]> git.proxmox.com Git - mirror_qemu.git/blob - kvm-all.c
KVM: Rework of guest debug state writing
[mirror_qemu.git] / kvm-all.c
1 /*
2 * QEMU KVM support
3 *
4 * Copyright IBM, Corp. 2008
5 * Red Hat, Inc. 2008
6 *
7 * Authors:
8 * Anthony Liguori <aliguori@us.ibm.com>
9 * Glauber Costa <gcosta@redhat.com>
10 *
11 * This work is licensed under the terms of the GNU GPL, version 2 or later.
12 * See the COPYING file in the top-level directory.
13 *
14 */
15
16 #include <sys/types.h>
17 #include <sys/ioctl.h>
18 #include <sys/mman.h>
19 #include <stdarg.h>
20
21 #include <linux/kvm.h>
22
23 #include "qemu-common.h"
24 #include "qemu-barrier.h"
25 #include "sysemu.h"
26 #include "hw/hw.h"
27 #include "gdbstub.h"
28 #include "kvm.h"
29
30 /* KVM uses PAGE_SIZE in it's definition of COALESCED_MMIO_MAX */
31 #define PAGE_SIZE TARGET_PAGE_SIZE
32
33 //#define DEBUG_KVM
34
35 #ifdef DEBUG_KVM
36 #define dprintf(fmt, ...) \
37 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
38 #else
39 #define dprintf(fmt, ...) \
40 do { } while (0)
41 #endif
42
43 typedef struct KVMSlot
44 {
45 target_phys_addr_t start_addr;
46 ram_addr_t memory_size;
47 ram_addr_t phys_offset;
48 int slot;
49 int flags;
50 } KVMSlot;
51
52 typedef struct kvm_dirty_log KVMDirtyLog;
53
54 int kvm_allowed = 0;
55
56 struct KVMState
57 {
58 KVMSlot slots[32];
59 int fd;
60 int vmfd;
61 int coalesced_mmio;
62 #ifdef KVM_CAP_COALESCED_MMIO
63 struct kvm_coalesced_mmio_ring *coalesced_mmio_ring;
64 #endif
65 int broken_set_mem_region;
66 int migration_log;
67 int vcpu_events;
68 int robust_singlestep;
69 #ifdef KVM_CAP_SET_GUEST_DEBUG
70 struct kvm_sw_breakpoint_head kvm_sw_breakpoints;
71 #endif
72 int irqchip_in_kernel;
73 int pit_in_kernel;
74 };
75
76 static KVMState *kvm_state;
77
78 static KVMSlot *kvm_alloc_slot(KVMState *s)
79 {
80 int i;
81
82 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
83 /* KVM private memory slots */
84 if (i >= 8 && i < 12)
85 continue;
86 if (s->slots[i].memory_size == 0)
87 return &s->slots[i];
88 }
89
90 fprintf(stderr, "%s: no free slot available\n", __func__);
91 abort();
92 }
93
94 static KVMSlot *kvm_lookup_matching_slot(KVMState *s,
95 target_phys_addr_t start_addr,
96 target_phys_addr_t end_addr)
97 {
98 int i;
99
100 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
101 KVMSlot *mem = &s->slots[i];
102
103 if (start_addr == mem->start_addr &&
104 end_addr == mem->start_addr + mem->memory_size) {
105 return mem;
106 }
107 }
108
109 return NULL;
110 }
111
112 /*
113 * Find overlapping slot with lowest start address
114 */
115 static KVMSlot *kvm_lookup_overlapping_slot(KVMState *s,
116 target_phys_addr_t start_addr,
117 target_phys_addr_t end_addr)
118 {
119 KVMSlot *found = NULL;
120 int i;
121
122 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
123 KVMSlot *mem = &s->slots[i];
124
125 if (mem->memory_size == 0 ||
126 (found && found->start_addr < mem->start_addr)) {
127 continue;
128 }
129
130 if (end_addr > mem->start_addr &&
131 start_addr < mem->start_addr + mem->memory_size) {
132 found = mem;
133 }
134 }
135
136 return found;
137 }
138
139 static int kvm_set_user_memory_region(KVMState *s, KVMSlot *slot)
140 {
141 struct kvm_userspace_memory_region mem;
142
143 mem.slot = slot->slot;
144 mem.guest_phys_addr = slot->start_addr;
145 mem.memory_size = slot->memory_size;
146 mem.userspace_addr = (unsigned long)qemu_get_ram_ptr(slot->phys_offset);
147 mem.flags = slot->flags;
148 if (s->migration_log) {
149 mem.flags |= KVM_MEM_LOG_DIRTY_PAGES;
150 }
151 return kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
152 }
153
154 static void kvm_reset_vcpu(void *opaque)
155 {
156 CPUState *env = opaque;
157
158 kvm_arch_reset_vcpu(env);
159 if (kvm_arch_put_registers(env)) {
160 fprintf(stderr, "Fatal: kvm vcpu reset failed\n");
161 abort();
162 }
163 }
164
165 int kvm_irqchip_in_kernel(void)
166 {
167 return kvm_state->irqchip_in_kernel;
168 }
169
170 int kvm_pit_in_kernel(void)
171 {
172 return kvm_state->pit_in_kernel;
173 }
174
175
176 int kvm_init_vcpu(CPUState *env)
177 {
178 KVMState *s = kvm_state;
179 long mmap_size;
180 int ret;
181
182 dprintf("kvm_init_vcpu\n");
183
184 ret = kvm_vm_ioctl(s, KVM_CREATE_VCPU, env->cpu_index);
185 if (ret < 0) {
186 dprintf("kvm_create_vcpu failed\n");
187 goto err;
188 }
189
190 env->kvm_fd = ret;
191 env->kvm_state = s;
192
193 mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0);
194 if (mmap_size < 0) {
195 dprintf("KVM_GET_VCPU_MMAP_SIZE failed\n");
196 goto err;
197 }
198
199 env->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED,
200 env->kvm_fd, 0);
201 if (env->kvm_run == MAP_FAILED) {
202 ret = -errno;
203 dprintf("mmap'ing vcpu state failed\n");
204 goto err;
205 }
206
207 #ifdef KVM_CAP_COALESCED_MMIO
208 if (s->coalesced_mmio && !s->coalesced_mmio_ring)
209 s->coalesced_mmio_ring = (void *) env->kvm_run +
210 s->coalesced_mmio * PAGE_SIZE;
211 #endif
212
213 ret = kvm_arch_init_vcpu(env);
214 if (ret == 0) {
215 qemu_register_reset(kvm_reset_vcpu, env);
216 kvm_arch_reset_vcpu(env);
217 ret = kvm_arch_put_registers(env);
218 }
219 err:
220 return ret;
221 }
222
223 /*
224 * dirty pages logging control
225 */
226 static int kvm_dirty_pages_log_change(target_phys_addr_t phys_addr,
227 ram_addr_t size, int flags, int mask)
228 {
229 KVMState *s = kvm_state;
230 KVMSlot *mem = kvm_lookup_matching_slot(s, phys_addr, phys_addr + size);
231 int old_flags;
232
233 if (mem == NULL) {
234 fprintf(stderr, "BUG: %s: invalid parameters " TARGET_FMT_plx "-"
235 TARGET_FMT_plx "\n", __func__, phys_addr,
236 (target_phys_addr_t)(phys_addr + size - 1));
237 return -EINVAL;
238 }
239
240 old_flags = mem->flags;
241
242 flags = (mem->flags & ~mask) | flags;
243 mem->flags = flags;
244
245 /* If nothing changed effectively, no need to issue ioctl */
246 if (s->migration_log) {
247 flags |= KVM_MEM_LOG_DIRTY_PAGES;
248 }
249 if (flags == old_flags) {
250 return 0;
251 }
252
253 return kvm_set_user_memory_region(s, mem);
254 }
255
256 int kvm_log_start(target_phys_addr_t phys_addr, ram_addr_t size)
257 {
258 return kvm_dirty_pages_log_change(phys_addr, size,
259 KVM_MEM_LOG_DIRTY_PAGES,
260 KVM_MEM_LOG_DIRTY_PAGES);
261 }
262
263 int kvm_log_stop(target_phys_addr_t phys_addr, ram_addr_t size)
264 {
265 return kvm_dirty_pages_log_change(phys_addr, size,
266 0,
267 KVM_MEM_LOG_DIRTY_PAGES);
268 }
269
270 static int kvm_set_migration_log(int enable)
271 {
272 KVMState *s = kvm_state;
273 KVMSlot *mem;
274 int i, err;
275
276 s->migration_log = enable;
277
278 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
279 mem = &s->slots[i];
280
281 if (!!(mem->flags & KVM_MEM_LOG_DIRTY_PAGES) == enable) {
282 continue;
283 }
284 err = kvm_set_user_memory_region(s, mem);
285 if (err) {
286 return err;
287 }
288 }
289 return 0;
290 }
291
292 static int test_le_bit(unsigned long nr, unsigned char *addr)
293 {
294 return (addr[nr >> 3] >> (nr & 7)) & 1;
295 }
296
297 /**
298 * kvm_physical_sync_dirty_bitmap - Grab dirty bitmap from kernel space
299 * This function updates qemu's dirty bitmap using cpu_physical_memory_set_dirty().
300 * This means all bits are set to dirty.
301 *
302 * @start_add: start of logged region.
303 * @end_addr: end of logged region.
304 */
305 static int kvm_physical_sync_dirty_bitmap(target_phys_addr_t start_addr,
306 target_phys_addr_t end_addr)
307 {
308 KVMState *s = kvm_state;
309 unsigned long size, allocated_size = 0;
310 target_phys_addr_t phys_addr;
311 ram_addr_t addr;
312 KVMDirtyLog d;
313 KVMSlot *mem;
314 int ret = 0;
315
316 d.dirty_bitmap = NULL;
317 while (start_addr < end_addr) {
318 mem = kvm_lookup_overlapping_slot(s, start_addr, end_addr);
319 if (mem == NULL) {
320 break;
321 }
322
323 size = ((mem->memory_size >> TARGET_PAGE_BITS) + 7) / 8;
324 if (!d.dirty_bitmap) {
325 d.dirty_bitmap = qemu_malloc(size);
326 } else if (size > allocated_size) {
327 d.dirty_bitmap = qemu_realloc(d.dirty_bitmap, size);
328 }
329 allocated_size = size;
330 memset(d.dirty_bitmap, 0, allocated_size);
331
332 d.slot = mem->slot;
333
334 if (kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d) == -1) {
335 dprintf("ioctl failed %d\n", errno);
336 ret = -1;
337 break;
338 }
339
340 for (phys_addr = mem->start_addr, addr = mem->phys_offset;
341 phys_addr < mem->start_addr + mem->memory_size;
342 phys_addr += TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
343 unsigned char *bitmap = (unsigned char *)d.dirty_bitmap;
344 unsigned nr = (phys_addr - mem->start_addr) >> TARGET_PAGE_BITS;
345
346 if (test_le_bit(nr, bitmap)) {
347 cpu_physical_memory_set_dirty(addr);
348 }
349 }
350 start_addr = phys_addr;
351 }
352 qemu_free(d.dirty_bitmap);
353
354 return ret;
355 }
356
357 int kvm_coalesce_mmio_region(target_phys_addr_t start, ram_addr_t size)
358 {
359 int ret = -ENOSYS;
360 #ifdef KVM_CAP_COALESCED_MMIO
361 KVMState *s = kvm_state;
362
363 if (s->coalesced_mmio) {
364 struct kvm_coalesced_mmio_zone zone;
365
366 zone.addr = start;
367 zone.size = size;
368
369 ret = kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone);
370 }
371 #endif
372
373 return ret;
374 }
375
376 int kvm_uncoalesce_mmio_region(target_phys_addr_t start, ram_addr_t size)
377 {
378 int ret = -ENOSYS;
379 #ifdef KVM_CAP_COALESCED_MMIO
380 KVMState *s = kvm_state;
381
382 if (s->coalesced_mmio) {
383 struct kvm_coalesced_mmio_zone zone;
384
385 zone.addr = start;
386 zone.size = size;
387
388 ret = kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone);
389 }
390 #endif
391
392 return ret;
393 }
394
395 int kvm_check_extension(KVMState *s, unsigned int extension)
396 {
397 int ret;
398
399 ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension);
400 if (ret < 0) {
401 ret = 0;
402 }
403
404 return ret;
405 }
406
407 static void kvm_set_phys_mem(target_phys_addr_t start_addr,
408 ram_addr_t size,
409 ram_addr_t phys_offset)
410 {
411 KVMState *s = kvm_state;
412 ram_addr_t flags = phys_offset & ~TARGET_PAGE_MASK;
413 KVMSlot *mem, old;
414 int err;
415
416 if (start_addr & ~TARGET_PAGE_MASK) {
417 if (flags >= IO_MEM_UNASSIGNED) {
418 if (!kvm_lookup_overlapping_slot(s, start_addr,
419 start_addr + size)) {
420 return;
421 }
422 fprintf(stderr, "Unaligned split of a KVM memory slot\n");
423 } else {
424 fprintf(stderr, "Only page-aligned memory slots supported\n");
425 }
426 abort();
427 }
428
429 /* KVM does not support read-only slots */
430 phys_offset &= ~IO_MEM_ROM;
431
432 while (1) {
433 mem = kvm_lookup_overlapping_slot(s, start_addr, start_addr + size);
434 if (!mem) {
435 break;
436 }
437
438 if (flags < IO_MEM_UNASSIGNED && start_addr >= mem->start_addr &&
439 (start_addr + size <= mem->start_addr + mem->memory_size) &&
440 (phys_offset - start_addr == mem->phys_offset - mem->start_addr)) {
441 /* The new slot fits into the existing one and comes with
442 * identical parameters - nothing to be done. */
443 return;
444 }
445
446 old = *mem;
447
448 /* unregister the overlapping slot */
449 mem->memory_size = 0;
450 err = kvm_set_user_memory_region(s, mem);
451 if (err) {
452 fprintf(stderr, "%s: error unregistering overlapping slot: %s\n",
453 __func__, strerror(-err));
454 abort();
455 }
456
457 /* Workaround for older KVM versions: we can't join slots, even not by
458 * unregistering the previous ones and then registering the larger
459 * slot. We have to maintain the existing fragmentation. Sigh.
460 *
461 * This workaround assumes that the new slot starts at the same
462 * address as the first existing one. If not or if some overlapping
463 * slot comes around later, we will fail (not seen in practice so far)
464 * - and actually require a recent KVM version. */
465 if (s->broken_set_mem_region &&
466 old.start_addr == start_addr && old.memory_size < size &&
467 flags < IO_MEM_UNASSIGNED) {
468 mem = kvm_alloc_slot(s);
469 mem->memory_size = old.memory_size;
470 mem->start_addr = old.start_addr;
471 mem->phys_offset = old.phys_offset;
472 mem->flags = 0;
473
474 err = kvm_set_user_memory_region(s, mem);
475 if (err) {
476 fprintf(stderr, "%s: error updating slot: %s\n", __func__,
477 strerror(-err));
478 abort();
479 }
480
481 start_addr += old.memory_size;
482 phys_offset += old.memory_size;
483 size -= old.memory_size;
484 continue;
485 }
486
487 /* register prefix slot */
488 if (old.start_addr < start_addr) {
489 mem = kvm_alloc_slot(s);
490 mem->memory_size = start_addr - old.start_addr;
491 mem->start_addr = old.start_addr;
492 mem->phys_offset = old.phys_offset;
493 mem->flags = 0;
494
495 err = kvm_set_user_memory_region(s, mem);
496 if (err) {
497 fprintf(stderr, "%s: error registering prefix slot: %s\n",
498 __func__, strerror(-err));
499 abort();
500 }
501 }
502
503 /* register suffix slot */
504 if (old.start_addr + old.memory_size > start_addr + size) {
505 ram_addr_t size_delta;
506
507 mem = kvm_alloc_slot(s);
508 mem->start_addr = start_addr + size;
509 size_delta = mem->start_addr - old.start_addr;
510 mem->memory_size = old.memory_size - size_delta;
511 mem->phys_offset = old.phys_offset + size_delta;
512 mem->flags = 0;
513
514 err = kvm_set_user_memory_region(s, mem);
515 if (err) {
516 fprintf(stderr, "%s: error registering suffix slot: %s\n",
517 __func__, strerror(-err));
518 abort();
519 }
520 }
521 }
522
523 /* in case the KVM bug workaround already "consumed" the new slot */
524 if (!size)
525 return;
526
527 /* KVM does not need to know about this memory */
528 if (flags >= IO_MEM_UNASSIGNED)
529 return;
530
531 mem = kvm_alloc_slot(s);
532 mem->memory_size = size;
533 mem->start_addr = start_addr;
534 mem->phys_offset = phys_offset;
535 mem->flags = 0;
536
537 err = kvm_set_user_memory_region(s, mem);
538 if (err) {
539 fprintf(stderr, "%s: error registering slot: %s\n", __func__,
540 strerror(-err));
541 abort();
542 }
543 }
544
545 static void kvm_client_set_memory(struct CPUPhysMemoryClient *client,
546 target_phys_addr_t start_addr,
547 ram_addr_t size,
548 ram_addr_t phys_offset)
549 {
550 kvm_set_phys_mem(start_addr, size, phys_offset);
551 }
552
553 static int kvm_client_sync_dirty_bitmap(struct CPUPhysMemoryClient *client,
554 target_phys_addr_t start_addr,
555 target_phys_addr_t end_addr)
556 {
557 return kvm_physical_sync_dirty_bitmap(start_addr, end_addr);
558 }
559
560 static int kvm_client_migration_log(struct CPUPhysMemoryClient *client,
561 int enable)
562 {
563 return kvm_set_migration_log(enable);
564 }
565
566 static CPUPhysMemoryClient kvm_cpu_phys_memory_client = {
567 .set_memory = kvm_client_set_memory,
568 .sync_dirty_bitmap = kvm_client_sync_dirty_bitmap,
569 .migration_log = kvm_client_migration_log,
570 };
571
572 int kvm_init(int smp_cpus)
573 {
574 static const char upgrade_note[] =
575 "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n"
576 "(see http://sourceforge.net/projects/kvm).\n";
577 KVMState *s;
578 int ret;
579 int i;
580
581 if (smp_cpus > 1) {
582 fprintf(stderr, "No SMP KVM support, use '-smp 1'\n");
583 return -EINVAL;
584 }
585
586 s = qemu_mallocz(sizeof(KVMState));
587
588 #ifdef KVM_CAP_SET_GUEST_DEBUG
589 QTAILQ_INIT(&s->kvm_sw_breakpoints);
590 #endif
591 for (i = 0; i < ARRAY_SIZE(s->slots); i++)
592 s->slots[i].slot = i;
593
594 s->vmfd = -1;
595 s->fd = qemu_open("/dev/kvm", O_RDWR);
596 if (s->fd == -1) {
597 fprintf(stderr, "Could not access KVM kernel module: %m\n");
598 ret = -errno;
599 goto err;
600 }
601
602 ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0);
603 if (ret < KVM_API_VERSION) {
604 if (ret > 0)
605 ret = -EINVAL;
606 fprintf(stderr, "kvm version too old\n");
607 goto err;
608 }
609
610 if (ret > KVM_API_VERSION) {
611 ret = -EINVAL;
612 fprintf(stderr, "kvm version not supported\n");
613 goto err;
614 }
615
616 s->vmfd = kvm_ioctl(s, KVM_CREATE_VM, 0);
617 if (s->vmfd < 0)
618 goto err;
619
620 /* initially, KVM allocated its own memory and we had to jump through
621 * hooks to make phys_ram_base point to this. Modern versions of KVM
622 * just use a user allocated buffer so we can use regular pages
623 * unmodified. Make sure we have a sufficiently modern version of KVM.
624 */
625 if (!kvm_check_extension(s, KVM_CAP_USER_MEMORY)) {
626 ret = -EINVAL;
627 fprintf(stderr, "kvm does not support KVM_CAP_USER_MEMORY\n%s",
628 upgrade_note);
629 goto err;
630 }
631
632 /* There was a nasty bug in < kvm-80 that prevents memory slots from being
633 * destroyed properly. Since we rely on this capability, refuse to work
634 * with any kernel without this capability. */
635 if (!kvm_check_extension(s, KVM_CAP_DESTROY_MEMORY_REGION_WORKS)) {
636 ret = -EINVAL;
637
638 fprintf(stderr,
639 "KVM kernel module broken (DESTROY_MEMORY_REGION).\n%s",
640 upgrade_note);
641 goto err;
642 }
643
644 s->coalesced_mmio = 0;
645 #ifdef KVM_CAP_COALESCED_MMIO
646 s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO);
647 s->coalesced_mmio_ring = NULL;
648 #endif
649
650 s->broken_set_mem_region = 1;
651 #ifdef KVM_CAP_JOIN_MEMORY_REGIONS_WORKS
652 ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, KVM_CAP_JOIN_MEMORY_REGIONS_WORKS);
653 if (ret > 0) {
654 s->broken_set_mem_region = 0;
655 }
656 #endif
657
658 s->vcpu_events = 0;
659 #ifdef KVM_CAP_VCPU_EVENTS
660 s->vcpu_events = kvm_check_extension(s, KVM_CAP_VCPU_EVENTS);
661 #endif
662
663 s->robust_singlestep = 0;
664 #ifdef KVM_CAP_X86_ROBUST_SINGLESTEP
665 s->robust_singlestep =
666 kvm_check_extension(s, KVM_CAP_X86_ROBUST_SINGLESTEP);
667 #endif
668
669 ret = kvm_arch_init(s, smp_cpus);
670 if (ret < 0)
671 goto err;
672
673 kvm_state = s;
674 cpu_register_phys_memory_client(&kvm_cpu_phys_memory_client);
675
676 return 0;
677
678 err:
679 if (s) {
680 if (s->vmfd != -1)
681 close(s->vmfd);
682 if (s->fd != -1)
683 close(s->fd);
684 }
685 qemu_free(s);
686
687 return ret;
688 }
689
690 static int kvm_handle_io(uint16_t port, void *data, int direction, int size,
691 uint32_t count)
692 {
693 int i;
694 uint8_t *ptr = data;
695
696 for (i = 0; i < count; i++) {
697 if (direction == KVM_EXIT_IO_IN) {
698 switch (size) {
699 case 1:
700 stb_p(ptr, cpu_inb(port));
701 break;
702 case 2:
703 stw_p(ptr, cpu_inw(port));
704 break;
705 case 4:
706 stl_p(ptr, cpu_inl(port));
707 break;
708 }
709 } else {
710 switch (size) {
711 case 1:
712 cpu_outb(port, ldub_p(ptr));
713 break;
714 case 2:
715 cpu_outw(port, lduw_p(ptr));
716 break;
717 case 4:
718 cpu_outl(port, ldl_p(ptr));
719 break;
720 }
721 }
722
723 ptr += size;
724 }
725
726 return 1;
727 }
728
729 void kvm_flush_coalesced_mmio_buffer(void)
730 {
731 #ifdef KVM_CAP_COALESCED_MMIO
732 KVMState *s = kvm_state;
733 if (s->coalesced_mmio_ring) {
734 struct kvm_coalesced_mmio_ring *ring = s->coalesced_mmio_ring;
735 while (ring->first != ring->last) {
736 struct kvm_coalesced_mmio *ent;
737
738 ent = &ring->coalesced_mmio[ring->first];
739
740 cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len);
741 smp_wmb();
742 ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX;
743 }
744 }
745 #endif
746 }
747
748 void kvm_cpu_synchronize_state(CPUState *env)
749 {
750 if (!env->kvm_vcpu_dirty) {
751 kvm_arch_get_registers(env);
752 env->kvm_vcpu_dirty = 1;
753 }
754 }
755
756 int kvm_cpu_exec(CPUState *env)
757 {
758 struct kvm_run *run = env->kvm_run;
759 int ret;
760
761 dprintf("kvm_cpu_exec()\n");
762
763 do {
764 #ifndef CONFIG_IOTHREAD
765 if (env->exit_request) {
766 dprintf("interrupt exit requested\n");
767 ret = 0;
768 break;
769 }
770 #endif
771
772 if (env->kvm_vcpu_dirty) {
773 kvm_arch_put_registers(env);
774 env->kvm_vcpu_dirty = 0;
775 }
776
777 kvm_arch_pre_run(env, run);
778 qemu_mutex_unlock_iothread();
779 ret = kvm_vcpu_ioctl(env, KVM_RUN, 0);
780 qemu_mutex_lock_iothread();
781 kvm_arch_post_run(env, run);
782
783 if (ret == -EINTR || ret == -EAGAIN) {
784 cpu_exit(env);
785 dprintf("io window exit\n");
786 ret = 0;
787 break;
788 }
789
790 if (ret < 0) {
791 dprintf("kvm run failed %s\n", strerror(-ret));
792 abort();
793 }
794
795 kvm_flush_coalesced_mmio_buffer();
796
797 ret = 0; /* exit loop */
798 switch (run->exit_reason) {
799 case KVM_EXIT_IO:
800 dprintf("handle_io\n");
801 ret = kvm_handle_io(run->io.port,
802 (uint8_t *)run + run->io.data_offset,
803 run->io.direction,
804 run->io.size,
805 run->io.count);
806 break;
807 case KVM_EXIT_MMIO:
808 dprintf("handle_mmio\n");
809 cpu_physical_memory_rw(run->mmio.phys_addr,
810 run->mmio.data,
811 run->mmio.len,
812 run->mmio.is_write);
813 ret = 1;
814 break;
815 case KVM_EXIT_IRQ_WINDOW_OPEN:
816 dprintf("irq_window_open\n");
817 break;
818 case KVM_EXIT_SHUTDOWN:
819 dprintf("shutdown\n");
820 qemu_system_reset_request();
821 ret = 1;
822 break;
823 case KVM_EXIT_UNKNOWN:
824 dprintf("kvm_exit_unknown\n");
825 break;
826 case KVM_EXIT_FAIL_ENTRY:
827 dprintf("kvm_exit_fail_entry\n");
828 break;
829 case KVM_EXIT_EXCEPTION:
830 dprintf("kvm_exit_exception\n");
831 break;
832 case KVM_EXIT_DEBUG:
833 dprintf("kvm_exit_debug\n");
834 #ifdef KVM_CAP_SET_GUEST_DEBUG
835 if (kvm_arch_debug(&run->debug.arch)) {
836 gdb_set_stop_cpu(env);
837 vm_stop(EXCP_DEBUG);
838 env->exception_index = EXCP_DEBUG;
839 return 0;
840 }
841 /* re-enter, this exception was guest-internal */
842 ret = 1;
843 #endif /* KVM_CAP_SET_GUEST_DEBUG */
844 break;
845 default:
846 dprintf("kvm_arch_handle_exit\n");
847 ret = kvm_arch_handle_exit(env, run);
848 break;
849 }
850 } while (ret > 0);
851
852 if (env->exit_request) {
853 env->exit_request = 0;
854 env->exception_index = EXCP_INTERRUPT;
855 }
856
857 return ret;
858 }
859
860 int kvm_ioctl(KVMState *s, int type, ...)
861 {
862 int ret;
863 void *arg;
864 va_list ap;
865
866 va_start(ap, type);
867 arg = va_arg(ap, void *);
868 va_end(ap);
869
870 ret = ioctl(s->fd, type, arg);
871 if (ret == -1)
872 ret = -errno;
873
874 return ret;
875 }
876
877 int kvm_vm_ioctl(KVMState *s, int type, ...)
878 {
879 int ret;
880 void *arg;
881 va_list ap;
882
883 va_start(ap, type);
884 arg = va_arg(ap, void *);
885 va_end(ap);
886
887 ret = ioctl(s->vmfd, type, arg);
888 if (ret == -1)
889 ret = -errno;
890
891 return ret;
892 }
893
894 int kvm_vcpu_ioctl(CPUState *env, int type, ...)
895 {
896 int ret;
897 void *arg;
898 va_list ap;
899
900 va_start(ap, type);
901 arg = va_arg(ap, void *);
902 va_end(ap);
903
904 ret = ioctl(env->kvm_fd, type, arg);
905 if (ret == -1)
906 ret = -errno;
907
908 return ret;
909 }
910
911 int kvm_has_sync_mmu(void)
912 {
913 #ifdef KVM_CAP_SYNC_MMU
914 KVMState *s = kvm_state;
915
916 return kvm_check_extension(s, KVM_CAP_SYNC_MMU);
917 #else
918 return 0;
919 #endif
920 }
921
922 int kvm_has_vcpu_events(void)
923 {
924 return kvm_state->vcpu_events;
925 }
926
927 int kvm_has_robust_singlestep(void)
928 {
929 return kvm_state->robust_singlestep;
930 }
931
932 void kvm_setup_guest_memory(void *start, size_t size)
933 {
934 if (!kvm_has_sync_mmu()) {
935 #ifdef MADV_DONTFORK
936 int ret = madvise(start, size, MADV_DONTFORK);
937
938 if (ret) {
939 perror("madvice");
940 exit(1);
941 }
942 #else
943 fprintf(stderr,
944 "Need MADV_DONTFORK in absence of synchronous KVM MMU\n");
945 exit(1);
946 #endif
947 }
948 }
949
950 #ifdef KVM_CAP_SET_GUEST_DEBUG
951 static void on_vcpu(CPUState *env, void (*func)(void *data), void *data)
952 {
953 #ifdef CONFIG_IOTHREAD
954 if (env != cpu_single_env) {
955 abort();
956 }
957 #endif
958 func(data);
959 }
960
961 struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUState *env,
962 target_ulong pc)
963 {
964 struct kvm_sw_breakpoint *bp;
965
966 QTAILQ_FOREACH(bp, &env->kvm_state->kvm_sw_breakpoints, entry) {
967 if (bp->pc == pc)
968 return bp;
969 }
970 return NULL;
971 }
972
973 int kvm_sw_breakpoints_active(CPUState *env)
974 {
975 return !QTAILQ_EMPTY(&env->kvm_state->kvm_sw_breakpoints);
976 }
977
978 struct kvm_set_guest_debug_data {
979 struct kvm_guest_debug dbg;
980 CPUState *env;
981 int err;
982 };
983
984 static void kvm_invoke_set_guest_debug(void *data)
985 {
986 struct kvm_set_guest_debug_data *dbg_data = data;
987 CPUState *env = dbg_data->env;
988
989 dbg_data->err = kvm_vcpu_ioctl(env, KVM_SET_GUEST_DEBUG, &dbg_data->dbg);
990 }
991
992 int kvm_update_guest_debug(CPUState *env, unsigned long reinject_trap)
993 {
994 struct kvm_set_guest_debug_data data;
995
996 data.dbg.control = reinject_trap;
997
998 if (env->singlestep_enabled) {
999 data.dbg.control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP;
1000 }
1001 kvm_arch_update_guest_debug(env, &data.dbg);
1002 data.env = env;
1003
1004 on_vcpu(env, kvm_invoke_set_guest_debug, &data);
1005 return data.err;
1006 }
1007
1008 int kvm_insert_breakpoint(CPUState *current_env, target_ulong addr,
1009 target_ulong len, int type)
1010 {
1011 struct kvm_sw_breakpoint *bp;
1012 CPUState *env;
1013 int err;
1014
1015 if (type == GDB_BREAKPOINT_SW) {
1016 bp = kvm_find_sw_breakpoint(current_env, addr);
1017 if (bp) {
1018 bp->use_count++;
1019 return 0;
1020 }
1021
1022 bp = qemu_malloc(sizeof(struct kvm_sw_breakpoint));
1023 if (!bp)
1024 return -ENOMEM;
1025
1026 bp->pc = addr;
1027 bp->use_count = 1;
1028 err = kvm_arch_insert_sw_breakpoint(current_env, bp);
1029 if (err) {
1030 free(bp);
1031 return err;
1032 }
1033
1034 QTAILQ_INSERT_HEAD(&current_env->kvm_state->kvm_sw_breakpoints,
1035 bp, entry);
1036 } else {
1037 err = kvm_arch_insert_hw_breakpoint(addr, len, type);
1038 if (err)
1039 return err;
1040 }
1041
1042 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1043 err = kvm_update_guest_debug(env, 0);
1044 if (err)
1045 return err;
1046 }
1047 return 0;
1048 }
1049
1050 int kvm_remove_breakpoint(CPUState *current_env, target_ulong addr,
1051 target_ulong len, int type)
1052 {
1053 struct kvm_sw_breakpoint *bp;
1054 CPUState *env;
1055 int err;
1056
1057 if (type == GDB_BREAKPOINT_SW) {
1058 bp = kvm_find_sw_breakpoint(current_env, addr);
1059 if (!bp)
1060 return -ENOENT;
1061
1062 if (bp->use_count > 1) {
1063 bp->use_count--;
1064 return 0;
1065 }
1066
1067 err = kvm_arch_remove_sw_breakpoint(current_env, bp);
1068 if (err)
1069 return err;
1070
1071 QTAILQ_REMOVE(&current_env->kvm_state->kvm_sw_breakpoints, bp, entry);
1072 qemu_free(bp);
1073 } else {
1074 err = kvm_arch_remove_hw_breakpoint(addr, len, type);
1075 if (err)
1076 return err;
1077 }
1078
1079 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1080 err = kvm_update_guest_debug(env, 0);
1081 if (err)
1082 return err;
1083 }
1084 return 0;
1085 }
1086
1087 void kvm_remove_all_breakpoints(CPUState *current_env)
1088 {
1089 struct kvm_sw_breakpoint *bp, *next;
1090 KVMState *s = current_env->kvm_state;
1091 CPUState *env;
1092
1093 QTAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) {
1094 if (kvm_arch_remove_sw_breakpoint(current_env, bp) != 0) {
1095 /* Try harder to find a CPU that currently sees the breakpoint. */
1096 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1097 if (kvm_arch_remove_sw_breakpoint(env, bp) == 0)
1098 break;
1099 }
1100 }
1101 }
1102 kvm_arch_remove_all_hw_breakpoints();
1103
1104 for (env = first_cpu; env != NULL; env = env->next_cpu)
1105 kvm_update_guest_debug(env, 0);
1106 }
1107
1108 #else /* !KVM_CAP_SET_GUEST_DEBUG */
1109
1110 int kvm_update_guest_debug(CPUState *env, unsigned long reinject_trap)
1111 {
1112 return -EINVAL;
1113 }
1114
1115 int kvm_insert_breakpoint(CPUState *current_env, target_ulong addr,
1116 target_ulong len, int type)
1117 {
1118 return -EINVAL;
1119 }
1120
1121 int kvm_remove_breakpoint(CPUState *current_env, target_ulong addr,
1122 target_ulong len, int type)
1123 {
1124 return -EINVAL;
1125 }
1126
1127 void kvm_remove_all_breakpoints(CPUState *current_env)
1128 {
1129 }
1130 #endif /* !KVM_CAP_SET_GUEST_DEBUG */
1131
1132 int kvm_set_signal_mask(CPUState *env, const sigset_t *sigset)
1133 {
1134 struct kvm_signal_mask *sigmask;
1135 int r;
1136
1137 if (!sigset)
1138 return kvm_vcpu_ioctl(env, KVM_SET_SIGNAL_MASK, NULL);
1139
1140 sigmask = qemu_malloc(sizeof(*sigmask) + sizeof(*sigset));
1141
1142 sigmask->len = 8;
1143 memcpy(sigmask->sigset, sigset, sizeof(*sigset));
1144 r = kvm_vcpu_ioctl(env, KVM_SET_SIGNAL_MASK, sigmask);
1145 free(sigmask);
1146
1147 return r;
1148 }