
1305 /*
1306 * pwq is determined and locked. For unbound pools, we could have
1307 * raced with pwq release and it could already be dead. If its
1308 * refcnt is zero, repeat pwq selection. Note that pwqs never die
1309 * without another pwq replacing it as the first pwq or while a
1310 * work item is executing on it, so the retying is guaranteed to
1311 * make forward-progress.
1312 */
1313 if (unlikely(!pwq->refcnt)) {
1314 if (wq->flags & WQ_UNBOUND) {
1315 spin_unlock(&pwq->pool->lock);
1316 cpu_relax();
1317 goto retry;
1318 }
1319 /* oops */
1320 WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt",
1321 wq->name, cpu);
1322 }
1323
1324 /* pwq determined, queue */
1325 trace_workqueue_queue_work(req_cpu, pwq, work);
1326
1327 if (WARN_ON(!list_empty(&work->entry))) {
1328 spin_unlock(&pwq->pool->lock);
1329 return;
1330 }
1331
1332 pwq->nr_in_flight[pwq->work_color]++;
1333 work_flags = work_color_to_flags(pwq->work_color);
1334
1335 if (likely(pwq->nr_active < pwq->max_active)) {
1336 trace_workqueue_activate_work(work);
1337 pwq->nr_active++;
1338 worklist = &pwq->pool->worklist;
1339 } else {
1340 work_flags |= WORK_STRUCT_DELAYED;
1341 worklist = &pwq->delayed_works;
1342 }
1343
1344 insert_work(pwq, work, worklist, work_flags);
1345
1346 spin_unlock(&pwq->pool->lock);
1347 }
1348
1349 /**
1350 * queue_work_on - queue work on specific cpu
1351 * @cpu: CPU number to execute work on
1352 * @wq: workqueue to use
1353 * @work: work to queue
1354 *
1355 * Returns %false if @work was already on a queue, %true otherwise.
1356 *
1357 * We queue the work to a specific CPU, the caller must ensure it
1358 * can't go away.
1359 */
1360 bool queue_work_on(int cpu, struct workqueue_struct *wq,
1361 struct work_struct *work)
1362 {
1363 bool ret = false;
1364 unsigned long flags;
1365
1366 local_irq_save(flags);
1367
1368 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1369 __queue_work(cpu, wq, work);
1370 ret = true;
1371 }
1372
1373 local_irq_restore(flags);
1374 return ret;
1375 }
1376 EXPORT_SYMBOL_GPL(queue_work_on);
1377
1378 void delayed_work_timer_fn(unsigned long __data)
1379 {
1380 struct delayed_work *dwork = (struct delayed_work *)__data;
1381
1382 /* should have been called from irqsafe timer with irq already off */
1383 __queue_work(dwork->cpu, dwork->wq, &dwork->work);
1384 }
1385 EXPORT_SYMBOL(delayed_work_timer_fn);
1386
1387 static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
1388 struct delayed_work *dwork, unsigned long delay)
1389 {
1390 struct timer_list *timer = &dwork->timer;
1391 struct work_struct *work = &dwork->work;
1392
1393 WARN_ON_ONCE(timer->function != delayed_work_timer_fn ||
1394 timer->data != (unsigned long)dwork);
1395 WARN_ON_ONCE(timer_pending(timer));
1396 WARN_ON_ONCE(!list_empty(&work->entry));
1397
1398 /*
1399 * If @delay is 0, queue @dwork->work immediately. This is for
1400 * both optimization and correctness. The earliest @timer can
1401 * expire is on the closest next tick and delayed_work users depend
1402 * on that there's no such delay when @delay is 0.
1403 */
1404 if (!delay) {
1405 __queue_work(cpu, wq, &dwork->work);
1406 return;
1407 }
1408
1409 timer_stats_timer_set_start_info(&dwork->timer);
1410
1411 dwork->wq = wq;
1412 dwork->cpu = cpu;
1413 timer->expires = jiffies + delay;
1414
1415 if (unlikely(cpu != WORK_CPU_UNBOUND))
1416 add_timer_on(timer, cpu);
1417 else
1418 add_timer(timer);
1419 }
1420
1421 /**
1422 * queue_delayed_work_on - queue work on specific CPU after delay
1423 * @cpu: CPU number to execute work on
1424 * @wq: workqueue to use
1425 * @dwork: work to queue
1426 * @delay: number of jiffies to wait before queueing
1427 *
1428 * Returns %false if @work was already on a queue, %true otherwise. If
1429 * @delay is zero and @dwork is idle, it will be scheduled for immediate
1430 * execution.
1431 */
1432 bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
1433 struct delayed_work *dwork, unsigned long delay)
1434 {
1435 struct work_struct *work = &dwork->work;
1436 bool ret = false;
1437 unsigned long flags;
1438
1439 /* read the comment in __queue_work() */
1440 local_irq_save(flags);
1441
1442 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1443 __queue_delayed_work(cpu, wq, dwork, delay);
1444 ret = true;
1445 }
1446
1447 local_irq_restore(flags);
1448 return ret;
1449 }
1450 EXPORT_SYMBOL_GPL(queue_delayed_work_on);
1451
1452 /**
1453 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
1454 * @cpu: CPU number to execute work on
1455 * @wq: workqueue to use
1456 * @dwork: work to queue
1457 * @delay: number of jiffies to wait before queueing
1458 *
1459 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
1460 * modify @dwork's timer so that it expires after @delay. If @delay is
1461 * zero, @work is guaranteed to be scheduled immediately regardless of its
1462 * current state.
1463 *
1464 * Returns %false if @dwork was idle and queued, %true if @dwork was
1465 * pending and its timer was modified.
1466 *
1467 * This function is safe to call from any context including IRQ handler.
1468 * See try_to_grab_pending() for details.
1469 */
1470 bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
1471 struct delayed_work *dwork, unsigned long delay)
1472 {
1473 unsigned long flags;
1474 int ret;
1475
1476 do {
1477 ret = try_to_grab_pending(&dwork->work, true, &flags);
1478 } while (unlikely(ret == -EAGAIN));
1479
1480 if (likely(ret >= 0)) {
1481 __queue_delayed_work(cpu, wq, dwork, delay);
1482 local_irq_restore(flags);
1483 }
1484
1485 /* -ENOENT from try_to_grab_pending() becomes %true */
1486 return ret;
1487 }
1488 EXPORT_SYMBOL_GPL(mod_delayed_work_on);
1489
1490 /**
1491 * worker_enter_idle - enter idle state
1492 * @worker: worker which is entering idle state
1493 *
1494 * @worker is entering idle state. Update stats and idle timer if
1495 * necessary.
1496 *
1497 * LOCKING:
1498 * spin_lock_irq(pool->lock).
1499 */
1500 static void worker_enter_idle(struct worker *worker)
1501 {
1502 struct worker_pool *pool = worker->pool;
1503
1504 if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) ||
1505 WARN_ON_ONCE(!list_empty(&worker->entry) &&
1506 (worker->hentry.next || worker->hentry.pprev)))
1507 return;
1508
1509 /* can't use worker_set_flags(), also called from start_worker() */
1510 worker->flags |= WORKER_IDLE;
1511 pool->nr_idle++;
1512 worker->last_active = jiffies;
1513
1514 /* idle_list is LIFO */
1515 list_add(&worker->entry, &pool->idle_list);
1516
1517 if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
1518 mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
1519
1520 /*
1521 * Sanity check nr_running. Because wq_unbind_fn() releases
1522 * pool->lock between setting %WORKER_UNBOUND and zapping
1523 * nr_running, the warning may trigger spuriously. Check iff
1524 * unbind is not in progress.
1525 */
1526 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
1527 pool->nr_workers == pool->nr_idle &&
1528 atomic_read(&pool->nr_running));
1529 }
1530
1531 /**
1532 * worker_leave_idle - leave idle state
1533 * @worker: worker which is leaving idle state
1534 *
1535 * @worker is leaving idle state. Update stats.
1536 *
1537 * LOCKING:
1538 * spin_lock_irq(pool->lock).
1539 */
1540 static void worker_leave_idle(struct worker *worker)
1541 {
1542 struct worker_pool *pool = worker->pool;
1543
1544 if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE)))
1545 return;
1546 worker_clr_flags(worker, WORKER_IDLE);
1547 pool->nr_idle--;
1548 list_del_init(&worker->entry);
1549 }
1550
1551 /**
1552 * worker_maybe_bind_and_lock - try to bind %current to worker_pool and lock it
1553 * @pool: target worker_pool
1554 *
1555 * Bind %current to the cpu of @pool if it is associated and lock @pool.
1556 *
1557 * Works which are scheduled while the cpu is online must at least be
1558 * scheduled to a worker which is bound to the cpu so that if they are
1559 * flushed from cpu callbacks while cpu is going down, they are
1560 * guaranteed to execute on the cpu.
1561 *
1562 * This function is to be used by unbound workers and rescuers to bind
1563 * themselves to the target cpu and may race with cpu going down or
1564 * coming online. kthread_bind() can't be used because it may put the
1565 * worker to already dead cpu and set_cpus_allowed_ptr() can't be used
1566 * verbatim as it's best effort and blocking and pool may be
1567 * [dis]associated in the meantime.
1568 *
1569 * This function tries set_cpus_allowed() and locks pool and verifies the
1570 * binding against %POOL_DISASSOCIATED which is set during
1571 * %CPU_DOWN_PREPARE and cleared during %CPU_ONLINE, so if the worker
1572 * enters idle state or fetches works without dropping lock, it can
1573 * guarantee the scheduling requirement described in the first paragraph.
1574 *
1575 * CONTEXT:
1576 * Might sleep. Called without any lock but returns with pool->lock
1577 * held.
1578 *
1579 * RETURNS:
1580 * %true if the associated pool is online (@worker is successfully
1581 * bound), %false if offline.
1582 */
1583 static bool worker_maybe_bind_and_lock(struct worker_pool *pool)
1584 __acquires(&pool->lock)
1585 {
1586 while (true) {
1587 /*
1588 * The following call may fail, succeed or succeed
1589 * without actually migrating the task to the cpu if
1590 * it races with cpu hotunplug operation. Verify
1591 * against POOL_DISASSOCIATED.
1592 */
1593 if (!(pool->flags & POOL_DISASSOCIATED))
1594 set_cpus_allowed_ptr(current, pool->attrs->cpumask);
1595
1596 spin_lock_irq(&pool->lock);
1597 if (pool->flags & POOL_DISASSOCIATED)
1598 return false;
1599 if (task_cpu(current) == pool->cpu &&
1600 cpumask_equal(&current->cpus_allowed, pool->attrs->cpumask))
1601 return true;
1602 spin_unlock_irq(&pool->lock);
1603
1604 /*
1605 * We've raced with CPU hot[un]plug. Give it a breather
1606 * and retry migration. cond_resched() is required here;
1607 * otherwise, we might deadlock against cpu_stop trying to
1608 * bring down the CPU on non-preemptive kernel.
1609 */
1610 cpu_relax();
1611 cond_resched();
1612 }
1613 }
1614
1615 /*
1616 * Rebind an idle @worker to its CPU. worker_thread() will test
1617 * list_empty(@worker->entry) before leaving idle and call this function.
1618 */
1619 static void idle_worker_rebind(struct worker *worker)
1620 {
1621 /* CPU may go down again inbetween, clear UNBOUND only on success */
1622 if (worker_maybe_bind_and_lock(worker->pool))
1623 worker_clr_flags(worker, WORKER_UNBOUND);
1624
1625 /* rebind complete, become available again */
1626 list_add(&worker->entry, &worker->pool->idle_list);
1627 spin_unlock_irq(&worker->pool->lock);
1628 }
1629
1630 /*
1631 * Function for @worker->rebind.work used to rebind unbound busy workers to
1632 * the associated cpu which is coming back online. This is scheduled by
1633 * cpu up but can race with other cpu hotplug operations and may be
1634 * executed twice without intervening cpu down.
1635 */
1636 static void busy_worker_rebind_fn(struct work_struct *work)
1637 {
1638 struct worker *worker = container_of(work, struct worker, rebind_work);
1639
1640 if (worker_maybe_bind_and_lock(worker->pool))
1641 worker_clr_flags(worker, WORKER_UNBOUND);
1642
1643 spin_unlock_irq(&worker->pool->lock);
1644 }
1645
1646 /**
1647 * rebind_workers - rebind all workers of a pool to the associated CPU
1648 * @pool: pool of interest
1649 *
1650 * @pool->cpu is coming online. Rebind all workers to the CPU. Rebinding
1651 * is different for idle and busy ones.
1652 *
1653 * Idle ones will be removed from the idle_list and woken up. They will
1654 * add themselves back after completing rebind. This ensures that the
1655 * idle_list doesn't contain any unbound workers when re-bound busy workers
1656 * try to perform local wake-ups for concurrency management.
1657 *
1658 * Busy workers can rebind after they finish their current work items.
1659 * Queueing the rebind work item at the head of the scheduled list is
1660 * enough. Note that nr_running will be properly bumped as busy workers
1661 * rebind.
1662 *
1663 * On return, all non-manager workers are scheduled for rebind - see
1664 * manage_workers() for the manager special case. Any idle worker
1665 * including the manager will not appear on @idle_list until rebind is
1666 * complete, making local wake-ups safe.
1667 */
1668 static void rebind_workers(struct worker_pool *pool)
1669 {
1670 struct worker *worker, *n;
1671 int i;
1672
1673 lockdep_assert_held(&pool->manager_mutex);
1674 lockdep_assert_held(&pool->lock);
1675
1676 /* dequeue and kick idle ones */
1677 list_for_each_entry_safe(worker, n, &pool->idle_list, entry) {
1678 /*
1679 * idle workers should be off @pool->idle_list until rebind
1680 * is complete to avoid receiving premature local wake-ups.
1681 */
1682 list_del_init(&worker->entry);
1683
1684 /*
1685 * worker_thread() will see the above dequeuing and call
1686 * idle_worker_rebind().
1687 */
1688 wake_up_process(worker->task);
1689 }
1690
1691 /* rebind busy workers */
1692 for_each_busy_worker(worker, i, pool) {
1693 struct work_struct *rebind_work = &worker->rebind_work;
1694 struct workqueue_struct *wq;
1695
1696 if (test_and_set_bit(WORK_STRUCT_PENDING_BIT,
1697 work_data_bits(rebind_work)))
1698 continue;
1699
1700 debug_work_activate(rebind_work);
1701
1702 /*
1703 * wq doesn't really matter but let's keep @worker->pool
1704 * and @pwq->pool consistent for sanity.
1705 */
1706 if (worker->pool->attrs->nice < 0)
1707 wq = system_highpri_wq;
1708 else
1709 wq = system_wq;
1710
1711 insert_work(per_cpu_ptr(wq->cpu_pwqs, pool->cpu), rebind_work,
1712 worker->scheduled.next,
1713 work_color_to_flags(WORK_NO_COLOR));
1714 }
1715 }
1716
1717 static struct worker *alloc_worker(void)
1718 {
1719 struct worker *worker;
1720
1721 worker = kzalloc(sizeof(*worker), GFP_KERNEL);
1722 if (worker) {
1723 INIT_LIST_HEAD(&worker->entry);
1724 INIT_LIST_HEAD(&worker->scheduled);
1725 INIT_WORK(&worker->rebind_work, busy_worker_rebind_fn);
1726 /* on creation a worker is in !idle && prep state */
1727 worker->flags = WORKER_PREP;
1728 }
1729 return worker;
1730 }
1731
1732 /**
1733 * create_worker - create a new workqueue worker
1734 * @pool: pool the new worker will belong to
1735 *
1736 * Create a new worker which is bound to @pool. The returned worker
1737 * can be started by calling start_worker() or destroyed using
1738 * destroy_worker().
1739 *
1740 * CONTEXT:
1741 * Might sleep. Does GFP_KERNEL allocations.
1742 *
1743 * RETURNS:
1744 * Pointer to the newly created worker.
1745 */
1746 static struct worker *create_worker(struct worker_pool *pool)
1747 {
1748 const char *pri = pool->attrs->nice < 0 ? "H" : "";
1749 struct worker *worker = NULL;
1750 int id = -1;
1751
1752 lockdep_assert_held(&pool->manager_mutex);
1753
1754 /*
1755 * ID is needed to determine kthread name. Allocate ID first
1756 * without installing the pointer.
1757 */
1758 idr_preload(GFP_KERNEL);
1759 spin_lock_irq(&pool->lock);
1760
1761 id = idr_alloc(&pool->worker_idr, NULL, 0, 0, GFP_NOWAIT);
1762
1763 spin_unlock_irq(&pool->lock);
1764 idr_preload_end();
1765 if (id < 0)
1766 goto fail;
1767
1768 worker = alloc_worker();
1769 if (!worker)
1770 goto fail;
1771
1772 worker->pool = pool;
1773 worker->id = id;
1774
1775 if (pool->cpu >= 0)
1776 worker->task = kthread_create_on_node(worker_thread,
1777 worker, cpu_to_node(pool->cpu),
1778 "kworker/%d:%d%s", pool->cpu, id, pri);
1779 else
1780 worker->task = kthread_create(worker_thread, worker,
1781 "kworker/u%d:%d%s",
1782 pool->id, id, pri);
1783 if (IS_ERR(worker->task))
1784 goto fail;
1785
1786 /*
1787 * set_cpus_allowed_ptr() will fail if the cpumask doesn't have any
1788 * online CPUs. It'll be re-applied when any of the CPUs come up.
1789 */
1790 set_user_nice(worker->task, pool->attrs->nice);
1791 set_cpus_allowed_ptr(worker->task, pool->attrs->cpumask);
1792
1793 /* prevent userland from meddling with cpumask of workqueue workers */
1794 worker->task->flags |= PF_NO_SETAFFINITY;
1795
1796 /*
1797 * The caller is responsible for ensuring %POOL_DISASSOCIATED
1798 * remains stable across this function. See the comments above the
1799 * flag definition for details.
1800 */
1801 if (pool->flags & POOL_DISASSOCIATED)
1802 worker->flags |= WORKER_UNBOUND;
1803
1804 /* successful, commit the pointer to idr */
1805 spin_lock_irq(&pool->lock);
1806 idr_replace(&pool->worker_idr, worker, worker->id);
1807 spin_unlock_irq(&pool->lock);
1808
1809 return worker;
1810
1811 fail:
1812 if (id >= 0) {
1813 spin_lock_irq(&pool->lock);
1814 idr_remove(&pool->worker_idr, id);
1815 spin_unlock_irq(&pool->lock);
1816 }
1817 kfree(worker);
1818 return NULL;
1819 }
1820
1821 /**
1822 * start_worker - start a newly created worker
1823 * @worker: worker to start
1824 *
1825 * Make the pool aware of @worker and start it.
1826 *
1827 * CONTEXT:
1828 * spin_lock_irq(pool->lock).
1829 */
1830 static void start_worker(struct worker *worker)
1831 {
1832 worker->flags |= WORKER_STARTED;
1833 worker->pool->nr_workers++;
1834 worker_enter_idle(worker);
1835 wake_up_process(worker->task);
1836 }
1837
1838 /**
1839 * create_and_start_worker - create and start a worker for a pool
1840 * @pool: the target pool
1841 *
1842 * Grab the managership of @pool and create and start a new worker for it.
1843 */
1844 static int create_and_start_worker(struct worker_pool *pool)
1845 {
1846 struct worker *worker;
1847
1848 mutex_lock(&pool->manager_mutex);
1849
1850 worker = create_worker(pool);
1851 if (worker) {
1852 spin_lock_irq(&pool->lock);
1853 start_worker(worker);
1854 spin_unlock_irq(&pool->lock);
1855 }
1856
1857 mutex_unlock(&pool->manager_mutex);
1858
1859 return worker ? 0 : -ENOMEM;
1860 }
1861
1862 /**
1863 * destroy_worker - destroy a workqueue worker
1864 * @worker: worker to be destroyed
1865 *
1866 * Destroy @worker and adjust @pool stats accordingly.
1867 *
1868 * CONTEXT:
1869 * spin_lock_irq(pool->lock) which is released and regrabbed.
1870 */
1871 static void destroy_worker(struct worker *worker)
1872 {
1873 struct worker_pool *pool = worker->pool;
1874
1875 lockdep_assert_held(&pool->manager_mutex);
1876 lockdep_assert_held(&pool->lock);
1877
1878 /* sanity check frenzy */
1879 if (WARN_ON(worker->current_work) ||
1880 WARN_ON(!list_empty(&worker->scheduled)))
1881 return;
1882
1883 if (worker->flags & WORKER_STARTED)
1884 pool->nr_workers--;
1885 if (worker->flags & WORKER_IDLE)
1886 pool->nr_idle--;
1887
1888 list_del_init(&worker->entry);
1889 worker->flags |= WORKER_DIE;
1890
1891 idr_remove(&pool->worker_idr, worker->id);
1892
1893 spin_unlock_irq(&pool->lock);
1894
1895 kthread_stop(worker->task);
1896 kfree(worker);
1897
1898 spin_lock_irq(&pool->lock);
1899 }
1900
1901 static void idle_worker_timeout(unsigned long __pool)
1902 {
1903 struct worker_pool *pool = (void *)__pool;
1904
1905 spin_lock_irq(&pool->lock);
1906
1907 if (too_many_workers(pool)) {
1908 struct worker *worker;
1909 unsigned long expires;
1910
1911 /* idle_list is kept in LIFO order, check the last one */
1912 worker = list_entry(pool->idle_list.prev, struct worker, entry);
1913 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
1914
1915 if (time_before(jiffies, expires))
1916 mod_timer(&pool->idle_timer, expires);
1917 else {
1918 /* it's been idle for too long, wake up manager */
1919 pool->flags |= POOL_MANAGE_WORKERS;
1920 wake_up_worker(pool);
1921 }
1922 }
1923
1924 spin_unlock_irq(&pool->lock);
1925 }
1926
1927 static void send_mayday(struct work_struct *work)
1928 {
1929 struct pool_workqueue *pwq = get_work_pwq(work);
1930 struct workqueue_struct *wq = pwq->wq;
1931
1932 lockdep_assert_held(&wq_mayday_lock);
1933
1934 if (!wq->rescuer)
1935 return;
1936
1937 /* mayday mayday mayday */
1938 if (list_empty(&pwq->mayday_node)) {
1939 list_add_tail(&pwq->mayday_node, &wq->maydays);
1940 wake_up_process(wq->rescuer->task);
1941 }
1942 }
1943
1944 static void pool_mayday_timeout(unsigned long __pool)
1945 {
1946 struct worker_pool *pool = (void *)__pool;
1947 struct work_struct *work;
1948
1949 spin_lock_irq(&wq_mayday_lock); /* for wq->maydays */
1950 spin_lock(&pool->lock);
1951
1952 if (need_to_create_worker(pool)) {
1953 /*
1954 * We've been trying to create a new worker but
1955 * haven't been successful. We might be hitting an
1956 * allocation deadlock. Send distress signals to
1957 * rescuers.
1958 */
1959 list_for_each_entry(work, &pool->worklist, entry)
1960 send_mayday(work);
1961 }
1962
1963 spin_unlock(&pool->lock);
1964 spin_unlock_irq(&wq_mayday_lock);
1965
1966 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
1967 }
1968
1969 /**
1970 * maybe_create_worker - create a new worker if necessary
1971 * @pool: pool to create a new worker for
1972 *
1973 * Create a new worker for @pool if necessary. @pool is guaranteed to
1974 * have at least one idle worker on return from this function. If
1975 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
1976 * sent to all rescuers with works scheduled on @pool to resolve
1977 * possible allocation deadlock.
1978 *
1979 * On return, need_to_create_worker() is guaranteed to be %false and
1980 * may_start_working() %true.
1981 *
1982 * LOCKING:
1983 * spin_lock_irq(pool->lock) which may be released and regrabbed
1984 * multiple times. Does GFP_KERNEL allocations. Called only from
1985 * manager.
1986 *
1987 * RETURNS:
1988 * %false if no action was taken and pool->lock stayed locked, %true
1989 * otherwise.
1990 */
1991 static bool maybe_create_worker(struct worker_pool *pool)
1992 __releases(&pool->lock)
1993 __acquires(&pool->lock)
1994 {
1995 if (!need_to_create_worker(pool))
1996 return false;
1997 restart:
1998 spin_unlock_irq(&pool->lock);
1999
2000 /* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
2001 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
2002
2003 while (true) {
2004 struct worker *worker;
2005
2006 worker = create_worker(pool);
2007 if (worker) {
2008 del_timer_sync(&pool->mayday_timer);
2009 spin_lock_irq(&pool->lock);
2010 start_worker(worker);
2011 if (WARN_ON_ONCE(need_to_create_worker(pool)))
2012 goto restart;
2013 return true;
2014 }
2015
2016 if (!need_to_create_worker(pool))
2017 break;
2018
2019 __set_current_state(TASK_INTERRUPTIBLE);
2020 schedule_timeout(CREATE_COOLDOWN);
2021
2022 if (!need_to_create_worker(pool))
2023 break;
2024 }
2025
2026 del_timer_sync(&pool->mayday_timer);
2027 spin_lock_irq(&pool->lock);
2028 if (need_to_create_worker(pool))
2029 goto restart;
2030 return true;
2031 }
2032
2033 /**
2034 * maybe_destroy_worker - destroy workers which have been idle for a while
2035 * @pool: pool to destroy workers for
2036 *
2037 * Destroy @pool workers which have been idle for longer than
2038 * IDLE_WORKER_TIMEOUT.
2039 *
2040 * LOCKING:
2041 * spin_lock_irq(pool->lock) which may be released and regrabbed
2042 * multiple times. Called only from manager.
2043 *
2044 * RETURNS:
2045 * %false if no action was taken and pool->lock stayed locked, %true
2046 * otherwise.
2047 */
2048 static bool maybe_destroy_workers(struct worker_pool *pool)
2049 {
2050 bool ret = false;
2051
2052 while (too_many_workers(pool)) {
2053 struct worker *worker;
2054 unsigned long expires;
2055
2056 worker = list_entry(pool->idle_list.prev, struct worker, entry);
2057 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
2058
2059 if (time_before(jiffies, expires)) {
2060 mod_timer(&pool->idle_timer, expires);
2061 break;
2062 }
2063
2064 destroy_worker(worker);
2065 ret = true;
2066 }
2067
2068 return ret;
2069 }
2070
2071 /**
2072 * manage_workers - manage worker pool
2073 * @worker: self
2074 *
2075 * Assume the manager role and manage the worker pool @worker belongs
2076 * to. At any given time, there can be only zero or one manager per
2077 * pool. The exclusion is handled automatically by this function.
2078 *
2079 * The caller can safely start processing works on false return. On
2080 * true return, it's guaranteed that need_to_create_worker() is false
2081 * and may_start_working() is true.
2082 *
2083 * CONTEXT:
2084 * spin_lock_irq(pool->lock) which may be released and regrabbed
2085 * multiple times. Does GFP_KERNEL allocations.
2086 *
2087 * RETURNS:
2088 * spin_lock_irq(pool->lock) which may be released and regrabbed
2089 * multiple times. Does GFP_KERNEL allocations.
2090 */
2091 static bool manage_workers(struct worker *worker)
2092 {
2093 struct worker_pool *pool = worker->pool;
2094 bool ret = false;
2095
2096 /*
2097 * Managership is governed by two mutexes - manager_arb and
2098 * manager_mutex. manager_arb handles arbitration of manager role.
2099 * Anyone who successfully grabs manager_arb wins the arbitration
2100 * and becomes the manager. mutex_trylock() on pool->manager_arb
2101 * failure while holding pool->lock reliably indicates that someone
2102 * else is managing the pool and the worker which failed trylock
2103 * can proceed to executing work items. This means that anyone
2104 * grabbing manager_arb is responsible for actually performing
2105 * manager duties. If manager_arb is grabbed and released without
2106 * actual management, the pool may stall indefinitely.
2107 *
2108 * manager_mutex is used for exclusion of actual management
2109 * operations. The holder of manager_mutex can be sure that none
2110 * of management operations, including creation and destruction of
2111 * workers, won't take place until the mutex is released. Because
2112 * manager_mutex doesn't interfere with manager role arbitration,
2113 * it is guaranteed that the pool's management, while may be
2114 * delayed, won't be disturbed by someone else grabbing
2115 * manager_mutex.
2116 */
2117 if (!mutex_trylock(&pool->manager_arb))
2118 return ret;
2119
2120 /*
2121 * With manager arbitration won, manager_mutex would be free in
2122 * most cases. trylock first without dropping @pool->lock.
2123 */
2124 if (unlikely(!mutex_trylock(&pool->manager_mutex))) {
2125 spin_unlock_irq(&pool->lock);
2126 mutex_lock(&pool->manager_mutex);
2127 /*
2128 * CPU hotplug could have happened while we were waiting
2129 * for assoc_mutex. Hotplug itself can't handle us
2130 * because manager isn't either on idle or busy list, and
2131 * @pool's state and ours could have deviated.
2132 *
2133 * As hotplug is now excluded via manager_mutex, we can
2134 * simply try to bind. It will succeed or fail depending
2135 * on @pool's current state. Try it and adjust
2136 * %WORKER_UNBOUND accordingly.
2137 */
2138 if (worker_maybe_bind_and_lock(pool))
2139 worker->flags &= ~WORKER_UNBOUND;
2140 else
2141 worker->flags |= WORKER_UNBOUND;
2142
2143 ret = true;
2144 }
2145
2146 pool->flags &= ~POOL_MANAGE_WORKERS;
2147
2148 /*
2149 * Destroy and then create so that may_start_working() is true
2150 * on return.
2151 */
2152 ret |= maybe_destroy_workers(pool);
2153 ret |= maybe_create_worker(pool);
2154
2155 mutex_unlock(&pool->manager_mutex);
2156 mutex_unlock(&pool->manager_arb);
2157 return ret;
2158 }
2159
2160 /**
2161 * process_one_work - process single work
2162 * @worker: self
2163 * @work: work to process
2164 *
2165 * Process @work. This function contains all the logics necessary to
2166 * process a single work including synchronization against and
2167 * interaction with other workers on the same cpu, queueing and
2168 * flushing. As long as context requirement is met, any worker can
2169 * call this function to process a work.
2170 *
2171 * CONTEXT:
2172 * spin_lock_irq(pool->lock) which is released and regrabbed.
2173 */
2174 static void process_one_work(struct worker *worker, struct work_struct *work)
2175 __releases(&pool->lock)
2176 __acquires(&pool->lock)
2177 {
2178 struct pool_workqueue *pwq = get_work_pwq(work);
2179 struct worker_pool *pool = worker->pool;
2180 bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE;
2181 int work_color;
2182 struct worker *collision;
2183 #ifdef CONFIG_LOCKDEP
2184 /*
2185 * It is permissible to free the struct work_struct from
2186 * inside the function that is called from it, this we need to
2187 * take into account for lockdep too. To avoid bogus "held
2188 * lock freed" warnings as well as problems when looking into
2189 * work->lockdep_map, make a copy and use that here.
2190 */
2191 struct lockdep_map lockdep_map;
2192
2193 lockdep_copy_map(&lockdep_map, &work->lockdep_map);
2194 #endif
2195 /*
2196 * Ensure we're on the correct CPU. DISASSOCIATED test is
2197 * necessary to avoid spurious warnings from rescuers servicing the
2198 * unbound or a disassociated pool.
2199 */
2200 WARN_ON_ONCE(!(worker->flags & WORKER_UNBOUND) &&
2201 !(pool->flags & POOL_DISASSOCIATED) &&
2202 raw_smp_processor_id() != pool->cpu);
2203
2204 /*
2205 * A single work shouldn't be executed concurrently by
2206 * multiple workers on a single cpu. Check whether anyone is
2207 * already processing the work. If so, defer the work to the
2208 * currently executing one.
2209 */
2210 collision = find_worker_executing_work(pool, work);
2211 if (unlikely(collision)) {
2212 move_linked_works(work, &collision->scheduled, NULL);
2213 return;
2214 }
2215
2216 /* claim and dequeue */
2217 debug_work_deactivate(work);
2218 hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
2219 worker->current_work = work;
2220 worker->current_func = work->func;
2221 worker->current_pwq = pwq;
2222 work_color = get_work_color(work);
2223
2224 list_del_init(&work->entry);
2225
2226 /*
2227 * CPU intensive works don't participate in concurrency
2228 * management. They're the scheduler's responsibility.
2229 */
2230 if (unlikely(cpu_intensive))
2231 worker_set_flags(worker, WORKER_CPU_INTENSIVE, true);
2232
2233 /*
2234 * Unbound pool isn't concurrency managed and work items should be
2235 * executed ASAP. Wake up another worker if necessary.
2236 */
2237 if ((worker->flags & WORKER_UNBOUND) && need_more_worker(pool))
2238 wake_up_worker(pool);
2239
2240 /*
2241 * Record the last pool and clear PENDING which should be the last
2242 * update to @work. Also, do this inside @pool->lock so that
2243 * PENDING and queued state changes happen together while IRQ is
2244 * disabled.
2245 */
2246 set_work_pool_and_clear_pending(work, pool->id);
2247
2248 spin_unlock_irq(&pool->lock);
2249
2250 lock_map_acquire_read(&pwq->wq->lockdep_map);
2251 lock_map_acquire(&lockdep_map);
2252 trace_workqueue_execute_start(work);
2253 worker->current_func(work);
2254 /*
2255 * While we must be careful to not use "work" after this, the trace
2256 * point will only record its address.
2257 */
2258 trace_workqueue_execute_end(work);
2259 lock_map_release(&lockdep_map);
2260 lock_map_release(&pwq->wq->lockdep_map);
2261
2262 if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
2263 pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
2264 " last function: %pf\n",
2265 current->comm, preempt_count(), task_pid_nr(current),
2266 worker->current_func);
2267 debug_show_held_locks(current);
2268 dump_stack();
2269 }
2270
2271 spin_lock_irq(&pool->lock);
2272
2273 /* clear cpu intensive status */
2274 if (unlikely(cpu_intensive))
2275 worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
2276
2277 /* we're done with it, release */
2278 hash_del(&worker->hentry);
2279 worker->current_work = NULL;
2280 worker->current_func = NULL;
2281 worker->current_pwq = NULL;
2282 pwq_dec_nr_in_flight(pwq, work_color);
2283 }
2284
2285 /**
2286 * process_scheduled_works - process scheduled works
2287 * @worker: self
2288 *
2289 * Process all scheduled works. Please note that the scheduled list
2290 * may change while processing a work, so this function repeatedly
2291 * fetches a work from the top and executes it.
2292 *
2293 * CONTEXT:
2294 * spin_lock_irq(pool->lock) which may be released and regrabbed
2295 * multiple times.
2296 */
2297 static void process_scheduled_works(struct worker *worker)
2298 {
2299 while (!list_empty(&worker->scheduled)) {
2300 struct work_struct *work = list_first_entry(&worker->scheduled,
2301 struct work_struct, entry);
2302 process_one_work(worker, work);
2303 }
2304 }
2305
2306 /**
2307 * worker_thread - the worker thread function
2308 * @__worker: self
2309 *
2310 * The worker thread function. All workers belong to a worker_pool -
2311 * either a per-cpu one or dynamic unbound one. These workers process all
2312 * work items regardless of their specific target workqueue. The only
2313 * exception is work items which belong to workqueues with a rescuer which
2314 * will be explained in rescuer_thread().
2315 */
2316 static int worker_thread(void *__worker)
2317 {
2318 struct worker *worker = __worker;
2319 struct worker_pool *pool = worker->pool;
2320
2321 /* tell the scheduler that this is a workqueue worker */
2322 worker->task->flags |= PF_WQ_WORKER;
2323 woke_up:
2324 spin_lock_irq(&pool->lock);
2325
2326 /* we are off idle list if destruction or rebind is requested */
2327 if (unlikely(list_empty(&worker->entry))) {
2328 spin_unlock_irq(&pool->lock);
2329
2330 /* if DIE is set, destruction is requested */
2331 if (worker->flags & WORKER_DIE) {
2332 worker->task->flags &= ~PF_WQ_WORKER;
2333 return 0;
2334 }
2335
2336 /* otherwise, rebind */
2337 idle_worker_rebind(worker);
2338 goto woke_up;
2339 }
2340
2341 worker_leave_idle(worker);
2342 recheck:
2343 /* no more worker necessary? */
2344 if (!need_more_worker(pool))
2345 goto sleep;
2346
2347 /* do we need to manage? */
2348 if (unlikely(!may_start_working(pool)) && manage_workers(worker))
2349 goto recheck;
2350
2351 /*
2352 * ->scheduled list can only be filled while a worker is
2353 * preparing to process a work or actually processing it.
2354 * Make sure nobody diddled with it while I was sleeping.
2355 */
2356 WARN_ON_ONCE(!list_empty(&worker->scheduled));
2357
2358 /*
2359 * When control reaches this point, we're guaranteed to have
2360 * at least one idle worker or that someone else has already
2361 * assumed the manager role.
2362 */
2363 worker_clr_flags(worker, WORKER_PREP);
2364
2365 do {
2366 struct work_struct *work =
2367 list_first_entry(&pool->worklist,
2368 struct work_struct, entry);
2369
2370 if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
2371 /* optimization path, not strictly necessary */
2372 process_one_work(worker, work);
2373 if (unlikely(!list_empty(&worker->scheduled)))
2374 process_scheduled_works(worker);
2375 } else {
2376 move_linked_works(work, &worker->scheduled, NULL);
2377 process_scheduled_works(worker);
2378 }
2379 } while (keep_working(pool));
2380
2381 worker_set_flags(worker, WORKER_PREP, false);
2382 sleep:
2383 if (unlikely(need_to_manage_workers(pool)) && manage_workers(worker))
2384 goto recheck;
2385
2386 /*
2387 * pool->lock is held and there's no work to process and no need to
2388 * manage, sleep. Workers are woken up only while holding
2389 * pool->lock or from local cpu, so setting the current state
2390 * before releasing pool->lock is enough to prevent losing any
2391 * event.
2392 */
2393 worker_enter_idle(worker);
2394 __set_current_state(TASK_INTERRUPTIBLE);
2395 spin_unlock_irq(&pool->lock);
2396 schedule();
2397 goto woke_up;
2398 }
2399
2400 /**
2401 * rescuer_thread - the rescuer thread function
2402 * @__rescuer: self
2403 *
2404 * Workqueue rescuer thread function. There's one rescuer for each
2405 * workqueue which has WQ_MEM_RECLAIM set.
2406 *
2407 * Regular work processing on a pool may block trying to create a new
2408 * worker which uses GFP_KERNEL allocation which has slight chance of
2409 * developing into deadlock if some works currently on the same queue
2410 * need to be processed to satisfy the GFP_KERNEL allocation. This is
2411 * the problem rescuer solves.
2412 *
2413 * When such condition is possible, the pool summons rescuers of all
2414 * workqueues which have works queued on the pool and let them process
2415 * those works so that forward progress can be guaranteed.
2416 *
2417 * This should happen rarely.
2418 */
2419 static int rescuer_thread(void *__rescuer)
2420 {
2421 struct worker *rescuer = __rescuer;
2422 struct workqueue_struct *wq = rescuer->rescue_wq;
2423 struct list_head *scheduled = &rescuer->scheduled;
2424
2425 set_user_nice(current, RESCUER_NICE_LEVEL);
2426
2427 /*
2428 * Mark rescuer as worker too. As WORKER_PREP is never cleared, it
2429 * doesn't participate in concurrency management.
2430 */
2431 rescuer->task->flags |= PF_WQ_WORKER;
2432 repeat:
2433 set_current_state(TASK_INTERRUPTIBLE);
2434
2435 if (kthread_should_stop()) {
2436 __set_current_state(TASK_RUNNING);
2437 rescuer->task->flags &= ~PF_WQ_WORKER;
2438 return 0;
2439 }
2440
2441 /* see whether any pwq is asking for help */
2442 spin_lock_irq(&wq_mayday_lock);
2443
2444 while (!list_empty(&wq->maydays)) {
2445 struct pool_workqueue *pwq = list_first_entry(&wq->maydays,
2446 struct pool_workqueue, mayday_node);
2447 struct worker_pool *pool = pwq->pool;
2448 struct work_struct *work, *n;
2449
2450 __set_current_state(TASK_RUNNING);
2451 list_del_init(&pwq->mayday_node);
2452
2453 spin_unlock_irq(&wq_mayday_lock);
2454
2455 /* migrate to the target cpu if possible */
2456 worker_maybe_bind_and_lock(pool);
2457 rescuer->pool = pool;
2458
2459 /*
2460 * Slurp in all works issued via this workqueue and
2461 * process'em.
2462 */
2463 WARN_ON_ONCE(!list_empty(&rescuer->scheduled));
2464 list_for_each_entry_safe(work, n, &pool->worklist, entry)
2465 if (get_work_pwq(work) == pwq)
2466 move_linked_works(work, scheduled, &n);
2467
2468 process_scheduled_works(rescuer);
2469
2470 /*
2471 * Leave this pool. If keep_working() is %true, notify a
2472 * regular worker; otherwise, we end up with 0 concurrency
2473 * and stalling the execution.
2474 */
2475 if (keep_working(pool))
2476 wake_up_worker(pool);
2477
2478 rescuer->pool = NULL;
2479 spin_unlock(&pool->lock);
2480 spin_lock(&wq_mayday_lock);
2481 }
2482
2483 spin_unlock_irq(&wq_mayday_lock);
2484
2485 /* rescuers should never participate in concurrency management */
2486 WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
2487 schedule();
2488 goto repeat;
2489 }
2490
2491 struct wq_barrier {
2492 struct work_struct work;
2493 struct completion done;
2494 };
2495
2496 static void wq_barrier_func(struct work_struct *work)
2497 {
2498 struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
2499 complete(&barr->done);
2500 }
2501
2502 /**
2503 * insert_wq_barrier - insert a barrier work
2504 * @pwq: pwq to insert barrier into
2505 * @barr: wq_barrier to insert
2506 * @target: target work to attach @barr to
2507 * @worker: worker currently executing @target, NULL if @target is not executing
2508 *
2509 * @barr is linked to @target such that @barr is completed only after
2510 * @target finishes execution. Please note that the ordering
2511 * guarantee is observed only with respect to @target and on the local
2512 * cpu.
2513 *
2514 * Currently, a queued barrier can't be canceled. This is because
2515 * try_to_grab_pending() can't determine whether the work to be
2516 * grabbed is at the head of the queue and thus can't clear LINKED
2517 * flag of the previous work while there must be a valid next work
2518 * after a work with LINKED flag set.
2519 *
2520 * Note that when @worker is non-NULL, @target may be modified
2521 * underneath us, so we can't reliably determine pwq from @target.
2522 *
2523 * CONTEXT:
2524 * spin_lock_irq(pool->lock).
2525 */
2526 static void insert_wq_barrier(struct pool_workqueue *pwq,
2527 struct wq_barrier *barr,
2528 struct work_struct *target, struct worker *worker)
2529 {
2530 struct list_head *head;
2531 unsigned int linked = 0;
2532
2533 /*
2534 * debugobject calls are safe here even with pool->lock locked
2535 * as we know for sure that this will not trigger any of the
2536 * checks and call back into the fixup functions where we
2537 * might deadlock.
2538 */
2539 INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
2540 __set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
2541 init_completion(&barr->done);
2542
2543 /*
2544 * If @target is currently being executed, schedule the
2545 * barrier to the worker; otherwise, put it after @target.
2546 */
2547 if (worker)
2548 head = worker->scheduled.next;
2549 else {
2550 unsigned long *bits = work_data_bits(target);
2551
2552 head = target->entry.next;
2553 /* there can already be other linked works, inherit and set */
2554 linked = *bits & WORK_STRUCT_LINKED;
2555 __set_bit(WORK_STRUCT_LINKED_BIT, bits);
2556 }
2557
2558 debug_work_activate(&barr->work);
2559 insert_work(pwq, &barr->work, head,
2560 work_color_to_flags(WORK_NO_COLOR) | linked);
2561 }
2562
2563 /**
2564 * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing
2565 * @wq: workqueue being flushed
2566 * @flush_color: new flush color, < 0 for no-op
2567 * @work_color: new work color, < 0 for no-op
2568 *
2569 * Prepare pwqs for workqueue flushing.
2570 *
2571 * If @flush_color is non-negative, flush_color on all pwqs should be
2572 * -1. If no pwq has in-flight commands at the specified color, all
2573 * pwq->flush_color's stay at -1 and %false is returned. If any pwq
2574 * has in flight commands, its pwq->flush_color is set to
2575 * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq
2576 * wakeup logic is armed and %true is returned.
2577 *
2578 * The caller should have initialized @wq->first_flusher prior to
2579 * calling this function with non-negative @flush_color. If
2580 * @flush_color is negative, no flush color update is done and %false
2581 * is returned.
2582 *
2583 * If @work_color is non-negative, all pwqs should have the same
2584 * work_color which is previous to @work_color and all will be
2585 * advanced to @work_color.
2586 *
2587 * CONTEXT:
2588 * mutex_lock(wq->flush_mutex).
2589 *
2590 * RETURNS:
2591 * %true if @flush_color >= 0 and there's something to flush. %false
2592 * otherwise.
2593 */
2594 static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq,
2595 int flush_color, int work_color)
2596 {
2597 bool wait = false;
2598 struct pool_workqueue *pwq;
2599
2600 if (flush_color >= 0) {
2601 WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush));
2602 atomic_set(&wq->nr_pwqs_to_flush, 1);
2603 }
2604
2605 local_irq_disable();
2606
2607 for_each_pwq(pwq, wq) {
2608 struct worker_pool *pool = pwq->pool;
2609
2610 spin_lock(&pool->lock);
2611
2612 if (flush_color >= 0) {
2613 WARN_ON_ONCE(pwq->flush_color != -1);
2614
2615 if (pwq->nr_in_flight[flush_color]) {
2616 pwq->flush_color = flush_color;
2617 atomic_inc(&wq->nr_pwqs_to_flush);
2618 wait = true;
2619 }
2620 }
2621
2622 if (work_color >= 0) {
2623 WARN_ON_ONCE(work_color != work_next_color(pwq->work_color));
2624 pwq->work_color = work_color;
2625 }
2626
2627 spin_unlock(&pool->lock);
2628 }
2629
2630 local_irq_enable();
2631
2632 if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush))
2633 complete(&wq->first_flusher->done);
2634
2635 return wait;
2636 }
2637
2638 /**
2639 * flush_workqueue - ensure that any scheduled work has run to completion.
2640 * @wq: workqueue to flush
2641 *
2642 * This function sleeps until all work items which were queued on entry
2643 * have finished execution, but it is not livelocked by new incoming ones.
2644 */
2645 void flush_workqueue(struct workqueue_struct *wq)
2646 {
2647 struct wq_flusher this_flusher = {
2648 .list = LIST_HEAD_INIT(this_flusher.list),
2649 .flush_color = -1,
2650 .done = COMPLETION_INITIALIZER_ONSTACK(this_flusher.done),
2651 };
2652 int next_color;
2653
2654 lock_map_acquire(&wq->lockdep_map);
2655 lock_map_release(&wq->lockdep_map);
2656
2657 mutex_lock(&wq->flush_mutex);
2658
2659 /*
2660 * Start-to-wait phase
2661 */
2662 next_color = work_next_color(wq->work_color);
2663
2664 if (next_color != wq->flush_color) {
2665 /*
2666 * Color space is not full. The current work_color
2667 * becomes our flush_color and work_color is advanced
2668 * by one.
2669 */
2670 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow));
2671 this_flusher.flush_color = wq->work_color;
2672 wq->work_color = next_color;
2673
2674 if (!wq->first_flusher) {
2675 /* no flush in progress, become the first flusher */
2676 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2677
2678 wq->first_flusher = &this_flusher;
2679
2680 if (!flush_workqueue_prep_pwqs(wq, wq->flush_color,
2681 wq->work_color)) {
2682 /* nothing to flush, done */
2683 wq->flush_color = next_color;
2684 wq->first_flusher = NULL;
2685 goto out_unlock;
2686 }
2687 } else {
2688 /* wait in queue */
2689 WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color);
2690 list_add_tail(&this_flusher.list, &wq->flusher_queue);
2691 flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2692 }
2693 } else {
2694 /*
2695 * Oops, color space is full, wait on overflow queue.
2696 * The next flush completion will assign us
2697 * flush_color and transfer to flusher_queue.
2698 */
2699 list_add_tail(&this_flusher.list, &wq->flusher_overflow);
2700 }
2701
2702 mutex_unlock(&wq->flush_mutex);
2703
2704 wait_for_completion(&this_flusher.done);
2705
2706 /*
2707 * Wake-up-and-cascade phase
2708 *
2709 * First flushers are responsible for cascading flushes and
2710 * handling overflow. Non-first flushers can simply return.
2711 */
2712 if (wq->first_flusher != &this_flusher)
2713 return;
2714
2715 mutex_lock(&wq->flush_mutex);
2716
2717 /* we might have raced, check again with mutex held */
2718 if (wq->first_flusher != &this_flusher)
2719 goto out_unlock;
2720
2721 wq->first_flusher = NULL;
2722
2723 WARN_ON_ONCE(!list_empty(&this_flusher.list));
2724 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2725
2726 while (true) {
2727 struct wq_flusher *next, *tmp;
2728
2729 /* complete all the flushers sharing the current flush color */
2730 list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
2731 if (next->flush_color != wq->flush_color)
2732 break;
2733 list_del_init(&next->list);
2734 complete(&next->done);
2735 }
2736
2737 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) &&
2738 wq->flush_color != work_next_color(wq->work_color));
2739
2740 /* this flush_color is finished, advance by one */
2741 wq->flush_color = work_next_color(wq->flush_color);
2742
2743 /* one color has been freed, handle overflow queue */
2744 if (!list_empty(&wq->flusher_overflow)) {
2745 /*
2746 * Assign the same color to all overflowed
2747 * flushers, advance work_color and append to
2748 * flusher_queue. This is the start-to-wait
2749 * phase for these overflowed flushers.
2750 */
2751 list_for_each_entry(tmp, &wq->flusher_overflow, list)
2752 tmp->flush_color = wq->work_color;
2753
2754 wq->work_color = work_next_color(wq->work_color);
2755
2756 list_splice_tail_init(&wq->flusher_overflow,
2757 &wq->flusher_queue);
2758 flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2759 }
2760
2761 if (list_empty(&wq->flusher_queue)) {
2762 WARN_ON_ONCE(wq->flush_color != wq->work_color);
2763 break;
2764 }
2765
2766 /*
2767 * Need to flush more colors. Make the next flusher
2768 * the new first flusher and arm pwqs.
2769 */
2770 WARN_ON_ONCE(wq->flush_color == wq->work_color);
2771 WARN_ON_ONCE(wq->flush_color != next->flush_color);
2772
2773 list_del_init(&next->list);
2774 wq->first_flusher = next;
2775
2776 if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1))
2777 break;
2778
2779 /*
2780 * Meh... this color is already done, clear first
2781 * flusher and repeat cascading.
2782 */
2783 wq->first_flusher = NULL;
2784 }
2785
2786 out_unlock:
2787 mutex_unlock(&wq->flush_mutex);
2788 }
2789 EXPORT_SYMBOL_GPL(flush_workqueue);
2790
2791 /**
2792 * drain_workqueue - drain a workqueue
2793 * @wq: workqueue to drain
2794 *
2795 * Wait until the workqueue becomes empty. While draining is in progress,
2796 * only chain queueing is allowed. IOW, only currently pending or running
2797 * work items on @wq can queue further work items on it. @wq is flushed
2798 * repeatedly until it becomes empty. The number of flushing is detemined
2799 * by the depth of chaining and should be relatively short. Whine if it
2800 * takes too long.
2801 */
2802 void drain_workqueue(struct workqueue_struct *wq)
2803 {
2804 unsigned int flush_cnt = 0;
2805 struct pool_workqueue *pwq;
2806
2807 /*
2808 * __queue_work() needs to test whether there are drainers, is much
2809 * hotter than drain_workqueue() and already looks at @wq->flags.
2810 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers.
2811 */
2812 mutex_lock(&wq_mutex);
2813 if (!wq->nr_drainers++)
2814 wq->flags |= __WQ_DRAINING;
2815 mutex_unlock(&wq_mutex);
2816 reflush:
2817 flush_workqueue(wq);
2818
2819 local_irq_disable();
2820
2821 for_each_pwq(pwq, wq) {
2822 bool drained;
2823
2824 spin_lock(&pwq->pool->lock);
2825 drained = !pwq->nr_active && list_empty(&pwq->delayed_works);
2826 spin_unlock(&pwq->pool->lock);
2827
2828 if (drained)
2829 continue;
2830
2831 if (++flush_cnt == 10 ||
2832 (flush_cnt % 100 == 0 && flush_cnt <= 1000))
2833 pr_warn("workqueue %s: drain_workqueue() isn't complete after %u tries\n",
2834 wq->name, flush_cnt);
2835
2836 local_irq_enable();
2837 goto reflush;
2838 }
2839
2840 local_irq_enable();
2841
2842 mutex_lock(&wq_mutex);
2843 if (!--wq->nr_drainers)
2844 wq->flags &= ~__WQ_DRAINING;
2845 mutex_unlock(&wq_mutex);
2846 }
2847 EXPORT_SYMBOL_GPL(drain_workqueue);
2848
2849 static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr)
2850 {
2851 struct worker *worker = NULL;
2852 struct worker_pool *pool;
2853 struct pool_workqueue *pwq;
2854
2855 might_sleep();
2856
2857 local_irq_disable();
2858 pool = get_work_pool(work);
2859 if (!pool) {
2860 local_irq_enable();
2861 return false;
2862 }
2863
2864 spin_lock(&pool->lock);
2865 /* see the comment in try_to_grab_pending() with the same code */
2866 pwq = get_work_pwq(work);
2867 if (pwq) {
2868 if (unlikely(pwq->pool != pool))
2869 goto already_gone;
2870 } else {
2871 worker = find_worker_executing_work(pool, work);
2872 if (!worker)
2873 goto already_gone;
2874 pwq = worker->current_pwq;
2875 }
2876
2877 insert_wq_barrier(pwq, barr, work, worker);
2878 spin_unlock_irq(&pool->lock);
2879
2880 /*
2881 * If @max_active is 1 or rescuer is in use, flushing another work
2882 * item on the same workqueue may lead to deadlock. Make sure the
2883 * flusher is not running on the same workqueue by verifying write
2884 * access.
2885 */
2886 if (pwq->wq->saved_max_active == 1 || pwq->wq->rescuer)
2887 lock_map_acquire(&pwq->wq->lockdep_map);
2888 else
2889 lock_map_acquire_read(&pwq->wq->lockdep_map);
2890 lock_map_release(&pwq->wq->lockdep_map);
2891
2892 return true;
2893 already_gone:
2894 spin_unlock_irq(&pool->lock);
2895 return false;
2896 }
2897
2898 /**
2899 * flush_work - wait for a work to finish executing the last queueing instance
2900 * @work: the work to flush
2901 *
2902 * Wait until @work has finished execution. @work is guaranteed to be idle
2903 * on return if it hasn't been requeued since flush started.
2904 *
2905 * RETURNS:
2906 * %true if flush_work() waited for the work to finish execution,
2907 * %false if it was already idle.
2908 */
2909 bool flush_work(struct work_struct *work)
2910 {
2911 struct wq_barrier barr;
2912
2913 lock_map_acquire(&work->lockdep_map);
2914 lock_map_release(&work->lockdep_map);
2915
2916 if (start_flush_work(work, &barr)) {
2917 wait_for_completion(&barr.done);
2918 destroy_work_on_stack(&barr.work);
2919 return true;
2920 } else {
2921 return false;
2922 }
2923 }
2924 EXPORT_SYMBOL_GPL(flush_work);
2925
2926 static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
2927 {
2928 unsigned long flags;
2929 int ret;
2930
2931 do {
2932 ret = try_to_grab_pending(work, is_dwork, &flags);
2933 /*
2934 * If someone else is canceling, wait for the same event it
2935 * would be waiting for before retrying.
2936 */
2937 if (unlikely(ret == -ENOENT))
2938 flush_work(work);
2939 } while (unlikely(ret < 0));
2940
2941 /* tell other tasks trying to grab @work to back off */
2942 mark_work_canceling(work);
2943 local_irq_restore(flags);
2944
2945 flush_work(work);
2946 clear_work_data(work);
2947 return ret;
2948 }
2949
2950 /**
2951 * cancel_work_sync - cancel a work and wait for it to finish
2952 * @work: the work to cancel
2953 *
2954 * Cancel @work and wait for its execution to finish. This function
2955 * can be used even if the work re-queues itself or migrates to
2956 * another workqueue. On return from this function, @work is
2957 * guaranteed to be not pending or executing on any CPU.
2958 *
2959 * cancel_work_sync(&delayed_work->work) must not be used for
2960 * delayed_work's. Use cancel_delayed_work_sync() instead.
2961 *
2962 * The caller must ensure that the workqueue on which @work was last
2963 * queued can't be destroyed before this function returns.
2964 *
2965 * RETURNS:
2966 * %true if @work was pending, %false otherwise.
2967 */
2968 bool cancel_work_sync(struct work_struct *work)
2969 {
2970 return __cancel_work_timer(work, false);
2971 }
2972 EXPORT_SYMBOL_GPL(cancel_work_sync);
2973
2974 /**
2975 * flush_delayed_work - wait for a dwork to finish executing the last queueing
2976 * @dwork: the delayed work to flush
2977 *
2978 * Delayed timer is cancelled and the pending work is queued for
2979 * immediate execution. Like flush_work(), this function only
2980 * considers the last queueing instance of @dwork.
2981 *
2982 * RETURNS:
2983 * %true if flush_work() waited for the work to finish execution,
2984 * %false if it was already idle.
2985 */
2986 bool flush_delayed_work(struct delayed_work *dwork)
2987 {
2988 local_irq_disable();
2989 if (del_timer_sync(&dwork->timer))
2990 __queue_work(dwork->cpu, dwork->wq, &dwork->work);
2991 local_irq_enable();
2992 return flush_work(&dwork->work);
2993 }
2994 EXPORT_SYMBOL(flush_delayed_work);
2995
2996 /**
2997 * cancel_delayed_work - cancel a delayed work
2998 * @dwork: delayed_work to cancel
2999 *
3000 * Kill off a pending delayed_work. Returns %true if @dwork was pending
3001 * and canceled; %false if wasn't pending. Note that the work callback
3002 * function may still be running on return, unless it returns %true and the
3003 * work doesn't re-arm itself. Explicitly flush or use
3004 * cancel_delayed_work_sync() to wait on it.
3005 *
3006 * This function is safe to call from any context including IRQ handler.
3007 */
3008 bool cancel_delayed_work(struct delayed_work *dwork)
3009 {
3010 unsigned long flags;
3011 int ret;
3012
3013 do {
3014 ret = try_to_grab_pending(&dwork->work, true, &flags);
3015 } while (unlikely(ret == -EAGAIN));
3016
3017 if (unlikely(ret < 0))
3018 return false;
3019
3020 set_work_pool_and_clear_pending(&dwork->work,
3021 get_work_pool_id(&dwork->work));
3022 local_irq_restore(flags);
3023 return ret;
3024 }
3025 EXPORT_SYMBOL(cancel_delayed_work);
3026
3027 /**
3028 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
3029 * @dwork: the delayed work cancel
3030 *
3031 * This is cancel_work_sync() for delayed works.
3032 *
3033 * RETURNS:
3034 * %true if @dwork was pending, %false otherwise.
3035 */
3036 bool cancel_delayed_work_sync(struct delayed_work *dwork)
3037 {
3038 return __cancel_work_timer(&dwork->work, true);
3039 }
3040 EXPORT_SYMBOL(cancel_delayed_work_sync);
3041
3042 /**
3043 * schedule_on_each_cpu - execute a function synchronously on each online CPU
3044 * @func: the function to call
3045 *
3046 * schedule_on_each_cpu() executes @func on each online CPU using the
3047 * system workqueue and blocks until all CPUs have completed.
3048 * schedule_on_each_cpu() is very slow.
3049 *
3050 * RETURNS:
3051 * 0 on success, -errno on failure.
3052 */
3053 int schedule_on_each_cpu(work_func_t func)
3054 {
3055 int cpu;
3056 struct work_struct __percpu *works;
3057
3058 works = alloc_percpu(struct work_struct);
3059 if (!works)
3060 return -ENOMEM;
3061
3062 get_online_cpus();
3063
3064 for_each_online_cpu(cpu) {
3065 struct work_struct *work = per_cpu_ptr(works, cpu);
3066
3067 INIT_WORK(work, func);
3068 schedule_work_on(cpu, work);
3069 }
3070
3071 for_each_online_cpu(cpu)
3072 flush_work(per_cpu_ptr(works, cpu));
3073
3074 put_online_cpus();
3075 free_percpu(works);
3076 return 0;
3077 }
3078
3079 /**
3080 * flush_scheduled_work - ensure that any scheduled work has run to completion.
3081 *
3082 * Forces execution of the kernel-global workqueue and blocks until its
3083 * completion.
3084 *
3085 * Think twice before calling this function! It's very easy to get into
3086 * trouble if you don't take great care. Either of the following situations
3087 * will lead to deadlock:
3088 *
3089 * One of the work items currently on the workqueue needs to acquire
3090 * a lock held by your code or its caller.
3091 *
3092 * Your code is running in the context of a work routine.
3093 *
3094 * They will be detected by lockdep when they occur, but the first might not
3095 * occur very often. It depends on what work items are on the workqueue and
3096 * what locks they need, which you have no control over.
3097 *
3098 * In most situations flushing the entire workqueue is overkill; you merely
3099 * need to know that a particular work item isn't queued and isn't running.
3100 * In such cases you should use cancel_delayed_work_sync() or
3101 * cancel_work_sync() instead.
3102 */
3103 void flush_scheduled_work(void)
3104 {
3105 flush_workqueue(system_wq);
3106 }
3107 EXPORT_SYMBOL(flush_scheduled_work);
3108
3109 /**
3110 * execute_in_process_context - reliably execute the routine with user context
3111 * @fn: the function to execute
3112 * @ew: guaranteed storage for the execute work structure (must
3113 * be available when the work executes)
3114 *
3115 * Executes the function immediately if process context is available,
3116 * otherwise schedules the function for delayed execution.
3117 *
3118 * Returns: 0 - function was executed
3119 * 1 - function was scheduled for execution
3120 */
3121 int execute_in_process_context(work_func_t fn, struct execute_work *ew)
3122 {
3123 if (!in_interrupt()) {
3124 fn(&ew->work);
3125 return 0;
3126 }
3127
3128 INIT_WORK(&ew->work, fn);
3129 schedule_work(&ew->work);
3130
3131 return 1;
3132 }
3133 EXPORT_SYMBOL_GPL(execute_in_process_context);
3134
3135 #ifdef CONFIG_SYSFS
3136 /*
3137 * Workqueues with WQ_SYSFS flag set is visible to userland via
3138 * /sys/bus/workqueue/devices/WQ_NAME. All visible workqueues have the
3139 * following attributes.
3140 *
3141 * per_cpu RO bool : whether the workqueue is per-cpu or unbound
3142 * max_active RW int : maximum number of in-flight work items
3143 *
3144 * Unbound workqueues have the following extra attributes.
3145 *
3146 * id RO int : the associated pool ID
3147 * nice RW int : nice value of the workers
3148 * cpumask RW mask : bitmask of allowed CPUs for the workers
3149 */
3150 struct wq_device {
3151 struct workqueue_struct *wq;
3152 struct device dev;
3153 };
3154
3155 static struct workqueue_struct *dev_to_wq(struct device *dev)
3156 {
3157 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
3158
3159 return wq_dev->wq;
3160 }
3161
3162 static ssize_t wq_per_cpu_show(struct device *dev,
3163 struct device_attribute *attr, char *buf)
3164 {
3165 struct workqueue_struct *wq = dev_to_wq(dev);
3166
3167 return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND));
3168 }
3169
3170 static ssize_t wq_max_active_show(struct device *dev,
3171 struct device_attribute *attr, char *buf)
3172 {
3173 struct workqueue_struct *wq = dev_to_wq(dev);
3174
3175 return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active);
3176 }
3177
3178 static ssize_t wq_max_active_store(struct device *dev,
3179 struct device_attribute *attr,
3180 const char *buf, size_t count)
3181 {
3182 struct workqueue_struct *wq = dev_to_wq(dev);
3183 int val;
3184
3185 if (sscanf(buf, "%d", &val) != 1 || val <= 0)
3186 return -EINVAL;
3187
3188 workqueue_set_max_active(wq, val);
3189 return count;
3190 }
3191
3192 static struct device_attribute wq_sysfs_attrs[] = {
3193 __ATTR(per_cpu, 0444, wq_per_cpu_show, NULL),
3194 __ATTR(max_active, 0644, wq_max_active_show, wq_max_active_store),
3195 __ATTR_NULL,
3196 };
3197
3198 static ssize_t wq_pool_id_show(struct device *dev,
3199 struct device_attribute *attr, char *buf)
3200 {
3201 struct workqueue_struct *wq = dev_to_wq(dev);
3202 struct worker_pool *pool;
3203 int written;
3204
3205 rcu_read_lock_sched();
3206 pool = first_pwq(wq)->pool;
3207 written = scnprintf(buf, PAGE_SIZE, "%d\n", pool->id);
3208 rcu_read_unlock_sched();
3209
3210 return written;
3211 }
3212
3213 static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr,
3214 char *buf)
3215 {
3216 struct workqueue_struct *wq = dev_to_wq(dev);
3217 int written;
3218
3219 rcu_read_lock_sched();
3220 written = scnprintf(buf, PAGE_SIZE, "%d\n",
3221 first_pwq(wq)->pool->attrs->nice);
3222 rcu_read_unlock_sched();
3223
3224 return written;
3225 }
3226
3227 /* prepare workqueue_attrs for sysfs store operations */
3228 static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq)
3229 {
3230 struct workqueue_attrs *attrs;
3231
3232 attrs = alloc_workqueue_attrs(GFP_KERNEL);
3233 if (!attrs)
3234 return NULL;
3235
3236 rcu_read_lock_sched();
3237 copy_workqueue_attrs(attrs, first_pwq(wq)->pool->attrs);
3238 rcu_read_unlock_sched();
3239 return attrs;
3240 }
3241
3242 static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr,
3243 const char *buf, size_t count)
3244 {
3245 struct workqueue_struct *wq = dev_to_wq(dev);
3246 struct workqueue_attrs *attrs;
3247 int ret;
3248
3249 attrs = wq_sysfs_prep_attrs(wq);
3250 if (!attrs)
3251 return -ENOMEM;
3252
3253 if (sscanf(buf, "%d", &attrs->nice) == 1 &&
3254 attrs->nice >= -20 && attrs->nice <= 19)
3255 ret = apply_workqueue_attrs(wq, attrs);
3256 else
3257 ret = -EINVAL;
3258
3259 free_workqueue_attrs(attrs);
3260 return ret ?: count;
3261 }
3262
3263 static ssize_t wq_cpumask_show(struct device *dev,
3264 struct device_attribute *attr, char *buf)
3265 {
3266 struct workqueue_struct *wq = dev_to_wq(dev);
3267 int written;
3268
3269 rcu_read_lock_sched();
3270 written = cpumask_scnprintf(buf, PAGE_SIZE,
3271 first_pwq(wq)->pool->attrs->cpumask);
3272 rcu_read_unlock_sched();
3273
3274 written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
3275 return written;
3276 }
3277
3278 static ssize_t wq_cpumask_store(struct device *dev,
3279 struct device_attribute *attr,
3280 const char *buf, size_t count)
3281 {
3282 struct workqueue_struct *wq = dev_to_wq(dev);
3283 struct workqueue_attrs *attrs;
3284 int ret;
3285
3286 attrs = wq_sysfs_prep_attrs(wq);
3287 if (!attrs)
3288 return -ENOMEM;
3289
3290 ret = cpumask_parse(buf, attrs->cpumask);
3291 if (!ret)
3292 ret = apply_workqueue_attrs(wq, attrs);
3293
3294 free_workqueue_attrs(attrs);
3295 return ret ?: count;
3296 }
3297
3298 static struct device_attribute wq_sysfs_unbound_attrs[] = {
3299 __ATTR(pool_id, 0444, wq_pool_id_show, NULL),
3300 __ATTR(nice, 0644, wq_nice_show, wq_nice_store),
3301 __ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store),
3302 __ATTR_NULL,
3303 };
3304
3305 static struct bus_type wq_subsys = {
3306 .name = "workqueue",
3307 .dev_attrs = wq_sysfs_attrs,
3308 };
3309
3310 static int __init wq_sysfs_init(void)
3311 {
3312 return subsys_virtual_register(&wq_subsys, NULL);
3313 }
3314 core_initcall(wq_sysfs_init);
3315
3316 static void wq_device_release(struct device *dev)
3317 {
3318 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
3319
3320 kfree(wq_dev);
3321 }
3322
3323 /**
3324 * workqueue_sysfs_register - make a workqueue visible in sysfs
3325 * @wq: the workqueue to register
3326 *
3327 * Expose @wq in sysfs under /sys/bus/workqueue/devices.
3328 * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set
3329 * which is the preferred method.
3330 *
3331 * Workqueue user should use this function directly iff it wants to apply
3332 * workqueue_attrs before making the workqueue visible in sysfs; otherwise,
3333 * apply_workqueue_attrs() may race against userland updating the
3334 * attributes.
3335 *
3336 * Returns 0 on success, -errno on failure.
3337 */
3338 int workqueue_sysfs_register(struct workqueue_struct *wq)
3339 {
3340 struct wq_device *wq_dev;
3341 int ret;
3342
3343 /*
3344 * Adjusting max_active or creating new pwqs by applyting
3345 * attributes breaks ordering guarantee. Disallow exposing ordered
3346 * workqueues.
3347 */
3348 if (WARN_ON(wq->flags & __WQ_ORDERED))
3349 return -EINVAL;
3350
3351 wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL);
3352 if (!wq_dev)
3353 return -ENOMEM;
3354
3355 wq_dev->wq = wq;
3356 wq_dev->dev.bus = &wq_subsys;
3357 wq_dev->dev.init_name = wq->name;
3358 wq_dev->dev.release = wq_device_release;
3359
3360 /*
3361 * unbound_attrs are created separately. Suppress uevent until
3362 * everything is ready.
3363 */
3364 dev_set_uevent_suppress(&wq_dev->dev, true);
3365
3366 ret = device_register(&wq_dev->dev);
3367 if (ret) {
3368 kfree(wq_dev);
3369 wq->wq_dev = NULL;
3370 return ret;
3371 }
3372
3373 if (wq->flags & WQ_UNBOUND) {
3374 struct device_attribute *attr;
3375
3376 for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) {
3377 ret = device_create_file(&wq_dev->dev, attr);
3378 if (ret) {
3379 device_unregister(&wq_dev->dev);
3380 wq->wq_dev = NULL;
3381 return ret;
3382 }
3383 }
3384 }
3385
3386 kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD);
3387 return 0;
3388 }
3389
3390 /**
3391 * workqueue_sysfs_unregister - undo workqueue_sysfs_register()
3392 * @wq: the workqueue to unregister
3393 *
3394 * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister.
3395 */
3396 static void workqueue_sysfs_unregister(struct workqueue_struct *wq)
3397 {
3398 struct wq_device *wq_dev = wq->wq_dev;
3399
3400 if (!wq->wq_dev)
3401 return;
3402
3403 wq->wq_dev = NULL;
3404 device_unregister(&wq_dev->dev);
3405 }
3406 #else /* CONFIG_SYSFS */
3407 static void workqueue_sysfs_unregister(struct workqueue_struct *wq) { }
3408 #endif /* CONFIG_SYSFS */
3409
3410 /**
3411 * free_workqueue_attrs - free a workqueue_attrs
3412 * @attrs: workqueue_attrs to free
3413 *
3414 * Undo alloc_workqueue_attrs().
3415 */
3416 void free_workqueue_attrs(struct workqueue_attrs *attrs)
3417 {
3418 if (attrs) {
3419 free_cpumask_var(attrs->cpumask);
3420 kfree(attrs);
3421 }
3422 }
3423
3424 /**
3425 * alloc_workqueue_attrs - allocate a workqueue_attrs
3426 * @gfp_mask: allocation mask to use
3427 *
3428 * Allocate a new workqueue_attrs, initialize with default settings and
3429 * return it. Returns NULL on failure.
3430 */
3431 struct workqueue_attrs *alloc_workqueue_attrs(gfp_t gfp_mask)
3432 {
3433 struct workqueue_attrs *attrs;
3434
3435 attrs = kzalloc(sizeof(*attrs), gfp_mask);
3436 if (!attrs)
3437 goto fail;
3438 if (!alloc_cpumask_var(&attrs->cpumask, gfp_mask))
3439 goto fail;
3440
3441 cpumask_setall(attrs->cpumask);
3442 return attrs;
3443 fail:
3444 free_workqueue_attrs(attrs);
3445 return NULL;
3446 }
3447
3448 static void copy_workqueue_attrs(struct workqueue_attrs *to,
3449 const struct workqueue_attrs *from)
3450 {
3451 to->nice = from->nice;
3452 cpumask_copy(to->cpumask, from->cpumask);
3453 }
3454
3455 /*
3456 * Hacky implementation of jhash of bitmaps which only considers the
3457 * specified number of bits. We probably want a proper implementation in
3458 * include/linux/jhash.h.
3459 */
3460 static u32 jhash_bitmap(const unsigned long *bitmap, int bits, u32 hash)
3461 {
3462 int nr_longs = bits / BITS_PER_LONG;
3463 int nr_leftover = bits % BITS_PER_LONG;
3464 unsigned long leftover = 0;
3465
3466 if (nr_longs)
3467 hash = jhash(bitmap, nr_longs * sizeof(long), hash);
3468 if (nr_leftover) {
3469 bitmap_copy(&leftover, bitmap + nr_longs, nr_leftover);
3470 hash = jhash(&leftover, sizeof(long), hash);
3471 }
3472 return hash;
3473 }
3474
3475 /* hash value of the content of @attr */
3476 static u32 wqattrs_hash(const struct workqueue_attrs *attrs)
3477 {
3478 u32 hash = 0;
3479
3480 hash = jhash_1word(attrs->nice, hash);
3481 hash = jhash_bitmap(cpumask_bits(attrs->cpumask), nr_cpu_ids, hash);
3482 return hash;
3483 }
3484
3485 /* content equality test */
3486 static bool wqattrs_equal(const struct workqueue_attrs *a,
3487 const struct workqueue_attrs *b)
3488 {
3489 if (a->nice != b->nice)
3490 return false;
3491 if (!cpumask_equal(a->cpumask, b->cpumask))
3492 return false;
3493 return true;
3494 }
3495
3496 /**
3497 * init_worker_pool - initialize a newly zalloc'd worker_pool
3498 * @pool: worker_pool to initialize
3499 *
3500 * Initiailize a newly zalloc'd @pool. It also allocates @pool->attrs.
3501 * Returns 0 on success, -errno on failure. Even on failure, all fields
3502 * inside @pool proper are initialized and put_unbound_pool() can be called
3503 * on @pool safely to release it.
3504 */
3505 static int init_worker_pool(struct worker_pool *pool)
3506 {
3507 spin_lock_init(&pool->lock);
3508 pool->id = -1;
3509 pool->cpu = -1;
3510 pool->flags |= POOL_DISASSOCIATED;
3511 INIT_LIST_HEAD(&pool->worklist);
3512 INIT_LIST_HEAD(&pool->idle_list);
3513 hash_init(pool->busy_hash);
3514
3515 init_timer_deferrable(&pool->idle_timer);
3516 pool->idle_timer.function = idle_worker_timeout;
3517 pool->idle_timer.data = (unsigned long)pool;
3518
3519 setup_timer(&pool->mayday_timer, pool_mayday_timeout,
3520 (unsigned long)pool);
3521
3522 mutex_init(&pool->manager_arb);
3523 mutex_init(&pool->manager_mutex);
3524 idr_init(&pool->worker_idr);
3525
3526 INIT_HLIST_NODE(&pool->hash_node);
3527 pool->refcnt = 1;
3528
3529 /* shouldn't fail above this point */
3530 pool->attrs = alloc_workqueue_attrs(GFP_KERNEL);
3531 if (!pool->attrs)
3532 return -ENOMEM;
3533 return 0;
3534 }
3535
3536 static void rcu_free_pool(struct rcu_head *rcu)
3537 {
3538 struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu);
3539
3540 idr_destroy(&pool->worker_idr);
3541 free_workqueue_attrs(pool->attrs);
3542 kfree(pool);
3543 }
3544
3545 /**
3546 * put_unbound_pool - put a worker_pool
3547 * @pool: worker_pool to put
3548 *
3549 * Put @pool. If its refcnt reaches zero, it gets destroyed in sched-RCU
3550 * safe manner. get_unbound_pool() calls this function on its failure path
3551 * and this function should be able to release pools which went through,
3552 * successfully or not, init_worker_pool().
3553 */
3554 static void put_unbound_pool(struct worker_pool *pool)
3555 {
3556 struct worker *worker;
3557
3558 mutex_lock(&wq_mutex);
3559 if (--pool->refcnt) {
3560 mutex_unlock(&wq_mutex);
3561 return;
3562 }
3563
3564 /* sanity checks */
3565 if (WARN_ON(!(pool->flags & POOL_DISASSOCIATED)) ||
3566 WARN_ON(!list_empty(&pool->worklist))) {
3567 mutex_unlock(&wq_mutex);
3568 return;
3569 }
3570
3571 /* release id and unhash */
3572 if (pool->id >= 0)
3573 idr_remove(&worker_pool_idr, pool->id);
3574 hash_del(&pool->hash_node);
3575
3576 mutex_unlock(&wq_mutex);
3577
3578 /*
3579 * Become the manager and destroy all workers. Grabbing
3580 * manager_arb prevents @pool's workers from blocking on
3581 * manager_mutex.
3582 */
3583 mutex_lock(&pool->manager_arb);
3584 mutex_lock(&pool->manager_mutex);
3585 spin_lock_irq(&pool->lock);
3586
3587 while ((worker = first_worker(pool)))
3588 destroy_worker(worker);
3589 WARN_ON(pool->nr_workers || pool->nr_idle);
3590
3591 spin_unlock_irq(&pool->lock);
3592 mutex_unlock(&pool->manager_mutex);
3593 mutex_unlock(&pool->manager_arb);
3594
3595 /* shut down the timers */
3596 del_timer_sync(&pool->idle_timer);
3597 del_timer_sync(&pool->mayday_timer);
3598
3599 /* sched-RCU protected to allow dereferences from get_work_pool() */
3600 call_rcu_sched(&pool->rcu, rcu_free_pool);
3601 }
3602
3603 /**
3604 * get_unbound_pool - get a worker_pool with the specified attributes
3605 * @attrs: the attributes of the worker_pool to get
3606 *
3607 * Obtain a worker_pool which has the same attributes as @attrs, bump the
3608 * reference count and return it. If there already is a matching
3609 * worker_pool, it will be used; otherwise, this function attempts to
3610 * create a new one. On failure, returns NULL.
3611 */
3612 static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs)
3613 {
3614 u32 hash = wqattrs_hash(attrs);
3615 struct worker_pool *pool;
3616
3617 mutex_lock(&wq_mutex);
3618
3619 /* do we already have a matching pool? */
3620 hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) {
3621 if (wqattrs_equal(pool->attrs, attrs)) {
3622 pool->refcnt++;
3623 goto out_unlock;
3624 }
3625 }
3626
3627 /* nope, create a new one */
3628 pool = kzalloc(sizeof(*pool), GFP_KERNEL);
3629 if (!pool || init_worker_pool(pool) < 0)
3630 goto fail;
3631
3632 lockdep_set_subclass(&pool->lock, 1); /* see put_pwq() */
3633 copy_workqueue_attrs(pool->attrs, attrs);
3634
3635 if (worker_pool_assign_id(pool) < 0)
3636 goto fail;
3637
3638 /* create and start the initial worker */
3639 if (create_and_start_worker(pool) < 0)
3640 goto fail;
3641
3642 /* install */
3643 hash_add(unbound_pool_hash, &pool->hash_node, hash);
3644 out_unlock:
3645 mutex_unlock(&wq_mutex);
3646 return pool;
3647 fail:
3648 mutex_unlock(&wq_mutex);
3649 if (pool)
3650 put_unbound_pool(pool);
3651 return NULL;
3652 }
3653
3654 static void rcu_free_pwq(struct rcu_head *rcu)
3655 {
3656 kmem_cache_free(pwq_cache,
3657 container_of(rcu, struct pool_workqueue, rcu));
3658 }
3659
3660 /*
3661 * Scheduled on system_wq by put_pwq() when an unbound pwq hits zero refcnt
3662 * and needs to be destroyed.
3663 */
3664 static void pwq_unbound_release_workfn(struct work_struct *work)
3665 {
3666 struct pool_workqueue *pwq = container_of(work, struct pool_workqueue,
3667 unbound_release_work);
3668 struct workqueue_struct *wq = pwq->wq;
3669 struct worker_pool *pool = pwq->pool;
3670
3671 if (WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND)))
3672 return;
3673
3674 /*
3675 * Unlink @pwq. Synchronization against flush_mutex isn't strictly
3676 * necessary on release but do it anyway. It's easier to verify
3677 * and consistent with the linking path.
3678 */
3679 mutex_lock(&wq->flush_mutex);
3680 spin_lock_irq(&pwq_lock);
3681 list_del_rcu(&pwq->pwqs_node);
3682 spin_unlock_irq(&pwq_lock);
3683 mutex_unlock(&wq->flush_mutex);
3684
3685 put_unbound_pool(pool);
3686 call_rcu_sched(&pwq->rcu, rcu_free_pwq);
3687
3688 /*
3689 * If we're the last pwq going away, @wq is already dead and no one
3690 * is gonna access it anymore. Free it.
3691 */
3692 if (list_empty(&wq->pwqs))
3693 kfree(wq);
3694 }
3695
3696 /**
3697 * pwq_adjust_max_active - update a pwq's max_active to the current setting
3698 * @pwq: target pool_workqueue
3699 *
3700 * If @pwq isn't freezing, set @pwq->max_active to the associated
3701 * workqueue's saved_max_active and activate delayed work items
3702 * accordingly. If @pwq is freezing, clear @pwq->max_active to zero.
3703 */
3704 static void pwq_adjust_max_active(struct pool_workqueue *pwq)
3705 {
3706 struct workqueue_struct *wq = pwq->wq;
3707 bool freezable = wq->flags & WQ_FREEZABLE;
3708
3709 /* for @wq->saved_max_active */
3710 lockdep_assert_held(&pwq_lock);
3711
3712 /* fast exit for non-freezable wqs */
3713 if (!freezable && pwq->max_active == wq->saved_max_active)
3714 return;
3715
3716 spin_lock(&pwq->pool->lock);
3717
3718 if (!freezable || !(pwq->pool->flags & POOL_FREEZING)) {
3719 pwq->max_active = wq->saved_max_active;
3720
3721 while (!list_empty(&pwq->delayed_works) &&
3722 pwq->nr_active < pwq->max_active)
3723 pwq_activate_first_delayed(pwq);
3724 } else {
3725 pwq->max_active = 0;
3726 }
3727
3728 spin_unlock(&pwq->pool->lock);
3729 }
3730
3731 static void init_and_link_pwq(struct pool_workqueue *pwq,
3732 struct workqueue_struct *wq,
3733 struct worker_pool *pool,
3734 struct pool_workqueue **p_last_pwq)
3735 {
3736 BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK);
3737
3738 pwq->pool = pool;
3739 pwq->wq = wq;
3740 pwq->flush_color = -1;
3741 pwq->refcnt = 1;
3742 INIT_LIST_HEAD(&pwq->delayed_works);
3743 INIT_LIST_HEAD(&pwq->mayday_node);
3744 INIT_WORK(&pwq->unbound_release_work, pwq_unbound_release_workfn);
3745
3746 mutex_lock(&wq->flush_mutex);
3747 spin_lock_irq(&pwq_lock);
3748
3749 /*
3750 * Set the matching work_color. This is synchronized with
3751 * flush_mutex to avoid confusing flush_workqueue().
3752 */
3753 if (p_last_pwq)
3754 *p_last_pwq = first_pwq(wq);
3755 pwq->work_color = wq->work_color;
3756
3757 /* sync max_active to the current setting */
3758 pwq_adjust_max_active(pwq);
3759
3760 /* link in @pwq */
3761 list_add_rcu(&pwq->pwqs_node, &wq->pwqs);
3762
3763 spin_unlock_irq(&pwq_lock);
3764 mutex_unlock(&wq->flush_mutex);
3765 }
3766
3767 /**
3768 * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue
3769 * @wq: the target workqueue
3770 * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs()
3771 *
3772 * Apply @attrs to an unbound workqueue @wq. If @attrs doesn't match the
3773 * current attributes, a new pwq is created and made the first pwq which
3774 * will serve all new work items. Older pwqs are released as in-flight
3775 * work items finish. Note that a work item which repeatedly requeues
3776 * itself back-to-back will stay on its current pwq.
3777 *
3778 * Performs GFP_KERNEL allocations. Returns 0 on success and -errno on
3779 * failure.
3780 */
3781 int apply_workqueue_attrs(struct workqueue_struct *wq,
3782 const struct workqueue_attrs *attrs)
3783 {
3784 struct pool_workqueue *pwq, *last_pwq;
3785 struct worker_pool *pool;
3786
3787 /* only unbound workqueues can change attributes */
3788 if (WARN_ON(!(wq->flags & WQ_UNBOUND)))
3789 return -EINVAL;
3790
3791 /* creating multiple pwqs breaks ordering guarantee */
3792 if (WARN_ON((wq->flags & __WQ_ORDERED) && !list_empty(&wq->pwqs)))
3793 return -EINVAL;
3794
3795 pwq = kmem_cache_zalloc(pwq_cache, GFP_KERNEL);
3796 if (!pwq)
3797 return -ENOMEM;
3798
3799 pool = get_unbound_pool(attrs);
3800 if (!pool) {
3801 kmem_cache_free(pwq_cache, pwq);
3802 return -ENOMEM;
3803 }
3804
3805 init_and_link_pwq(pwq, wq, pool, &last_pwq);
3806 if (last_pwq) {
3807 spin_lock_irq(&last_pwq->pool->lock);
3808 put_pwq(last_pwq);
3809 spin_unlock_irq(&last_pwq->pool->lock);
3810 }
3811
3812 return 0;
3813 }
3814
3815 static int alloc_and_link_pwqs(struct workqueue_struct *wq)
3816 {
3817 bool highpri = wq->flags & WQ_HIGHPRI;
3818 int cpu;
3819
3820 if (!(wq->flags & WQ_UNBOUND)) {
3821 wq->cpu_pwqs = alloc_percpu(struct pool_workqueue);
3822 if (!wq->cpu_pwqs)
3823 return -ENOMEM;
3824
3825 for_each_possible_cpu(cpu) {
3826 struct pool_workqueue *pwq =
3827 per_cpu_ptr(wq->cpu_pwqs, cpu);
3828 struct worker_pool *cpu_pools =
3829 per_cpu(cpu_worker_pools, cpu);
3830
3831 init_and_link_pwq(pwq, wq, &cpu_pools[highpri], NULL);
3832 }
3833 return 0;
3834 } else {
3835 return apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]);
3836 }
3837 }
3838
3839 static int wq_clamp_max_active(int max_active, unsigned int flags,
3840 const char *name)
3841 {
3842 int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;
3843
3844 if (max_active < 1 || max_active > lim)
3845 pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
3846 max_active, name, 1, lim);
3847
3848 return clamp_val(max_active, 1, lim);
3849 }
3850
3851 struct workqueue_struct *__alloc_workqueue_key(const char *fmt,
3852 unsigned int flags,
3853 int max_active,
3854 struct lock_class_key *key,
3855 const char *lock_name, ...)
3856 {
3857 va_list args, args1;
3858 struct workqueue_struct *wq;
3859 struct pool_workqueue *pwq;
3860 size_t namelen;
3861
3862 /* determine namelen, allocate wq and format name */
3863 va_start(args, lock_name);
3864 va_copy(args1, args);
3865 namelen = vsnprintf(NULL, 0, fmt, args) + 1;
3866
3867 wq = kzalloc(sizeof(*wq) + namelen, GFP_KERNEL);
3868 if (!wq)
3869 return NULL;
3870
3871 vsnprintf(wq->name, namelen, fmt, args1);
3872 va_end(args);
3873 va_end(args1);
3874
3875 max_active = max_active ?: WQ_DFL_ACTIVE;
3876 max_active = wq_clamp_max_active(max_active, flags, wq->name);
3877
3878 /* init wq */
3879 wq->flags = flags;
3880 wq->saved_max_active = max_active;
3881 mutex_init(&wq->flush_mutex);
3882 atomic_set(&wq->nr_pwqs_to_flush, 0);
3883 INIT_LIST_HEAD(&wq->pwqs);
3884 INIT_LIST_HEAD(&wq->flusher_queue);
3885 INIT_LIST_HEAD(&wq->flusher_overflow);
3886 INIT_LIST_HEAD(&wq->maydays);
3887
3888 lockdep_init_map(&wq->lockdep_map, lock_name, key, 0);
3889 INIT_LIST_HEAD(&wq->list);
3890
3891 if (alloc_and_link_pwqs(wq) < 0)
3892 goto err_free_wq;
3893
3894 /*
3895 * Workqueues which may be used during memory reclaim should
3896 * have a rescuer to guarantee forward progress.
3897 */
3898 if (flags & WQ_MEM_RECLAIM) {
3899 struct worker *rescuer;
3900
3901 rescuer = alloc_worker();
3902 if (!rescuer)
3903 goto err_destroy;
3904
3905 rescuer->rescue_wq = wq;
3906 rescuer->task = kthread_create(rescuer_thread, rescuer, "%s",
3907 wq->name);
3908 if (IS_ERR(rescuer->task)) {
3909 kfree(rescuer);
3910 goto err_destroy;
3911 }
3912
3913 wq->rescuer = rescuer;
3914 rescuer->task->flags |= PF_NO_SETAFFINITY;
3915 wake_up_process(rescuer->task);
3916 }
3917
3918 if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq))
3919 goto err_destroy;
3920
3921 /*
3922 * wq_mutex protects global freeze state and workqueues list. Grab
3923 * it, adjust max_active and add the new @wq to workqueues list.
3924 */
3925 mutex_lock(&wq_mutex);
3926
3927 spin_lock_irq(&pwq_lock);
3928 for_each_pwq(pwq, wq)
3929 pwq_adjust_max_active(pwq);
3930 spin_unlock_irq(&pwq_lock);
3931
3932 list_add(&wq->list, &workqueues);
3933
3934 mutex_unlock(&wq_mutex);
3935
3936 return wq;
3937
3938 err_free_wq:
3939 kfree(wq);
3940 return NULL;
3941 err_destroy:
3942 destroy_workqueue(wq);
3943 return NULL;
3944 }
3945 EXPORT_SYMBOL_GPL(__alloc_workqueue_key);
3946
3947 /**
3948 * destroy_workqueue - safely terminate a workqueue
3949 * @wq: target workqueue
3950 *
3951 * Safely destroy a workqueue. All work currently pending will be done first.
3952 */
3953 void destroy_workqueue(struct workqueue_struct *wq)
3954 {
3955 struct pool_workqueue *pwq;
3956
3957 /* drain it before proceeding with destruction */
3958 drain_workqueue(wq);
3959
3960 /* sanity checks */
3961 spin_lock_irq(&pwq_lock);
3962 for_each_pwq(pwq, wq) {
3963 int i;
3964
3965 for (i = 0; i < WORK_NR_COLORS; i++) {
3966 if (WARN_ON(pwq->nr_in_flight[i])) {
3967 spin_unlock_irq(&pwq_lock);
3968 return;
3969 }
3970 }
3971
3972 if (WARN_ON(pwq->refcnt > 1) ||
3973 WARN_ON(pwq->nr_active) ||
3974 WARN_ON(!list_empty(&pwq->delayed_works))) {
3975 spin_unlock_irq(&pwq_lock);
3976 return;
3977 }
3978 }
3979 spin_unlock_irq(&pwq_lock);
3980
3981 /*
3982 * wq list is used to freeze wq, remove from list after
3983 * flushing is complete in case freeze races us.
3984 */
3985 mutex_lock(&wq_mutex);
3986 list_del_init(&wq->list);
3987 mutex_unlock(&wq_mutex);
3988
3989 workqueue_sysfs_unregister(wq);
3990
3991 if (wq->rescuer) {
3992 kthread_stop(wq->rescuer->task);
3993 kfree(wq->rescuer);
3994 wq->rescuer = NULL;
3995 }
3996
3997 if (!(wq->flags & WQ_UNBOUND)) {
3998 /*
3999 * The base ref is never dropped on per-cpu pwqs. Directly
4000 * free the pwqs and wq.
4001 */
4002 free_percpu(wq->cpu_pwqs);
4003 kfree(wq);
4004 } else {
4005 /*
4006 * We're the sole accessor of @wq at this point. Directly
4007 * access the first pwq and put the base ref. As both pwqs
4008 * and pools are sched-RCU protected, the lock operations
4009 * are safe. @wq will be freed when the last pwq is
4010 * released.
4011 */
4012 pwq = list_first_entry(&wq->pwqs, struct pool_workqueue,
4013 pwqs_node);
4014 spin_lock_irq(&pwq->pool->lock);
4015 put_pwq(pwq);
4016 spin_unlock_irq(&pwq->pool->lock);
4017 }
4018 }
4019 EXPORT_SYMBOL_GPL(destroy_workqueue);
4020
4021 /**
4022 * workqueue_set_max_active - adjust max_active of a workqueue
4023 * @wq: target workqueue
4024 * @max_active: new max_active value.
4025 *
4026 * Set max_active of @wq to @max_active.
4027 *
4028 * CONTEXT:
4029 * Don't call from IRQ context.
4030 */
4031 void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
4032 {
4033 struct pool_workqueue *pwq;
4034
4035 /* disallow meddling with max_active for ordered workqueues */
4036 if (WARN_ON(wq->flags & __WQ_ORDERED))
4037 return;
4038
4039 max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
4040
4041 spin_lock_irq(&pwq_lock);
4042
4043 wq->saved_max_active = max_active;
4044
4045 for_each_pwq(pwq, wq)
4046 pwq_adjust_max_active(pwq);
4047
4048 spin_unlock_irq(&pwq_lock);
4049 }
4050 EXPORT_SYMBOL_GPL(workqueue_set_max_active);
4051
4052 /**
4053 * current_is_workqueue_rescuer - is %current workqueue rescuer?
4054 *
4055 * Determine whether %current is a workqueue rescuer. Can be used from
4056 * work functions to determine whether it's being run off the rescuer task.
4057 */
4058 bool current_is_workqueue_rescuer(void)
4059 {
4060 struct worker *worker = current_wq_worker();
4061
4062 return worker && worker == worker->current_pwq->wq->rescuer;
4063 }
4064
4065 /**
4066 * workqueue_congested - test whether a workqueue is congested
4067 * @cpu: CPU in question
4068 * @wq: target workqueue
4069 *
4070 * Test whether @wq's cpu workqueue for @cpu is congested. There is
4071 * no synchronization around this function and the test result is
4072 * unreliable and only useful as advisory hints or for debugging.
4073 *
4074 * RETURNS:
4075 * %true if congested, %false otherwise.
4076 */
4077 bool workqueue_congested(int cpu, struct workqueue_struct *wq)
4078 {
4079 struct pool_workqueue *pwq;
4080 bool ret;
4081
4082 preempt_disable();
4083
4084 if (!(wq->flags & WQ_UNBOUND))
4085 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
4086 else
4087 pwq = first_pwq(wq);
4088
4089 ret = !list_empty(&pwq->delayed_works);
4090 preempt_enable();
4091
4092 return ret;
4093 }
4094 EXPORT_SYMBOL_GPL(workqueue_congested);
4095
4096 /**
4097 * work_busy - test whether a work is currently pending or running
4098 * @work: the work to be tested
4099 *
4100 * Test whether @work is currently pending or running. There is no
4101 * synchronization around this function and the test result is
4102 * unreliable and only useful as advisory hints or for debugging.
4103 *
4104 * RETURNS:
4105 * OR'd bitmask of WORK_BUSY_* bits.
4106 */
4107 unsigned int work_busy(struct work_struct *work)
4108 {
4109 struct worker_pool *pool;
4110 unsigned long flags;
4111 unsigned int ret = 0;
4112
4113 if (work_pending(work))
4114 ret |= WORK_BUSY_PENDING;
4115
4116 local_irq_save(flags);
4117 pool = get_work_pool(work);
4118 if (pool) {
4119 spin_lock(&pool->lock);
4120 if (find_worker_executing_work(pool, work))
4121 ret |= WORK_BUSY_RUNNING;
4122 spin_unlock(&pool->lock);
4123 }
4124 local_irq_restore(flags);
4125
4126 return ret;
4127 }
4128 EXPORT_SYMBOL_GPL(work_busy);
4129
4130 /*
4131 * CPU hotplug.
4132 *
4133 * There are two challenges in supporting CPU hotplug. Firstly, there
4134 * are a lot of assumptions on strong associations among work, pwq and
4135 * pool which make migrating pending and scheduled works very
4136 * difficult to implement without impacting hot paths. Secondly,
4137 * worker pools serve mix of short, long and very long running works making
4138 * blocked draining impractical.
4139 *
4140 * This is solved by allowing the pools to be disassociated from the CPU
4141 * running as an unbound one and allowing it to be reattached later if the
4142 * cpu comes back online.
4143 */
4144
4145 static void wq_unbind_fn(struct work_struct *work)
4146 {
4147 int cpu = smp_processor_id();
4148 struct worker_pool *pool;
4149 struct worker *worker;
4150 int i;
4151
4152 for_each_cpu_worker_pool(pool, cpu) {
4153 WARN_ON_ONCE(cpu != smp_processor_id());
4154
4155 mutex_lock(&pool->manager_mutex);
4156 spin_lock_irq(&pool->lock);
4157
4158 /*
4159 * We've blocked all manager operations. Make all workers
4160 * unbound and set DISASSOCIATED. Before this, all workers
4161 * except for the ones which are still executing works from
4162 * before the last CPU down must be on the cpu. After
4163 * this, they may become diasporas.
4164 */
4165 list_for_each_entry(worker, &pool->idle_list, entry)
4166 worker->flags |= WORKER_UNBOUND;
4167
4168 for_each_busy_worker(worker, i, pool)
4169 worker->flags |= WORKER_UNBOUND;
4170
4171 pool->flags |= POOL_DISASSOCIATED;
4172
4173 spin_unlock_irq(&pool->lock);
4174 mutex_unlock(&pool->manager_mutex);
4175 }
4176
4177 /*
4178 * Call schedule() so that we cross rq->lock and thus can guarantee
4179 * sched callbacks see the %WORKER_UNBOUND flag. This is necessary
4180 * as scheduler callbacks may be invoked from other cpus.
4181 */
4182 schedule();
4183
4184 /*
4185 * Sched callbacks are disabled now. Zap nr_running. After this,
4186 * nr_running stays zero and need_more_worker() and keep_working()
4187 * are always true as long as the worklist is not empty. Pools on
4188 * @cpu now behave as unbound (in terms of concurrency management)
4189 * pools which are served by workers tied to the CPU.
4190 *
4191 * On return from this function, the current worker would trigger
4192 * unbound chain execution of pending work items if other workers
4193 * didn't already.
4194 */
4195 for_each_cpu_worker_pool(pool, cpu)
4196 atomic_set(&pool->nr_running, 0);
4197 }
4198
4199 /*
4200 * Workqueues should be brought up before normal priority CPU notifiers.
4201 * This will be registered high priority CPU notifier.
4202 */
4203 static int __cpuinit workqueue_cpu_up_callback(struct notifier_block *nfb,
4204 unsigned long action,
4205 void *hcpu)
4206 {
4207 int cpu = (unsigned long)hcpu;
4208 struct worker_pool *pool;
4209
4210 switch (action & ~CPU_TASKS_FROZEN) {
4211 case CPU_UP_PREPARE:
4212 for_each_cpu_worker_pool(pool, cpu) {
4213 if (pool->nr_workers)
4214 continue;
4215 if (create_and_start_worker(pool) < 0)
4216 return NOTIFY_BAD;
4217 }
4218 break;
4219
4220 case CPU_DOWN_FAILED:
4221 case CPU_ONLINE:
4222 for_each_cpu_worker_pool(pool, cpu) {
4223 mutex_lock(&pool->manager_mutex);
4224 spin_lock_irq(&pool->lock);
4225
4226 pool->flags &= ~POOL_DISASSOCIATED;
4227 rebind_workers(pool);
4228
4229 spin_unlock_irq(&pool->lock);
4230 mutex_unlock(&pool->manager_mutex);
4231 }
4232 break;
4233 }
4234 return NOTIFY_OK;
4235 }
4236
4237 /*
4238 * Workqueues should be brought down after normal priority CPU notifiers.
4239 * This will be registered as low priority CPU notifier.
4240 */
4241 static int __cpuinit workqueue_cpu_down_callback(struct notifier_block *nfb,
4242 unsigned long action,
4243 void *hcpu)
4244 {
4245 int cpu = (unsigned long)hcpu;
4246 struct work_struct unbind_work;
4247
4248 switch (action & ~CPU_TASKS_FROZEN) {
4249 case CPU_DOWN_PREPARE:
4250 /* unbinding should happen on the local CPU */
4251 INIT_WORK_ONSTACK(&unbind_work, wq_unbind_fn);
4252 queue_work_on(cpu, system_highpri_wq, &unbind_work);
4253 flush_work(&unbind_work);
4254 break;
4255 }
4256 return NOTIFY_OK;
4257 }
4258
4259 #ifdef CONFIG_SMP
4260
4261 struct work_for_cpu {
4262 struct work_struct work;
4263 long (*fn)(void *);
4264 void *arg;
4265 long ret;
4266 };
4267
4268 static void work_for_cpu_fn(struct work_struct *work)
4269 {
4270 struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);
4271
4272 wfc->ret = wfc->fn(wfc->arg);
4273 }
4274
4275 /**
4276 * work_on_cpu - run a function in user context on a particular cpu
4277 * @cpu: the cpu to run on
4278 * @fn: the function to run
4279 * @arg: the function arg
4280 *
4281 * This will return the value @fn returns.
4282 * It is up to the caller to ensure that the cpu doesn't go offline.
4283 * The caller must not hold any locks which would prevent @fn from completing.
4284 */
4285 long work_on_cpu(int cpu, long (*fn)(void *), void *arg)
4286 {
4287 struct work_for_cpu wfc = { .fn = fn, .arg = arg };
4288
4289 INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn);
4290 schedule_work_on(cpu, &wfc.work);
4291 flush_work(&wfc.work);
4292 return wfc.ret;
4293 }
4294 EXPORT_SYMBOL_GPL(work_on_cpu);
4295 #endif /* CONFIG_SMP */
4296
4297 #ifdef CONFIG_FREEZER
4298
4299 /**
4300 * freeze_workqueues_begin - begin freezing workqueues
4301 *
4302 * Start freezing workqueues. After this function returns, all freezable
4303 * workqueues will queue new works to their delayed_works list instead of
4304 * pool->worklist.
4305 *
4306 * CONTEXT:
4307 * Grabs and releases wq_mutex, pwq_lock and pool->lock's.
4308 */
4309 void freeze_workqueues_begin(void)
4310 {
4311 struct worker_pool *pool;
4312 struct workqueue_struct *wq;
4313 struct pool_workqueue *pwq;
4314 int pi;
4315
4316 mutex_lock(&wq_mutex);
4317
4318 WARN_ON_ONCE(workqueue_freezing);
4319 workqueue_freezing = true;
4320
4321 /* set FREEZING */
4322 for_each_pool(pool, pi) {
4323 spin_lock_irq(&pool->lock);
4324 WARN_ON_ONCE(pool->flags & POOL_FREEZING);
4325 pool->flags |= POOL_FREEZING;
4326 spin_unlock_irq(&pool->lock);
4327 }
4328
4329 /* suppress further executions by setting max_active to zero */
4330 spin_lock_irq(&pwq_lock);
4331 list_for_each_entry(wq, &workqueues, list) {
4332 for_each_pwq(pwq, wq)
4333 pwq_adjust_max_active(pwq);
4334 }
4335 spin_unlock_irq(&pwq_lock);
4336
4337 mutex_unlock(&wq_mutex);
4338 }
4339
4340 /**
4341 * freeze_workqueues_busy - are freezable workqueues still busy?
4342 *
4343 * Check whether freezing is complete. This function must be called
4344 * between freeze_workqueues_begin() and thaw_workqueues().
4345 *
4346 * CONTEXT:
4347 * Grabs and releases wq_mutex.
4348 *
4349 * RETURNS:
4350 * %true if some freezable workqueues are still busy. %false if freezing
4351 * is complete.
4352 */
4353 bool freeze_workqueues_busy(void)
4354 {
4355 bool busy = false;
4356 struct workqueue_struct *wq;
4357 struct pool_workqueue *pwq;
4358
4359 mutex_lock(&wq_mutex);
4360
4361 WARN_ON_ONCE(!workqueue_freezing);
4362
4363 list_for_each_entry(wq, &workqueues, list) {
4364 if (!(wq->flags & WQ_FREEZABLE))
4365 continue;
4366 /*
4367 * nr_active is monotonically decreasing. It's safe
4368 * to peek without lock.
4369 */
4370 preempt_disable();
4371 for_each_pwq(pwq, wq) {
4372 WARN_ON_ONCE(pwq->nr_active < 0);
4373 if (pwq->nr_active) {
4374 busy = true;
4375 preempt_enable();
4376 goto out_unlock;
4377 }
4378 }
4379 preempt_enable();
4380 }
4381 out_unlock:
4382 mutex_unlock(&wq_mutex);
4383 return busy;
4384 }
4385
4386 /**
4387 * thaw_workqueues - thaw workqueues
4388 *
4389 * Thaw workqueues. Normal queueing is restored and all collected
4390 * frozen works are transferred to their respective pool worklists.
4391 *
4392 * CONTEXT:
4393 * Grabs and releases wq_mutex, pwq_lock and pool->lock's.
4394 */
4395 void thaw_workqueues(void)
4396 {
4397 struct workqueue_struct *wq;
4398 struct pool_workqueue *pwq;
4399 struct worker_pool *pool;
4400 int pi;
4401
4402 mutex_lock(&wq_mutex);
4403
4404 if (!workqueue_freezing)
4405 goto out_unlock;
4406
4407 /* clear FREEZING */
4408 for_each_pool(pool, pi) {
4409 spin_lock_irq(&pool->lock);
4410 WARN_ON_ONCE(!(pool->flags & POOL_FREEZING));
4411 pool->flags &= ~POOL_FREEZING;
4412 spin_unlock_irq(&pool->lock);
4413 }
4414
4415 /* restore max_active and repopulate worklist */
4416 spin_lock_irq(&pwq_lock);
4417 list_for_each_entry(wq, &workqueues, list) {
4418 for_each_pwq(pwq, wq)
4419 pwq_adjust_max_active(pwq);
4420 }
4421 spin_unlock_irq(&pwq_lock);
4422
4423 /* kick workers */
4424 for_each_pool(pool, pi) {
4425 spin_lock_irq(&pool->lock);
4426 wake_up_worker(pool);
4427 spin_unlock_irq(&pool->lock);
4428 }
4429
4430 workqueue_freezing = false;
4431 out_unlock:
4432 mutex_unlock(&wq_mutex);
4433 }
4434 #endif /* CONFIG_FREEZER */
4435
4436 static int __init init_workqueues(void)
4437 {
4438 int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL };
4439 int i, cpu;
4440
4441 /* make sure we have enough bits for OFFQ pool ID */
4442 BUILD_BUG_ON((1LU << (BITS_PER_LONG - WORK_OFFQ_POOL_SHIFT)) <
4443 WORK_CPU_END * NR_STD_WORKER_POOLS);
4444
4445 WARN_ON(__alignof__(struct pool_workqueue) < __alignof__(long long));
4446
4447 pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC);
4448
4449 cpu_notifier(workqueue_cpu_up_callback, CPU_PRI_WORKQUEUE_UP);
4450 hotcpu_notifier(workqueue_cpu_down_callback, CPU_PRI_WORKQUEUE_DOWN);
4451
4452 /* initialize CPU pools */
4453 for_each_possible_cpu(cpu) {
4454 struct worker_pool *pool;
4455
4456 i = 0;
4457 for_each_cpu_worker_pool(pool, cpu) {
4458 BUG_ON(init_worker_pool(pool));
4459 pool->cpu = cpu;
4460 cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu));
4461 pool->attrs->nice = std_nice[i++];
4462
4463 /* alloc pool ID */
4464 mutex_lock(&wq_mutex);
4465 BUG_ON(worker_pool_assign_id(pool));
4466 mutex_unlock(&wq_mutex);
4467 }
4468 }
4469
4470 /* create the initial worker */
4471 for_each_online_cpu(cpu) {
4472 struct worker_pool *pool;
4473
4474 for_each_cpu_worker_pool(pool, cpu) {
4475 pool->flags &= ~POOL_DISASSOCIATED;
4476 BUG_ON(create_and_start_worker(pool) < 0);
4477 }
4478 }
4479
4480 /* create default unbound wq attrs */
4481 for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
4482 struct workqueue_attrs *attrs;
4483
4484 BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
4485
4486 attrs->nice = std_nice[i];
4487 cpumask_setall(attrs->cpumask);
4488
4489 unbound_std_wq_attrs[i] = attrs;
4490 }
4491
4492 system_wq = alloc_workqueue("events", 0, 0);
4493 system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
4494 system_long_wq = alloc_workqueue("events_long", 0, 0);
4495 system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
4496 WQ_UNBOUND_MAX_ACTIVE);
4497 system_freezable_wq = alloc_workqueue("events_freezable",
4498 WQ_FREEZABLE, 0);
4499 BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
4500 !system_unbound_wq || !system_freezable_wq);
4501 return 0;
4502 }
4503 early_initcall(init_workqueues);