]> git.proxmox.com Git - qemu.git/blob - kvm-all.c
3a1f63b5b19edc75a8ba0a3eecb506f8ff7cfde0
[qemu.git] / kvm-all.c
1 /*
2 * QEMU KVM support
3 *
4 * Copyright IBM, Corp. 2008
5 * Red Hat, Inc. 2008
6 *
7 * Authors:
8 * Anthony Liguori <aliguori@us.ibm.com>
9 * Glauber Costa <gcosta@redhat.com>
10 *
11 * This work is licensed under the terms of the GNU GPL, version 2 or later.
12 * See the COPYING file in the top-level directory.
13 *
14 */
15
16 #include <sys/types.h>
17 #include <sys/ioctl.h>
18 #include <sys/mman.h>
19 #include <stdarg.h>
20
21 #include <linux/kvm.h>
22
23 #include "qemu-common.h"
24 #include "qemu-barrier.h"
25 #include "sysemu.h"
26 #include "hw/hw.h"
27 #include "gdbstub.h"
28 #include "kvm.h"
29 #include "bswap.h"
30
31 /* This check must be after config-host.h is included */
32 #ifdef CONFIG_EVENTFD
33 #include <sys/eventfd.h>
34 #endif
35
36 /* KVM uses PAGE_SIZE in it's definition of COALESCED_MMIO_MAX */
37 #define PAGE_SIZE TARGET_PAGE_SIZE
38
39 //#define DEBUG_KVM
40
41 #ifdef DEBUG_KVM
42 #define DPRINTF(fmt, ...) \
43 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
44 #else
45 #define DPRINTF(fmt, ...) \
46 do { } while (0)
47 #endif
48
49 typedef struct KVMSlot
50 {
51 target_phys_addr_t start_addr;
52 ram_addr_t memory_size;
53 ram_addr_t phys_offset;
54 int slot;
55 int flags;
56 } KVMSlot;
57
58 typedef struct kvm_dirty_log KVMDirtyLog;
59
60 struct KVMState
61 {
62 KVMSlot slots[32];
63 int fd;
64 int vmfd;
65 int coalesced_mmio;
66 struct kvm_coalesced_mmio_ring *coalesced_mmio_ring;
67 int broken_set_mem_region;
68 int migration_log;
69 int vcpu_events;
70 int robust_singlestep;
71 int debugregs;
72 #ifdef KVM_CAP_SET_GUEST_DEBUG
73 struct kvm_sw_breakpoint_head kvm_sw_breakpoints;
74 #endif
75 int irqchip_in_kernel;
76 int pit_in_kernel;
77 int xsave, xcrs;
78 int many_ioeventfds;
79 };
80
81 static KVMState *kvm_state;
82
83 static const KVMCapabilityInfo kvm_required_capabilites[] = {
84 KVM_CAP_INFO(USER_MEMORY),
85 KVM_CAP_INFO(DESTROY_MEMORY_REGION_WORKS),
86 KVM_CAP_LAST_INFO
87 };
88
89 static KVMSlot *kvm_alloc_slot(KVMState *s)
90 {
91 int i;
92
93 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
94 /* KVM private memory slots */
95 if (i >= 8 && i < 12) {
96 continue;
97 }
98 if (s->slots[i].memory_size == 0) {
99 return &s->slots[i];
100 }
101 }
102
103 fprintf(stderr, "%s: no free slot available\n", __func__);
104 abort();
105 }
106
107 static KVMSlot *kvm_lookup_matching_slot(KVMState *s,
108 target_phys_addr_t start_addr,
109 target_phys_addr_t end_addr)
110 {
111 int i;
112
113 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
114 KVMSlot *mem = &s->slots[i];
115
116 if (start_addr == mem->start_addr &&
117 end_addr == mem->start_addr + mem->memory_size) {
118 return mem;
119 }
120 }
121
122 return NULL;
123 }
124
125 /*
126 * Find overlapping slot with lowest start address
127 */
128 static KVMSlot *kvm_lookup_overlapping_slot(KVMState *s,
129 target_phys_addr_t start_addr,
130 target_phys_addr_t end_addr)
131 {
132 KVMSlot *found = NULL;
133 int i;
134
135 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
136 KVMSlot *mem = &s->slots[i];
137
138 if (mem->memory_size == 0 ||
139 (found && found->start_addr < mem->start_addr)) {
140 continue;
141 }
142
143 if (end_addr > mem->start_addr &&
144 start_addr < mem->start_addr + mem->memory_size) {
145 found = mem;
146 }
147 }
148
149 return found;
150 }
151
152 int kvm_physical_memory_addr_from_ram(KVMState *s, ram_addr_t ram_addr,
153 target_phys_addr_t *phys_addr)
154 {
155 int i;
156
157 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
158 KVMSlot *mem = &s->slots[i];
159
160 if (ram_addr >= mem->phys_offset &&
161 ram_addr < mem->phys_offset + mem->memory_size) {
162 *phys_addr = mem->start_addr + (ram_addr - mem->phys_offset);
163 return 1;
164 }
165 }
166
167 return 0;
168 }
169
170 static int kvm_set_user_memory_region(KVMState *s, KVMSlot *slot)
171 {
172 struct kvm_userspace_memory_region mem;
173
174 mem.slot = slot->slot;
175 mem.guest_phys_addr = slot->start_addr;
176 mem.memory_size = slot->memory_size;
177 mem.userspace_addr = (unsigned long)qemu_safe_ram_ptr(slot->phys_offset);
178 mem.flags = slot->flags;
179 if (s->migration_log) {
180 mem.flags |= KVM_MEM_LOG_DIRTY_PAGES;
181 }
182 return kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
183 }
184
185 static void kvm_reset_vcpu(void *opaque)
186 {
187 CPUState *env = opaque;
188
189 kvm_arch_reset_vcpu(env);
190 }
191
192 int kvm_irqchip_in_kernel(void)
193 {
194 return kvm_state->irqchip_in_kernel;
195 }
196
197 int kvm_pit_in_kernel(void)
198 {
199 return kvm_state->pit_in_kernel;
200 }
201
202
203 int kvm_init_vcpu(CPUState *env)
204 {
205 KVMState *s = kvm_state;
206 long mmap_size;
207 int ret;
208
209 DPRINTF("kvm_init_vcpu\n");
210
211 ret = kvm_vm_ioctl(s, KVM_CREATE_VCPU, env->cpu_index);
212 if (ret < 0) {
213 DPRINTF("kvm_create_vcpu failed\n");
214 goto err;
215 }
216
217 env->kvm_fd = ret;
218 env->kvm_state = s;
219
220 mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0);
221 if (mmap_size < 0) {
222 DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n");
223 goto err;
224 }
225
226 env->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED,
227 env->kvm_fd, 0);
228 if (env->kvm_run == MAP_FAILED) {
229 ret = -errno;
230 DPRINTF("mmap'ing vcpu state failed\n");
231 goto err;
232 }
233
234 if (s->coalesced_mmio && !s->coalesced_mmio_ring) {
235 s->coalesced_mmio_ring =
236 (void *)env->kvm_run + s->coalesced_mmio * PAGE_SIZE;
237 }
238
239 ret = kvm_arch_init_vcpu(env);
240 if (ret == 0) {
241 qemu_register_reset(kvm_reset_vcpu, env);
242 kvm_arch_reset_vcpu(env);
243 }
244 err:
245 return ret;
246 }
247
248 /*
249 * dirty pages logging control
250 */
251 static int kvm_dirty_pages_log_change(target_phys_addr_t phys_addr,
252 ram_addr_t size, int flags, int mask)
253 {
254 KVMState *s = kvm_state;
255 KVMSlot *mem = kvm_lookup_matching_slot(s, phys_addr, phys_addr + size);
256 int old_flags;
257
258 if (mem == NULL) {
259 fprintf(stderr, "BUG: %s: invalid parameters " TARGET_FMT_plx "-"
260 TARGET_FMT_plx "\n", __func__, phys_addr,
261 (target_phys_addr_t)(phys_addr + size - 1));
262 return -EINVAL;
263 }
264
265 old_flags = mem->flags;
266
267 flags = (mem->flags & ~mask) | flags;
268 mem->flags = flags;
269
270 /* If nothing changed effectively, no need to issue ioctl */
271 if (s->migration_log) {
272 flags |= KVM_MEM_LOG_DIRTY_PAGES;
273 }
274 if (flags == old_flags) {
275 return 0;
276 }
277
278 return kvm_set_user_memory_region(s, mem);
279 }
280
281 int kvm_log_start(target_phys_addr_t phys_addr, ram_addr_t size)
282 {
283 return kvm_dirty_pages_log_change(phys_addr, size, KVM_MEM_LOG_DIRTY_PAGES,
284 KVM_MEM_LOG_DIRTY_PAGES);
285 }
286
287 int kvm_log_stop(target_phys_addr_t phys_addr, ram_addr_t size)
288 {
289 return kvm_dirty_pages_log_change(phys_addr, size, 0,
290 KVM_MEM_LOG_DIRTY_PAGES);
291 }
292
293 static int kvm_set_migration_log(int enable)
294 {
295 KVMState *s = kvm_state;
296 KVMSlot *mem;
297 int i, err;
298
299 s->migration_log = enable;
300
301 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
302 mem = &s->slots[i];
303
304 if (!mem->memory_size) {
305 continue;
306 }
307 if (!!(mem->flags & KVM_MEM_LOG_DIRTY_PAGES) == enable) {
308 continue;
309 }
310 err = kvm_set_user_memory_region(s, mem);
311 if (err) {
312 return err;
313 }
314 }
315 return 0;
316 }
317
318 /* get kvm's dirty pages bitmap and update qemu's */
319 static int kvm_get_dirty_pages_log_range(unsigned long start_addr,
320 unsigned long *bitmap,
321 unsigned long offset,
322 unsigned long mem_size)
323 {
324 unsigned int i, j;
325 unsigned long page_number, addr, addr1, c;
326 ram_addr_t ram_addr;
327 unsigned int len = ((mem_size / TARGET_PAGE_SIZE) + HOST_LONG_BITS - 1) /
328 HOST_LONG_BITS;
329
330 /*
331 * bitmap-traveling is faster than memory-traveling (for addr...)
332 * especially when most of the memory is not dirty.
333 */
334 for (i = 0; i < len; i++) {
335 if (bitmap[i] != 0) {
336 c = leul_to_cpu(bitmap[i]);
337 do {
338 j = ffsl(c) - 1;
339 c &= ~(1ul << j);
340 page_number = i * HOST_LONG_BITS + j;
341 addr1 = page_number * TARGET_PAGE_SIZE;
342 addr = offset + addr1;
343 ram_addr = cpu_get_physical_page_desc(addr);
344 cpu_physical_memory_set_dirty(ram_addr);
345 } while (c != 0);
346 }
347 }
348 return 0;
349 }
350
351 #define ALIGN(x, y) (((x)+(y)-1) & ~((y)-1))
352
353 /**
354 * kvm_physical_sync_dirty_bitmap - Grab dirty bitmap from kernel space
355 * This function updates qemu's dirty bitmap using cpu_physical_memory_set_dirty().
356 * This means all bits are set to dirty.
357 *
358 * @start_add: start of logged region.
359 * @end_addr: end of logged region.
360 */
361 static int kvm_physical_sync_dirty_bitmap(target_phys_addr_t start_addr,
362 target_phys_addr_t end_addr)
363 {
364 KVMState *s = kvm_state;
365 unsigned long size, allocated_size = 0;
366 KVMDirtyLog d;
367 KVMSlot *mem;
368 int ret = 0;
369
370 d.dirty_bitmap = NULL;
371 while (start_addr < end_addr) {
372 mem = kvm_lookup_overlapping_slot(s, start_addr, end_addr);
373 if (mem == NULL) {
374 break;
375 }
376
377 size = ALIGN(((mem->memory_size) >> TARGET_PAGE_BITS), HOST_LONG_BITS) / 8;
378 if (!d.dirty_bitmap) {
379 d.dirty_bitmap = qemu_malloc(size);
380 } else if (size > allocated_size) {
381 d.dirty_bitmap = qemu_realloc(d.dirty_bitmap, size);
382 }
383 allocated_size = size;
384 memset(d.dirty_bitmap, 0, allocated_size);
385
386 d.slot = mem->slot;
387
388 if (kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d) == -1) {
389 DPRINTF("ioctl failed %d\n", errno);
390 ret = -1;
391 break;
392 }
393
394 kvm_get_dirty_pages_log_range(mem->start_addr, d.dirty_bitmap,
395 mem->start_addr, mem->memory_size);
396 start_addr = mem->start_addr + mem->memory_size;
397 }
398 qemu_free(d.dirty_bitmap);
399
400 return ret;
401 }
402
403 int kvm_coalesce_mmio_region(target_phys_addr_t start, ram_addr_t size)
404 {
405 int ret = -ENOSYS;
406 KVMState *s = kvm_state;
407
408 if (s->coalesced_mmio) {
409 struct kvm_coalesced_mmio_zone zone;
410
411 zone.addr = start;
412 zone.size = size;
413
414 ret = kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone);
415 }
416
417 return ret;
418 }
419
420 int kvm_uncoalesce_mmio_region(target_phys_addr_t start, ram_addr_t size)
421 {
422 int ret = -ENOSYS;
423 KVMState *s = kvm_state;
424
425 if (s->coalesced_mmio) {
426 struct kvm_coalesced_mmio_zone zone;
427
428 zone.addr = start;
429 zone.size = size;
430
431 ret = kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone);
432 }
433
434 return ret;
435 }
436
437 int kvm_check_extension(KVMState *s, unsigned int extension)
438 {
439 int ret;
440
441 ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension);
442 if (ret < 0) {
443 ret = 0;
444 }
445
446 return ret;
447 }
448
449 static int kvm_check_many_ioeventfds(void)
450 {
451 /* Older kernels have a 6 device limit on the KVM io bus. Find out so we
452 * can avoid creating too many ioeventfds.
453 */
454 #ifdef CONFIG_EVENTFD
455 int ioeventfds[7];
456 int i, ret = 0;
457 for (i = 0; i < ARRAY_SIZE(ioeventfds); i++) {
458 ioeventfds[i] = eventfd(0, EFD_CLOEXEC);
459 if (ioeventfds[i] < 0) {
460 break;
461 }
462 ret = kvm_set_ioeventfd_pio_word(ioeventfds[i], 0, i, true);
463 if (ret < 0) {
464 close(ioeventfds[i]);
465 break;
466 }
467 }
468
469 /* Decide whether many devices are supported or not */
470 ret = i == ARRAY_SIZE(ioeventfds);
471
472 while (i-- > 0) {
473 kvm_set_ioeventfd_pio_word(ioeventfds[i], 0, i, false);
474 close(ioeventfds[i]);
475 }
476 return ret;
477 #else
478 return 0;
479 #endif
480 }
481
482 static const KVMCapabilityInfo *
483 kvm_check_extension_list(KVMState *s, const KVMCapabilityInfo *list)
484 {
485 while (list->name) {
486 if (!kvm_check_extension(s, list->value)) {
487 return list;
488 }
489 list++;
490 }
491 return NULL;
492 }
493
494 static void kvm_set_phys_mem(target_phys_addr_t start_addr, ram_addr_t size,
495 ram_addr_t phys_offset)
496 {
497 KVMState *s = kvm_state;
498 ram_addr_t flags = phys_offset & ~TARGET_PAGE_MASK;
499 KVMSlot *mem, old;
500 int err;
501
502 /* kvm works in page size chunks, but the function may be called
503 with sub-page size and unaligned start address. */
504 size = TARGET_PAGE_ALIGN(size);
505 start_addr = TARGET_PAGE_ALIGN(start_addr);
506
507 /* KVM does not support read-only slots */
508 phys_offset &= ~IO_MEM_ROM;
509
510 while (1) {
511 mem = kvm_lookup_overlapping_slot(s, start_addr, start_addr + size);
512 if (!mem) {
513 break;
514 }
515
516 if (flags < IO_MEM_UNASSIGNED && start_addr >= mem->start_addr &&
517 (start_addr + size <= mem->start_addr + mem->memory_size) &&
518 (phys_offset - start_addr == mem->phys_offset - mem->start_addr)) {
519 /* The new slot fits into the existing one and comes with
520 * identical parameters - nothing to be done. */
521 return;
522 }
523
524 old = *mem;
525
526 /* unregister the overlapping slot */
527 mem->memory_size = 0;
528 err = kvm_set_user_memory_region(s, mem);
529 if (err) {
530 fprintf(stderr, "%s: error unregistering overlapping slot: %s\n",
531 __func__, strerror(-err));
532 abort();
533 }
534
535 /* Workaround for older KVM versions: we can't join slots, even not by
536 * unregistering the previous ones and then registering the larger
537 * slot. We have to maintain the existing fragmentation. Sigh.
538 *
539 * This workaround assumes that the new slot starts at the same
540 * address as the first existing one. If not or if some overlapping
541 * slot comes around later, we will fail (not seen in practice so far)
542 * - and actually require a recent KVM version. */
543 if (s->broken_set_mem_region &&
544 old.start_addr == start_addr && old.memory_size < size &&
545 flags < IO_MEM_UNASSIGNED) {
546 mem = kvm_alloc_slot(s);
547 mem->memory_size = old.memory_size;
548 mem->start_addr = old.start_addr;
549 mem->phys_offset = old.phys_offset;
550 mem->flags = 0;
551
552 err = kvm_set_user_memory_region(s, mem);
553 if (err) {
554 fprintf(stderr, "%s: error updating slot: %s\n", __func__,
555 strerror(-err));
556 abort();
557 }
558
559 start_addr += old.memory_size;
560 phys_offset += old.memory_size;
561 size -= old.memory_size;
562 continue;
563 }
564
565 /* register prefix slot */
566 if (old.start_addr < start_addr) {
567 mem = kvm_alloc_slot(s);
568 mem->memory_size = start_addr - old.start_addr;
569 mem->start_addr = old.start_addr;
570 mem->phys_offset = old.phys_offset;
571 mem->flags = 0;
572
573 err = kvm_set_user_memory_region(s, mem);
574 if (err) {
575 fprintf(stderr, "%s: error registering prefix slot: %s\n",
576 __func__, strerror(-err));
577 abort();
578 }
579 }
580
581 /* register suffix slot */
582 if (old.start_addr + old.memory_size > start_addr + size) {
583 ram_addr_t size_delta;
584
585 mem = kvm_alloc_slot(s);
586 mem->start_addr = start_addr + size;
587 size_delta = mem->start_addr - old.start_addr;
588 mem->memory_size = old.memory_size - size_delta;
589 mem->phys_offset = old.phys_offset + size_delta;
590 mem->flags = 0;
591
592 err = kvm_set_user_memory_region(s, mem);
593 if (err) {
594 fprintf(stderr, "%s: error registering suffix slot: %s\n",
595 __func__, strerror(-err));
596 abort();
597 }
598 }
599 }
600
601 /* in case the KVM bug workaround already "consumed" the new slot */
602 if (!size) {
603 return;
604 }
605 /* KVM does not need to know about this memory */
606 if (flags >= IO_MEM_UNASSIGNED) {
607 return;
608 }
609 mem = kvm_alloc_slot(s);
610 mem->memory_size = size;
611 mem->start_addr = start_addr;
612 mem->phys_offset = phys_offset;
613 mem->flags = 0;
614
615 err = kvm_set_user_memory_region(s, mem);
616 if (err) {
617 fprintf(stderr, "%s: error registering slot: %s\n", __func__,
618 strerror(-err));
619 abort();
620 }
621 }
622
623 static void kvm_client_set_memory(struct CPUPhysMemoryClient *client,
624 target_phys_addr_t start_addr,
625 ram_addr_t size, ram_addr_t phys_offset)
626 {
627 kvm_set_phys_mem(start_addr, size, phys_offset);
628 }
629
630 static int kvm_client_sync_dirty_bitmap(struct CPUPhysMemoryClient *client,
631 target_phys_addr_t start_addr,
632 target_phys_addr_t end_addr)
633 {
634 return kvm_physical_sync_dirty_bitmap(start_addr, end_addr);
635 }
636
637 static int kvm_client_migration_log(struct CPUPhysMemoryClient *client,
638 int enable)
639 {
640 return kvm_set_migration_log(enable);
641 }
642
643 static CPUPhysMemoryClient kvm_cpu_phys_memory_client = {
644 .set_memory = kvm_client_set_memory,
645 .sync_dirty_bitmap = kvm_client_sync_dirty_bitmap,
646 .migration_log = kvm_client_migration_log,
647 };
648
649 int kvm_init(void)
650 {
651 static const char upgrade_note[] =
652 "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n"
653 "(see http://sourceforge.net/projects/kvm).\n";
654 KVMState *s;
655 const KVMCapabilityInfo *missing_cap;
656 int ret;
657 int i;
658
659 s = qemu_mallocz(sizeof(KVMState));
660
661 #ifdef KVM_CAP_SET_GUEST_DEBUG
662 QTAILQ_INIT(&s->kvm_sw_breakpoints);
663 #endif
664 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
665 s->slots[i].slot = i;
666 }
667 s->vmfd = -1;
668 s->fd = qemu_open("/dev/kvm", O_RDWR);
669 if (s->fd == -1) {
670 fprintf(stderr, "Could not access KVM kernel module: %m\n");
671 ret = -errno;
672 goto err;
673 }
674
675 ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0);
676 if (ret < KVM_API_VERSION) {
677 if (ret > 0) {
678 ret = -EINVAL;
679 }
680 fprintf(stderr, "kvm version too old\n");
681 goto err;
682 }
683
684 if (ret > KVM_API_VERSION) {
685 ret = -EINVAL;
686 fprintf(stderr, "kvm version not supported\n");
687 goto err;
688 }
689
690 s->vmfd = kvm_ioctl(s, KVM_CREATE_VM, 0);
691 if (s->vmfd < 0) {
692 #ifdef TARGET_S390X
693 fprintf(stderr, "Please add the 'switch_amode' kernel parameter to "
694 "your host kernel command line\n");
695 #endif
696 goto err;
697 }
698
699 missing_cap = kvm_check_extension_list(s, kvm_required_capabilites);
700 if (!missing_cap) {
701 missing_cap =
702 kvm_check_extension_list(s, kvm_arch_required_capabilities);
703 }
704 if (missing_cap) {
705 ret = -EINVAL;
706 fprintf(stderr, "kvm does not support %s\n%s",
707 missing_cap->name, upgrade_note);
708 goto err;
709 }
710
711 s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO);
712
713 s->broken_set_mem_region = 1;
714 #ifdef KVM_CAP_JOIN_MEMORY_REGIONS_WORKS
715 ret = kvm_check_extension(s, KVM_CAP_JOIN_MEMORY_REGIONS_WORKS);
716 if (ret > 0) {
717 s->broken_set_mem_region = 0;
718 }
719 #endif
720
721 s->vcpu_events = 0;
722 #ifdef KVM_CAP_VCPU_EVENTS
723 s->vcpu_events = kvm_check_extension(s, KVM_CAP_VCPU_EVENTS);
724 #endif
725
726 s->robust_singlestep = 0;
727 #ifdef KVM_CAP_X86_ROBUST_SINGLESTEP
728 s->robust_singlestep =
729 kvm_check_extension(s, KVM_CAP_X86_ROBUST_SINGLESTEP);
730 #endif
731
732 s->debugregs = 0;
733 #ifdef KVM_CAP_DEBUGREGS
734 s->debugregs = kvm_check_extension(s, KVM_CAP_DEBUGREGS);
735 #endif
736
737 s->xsave = 0;
738 #ifdef KVM_CAP_XSAVE
739 s->xsave = kvm_check_extension(s, KVM_CAP_XSAVE);
740 #endif
741
742 s->xcrs = 0;
743 #ifdef KVM_CAP_XCRS
744 s->xcrs = kvm_check_extension(s, KVM_CAP_XCRS);
745 #endif
746
747 ret = kvm_arch_init(s);
748 if (ret < 0) {
749 goto err;
750 }
751
752 kvm_state = s;
753 cpu_register_phys_memory_client(&kvm_cpu_phys_memory_client);
754
755 s->many_ioeventfds = kvm_check_many_ioeventfds();
756
757 return 0;
758
759 err:
760 if (s) {
761 if (s->vmfd != -1) {
762 close(s->vmfd);
763 }
764 if (s->fd != -1) {
765 close(s->fd);
766 }
767 }
768 qemu_free(s);
769
770 return ret;
771 }
772
773 static int kvm_handle_io(uint16_t port, void *data, int direction, int size,
774 uint32_t count)
775 {
776 int i;
777 uint8_t *ptr = data;
778
779 for (i = 0; i < count; i++) {
780 if (direction == KVM_EXIT_IO_IN) {
781 switch (size) {
782 case 1:
783 stb_p(ptr, cpu_inb(port));
784 break;
785 case 2:
786 stw_p(ptr, cpu_inw(port));
787 break;
788 case 4:
789 stl_p(ptr, cpu_inl(port));
790 break;
791 }
792 } else {
793 switch (size) {
794 case 1:
795 cpu_outb(port, ldub_p(ptr));
796 break;
797 case 2:
798 cpu_outw(port, lduw_p(ptr));
799 break;
800 case 4:
801 cpu_outl(port, ldl_p(ptr));
802 break;
803 }
804 }
805
806 ptr += size;
807 }
808
809 return 1;
810 }
811
812 #ifdef KVM_CAP_INTERNAL_ERROR_DATA
813 static int kvm_handle_internal_error(CPUState *env, struct kvm_run *run)
814 {
815 fprintf(stderr, "KVM internal error.");
816 if (kvm_check_extension(kvm_state, KVM_CAP_INTERNAL_ERROR_DATA)) {
817 int i;
818
819 fprintf(stderr, " Suberror: %d\n", run->internal.suberror);
820 for (i = 0; i < run->internal.ndata; ++i) {
821 fprintf(stderr, "extra data[%d]: %"PRIx64"\n",
822 i, (uint64_t)run->internal.data[i]);
823 }
824 } else {
825 fprintf(stderr, "\n");
826 }
827 if (run->internal.suberror == KVM_INTERNAL_ERROR_EMULATION) {
828 fprintf(stderr, "emulation failure\n");
829 if (!kvm_arch_stop_on_emulation_error(env)) {
830 cpu_dump_state(env, stderr, fprintf, CPU_DUMP_CODE);
831 return 0;
832 }
833 }
834 /* FIXME: Should trigger a qmp message to let management know
835 * something went wrong.
836 */
837 return -1;
838 }
839 #endif
840
841 void kvm_flush_coalesced_mmio_buffer(void)
842 {
843 KVMState *s = kvm_state;
844 if (s->coalesced_mmio_ring) {
845 struct kvm_coalesced_mmio_ring *ring = s->coalesced_mmio_ring;
846 while (ring->first != ring->last) {
847 struct kvm_coalesced_mmio *ent;
848
849 ent = &ring->coalesced_mmio[ring->first];
850
851 cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len);
852 smp_wmb();
853 ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX;
854 }
855 }
856 }
857
858 static void do_kvm_cpu_synchronize_state(void *_env)
859 {
860 CPUState *env = _env;
861
862 if (!env->kvm_vcpu_dirty) {
863 kvm_arch_get_registers(env);
864 env->kvm_vcpu_dirty = 1;
865 }
866 }
867
868 void kvm_cpu_synchronize_state(CPUState *env)
869 {
870 if (!env->kvm_vcpu_dirty) {
871 run_on_cpu(env, do_kvm_cpu_synchronize_state, env);
872 }
873 }
874
875 void kvm_cpu_synchronize_post_reset(CPUState *env)
876 {
877 kvm_arch_put_registers(env, KVM_PUT_RESET_STATE);
878 env->kvm_vcpu_dirty = 0;
879 }
880
881 void kvm_cpu_synchronize_post_init(CPUState *env)
882 {
883 kvm_arch_put_registers(env, KVM_PUT_FULL_STATE);
884 env->kvm_vcpu_dirty = 0;
885 }
886
887 int kvm_cpu_exec(CPUState *env)
888 {
889 struct kvm_run *run = env->kvm_run;
890 int ret;
891
892 DPRINTF("kvm_cpu_exec()\n");
893
894 do {
895 #ifndef CONFIG_IOTHREAD
896 if (env->exit_request) {
897 DPRINTF("interrupt exit requested\n");
898 ret = 0;
899 break;
900 }
901 #endif
902
903 if (kvm_arch_process_irqchip_events(env)) {
904 ret = 0;
905 break;
906 }
907
908 if (env->kvm_vcpu_dirty) {
909 kvm_arch_put_registers(env, KVM_PUT_RUNTIME_STATE);
910 env->kvm_vcpu_dirty = 0;
911 }
912
913 kvm_arch_pre_run(env, run);
914 cpu_single_env = NULL;
915 qemu_mutex_unlock_iothread();
916 ret = kvm_vcpu_ioctl(env, KVM_RUN, 0);
917 qemu_mutex_lock_iothread();
918 cpu_single_env = env;
919 kvm_arch_post_run(env, run);
920
921 if (ret == -EINTR || ret == -EAGAIN) {
922 cpu_exit(env);
923 DPRINTF("io window exit\n");
924 ret = 0;
925 break;
926 }
927
928 if (ret < 0) {
929 DPRINTF("kvm run failed %s\n", strerror(-ret));
930 abort();
931 }
932
933 kvm_flush_coalesced_mmio_buffer();
934
935 ret = 0; /* exit loop */
936 switch (run->exit_reason) {
937 case KVM_EXIT_IO:
938 DPRINTF("handle_io\n");
939 ret = kvm_handle_io(run->io.port,
940 (uint8_t *)run + run->io.data_offset,
941 run->io.direction,
942 run->io.size,
943 run->io.count);
944 break;
945 case KVM_EXIT_MMIO:
946 DPRINTF("handle_mmio\n");
947 cpu_physical_memory_rw(run->mmio.phys_addr,
948 run->mmio.data,
949 run->mmio.len,
950 run->mmio.is_write);
951 ret = 1;
952 break;
953 case KVM_EXIT_IRQ_WINDOW_OPEN:
954 DPRINTF("irq_window_open\n");
955 break;
956 case KVM_EXIT_SHUTDOWN:
957 DPRINTF("shutdown\n");
958 qemu_system_reset_request();
959 ret = 1;
960 break;
961 case KVM_EXIT_UNKNOWN:
962 fprintf(stderr, "KVM: unknown exit, hardware reason %" PRIx64 "\n",
963 (uint64_t)run->hw.hardware_exit_reason);
964 ret = -1;
965 break;
966 #ifdef KVM_CAP_INTERNAL_ERROR_DATA
967 case KVM_EXIT_INTERNAL_ERROR:
968 ret = kvm_handle_internal_error(env, run);
969 break;
970 #endif
971 case KVM_EXIT_DEBUG:
972 DPRINTF("kvm_exit_debug\n");
973 #ifdef KVM_CAP_SET_GUEST_DEBUG
974 if (kvm_arch_debug(&run->debug.arch)) {
975 env->exception_index = EXCP_DEBUG;
976 return 0;
977 }
978 /* re-enter, this exception was guest-internal */
979 ret = 1;
980 #endif /* KVM_CAP_SET_GUEST_DEBUG */
981 break;
982 default:
983 DPRINTF("kvm_arch_handle_exit\n");
984 ret = kvm_arch_handle_exit(env, run);
985 break;
986 }
987 } while (ret > 0);
988
989 if (ret < 0) {
990 cpu_dump_state(env, stderr, fprintf, CPU_DUMP_CODE);
991 vm_stop(0);
992 env->exit_request = 1;
993 }
994 if (env->exit_request) {
995 env->exit_request = 0;
996 env->exception_index = EXCP_INTERRUPT;
997 }
998
999 return ret;
1000 }
1001
1002 int kvm_ioctl(KVMState *s, int type, ...)
1003 {
1004 int ret;
1005 void *arg;
1006 va_list ap;
1007
1008 va_start(ap, type);
1009 arg = va_arg(ap, void *);
1010 va_end(ap);
1011
1012 ret = ioctl(s->fd, type, arg);
1013 if (ret == -1) {
1014 ret = -errno;
1015 }
1016 return ret;
1017 }
1018
1019 int kvm_vm_ioctl(KVMState *s, int type, ...)
1020 {
1021 int ret;
1022 void *arg;
1023 va_list ap;
1024
1025 va_start(ap, type);
1026 arg = va_arg(ap, void *);
1027 va_end(ap);
1028
1029 ret = ioctl(s->vmfd, type, arg);
1030 if (ret == -1) {
1031 ret = -errno;
1032 }
1033 return ret;
1034 }
1035
1036 int kvm_vcpu_ioctl(CPUState *env, int type, ...)
1037 {
1038 int ret;
1039 void *arg;
1040 va_list ap;
1041
1042 va_start(ap, type);
1043 arg = va_arg(ap, void *);
1044 va_end(ap);
1045
1046 ret = ioctl(env->kvm_fd, type, arg);
1047 if (ret == -1) {
1048 ret = -errno;
1049 }
1050 return ret;
1051 }
1052
1053 int kvm_has_sync_mmu(void)
1054 {
1055 return kvm_check_extension(kvm_state, KVM_CAP_SYNC_MMU);
1056 }
1057
1058 int kvm_has_vcpu_events(void)
1059 {
1060 return kvm_state->vcpu_events;
1061 }
1062
1063 int kvm_has_robust_singlestep(void)
1064 {
1065 return kvm_state->robust_singlestep;
1066 }
1067
1068 int kvm_has_debugregs(void)
1069 {
1070 return kvm_state->debugregs;
1071 }
1072
1073 int kvm_has_xsave(void)
1074 {
1075 return kvm_state->xsave;
1076 }
1077
1078 int kvm_has_xcrs(void)
1079 {
1080 return kvm_state->xcrs;
1081 }
1082
1083 int kvm_has_many_ioeventfds(void)
1084 {
1085 if (!kvm_enabled()) {
1086 return 0;
1087 }
1088 return kvm_state->many_ioeventfds;
1089 }
1090
1091 void kvm_setup_guest_memory(void *start, size_t size)
1092 {
1093 if (!kvm_has_sync_mmu()) {
1094 int ret = qemu_madvise(start, size, QEMU_MADV_DONTFORK);
1095
1096 if (ret) {
1097 perror("qemu_madvise");
1098 fprintf(stderr,
1099 "Need MADV_DONTFORK in absence of synchronous KVM MMU\n");
1100 exit(1);
1101 }
1102 }
1103 }
1104
1105 #ifdef KVM_CAP_SET_GUEST_DEBUG
1106 struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUState *env,
1107 target_ulong pc)
1108 {
1109 struct kvm_sw_breakpoint *bp;
1110
1111 QTAILQ_FOREACH(bp, &env->kvm_state->kvm_sw_breakpoints, entry) {
1112 if (bp->pc == pc) {
1113 return bp;
1114 }
1115 }
1116 return NULL;
1117 }
1118
1119 int kvm_sw_breakpoints_active(CPUState *env)
1120 {
1121 return !QTAILQ_EMPTY(&env->kvm_state->kvm_sw_breakpoints);
1122 }
1123
1124 struct kvm_set_guest_debug_data {
1125 struct kvm_guest_debug dbg;
1126 CPUState *env;
1127 int err;
1128 };
1129
1130 static void kvm_invoke_set_guest_debug(void *data)
1131 {
1132 struct kvm_set_guest_debug_data *dbg_data = data;
1133 CPUState *env = dbg_data->env;
1134
1135 dbg_data->err = kvm_vcpu_ioctl(env, KVM_SET_GUEST_DEBUG, &dbg_data->dbg);
1136 }
1137
1138 int kvm_update_guest_debug(CPUState *env, unsigned long reinject_trap)
1139 {
1140 struct kvm_set_guest_debug_data data;
1141
1142 data.dbg.control = reinject_trap;
1143
1144 if (env->singlestep_enabled) {
1145 data.dbg.control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP;
1146 }
1147 kvm_arch_update_guest_debug(env, &data.dbg);
1148 data.env = env;
1149
1150 run_on_cpu(env, kvm_invoke_set_guest_debug, &data);
1151 return data.err;
1152 }
1153
1154 int kvm_insert_breakpoint(CPUState *current_env, target_ulong addr,
1155 target_ulong len, int type)
1156 {
1157 struct kvm_sw_breakpoint *bp;
1158 CPUState *env;
1159 int err;
1160
1161 if (type == GDB_BREAKPOINT_SW) {
1162 bp = kvm_find_sw_breakpoint(current_env, addr);
1163 if (bp) {
1164 bp->use_count++;
1165 return 0;
1166 }
1167
1168 bp = qemu_malloc(sizeof(struct kvm_sw_breakpoint));
1169 if (!bp) {
1170 return -ENOMEM;
1171 }
1172
1173 bp->pc = addr;
1174 bp->use_count = 1;
1175 err = kvm_arch_insert_sw_breakpoint(current_env, bp);
1176 if (err) {
1177 free(bp);
1178 return err;
1179 }
1180
1181 QTAILQ_INSERT_HEAD(&current_env->kvm_state->kvm_sw_breakpoints,
1182 bp, entry);
1183 } else {
1184 err = kvm_arch_insert_hw_breakpoint(addr, len, type);
1185 if (err) {
1186 return err;
1187 }
1188 }
1189
1190 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1191 err = kvm_update_guest_debug(env, 0);
1192 if (err) {
1193 return err;
1194 }
1195 }
1196 return 0;
1197 }
1198
1199 int kvm_remove_breakpoint(CPUState *current_env, target_ulong addr,
1200 target_ulong len, int type)
1201 {
1202 struct kvm_sw_breakpoint *bp;
1203 CPUState *env;
1204 int err;
1205
1206 if (type == GDB_BREAKPOINT_SW) {
1207 bp = kvm_find_sw_breakpoint(current_env, addr);
1208 if (!bp) {
1209 return -ENOENT;
1210 }
1211
1212 if (bp->use_count > 1) {
1213 bp->use_count--;
1214 return 0;
1215 }
1216
1217 err = kvm_arch_remove_sw_breakpoint(current_env, bp);
1218 if (err) {
1219 return err;
1220 }
1221
1222 QTAILQ_REMOVE(&current_env->kvm_state->kvm_sw_breakpoints, bp, entry);
1223 qemu_free(bp);
1224 } else {
1225 err = kvm_arch_remove_hw_breakpoint(addr, len, type);
1226 if (err) {
1227 return err;
1228 }
1229 }
1230
1231 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1232 err = kvm_update_guest_debug(env, 0);
1233 if (err) {
1234 return err;
1235 }
1236 }
1237 return 0;
1238 }
1239
1240 void kvm_remove_all_breakpoints(CPUState *current_env)
1241 {
1242 struct kvm_sw_breakpoint *bp, *next;
1243 KVMState *s = current_env->kvm_state;
1244 CPUState *env;
1245
1246 QTAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) {
1247 if (kvm_arch_remove_sw_breakpoint(current_env, bp) != 0) {
1248 /* Try harder to find a CPU that currently sees the breakpoint. */
1249 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1250 if (kvm_arch_remove_sw_breakpoint(env, bp) == 0) {
1251 break;
1252 }
1253 }
1254 }
1255 }
1256 kvm_arch_remove_all_hw_breakpoints();
1257
1258 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1259 kvm_update_guest_debug(env, 0);
1260 }
1261 }
1262
1263 #else /* !KVM_CAP_SET_GUEST_DEBUG */
1264
1265 int kvm_update_guest_debug(CPUState *env, unsigned long reinject_trap)
1266 {
1267 return -EINVAL;
1268 }
1269
1270 int kvm_insert_breakpoint(CPUState *current_env, target_ulong addr,
1271 target_ulong len, int type)
1272 {
1273 return -EINVAL;
1274 }
1275
1276 int kvm_remove_breakpoint(CPUState *current_env, target_ulong addr,
1277 target_ulong len, int type)
1278 {
1279 return -EINVAL;
1280 }
1281
1282 void kvm_remove_all_breakpoints(CPUState *current_env)
1283 {
1284 }
1285 #endif /* !KVM_CAP_SET_GUEST_DEBUG */
1286
1287 int kvm_set_signal_mask(CPUState *env, const sigset_t *sigset)
1288 {
1289 struct kvm_signal_mask *sigmask;
1290 int r;
1291
1292 if (!sigset) {
1293 return kvm_vcpu_ioctl(env, KVM_SET_SIGNAL_MASK, NULL);
1294 }
1295
1296 sigmask = qemu_malloc(sizeof(*sigmask) + sizeof(*sigset));
1297
1298 sigmask->len = 8;
1299 memcpy(sigmask->sigset, sigset, sizeof(*sigset));
1300 r = kvm_vcpu_ioctl(env, KVM_SET_SIGNAL_MASK, sigmask);
1301 free(sigmask);
1302
1303 return r;
1304 }
1305
1306 int kvm_set_ioeventfd_mmio_long(int fd, uint32_t addr, uint32_t val, bool assign)
1307 {
1308 #ifdef KVM_IOEVENTFD
1309 int ret;
1310 struct kvm_ioeventfd iofd;
1311
1312 iofd.datamatch = val;
1313 iofd.addr = addr;
1314 iofd.len = 4;
1315 iofd.flags = KVM_IOEVENTFD_FLAG_DATAMATCH;
1316 iofd.fd = fd;
1317
1318 if (!kvm_enabled()) {
1319 return -ENOSYS;
1320 }
1321
1322 if (!assign) {
1323 iofd.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
1324 }
1325
1326 ret = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &iofd);
1327
1328 if (ret < 0) {
1329 return -errno;
1330 }
1331
1332 return 0;
1333 #else
1334 return -ENOSYS;
1335 #endif
1336 }
1337
1338 int kvm_set_ioeventfd_pio_word(int fd, uint16_t addr, uint16_t val, bool assign)
1339 {
1340 #ifdef KVM_IOEVENTFD
1341 struct kvm_ioeventfd kick = {
1342 .datamatch = val,
1343 .addr = addr,
1344 .len = 2,
1345 .flags = KVM_IOEVENTFD_FLAG_DATAMATCH | KVM_IOEVENTFD_FLAG_PIO,
1346 .fd = fd,
1347 };
1348 int r;
1349 if (!kvm_enabled()) {
1350 return -ENOSYS;
1351 }
1352 if (!assign) {
1353 kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
1354 }
1355 r = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick);
1356 if (r < 0) {
1357 return r;
1358 }
1359 return 0;
1360 #else
1361 return -ENOSYS;
1362 #endif
1363 }