]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - kernel/workqueue.c
UBUNTU: Ubuntu-4.15.0-96.97
[mirror_ubuntu-bionic-kernel.git] / kernel / workqueue.c
1 /*
2 * kernel/workqueue.c - generic async execution with shared worker pool
3 *
4 * Copyright (C) 2002 Ingo Molnar
5 *
6 * Derived from the taskqueue/keventd code by:
7 * David Woodhouse <dwmw2@infradead.org>
8 * Andrew Morton
9 * Kai Petzke <wpp@marie.physik.tu-berlin.de>
10 * Theodore Ts'o <tytso@mit.edu>
11 *
12 * Made to use alloc_percpu by Christoph Lameter.
13 *
14 * Copyright (C) 2010 SUSE Linux Products GmbH
15 * Copyright (C) 2010 Tejun Heo <tj@kernel.org>
16 *
17 * This is the generic async execution mechanism. Work items as are
18 * executed in process context. The worker pool is shared and
19 * automatically managed. There are two worker pools for each CPU (one for
20 * normal work items and the other for high priority ones) and some extra
21 * pools for workqueues which are not bound to any specific CPU - the
22 * number of these backing pools is dynamic.
23 *
24 * Please read Documentation/core-api/workqueue.rst for details.
25 */
26
27 #include <linux/export.h>
28 #include <linux/kernel.h>
29 #include <linux/sched.h>
30 #include <linux/init.h>
31 #include <linux/signal.h>
32 #include <linux/completion.h>
33 #include <linux/workqueue.h>
34 #include <linux/slab.h>
35 #include <linux/cpu.h>
36 #include <linux/notifier.h>
37 #include <linux/kthread.h>
38 #include <linux/hardirq.h>
39 #include <linux/mempolicy.h>
40 #include <linux/freezer.h>
41 #include <linux/debug_locks.h>
42 #include <linux/lockdep.h>
43 #include <linux/idr.h>
44 #include <linux/jhash.h>
45 #include <linux/hashtable.h>
46 #include <linux/rculist.h>
47 #include <linux/nodemask.h>
48 #include <linux/moduleparam.h>
49 #include <linux/uaccess.h>
50 #include <linux/sched/isolation.h>
51 #include <linux/nmi.h>
52
53 #include "workqueue_internal.h"
54
55 enum {
56 /*
57 * worker_pool flags
58 *
59 * A bound pool is either associated or disassociated with its CPU.
60 * While associated (!DISASSOCIATED), all workers are bound to the
61 * CPU and none has %WORKER_UNBOUND set and concurrency management
62 * is in effect.
63 *
64 * While DISASSOCIATED, the cpu may be offline and all workers have
65 * %WORKER_UNBOUND set and concurrency management disabled, and may
66 * be executing on any CPU. The pool behaves as an unbound one.
67 *
68 * Note that DISASSOCIATED should be flipped only while holding
69 * attach_mutex to avoid changing binding state while
70 * worker_attach_to_pool() is in progress.
71 */
72 POOL_MANAGER_ACTIVE = 1 << 0, /* being managed */
73 POOL_DISASSOCIATED = 1 << 2, /* cpu can't serve workers */
74
75 /* worker flags */
76 WORKER_DIE = 1 << 1, /* die die die */
77 WORKER_IDLE = 1 << 2, /* is idle */
78 WORKER_PREP = 1 << 3, /* preparing to run works */
79 WORKER_CPU_INTENSIVE = 1 << 6, /* cpu intensive */
80 WORKER_UNBOUND = 1 << 7, /* worker is unbound */
81 WORKER_REBOUND = 1 << 8, /* worker was rebound */
82
83 WORKER_NOT_RUNNING = WORKER_PREP | WORKER_CPU_INTENSIVE |
84 WORKER_UNBOUND | WORKER_REBOUND,
85
86 NR_STD_WORKER_POOLS = 2, /* # standard pools per cpu */
87
88 UNBOUND_POOL_HASH_ORDER = 6, /* hashed by pool->attrs */
89 BUSY_WORKER_HASH_ORDER = 6, /* 64 pointers */
90
91 MAX_IDLE_WORKERS_RATIO = 4, /* 1/4 of busy can be idle */
92 IDLE_WORKER_TIMEOUT = 300 * HZ, /* keep idle ones for 5 mins */
93
94 MAYDAY_INITIAL_TIMEOUT = HZ / 100 >= 2 ? HZ / 100 : 2,
95 /* call for help after 10ms
96 (min two ticks) */
97 MAYDAY_INTERVAL = HZ / 10, /* and then every 100ms */
98 CREATE_COOLDOWN = HZ, /* time to breath after fail */
99
100 /*
101 * Rescue workers are used only on emergencies and shared by
102 * all cpus. Give MIN_NICE.
103 */
104 RESCUER_NICE_LEVEL = MIN_NICE,
105 HIGHPRI_NICE_LEVEL = MIN_NICE,
106
107 WQ_NAME_LEN = 24,
108 };
109
110 /*
111 * Structure fields follow one of the following exclusion rules.
112 *
113 * I: Modifiable by initialization/destruction paths and read-only for
114 * everyone else.
115 *
116 * P: Preemption protected. Disabling preemption is enough and should
117 * only be modified and accessed from the local cpu.
118 *
119 * L: pool->lock protected. Access with pool->lock held.
120 *
121 * X: During normal operation, modification requires pool->lock and should
122 * be done only from local cpu. Either disabling preemption on local
123 * cpu or grabbing pool->lock is enough for read access. If
124 * POOL_DISASSOCIATED is set, it's identical to L.
125 *
126 * A: pool->attach_mutex protected.
127 *
128 * PL: wq_pool_mutex protected.
129 *
130 * PR: wq_pool_mutex protected for writes. Sched-RCU protected for reads.
131 *
132 * PW: wq_pool_mutex and wq->mutex protected for writes. Either for reads.
133 *
134 * PWR: wq_pool_mutex and wq->mutex protected for writes. Either or
135 * sched-RCU for reads.
136 *
137 * WQ: wq->mutex protected.
138 *
139 * WR: wq->mutex protected for writes. Sched-RCU protected for reads.
140 *
141 * MD: wq_mayday_lock protected.
142 */
143
144 /* struct worker is defined in workqueue_internal.h */
145
146 struct worker_pool {
147 spinlock_t lock; /* the pool lock */
148 int cpu; /* I: the associated cpu */
149 int node; /* I: the associated node ID */
150 int id; /* I: pool ID */
151 unsigned int flags; /* X: flags */
152
153 unsigned long watchdog_ts; /* L: watchdog timestamp */
154
155 struct list_head worklist; /* L: list of pending works */
156 int nr_workers; /* L: total number of workers */
157
158 /* nr_idle includes the ones off idle_list for rebinding */
159 int nr_idle; /* L: currently idle ones */
160
161 struct list_head idle_list; /* X: list of idle workers */
162 struct timer_list idle_timer; /* L: worker idle timeout */
163 struct timer_list mayday_timer; /* L: SOS timer for workers */
164
165 /* a workers is either on busy_hash or idle_list, or the manager */
166 DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
167 /* L: hash of busy workers */
168
169 /* see manage_workers() for details on the two manager mutexes */
170 struct worker *manager; /* L: purely informational */
171 struct mutex attach_mutex; /* attach/detach exclusion */
172 struct list_head workers; /* A: attached workers */
173 struct completion *detach_completion; /* all workers detached */
174
175 struct ida worker_ida; /* worker IDs for task name */
176
177 struct workqueue_attrs *attrs; /* I: worker attributes */
178 struct hlist_node hash_node; /* PL: unbound_pool_hash node */
179 int refcnt; /* PL: refcnt for unbound pools */
180
181 /*
182 * The current concurrency level. As it's likely to be accessed
183 * from other CPUs during try_to_wake_up(), put it in a separate
184 * cacheline.
185 */
186 atomic_t nr_running ____cacheline_aligned_in_smp;
187
188 /*
189 * Destruction of pool is sched-RCU protected to allow dereferences
190 * from get_work_pool().
191 */
192 struct rcu_head rcu;
193 } ____cacheline_aligned_in_smp;
194
195 /*
196 * The per-pool workqueue. While queued, the lower WORK_STRUCT_FLAG_BITS
197 * of work_struct->data are used for flags and the remaining high bits
198 * point to the pwq; thus, pwqs need to be aligned at two's power of the
199 * number of flag bits.
200 */
201 struct pool_workqueue {
202 struct worker_pool *pool; /* I: the associated pool */
203 struct workqueue_struct *wq; /* I: the owning workqueue */
204 int work_color; /* L: current color */
205 int flush_color; /* L: flushing color */
206 int refcnt; /* L: reference count */
207 int nr_in_flight[WORK_NR_COLORS];
208 /* L: nr of in_flight works */
209 int nr_active; /* L: nr of active works */
210 int max_active; /* L: max active works */
211 struct list_head delayed_works; /* L: delayed works */
212 struct list_head pwqs_node; /* WR: node on wq->pwqs */
213 struct list_head mayday_node; /* MD: node on wq->maydays */
214
215 /*
216 * Release of unbound pwq is punted to system_wq. See put_pwq()
217 * and pwq_unbound_release_workfn() for details. pool_workqueue
218 * itself is also sched-RCU protected so that the first pwq can be
219 * determined without grabbing wq->mutex.
220 */
221 struct work_struct unbound_release_work;
222 struct rcu_head rcu;
223 } __aligned(1 << WORK_STRUCT_FLAG_BITS);
224
225 /*
226 * Structure used to wait for workqueue flush.
227 */
228 struct wq_flusher {
229 struct list_head list; /* WQ: list of flushers */
230 int flush_color; /* WQ: flush color waiting for */
231 struct completion done; /* flush completion */
232 };
233
234 struct wq_device;
235
236 /*
237 * The externally visible workqueue. It relays the issued work items to
238 * the appropriate worker_pool through its pool_workqueues.
239 */
240 struct workqueue_struct {
241 struct list_head pwqs; /* WR: all pwqs of this wq */
242 struct list_head list; /* PR: list of all workqueues */
243
244 struct mutex mutex; /* protects this wq */
245 int work_color; /* WQ: current work color */
246 int flush_color; /* WQ: current flush color */
247 atomic_t nr_pwqs_to_flush; /* flush in progress */
248 struct wq_flusher *first_flusher; /* WQ: first flusher */
249 struct list_head flusher_queue; /* WQ: flush waiters */
250 struct list_head flusher_overflow; /* WQ: flush overflow list */
251
252 struct list_head maydays; /* MD: pwqs requesting rescue */
253 struct worker *rescuer; /* I: rescue worker */
254
255 int nr_drainers; /* WQ: drain in progress */
256 int saved_max_active; /* WQ: saved pwq max_active */
257
258 struct workqueue_attrs *unbound_attrs; /* PW: only for unbound wqs */
259 struct pool_workqueue *dfl_pwq; /* PW: only for unbound wqs */
260
261 #ifdef CONFIG_SYSFS
262 struct wq_device *wq_dev; /* I: for sysfs interface */
263 #endif
264 #ifdef CONFIG_LOCKDEP
265 struct lockdep_map lockdep_map;
266 #endif
267 char name[WQ_NAME_LEN]; /* I: workqueue name */
268
269 /*
270 * Destruction of workqueue_struct is sched-RCU protected to allow
271 * walking the workqueues list without grabbing wq_pool_mutex.
272 * This is used to dump all workqueues from sysrq.
273 */
274 struct rcu_head rcu;
275
276 /* hot fields used during command issue, aligned to cacheline */
277 unsigned int flags ____cacheline_aligned; /* WQ: WQ_* flags */
278 struct pool_workqueue __percpu *cpu_pwqs; /* I: per-cpu pwqs */
279 struct pool_workqueue __rcu *numa_pwq_tbl[]; /* PWR: unbound pwqs indexed by node */
280 };
281
282 static struct kmem_cache *pwq_cache;
283
284 static cpumask_var_t *wq_numa_possible_cpumask;
285 /* possible CPUs of each node */
286
287 static bool wq_disable_numa;
288 module_param_named(disable_numa, wq_disable_numa, bool, 0444);
289
290 /* see the comment above the definition of WQ_POWER_EFFICIENT */
291 static bool wq_power_efficient = IS_ENABLED(CONFIG_WQ_POWER_EFFICIENT_DEFAULT);
292 module_param_named(power_efficient, wq_power_efficient, bool, 0444);
293
294 static bool wq_online; /* can kworkers be created yet? */
295
296 static bool wq_numa_enabled; /* unbound NUMA affinity enabled */
297
298 /* buf for wq_update_unbound_numa_attrs(), protected by CPU hotplug exclusion */
299 static struct workqueue_attrs *wq_update_unbound_numa_attrs_buf;
300
301 static DEFINE_MUTEX(wq_pool_mutex); /* protects pools and workqueues list */
302 static DEFINE_SPINLOCK(wq_mayday_lock); /* protects wq->maydays list */
303 static DECLARE_WAIT_QUEUE_HEAD(wq_manager_wait); /* wait for manager to go away */
304
305 static LIST_HEAD(workqueues); /* PR: list of all workqueues */
306 static bool workqueue_freezing; /* PL: have wqs started freezing? */
307
308 /* PL: allowable cpus for unbound wqs and work items */
309 static cpumask_var_t wq_unbound_cpumask;
310
311 /* CPU where unbound work was last round robin scheduled from this CPU */
312 static DEFINE_PER_CPU(int, wq_rr_cpu_last);
313
314 /*
315 * Local execution of unbound work items is no longer guaranteed. The
316 * following always forces round-robin CPU selection on unbound work items
317 * to uncover usages which depend on it.
318 */
319 #ifdef CONFIG_DEBUG_WQ_FORCE_RR_CPU
320 static bool wq_debug_force_rr_cpu = true;
321 #else
322 static bool wq_debug_force_rr_cpu = false;
323 #endif
324 module_param_named(debug_force_rr_cpu, wq_debug_force_rr_cpu, bool, 0644);
325
326 /* the per-cpu worker pools */
327 static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS], cpu_worker_pools);
328
329 static DEFINE_IDR(worker_pool_idr); /* PR: idr of all pools */
330
331 /* PL: hash of all unbound pools keyed by pool->attrs */
332 static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER);
333
334 /* I: attributes used when instantiating standard unbound pools on demand */
335 static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS];
336
337 /* I: attributes used when instantiating ordered pools on demand */
338 static struct workqueue_attrs *ordered_wq_attrs[NR_STD_WORKER_POOLS];
339
340 struct workqueue_struct *system_wq __read_mostly;
341 EXPORT_SYMBOL(system_wq);
342 struct workqueue_struct *system_highpri_wq __read_mostly;
343 EXPORT_SYMBOL_GPL(system_highpri_wq);
344 struct workqueue_struct *system_long_wq __read_mostly;
345 EXPORT_SYMBOL_GPL(system_long_wq);
346 struct workqueue_struct *system_unbound_wq __read_mostly;
347 EXPORT_SYMBOL_GPL(system_unbound_wq);
348 struct workqueue_struct *system_freezable_wq __read_mostly;
349 EXPORT_SYMBOL_GPL(system_freezable_wq);
350 struct workqueue_struct *system_power_efficient_wq __read_mostly;
351 EXPORT_SYMBOL_GPL(system_power_efficient_wq);
352 struct workqueue_struct *system_freezable_power_efficient_wq __read_mostly;
353 EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq);
354
355 static int worker_thread(void *__worker);
356 static void workqueue_sysfs_unregister(struct workqueue_struct *wq);
357
358 #define CREATE_TRACE_POINTS
359 #include <trace/events/workqueue.h>
360
361 #define assert_rcu_or_pool_mutex() \
362 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held() && \
363 !lockdep_is_held(&wq_pool_mutex), \
364 "sched RCU or wq_pool_mutex should be held")
365
366 #define assert_rcu_or_wq_mutex(wq) \
367 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held() && \
368 !lockdep_is_held(&wq->mutex), \
369 "sched RCU or wq->mutex should be held")
370
371 #define assert_rcu_or_wq_mutex_or_pool_mutex(wq) \
372 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held() && \
373 !lockdep_is_held(&wq->mutex) && \
374 !lockdep_is_held(&wq_pool_mutex), \
375 "sched RCU, wq->mutex or wq_pool_mutex should be held")
376
377 #define for_each_cpu_worker_pool(pool, cpu) \
378 for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0]; \
379 (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
380 (pool)++)
381
382 /**
383 * for_each_pool - iterate through all worker_pools in the system
384 * @pool: iteration cursor
385 * @pi: integer used for iteration
386 *
387 * This must be called either with wq_pool_mutex held or sched RCU read
388 * locked. If the pool needs to be used beyond the locking in effect, the
389 * caller is responsible for guaranteeing that the pool stays online.
390 *
391 * The if/else clause exists only for the lockdep assertion and can be
392 * ignored.
393 */
394 #define for_each_pool(pool, pi) \
395 idr_for_each_entry(&worker_pool_idr, pool, pi) \
396 if (({ assert_rcu_or_pool_mutex(); false; })) { } \
397 else
398
399 /**
400 * for_each_pool_worker - iterate through all workers of a worker_pool
401 * @worker: iteration cursor
402 * @pool: worker_pool to iterate workers of
403 *
404 * This must be called with @pool->attach_mutex.
405 *
406 * The if/else clause exists only for the lockdep assertion and can be
407 * ignored.
408 */
409 #define for_each_pool_worker(worker, pool) \
410 list_for_each_entry((worker), &(pool)->workers, node) \
411 if (({ lockdep_assert_held(&pool->attach_mutex); false; })) { } \
412 else
413
414 /**
415 * for_each_pwq - iterate through all pool_workqueues of the specified workqueue
416 * @pwq: iteration cursor
417 * @wq: the target workqueue
418 *
419 * This must be called either with wq->mutex held or sched RCU read locked.
420 * If the pwq needs to be used beyond the locking in effect, the caller is
421 * responsible for guaranteeing that the pwq stays online.
422 *
423 * The if/else clause exists only for the lockdep assertion and can be
424 * ignored.
425 */
426 #define for_each_pwq(pwq, wq) \
427 list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node) \
428 if (({ assert_rcu_or_wq_mutex(wq); false; })) { } \
429 else
430
431 #ifdef CONFIG_DEBUG_OBJECTS_WORK
432
433 static struct debug_obj_descr work_debug_descr;
434
435 static void *work_debug_hint(void *addr)
436 {
437 return ((struct work_struct *) addr)->func;
438 }
439
440 static bool work_is_static_object(void *addr)
441 {
442 struct work_struct *work = addr;
443
444 return test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work));
445 }
446
447 /*
448 * fixup_init is called when:
449 * - an active object is initialized
450 */
451 static bool work_fixup_init(void *addr, enum debug_obj_state state)
452 {
453 struct work_struct *work = addr;
454
455 switch (state) {
456 case ODEBUG_STATE_ACTIVE:
457 cancel_work_sync(work);
458 debug_object_init(work, &work_debug_descr);
459 return true;
460 default:
461 return false;
462 }
463 }
464
465 /*
466 * fixup_free is called when:
467 * - an active object is freed
468 */
469 static bool work_fixup_free(void *addr, enum debug_obj_state state)
470 {
471 struct work_struct *work = addr;
472
473 switch (state) {
474 case ODEBUG_STATE_ACTIVE:
475 cancel_work_sync(work);
476 debug_object_free(work, &work_debug_descr);
477 return true;
478 default:
479 return false;
480 }
481 }
482
483 static struct debug_obj_descr work_debug_descr = {
484 .name = "work_struct",
485 .debug_hint = work_debug_hint,
486 .is_static_object = work_is_static_object,
487 .fixup_init = work_fixup_init,
488 .fixup_free = work_fixup_free,
489 };
490
491 static inline void debug_work_activate(struct work_struct *work)
492 {
493 debug_object_activate(work, &work_debug_descr);
494 }
495
496 static inline void debug_work_deactivate(struct work_struct *work)
497 {
498 debug_object_deactivate(work, &work_debug_descr);
499 }
500
501 void __init_work(struct work_struct *work, int onstack)
502 {
503 if (onstack)
504 debug_object_init_on_stack(work, &work_debug_descr);
505 else
506 debug_object_init(work, &work_debug_descr);
507 }
508 EXPORT_SYMBOL_GPL(__init_work);
509
510 void destroy_work_on_stack(struct work_struct *work)
511 {
512 debug_object_free(work, &work_debug_descr);
513 }
514 EXPORT_SYMBOL_GPL(destroy_work_on_stack);
515
516 void destroy_delayed_work_on_stack(struct delayed_work *work)
517 {
518 destroy_timer_on_stack(&work->timer);
519 debug_object_free(&work->work, &work_debug_descr);
520 }
521 EXPORT_SYMBOL_GPL(destroy_delayed_work_on_stack);
522
523 #else
524 static inline void debug_work_activate(struct work_struct *work) { }
525 static inline void debug_work_deactivate(struct work_struct *work) { }
526 #endif
527
528 /**
529 * worker_pool_assign_id - allocate ID and assing it to @pool
530 * @pool: the pool pointer of interest
531 *
532 * Returns 0 if ID in [0, WORK_OFFQ_POOL_NONE) is allocated and assigned
533 * successfully, -errno on failure.
534 */
535 static int worker_pool_assign_id(struct worker_pool *pool)
536 {
537 int ret;
538
539 lockdep_assert_held(&wq_pool_mutex);
540
541 ret = idr_alloc(&worker_pool_idr, pool, 0, WORK_OFFQ_POOL_NONE,
542 GFP_KERNEL);
543 if (ret >= 0) {
544 pool->id = ret;
545 return 0;
546 }
547 return ret;
548 }
549
550 /**
551 * unbound_pwq_by_node - return the unbound pool_workqueue for the given node
552 * @wq: the target workqueue
553 * @node: the node ID
554 *
555 * This must be called with any of wq_pool_mutex, wq->mutex or sched RCU
556 * read locked.
557 * If the pwq needs to be used beyond the locking in effect, the caller is
558 * responsible for guaranteeing that the pwq stays online.
559 *
560 * Return: The unbound pool_workqueue for @node.
561 */
562 static struct pool_workqueue *unbound_pwq_by_node(struct workqueue_struct *wq,
563 int node)
564 {
565 assert_rcu_or_wq_mutex_or_pool_mutex(wq);
566
567 /*
568 * XXX: @node can be NUMA_NO_NODE if CPU goes offline while a
569 * delayed item is pending. The plan is to keep CPU -> NODE
570 * mapping valid and stable across CPU on/offlines. Once that
571 * happens, this workaround can be removed.
572 */
573 if (unlikely(node == NUMA_NO_NODE))
574 return wq->dfl_pwq;
575
576 return rcu_dereference_raw(wq->numa_pwq_tbl[node]);
577 }
578
579 static unsigned int work_color_to_flags(int color)
580 {
581 return color << WORK_STRUCT_COLOR_SHIFT;
582 }
583
584 static int get_work_color(struct work_struct *work)
585 {
586 return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
587 ((1 << WORK_STRUCT_COLOR_BITS) - 1);
588 }
589
590 static int work_next_color(int color)
591 {
592 return (color + 1) % WORK_NR_COLORS;
593 }
594
595 /*
596 * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
597 * contain the pointer to the queued pwq. Once execution starts, the flag
598 * is cleared and the high bits contain OFFQ flags and pool ID.
599 *
600 * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling()
601 * and clear_work_data() can be used to set the pwq, pool or clear
602 * work->data. These functions should only be called while the work is
603 * owned - ie. while the PENDING bit is set.
604 *
605 * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
606 * corresponding to a work. Pool is available once the work has been
607 * queued anywhere after initialization until it is sync canceled. pwq is
608 * available only while the work item is queued.
609 *
610 * %WORK_OFFQ_CANCELING is used to mark a work item which is being
611 * canceled. While being canceled, a work item may have its PENDING set
612 * but stay off timer and worklist for arbitrarily long and nobody should
613 * try to steal the PENDING bit.
614 */
615 static inline void set_work_data(struct work_struct *work, unsigned long data,
616 unsigned long flags)
617 {
618 WARN_ON_ONCE(!work_pending(work));
619 atomic_long_set(&work->data, data | flags | work_static(work));
620 }
621
622 static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq,
623 unsigned long extra_flags)
624 {
625 set_work_data(work, (unsigned long)pwq,
626 WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags);
627 }
628
629 static void set_work_pool_and_keep_pending(struct work_struct *work,
630 int pool_id)
631 {
632 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT,
633 WORK_STRUCT_PENDING);
634 }
635
636 static void set_work_pool_and_clear_pending(struct work_struct *work,
637 int pool_id)
638 {
639 /*
640 * The following wmb is paired with the implied mb in
641 * test_and_set_bit(PENDING) and ensures all updates to @work made
642 * here are visible to and precede any updates by the next PENDING
643 * owner.
644 */
645 smp_wmb();
646 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0);
647 /*
648 * The following mb guarantees that previous clear of a PENDING bit
649 * will not be reordered with any speculative LOADS or STORES from
650 * work->current_func, which is executed afterwards. This possible
651 * reordering can lead to a missed execution on attempt to qeueue
652 * the same @work. E.g. consider this case:
653 *
654 * CPU#0 CPU#1
655 * ---------------------------- --------------------------------
656 *
657 * 1 STORE event_indicated
658 * 2 queue_work_on() {
659 * 3 test_and_set_bit(PENDING)
660 * 4 } set_..._and_clear_pending() {
661 * 5 set_work_data() # clear bit
662 * 6 smp_mb()
663 * 7 work->current_func() {
664 * 8 LOAD event_indicated
665 * }
666 *
667 * Without an explicit full barrier speculative LOAD on line 8 can
668 * be executed before CPU#0 does STORE on line 1. If that happens,
669 * CPU#0 observes the PENDING bit is still set and new execution of
670 * a @work is not queued in a hope, that CPU#1 will eventually
671 * finish the queued @work. Meanwhile CPU#1 does not see
672 * event_indicated is set, because speculative LOAD was executed
673 * before actual STORE.
674 */
675 smp_mb();
676 }
677
678 static void clear_work_data(struct work_struct *work)
679 {
680 smp_wmb(); /* see set_work_pool_and_clear_pending() */
681 set_work_data(work, WORK_STRUCT_NO_POOL, 0);
682 }
683
684 static struct pool_workqueue *get_work_pwq(struct work_struct *work)
685 {
686 unsigned long data = atomic_long_read(&work->data);
687
688 if (data & WORK_STRUCT_PWQ)
689 return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
690 else
691 return NULL;
692 }
693
694 /**
695 * get_work_pool - return the worker_pool a given work was associated with
696 * @work: the work item of interest
697 *
698 * Pools are created and destroyed under wq_pool_mutex, and allows read
699 * access under sched-RCU read lock. As such, this function should be
700 * called under wq_pool_mutex or with preemption disabled.
701 *
702 * All fields of the returned pool are accessible as long as the above
703 * mentioned locking is in effect. If the returned pool needs to be used
704 * beyond the critical section, the caller is responsible for ensuring the
705 * returned pool is and stays online.
706 *
707 * Return: The worker_pool @work was last associated with. %NULL if none.
708 */
709 static struct worker_pool *get_work_pool(struct work_struct *work)
710 {
711 unsigned long data = atomic_long_read(&work->data);
712 int pool_id;
713
714 assert_rcu_or_pool_mutex();
715
716 if (data & WORK_STRUCT_PWQ)
717 return ((struct pool_workqueue *)
718 (data & WORK_STRUCT_WQ_DATA_MASK))->pool;
719
720 pool_id = data >> WORK_OFFQ_POOL_SHIFT;
721 if (pool_id == WORK_OFFQ_POOL_NONE)
722 return NULL;
723
724 return idr_find(&worker_pool_idr, pool_id);
725 }
726
727 /**
728 * get_work_pool_id - return the worker pool ID a given work is associated with
729 * @work: the work item of interest
730 *
731 * Return: The worker_pool ID @work was last associated with.
732 * %WORK_OFFQ_POOL_NONE if none.
733 */
734 static int get_work_pool_id(struct work_struct *work)
735 {
736 unsigned long data = atomic_long_read(&work->data);
737
738 if (data & WORK_STRUCT_PWQ)
739 return ((struct pool_workqueue *)
740 (data & WORK_STRUCT_WQ_DATA_MASK))->pool->id;
741
742 return data >> WORK_OFFQ_POOL_SHIFT;
743 }
744
745 static void mark_work_canceling(struct work_struct *work)
746 {
747 unsigned long pool_id = get_work_pool_id(work);
748
749 pool_id <<= WORK_OFFQ_POOL_SHIFT;
750 set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING);
751 }
752
753 static bool work_is_canceling(struct work_struct *work)
754 {
755 unsigned long data = atomic_long_read(&work->data);
756
757 return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING);
758 }
759
760 /*
761 * Policy functions. These define the policies on how the global worker
762 * pools are managed. Unless noted otherwise, these functions assume that
763 * they're being called with pool->lock held.
764 */
765
766 static bool __need_more_worker(struct worker_pool *pool)
767 {
768 return !atomic_read(&pool->nr_running);
769 }
770
771 /*
772 * Need to wake up a worker? Called from anything but currently
773 * running workers.
774 *
775 * Note that, because unbound workers never contribute to nr_running, this
776 * function will always return %true for unbound pools as long as the
777 * worklist isn't empty.
778 */
779 static bool need_more_worker(struct worker_pool *pool)
780 {
781 return !list_empty(&pool->worklist) && __need_more_worker(pool);
782 }
783
784 /* Can I start working? Called from busy but !running workers. */
785 static bool may_start_working(struct worker_pool *pool)
786 {
787 return pool->nr_idle;
788 }
789
790 /* Do I need to keep working? Called from currently running workers. */
791 static bool keep_working(struct worker_pool *pool)
792 {
793 return !list_empty(&pool->worklist) &&
794 atomic_read(&pool->nr_running) <= 1;
795 }
796
797 /* Do we need a new worker? Called from manager. */
798 static bool need_to_create_worker(struct worker_pool *pool)
799 {
800 return need_more_worker(pool) && !may_start_working(pool);
801 }
802
803 /* Do we have too many workers and should some go away? */
804 static bool too_many_workers(struct worker_pool *pool)
805 {
806 bool managing = pool->flags & POOL_MANAGER_ACTIVE;
807 int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
808 int nr_busy = pool->nr_workers - nr_idle;
809
810 return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
811 }
812
813 /*
814 * Wake up functions.
815 */
816
817 /* Return the first idle worker. Safe with preemption disabled */
818 static struct worker *first_idle_worker(struct worker_pool *pool)
819 {
820 if (unlikely(list_empty(&pool->idle_list)))
821 return NULL;
822
823 return list_first_entry(&pool->idle_list, struct worker, entry);
824 }
825
826 /**
827 * wake_up_worker - wake up an idle worker
828 * @pool: worker pool to wake worker from
829 *
830 * Wake up the first idle worker of @pool.
831 *
832 * CONTEXT:
833 * spin_lock_irq(pool->lock).
834 */
835 static void wake_up_worker(struct worker_pool *pool)
836 {
837 struct worker *worker = first_idle_worker(pool);
838
839 if (likely(worker))
840 wake_up_process(worker->task);
841 }
842
843 /**
844 * wq_worker_waking_up - a worker is waking up
845 * @task: task waking up
846 * @cpu: CPU @task is waking up to
847 *
848 * This function is called during try_to_wake_up() when a worker is
849 * being awoken.
850 *
851 * CONTEXT:
852 * spin_lock_irq(rq->lock)
853 */
854 void wq_worker_waking_up(struct task_struct *task, int cpu)
855 {
856 struct worker *worker = kthread_data(task);
857
858 if (!(worker->flags & WORKER_NOT_RUNNING)) {
859 WARN_ON_ONCE(worker->pool->cpu != cpu);
860 atomic_inc(&worker->pool->nr_running);
861 }
862 }
863
864 /**
865 * wq_worker_sleeping - a worker is going to sleep
866 * @task: task going to sleep
867 *
868 * This function is called during schedule() when a busy worker is
869 * going to sleep. Worker on the same cpu can be woken up by
870 * returning pointer to its task.
871 *
872 * CONTEXT:
873 * spin_lock_irq(rq->lock)
874 *
875 * Return:
876 * Worker task on @cpu to wake up, %NULL if none.
877 */
878 struct task_struct *wq_worker_sleeping(struct task_struct *task)
879 {
880 struct worker *worker = kthread_data(task), *to_wakeup = NULL;
881 struct worker_pool *pool;
882
883 /*
884 * Rescuers, which may not have all the fields set up like normal
885 * workers, also reach here, let's not access anything before
886 * checking NOT_RUNNING.
887 */
888 if (worker->flags & WORKER_NOT_RUNNING)
889 return NULL;
890
891 pool = worker->pool;
892
893 /* this can only happen on the local cpu */
894 if (WARN_ON_ONCE(pool->cpu != raw_smp_processor_id()))
895 return NULL;
896
897 /*
898 * The counterpart of the following dec_and_test, implied mb,
899 * worklist not empty test sequence is in insert_work().
900 * Please read comment there.
901 *
902 * NOT_RUNNING is clear. This means that we're bound to and
903 * running on the local cpu w/ rq lock held and preemption
904 * disabled, which in turn means that none else could be
905 * manipulating idle_list, so dereferencing idle_list without pool
906 * lock is safe.
907 */
908 if (atomic_dec_and_test(&pool->nr_running) &&
909 !list_empty(&pool->worklist))
910 to_wakeup = first_idle_worker(pool);
911 return to_wakeup ? to_wakeup->task : NULL;
912 }
913
914 /**
915 * worker_set_flags - set worker flags and adjust nr_running accordingly
916 * @worker: self
917 * @flags: flags to set
918 *
919 * Set @flags in @worker->flags and adjust nr_running accordingly.
920 *
921 * CONTEXT:
922 * spin_lock_irq(pool->lock)
923 */
924 static inline void worker_set_flags(struct worker *worker, unsigned int flags)
925 {
926 struct worker_pool *pool = worker->pool;
927
928 WARN_ON_ONCE(worker->task != current);
929
930 /* If transitioning into NOT_RUNNING, adjust nr_running. */
931 if ((flags & WORKER_NOT_RUNNING) &&
932 !(worker->flags & WORKER_NOT_RUNNING)) {
933 atomic_dec(&pool->nr_running);
934 }
935
936 worker->flags |= flags;
937 }
938
939 /**
940 * worker_clr_flags - clear worker flags and adjust nr_running accordingly
941 * @worker: self
942 * @flags: flags to clear
943 *
944 * Clear @flags in @worker->flags and adjust nr_running accordingly.
945 *
946 * CONTEXT:
947 * spin_lock_irq(pool->lock)
948 */
949 static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
950 {
951 struct worker_pool *pool = worker->pool;
952 unsigned int oflags = worker->flags;
953
954 WARN_ON_ONCE(worker->task != current);
955
956 worker->flags &= ~flags;
957
958 /*
959 * If transitioning out of NOT_RUNNING, increment nr_running. Note
960 * that the nested NOT_RUNNING is not a noop. NOT_RUNNING is mask
961 * of multiple flags, not a single flag.
962 */
963 if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
964 if (!(worker->flags & WORKER_NOT_RUNNING))
965 atomic_inc(&pool->nr_running);
966 }
967
968 /**
969 * find_worker_executing_work - find worker which is executing a work
970 * @pool: pool of interest
971 * @work: work to find worker for
972 *
973 * Find a worker which is executing @work on @pool by searching
974 * @pool->busy_hash which is keyed by the address of @work. For a worker
975 * to match, its current execution should match the address of @work and
976 * its work function. This is to avoid unwanted dependency between
977 * unrelated work executions through a work item being recycled while still
978 * being executed.
979 *
980 * This is a bit tricky. A work item may be freed once its execution
981 * starts and nothing prevents the freed area from being recycled for
982 * another work item. If the same work item address ends up being reused
983 * before the original execution finishes, workqueue will identify the
984 * recycled work item as currently executing and make it wait until the
985 * current execution finishes, introducing an unwanted dependency.
986 *
987 * This function checks the work item address and work function to avoid
988 * false positives. Note that this isn't complete as one may construct a
989 * work function which can introduce dependency onto itself through a
990 * recycled work item. Well, if somebody wants to shoot oneself in the
991 * foot that badly, there's only so much we can do, and if such deadlock
992 * actually occurs, it should be easy to locate the culprit work function.
993 *
994 * CONTEXT:
995 * spin_lock_irq(pool->lock).
996 *
997 * Return:
998 * Pointer to worker which is executing @work if found, %NULL
999 * otherwise.
1000 */
1001 static struct worker *find_worker_executing_work(struct worker_pool *pool,
1002 struct work_struct *work)
1003 {
1004 struct worker *worker;
1005
1006 hash_for_each_possible(pool->busy_hash, worker, hentry,
1007 (unsigned long)work)
1008 if (worker->current_work == work &&
1009 worker->current_func == work->func)
1010 return worker;
1011
1012 return NULL;
1013 }
1014
1015 /**
1016 * move_linked_works - move linked works to a list
1017 * @work: start of series of works to be scheduled
1018 * @head: target list to append @work to
1019 * @nextp: out parameter for nested worklist walking
1020 *
1021 * Schedule linked works starting from @work to @head. Work series to
1022 * be scheduled starts at @work and includes any consecutive work with
1023 * WORK_STRUCT_LINKED set in its predecessor.
1024 *
1025 * If @nextp is not NULL, it's updated to point to the next work of
1026 * the last scheduled work. This allows move_linked_works() to be
1027 * nested inside outer list_for_each_entry_safe().
1028 *
1029 * CONTEXT:
1030 * spin_lock_irq(pool->lock).
1031 */
1032 static void move_linked_works(struct work_struct *work, struct list_head *head,
1033 struct work_struct **nextp)
1034 {
1035 struct work_struct *n;
1036
1037 /*
1038 * Linked worklist will always end before the end of the list,
1039 * use NULL for list head.
1040 */
1041 list_for_each_entry_safe_from(work, n, NULL, entry) {
1042 list_move_tail(&work->entry, head);
1043 if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
1044 break;
1045 }
1046
1047 /*
1048 * If we're already inside safe list traversal and have moved
1049 * multiple works to the scheduled queue, the next position
1050 * needs to be updated.
1051 */
1052 if (nextp)
1053 *nextp = n;
1054 }
1055
1056 /**
1057 * get_pwq - get an extra reference on the specified pool_workqueue
1058 * @pwq: pool_workqueue to get
1059 *
1060 * Obtain an extra reference on @pwq. The caller should guarantee that
1061 * @pwq has positive refcnt and be holding the matching pool->lock.
1062 */
1063 static void get_pwq(struct pool_workqueue *pwq)
1064 {
1065 lockdep_assert_held(&pwq->pool->lock);
1066 WARN_ON_ONCE(pwq->refcnt <= 0);
1067 pwq->refcnt++;
1068 }
1069
1070 /**
1071 * put_pwq - put a pool_workqueue reference
1072 * @pwq: pool_workqueue to put
1073 *
1074 * Drop a reference of @pwq. If its refcnt reaches zero, schedule its
1075 * destruction. The caller should be holding the matching pool->lock.
1076 */
1077 static void put_pwq(struct pool_workqueue *pwq)
1078 {
1079 lockdep_assert_held(&pwq->pool->lock);
1080 if (likely(--pwq->refcnt))
1081 return;
1082 if (WARN_ON_ONCE(!(pwq->wq->flags & WQ_UNBOUND)))
1083 return;
1084 /*
1085 * @pwq can't be released under pool->lock, bounce to
1086 * pwq_unbound_release_workfn(). This never recurses on the same
1087 * pool->lock as this path is taken only for unbound workqueues and
1088 * the release work item is scheduled on a per-cpu workqueue. To
1089 * avoid lockdep warning, unbound pool->locks are given lockdep
1090 * subclass of 1 in get_unbound_pool().
1091 */
1092 schedule_work(&pwq->unbound_release_work);
1093 }
1094
1095 /**
1096 * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock
1097 * @pwq: pool_workqueue to put (can be %NULL)
1098 *
1099 * put_pwq() with locking. This function also allows %NULL @pwq.
1100 */
1101 static void put_pwq_unlocked(struct pool_workqueue *pwq)
1102 {
1103 if (pwq) {
1104 /*
1105 * As both pwqs and pools are sched-RCU protected, the
1106 * following lock operations are safe.
1107 */
1108 spin_lock_irq(&pwq->pool->lock);
1109 put_pwq(pwq);
1110 spin_unlock_irq(&pwq->pool->lock);
1111 }
1112 }
1113
1114 static void pwq_activate_delayed_work(struct work_struct *work)
1115 {
1116 struct pool_workqueue *pwq = get_work_pwq(work);
1117
1118 trace_workqueue_activate_work(work);
1119 if (list_empty(&pwq->pool->worklist))
1120 pwq->pool->watchdog_ts = jiffies;
1121 move_linked_works(work, &pwq->pool->worklist, NULL);
1122 __clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
1123 pwq->nr_active++;
1124 }
1125
1126 static void pwq_activate_first_delayed(struct pool_workqueue *pwq)
1127 {
1128 struct work_struct *work = list_first_entry(&pwq->delayed_works,
1129 struct work_struct, entry);
1130
1131 pwq_activate_delayed_work(work);
1132 }
1133
1134 /**
1135 * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
1136 * @pwq: pwq of interest
1137 * @color: color of work which left the queue
1138 *
1139 * A work either has completed or is removed from pending queue,
1140 * decrement nr_in_flight of its pwq and handle workqueue flushing.
1141 *
1142 * CONTEXT:
1143 * spin_lock_irq(pool->lock).
1144 */
1145 static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, int color)
1146 {
1147 /* uncolored work items don't participate in flushing or nr_active */
1148 if (color == WORK_NO_COLOR)
1149 goto out_put;
1150
1151 pwq->nr_in_flight[color]--;
1152
1153 pwq->nr_active--;
1154 if (!list_empty(&pwq->delayed_works)) {
1155 /* one down, submit a delayed one */
1156 if (pwq->nr_active < pwq->max_active)
1157 pwq_activate_first_delayed(pwq);
1158 }
1159
1160 /* is flush in progress and are we at the flushing tip? */
1161 if (likely(pwq->flush_color != color))
1162 goto out_put;
1163
1164 /* are there still in-flight works? */
1165 if (pwq->nr_in_flight[color])
1166 goto out_put;
1167
1168 /* this pwq is done, clear flush_color */
1169 pwq->flush_color = -1;
1170
1171 /*
1172 * If this was the last pwq, wake up the first flusher. It
1173 * will handle the rest.
1174 */
1175 if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush))
1176 complete(&pwq->wq->first_flusher->done);
1177 out_put:
1178 put_pwq(pwq);
1179 }
1180
1181 /**
1182 * try_to_grab_pending - steal work item from worklist and disable irq
1183 * @work: work item to steal
1184 * @is_dwork: @work is a delayed_work
1185 * @flags: place to store irq state
1186 *
1187 * Try to grab PENDING bit of @work. This function can handle @work in any
1188 * stable state - idle, on timer or on worklist.
1189 *
1190 * Return:
1191 * 1 if @work was pending and we successfully stole PENDING
1192 * 0 if @work was idle and we claimed PENDING
1193 * -EAGAIN if PENDING couldn't be grabbed at the moment, safe to busy-retry
1194 * -ENOENT if someone else is canceling @work, this state may persist
1195 * for arbitrarily long
1196 *
1197 * Note:
1198 * On >= 0 return, the caller owns @work's PENDING bit. To avoid getting
1199 * interrupted while holding PENDING and @work off queue, irq must be
1200 * disabled on entry. This, combined with delayed_work->timer being
1201 * irqsafe, ensures that we return -EAGAIN for finite short period of time.
1202 *
1203 * On successful return, >= 0, irq is disabled and the caller is
1204 * responsible for releasing it using local_irq_restore(*@flags).
1205 *
1206 * This function is safe to call from any context including IRQ handler.
1207 */
1208 static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
1209 unsigned long *flags)
1210 {
1211 struct worker_pool *pool;
1212 struct pool_workqueue *pwq;
1213
1214 local_irq_save(*flags);
1215
1216 /* try to steal the timer if it exists */
1217 if (is_dwork) {
1218 struct delayed_work *dwork = to_delayed_work(work);
1219
1220 /*
1221 * dwork->timer is irqsafe. If del_timer() fails, it's
1222 * guaranteed that the timer is not queued anywhere and not
1223 * running on the local CPU.
1224 */
1225 if (likely(del_timer(&dwork->timer)))
1226 return 1;
1227 }
1228
1229 /* try to claim PENDING the normal way */
1230 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
1231 return 0;
1232
1233 /*
1234 * The queueing is in progress, or it is already queued. Try to
1235 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
1236 */
1237 pool = get_work_pool(work);
1238 if (!pool)
1239 goto fail;
1240
1241 spin_lock(&pool->lock);
1242 /*
1243 * work->data is guaranteed to point to pwq only while the work
1244 * item is queued on pwq->wq, and both updating work->data to point
1245 * to pwq on queueing and to pool on dequeueing are done under
1246 * pwq->pool->lock. This in turn guarantees that, if work->data
1247 * points to pwq which is associated with a locked pool, the work
1248 * item is currently queued on that pool.
1249 */
1250 pwq = get_work_pwq(work);
1251 if (pwq && pwq->pool == pool) {
1252 debug_work_deactivate(work);
1253
1254 /*
1255 * A delayed work item cannot be grabbed directly because
1256 * it might have linked NO_COLOR work items which, if left
1257 * on the delayed_list, will confuse pwq->nr_active
1258 * management later on and cause stall. Make sure the work
1259 * item is activated before grabbing.
1260 */
1261 if (*work_data_bits(work) & WORK_STRUCT_DELAYED)
1262 pwq_activate_delayed_work(work);
1263
1264 list_del_init(&work->entry);
1265 pwq_dec_nr_in_flight(pwq, get_work_color(work));
1266
1267 /* work->data points to pwq iff queued, point to pool */
1268 set_work_pool_and_keep_pending(work, pool->id);
1269
1270 spin_unlock(&pool->lock);
1271 return 1;
1272 }
1273 spin_unlock(&pool->lock);
1274 fail:
1275 local_irq_restore(*flags);
1276 if (work_is_canceling(work))
1277 return -ENOENT;
1278 cpu_relax();
1279 return -EAGAIN;
1280 }
1281
1282 /**
1283 * insert_work - insert a work into a pool
1284 * @pwq: pwq @work belongs to
1285 * @work: work to insert
1286 * @head: insertion point
1287 * @extra_flags: extra WORK_STRUCT_* flags to set
1288 *
1289 * Insert @work which belongs to @pwq after @head. @extra_flags is or'd to
1290 * work_struct flags.
1291 *
1292 * CONTEXT:
1293 * spin_lock_irq(pool->lock).
1294 */
1295 static void insert_work(struct pool_workqueue *pwq, struct work_struct *work,
1296 struct list_head *head, unsigned int extra_flags)
1297 {
1298 struct worker_pool *pool = pwq->pool;
1299
1300 /* we own @work, set data and link */
1301 set_work_pwq(work, pwq, extra_flags);
1302 list_add_tail(&work->entry, head);
1303 get_pwq(pwq);
1304
1305 /*
1306 * Ensure either wq_worker_sleeping() sees the above
1307 * list_add_tail() or we see zero nr_running to avoid workers lying
1308 * around lazily while there are works to be processed.
1309 */
1310 smp_mb();
1311
1312 if (__need_more_worker(pool))
1313 wake_up_worker(pool);
1314 }
1315
1316 /*
1317 * Test whether @work is being queued from another work executing on the
1318 * same workqueue.
1319 */
1320 static bool is_chained_work(struct workqueue_struct *wq)
1321 {
1322 struct worker *worker;
1323
1324 worker = current_wq_worker();
1325 /*
1326 * Return %true iff I'm a worker execuing a work item on @wq. If
1327 * I'm @worker, it's safe to dereference it without locking.
1328 */
1329 return worker && worker->current_pwq->wq == wq;
1330 }
1331
1332 /*
1333 * When queueing an unbound work item to a wq, prefer local CPU if allowed
1334 * by wq_unbound_cpumask. Otherwise, round robin among the allowed ones to
1335 * avoid perturbing sensitive tasks.
1336 */
1337 static int wq_select_unbound_cpu(int cpu)
1338 {
1339 static bool printed_dbg_warning;
1340 int new_cpu;
1341
1342 if (likely(!wq_debug_force_rr_cpu)) {
1343 if (cpumask_test_cpu(cpu, wq_unbound_cpumask))
1344 return cpu;
1345 } else if (!printed_dbg_warning) {
1346 pr_warn("workqueue: round-robin CPU selection forced, expect performance impact\n");
1347 printed_dbg_warning = true;
1348 }
1349
1350 if (cpumask_empty(wq_unbound_cpumask))
1351 return cpu;
1352
1353 new_cpu = __this_cpu_read(wq_rr_cpu_last);
1354 new_cpu = cpumask_next_and(new_cpu, wq_unbound_cpumask, cpu_online_mask);
1355 if (unlikely(new_cpu >= nr_cpu_ids)) {
1356 new_cpu = cpumask_first_and(wq_unbound_cpumask, cpu_online_mask);
1357 if (unlikely(new_cpu >= nr_cpu_ids))
1358 return cpu;
1359 }
1360 __this_cpu_write(wq_rr_cpu_last, new_cpu);
1361
1362 return new_cpu;
1363 }
1364
1365 static void __queue_work(int cpu, struct workqueue_struct *wq,
1366 struct work_struct *work)
1367 {
1368 struct pool_workqueue *pwq;
1369 struct worker_pool *last_pool;
1370 struct list_head *worklist;
1371 unsigned int work_flags;
1372 unsigned int req_cpu = cpu;
1373
1374 /*
1375 * While a work item is PENDING && off queue, a task trying to
1376 * steal the PENDING will busy-loop waiting for it to either get
1377 * queued or lose PENDING. Grabbing PENDING and queueing should
1378 * happen with IRQ disabled.
1379 */
1380 lockdep_assert_irqs_disabled();
1381
1382 debug_work_activate(work);
1383
1384 /* if draining, only works from the same workqueue are allowed */
1385 if (unlikely(wq->flags & __WQ_DRAINING) &&
1386 WARN_ON_ONCE(!is_chained_work(wq)))
1387 return;
1388 retry:
1389 if (req_cpu == WORK_CPU_UNBOUND)
1390 cpu = wq_select_unbound_cpu(raw_smp_processor_id());
1391
1392 /* pwq which will be used unless @work is executing elsewhere */
1393 if (!(wq->flags & WQ_UNBOUND))
1394 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
1395 else
1396 pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
1397
1398 /*
1399 * If @work was previously on a different pool, it might still be
1400 * running there, in which case the work needs to be queued on that
1401 * pool to guarantee non-reentrancy.
1402 */
1403 last_pool = get_work_pool(work);
1404 if (last_pool && last_pool != pwq->pool) {
1405 struct worker *worker;
1406
1407 spin_lock(&last_pool->lock);
1408
1409 worker = find_worker_executing_work(last_pool, work);
1410
1411 if (worker && worker->current_pwq->wq == wq) {
1412 pwq = worker->current_pwq;
1413 } else {
1414 /* meh... not running there, queue here */
1415 spin_unlock(&last_pool->lock);
1416 spin_lock(&pwq->pool->lock);
1417 }
1418 } else {
1419 spin_lock(&pwq->pool->lock);
1420 }
1421
1422 /*
1423 * pwq is determined and locked. For unbound pools, we could have
1424 * raced with pwq release and it could already be dead. If its
1425 * refcnt is zero, repeat pwq selection. Note that pwqs never die
1426 * without another pwq replacing it in the numa_pwq_tbl or while
1427 * work items are executing on it, so the retrying is guaranteed to
1428 * make forward-progress.
1429 */
1430 if (unlikely(!pwq->refcnt)) {
1431 if (wq->flags & WQ_UNBOUND) {
1432 spin_unlock(&pwq->pool->lock);
1433 cpu_relax();
1434 goto retry;
1435 }
1436 /* oops */
1437 WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt",
1438 wq->name, cpu);
1439 }
1440
1441 /* pwq determined, queue */
1442 trace_workqueue_queue_work(req_cpu, pwq, work);
1443
1444 if (WARN_ON(!list_empty(&work->entry))) {
1445 spin_unlock(&pwq->pool->lock);
1446 return;
1447 }
1448
1449 pwq->nr_in_flight[pwq->work_color]++;
1450 work_flags = work_color_to_flags(pwq->work_color);
1451
1452 if (likely(pwq->nr_active < pwq->max_active)) {
1453 trace_workqueue_activate_work(work);
1454 pwq->nr_active++;
1455 worklist = &pwq->pool->worklist;
1456 if (list_empty(worklist))
1457 pwq->pool->watchdog_ts = jiffies;
1458 } else {
1459 work_flags |= WORK_STRUCT_DELAYED;
1460 worklist = &pwq->delayed_works;
1461 }
1462
1463 insert_work(pwq, work, worklist, work_flags);
1464
1465 spin_unlock(&pwq->pool->lock);
1466 }
1467
1468 /**
1469 * queue_work_on - queue work on specific cpu
1470 * @cpu: CPU number to execute work on
1471 * @wq: workqueue to use
1472 * @work: work to queue
1473 *
1474 * We queue the work to a specific CPU, the caller must ensure it
1475 * can't go away.
1476 *
1477 * Return: %false if @work was already on a queue, %true otherwise.
1478 */
1479 bool queue_work_on(int cpu, struct workqueue_struct *wq,
1480 struct work_struct *work)
1481 {
1482 bool ret = false;
1483 unsigned long flags;
1484
1485 local_irq_save(flags);
1486
1487 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1488 __queue_work(cpu, wq, work);
1489 ret = true;
1490 }
1491
1492 local_irq_restore(flags);
1493 return ret;
1494 }
1495 EXPORT_SYMBOL(queue_work_on);
1496
1497 void delayed_work_timer_fn(struct timer_list *t)
1498 {
1499 struct delayed_work *dwork = from_timer(dwork, t, timer);
1500
1501 /* should have been called from irqsafe timer with irq already off */
1502 __queue_work(dwork->cpu, dwork->wq, &dwork->work);
1503 }
1504 EXPORT_SYMBOL(delayed_work_timer_fn);
1505
1506 static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
1507 struct delayed_work *dwork, unsigned long delay)
1508 {
1509 struct timer_list *timer = &dwork->timer;
1510 struct work_struct *work = &dwork->work;
1511
1512 WARN_ON_ONCE(!wq);
1513 WARN_ON_ONCE(timer->function != delayed_work_timer_fn);
1514 WARN_ON_ONCE(timer_pending(timer));
1515 WARN_ON_ONCE(!list_empty(&work->entry));
1516
1517 /*
1518 * If @delay is 0, queue @dwork->work immediately. This is for
1519 * both optimization and correctness. The earliest @timer can
1520 * expire is on the closest next tick and delayed_work users depend
1521 * on that there's no such delay when @delay is 0.
1522 */
1523 if (!delay) {
1524 __queue_work(cpu, wq, &dwork->work);
1525 return;
1526 }
1527
1528 dwork->wq = wq;
1529 dwork->cpu = cpu;
1530 timer->expires = jiffies + delay;
1531
1532 if (unlikely(cpu != WORK_CPU_UNBOUND))
1533 add_timer_on(timer, cpu);
1534 else
1535 add_timer(timer);
1536 }
1537
1538 /**
1539 * queue_delayed_work_on - queue work on specific CPU after delay
1540 * @cpu: CPU number to execute work on
1541 * @wq: workqueue to use
1542 * @dwork: work to queue
1543 * @delay: number of jiffies to wait before queueing
1544 *
1545 * Return: %false if @work was already on a queue, %true otherwise. If
1546 * @delay is zero and @dwork is idle, it will be scheduled for immediate
1547 * execution.
1548 */
1549 bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
1550 struct delayed_work *dwork, unsigned long delay)
1551 {
1552 struct work_struct *work = &dwork->work;
1553 bool ret = false;
1554 unsigned long flags;
1555
1556 /* read the comment in __queue_work() */
1557 local_irq_save(flags);
1558
1559 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1560 __queue_delayed_work(cpu, wq, dwork, delay);
1561 ret = true;
1562 }
1563
1564 local_irq_restore(flags);
1565 return ret;
1566 }
1567 EXPORT_SYMBOL(queue_delayed_work_on);
1568
1569 /**
1570 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
1571 * @cpu: CPU number to execute work on
1572 * @wq: workqueue to use
1573 * @dwork: work to queue
1574 * @delay: number of jiffies to wait before queueing
1575 *
1576 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
1577 * modify @dwork's timer so that it expires after @delay. If @delay is
1578 * zero, @work is guaranteed to be scheduled immediately regardless of its
1579 * current state.
1580 *
1581 * Return: %false if @dwork was idle and queued, %true if @dwork was
1582 * pending and its timer was modified.
1583 *
1584 * This function is safe to call from any context including IRQ handler.
1585 * See try_to_grab_pending() for details.
1586 */
1587 bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
1588 struct delayed_work *dwork, unsigned long delay)
1589 {
1590 unsigned long flags;
1591 int ret;
1592
1593 do {
1594 ret = try_to_grab_pending(&dwork->work, true, &flags);
1595 } while (unlikely(ret == -EAGAIN));
1596
1597 if (likely(ret >= 0)) {
1598 __queue_delayed_work(cpu, wq, dwork, delay);
1599 local_irq_restore(flags);
1600 }
1601
1602 /* -ENOENT from try_to_grab_pending() becomes %true */
1603 return ret;
1604 }
1605 EXPORT_SYMBOL_GPL(mod_delayed_work_on);
1606
1607 static void rcu_work_rcufn(struct rcu_head *rcu)
1608 {
1609 struct rcu_work *rwork = container_of(rcu, struct rcu_work, rcu);
1610
1611 /* read the comment in __queue_work() */
1612 local_irq_disable();
1613 __queue_work(WORK_CPU_UNBOUND, rwork->wq, &rwork->work);
1614 local_irq_enable();
1615 }
1616
1617 /**
1618 * queue_rcu_work - queue work after a RCU grace period
1619 * @wq: workqueue to use
1620 * @rwork: work to queue
1621 *
1622 * Return: %false if @rwork was already pending, %true otherwise. Note
1623 * that a full RCU grace period is guaranteed only after a %true return.
1624 * While @rwork is guarnateed to be executed after a %false return, the
1625 * execution may happen before a full RCU grace period has passed.
1626 */
1627 bool queue_rcu_work(struct workqueue_struct *wq, struct rcu_work *rwork)
1628 {
1629 struct work_struct *work = &rwork->work;
1630
1631 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1632 rwork->wq = wq;
1633 call_rcu(&rwork->rcu, rcu_work_rcufn);
1634 return true;
1635 }
1636
1637 return false;
1638 }
1639 EXPORT_SYMBOL(queue_rcu_work);
1640
1641 /**
1642 * worker_enter_idle - enter idle state
1643 * @worker: worker which is entering idle state
1644 *
1645 * @worker is entering idle state. Update stats and idle timer if
1646 * necessary.
1647 *
1648 * LOCKING:
1649 * spin_lock_irq(pool->lock).
1650 */
1651 static void worker_enter_idle(struct worker *worker)
1652 {
1653 struct worker_pool *pool = worker->pool;
1654
1655 if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) ||
1656 WARN_ON_ONCE(!list_empty(&worker->entry) &&
1657 (worker->hentry.next || worker->hentry.pprev)))
1658 return;
1659
1660 /* can't use worker_set_flags(), also called from create_worker() */
1661 worker->flags |= WORKER_IDLE;
1662 pool->nr_idle++;
1663 worker->last_active = jiffies;
1664
1665 /* idle_list is LIFO */
1666 list_add(&worker->entry, &pool->idle_list);
1667
1668 if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
1669 mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
1670
1671 /*
1672 * Sanity check nr_running. Because unbind_workers() releases
1673 * pool->lock between setting %WORKER_UNBOUND and zapping
1674 * nr_running, the warning may trigger spuriously. Check iff
1675 * unbind is not in progress.
1676 */
1677 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
1678 pool->nr_workers == pool->nr_idle &&
1679 atomic_read(&pool->nr_running));
1680 }
1681
1682 /**
1683 * worker_leave_idle - leave idle state
1684 * @worker: worker which is leaving idle state
1685 *
1686 * @worker is leaving idle state. Update stats.
1687 *
1688 * LOCKING:
1689 * spin_lock_irq(pool->lock).
1690 */
1691 static void worker_leave_idle(struct worker *worker)
1692 {
1693 struct worker_pool *pool = worker->pool;
1694
1695 if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE)))
1696 return;
1697 worker_clr_flags(worker, WORKER_IDLE);
1698 pool->nr_idle--;
1699 list_del_init(&worker->entry);
1700 }
1701
1702 static struct worker *alloc_worker(int node)
1703 {
1704 struct worker *worker;
1705
1706 worker = kzalloc_node(sizeof(*worker), GFP_KERNEL, node);
1707 if (worker) {
1708 INIT_LIST_HEAD(&worker->entry);
1709 INIT_LIST_HEAD(&worker->scheduled);
1710 INIT_LIST_HEAD(&worker->node);
1711 /* on creation a worker is in !idle && prep state */
1712 worker->flags = WORKER_PREP;
1713 }
1714 return worker;
1715 }
1716
1717 /**
1718 * worker_attach_to_pool() - attach a worker to a pool
1719 * @worker: worker to be attached
1720 * @pool: the target pool
1721 *
1722 * Attach @worker to @pool. Once attached, the %WORKER_UNBOUND flag and
1723 * cpu-binding of @worker are kept coordinated with the pool across
1724 * cpu-[un]hotplugs.
1725 */
1726 static void worker_attach_to_pool(struct worker *worker,
1727 struct worker_pool *pool)
1728 {
1729 mutex_lock(&pool->attach_mutex);
1730
1731 /*
1732 * set_cpus_allowed_ptr() will fail if the cpumask doesn't have any
1733 * online CPUs. It'll be re-applied when any of the CPUs come up.
1734 */
1735 set_cpus_allowed_ptr(worker->task, pool->attrs->cpumask);
1736
1737 /*
1738 * The pool->attach_mutex ensures %POOL_DISASSOCIATED remains
1739 * stable across this function. See the comments above the
1740 * flag definition for details.
1741 */
1742 if (pool->flags & POOL_DISASSOCIATED)
1743 worker->flags |= WORKER_UNBOUND;
1744
1745 list_add_tail(&worker->node, &pool->workers);
1746
1747 mutex_unlock(&pool->attach_mutex);
1748 }
1749
1750 /**
1751 * worker_detach_from_pool() - detach a worker from its pool
1752 * @worker: worker which is attached to its pool
1753 * @pool: the pool @worker is attached to
1754 *
1755 * Undo the attaching which had been done in worker_attach_to_pool(). The
1756 * caller worker shouldn't access to the pool after detached except it has
1757 * other reference to the pool.
1758 */
1759 static void worker_detach_from_pool(struct worker *worker,
1760 struct worker_pool *pool)
1761 {
1762 struct completion *detach_completion = NULL;
1763
1764 mutex_lock(&pool->attach_mutex);
1765 list_del(&worker->node);
1766 if (list_empty(&pool->workers))
1767 detach_completion = pool->detach_completion;
1768 mutex_unlock(&pool->attach_mutex);
1769
1770 /* clear leftover flags without pool->lock after it is detached */
1771 worker->flags &= ~(WORKER_UNBOUND | WORKER_REBOUND);
1772
1773 if (detach_completion)
1774 complete(detach_completion);
1775 }
1776
1777 /**
1778 * create_worker - create a new workqueue worker
1779 * @pool: pool the new worker will belong to
1780 *
1781 * Create and start a new worker which is attached to @pool.
1782 *
1783 * CONTEXT:
1784 * Might sleep. Does GFP_KERNEL allocations.
1785 *
1786 * Return:
1787 * Pointer to the newly created worker.
1788 */
1789 static struct worker *create_worker(struct worker_pool *pool)
1790 {
1791 struct worker *worker = NULL;
1792 int id = -1;
1793 char id_buf[16];
1794
1795 /* ID is needed to determine kthread name */
1796 id = ida_simple_get(&pool->worker_ida, 0, 0, GFP_KERNEL);
1797 if (id < 0)
1798 goto fail;
1799
1800 worker = alloc_worker(pool->node);
1801 if (!worker)
1802 goto fail;
1803
1804 worker->pool = pool;
1805 worker->id = id;
1806
1807 if (pool->cpu >= 0)
1808 snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id,
1809 pool->attrs->nice < 0 ? "H" : "");
1810 else
1811 snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id);
1812
1813 worker->task = kthread_create_on_node(worker_thread, worker, pool->node,
1814 "kworker/%s", id_buf);
1815 if (IS_ERR(worker->task))
1816 goto fail;
1817
1818 set_user_nice(worker->task, pool->attrs->nice);
1819 kthread_bind_mask(worker->task, pool->attrs->cpumask);
1820
1821 /* successful, attach the worker to the pool */
1822 worker_attach_to_pool(worker, pool);
1823
1824 /* start the newly created worker */
1825 spin_lock_irq(&pool->lock);
1826 worker->pool->nr_workers++;
1827 worker_enter_idle(worker);
1828 wake_up_process(worker->task);
1829 spin_unlock_irq(&pool->lock);
1830
1831 return worker;
1832
1833 fail:
1834 if (id >= 0)
1835 ida_simple_remove(&pool->worker_ida, id);
1836 kfree(worker);
1837 return NULL;
1838 }
1839
1840 /**
1841 * destroy_worker - destroy a workqueue worker
1842 * @worker: worker to be destroyed
1843 *
1844 * Destroy @worker and adjust @pool stats accordingly. The worker should
1845 * be idle.
1846 *
1847 * CONTEXT:
1848 * spin_lock_irq(pool->lock).
1849 */
1850 static void destroy_worker(struct worker *worker)
1851 {
1852 struct worker_pool *pool = worker->pool;
1853
1854 lockdep_assert_held(&pool->lock);
1855
1856 /* sanity check frenzy */
1857 if (WARN_ON(worker->current_work) ||
1858 WARN_ON(!list_empty(&worker->scheduled)) ||
1859 WARN_ON(!(worker->flags & WORKER_IDLE)))
1860 return;
1861
1862 pool->nr_workers--;
1863 pool->nr_idle--;
1864
1865 list_del_init(&worker->entry);
1866 worker->flags |= WORKER_DIE;
1867 wake_up_process(worker->task);
1868 }
1869
1870 static void idle_worker_timeout(struct timer_list *t)
1871 {
1872 struct worker_pool *pool = from_timer(pool, t, idle_timer);
1873
1874 spin_lock_irq(&pool->lock);
1875
1876 while (too_many_workers(pool)) {
1877 struct worker *worker;
1878 unsigned long expires;
1879
1880 /* idle_list is kept in LIFO order, check the last one */
1881 worker = list_entry(pool->idle_list.prev, struct worker, entry);
1882 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
1883
1884 if (time_before(jiffies, expires)) {
1885 mod_timer(&pool->idle_timer, expires);
1886 break;
1887 }
1888
1889 destroy_worker(worker);
1890 }
1891
1892 spin_unlock_irq(&pool->lock);
1893 }
1894
1895 static void send_mayday(struct work_struct *work)
1896 {
1897 struct pool_workqueue *pwq = get_work_pwq(work);
1898 struct workqueue_struct *wq = pwq->wq;
1899
1900 lockdep_assert_held(&wq_mayday_lock);
1901
1902 if (!wq->rescuer)
1903 return;
1904
1905 /* mayday mayday mayday */
1906 if (list_empty(&pwq->mayday_node)) {
1907 /*
1908 * If @pwq is for an unbound wq, its base ref may be put at
1909 * any time due to an attribute change. Pin @pwq until the
1910 * rescuer is done with it.
1911 */
1912 get_pwq(pwq);
1913 list_add_tail(&pwq->mayday_node, &wq->maydays);
1914 wake_up_process(wq->rescuer->task);
1915 }
1916 }
1917
1918 static void pool_mayday_timeout(struct timer_list *t)
1919 {
1920 struct worker_pool *pool = from_timer(pool, t, mayday_timer);
1921 struct work_struct *work;
1922
1923 spin_lock_irq(&pool->lock);
1924 spin_lock(&wq_mayday_lock); /* for wq->maydays */
1925
1926 if (need_to_create_worker(pool)) {
1927 /*
1928 * We've been trying to create a new worker but
1929 * haven't been successful. We might be hitting an
1930 * allocation deadlock. Send distress signals to
1931 * rescuers.
1932 */
1933 list_for_each_entry(work, &pool->worklist, entry)
1934 send_mayday(work);
1935 }
1936
1937 spin_unlock(&wq_mayday_lock);
1938 spin_unlock_irq(&pool->lock);
1939
1940 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
1941 }
1942
1943 /**
1944 * maybe_create_worker - create a new worker if necessary
1945 * @pool: pool to create a new worker for
1946 *
1947 * Create a new worker for @pool if necessary. @pool is guaranteed to
1948 * have at least one idle worker on return from this function. If
1949 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
1950 * sent to all rescuers with works scheduled on @pool to resolve
1951 * possible allocation deadlock.
1952 *
1953 * On return, need_to_create_worker() is guaranteed to be %false and
1954 * may_start_working() %true.
1955 *
1956 * LOCKING:
1957 * spin_lock_irq(pool->lock) which may be released and regrabbed
1958 * multiple times. Does GFP_KERNEL allocations. Called only from
1959 * manager.
1960 */
1961 static void maybe_create_worker(struct worker_pool *pool)
1962 __releases(&pool->lock)
1963 __acquires(&pool->lock)
1964 {
1965 restart:
1966 spin_unlock_irq(&pool->lock);
1967
1968 /* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
1969 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
1970
1971 while (true) {
1972 if (create_worker(pool) || !need_to_create_worker(pool))
1973 break;
1974
1975 schedule_timeout_interruptible(CREATE_COOLDOWN);
1976
1977 if (!need_to_create_worker(pool))
1978 break;
1979 }
1980
1981 del_timer_sync(&pool->mayday_timer);
1982 spin_lock_irq(&pool->lock);
1983 /*
1984 * This is necessary even after a new worker was just successfully
1985 * created as @pool->lock was dropped and the new worker might have
1986 * already become busy.
1987 */
1988 if (need_to_create_worker(pool))
1989 goto restart;
1990 }
1991
1992 /**
1993 * manage_workers - manage worker pool
1994 * @worker: self
1995 *
1996 * Assume the manager role and manage the worker pool @worker belongs
1997 * to. At any given time, there can be only zero or one manager per
1998 * pool. The exclusion is handled automatically by this function.
1999 *
2000 * The caller can safely start processing works on false return. On
2001 * true return, it's guaranteed that need_to_create_worker() is false
2002 * and may_start_working() is true.
2003 *
2004 * CONTEXT:
2005 * spin_lock_irq(pool->lock) which may be released and regrabbed
2006 * multiple times. Does GFP_KERNEL allocations.
2007 *
2008 * Return:
2009 * %false if the pool doesn't need management and the caller can safely
2010 * start processing works, %true if management function was performed and
2011 * the conditions that the caller verified before calling the function may
2012 * no longer be true.
2013 */
2014 static bool manage_workers(struct worker *worker)
2015 {
2016 struct worker_pool *pool = worker->pool;
2017
2018 if (pool->flags & POOL_MANAGER_ACTIVE)
2019 return false;
2020
2021 pool->flags |= POOL_MANAGER_ACTIVE;
2022 pool->manager = worker;
2023
2024 maybe_create_worker(pool);
2025
2026 pool->manager = NULL;
2027 pool->flags &= ~POOL_MANAGER_ACTIVE;
2028 wake_up(&wq_manager_wait);
2029 return true;
2030 }
2031
2032 /**
2033 * process_one_work - process single work
2034 * @worker: self
2035 * @work: work to process
2036 *
2037 * Process @work. This function contains all the logics necessary to
2038 * process a single work including synchronization against and
2039 * interaction with other workers on the same cpu, queueing and
2040 * flushing. As long as context requirement is met, any worker can
2041 * call this function to process a work.
2042 *
2043 * CONTEXT:
2044 * spin_lock_irq(pool->lock) which is released and regrabbed.
2045 */
2046 static void process_one_work(struct worker *worker, struct work_struct *work)
2047 __releases(&pool->lock)
2048 __acquires(&pool->lock)
2049 {
2050 struct pool_workqueue *pwq = get_work_pwq(work);
2051 struct worker_pool *pool = worker->pool;
2052 bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE;
2053 int work_color;
2054 struct worker *collision;
2055 #ifdef CONFIG_LOCKDEP
2056 /*
2057 * It is permissible to free the struct work_struct from
2058 * inside the function that is called from it, this we need to
2059 * take into account for lockdep too. To avoid bogus "held
2060 * lock freed" warnings as well as problems when looking into
2061 * work->lockdep_map, make a copy and use that here.
2062 */
2063 struct lockdep_map lockdep_map;
2064
2065 lockdep_copy_map(&lockdep_map, &work->lockdep_map);
2066 #endif
2067 /* ensure we're on the correct CPU */
2068 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
2069 raw_smp_processor_id() != pool->cpu);
2070
2071 /*
2072 * A single work shouldn't be executed concurrently by
2073 * multiple workers on a single cpu. Check whether anyone is
2074 * already processing the work. If so, defer the work to the
2075 * currently executing one.
2076 */
2077 collision = find_worker_executing_work(pool, work);
2078 if (unlikely(collision)) {
2079 move_linked_works(work, &collision->scheduled, NULL);
2080 return;
2081 }
2082
2083 /* claim and dequeue */
2084 debug_work_deactivate(work);
2085 hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
2086 worker->current_work = work;
2087 worker->current_func = work->func;
2088 worker->current_pwq = pwq;
2089 work_color = get_work_color(work);
2090
2091 list_del_init(&work->entry);
2092
2093 /*
2094 * CPU intensive works don't participate in concurrency management.
2095 * They're the scheduler's responsibility. This takes @worker out
2096 * of concurrency management and the next code block will chain
2097 * execution of the pending work items.
2098 */
2099 if (unlikely(cpu_intensive))
2100 worker_set_flags(worker, WORKER_CPU_INTENSIVE);
2101
2102 /*
2103 * Wake up another worker if necessary. The condition is always
2104 * false for normal per-cpu workers since nr_running would always
2105 * be >= 1 at this point. This is used to chain execution of the
2106 * pending work items for WORKER_NOT_RUNNING workers such as the
2107 * UNBOUND and CPU_INTENSIVE ones.
2108 */
2109 if (need_more_worker(pool))
2110 wake_up_worker(pool);
2111
2112 /*
2113 * Record the last pool and clear PENDING which should be the last
2114 * update to @work. Also, do this inside @pool->lock so that
2115 * PENDING and queued state changes happen together while IRQ is
2116 * disabled.
2117 */
2118 set_work_pool_and_clear_pending(work, pool->id);
2119
2120 spin_unlock_irq(&pool->lock);
2121
2122 lock_map_acquire(&pwq->wq->lockdep_map);
2123 lock_map_acquire(&lockdep_map);
2124 /*
2125 * Strictly speaking we should mark the invariant state without holding
2126 * any locks, that is, before these two lock_map_acquire()'s.
2127 *
2128 * However, that would result in:
2129 *
2130 * A(W1)
2131 * WFC(C)
2132 * A(W1)
2133 * C(C)
2134 *
2135 * Which would create W1->C->W1 dependencies, even though there is no
2136 * actual deadlock possible. There are two solutions, using a
2137 * read-recursive acquire on the work(queue) 'locks', but this will then
2138 * hit the lockdep limitation on recursive locks, or simply discard
2139 * these locks.
2140 *
2141 * AFAICT there is no possible deadlock scenario between the
2142 * flush_work() and complete() primitives (except for single-threaded
2143 * workqueues), so hiding them isn't a problem.
2144 */
2145 lockdep_invariant_state(true);
2146 trace_workqueue_execute_start(work);
2147 worker->current_func(work);
2148 /*
2149 * While we must be careful to not use "work" after this, the trace
2150 * point will only record its address.
2151 */
2152 trace_workqueue_execute_end(work);
2153 lock_map_release(&lockdep_map);
2154 lock_map_release(&pwq->wq->lockdep_map);
2155
2156 if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
2157 pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
2158 " last function: %pf\n",
2159 current->comm, preempt_count(), task_pid_nr(current),
2160 worker->current_func);
2161 debug_show_held_locks(current);
2162 dump_stack();
2163 }
2164
2165 /*
2166 * The following prevents a kworker from hogging CPU on !PREEMPT
2167 * kernels, where a requeueing work item waiting for something to
2168 * happen could deadlock with stop_machine as such work item could
2169 * indefinitely requeue itself while all other CPUs are trapped in
2170 * stop_machine. At the same time, report a quiescent RCU state so
2171 * the same condition doesn't freeze RCU.
2172 */
2173 cond_resched_rcu_qs();
2174
2175 spin_lock_irq(&pool->lock);
2176
2177 /* clear cpu intensive status */
2178 if (unlikely(cpu_intensive))
2179 worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
2180
2181 /* we're done with it, release */
2182 hash_del(&worker->hentry);
2183 worker->current_work = NULL;
2184 worker->current_func = NULL;
2185 worker->current_pwq = NULL;
2186 worker->desc_valid = false;
2187 pwq_dec_nr_in_flight(pwq, work_color);
2188 }
2189
2190 /**
2191 * process_scheduled_works - process scheduled works
2192 * @worker: self
2193 *
2194 * Process all scheduled works. Please note that the scheduled list
2195 * may change while processing a work, so this function repeatedly
2196 * fetches a work from the top and executes it.
2197 *
2198 * CONTEXT:
2199 * spin_lock_irq(pool->lock) which may be released and regrabbed
2200 * multiple times.
2201 */
2202 static void process_scheduled_works(struct worker *worker)
2203 {
2204 while (!list_empty(&worker->scheduled)) {
2205 struct work_struct *work = list_first_entry(&worker->scheduled,
2206 struct work_struct, entry);
2207 process_one_work(worker, work);
2208 }
2209 }
2210
2211 /**
2212 * worker_thread - the worker thread function
2213 * @__worker: self
2214 *
2215 * The worker thread function. All workers belong to a worker_pool -
2216 * either a per-cpu one or dynamic unbound one. These workers process all
2217 * work items regardless of their specific target workqueue. The only
2218 * exception is work items which belong to workqueues with a rescuer which
2219 * will be explained in rescuer_thread().
2220 *
2221 * Return: 0
2222 */
2223 static int worker_thread(void *__worker)
2224 {
2225 struct worker *worker = __worker;
2226 struct worker_pool *pool = worker->pool;
2227
2228 /* tell the scheduler that this is a workqueue worker */
2229 worker->task->flags |= PF_WQ_WORKER;
2230 woke_up:
2231 spin_lock_irq(&pool->lock);
2232
2233 /* am I supposed to die? */
2234 if (unlikely(worker->flags & WORKER_DIE)) {
2235 spin_unlock_irq(&pool->lock);
2236 WARN_ON_ONCE(!list_empty(&worker->entry));
2237 worker->task->flags &= ~PF_WQ_WORKER;
2238
2239 set_task_comm(worker->task, "kworker/dying");
2240 ida_simple_remove(&pool->worker_ida, worker->id);
2241 worker_detach_from_pool(worker, pool);
2242 kfree(worker);
2243 return 0;
2244 }
2245
2246 worker_leave_idle(worker);
2247 recheck:
2248 /* no more worker necessary? */
2249 if (!need_more_worker(pool))
2250 goto sleep;
2251
2252 /* do we need to manage? */
2253 if (unlikely(!may_start_working(pool)) && manage_workers(worker))
2254 goto recheck;
2255
2256 /*
2257 * ->scheduled list can only be filled while a worker is
2258 * preparing to process a work or actually processing it.
2259 * Make sure nobody diddled with it while I was sleeping.
2260 */
2261 WARN_ON_ONCE(!list_empty(&worker->scheduled));
2262
2263 /*
2264 * Finish PREP stage. We're guaranteed to have at least one idle
2265 * worker or that someone else has already assumed the manager
2266 * role. This is where @worker starts participating in concurrency
2267 * management if applicable and concurrency management is restored
2268 * after being rebound. See rebind_workers() for details.
2269 */
2270 worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND);
2271
2272 do {
2273 struct work_struct *work =
2274 list_first_entry(&pool->worklist,
2275 struct work_struct, entry);
2276
2277 pool->watchdog_ts = jiffies;
2278
2279 if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
2280 /* optimization path, not strictly necessary */
2281 process_one_work(worker, work);
2282 if (unlikely(!list_empty(&worker->scheduled)))
2283 process_scheduled_works(worker);
2284 } else {
2285 move_linked_works(work, &worker->scheduled, NULL);
2286 process_scheduled_works(worker);
2287 }
2288 } while (keep_working(pool));
2289
2290 worker_set_flags(worker, WORKER_PREP);
2291 sleep:
2292 /*
2293 * pool->lock is held and there's no work to process and no need to
2294 * manage, sleep. Workers are woken up only while holding
2295 * pool->lock or from local cpu, so setting the current state
2296 * before releasing pool->lock is enough to prevent losing any
2297 * event.
2298 */
2299 worker_enter_idle(worker);
2300 __set_current_state(TASK_IDLE);
2301 spin_unlock_irq(&pool->lock);
2302 schedule();
2303 goto woke_up;
2304 }
2305
2306 /**
2307 * rescuer_thread - the rescuer thread function
2308 * @__rescuer: self
2309 *
2310 * Workqueue rescuer thread function. There's one rescuer for each
2311 * workqueue which has WQ_MEM_RECLAIM set.
2312 *
2313 * Regular work processing on a pool may block trying to create a new
2314 * worker which uses GFP_KERNEL allocation which has slight chance of
2315 * developing into deadlock if some works currently on the same queue
2316 * need to be processed to satisfy the GFP_KERNEL allocation. This is
2317 * the problem rescuer solves.
2318 *
2319 * When such condition is possible, the pool summons rescuers of all
2320 * workqueues which have works queued on the pool and let them process
2321 * those works so that forward progress can be guaranteed.
2322 *
2323 * This should happen rarely.
2324 *
2325 * Return: 0
2326 */
2327 static int rescuer_thread(void *__rescuer)
2328 {
2329 struct worker *rescuer = __rescuer;
2330 struct workqueue_struct *wq = rescuer->rescue_wq;
2331 struct list_head *scheduled = &rescuer->scheduled;
2332 bool should_stop;
2333
2334 set_user_nice(current, RESCUER_NICE_LEVEL);
2335
2336 /*
2337 * Mark rescuer as worker too. As WORKER_PREP is never cleared, it
2338 * doesn't participate in concurrency management.
2339 */
2340 rescuer->task->flags |= PF_WQ_WORKER;
2341 repeat:
2342 set_current_state(TASK_IDLE);
2343
2344 /*
2345 * By the time the rescuer is requested to stop, the workqueue
2346 * shouldn't have any work pending, but @wq->maydays may still have
2347 * pwq(s) queued. This can happen by non-rescuer workers consuming
2348 * all the work items before the rescuer got to them. Go through
2349 * @wq->maydays processing before acting on should_stop so that the
2350 * list is always empty on exit.
2351 */
2352 should_stop = kthread_should_stop();
2353
2354 /* see whether any pwq is asking for help */
2355 spin_lock_irq(&wq_mayday_lock);
2356
2357 while (!list_empty(&wq->maydays)) {
2358 struct pool_workqueue *pwq = list_first_entry(&wq->maydays,
2359 struct pool_workqueue, mayday_node);
2360 struct worker_pool *pool = pwq->pool;
2361 struct work_struct *work, *n;
2362 bool first = true;
2363
2364 __set_current_state(TASK_RUNNING);
2365 list_del_init(&pwq->mayday_node);
2366
2367 spin_unlock_irq(&wq_mayday_lock);
2368
2369 worker_attach_to_pool(rescuer, pool);
2370
2371 spin_lock_irq(&pool->lock);
2372 rescuer->pool = pool;
2373
2374 /*
2375 * Slurp in all works issued via this workqueue and
2376 * process'em.
2377 */
2378 WARN_ON_ONCE(!list_empty(scheduled));
2379 list_for_each_entry_safe(work, n, &pool->worklist, entry) {
2380 if (get_work_pwq(work) == pwq) {
2381 if (first)
2382 pool->watchdog_ts = jiffies;
2383 move_linked_works(work, scheduled, &n);
2384 }
2385 first = false;
2386 }
2387
2388 if (!list_empty(scheduled)) {
2389 process_scheduled_works(rescuer);
2390
2391 /*
2392 * The above execution of rescued work items could
2393 * have created more to rescue through
2394 * pwq_activate_first_delayed() or chained
2395 * queueing. Let's put @pwq back on mayday list so
2396 * that such back-to-back work items, which may be
2397 * being used to relieve memory pressure, don't
2398 * incur MAYDAY_INTERVAL delay inbetween.
2399 */
2400 if (need_to_create_worker(pool)) {
2401 spin_lock(&wq_mayday_lock);
2402 /*
2403 * Queue iff we aren't racing destruction
2404 * and somebody else hasn't queued it already.
2405 */
2406 if (wq->rescuer && list_empty(&pwq->mayday_node)) {
2407 get_pwq(pwq);
2408 list_add_tail(&pwq->mayday_node, &wq->maydays);
2409 }
2410 spin_unlock(&wq_mayday_lock);
2411 }
2412 }
2413
2414 /*
2415 * Put the reference grabbed by send_mayday(). @pool won't
2416 * go away while we're still attached to it.
2417 */
2418 put_pwq(pwq);
2419
2420 /*
2421 * Leave this pool. If need_more_worker() is %true, notify a
2422 * regular worker; otherwise, we end up with 0 concurrency
2423 * and stalling the execution.
2424 */
2425 if (need_more_worker(pool))
2426 wake_up_worker(pool);
2427
2428 rescuer->pool = NULL;
2429 spin_unlock_irq(&pool->lock);
2430
2431 worker_detach_from_pool(rescuer, pool);
2432
2433 spin_lock_irq(&wq_mayday_lock);
2434 }
2435
2436 spin_unlock_irq(&wq_mayday_lock);
2437
2438 if (should_stop) {
2439 __set_current_state(TASK_RUNNING);
2440 rescuer->task->flags &= ~PF_WQ_WORKER;
2441 return 0;
2442 }
2443
2444 /* rescuers should never participate in concurrency management */
2445 WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
2446 schedule();
2447 goto repeat;
2448 }
2449
2450 /**
2451 * check_flush_dependency - check for flush dependency sanity
2452 * @target_wq: workqueue being flushed
2453 * @target_work: work item being flushed (NULL for workqueue flushes)
2454 *
2455 * %current is trying to flush the whole @target_wq or @target_work on it.
2456 * If @target_wq doesn't have %WQ_MEM_RECLAIM, verify that %current is not
2457 * reclaiming memory or running on a workqueue which doesn't have
2458 * %WQ_MEM_RECLAIM as that can break forward-progress guarantee leading to
2459 * a deadlock.
2460 */
2461 static void check_flush_dependency(struct workqueue_struct *target_wq,
2462 struct work_struct *target_work)
2463 {
2464 work_func_t target_func = target_work ? target_work->func : NULL;
2465 struct worker *worker;
2466
2467 if (target_wq->flags & WQ_MEM_RECLAIM)
2468 return;
2469
2470 worker = current_wq_worker();
2471
2472 WARN_ONCE(current->flags & PF_MEMALLOC,
2473 "workqueue: PF_MEMALLOC task %d(%s) is flushing !WQ_MEM_RECLAIM %s:%pf",
2474 current->pid, current->comm, target_wq->name, target_func);
2475 WARN_ONCE(worker && ((worker->current_pwq->wq->flags &
2476 (WQ_MEM_RECLAIM | __WQ_LEGACY)) == WQ_MEM_RECLAIM),
2477 "workqueue: WQ_MEM_RECLAIM %s:%pf is flushing !WQ_MEM_RECLAIM %s:%pf",
2478 worker->current_pwq->wq->name, worker->current_func,
2479 target_wq->name, target_func);
2480 }
2481
2482 struct wq_barrier {
2483 struct work_struct work;
2484 struct completion done;
2485 struct task_struct *task; /* purely informational */
2486 };
2487
2488 static void wq_barrier_func(struct work_struct *work)
2489 {
2490 struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
2491 complete(&barr->done);
2492 }
2493
2494 /**
2495 * insert_wq_barrier - insert a barrier work
2496 * @pwq: pwq to insert barrier into
2497 * @barr: wq_barrier to insert
2498 * @target: target work to attach @barr to
2499 * @worker: worker currently executing @target, NULL if @target is not executing
2500 *
2501 * @barr is linked to @target such that @barr is completed only after
2502 * @target finishes execution. Please note that the ordering
2503 * guarantee is observed only with respect to @target and on the local
2504 * cpu.
2505 *
2506 * Currently, a queued barrier can't be canceled. This is because
2507 * try_to_grab_pending() can't determine whether the work to be
2508 * grabbed is at the head of the queue and thus can't clear LINKED
2509 * flag of the previous work while there must be a valid next work
2510 * after a work with LINKED flag set.
2511 *
2512 * Note that when @worker is non-NULL, @target may be modified
2513 * underneath us, so we can't reliably determine pwq from @target.
2514 *
2515 * CONTEXT:
2516 * spin_lock_irq(pool->lock).
2517 */
2518 static void insert_wq_barrier(struct pool_workqueue *pwq,
2519 struct wq_barrier *barr,
2520 struct work_struct *target, struct worker *worker)
2521 {
2522 struct list_head *head;
2523 unsigned int linked = 0;
2524
2525 /*
2526 * debugobject calls are safe here even with pool->lock locked
2527 * as we know for sure that this will not trigger any of the
2528 * checks and call back into the fixup functions where we
2529 * might deadlock.
2530 */
2531 INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
2532 __set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
2533
2534 init_completion_map(&barr->done, &target->lockdep_map);
2535
2536 barr->task = current;
2537
2538 /*
2539 * If @target is currently being executed, schedule the
2540 * barrier to the worker; otherwise, put it after @target.
2541 */
2542 if (worker)
2543 head = worker->scheduled.next;
2544 else {
2545 unsigned long *bits = work_data_bits(target);
2546
2547 head = target->entry.next;
2548 /* there can already be other linked works, inherit and set */
2549 linked = *bits & WORK_STRUCT_LINKED;
2550 __set_bit(WORK_STRUCT_LINKED_BIT, bits);
2551 }
2552
2553 debug_work_activate(&barr->work);
2554 insert_work(pwq, &barr->work, head,
2555 work_color_to_flags(WORK_NO_COLOR) | linked);
2556 }
2557
2558 /**
2559 * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing
2560 * @wq: workqueue being flushed
2561 * @flush_color: new flush color, < 0 for no-op
2562 * @work_color: new work color, < 0 for no-op
2563 *
2564 * Prepare pwqs for workqueue flushing.
2565 *
2566 * If @flush_color is non-negative, flush_color on all pwqs should be
2567 * -1. If no pwq has in-flight commands at the specified color, all
2568 * pwq->flush_color's stay at -1 and %false is returned. If any pwq
2569 * has in flight commands, its pwq->flush_color is set to
2570 * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq
2571 * wakeup logic is armed and %true is returned.
2572 *
2573 * The caller should have initialized @wq->first_flusher prior to
2574 * calling this function with non-negative @flush_color. If
2575 * @flush_color is negative, no flush color update is done and %false
2576 * is returned.
2577 *
2578 * If @work_color is non-negative, all pwqs should have the same
2579 * work_color which is previous to @work_color and all will be
2580 * advanced to @work_color.
2581 *
2582 * CONTEXT:
2583 * mutex_lock(wq->mutex).
2584 *
2585 * Return:
2586 * %true if @flush_color >= 0 and there's something to flush. %false
2587 * otherwise.
2588 */
2589 static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq,
2590 int flush_color, int work_color)
2591 {
2592 bool wait = false;
2593 struct pool_workqueue *pwq;
2594
2595 if (flush_color >= 0) {
2596 WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush));
2597 atomic_set(&wq->nr_pwqs_to_flush, 1);
2598 }
2599
2600 for_each_pwq(pwq, wq) {
2601 struct worker_pool *pool = pwq->pool;
2602
2603 spin_lock_irq(&pool->lock);
2604
2605 if (flush_color >= 0) {
2606 WARN_ON_ONCE(pwq->flush_color != -1);
2607
2608 if (pwq->nr_in_flight[flush_color]) {
2609 pwq->flush_color = flush_color;
2610 atomic_inc(&wq->nr_pwqs_to_flush);
2611 wait = true;
2612 }
2613 }
2614
2615 if (work_color >= 0) {
2616 WARN_ON_ONCE(work_color != work_next_color(pwq->work_color));
2617 pwq->work_color = work_color;
2618 }
2619
2620 spin_unlock_irq(&pool->lock);
2621 }
2622
2623 if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush))
2624 complete(&wq->first_flusher->done);
2625
2626 return wait;
2627 }
2628
2629 /**
2630 * flush_workqueue - ensure that any scheduled work has run to completion.
2631 * @wq: workqueue to flush
2632 *
2633 * This function sleeps until all work items which were queued on entry
2634 * have finished execution, but it is not livelocked by new incoming ones.
2635 */
2636 void flush_workqueue(struct workqueue_struct *wq)
2637 {
2638 struct wq_flusher this_flusher = {
2639 .list = LIST_HEAD_INIT(this_flusher.list),
2640 .flush_color = -1,
2641 .done = COMPLETION_INITIALIZER_ONSTACK_MAP(this_flusher.done, wq->lockdep_map),
2642 };
2643 int next_color;
2644
2645 if (WARN_ON(!wq_online))
2646 return;
2647
2648 lock_map_acquire(&wq->lockdep_map);
2649 lock_map_release(&wq->lockdep_map);
2650
2651 mutex_lock(&wq->mutex);
2652
2653 /*
2654 * Start-to-wait phase
2655 */
2656 next_color = work_next_color(wq->work_color);
2657
2658 if (next_color != wq->flush_color) {
2659 /*
2660 * Color space is not full. The current work_color
2661 * becomes our flush_color and work_color is advanced
2662 * by one.
2663 */
2664 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow));
2665 this_flusher.flush_color = wq->work_color;
2666 wq->work_color = next_color;
2667
2668 if (!wq->first_flusher) {
2669 /* no flush in progress, become the first flusher */
2670 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2671
2672 wq->first_flusher = &this_flusher;
2673
2674 if (!flush_workqueue_prep_pwqs(wq, wq->flush_color,
2675 wq->work_color)) {
2676 /* nothing to flush, done */
2677 wq->flush_color = next_color;
2678 wq->first_flusher = NULL;
2679 goto out_unlock;
2680 }
2681 } else {
2682 /* wait in queue */
2683 WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color);
2684 list_add_tail(&this_flusher.list, &wq->flusher_queue);
2685 flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2686 }
2687 } else {
2688 /*
2689 * Oops, color space is full, wait on overflow queue.
2690 * The next flush completion will assign us
2691 * flush_color and transfer to flusher_queue.
2692 */
2693 list_add_tail(&this_flusher.list, &wq->flusher_overflow);
2694 }
2695
2696 check_flush_dependency(wq, NULL);
2697
2698 mutex_unlock(&wq->mutex);
2699
2700 wait_for_completion(&this_flusher.done);
2701
2702 /*
2703 * Wake-up-and-cascade phase
2704 *
2705 * First flushers are responsible for cascading flushes and
2706 * handling overflow. Non-first flushers can simply return.
2707 */
2708 if (wq->first_flusher != &this_flusher)
2709 return;
2710
2711 mutex_lock(&wq->mutex);
2712
2713 /* we might have raced, check again with mutex held */
2714 if (wq->first_flusher != &this_flusher)
2715 goto out_unlock;
2716
2717 wq->first_flusher = NULL;
2718
2719 WARN_ON_ONCE(!list_empty(&this_flusher.list));
2720 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2721
2722 while (true) {
2723 struct wq_flusher *next, *tmp;
2724
2725 /* complete all the flushers sharing the current flush color */
2726 list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
2727 if (next->flush_color != wq->flush_color)
2728 break;
2729 list_del_init(&next->list);
2730 complete(&next->done);
2731 }
2732
2733 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) &&
2734 wq->flush_color != work_next_color(wq->work_color));
2735
2736 /* this flush_color is finished, advance by one */
2737 wq->flush_color = work_next_color(wq->flush_color);
2738
2739 /* one color has been freed, handle overflow queue */
2740 if (!list_empty(&wq->flusher_overflow)) {
2741 /*
2742 * Assign the same color to all overflowed
2743 * flushers, advance work_color and append to
2744 * flusher_queue. This is the start-to-wait
2745 * phase for these overflowed flushers.
2746 */
2747 list_for_each_entry(tmp, &wq->flusher_overflow, list)
2748 tmp->flush_color = wq->work_color;
2749
2750 wq->work_color = work_next_color(wq->work_color);
2751
2752 list_splice_tail_init(&wq->flusher_overflow,
2753 &wq->flusher_queue);
2754 flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2755 }
2756
2757 if (list_empty(&wq->flusher_queue)) {
2758 WARN_ON_ONCE(wq->flush_color != wq->work_color);
2759 break;
2760 }
2761
2762 /*
2763 * Need to flush more colors. Make the next flusher
2764 * the new first flusher and arm pwqs.
2765 */
2766 WARN_ON_ONCE(wq->flush_color == wq->work_color);
2767 WARN_ON_ONCE(wq->flush_color != next->flush_color);
2768
2769 list_del_init(&next->list);
2770 wq->first_flusher = next;
2771
2772 if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1))
2773 break;
2774
2775 /*
2776 * Meh... this color is already done, clear first
2777 * flusher and repeat cascading.
2778 */
2779 wq->first_flusher = NULL;
2780 }
2781
2782 out_unlock:
2783 mutex_unlock(&wq->mutex);
2784 }
2785 EXPORT_SYMBOL(flush_workqueue);
2786
2787 /**
2788 * drain_workqueue - drain a workqueue
2789 * @wq: workqueue to drain
2790 *
2791 * Wait until the workqueue becomes empty. While draining is in progress,
2792 * only chain queueing is allowed. IOW, only currently pending or running
2793 * work items on @wq can queue further work items on it. @wq is flushed
2794 * repeatedly until it becomes empty. The number of flushing is determined
2795 * by the depth of chaining and should be relatively short. Whine if it
2796 * takes too long.
2797 */
2798 void drain_workqueue(struct workqueue_struct *wq)
2799 {
2800 unsigned int flush_cnt = 0;
2801 struct pool_workqueue *pwq;
2802
2803 /*
2804 * __queue_work() needs to test whether there are drainers, is much
2805 * hotter than drain_workqueue() and already looks at @wq->flags.
2806 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers.
2807 */
2808 mutex_lock(&wq->mutex);
2809 if (!wq->nr_drainers++)
2810 wq->flags |= __WQ_DRAINING;
2811 mutex_unlock(&wq->mutex);
2812 reflush:
2813 flush_workqueue(wq);
2814
2815 mutex_lock(&wq->mutex);
2816
2817 for_each_pwq(pwq, wq) {
2818 bool drained;
2819
2820 spin_lock_irq(&pwq->pool->lock);
2821 drained = !pwq->nr_active && list_empty(&pwq->delayed_works);
2822 spin_unlock_irq(&pwq->pool->lock);
2823
2824 if (drained)
2825 continue;
2826
2827 if (++flush_cnt == 10 ||
2828 (flush_cnt % 100 == 0 && flush_cnt <= 1000))
2829 pr_warn("workqueue %s: drain_workqueue() isn't complete after %u tries\n",
2830 wq->name, flush_cnt);
2831
2832 mutex_unlock(&wq->mutex);
2833 goto reflush;
2834 }
2835
2836 if (!--wq->nr_drainers)
2837 wq->flags &= ~__WQ_DRAINING;
2838 mutex_unlock(&wq->mutex);
2839 }
2840 EXPORT_SYMBOL_GPL(drain_workqueue);
2841
2842 static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr,
2843 bool from_cancel)
2844 {
2845 struct worker *worker = NULL;
2846 struct worker_pool *pool;
2847 struct pool_workqueue *pwq;
2848
2849 might_sleep();
2850
2851 local_irq_disable();
2852 pool = get_work_pool(work);
2853 if (!pool) {
2854 local_irq_enable();
2855 return false;
2856 }
2857
2858 spin_lock(&pool->lock);
2859 /* see the comment in try_to_grab_pending() with the same code */
2860 pwq = get_work_pwq(work);
2861 if (pwq) {
2862 if (unlikely(pwq->pool != pool))
2863 goto already_gone;
2864 } else {
2865 worker = find_worker_executing_work(pool, work);
2866 if (!worker)
2867 goto already_gone;
2868 pwq = worker->current_pwq;
2869 }
2870
2871 check_flush_dependency(pwq->wq, work);
2872
2873 insert_wq_barrier(pwq, barr, work, worker);
2874 spin_unlock_irq(&pool->lock);
2875
2876 /*
2877 * Force a lock recursion deadlock when using flush_work() inside a
2878 * single-threaded or rescuer equipped workqueue.
2879 *
2880 * For single threaded workqueues the deadlock happens when the work
2881 * is after the work issuing the flush_work(). For rescuer equipped
2882 * workqueues the deadlock happens when the rescuer stalls, blocking
2883 * forward progress.
2884 */
2885 if (!from_cancel &&
2886 (pwq->wq->saved_max_active == 1 || pwq->wq->rescuer)) {
2887 lock_map_acquire(&pwq->wq->lockdep_map);
2888 lock_map_release(&pwq->wq->lockdep_map);
2889 }
2890
2891 return true;
2892 already_gone:
2893 spin_unlock_irq(&pool->lock);
2894 return false;
2895 }
2896
2897 static bool __flush_work(struct work_struct *work, bool from_cancel)
2898 {
2899 struct wq_barrier barr;
2900
2901 if (WARN_ON(!wq_online))
2902 return false;
2903
2904 if (WARN_ON(!work->func))
2905 return false;
2906
2907 if (!from_cancel) {
2908 lock_map_acquire(&work->lockdep_map);
2909 lock_map_release(&work->lockdep_map);
2910 }
2911
2912 if (start_flush_work(work, &barr, from_cancel)) {
2913 wait_for_completion(&barr.done);
2914 destroy_work_on_stack(&barr.work);
2915 return true;
2916 } else {
2917 return false;
2918 }
2919 }
2920
2921 /**
2922 * flush_work - wait for a work to finish executing the last queueing instance
2923 * @work: the work to flush
2924 *
2925 * Wait until @work has finished execution. @work is guaranteed to be idle
2926 * on return if it hasn't been requeued since flush started.
2927 *
2928 * Return:
2929 * %true if flush_work() waited for the work to finish execution,
2930 * %false if it was already idle.
2931 */
2932 bool flush_work(struct work_struct *work)
2933 {
2934 return __flush_work(work, false);
2935 }
2936 EXPORT_SYMBOL_GPL(flush_work);
2937
2938 struct cwt_wait {
2939 wait_queue_entry_t wait;
2940 struct work_struct *work;
2941 };
2942
2943 static int cwt_wakefn(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
2944 {
2945 struct cwt_wait *cwait = container_of(wait, struct cwt_wait, wait);
2946
2947 if (cwait->work != key)
2948 return 0;
2949 return autoremove_wake_function(wait, mode, sync, key);
2950 }
2951
2952 static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
2953 {
2954 static DECLARE_WAIT_QUEUE_HEAD(cancel_waitq);
2955 unsigned long flags;
2956 int ret;
2957
2958 do {
2959 ret = try_to_grab_pending(work, is_dwork, &flags);
2960 /*
2961 * If someone else is already canceling, wait for it to
2962 * finish. flush_work() doesn't work for PREEMPT_NONE
2963 * because we may get scheduled between @work's completion
2964 * and the other canceling task resuming and clearing
2965 * CANCELING - flush_work() will return false immediately
2966 * as @work is no longer busy, try_to_grab_pending() will
2967 * return -ENOENT as @work is still being canceled and the
2968 * other canceling task won't be able to clear CANCELING as
2969 * we're hogging the CPU.
2970 *
2971 * Let's wait for completion using a waitqueue. As this
2972 * may lead to the thundering herd problem, use a custom
2973 * wake function which matches @work along with exclusive
2974 * wait and wakeup.
2975 */
2976 if (unlikely(ret == -ENOENT)) {
2977 struct cwt_wait cwait;
2978
2979 init_wait(&cwait.wait);
2980 cwait.wait.func = cwt_wakefn;
2981 cwait.work = work;
2982
2983 prepare_to_wait_exclusive(&cancel_waitq, &cwait.wait,
2984 TASK_UNINTERRUPTIBLE);
2985 if (work_is_canceling(work))
2986 schedule();
2987 finish_wait(&cancel_waitq, &cwait.wait);
2988 }
2989 } while (unlikely(ret < 0));
2990
2991 /* tell other tasks trying to grab @work to back off */
2992 mark_work_canceling(work);
2993 local_irq_restore(flags);
2994
2995 /*
2996 * This allows canceling during early boot. We know that @work
2997 * isn't executing.
2998 */
2999 if (wq_online)
3000 __flush_work(work, true);
3001
3002 clear_work_data(work);
3003
3004 /*
3005 * Paired with prepare_to_wait() above so that either
3006 * waitqueue_active() is visible here or !work_is_canceling() is
3007 * visible there.
3008 */
3009 smp_mb();
3010 if (waitqueue_active(&cancel_waitq))
3011 __wake_up(&cancel_waitq, TASK_NORMAL, 1, work);
3012
3013 return ret;
3014 }
3015
3016 /**
3017 * cancel_work_sync - cancel a work and wait for it to finish
3018 * @work: the work to cancel
3019 *
3020 * Cancel @work and wait for its execution to finish. This function
3021 * can be used even if the work re-queues itself or migrates to
3022 * another workqueue. On return from this function, @work is
3023 * guaranteed to be not pending or executing on any CPU.
3024 *
3025 * cancel_work_sync(&delayed_work->work) must not be used for
3026 * delayed_work's. Use cancel_delayed_work_sync() instead.
3027 *
3028 * The caller must ensure that the workqueue on which @work was last
3029 * queued can't be destroyed before this function returns.
3030 *
3031 * Return:
3032 * %true if @work was pending, %false otherwise.
3033 */
3034 bool cancel_work_sync(struct work_struct *work)
3035 {
3036 return __cancel_work_timer(work, false);
3037 }
3038 EXPORT_SYMBOL_GPL(cancel_work_sync);
3039
3040 /**
3041 * flush_delayed_work - wait for a dwork to finish executing the last queueing
3042 * @dwork: the delayed work to flush
3043 *
3044 * Delayed timer is cancelled and the pending work is queued for
3045 * immediate execution. Like flush_work(), this function only
3046 * considers the last queueing instance of @dwork.
3047 *
3048 * Return:
3049 * %true if flush_work() waited for the work to finish execution,
3050 * %false if it was already idle.
3051 */
3052 bool flush_delayed_work(struct delayed_work *dwork)
3053 {
3054 local_irq_disable();
3055 if (del_timer_sync(&dwork->timer))
3056 __queue_work(dwork->cpu, dwork->wq, &dwork->work);
3057 local_irq_enable();
3058 return flush_work(&dwork->work);
3059 }
3060 EXPORT_SYMBOL(flush_delayed_work);
3061
3062 /**
3063 * flush_rcu_work - wait for a rwork to finish executing the last queueing
3064 * @rwork: the rcu work to flush
3065 *
3066 * Return:
3067 * %true if flush_rcu_work() waited for the work to finish execution,
3068 * %false if it was already idle.
3069 */
3070 bool flush_rcu_work(struct rcu_work *rwork)
3071 {
3072 if (test_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&rwork->work))) {
3073 rcu_barrier();
3074 flush_work(&rwork->work);
3075 return true;
3076 } else {
3077 return flush_work(&rwork->work);
3078 }
3079 }
3080 EXPORT_SYMBOL(flush_rcu_work);
3081
3082 static bool __cancel_work(struct work_struct *work, bool is_dwork)
3083 {
3084 unsigned long flags;
3085 int ret;
3086
3087 do {
3088 ret = try_to_grab_pending(work, is_dwork, &flags);
3089 } while (unlikely(ret == -EAGAIN));
3090
3091 if (unlikely(ret < 0))
3092 return false;
3093
3094 set_work_pool_and_clear_pending(work, get_work_pool_id(work));
3095 local_irq_restore(flags);
3096 return ret;
3097 }
3098
3099 /*
3100 * See cancel_delayed_work()
3101 */
3102 bool cancel_work(struct work_struct *work)
3103 {
3104 return __cancel_work(work, false);
3105 }
3106
3107 /**
3108 * cancel_delayed_work - cancel a delayed work
3109 * @dwork: delayed_work to cancel
3110 *
3111 * Kill off a pending delayed_work.
3112 *
3113 * Return: %true if @dwork was pending and canceled; %false if it wasn't
3114 * pending.
3115 *
3116 * Note:
3117 * The work callback function may still be running on return, unless
3118 * it returns %true and the work doesn't re-arm itself. Explicitly flush or
3119 * use cancel_delayed_work_sync() to wait on it.
3120 *
3121 * This function is safe to call from any context including IRQ handler.
3122 */
3123 bool cancel_delayed_work(struct delayed_work *dwork)
3124 {
3125 return __cancel_work(&dwork->work, true);
3126 }
3127 EXPORT_SYMBOL(cancel_delayed_work);
3128
3129 /**
3130 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
3131 * @dwork: the delayed work cancel
3132 *
3133 * This is cancel_work_sync() for delayed works.
3134 *
3135 * Return:
3136 * %true if @dwork was pending, %false otherwise.
3137 */
3138 bool cancel_delayed_work_sync(struct delayed_work *dwork)
3139 {
3140 return __cancel_work_timer(&dwork->work, true);
3141 }
3142 EXPORT_SYMBOL(cancel_delayed_work_sync);
3143
3144 /**
3145 * schedule_on_each_cpu - execute a function synchronously on each online CPU
3146 * @func: the function to call
3147 *
3148 * schedule_on_each_cpu() executes @func on each online CPU using the
3149 * system workqueue and blocks until all CPUs have completed.
3150 * schedule_on_each_cpu() is very slow.
3151 *
3152 * Return:
3153 * 0 on success, -errno on failure.
3154 */
3155 int schedule_on_each_cpu(work_func_t func)
3156 {
3157 int cpu;
3158 struct work_struct __percpu *works;
3159
3160 works = alloc_percpu(struct work_struct);
3161 if (!works)
3162 return -ENOMEM;
3163
3164 get_online_cpus();
3165
3166 for_each_online_cpu(cpu) {
3167 struct work_struct *work = per_cpu_ptr(works, cpu);
3168
3169 INIT_WORK(work, func);
3170 schedule_work_on(cpu, work);
3171 }
3172
3173 for_each_online_cpu(cpu)
3174 flush_work(per_cpu_ptr(works, cpu));
3175
3176 put_online_cpus();
3177 free_percpu(works);
3178 return 0;
3179 }
3180
3181 /**
3182 * execute_in_process_context - reliably execute the routine with user context
3183 * @fn: the function to execute
3184 * @ew: guaranteed storage for the execute work structure (must
3185 * be available when the work executes)
3186 *
3187 * Executes the function immediately if process context is available,
3188 * otherwise schedules the function for delayed execution.
3189 *
3190 * Return: 0 - function was executed
3191 * 1 - function was scheduled for execution
3192 */
3193 int execute_in_process_context(work_func_t fn, struct execute_work *ew)
3194 {
3195 if (!in_interrupt()) {
3196 fn(&ew->work);
3197 return 0;
3198 }
3199
3200 INIT_WORK(&ew->work, fn);
3201 schedule_work(&ew->work);
3202
3203 return 1;
3204 }
3205 EXPORT_SYMBOL_GPL(execute_in_process_context);
3206
3207 /**
3208 * free_workqueue_attrs - free a workqueue_attrs
3209 * @attrs: workqueue_attrs to free
3210 *
3211 * Undo alloc_workqueue_attrs().
3212 */
3213 void free_workqueue_attrs(struct workqueue_attrs *attrs)
3214 {
3215 if (attrs) {
3216 free_cpumask_var(attrs->cpumask);
3217 kfree(attrs);
3218 }
3219 }
3220
3221 /**
3222 * alloc_workqueue_attrs - allocate a workqueue_attrs
3223 * @gfp_mask: allocation mask to use
3224 *
3225 * Allocate a new workqueue_attrs, initialize with default settings and
3226 * return it.
3227 *
3228 * Return: The allocated new workqueue_attr on success. %NULL on failure.
3229 */
3230 struct workqueue_attrs *alloc_workqueue_attrs(gfp_t gfp_mask)
3231 {
3232 struct workqueue_attrs *attrs;
3233
3234 attrs = kzalloc(sizeof(*attrs), gfp_mask);
3235 if (!attrs)
3236 goto fail;
3237 if (!alloc_cpumask_var(&attrs->cpumask, gfp_mask))
3238 goto fail;
3239
3240 cpumask_copy(attrs->cpumask, cpu_possible_mask);
3241 return attrs;
3242 fail:
3243 free_workqueue_attrs(attrs);
3244 return NULL;
3245 }
3246
3247 static void copy_workqueue_attrs(struct workqueue_attrs *to,
3248 const struct workqueue_attrs *from)
3249 {
3250 to->nice = from->nice;
3251 cpumask_copy(to->cpumask, from->cpumask);
3252 /*
3253 * Unlike hash and equality test, this function doesn't ignore
3254 * ->no_numa as it is used for both pool and wq attrs. Instead,
3255 * get_unbound_pool() explicitly clears ->no_numa after copying.
3256 */
3257 to->no_numa = from->no_numa;
3258 }
3259
3260 /* hash value of the content of @attr */
3261 static u32 wqattrs_hash(const struct workqueue_attrs *attrs)
3262 {
3263 u32 hash = 0;
3264
3265 hash = jhash_1word(attrs->nice, hash);
3266 hash = jhash(cpumask_bits(attrs->cpumask),
3267 BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash);
3268 return hash;
3269 }
3270
3271 /* content equality test */
3272 static bool wqattrs_equal(const struct workqueue_attrs *a,
3273 const struct workqueue_attrs *b)
3274 {
3275 if (a->nice != b->nice)
3276 return false;
3277 if (!cpumask_equal(a->cpumask, b->cpumask))
3278 return false;
3279 return true;
3280 }
3281
3282 /**
3283 * init_worker_pool - initialize a newly zalloc'd worker_pool
3284 * @pool: worker_pool to initialize
3285 *
3286 * Initialize a newly zalloc'd @pool. It also allocates @pool->attrs.
3287 *
3288 * Return: 0 on success, -errno on failure. Even on failure, all fields
3289 * inside @pool proper are initialized and put_unbound_pool() can be called
3290 * on @pool safely to release it.
3291 */
3292 static int init_worker_pool(struct worker_pool *pool)
3293 {
3294 spin_lock_init(&pool->lock);
3295 pool->id = -1;
3296 pool->cpu = -1;
3297 pool->node = NUMA_NO_NODE;
3298 pool->flags |= POOL_DISASSOCIATED;
3299 pool->watchdog_ts = jiffies;
3300 INIT_LIST_HEAD(&pool->worklist);
3301 INIT_LIST_HEAD(&pool->idle_list);
3302 hash_init(pool->busy_hash);
3303
3304 timer_setup(&pool->idle_timer, idle_worker_timeout, TIMER_DEFERRABLE);
3305
3306 timer_setup(&pool->mayday_timer, pool_mayday_timeout, 0);
3307
3308 mutex_init(&pool->attach_mutex);
3309 INIT_LIST_HEAD(&pool->workers);
3310
3311 ida_init(&pool->worker_ida);
3312 INIT_HLIST_NODE(&pool->hash_node);
3313 pool->refcnt = 1;
3314
3315 /* shouldn't fail above this point */
3316 pool->attrs = alloc_workqueue_attrs(GFP_KERNEL);
3317 if (!pool->attrs)
3318 return -ENOMEM;
3319 return 0;
3320 }
3321
3322 static void rcu_free_wq(struct rcu_head *rcu)
3323 {
3324 struct workqueue_struct *wq =
3325 container_of(rcu, struct workqueue_struct, rcu);
3326
3327 if (!(wq->flags & WQ_UNBOUND))
3328 free_percpu(wq->cpu_pwqs);
3329 else
3330 free_workqueue_attrs(wq->unbound_attrs);
3331
3332 kfree(wq->rescuer);
3333 kfree(wq);
3334 }
3335
3336 static void rcu_free_pool(struct rcu_head *rcu)
3337 {
3338 struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu);
3339
3340 ida_destroy(&pool->worker_ida);
3341 free_workqueue_attrs(pool->attrs);
3342 kfree(pool);
3343 }
3344
3345 /**
3346 * put_unbound_pool - put a worker_pool
3347 * @pool: worker_pool to put
3348 *
3349 * Put @pool. If its refcnt reaches zero, it gets destroyed in sched-RCU
3350 * safe manner. get_unbound_pool() calls this function on its failure path
3351 * and this function should be able to release pools which went through,
3352 * successfully or not, init_worker_pool().
3353 *
3354 * Should be called with wq_pool_mutex held.
3355 */
3356 static void put_unbound_pool(struct worker_pool *pool)
3357 {
3358 DECLARE_COMPLETION_ONSTACK(detach_completion);
3359 struct worker *worker;
3360
3361 lockdep_assert_held(&wq_pool_mutex);
3362
3363 if (--pool->refcnt)
3364 return;
3365
3366 /* sanity checks */
3367 if (WARN_ON(!(pool->cpu < 0)) ||
3368 WARN_ON(!list_empty(&pool->worklist)))
3369 return;
3370
3371 /* release id and unhash */
3372 if (pool->id >= 0)
3373 idr_remove(&worker_pool_idr, pool->id);
3374 hash_del(&pool->hash_node);
3375
3376 /*
3377 * Become the manager and destroy all workers. This prevents
3378 * @pool's workers from blocking on attach_mutex. We're the last
3379 * manager and @pool gets freed with the flag set.
3380 */
3381 spin_lock_irq(&pool->lock);
3382 wait_event_lock_irq(wq_manager_wait,
3383 !(pool->flags & POOL_MANAGER_ACTIVE), pool->lock);
3384 pool->flags |= POOL_MANAGER_ACTIVE;
3385
3386 while ((worker = first_idle_worker(pool)))
3387 destroy_worker(worker);
3388 WARN_ON(pool->nr_workers || pool->nr_idle);
3389 spin_unlock_irq(&pool->lock);
3390
3391 mutex_lock(&pool->attach_mutex);
3392 if (!list_empty(&pool->workers))
3393 pool->detach_completion = &detach_completion;
3394 mutex_unlock(&pool->attach_mutex);
3395
3396 if (pool->detach_completion)
3397 wait_for_completion(pool->detach_completion);
3398
3399 /* shut down the timers */
3400 del_timer_sync(&pool->idle_timer);
3401 del_timer_sync(&pool->mayday_timer);
3402
3403 /* sched-RCU protected to allow dereferences from get_work_pool() */
3404 call_rcu_sched(&pool->rcu, rcu_free_pool);
3405 }
3406
3407 /**
3408 * get_unbound_pool - get a worker_pool with the specified attributes
3409 * @attrs: the attributes of the worker_pool to get
3410 *
3411 * Obtain a worker_pool which has the same attributes as @attrs, bump the
3412 * reference count and return it. If there already is a matching
3413 * worker_pool, it will be used; otherwise, this function attempts to
3414 * create a new one.
3415 *
3416 * Should be called with wq_pool_mutex held.
3417 *
3418 * Return: On success, a worker_pool with the same attributes as @attrs.
3419 * On failure, %NULL.
3420 */
3421 static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs)
3422 {
3423 u32 hash = wqattrs_hash(attrs);
3424 struct worker_pool *pool;
3425 int node;
3426 int target_node = NUMA_NO_NODE;
3427
3428 lockdep_assert_held(&wq_pool_mutex);
3429
3430 /* do we already have a matching pool? */
3431 hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) {
3432 if (wqattrs_equal(pool->attrs, attrs)) {
3433 pool->refcnt++;
3434 return pool;
3435 }
3436 }
3437
3438 /* if cpumask is contained inside a NUMA node, we belong to that node */
3439 if (wq_numa_enabled) {
3440 for_each_node(node) {
3441 if (cpumask_subset(attrs->cpumask,
3442 wq_numa_possible_cpumask[node])) {
3443 target_node = node;
3444 break;
3445 }
3446 }
3447 }
3448
3449 /* nope, create a new one */
3450 pool = kzalloc_node(sizeof(*pool), GFP_KERNEL, target_node);
3451 if (!pool || init_worker_pool(pool) < 0)
3452 goto fail;
3453
3454 lockdep_set_subclass(&pool->lock, 1); /* see put_pwq() */
3455 copy_workqueue_attrs(pool->attrs, attrs);
3456 pool->node = target_node;
3457
3458 /*
3459 * no_numa isn't a worker_pool attribute, always clear it. See
3460 * 'struct workqueue_attrs' comments for detail.
3461 */
3462 pool->attrs->no_numa = false;
3463
3464 if (worker_pool_assign_id(pool) < 0)
3465 goto fail;
3466
3467 /* create and start the initial worker */
3468 if (wq_online && !create_worker(pool))
3469 goto fail;
3470
3471 /* install */
3472 hash_add(unbound_pool_hash, &pool->hash_node, hash);
3473
3474 return pool;
3475 fail:
3476 if (pool)
3477 put_unbound_pool(pool);
3478 return NULL;
3479 }
3480
3481 static void rcu_free_pwq(struct rcu_head *rcu)
3482 {
3483 kmem_cache_free(pwq_cache,
3484 container_of(rcu, struct pool_workqueue, rcu));
3485 }
3486
3487 /*
3488 * Scheduled on system_wq by put_pwq() when an unbound pwq hits zero refcnt
3489 * and needs to be destroyed.
3490 */
3491 static void pwq_unbound_release_workfn(struct work_struct *work)
3492 {
3493 struct pool_workqueue *pwq = container_of(work, struct pool_workqueue,
3494 unbound_release_work);
3495 struct workqueue_struct *wq = pwq->wq;
3496 struct worker_pool *pool = pwq->pool;
3497 bool is_last;
3498
3499 if (WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND)))
3500 return;
3501
3502 mutex_lock(&wq->mutex);
3503 list_del_rcu(&pwq->pwqs_node);
3504 is_last = list_empty(&wq->pwqs);
3505 mutex_unlock(&wq->mutex);
3506
3507 mutex_lock(&wq_pool_mutex);
3508 put_unbound_pool(pool);
3509 mutex_unlock(&wq_pool_mutex);
3510
3511 call_rcu_sched(&pwq->rcu, rcu_free_pwq);
3512
3513 /*
3514 * If we're the last pwq going away, @wq is already dead and no one
3515 * is gonna access it anymore. Schedule RCU free.
3516 */
3517 if (is_last)
3518 call_rcu_sched(&wq->rcu, rcu_free_wq);
3519 }
3520
3521 /**
3522 * pwq_adjust_max_active - update a pwq's max_active to the current setting
3523 * @pwq: target pool_workqueue
3524 *
3525 * If @pwq isn't freezing, set @pwq->max_active to the associated
3526 * workqueue's saved_max_active and activate delayed work items
3527 * accordingly. If @pwq is freezing, clear @pwq->max_active to zero.
3528 */
3529 static void pwq_adjust_max_active(struct pool_workqueue *pwq)
3530 {
3531 struct workqueue_struct *wq = pwq->wq;
3532 bool freezable = wq->flags & WQ_FREEZABLE;
3533 unsigned long flags;
3534
3535 /* for @wq->saved_max_active */
3536 lockdep_assert_held(&wq->mutex);
3537
3538 /* fast exit for non-freezable wqs */
3539 if (!freezable && pwq->max_active == wq->saved_max_active)
3540 return;
3541
3542 /* this function can be called during early boot w/ irq disabled */
3543 spin_lock_irqsave(&pwq->pool->lock, flags);
3544
3545 /*
3546 * During [un]freezing, the caller is responsible for ensuring that
3547 * this function is called at least once after @workqueue_freezing
3548 * is updated and visible.
3549 */
3550 if (!freezable || !workqueue_freezing) {
3551 pwq->max_active = wq->saved_max_active;
3552
3553 while (!list_empty(&pwq->delayed_works) &&
3554 pwq->nr_active < pwq->max_active)
3555 pwq_activate_first_delayed(pwq);
3556
3557 /*
3558 * Need to kick a worker after thawed or an unbound wq's
3559 * max_active is bumped. It's a slow path. Do it always.
3560 */
3561 wake_up_worker(pwq->pool);
3562 } else {
3563 pwq->max_active = 0;
3564 }
3565
3566 spin_unlock_irqrestore(&pwq->pool->lock, flags);
3567 }
3568
3569 /* initialize newly alloced @pwq which is associated with @wq and @pool */
3570 static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq,
3571 struct worker_pool *pool)
3572 {
3573 BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK);
3574
3575 memset(pwq, 0, sizeof(*pwq));
3576
3577 pwq->pool = pool;
3578 pwq->wq = wq;
3579 pwq->flush_color = -1;
3580 pwq->refcnt = 1;
3581 INIT_LIST_HEAD(&pwq->delayed_works);
3582 INIT_LIST_HEAD(&pwq->pwqs_node);
3583 INIT_LIST_HEAD(&pwq->mayday_node);
3584 INIT_WORK(&pwq->unbound_release_work, pwq_unbound_release_workfn);
3585 }
3586
3587 /* sync @pwq with the current state of its associated wq and link it */
3588 static void link_pwq(struct pool_workqueue *pwq)
3589 {
3590 struct workqueue_struct *wq = pwq->wq;
3591
3592 lockdep_assert_held(&wq->mutex);
3593
3594 /* may be called multiple times, ignore if already linked */
3595 if (!list_empty(&pwq->pwqs_node))
3596 return;
3597
3598 /* set the matching work_color */
3599 pwq->work_color = wq->work_color;
3600
3601 /* sync max_active to the current setting */
3602 pwq_adjust_max_active(pwq);
3603
3604 /* link in @pwq */
3605 list_add_rcu(&pwq->pwqs_node, &wq->pwqs);
3606 }
3607
3608 /* obtain a pool matching @attr and create a pwq associating the pool and @wq */
3609 static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq,
3610 const struct workqueue_attrs *attrs)
3611 {
3612 struct worker_pool *pool;
3613 struct pool_workqueue *pwq;
3614
3615 lockdep_assert_held(&wq_pool_mutex);
3616
3617 pool = get_unbound_pool(attrs);
3618 if (!pool)
3619 return NULL;
3620
3621 pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node);
3622 if (!pwq) {
3623 put_unbound_pool(pool);
3624 return NULL;
3625 }
3626
3627 init_pwq(pwq, wq, pool);
3628 return pwq;
3629 }
3630
3631 /**
3632 * wq_calc_node_cpumask - calculate a wq_attrs' cpumask for the specified node
3633 * @attrs: the wq_attrs of the default pwq of the target workqueue
3634 * @node: the target NUMA node
3635 * @cpu_going_down: if >= 0, the CPU to consider as offline
3636 * @cpumask: outarg, the resulting cpumask
3637 *
3638 * Calculate the cpumask a workqueue with @attrs should use on @node. If
3639 * @cpu_going_down is >= 0, that cpu is considered offline during
3640 * calculation. The result is stored in @cpumask.
3641 *
3642 * If NUMA affinity is not enabled, @attrs->cpumask is always used. If
3643 * enabled and @node has online CPUs requested by @attrs, the returned
3644 * cpumask is the intersection of the possible CPUs of @node and
3645 * @attrs->cpumask.
3646 *
3647 * The caller is responsible for ensuring that the cpumask of @node stays
3648 * stable.
3649 *
3650 * Return: %true if the resulting @cpumask is different from @attrs->cpumask,
3651 * %false if equal.
3652 */
3653 static bool wq_calc_node_cpumask(const struct workqueue_attrs *attrs, int node,
3654 int cpu_going_down, cpumask_t *cpumask)
3655 {
3656 if (!wq_numa_enabled || attrs->no_numa)
3657 goto use_dfl;
3658
3659 /* does @node have any online CPUs @attrs wants? */
3660 cpumask_and(cpumask, cpumask_of_node(node), attrs->cpumask);
3661 if (cpu_going_down >= 0)
3662 cpumask_clear_cpu(cpu_going_down, cpumask);
3663
3664 if (cpumask_empty(cpumask))
3665 goto use_dfl;
3666
3667 /* yeap, return possible CPUs in @node that @attrs wants */
3668 cpumask_and(cpumask, attrs->cpumask, wq_numa_possible_cpumask[node]);
3669
3670 if (cpumask_empty(cpumask)) {
3671 pr_warn_once("WARNING: workqueue cpumask: online intersect > "
3672 "possible intersect\n");
3673 return false;
3674 }
3675
3676 return !cpumask_equal(cpumask, attrs->cpumask);
3677
3678 use_dfl:
3679 cpumask_copy(cpumask, attrs->cpumask);
3680 return false;
3681 }
3682
3683 /* install @pwq into @wq's numa_pwq_tbl[] for @node and return the old pwq */
3684 static struct pool_workqueue *numa_pwq_tbl_install(struct workqueue_struct *wq,
3685 int node,
3686 struct pool_workqueue *pwq)
3687 {
3688 struct pool_workqueue *old_pwq;
3689
3690 lockdep_assert_held(&wq_pool_mutex);
3691 lockdep_assert_held(&wq->mutex);
3692
3693 /* link_pwq() can handle duplicate calls */
3694 link_pwq(pwq);
3695
3696 old_pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
3697 rcu_assign_pointer(wq->numa_pwq_tbl[node], pwq);
3698 return old_pwq;
3699 }
3700
3701 /* context to store the prepared attrs & pwqs before applying */
3702 struct apply_wqattrs_ctx {
3703 struct workqueue_struct *wq; /* target workqueue */
3704 struct workqueue_attrs *attrs; /* attrs to apply */
3705 struct list_head list; /* queued for batching commit */
3706 struct pool_workqueue *dfl_pwq;
3707 struct pool_workqueue *pwq_tbl[];
3708 };
3709
3710 /* free the resources after success or abort */
3711 static void apply_wqattrs_cleanup(struct apply_wqattrs_ctx *ctx)
3712 {
3713 if (ctx) {
3714 int node;
3715
3716 for_each_node(node)
3717 put_pwq_unlocked(ctx->pwq_tbl[node]);
3718 put_pwq_unlocked(ctx->dfl_pwq);
3719
3720 free_workqueue_attrs(ctx->attrs);
3721
3722 kfree(ctx);
3723 }
3724 }
3725
3726 /* allocate the attrs and pwqs for later installation */
3727 static struct apply_wqattrs_ctx *
3728 apply_wqattrs_prepare(struct workqueue_struct *wq,
3729 const struct workqueue_attrs *attrs)
3730 {
3731 struct apply_wqattrs_ctx *ctx;
3732 struct workqueue_attrs *new_attrs, *tmp_attrs;
3733 int node;
3734
3735 lockdep_assert_held(&wq_pool_mutex);
3736
3737 ctx = kzalloc(sizeof(*ctx) + nr_node_ids * sizeof(ctx->pwq_tbl[0]),
3738 GFP_KERNEL);
3739
3740 new_attrs = alloc_workqueue_attrs(GFP_KERNEL);
3741 tmp_attrs = alloc_workqueue_attrs(GFP_KERNEL);
3742 if (!ctx || !new_attrs || !tmp_attrs)
3743 goto out_free;
3744
3745 /*
3746 * Calculate the attrs of the default pwq.
3747 * If the user configured cpumask doesn't overlap with the
3748 * wq_unbound_cpumask, we fallback to the wq_unbound_cpumask.
3749 */
3750 copy_workqueue_attrs(new_attrs, attrs);
3751 cpumask_and(new_attrs->cpumask, new_attrs->cpumask, wq_unbound_cpumask);
3752 if (unlikely(cpumask_empty(new_attrs->cpumask)))
3753 cpumask_copy(new_attrs->cpumask, wq_unbound_cpumask);
3754
3755 /*
3756 * We may create multiple pwqs with differing cpumasks. Make a
3757 * copy of @new_attrs which will be modified and used to obtain
3758 * pools.
3759 */
3760 copy_workqueue_attrs(tmp_attrs, new_attrs);
3761
3762 /*
3763 * If something goes wrong during CPU up/down, we'll fall back to
3764 * the default pwq covering whole @attrs->cpumask. Always create
3765 * it even if we don't use it immediately.
3766 */
3767 ctx->dfl_pwq = alloc_unbound_pwq(wq, new_attrs);
3768 if (!ctx->dfl_pwq)
3769 goto out_free;
3770
3771 for_each_node(node) {
3772 if (wq_calc_node_cpumask(new_attrs, node, -1, tmp_attrs->cpumask)) {
3773 ctx->pwq_tbl[node] = alloc_unbound_pwq(wq, tmp_attrs);
3774 if (!ctx->pwq_tbl[node])
3775 goto out_free;
3776 } else {
3777 ctx->dfl_pwq->refcnt++;
3778 ctx->pwq_tbl[node] = ctx->dfl_pwq;
3779 }
3780 }
3781
3782 /* save the user configured attrs and sanitize it. */
3783 copy_workqueue_attrs(new_attrs, attrs);
3784 cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask);
3785 ctx->attrs = new_attrs;
3786
3787 ctx->wq = wq;
3788 free_workqueue_attrs(tmp_attrs);
3789 return ctx;
3790
3791 out_free:
3792 free_workqueue_attrs(tmp_attrs);
3793 free_workqueue_attrs(new_attrs);
3794 apply_wqattrs_cleanup(ctx);
3795 return NULL;
3796 }
3797
3798 /* set attrs and install prepared pwqs, @ctx points to old pwqs on return */
3799 static void apply_wqattrs_commit(struct apply_wqattrs_ctx *ctx)
3800 {
3801 int node;
3802
3803 /* all pwqs have been created successfully, let's install'em */
3804 mutex_lock(&ctx->wq->mutex);
3805
3806 copy_workqueue_attrs(ctx->wq->unbound_attrs, ctx->attrs);
3807
3808 /* save the previous pwq and install the new one */
3809 for_each_node(node)
3810 ctx->pwq_tbl[node] = numa_pwq_tbl_install(ctx->wq, node,
3811 ctx->pwq_tbl[node]);
3812
3813 /* @dfl_pwq might not have been used, ensure it's linked */
3814 link_pwq(ctx->dfl_pwq);
3815 swap(ctx->wq->dfl_pwq, ctx->dfl_pwq);
3816
3817 mutex_unlock(&ctx->wq->mutex);
3818 }
3819
3820 static void apply_wqattrs_lock(void)
3821 {
3822 /* CPUs should stay stable across pwq creations and installations */
3823 get_online_cpus();
3824 mutex_lock(&wq_pool_mutex);
3825 }
3826
3827 static void apply_wqattrs_unlock(void)
3828 {
3829 mutex_unlock(&wq_pool_mutex);
3830 put_online_cpus();
3831 }
3832
3833 static int apply_workqueue_attrs_locked(struct workqueue_struct *wq,
3834 const struct workqueue_attrs *attrs)
3835 {
3836 struct apply_wqattrs_ctx *ctx;
3837
3838 /* only unbound workqueues can change attributes */
3839 if (WARN_ON(!(wq->flags & WQ_UNBOUND)))
3840 return -EINVAL;
3841
3842 /* creating multiple pwqs breaks ordering guarantee */
3843 if (!list_empty(&wq->pwqs)) {
3844 if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
3845 return -EINVAL;
3846
3847 wq->flags &= ~__WQ_ORDERED;
3848 }
3849
3850 ctx = apply_wqattrs_prepare(wq, attrs);
3851 if (!ctx)
3852 return -ENOMEM;
3853
3854 /* the ctx has been prepared successfully, let's commit it */
3855 apply_wqattrs_commit(ctx);
3856 apply_wqattrs_cleanup(ctx);
3857
3858 return 0;
3859 }
3860
3861 /**
3862 * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue
3863 * @wq: the target workqueue
3864 * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs()
3865 *
3866 * Apply @attrs to an unbound workqueue @wq. Unless disabled, on NUMA
3867 * machines, this function maps a separate pwq to each NUMA node with
3868 * possibles CPUs in @attrs->cpumask so that work items are affine to the
3869 * NUMA node it was issued on. Older pwqs are released as in-flight work
3870 * items finish. Note that a work item which repeatedly requeues itself
3871 * back-to-back will stay on its current pwq.
3872 *
3873 * Performs GFP_KERNEL allocations.
3874 *
3875 * Return: 0 on success and -errno on failure.
3876 */
3877 int apply_workqueue_attrs(struct workqueue_struct *wq,
3878 const struct workqueue_attrs *attrs)
3879 {
3880 int ret;
3881
3882 apply_wqattrs_lock();
3883 ret = apply_workqueue_attrs_locked(wq, attrs);
3884 apply_wqattrs_unlock();
3885
3886 return ret;
3887 }
3888
3889 /**
3890 * wq_update_unbound_numa - update NUMA affinity of a wq for CPU hot[un]plug
3891 * @wq: the target workqueue
3892 * @cpu: the CPU coming up or going down
3893 * @online: whether @cpu is coming up or going down
3894 *
3895 * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and
3896 * %CPU_DOWN_FAILED. @cpu is being hot[un]plugged, update NUMA affinity of
3897 * @wq accordingly.
3898 *
3899 * If NUMA affinity can't be adjusted due to memory allocation failure, it
3900 * falls back to @wq->dfl_pwq which may not be optimal but is always
3901 * correct.
3902 *
3903 * Note that when the last allowed CPU of a NUMA node goes offline for a
3904 * workqueue with a cpumask spanning multiple nodes, the workers which were
3905 * already executing the work items for the workqueue will lose their CPU
3906 * affinity and may execute on any CPU. This is similar to how per-cpu
3907 * workqueues behave on CPU_DOWN. If a workqueue user wants strict
3908 * affinity, it's the user's responsibility to flush the work item from
3909 * CPU_DOWN_PREPARE.
3910 */
3911 static void wq_update_unbound_numa(struct workqueue_struct *wq, int cpu,
3912 bool online)
3913 {
3914 int node = cpu_to_node(cpu);
3915 int cpu_off = online ? -1 : cpu;
3916 struct pool_workqueue *old_pwq = NULL, *pwq;
3917 struct workqueue_attrs *target_attrs;
3918 cpumask_t *cpumask;
3919
3920 lockdep_assert_held(&wq_pool_mutex);
3921
3922 if (!wq_numa_enabled || !(wq->flags & WQ_UNBOUND) ||
3923 wq->unbound_attrs->no_numa)
3924 return;
3925
3926 /*
3927 * We don't wanna alloc/free wq_attrs for each wq for each CPU.
3928 * Let's use a preallocated one. The following buf is protected by
3929 * CPU hotplug exclusion.
3930 */
3931 target_attrs = wq_update_unbound_numa_attrs_buf;
3932 cpumask = target_attrs->cpumask;
3933
3934 copy_workqueue_attrs(target_attrs, wq->unbound_attrs);
3935 pwq = unbound_pwq_by_node(wq, node);
3936
3937 /*
3938 * Let's determine what needs to be done. If the target cpumask is
3939 * different from the default pwq's, we need to compare it to @pwq's
3940 * and create a new one if they don't match. If the target cpumask
3941 * equals the default pwq's, the default pwq should be used.
3942 */
3943 if (wq_calc_node_cpumask(wq->dfl_pwq->pool->attrs, node, cpu_off, cpumask)) {
3944 if (cpumask_equal(cpumask, pwq->pool->attrs->cpumask))
3945 return;
3946 } else {
3947 goto use_dfl_pwq;
3948 }
3949
3950 /* create a new pwq */
3951 pwq = alloc_unbound_pwq(wq, target_attrs);
3952 if (!pwq) {
3953 pr_warn("workqueue: allocation failed while updating NUMA affinity of \"%s\"\n",
3954 wq->name);
3955 goto use_dfl_pwq;
3956 }
3957
3958 /* Install the new pwq. */
3959 mutex_lock(&wq->mutex);
3960 old_pwq = numa_pwq_tbl_install(wq, node, pwq);
3961 goto out_unlock;
3962
3963 use_dfl_pwq:
3964 mutex_lock(&wq->mutex);
3965 spin_lock_irq(&wq->dfl_pwq->pool->lock);
3966 get_pwq(wq->dfl_pwq);
3967 spin_unlock_irq(&wq->dfl_pwq->pool->lock);
3968 old_pwq = numa_pwq_tbl_install(wq, node, wq->dfl_pwq);
3969 out_unlock:
3970 mutex_unlock(&wq->mutex);
3971 put_pwq_unlocked(old_pwq);
3972 }
3973
3974 static int alloc_and_link_pwqs(struct workqueue_struct *wq)
3975 {
3976 bool highpri = wq->flags & WQ_HIGHPRI;
3977 int cpu, ret;
3978
3979 if (!(wq->flags & WQ_UNBOUND)) {
3980 wq->cpu_pwqs = alloc_percpu(struct pool_workqueue);
3981 if (!wq->cpu_pwqs)
3982 return -ENOMEM;
3983
3984 for_each_possible_cpu(cpu) {
3985 struct pool_workqueue *pwq =
3986 per_cpu_ptr(wq->cpu_pwqs, cpu);
3987 struct worker_pool *cpu_pools =
3988 per_cpu(cpu_worker_pools, cpu);
3989
3990 init_pwq(pwq, wq, &cpu_pools[highpri]);
3991
3992 mutex_lock(&wq->mutex);
3993 link_pwq(pwq);
3994 mutex_unlock(&wq->mutex);
3995 }
3996 return 0;
3997 } else if (wq->flags & __WQ_ORDERED) {
3998 ret = apply_workqueue_attrs(wq, ordered_wq_attrs[highpri]);
3999 /* there should only be single pwq for ordering guarantee */
4000 WARN(!ret && (wq->pwqs.next != &wq->dfl_pwq->pwqs_node ||
4001 wq->pwqs.prev != &wq->dfl_pwq->pwqs_node),
4002 "ordering guarantee broken for workqueue %s\n", wq->name);
4003 return ret;
4004 } else {
4005 return apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]);
4006 }
4007 }
4008
4009 static int wq_clamp_max_active(int max_active, unsigned int flags,
4010 const char *name)
4011 {
4012 int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;
4013
4014 if (max_active < 1 || max_active > lim)
4015 pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
4016 max_active, name, 1, lim);
4017
4018 return clamp_val(max_active, 1, lim);
4019 }
4020
4021 struct workqueue_struct *__alloc_workqueue_key(const char *fmt,
4022 unsigned int flags,
4023 int max_active,
4024 struct lock_class_key *key,
4025 const char *lock_name, ...)
4026 {
4027 size_t tbl_size = 0;
4028 va_list args;
4029 struct workqueue_struct *wq;
4030 struct pool_workqueue *pwq;
4031
4032 /*
4033 * Unbound && max_active == 1 used to imply ordered, which is no
4034 * longer the case on NUMA machines due to per-node pools. While
4035 * alloc_ordered_workqueue() is the right way to create an ordered
4036 * workqueue, keep the previous behavior to avoid subtle breakages
4037 * on NUMA.
4038 */
4039 if ((flags & WQ_UNBOUND) && max_active == 1)
4040 flags |= __WQ_ORDERED;
4041
4042 /* see the comment above the definition of WQ_POWER_EFFICIENT */
4043 if ((flags & WQ_POWER_EFFICIENT) && wq_power_efficient)
4044 flags |= WQ_UNBOUND;
4045
4046 /* allocate wq and format name */
4047 if (flags & WQ_UNBOUND)
4048 tbl_size = nr_node_ids * sizeof(wq->numa_pwq_tbl[0]);
4049
4050 wq = kzalloc(sizeof(*wq) + tbl_size, GFP_KERNEL);
4051 if (!wq)
4052 return NULL;
4053
4054 if (flags & WQ_UNBOUND) {
4055 wq->unbound_attrs = alloc_workqueue_attrs(GFP_KERNEL);
4056 if (!wq->unbound_attrs)
4057 goto err_free_wq;
4058 }
4059
4060 va_start(args, lock_name);
4061 vsnprintf(wq->name, sizeof(wq->name), fmt, args);
4062 va_end(args);
4063
4064 max_active = max_active ?: WQ_DFL_ACTIVE;
4065 max_active = wq_clamp_max_active(max_active, flags, wq->name);
4066
4067 /* init wq */
4068 wq->flags = flags;
4069 wq->saved_max_active = max_active;
4070 mutex_init(&wq->mutex);
4071 atomic_set(&wq->nr_pwqs_to_flush, 0);
4072 INIT_LIST_HEAD(&wq->pwqs);
4073 INIT_LIST_HEAD(&wq->flusher_queue);
4074 INIT_LIST_HEAD(&wq->flusher_overflow);
4075 INIT_LIST_HEAD(&wq->maydays);
4076
4077 lockdep_init_map(&wq->lockdep_map, lock_name, key, 0);
4078 INIT_LIST_HEAD(&wq->list);
4079
4080 if (alloc_and_link_pwqs(wq) < 0)
4081 goto err_free_wq;
4082
4083 /*
4084 * Workqueues which may be used during memory reclaim should
4085 * have a rescuer to guarantee forward progress.
4086 */
4087 if (flags & WQ_MEM_RECLAIM) {
4088 struct worker *rescuer;
4089
4090 rescuer = alloc_worker(NUMA_NO_NODE);
4091 if (!rescuer)
4092 goto err_destroy;
4093
4094 rescuer->rescue_wq = wq;
4095 rescuer->task = kthread_create(rescuer_thread, rescuer, "%s",
4096 wq->name);
4097 if (IS_ERR(rescuer->task)) {
4098 kfree(rescuer);
4099 goto err_destroy;
4100 }
4101
4102 wq->rescuer = rescuer;
4103 kthread_bind_mask(rescuer->task, cpu_possible_mask);
4104 wake_up_process(rescuer->task);
4105 }
4106
4107 if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq))
4108 goto err_destroy;
4109
4110 /*
4111 * wq_pool_mutex protects global freeze state and workqueues list.
4112 * Grab it, adjust max_active and add the new @wq to workqueues
4113 * list.
4114 */
4115 mutex_lock(&wq_pool_mutex);
4116
4117 mutex_lock(&wq->mutex);
4118 for_each_pwq(pwq, wq)
4119 pwq_adjust_max_active(pwq);
4120 mutex_unlock(&wq->mutex);
4121
4122 list_add_tail_rcu(&wq->list, &workqueues);
4123
4124 mutex_unlock(&wq_pool_mutex);
4125
4126 return wq;
4127
4128 err_free_wq:
4129 free_workqueue_attrs(wq->unbound_attrs);
4130 kfree(wq);
4131 return NULL;
4132 err_destroy:
4133 destroy_workqueue(wq);
4134 return NULL;
4135 }
4136 EXPORT_SYMBOL_GPL(__alloc_workqueue_key);
4137
4138 /**
4139 * destroy_workqueue - safely terminate a workqueue
4140 * @wq: target workqueue
4141 *
4142 * Safely destroy a workqueue. All work currently pending will be done first.
4143 */
4144 void destroy_workqueue(struct workqueue_struct *wq)
4145 {
4146 struct pool_workqueue *pwq;
4147 int node;
4148
4149 /*
4150 * Remove it from sysfs first so that sanity check failure doesn't
4151 * lead to sysfs name conflicts.
4152 */
4153 workqueue_sysfs_unregister(wq);
4154
4155 /* drain it before proceeding with destruction */
4156 drain_workqueue(wq);
4157
4158 /* kill rescuer, if sanity checks fail, leave it w/o rescuer */
4159 if (wq->rescuer) {
4160 struct worker *rescuer = wq->rescuer;
4161
4162 /* this prevents new queueing */
4163 spin_lock_irq(&wq_mayday_lock);
4164 wq->rescuer = NULL;
4165 spin_unlock_irq(&wq_mayday_lock);
4166
4167 /* rescuer will empty maydays list before exiting */
4168 kthread_stop(rescuer->task);
4169 kfree(rescuer);
4170 }
4171
4172 /* sanity checks */
4173 mutex_lock(&wq->mutex);
4174 for_each_pwq(pwq, wq) {
4175 int i;
4176
4177 for (i = 0; i < WORK_NR_COLORS; i++) {
4178 if (WARN_ON(pwq->nr_in_flight[i])) {
4179 mutex_unlock(&wq->mutex);
4180 show_workqueue_state();
4181 return;
4182 }
4183 }
4184
4185 if (WARN_ON((pwq != wq->dfl_pwq) && (pwq->refcnt > 1)) ||
4186 WARN_ON(pwq->nr_active) ||
4187 WARN_ON(!list_empty(&pwq->delayed_works))) {
4188 mutex_unlock(&wq->mutex);
4189 show_workqueue_state();
4190 return;
4191 }
4192 }
4193 mutex_unlock(&wq->mutex);
4194
4195 /*
4196 * wq list is used to freeze wq, remove from list after
4197 * flushing is complete in case freeze races us.
4198 */
4199 mutex_lock(&wq_pool_mutex);
4200 list_del_rcu(&wq->list);
4201 mutex_unlock(&wq_pool_mutex);
4202
4203 if (!(wq->flags & WQ_UNBOUND)) {
4204 /*
4205 * The base ref is never dropped on per-cpu pwqs. Directly
4206 * schedule RCU free.
4207 */
4208 call_rcu_sched(&wq->rcu, rcu_free_wq);
4209 } else {
4210 /*
4211 * We're the sole accessor of @wq at this point. Directly
4212 * access numa_pwq_tbl[] and dfl_pwq to put the base refs.
4213 * @wq will be freed when the last pwq is released.
4214 */
4215 for_each_node(node) {
4216 pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
4217 RCU_INIT_POINTER(wq->numa_pwq_tbl[node], NULL);
4218 put_pwq_unlocked(pwq);
4219 }
4220
4221 /*
4222 * Put dfl_pwq. @wq may be freed any time after dfl_pwq is
4223 * put. Don't access it afterwards.
4224 */
4225 pwq = wq->dfl_pwq;
4226 wq->dfl_pwq = NULL;
4227 put_pwq_unlocked(pwq);
4228 }
4229 }
4230 EXPORT_SYMBOL_GPL(destroy_workqueue);
4231
4232 /**
4233 * workqueue_set_max_active - adjust max_active of a workqueue
4234 * @wq: target workqueue
4235 * @max_active: new max_active value.
4236 *
4237 * Set max_active of @wq to @max_active.
4238 *
4239 * CONTEXT:
4240 * Don't call from IRQ context.
4241 */
4242 void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
4243 {
4244 struct pool_workqueue *pwq;
4245
4246 /* disallow meddling with max_active for ordered workqueues */
4247 if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
4248 return;
4249
4250 max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
4251
4252 mutex_lock(&wq->mutex);
4253
4254 wq->flags &= ~__WQ_ORDERED;
4255 wq->saved_max_active = max_active;
4256
4257 for_each_pwq(pwq, wq)
4258 pwq_adjust_max_active(pwq);
4259
4260 mutex_unlock(&wq->mutex);
4261 }
4262 EXPORT_SYMBOL_GPL(workqueue_set_max_active);
4263
4264 /**
4265 * current_work - retrieve %current task's work struct
4266 *
4267 * Determine if %current task is a workqueue worker and what it's working on.
4268 * Useful to find out the context that the %current task is running in.
4269 *
4270 * Return: work struct if %current task is a workqueue worker, %NULL otherwise.
4271 */
4272 struct work_struct *current_work(void)
4273 {
4274 struct worker *worker = current_wq_worker();
4275
4276 return worker ? worker->current_work : NULL;
4277 }
4278 EXPORT_SYMBOL(current_work);
4279
4280 /**
4281 * current_is_workqueue_rescuer - is %current workqueue rescuer?
4282 *
4283 * Determine whether %current is a workqueue rescuer. Can be used from
4284 * work functions to determine whether it's being run off the rescuer task.
4285 *
4286 * Return: %true if %current is a workqueue rescuer. %false otherwise.
4287 */
4288 bool current_is_workqueue_rescuer(void)
4289 {
4290 struct worker *worker = current_wq_worker();
4291
4292 return worker && worker->rescue_wq;
4293 }
4294
4295 /**
4296 * workqueue_congested - test whether a workqueue is congested
4297 * @cpu: CPU in question
4298 * @wq: target workqueue
4299 *
4300 * Test whether @wq's cpu workqueue for @cpu is congested. There is
4301 * no synchronization around this function and the test result is
4302 * unreliable and only useful as advisory hints or for debugging.
4303 *
4304 * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU.
4305 * Note that both per-cpu and unbound workqueues may be associated with
4306 * multiple pool_workqueues which have separate congested states. A
4307 * workqueue being congested on one CPU doesn't mean the workqueue is also
4308 * contested on other CPUs / NUMA nodes.
4309 *
4310 * Return:
4311 * %true if congested, %false otherwise.
4312 */
4313 bool workqueue_congested(int cpu, struct workqueue_struct *wq)
4314 {
4315 struct pool_workqueue *pwq;
4316 bool ret;
4317
4318 rcu_read_lock_sched();
4319
4320 if (cpu == WORK_CPU_UNBOUND)
4321 cpu = smp_processor_id();
4322
4323 if (!(wq->flags & WQ_UNBOUND))
4324 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
4325 else
4326 pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
4327
4328 ret = !list_empty(&pwq->delayed_works);
4329 rcu_read_unlock_sched();
4330
4331 return ret;
4332 }
4333 EXPORT_SYMBOL_GPL(workqueue_congested);
4334
4335 /**
4336 * work_busy - test whether a work is currently pending or running
4337 * @work: the work to be tested
4338 *
4339 * Test whether @work is currently pending or running. There is no
4340 * synchronization around this function and the test result is
4341 * unreliable and only useful as advisory hints or for debugging.
4342 *
4343 * Return:
4344 * OR'd bitmask of WORK_BUSY_* bits.
4345 */
4346 unsigned int work_busy(struct work_struct *work)
4347 {
4348 struct worker_pool *pool;
4349 unsigned long flags;
4350 unsigned int ret = 0;
4351
4352 if (work_pending(work))
4353 ret |= WORK_BUSY_PENDING;
4354
4355 local_irq_save(flags);
4356 pool = get_work_pool(work);
4357 if (pool) {
4358 spin_lock(&pool->lock);
4359 if (find_worker_executing_work(pool, work))
4360 ret |= WORK_BUSY_RUNNING;
4361 spin_unlock(&pool->lock);
4362 }
4363 local_irq_restore(flags);
4364
4365 return ret;
4366 }
4367 EXPORT_SYMBOL_GPL(work_busy);
4368
4369 /**
4370 * set_worker_desc - set description for the current work item
4371 * @fmt: printf-style format string
4372 * @...: arguments for the format string
4373 *
4374 * This function can be called by a running work function to describe what
4375 * the work item is about. If the worker task gets dumped, this
4376 * information will be printed out together to help debugging. The
4377 * description can be at most WORKER_DESC_LEN including the trailing '\0'.
4378 */
4379 void set_worker_desc(const char *fmt, ...)
4380 {
4381 struct worker *worker = current_wq_worker();
4382 va_list args;
4383
4384 if (worker) {
4385 va_start(args, fmt);
4386 vsnprintf(worker->desc, sizeof(worker->desc), fmt, args);
4387 va_end(args);
4388 worker->desc_valid = true;
4389 }
4390 }
4391
4392 /**
4393 * print_worker_info - print out worker information and description
4394 * @log_lvl: the log level to use when printing
4395 * @task: target task
4396 *
4397 * If @task is a worker and currently executing a work item, print out the
4398 * name of the workqueue being serviced and worker description set with
4399 * set_worker_desc() by the currently executing work item.
4400 *
4401 * This function can be safely called on any task as long as the
4402 * task_struct itself is accessible. While safe, this function isn't
4403 * synchronized and may print out mixups or garbages of limited length.
4404 */
4405 void print_worker_info(const char *log_lvl, struct task_struct *task)
4406 {
4407 work_func_t *fn = NULL;
4408 char name[WQ_NAME_LEN] = { };
4409 char desc[WORKER_DESC_LEN] = { };
4410 struct pool_workqueue *pwq = NULL;
4411 struct workqueue_struct *wq = NULL;
4412 bool desc_valid = false;
4413 struct worker *worker;
4414
4415 if (!(task->flags & PF_WQ_WORKER))
4416 return;
4417
4418 /*
4419 * This function is called without any synchronization and @task
4420 * could be in any state. Be careful with dereferences.
4421 */
4422 worker = kthread_probe_data(task);
4423
4424 /*
4425 * Carefully copy the associated workqueue's workfn and name. Keep
4426 * the original last '\0' in case the original contains garbage.
4427 */
4428 probe_kernel_read(&fn, &worker->current_func, sizeof(fn));
4429 probe_kernel_read(&pwq, &worker->current_pwq, sizeof(pwq));
4430 probe_kernel_read(&wq, &pwq->wq, sizeof(wq));
4431 probe_kernel_read(name, wq->name, sizeof(name) - 1);
4432
4433 /* copy worker description */
4434 probe_kernel_read(&desc_valid, &worker->desc_valid, sizeof(desc_valid));
4435 if (desc_valid)
4436 probe_kernel_read(desc, worker->desc, sizeof(desc) - 1);
4437
4438 if (fn || name[0] || desc[0]) {
4439 printk("%sWorkqueue: %s %pf", log_lvl, name, fn);
4440 if (desc[0])
4441 pr_cont(" (%s)", desc);
4442 pr_cont("\n");
4443 }
4444 }
4445
4446 static void pr_cont_pool_info(struct worker_pool *pool)
4447 {
4448 pr_cont(" cpus=%*pbl", nr_cpumask_bits, pool->attrs->cpumask);
4449 if (pool->node != NUMA_NO_NODE)
4450 pr_cont(" node=%d", pool->node);
4451 pr_cont(" flags=0x%x nice=%d", pool->flags, pool->attrs->nice);
4452 }
4453
4454 static void pr_cont_work(bool comma, struct work_struct *work)
4455 {
4456 if (work->func == wq_barrier_func) {
4457 struct wq_barrier *barr;
4458
4459 barr = container_of(work, struct wq_barrier, work);
4460
4461 pr_cont("%s BAR(%d)", comma ? "," : "",
4462 task_pid_nr(barr->task));
4463 } else {
4464 pr_cont("%s %pf", comma ? "," : "", work->func);
4465 }
4466 }
4467
4468 static void show_pwq(struct pool_workqueue *pwq)
4469 {
4470 struct worker_pool *pool = pwq->pool;
4471 struct work_struct *work;
4472 struct worker *worker;
4473 bool has_in_flight = false, has_pending = false;
4474 int bkt;
4475
4476 pr_info(" pwq %d:", pool->id);
4477 pr_cont_pool_info(pool);
4478
4479 pr_cont(" active=%d/%d refcnt=%d%s\n",
4480 pwq->nr_active, pwq->max_active, pwq->refcnt,
4481 !list_empty(&pwq->mayday_node) ? " MAYDAY" : "");
4482
4483 hash_for_each(pool->busy_hash, bkt, worker, hentry) {
4484 if (worker->current_pwq == pwq) {
4485 has_in_flight = true;
4486 break;
4487 }
4488 }
4489 if (has_in_flight) {
4490 bool comma = false;
4491
4492 pr_info(" in-flight:");
4493 hash_for_each(pool->busy_hash, bkt, worker, hentry) {
4494 if (worker->current_pwq != pwq)
4495 continue;
4496
4497 pr_cont("%s %d%s:%pf", comma ? "," : "",
4498 task_pid_nr(worker->task),
4499 worker == pwq->wq->rescuer ? "(RESCUER)" : "",
4500 worker->current_func);
4501 list_for_each_entry(work, &worker->scheduled, entry)
4502 pr_cont_work(false, work);
4503 comma = true;
4504 }
4505 pr_cont("\n");
4506 }
4507
4508 list_for_each_entry(work, &pool->worklist, entry) {
4509 if (get_work_pwq(work) == pwq) {
4510 has_pending = true;
4511 break;
4512 }
4513 }
4514 if (has_pending) {
4515 bool comma = false;
4516
4517 pr_info(" pending:");
4518 list_for_each_entry(work, &pool->worklist, entry) {
4519 if (get_work_pwq(work) != pwq)
4520 continue;
4521
4522 pr_cont_work(comma, work);
4523 comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
4524 }
4525 pr_cont("\n");
4526 }
4527
4528 if (!list_empty(&pwq->delayed_works)) {
4529 bool comma = false;
4530
4531 pr_info(" delayed:");
4532 list_for_each_entry(work, &pwq->delayed_works, entry) {
4533 pr_cont_work(comma, work);
4534 comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
4535 }
4536 pr_cont("\n");
4537 }
4538 }
4539
4540 /**
4541 * show_workqueue_state - dump workqueue state
4542 *
4543 * Called from a sysrq handler or try_to_freeze_tasks() and prints out
4544 * all busy workqueues and pools.
4545 */
4546 void show_workqueue_state(void)
4547 {
4548 struct workqueue_struct *wq;
4549 struct worker_pool *pool;
4550 unsigned long flags;
4551 int pi;
4552
4553 rcu_read_lock_sched();
4554
4555 pr_info("Showing busy workqueues and worker pools:\n");
4556
4557 list_for_each_entry_rcu(wq, &workqueues, list) {
4558 struct pool_workqueue *pwq;
4559 bool idle = true;
4560
4561 for_each_pwq(pwq, wq) {
4562 if (pwq->nr_active || !list_empty(&pwq->delayed_works)) {
4563 idle = false;
4564 break;
4565 }
4566 }
4567 if (idle)
4568 continue;
4569
4570 pr_info("workqueue %s: flags=0x%x\n", wq->name, wq->flags);
4571
4572 for_each_pwq(pwq, wq) {
4573 spin_lock_irqsave(&pwq->pool->lock, flags);
4574 if (pwq->nr_active || !list_empty(&pwq->delayed_works))
4575 show_pwq(pwq);
4576 spin_unlock_irqrestore(&pwq->pool->lock, flags);
4577 /*
4578 * We could be printing a lot from atomic context, e.g.
4579 * sysrq-t -> show_workqueue_state(). Avoid triggering
4580 * hard lockup.
4581 */
4582 touch_nmi_watchdog();
4583 }
4584 }
4585
4586 for_each_pool(pool, pi) {
4587 struct worker *worker;
4588 bool first = true;
4589
4590 spin_lock_irqsave(&pool->lock, flags);
4591 if (pool->nr_workers == pool->nr_idle)
4592 goto next_pool;
4593
4594 pr_info("pool %d:", pool->id);
4595 pr_cont_pool_info(pool);
4596 pr_cont(" hung=%us workers=%d",
4597 jiffies_to_msecs(jiffies - pool->watchdog_ts) / 1000,
4598 pool->nr_workers);
4599 if (pool->manager)
4600 pr_cont(" manager: %d",
4601 task_pid_nr(pool->manager->task));
4602 list_for_each_entry(worker, &pool->idle_list, entry) {
4603 pr_cont(" %s%d", first ? "idle: " : "",
4604 task_pid_nr(worker->task));
4605 first = false;
4606 }
4607 pr_cont("\n");
4608 next_pool:
4609 spin_unlock_irqrestore(&pool->lock, flags);
4610 /*
4611 * We could be printing a lot from atomic context, e.g.
4612 * sysrq-t -> show_workqueue_state(). Avoid triggering
4613 * hard lockup.
4614 */
4615 touch_nmi_watchdog();
4616 }
4617
4618 rcu_read_unlock_sched();
4619 }
4620
4621 /*
4622 * CPU hotplug.
4623 *
4624 * There are two challenges in supporting CPU hotplug. Firstly, there
4625 * are a lot of assumptions on strong associations among work, pwq and
4626 * pool which make migrating pending and scheduled works very
4627 * difficult to implement without impacting hot paths. Secondly,
4628 * worker pools serve mix of short, long and very long running works making
4629 * blocked draining impractical.
4630 *
4631 * This is solved by allowing the pools to be disassociated from the CPU
4632 * running as an unbound one and allowing it to be reattached later if the
4633 * cpu comes back online.
4634 */
4635
4636 static void unbind_workers(int cpu)
4637 {
4638 struct worker_pool *pool;
4639 struct worker *worker;
4640
4641 for_each_cpu_worker_pool(pool, cpu) {
4642 mutex_lock(&pool->attach_mutex);
4643 spin_lock_irq(&pool->lock);
4644
4645 /*
4646 * We've blocked all attach/detach operations. Make all workers
4647 * unbound and set DISASSOCIATED. Before this, all workers
4648 * except for the ones which are still executing works from
4649 * before the last CPU down must be on the cpu. After
4650 * this, they may become diasporas.
4651 */
4652 for_each_pool_worker(worker, pool)
4653 worker->flags |= WORKER_UNBOUND;
4654
4655 pool->flags |= POOL_DISASSOCIATED;
4656
4657 spin_unlock_irq(&pool->lock);
4658 mutex_unlock(&pool->attach_mutex);
4659
4660 /*
4661 * Call schedule() so that we cross rq->lock and thus can
4662 * guarantee sched callbacks see the %WORKER_UNBOUND flag.
4663 * This is necessary as scheduler callbacks may be invoked
4664 * from other cpus.
4665 */
4666 schedule();
4667
4668 /*
4669 * Sched callbacks are disabled now. Zap nr_running.
4670 * After this, nr_running stays zero and need_more_worker()
4671 * and keep_working() are always true as long as the
4672 * worklist is not empty. This pool now behaves as an
4673 * unbound (in terms of concurrency management) pool which
4674 * are served by workers tied to the pool.
4675 */
4676 atomic_set(&pool->nr_running, 0);
4677
4678 /*
4679 * With concurrency management just turned off, a busy
4680 * worker blocking could lead to lengthy stalls. Kick off
4681 * unbound chain execution of currently pending work items.
4682 */
4683 spin_lock_irq(&pool->lock);
4684 wake_up_worker(pool);
4685 spin_unlock_irq(&pool->lock);
4686 }
4687 }
4688
4689 /**
4690 * rebind_workers - rebind all workers of a pool to the associated CPU
4691 * @pool: pool of interest
4692 *
4693 * @pool->cpu is coming online. Rebind all workers to the CPU.
4694 */
4695 static void rebind_workers(struct worker_pool *pool)
4696 {
4697 struct worker *worker;
4698
4699 lockdep_assert_held(&pool->attach_mutex);
4700
4701 /*
4702 * Restore CPU affinity of all workers. As all idle workers should
4703 * be on the run-queue of the associated CPU before any local
4704 * wake-ups for concurrency management happen, restore CPU affinity
4705 * of all workers first and then clear UNBOUND. As we're called
4706 * from CPU_ONLINE, the following shouldn't fail.
4707 */
4708 for_each_pool_worker(worker, pool)
4709 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
4710 pool->attrs->cpumask) < 0);
4711
4712 spin_lock_irq(&pool->lock);
4713
4714 pool->flags &= ~POOL_DISASSOCIATED;
4715
4716 for_each_pool_worker(worker, pool) {
4717 unsigned int worker_flags = worker->flags;
4718
4719 /*
4720 * A bound idle worker should actually be on the runqueue
4721 * of the associated CPU for local wake-ups targeting it to
4722 * work. Kick all idle workers so that they migrate to the
4723 * associated CPU. Doing this in the same loop as
4724 * replacing UNBOUND with REBOUND is safe as no worker will
4725 * be bound before @pool->lock is released.
4726 */
4727 if (worker_flags & WORKER_IDLE)
4728 wake_up_process(worker->task);
4729
4730 /*
4731 * We want to clear UNBOUND but can't directly call
4732 * worker_clr_flags() or adjust nr_running. Atomically
4733 * replace UNBOUND with another NOT_RUNNING flag REBOUND.
4734 * @worker will clear REBOUND using worker_clr_flags() when
4735 * it initiates the next execution cycle thus restoring
4736 * concurrency management. Note that when or whether
4737 * @worker clears REBOUND doesn't affect correctness.
4738 *
4739 * WRITE_ONCE() is necessary because @worker->flags may be
4740 * tested without holding any lock in
4741 * wq_worker_waking_up(). Without it, NOT_RUNNING test may
4742 * fail incorrectly leading to premature concurrency
4743 * management operations.
4744 */
4745 WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND));
4746 worker_flags |= WORKER_REBOUND;
4747 worker_flags &= ~WORKER_UNBOUND;
4748 WRITE_ONCE(worker->flags, worker_flags);
4749 }
4750
4751 spin_unlock_irq(&pool->lock);
4752 }
4753
4754 /**
4755 * restore_unbound_workers_cpumask - restore cpumask of unbound workers
4756 * @pool: unbound pool of interest
4757 * @cpu: the CPU which is coming up
4758 *
4759 * An unbound pool may end up with a cpumask which doesn't have any online
4760 * CPUs. When a worker of such pool get scheduled, the scheduler resets
4761 * its cpus_allowed. If @cpu is in @pool's cpumask which didn't have any
4762 * online CPU before, cpus_allowed of all its workers should be restored.
4763 */
4764 static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu)
4765 {
4766 static cpumask_t cpumask;
4767 struct worker *worker;
4768
4769 lockdep_assert_held(&pool->attach_mutex);
4770
4771 /* is @cpu allowed for @pool? */
4772 if (!cpumask_test_cpu(cpu, pool->attrs->cpumask))
4773 return;
4774
4775 cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask);
4776
4777 /* as we're called from CPU_ONLINE, the following shouldn't fail */
4778 for_each_pool_worker(worker, pool)
4779 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, &cpumask) < 0);
4780 }
4781
4782 int workqueue_prepare_cpu(unsigned int cpu)
4783 {
4784 struct worker_pool *pool;
4785
4786 for_each_cpu_worker_pool(pool, cpu) {
4787 if (pool->nr_workers)
4788 continue;
4789 if (!create_worker(pool))
4790 return -ENOMEM;
4791 }
4792 return 0;
4793 }
4794
4795 int workqueue_online_cpu(unsigned int cpu)
4796 {
4797 struct worker_pool *pool;
4798 struct workqueue_struct *wq;
4799 int pi;
4800
4801 mutex_lock(&wq_pool_mutex);
4802
4803 for_each_pool(pool, pi) {
4804 mutex_lock(&pool->attach_mutex);
4805
4806 if (pool->cpu == cpu)
4807 rebind_workers(pool);
4808 else if (pool->cpu < 0)
4809 restore_unbound_workers_cpumask(pool, cpu);
4810
4811 mutex_unlock(&pool->attach_mutex);
4812 }
4813
4814 /* update NUMA affinity of unbound workqueues */
4815 list_for_each_entry(wq, &workqueues, list)
4816 wq_update_unbound_numa(wq, cpu, true);
4817
4818 mutex_unlock(&wq_pool_mutex);
4819 return 0;
4820 }
4821
4822 int workqueue_offline_cpu(unsigned int cpu)
4823 {
4824 struct workqueue_struct *wq;
4825
4826 /* unbinding per-cpu workers should happen on the local CPU */
4827 if (WARN_ON(cpu != smp_processor_id()))
4828 return -1;
4829
4830 unbind_workers(cpu);
4831
4832 /* update NUMA affinity of unbound workqueues */
4833 mutex_lock(&wq_pool_mutex);
4834 list_for_each_entry(wq, &workqueues, list)
4835 wq_update_unbound_numa(wq, cpu, false);
4836 mutex_unlock(&wq_pool_mutex);
4837
4838 return 0;
4839 }
4840
4841 #ifdef CONFIG_SMP
4842
4843 struct work_for_cpu {
4844 struct work_struct work;
4845 long (*fn)(void *);
4846 void *arg;
4847 long ret;
4848 };
4849
4850 static void work_for_cpu_fn(struct work_struct *work)
4851 {
4852 struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);
4853
4854 wfc->ret = wfc->fn(wfc->arg);
4855 }
4856
4857 /**
4858 * work_on_cpu - run a function in thread context on a particular cpu
4859 * @cpu: the cpu to run on
4860 * @fn: the function to run
4861 * @arg: the function arg
4862 *
4863 * It is up to the caller to ensure that the cpu doesn't go offline.
4864 * The caller must not hold any locks which would prevent @fn from completing.
4865 *
4866 * Return: The value @fn returns.
4867 */
4868 long work_on_cpu(int cpu, long (*fn)(void *), void *arg)
4869 {
4870 struct work_for_cpu wfc = { .fn = fn, .arg = arg };
4871
4872 INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn);
4873 schedule_work_on(cpu, &wfc.work);
4874 flush_work(&wfc.work);
4875 destroy_work_on_stack(&wfc.work);
4876 return wfc.ret;
4877 }
4878 EXPORT_SYMBOL_GPL(work_on_cpu);
4879
4880 /**
4881 * work_on_cpu_safe - run a function in thread context on a particular cpu
4882 * @cpu: the cpu to run on
4883 * @fn: the function to run
4884 * @arg: the function argument
4885 *
4886 * Disables CPU hotplug and calls work_on_cpu(). The caller must not hold
4887 * any locks which would prevent @fn from completing.
4888 *
4889 * Return: The value @fn returns.
4890 */
4891 long work_on_cpu_safe(int cpu, long (*fn)(void *), void *arg)
4892 {
4893 long ret = -ENODEV;
4894
4895 get_online_cpus();
4896 if (cpu_online(cpu))
4897 ret = work_on_cpu(cpu, fn, arg);
4898 put_online_cpus();
4899 return ret;
4900 }
4901 EXPORT_SYMBOL_GPL(work_on_cpu_safe);
4902 #endif /* CONFIG_SMP */
4903
4904 #ifdef CONFIG_FREEZER
4905
4906 /**
4907 * freeze_workqueues_begin - begin freezing workqueues
4908 *
4909 * Start freezing workqueues. After this function returns, all freezable
4910 * workqueues will queue new works to their delayed_works list instead of
4911 * pool->worklist.
4912 *
4913 * CONTEXT:
4914 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
4915 */
4916 void freeze_workqueues_begin(void)
4917 {
4918 struct workqueue_struct *wq;
4919 struct pool_workqueue *pwq;
4920
4921 mutex_lock(&wq_pool_mutex);
4922
4923 WARN_ON_ONCE(workqueue_freezing);
4924 workqueue_freezing = true;
4925
4926 list_for_each_entry(wq, &workqueues, list) {
4927 mutex_lock(&wq->mutex);
4928 for_each_pwq(pwq, wq)
4929 pwq_adjust_max_active(pwq);
4930 mutex_unlock(&wq->mutex);
4931 }
4932
4933 mutex_unlock(&wq_pool_mutex);
4934 }
4935
4936 /**
4937 * freeze_workqueues_busy - are freezable workqueues still busy?
4938 *
4939 * Check whether freezing is complete. This function must be called
4940 * between freeze_workqueues_begin() and thaw_workqueues().
4941 *
4942 * CONTEXT:
4943 * Grabs and releases wq_pool_mutex.
4944 *
4945 * Return:
4946 * %true if some freezable workqueues are still busy. %false if freezing
4947 * is complete.
4948 */
4949 bool freeze_workqueues_busy(void)
4950 {
4951 bool busy = false;
4952 struct workqueue_struct *wq;
4953 struct pool_workqueue *pwq;
4954
4955 mutex_lock(&wq_pool_mutex);
4956
4957 WARN_ON_ONCE(!workqueue_freezing);
4958
4959 list_for_each_entry(wq, &workqueues, list) {
4960 if (!(wq->flags & WQ_FREEZABLE))
4961 continue;
4962 /*
4963 * nr_active is monotonically decreasing. It's safe
4964 * to peek without lock.
4965 */
4966 rcu_read_lock_sched();
4967 for_each_pwq(pwq, wq) {
4968 WARN_ON_ONCE(pwq->nr_active < 0);
4969 if (pwq->nr_active) {
4970 busy = true;
4971 rcu_read_unlock_sched();
4972 goto out_unlock;
4973 }
4974 }
4975 rcu_read_unlock_sched();
4976 }
4977 out_unlock:
4978 mutex_unlock(&wq_pool_mutex);
4979 return busy;
4980 }
4981
4982 /**
4983 * thaw_workqueues - thaw workqueues
4984 *
4985 * Thaw workqueues. Normal queueing is restored and all collected
4986 * frozen works are transferred to their respective pool worklists.
4987 *
4988 * CONTEXT:
4989 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
4990 */
4991 void thaw_workqueues(void)
4992 {
4993 struct workqueue_struct *wq;
4994 struct pool_workqueue *pwq;
4995
4996 mutex_lock(&wq_pool_mutex);
4997
4998 if (!workqueue_freezing)
4999 goto out_unlock;
5000
5001 workqueue_freezing = false;
5002
5003 /* restore max_active and repopulate worklist */
5004 list_for_each_entry(wq, &workqueues, list) {
5005 mutex_lock(&wq->mutex);
5006 for_each_pwq(pwq, wq)
5007 pwq_adjust_max_active(pwq);
5008 mutex_unlock(&wq->mutex);
5009 }
5010
5011 out_unlock:
5012 mutex_unlock(&wq_pool_mutex);
5013 }
5014 #endif /* CONFIG_FREEZER */
5015
5016 static int workqueue_apply_unbound_cpumask(void)
5017 {
5018 LIST_HEAD(ctxs);
5019 int ret = 0;
5020 struct workqueue_struct *wq;
5021 struct apply_wqattrs_ctx *ctx, *n;
5022
5023 lockdep_assert_held(&wq_pool_mutex);
5024
5025 list_for_each_entry(wq, &workqueues, list) {
5026 if (!(wq->flags & WQ_UNBOUND))
5027 continue;
5028 /* creating multiple pwqs breaks ordering guarantee */
5029 if (wq->flags & __WQ_ORDERED)
5030 continue;
5031
5032 ctx = apply_wqattrs_prepare(wq, wq->unbound_attrs);
5033 if (!ctx) {
5034 ret = -ENOMEM;
5035 break;
5036 }
5037
5038 list_add_tail(&ctx->list, &ctxs);
5039 }
5040
5041 list_for_each_entry_safe(ctx, n, &ctxs, list) {
5042 if (!ret)
5043 apply_wqattrs_commit(ctx);
5044 apply_wqattrs_cleanup(ctx);
5045 }
5046
5047 return ret;
5048 }
5049
5050 /**
5051 * workqueue_set_unbound_cpumask - Set the low-level unbound cpumask
5052 * @cpumask: the cpumask to set
5053 *
5054 * The low-level workqueues cpumask is a global cpumask that limits
5055 * the affinity of all unbound workqueues. This function check the @cpumask
5056 * and apply it to all unbound workqueues and updates all pwqs of them.
5057 *
5058 * Retun: 0 - Success
5059 * -EINVAL - Invalid @cpumask
5060 * -ENOMEM - Failed to allocate memory for attrs or pwqs.
5061 */
5062 int workqueue_set_unbound_cpumask(cpumask_var_t cpumask)
5063 {
5064 int ret = -EINVAL;
5065 cpumask_var_t saved_cpumask;
5066
5067 if (!zalloc_cpumask_var(&saved_cpumask, GFP_KERNEL))
5068 return -ENOMEM;
5069
5070 /*
5071 * Not excluding isolated cpus on purpose.
5072 * If the user wishes to include them, we allow that.
5073 */
5074 cpumask_and(cpumask, cpumask, cpu_possible_mask);
5075 if (!cpumask_empty(cpumask)) {
5076 apply_wqattrs_lock();
5077
5078 /* save the old wq_unbound_cpumask. */
5079 cpumask_copy(saved_cpumask, wq_unbound_cpumask);
5080
5081 /* update wq_unbound_cpumask at first and apply it to wqs. */
5082 cpumask_copy(wq_unbound_cpumask, cpumask);
5083 ret = workqueue_apply_unbound_cpumask();
5084
5085 /* restore the wq_unbound_cpumask when failed. */
5086 if (ret < 0)
5087 cpumask_copy(wq_unbound_cpumask, saved_cpumask);
5088
5089 apply_wqattrs_unlock();
5090 }
5091
5092 free_cpumask_var(saved_cpumask);
5093 return ret;
5094 }
5095
5096 #ifdef CONFIG_SYSFS
5097 /*
5098 * Workqueues with WQ_SYSFS flag set is visible to userland via
5099 * /sys/bus/workqueue/devices/WQ_NAME. All visible workqueues have the
5100 * following attributes.
5101 *
5102 * per_cpu RO bool : whether the workqueue is per-cpu or unbound
5103 * max_active RW int : maximum number of in-flight work items
5104 *
5105 * Unbound workqueues have the following extra attributes.
5106 *
5107 * pool_ids RO int : the associated pool IDs for each node
5108 * nice RW int : nice value of the workers
5109 * cpumask RW mask : bitmask of allowed CPUs for the workers
5110 * numa RW bool : whether enable NUMA affinity
5111 */
5112 struct wq_device {
5113 struct workqueue_struct *wq;
5114 struct device dev;
5115 };
5116
5117 static struct workqueue_struct *dev_to_wq(struct device *dev)
5118 {
5119 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
5120
5121 return wq_dev->wq;
5122 }
5123
5124 static ssize_t per_cpu_show(struct device *dev, struct device_attribute *attr,
5125 char *buf)
5126 {
5127 struct workqueue_struct *wq = dev_to_wq(dev);
5128
5129 return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND));
5130 }
5131 static DEVICE_ATTR_RO(per_cpu);
5132
5133 static ssize_t max_active_show(struct device *dev,
5134 struct device_attribute *attr, char *buf)
5135 {
5136 struct workqueue_struct *wq = dev_to_wq(dev);
5137
5138 return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active);
5139 }
5140
5141 static ssize_t max_active_store(struct device *dev,
5142 struct device_attribute *attr, const char *buf,
5143 size_t count)
5144 {
5145 struct workqueue_struct *wq = dev_to_wq(dev);
5146 int val;
5147
5148 if (sscanf(buf, "%d", &val) != 1 || val <= 0)
5149 return -EINVAL;
5150
5151 workqueue_set_max_active(wq, val);
5152 return count;
5153 }
5154 static DEVICE_ATTR_RW(max_active);
5155
5156 static struct attribute *wq_sysfs_attrs[] = {
5157 &dev_attr_per_cpu.attr,
5158 &dev_attr_max_active.attr,
5159 NULL,
5160 };
5161 ATTRIBUTE_GROUPS(wq_sysfs);
5162
5163 static ssize_t wq_pool_ids_show(struct device *dev,
5164 struct device_attribute *attr, char *buf)
5165 {
5166 struct workqueue_struct *wq = dev_to_wq(dev);
5167 const char *delim = "";
5168 int node, written = 0;
5169
5170 rcu_read_lock_sched();
5171 for_each_node(node) {
5172 written += scnprintf(buf + written, PAGE_SIZE - written,
5173 "%s%d:%d", delim, node,
5174 unbound_pwq_by_node(wq, node)->pool->id);
5175 delim = " ";
5176 }
5177 written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
5178 rcu_read_unlock_sched();
5179
5180 return written;
5181 }
5182
5183 static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr,
5184 char *buf)
5185 {
5186 struct workqueue_struct *wq = dev_to_wq(dev);
5187 int written;
5188
5189 mutex_lock(&wq->mutex);
5190 written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice);
5191 mutex_unlock(&wq->mutex);
5192
5193 return written;
5194 }
5195
5196 /* prepare workqueue_attrs for sysfs store operations */
5197 static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq)
5198 {
5199 struct workqueue_attrs *attrs;
5200
5201 lockdep_assert_held(&wq_pool_mutex);
5202
5203 attrs = alloc_workqueue_attrs(GFP_KERNEL);
5204 if (!attrs)
5205 return NULL;
5206
5207 copy_workqueue_attrs(attrs, wq->unbound_attrs);
5208 return attrs;
5209 }
5210
5211 static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr,
5212 const char *buf, size_t count)
5213 {
5214 struct workqueue_struct *wq = dev_to_wq(dev);
5215 struct workqueue_attrs *attrs;
5216 int ret = -ENOMEM;
5217
5218 apply_wqattrs_lock();
5219
5220 attrs = wq_sysfs_prep_attrs(wq);
5221 if (!attrs)
5222 goto out_unlock;
5223
5224 if (sscanf(buf, "%d", &attrs->nice) == 1 &&
5225 attrs->nice >= MIN_NICE && attrs->nice <= MAX_NICE)
5226 ret = apply_workqueue_attrs_locked(wq, attrs);
5227 else
5228 ret = -EINVAL;
5229
5230 out_unlock:
5231 apply_wqattrs_unlock();
5232 free_workqueue_attrs(attrs);
5233 return ret ?: count;
5234 }
5235
5236 static ssize_t wq_cpumask_show(struct device *dev,
5237 struct device_attribute *attr, char *buf)
5238 {
5239 struct workqueue_struct *wq = dev_to_wq(dev);
5240 int written;
5241
5242 mutex_lock(&wq->mutex);
5243 written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
5244 cpumask_pr_args(wq->unbound_attrs->cpumask));
5245 mutex_unlock(&wq->mutex);
5246 return written;
5247 }
5248
5249 static ssize_t wq_cpumask_store(struct device *dev,
5250 struct device_attribute *attr,
5251 const char *buf, size_t count)
5252 {
5253 struct workqueue_struct *wq = dev_to_wq(dev);
5254 struct workqueue_attrs *attrs;
5255 int ret = -ENOMEM;
5256
5257 apply_wqattrs_lock();
5258
5259 attrs = wq_sysfs_prep_attrs(wq);
5260 if (!attrs)
5261 goto out_unlock;
5262
5263 ret = cpumask_parse(buf, attrs->cpumask);
5264 if (!ret)
5265 ret = apply_workqueue_attrs_locked(wq, attrs);
5266
5267 out_unlock:
5268 apply_wqattrs_unlock();
5269 free_workqueue_attrs(attrs);
5270 return ret ?: count;
5271 }
5272
5273 static ssize_t wq_numa_show(struct device *dev, struct device_attribute *attr,
5274 char *buf)
5275 {
5276 struct workqueue_struct *wq = dev_to_wq(dev);
5277 int written;
5278
5279 mutex_lock(&wq->mutex);
5280 written = scnprintf(buf, PAGE_SIZE, "%d\n",
5281 !wq->unbound_attrs->no_numa);
5282 mutex_unlock(&wq->mutex);
5283
5284 return written;
5285 }
5286
5287 static ssize_t wq_numa_store(struct device *dev, struct device_attribute *attr,
5288 const char *buf, size_t count)
5289 {
5290 struct workqueue_struct *wq = dev_to_wq(dev);
5291 struct workqueue_attrs *attrs;
5292 int v, ret = -ENOMEM;
5293
5294 apply_wqattrs_lock();
5295
5296 attrs = wq_sysfs_prep_attrs(wq);
5297 if (!attrs)
5298 goto out_unlock;
5299
5300 ret = -EINVAL;
5301 if (sscanf(buf, "%d", &v) == 1) {
5302 attrs->no_numa = !v;
5303 ret = apply_workqueue_attrs_locked(wq, attrs);
5304 }
5305
5306 out_unlock:
5307 apply_wqattrs_unlock();
5308 free_workqueue_attrs(attrs);
5309 return ret ?: count;
5310 }
5311
5312 static struct device_attribute wq_sysfs_unbound_attrs[] = {
5313 __ATTR(pool_ids, 0444, wq_pool_ids_show, NULL),
5314 __ATTR(nice, 0644, wq_nice_show, wq_nice_store),
5315 __ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store),
5316 __ATTR(numa, 0644, wq_numa_show, wq_numa_store),
5317 __ATTR_NULL,
5318 };
5319
5320 static struct bus_type wq_subsys = {
5321 .name = "workqueue",
5322 .dev_groups = wq_sysfs_groups,
5323 };
5324
5325 static ssize_t wq_unbound_cpumask_show(struct device *dev,
5326 struct device_attribute *attr, char *buf)
5327 {
5328 int written;
5329
5330 mutex_lock(&wq_pool_mutex);
5331 written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
5332 cpumask_pr_args(wq_unbound_cpumask));
5333 mutex_unlock(&wq_pool_mutex);
5334
5335 return written;
5336 }
5337
5338 static ssize_t wq_unbound_cpumask_store(struct device *dev,
5339 struct device_attribute *attr, const char *buf, size_t count)
5340 {
5341 cpumask_var_t cpumask;
5342 int ret;
5343
5344 if (!zalloc_cpumask_var(&cpumask, GFP_KERNEL))
5345 return -ENOMEM;
5346
5347 ret = cpumask_parse(buf, cpumask);
5348 if (!ret)
5349 ret = workqueue_set_unbound_cpumask(cpumask);
5350
5351 free_cpumask_var(cpumask);
5352 return ret ? ret : count;
5353 }
5354
5355 static struct device_attribute wq_sysfs_cpumask_attr =
5356 __ATTR(cpumask, 0644, wq_unbound_cpumask_show,
5357 wq_unbound_cpumask_store);
5358
5359 static int __init wq_sysfs_init(void)
5360 {
5361 int err;
5362
5363 err = subsys_virtual_register(&wq_subsys, NULL);
5364 if (err)
5365 return err;
5366
5367 return device_create_file(wq_subsys.dev_root, &wq_sysfs_cpumask_attr);
5368 }
5369 core_initcall(wq_sysfs_init);
5370
5371 static void wq_device_release(struct device *dev)
5372 {
5373 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
5374
5375 kfree(wq_dev);
5376 }
5377
5378 /**
5379 * workqueue_sysfs_register - make a workqueue visible in sysfs
5380 * @wq: the workqueue to register
5381 *
5382 * Expose @wq in sysfs under /sys/bus/workqueue/devices.
5383 * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set
5384 * which is the preferred method.
5385 *
5386 * Workqueue user should use this function directly iff it wants to apply
5387 * workqueue_attrs before making the workqueue visible in sysfs; otherwise,
5388 * apply_workqueue_attrs() may race against userland updating the
5389 * attributes.
5390 *
5391 * Return: 0 on success, -errno on failure.
5392 */
5393 int workqueue_sysfs_register(struct workqueue_struct *wq)
5394 {
5395 struct wq_device *wq_dev;
5396 int ret;
5397
5398 /*
5399 * Adjusting max_active or creating new pwqs by applying
5400 * attributes breaks ordering guarantee. Disallow exposing ordered
5401 * workqueues.
5402 */
5403 if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
5404 return -EINVAL;
5405
5406 wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL);
5407 if (!wq_dev)
5408 return -ENOMEM;
5409
5410 wq_dev->wq = wq;
5411 wq_dev->dev.bus = &wq_subsys;
5412 wq_dev->dev.release = wq_device_release;
5413 dev_set_name(&wq_dev->dev, "%s", wq->name);
5414
5415 /*
5416 * unbound_attrs are created separately. Suppress uevent until
5417 * everything is ready.
5418 */
5419 dev_set_uevent_suppress(&wq_dev->dev, true);
5420
5421 ret = device_register(&wq_dev->dev);
5422 if (ret) {
5423 put_device(&wq_dev->dev);
5424 wq->wq_dev = NULL;
5425 return ret;
5426 }
5427
5428 if (wq->flags & WQ_UNBOUND) {
5429 struct device_attribute *attr;
5430
5431 for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) {
5432 ret = device_create_file(&wq_dev->dev, attr);
5433 if (ret) {
5434 device_unregister(&wq_dev->dev);
5435 wq->wq_dev = NULL;
5436 return ret;
5437 }
5438 }
5439 }
5440
5441 dev_set_uevent_suppress(&wq_dev->dev, false);
5442 kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD);
5443 return 0;
5444 }
5445
5446 /**
5447 * workqueue_sysfs_unregister - undo workqueue_sysfs_register()
5448 * @wq: the workqueue to unregister
5449 *
5450 * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister.
5451 */
5452 static void workqueue_sysfs_unregister(struct workqueue_struct *wq)
5453 {
5454 struct wq_device *wq_dev = wq->wq_dev;
5455
5456 if (!wq->wq_dev)
5457 return;
5458
5459 wq->wq_dev = NULL;
5460 device_unregister(&wq_dev->dev);
5461 }
5462 #else /* CONFIG_SYSFS */
5463 static void workqueue_sysfs_unregister(struct workqueue_struct *wq) { }
5464 #endif /* CONFIG_SYSFS */
5465
5466 /*
5467 * Workqueue watchdog.
5468 *
5469 * Stall may be caused by various bugs - missing WQ_MEM_RECLAIM, illegal
5470 * flush dependency, a concurrency managed work item which stays RUNNING
5471 * indefinitely. Workqueue stalls can be very difficult to debug as the
5472 * usual warning mechanisms don't trigger and internal workqueue state is
5473 * largely opaque.
5474 *
5475 * Workqueue watchdog monitors all worker pools periodically and dumps
5476 * state if some pools failed to make forward progress for a while where
5477 * forward progress is defined as the first item on ->worklist changing.
5478 *
5479 * This mechanism is controlled through the kernel parameter
5480 * "workqueue.watchdog_thresh" which can be updated at runtime through the
5481 * corresponding sysfs parameter file.
5482 */
5483 #ifdef CONFIG_WQ_WATCHDOG
5484
5485 static unsigned long wq_watchdog_thresh = 30;
5486 static struct timer_list wq_watchdog_timer;
5487
5488 static unsigned long wq_watchdog_touched = INITIAL_JIFFIES;
5489 static DEFINE_PER_CPU(unsigned long, wq_watchdog_touched_cpu) = INITIAL_JIFFIES;
5490
5491 static void wq_watchdog_reset_touched(void)
5492 {
5493 int cpu;
5494
5495 wq_watchdog_touched = jiffies;
5496 for_each_possible_cpu(cpu)
5497 per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
5498 }
5499
5500 static void wq_watchdog_timer_fn(struct timer_list *unused)
5501 {
5502 unsigned long thresh = READ_ONCE(wq_watchdog_thresh) * HZ;
5503 bool lockup_detected = false;
5504 struct worker_pool *pool;
5505 int pi;
5506
5507 if (!thresh)
5508 return;
5509
5510 rcu_read_lock();
5511
5512 for_each_pool(pool, pi) {
5513 unsigned long pool_ts, touched, ts;
5514
5515 if (list_empty(&pool->worklist))
5516 continue;
5517
5518 /* get the latest of pool and touched timestamps */
5519 pool_ts = READ_ONCE(pool->watchdog_ts);
5520 touched = READ_ONCE(wq_watchdog_touched);
5521
5522 if (time_after(pool_ts, touched))
5523 ts = pool_ts;
5524 else
5525 ts = touched;
5526
5527 if (pool->cpu >= 0) {
5528 unsigned long cpu_touched =
5529 READ_ONCE(per_cpu(wq_watchdog_touched_cpu,
5530 pool->cpu));
5531 if (time_after(cpu_touched, ts))
5532 ts = cpu_touched;
5533 }
5534
5535 /* did we stall? */
5536 if (time_after(jiffies, ts + thresh)) {
5537 lockup_detected = true;
5538 pr_emerg("BUG: workqueue lockup - pool");
5539 pr_cont_pool_info(pool);
5540 pr_cont(" stuck for %us!\n",
5541 jiffies_to_msecs(jiffies - pool_ts) / 1000);
5542 }
5543 }
5544
5545 rcu_read_unlock();
5546
5547 if (lockup_detected)
5548 show_workqueue_state();
5549
5550 wq_watchdog_reset_touched();
5551 mod_timer(&wq_watchdog_timer, jiffies + thresh);
5552 }
5553
5554 notrace void wq_watchdog_touch(int cpu)
5555 {
5556 if (cpu >= 0)
5557 per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
5558 else
5559 wq_watchdog_touched = jiffies;
5560 }
5561
5562 static void wq_watchdog_set_thresh(unsigned long thresh)
5563 {
5564 wq_watchdog_thresh = 0;
5565 del_timer_sync(&wq_watchdog_timer);
5566
5567 if (thresh) {
5568 wq_watchdog_thresh = thresh;
5569 wq_watchdog_reset_touched();
5570 mod_timer(&wq_watchdog_timer, jiffies + thresh * HZ);
5571 }
5572 }
5573
5574 static int wq_watchdog_param_set_thresh(const char *val,
5575 const struct kernel_param *kp)
5576 {
5577 unsigned long thresh;
5578 int ret;
5579
5580 ret = kstrtoul(val, 0, &thresh);
5581 if (ret)
5582 return ret;
5583
5584 if (system_wq)
5585 wq_watchdog_set_thresh(thresh);
5586 else
5587 wq_watchdog_thresh = thresh;
5588
5589 return 0;
5590 }
5591
5592 static const struct kernel_param_ops wq_watchdog_thresh_ops = {
5593 .set = wq_watchdog_param_set_thresh,
5594 .get = param_get_ulong,
5595 };
5596
5597 module_param_cb(watchdog_thresh, &wq_watchdog_thresh_ops, &wq_watchdog_thresh,
5598 0644);
5599
5600 static void wq_watchdog_init(void)
5601 {
5602 timer_setup(&wq_watchdog_timer, wq_watchdog_timer_fn, TIMER_DEFERRABLE);
5603 wq_watchdog_set_thresh(wq_watchdog_thresh);
5604 }
5605
5606 #else /* CONFIG_WQ_WATCHDOG */
5607
5608 static inline void wq_watchdog_init(void) { }
5609
5610 #endif /* CONFIG_WQ_WATCHDOG */
5611
5612 static void __init wq_numa_init(void)
5613 {
5614 cpumask_var_t *tbl;
5615 int node, cpu;
5616
5617 if (num_possible_nodes() <= 1)
5618 return;
5619
5620 if (wq_disable_numa) {
5621 pr_info("workqueue: NUMA affinity support disabled\n");
5622 return;
5623 }
5624
5625 wq_update_unbound_numa_attrs_buf = alloc_workqueue_attrs(GFP_KERNEL);
5626 BUG_ON(!wq_update_unbound_numa_attrs_buf);
5627
5628 /*
5629 * We want masks of possible CPUs of each node which isn't readily
5630 * available. Build one from cpu_to_node() which should have been
5631 * fully initialized by now.
5632 */
5633 tbl = kzalloc(nr_node_ids * sizeof(tbl[0]), GFP_KERNEL);
5634 BUG_ON(!tbl);
5635
5636 for_each_node(node)
5637 BUG_ON(!zalloc_cpumask_var_node(&tbl[node], GFP_KERNEL,
5638 node_online(node) ? node : NUMA_NO_NODE));
5639
5640 for_each_possible_cpu(cpu) {
5641 node = cpu_to_node(cpu);
5642 if (WARN_ON(node == NUMA_NO_NODE)) {
5643 pr_warn("workqueue: NUMA node mapping not available for cpu%d, disabling NUMA support\n", cpu);
5644 /* happens iff arch is bonkers, let's just proceed */
5645 return;
5646 }
5647 cpumask_set_cpu(cpu, tbl[node]);
5648 }
5649
5650 wq_numa_possible_cpumask = tbl;
5651 wq_numa_enabled = true;
5652 }
5653
5654 /**
5655 * workqueue_init_early - early init for workqueue subsystem
5656 *
5657 * This is the first half of two-staged workqueue subsystem initialization
5658 * and invoked as soon as the bare basics - memory allocation, cpumasks and
5659 * idr are up. It sets up all the data structures and system workqueues
5660 * and allows early boot code to create workqueues and queue/cancel work
5661 * items. Actual work item execution starts only after kthreads can be
5662 * created and scheduled right before early initcalls.
5663 */
5664 int __init workqueue_init_early(void)
5665 {
5666 int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL };
5667 int i, cpu;
5668
5669 WARN_ON(__alignof__(struct pool_workqueue) < __alignof__(long long));
5670
5671 BUG_ON(!alloc_cpumask_var(&wq_unbound_cpumask, GFP_KERNEL));
5672 cpumask_copy(wq_unbound_cpumask, housekeeping_cpumask(HK_FLAG_DOMAIN));
5673
5674 pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC);
5675
5676 /* initialize CPU pools */
5677 for_each_possible_cpu(cpu) {
5678 struct worker_pool *pool;
5679
5680 i = 0;
5681 for_each_cpu_worker_pool(pool, cpu) {
5682 BUG_ON(init_worker_pool(pool));
5683 pool->cpu = cpu;
5684 cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu));
5685 pool->attrs->nice = std_nice[i++];
5686 pool->node = cpu_to_node(cpu);
5687
5688 /* alloc pool ID */
5689 mutex_lock(&wq_pool_mutex);
5690 BUG_ON(worker_pool_assign_id(pool));
5691 mutex_unlock(&wq_pool_mutex);
5692 }
5693 }
5694
5695 /* create default unbound and ordered wq attrs */
5696 for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
5697 struct workqueue_attrs *attrs;
5698
5699 BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
5700 attrs->nice = std_nice[i];
5701 unbound_std_wq_attrs[i] = attrs;
5702
5703 /*
5704 * An ordered wq should have only one pwq as ordering is
5705 * guaranteed by max_active which is enforced by pwqs.
5706 * Turn off NUMA so that dfl_pwq is used for all nodes.
5707 */
5708 BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
5709 attrs->nice = std_nice[i];
5710 attrs->no_numa = true;
5711 ordered_wq_attrs[i] = attrs;
5712 }
5713
5714 system_wq = alloc_workqueue("events", 0, 0);
5715 system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
5716 system_long_wq = alloc_workqueue("events_long", 0, 0);
5717 system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
5718 WQ_UNBOUND_MAX_ACTIVE);
5719 system_freezable_wq = alloc_workqueue("events_freezable",
5720 WQ_FREEZABLE, 0);
5721 system_power_efficient_wq = alloc_workqueue("events_power_efficient",
5722 WQ_POWER_EFFICIENT, 0);
5723 system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_power_efficient",
5724 WQ_FREEZABLE | WQ_POWER_EFFICIENT,
5725 0);
5726 BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
5727 !system_unbound_wq || !system_freezable_wq ||
5728 !system_power_efficient_wq ||
5729 !system_freezable_power_efficient_wq);
5730
5731 return 0;
5732 }
5733
5734 /**
5735 * workqueue_init - bring workqueue subsystem fully online
5736 *
5737 * This is the latter half of two-staged workqueue subsystem initialization
5738 * and invoked as soon as kthreads can be created and scheduled.
5739 * Workqueues have been created and work items queued on them, but there
5740 * are no kworkers executing the work items yet. Populate the worker pools
5741 * with the initial workers and enable future kworker creations.
5742 */
5743 int __init workqueue_init(void)
5744 {
5745 struct workqueue_struct *wq;
5746 struct worker_pool *pool;
5747 int cpu, bkt;
5748
5749 /*
5750 * It'd be simpler to initialize NUMA in workqueue_init_early() but
5751 * CPU to node mapping may not be available that early on some
5752 * archs such as power and arm64. As per-cpu pools created
5753 * previously could be missing node hint and unbound pools NUMA
5754 * affinity, fix them up.
5755 */
5756 wq_numa_init();
5757
5758 mutex_lock(&wq_pool_mutex);
5759
5760 for_each_possible_cpu(cpu) {
5761 for_each_cpu_worker_pool(pool, cpu) {
5762 pool->node = cpu_to_node(cpu);
5763 }
5764 }
5765
5766 list_for_each_entry(wq, &workqueues, list)
5767 wq_update_unbound_numa(wq, smp_processor_id(), true);
5768
5769 mutex_unlock(&wq_pool_mutex);
5770
5771 /* create the initial workers */
5772 for_each_online_cpu(cpu) {
5773 for_each_cpu_worker_pool(pool, cpu) {
5774 pool->flags &= ~POOL_DISASSOCIATED;
5775 BUG_ON(!create_worker(pool));
5776 }
5777 }
5778
5779 hash_for_each(unbound_pool_hash, bkt, pool, hash_node)
5780 BUG_ON(!create_worker(pool));
5781
5782 wq_online = true;
5783 wq_watchdog_init();
5784
5785 return 0;
5786 }