]> git.proxmox.com Git - qemu.git/blob - kvm-all.c
3ee0ac7e7bb1d82bb20a577f83e3e2094978fa9a
[qemu.git] / kvm-all.c
1 /*
2 * QEMU KVM support
3 *
4 * Copyright IBM, Corp. 2008
5 * Red Hat, Inc. 2008
6 *
7 * Authors:
8 * Anthony Liguori <aliguori@us.ibm.com>
9 * Glauber Costa <gcosta@redhat.com>
10 *
11 * This work is licensed under the terms of the GNU GPL, version 2 or later.
12 * See the COPYING file in the top-level directory.
13 *
14 */
15
16 #include <sys/types.h>
17 #include <sys/ioctl.h>
18 #include <sys/mman.h>
19 #include <stdarg.h>
20
21 #include <linux/kvm.h>
22
23 #include "qemu-common.h"
24 #include "qemu/atomic.h"
25 #include "qemu/option.h"
26 #include "qemu/config-file.h"
27 #include "sysemu/sysemu.h"
28 #include "hw/hw.h"
29 #include "hw/pci/msi.h"
30 #include "exec/gdbstub.h"
31 #include "sysemu/kvm.h"
32 #include "qemu/bswap.h"
33 #include "exec/memory.h"
34 #include "exec/address-spaces.h"
35 #include "qemu/event_notifier.h"
36 #include "trace.h"
37
38 /* This check must be after config-host.h is included */
39 #ifdef CONFIG_EVENTFD
40 #include <sys/eventfd.h>
41 #endif
42
43 #ifdef CONFIG_VALGRIND_H
44 #include <valgrind/memcheck.h>
45 #endif
46
47 /* KVM uses PAGE_SIZE in its definition of COALESCED_MMIO_MAX */
48 #define PAGE_SIZE TARGET_PAGE_SIZE
49
50 //#define DEBUG_KVM
51
52 #ifdef DEBUG_KVM
53 #define DPRINTF(fmt, ...) \
54 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
55 #else
56 #define DPRINTF(fmt, ...) \
57 do { } while (0)
58 #endif
59
60 #define KVM_MSI_HASHTAB_SIZE 256
61
62 typedef struct KVMSlot
63 {
64 hwaddr start_addr;
65 ram_addr_t memory_size;
66 void *ram;
67 int slot;
68 int flags;
69 } KVMSlot;
70
71 typedef struct kvm_dirty_log KVMDirtyLog;
72
73 struct KVMState
74 {
75 KVMSlot slots[32];
76 int fd;
77 int vmfd;
78 int coalesced_mmio;
79 struct kvm_coalesced_mmio_ring *coalesced_mmio_ring;
80 bool coalesced_flush_in_progress;
81 int broken_set_mem_region;
82 int migration_log;
83 int vcpu_events;
84 int robust_singlestep;
85 int debugregs;
86 #ifdef KVM_CAP_SET_GUEST_DEBUG
87 struct kvm_sw_breakpoint_head kvm_sw_breakpoints;
88 #endif
89 int pit_state2;
90 int xsave, xcrs;
91 int many_ioeventfds;
92 int intx_set_mask;
93 /* The man page (and posix) say ioctl numbers are signed int, but
94 * they're not. Linux, glibc and *BSD all treat ioctl numbers as
95 * unsigned, and treating them as signed here can break things */
96 unsigned irq_set_ioctl;
97 #ifdef KVM_CAP_IRQ_ROUTING
98 struct kvm_irq_routing *irq_routes;
99 int nr_allocated_irq_routes;
100 uint32_t *used_gsi_bitmap;
101 unsigned int gsi_count;
102 QTAILQ_HEAD(msi_hashtab, KVMMSIRoute) msi_hashtab[KVM_MSI_HASHTAB_SIZE];
103 bool direct_msi;
104 #endif
105 };
106
107 KVMState *kvm_state;
108 bool kvm_kernel_irqchip;
109 bool kvm_async_interrupts_allowed;
110 bool kvm_halt_in_kernel_allowed;
111 bool kvm_irqfds_allowed;
112 bool kvm_msi_via_irqfd_allowed;
113 bool kvm_gsi_routing_allowed;
114 bool kvm_allowed;
115 bool kvm_readonly_mem_allowed;
116
117 static const KVMCapabilityInfo kvm_required_capabilites[] = {
118 KVM_CAP_INFO(USER_MEMORY),
119 KVM_CAP_INFO(DESTROY_MEMORY_REGION_WORKS),
120 KVM_CAP_LAST_INFO
121 };
122
123 static KVMSlot *kvm_alloc_slot(KVMState *s)
124 {
125 int i;
126
127 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
128 if (s->slots[i].memory_size == 0) {
129 return &s->slots[i];
130 }
131 }
132
133 fprintf(stderr, "%s: no free slot available\n", __func__);
134 abort();
135 }
136
137 static KVMSlot *kvm_lookup_matching_slot(KVMState *s,
138 hwaddr start_addr,
139 hwaddr end_addr)
140 {
141 int i;
142
143 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
144 KVMSlot *mem = &s->slots[i];
145
146 if (start_addr == mem->start_addr &&
147 end_addr == mem->start_addr + mem->memory_size) {
148 return mem;
149 }
150 }
151
152 return NULL;
153 }
154
155 /*
156 * Find overlapping slot with lowest start address
157 */
158 static KVMSlot *kvm_lookup_overlapping_slot(KVMState *s,
159 hwaddr start_addr,
160 hwaddr end_addr)
161 {
162 KVMSlot *found = NULL;
163 int i;
164
165 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
166 KVMSlot *mem = &s->slots[i];
167
168 if (mem->memory_size == 0 ||
169 (found && found->start_addr < mem->start_addr)) {
170 continue;
171 }
172
173 if (end_addr > mem->start_addr &&
174 start_addr < mem->start_addr + mem->memory_size) {
175 found = mem;
176 }
177 }
178
179 return found;
180 }
181
182 int kvm_physical_memory_addr_from_host(KVMState *s, void *ram,
183 hwaddr *phys_addr)
184 {
185 int i;
186
187 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
188 KVMSlot *mem = &s->slots[i];
189
190 if (ram >= mem->ram && ram < mem->ram + mem->memory_size) {
191 *phys_addr = mem->start_addr + (ram - mem->ram);
192 return 1;
193 }
194 }
195
196 return 0;
197 }
198
199 static int kvm_set_user_memory_region(KVMState *s, KVMSlot *slot)
200 {
201 struct kvm_userspace_memory_region mem;
202
203 mem.slot = slot->slot;
204 mem.guest_phys_addr = slot->start_addr;
205 mem.userspace_addr = (unsigned long)slot->ram;
206 mem.flags = slot->flags;
207 if (s->migration_log) {
208 mem.flags |= KVM_MEM_LOG_DIRTY_PAGES;
209 }
210
211 if (slot->memory_size && mem.flags & KVM_MEM_READONLY) {
212 /* Set the slot size to 0 before setting the slot to the desired
213 * value. This is needed based on KVM commit 75d61fbc. */
214 mem.memory_size = 0;
215 kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
216 }
217 mem.memory_size = slot->memory_size;
218 return kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
219 }
220
221 static void kvm_reset_vcpu(void *opaque)
222 {
223 CPUState *cpu = opaque;
224
225 kvm_arch_reset_vcpu(cpu);
226 }
227
228 int kvm_init_vcpu(CPUState *cpu)
229 {
230 KVMState *s = kvm_state;
231 long mmap_size;
232 int ret;
233
234 DPRINTF("kvm_init_vcpu\n");
235
236 ret = kvm_vm_ioctl(s, KVM_CREATE_VCPU, (void *)kvm_arch_vcpu_id(cpu));
237 if (ret < 0) {
238 DPRINTF("kvm_create_vcpu failed\n");
239 goto err;
240 }
241
242 cpu->kvm_fd = ret;
243 cpu->kvm_state = s;
244 cpu->kvm_vcpu_dirty = true;
245
246 mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0);
247 if (mmap_size < 0) {
248 ret = mmap_size;
249 DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n");
250 goto err;
251 }
252
253 cpu->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED,
254 cpu->kvm_fd, 0);
255 if (cpu->kvm_run == MAP_FAILED) {
256 ret = -errno;
257 DPRINTF("mmap'ing vcpu state failed\n");
258 goto err;
259 }
260
261 if (s->coalesced_mmio && !s->coalesced_mmio_ring) {
262 s->coalesced_mmio_ring =
263 (void *)cpu->kvm_run + s->coalesced_mmio * PAGE_SIZE;
264 }
265
266 ret = kvm_arch_init_vcpu(cpu);
267 if (ret == 0) {
268 qemu_register_reset(kvm_reset_vcpu, cpu);
269 kvm_arch_reset_vcpu(cpu);
270 }
271 err:
272 return ret;
273 }
274
275 /*
276 * dirty pages logging control
277 */
278
279 static int kvm_mem_flags(KVMState *s, bool log_dirty, bool readonly)
280 {
281 int flags = 0;
282 flags = log_dirty ? KVM_MEM_LOG_DIRTY_PAGES : 0;
283 if (readonly && kvm_readonly_mem_allowed) {
284 flags |= KVM_MEM_READONLY;
285 }
286 return flags;
287 }
288
289 static int kvm_slot_dirty_pages_log_change(KVMSlot *mem, bool log_dirty)
290 {
291 KVMState *s = kvm_state;
292 int flags, mask = KVM_MEM_LOG_DIRTY_PAGES;
293 int old_flags;
294
295 old_flags = mem->flags;
296
297 flags = (mem->flags & ~mask) | kvm_mem_flags(s, log_dirty, false);
298 mem->flags = flags;
299
300 /* If nothing changed effectively, no need to issue ioctl */
301 if (s->migration_log) {
302 flags |= KVM_MEM_LOG_DIRTY_PAGES;
303 }
304
305 if (flags == old_flags) {
306 return 0;
307 }
308
309 return kvm_set_user_memory_region(s, mem);
310 }
311
312 static int kvm_dirty_pages_log_change(hwaddr phys_addr,
313 ram_addr_t size, bool log_dirty)
314 {
315 KVMState *s = kvm_state;
316 KVMSlot *mem = kvm_lookup_matching_slot(s, phys_addr, phys_addr + size);
317
318 if (mem == NULL) {
319 fprintf(stderr, "BUG: %s: invalid parameters " TARGET_FMT_plx "-"
320 TARGET_FMT_plx "\n", __func__, phys_addr,
321 (hwaddr)(phys_addr + size - 1));
322 return -EINVAL;
323 }
324 return kvm_slot_dirty_pages_log_change(mem, log_dirty);
325 }
326
327 static void kvm_log_start(MemoryListener *listener,
328 MemoryRegionSection *section)
329 {
330 int r;
331
332 r = kvm_dirty_pages_log_change(section->offset_within_address_space,
333 int128_get64(section->size), true);
334 if (r < 0) {
335 abort();
336 }
337 }
338
339 static void kvm_log_stop(MemoryListener *listener,
340 MemoryRegionSection *section)
341 {
342 int r;
343
344 r = kvm_dirty_pages_log_change(section->offset_within_address_space,
345 int128_get64(section->size), false);
346 if (r < 0) {
347 abort();
348 }
349 }
350
351 static int kvm_set_migration_log(int enable)
352 {
353 KVMState *s = kvm_state;
354 KVMSlot *mem;
355 int i, err;
356
357 s->migration_log = enable;
358
359 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
360 mem = &s->slots[i];
361
362 if (!mem->memory_size) {
363 continue;
364 }
365 if (!!(mem->flags & KVM_MEM_LOG_DIRTY_PAGES) == enable) {
366 continue;
367 }
368 err = kvm_set_user_memory_region(s, mem);
369 if (err) {
370 return err;
371 }
372 }
373 return 0;
374 }
375
376 /* get kvm's dirty pages bitmap and update qemu's */
377 static int kvm_get_dirty_pages_log_range(MemoryRegionSection *section,
378 unsigned long *bitmap)
379 {
380 unsigned int i, j;
381 unsigned long page_number, c;
382 hwaddr addr, addr1;
383 unsigned int pages = int128_get64(section->size) / getpagesize();
384 unsigned int len = (pages + HOST_LONG_BITS - 1) / HOST_LONG_BITS;
385 unsigned long hpratio = getpagesize() / TARGET_PAGE_SIZE;
386
387 /*
388 * bitmap-traveling is faster than memory-traveling (for addr...)
389 * especially when most of the memory is not dirty.
390 */
391 for (i = 0; i < len; i++) {
392 if (bitmap[i] != 0) {
393 c = leul_to_cpu(bitmap[i]);
394 do {
395 j = ffsl(c) - 1;
396 c &= ~(1ul << j);
397 page_number = (i * HOST_LONG_BITS + j) * hpratio;
398 addr1 = page_number * TARGET_PAGE_SIZE;
399 addr = section->offset_within_region + addr1;
400 memory_region_set_dirty(section->mr, addr,
401 TARGET_PAGE_SIZE * hpratio);
402 } while (c != 0);
403 }
404 }
405 return 0;
406 }
407
408 #define ALIGN(x, y) (((x)+(y)-1) & ~((y)-1))
409
410 /**
411 * kvm_physical_sync_dirty_bitmap - Grab dirty bitmap from kernel space
412 * This function updates qemu's dirty bitmap using
413 * memory_region_set_dirty(). This means all bits are set
414 * to dirty.
415 *
416 * @start_add: start of logged region.
417 * @end_addr: end of logged region.
418 */
419 static int kvm_physical_sync_dirty_bitmap(MemoryRegionSection *section)
420 {
421 KVMState *s = kvm_state;
422 unsigned long size, allocated_size = 0;
423 KVMDirtyLog d;
424 KVMSlot *mem;
425 int ret = 0;
426 hwaddr start_addr = section->offset_within_address_space;
427 hwaddr end_addr = start_addr + int128_get64(section->size);
428
429 d.dirty_bitmap = NULL;
430 while (start_addr < end_addr) {
431 mem = kvm_lookup_overlapping_slot(s, start_addr, end_addr);
432 if (mem == NULL) {
433 break;
434 }
435
436 /* XXX bad kernel interface alert
437 * For dirty bitmap, kernel allocates array of size aligned to
438 * bits-per-long. But for case when the kernel is 64bits and
439 * the userspace is 32bits, userspace can't align to the same
440 * bits-per-long, since sizeof(long) is different between kernel
441 * and user space. This way, userspace will provide buffer which
442 * may be 4 bytes less than the kernel will use, resulting in
443 * userspace memory corruption (which is not detectable by valgrind
444 * too, in most cases).
445 * So for now, let's align to 64 instead of HOST_LONG_BITS here, in
446 * a hope that sizeof(long) wont become >8 any time soon.
447 */
448 size = ALIGN(((mem->memory_size) >> TARGET_PAGE_BITS),
449 /*HOST_LONG_BITS*/ 64) / 8;
450 if (!d.dirty_bitmap) {
451 d.dirty_bitmap = g_malloc(size);
452 } else if (size > allocated_size) {
453 d.dirty_bitmap = g_realloc(d.dirty_bitmap, size);
454 }
455 allocated_size = size;
456 memset(d.dirty_bitmap, 0, allocated_size);
457
458 d.slot = mem->slot;
459
460 if (kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d) == -1) {
461 DPRINTF("ioctl failed %d\n", errno);
462 ret = -1;
463 break;
464 }
465
466 kvm_get_dirty_pages_log_range(section, d.dirty_bitmap);
467 start_addr = mem->start_addr + mem->memory_size;
468 }
469 g_free(d.dirty_bitmap);
470
471 return ret;
472 }
473
474 static void kvm_coalesce_mmio_region(MemoryListener *listener,
475 MemoryRegionSection *secion,
476 hwaddr start, hwaddr size)
477 {
478 KVMState *s = kvm_state;
479
480 if (s->coalesced_mmio) {
481 struct kvm_coalesced_mmio_zone zone;
482
483 zone.addr = start;
484 zone.size = size;
485 zone.pad = 0;
486
487 (void)kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone);
488 }
489 }
490
491 static void kvm_uncoalesce_mmio_region(MemoryListener *listener,
492 MemoryRegionSection *secion,
493 hwaddr start, hwaddr size)
494 {
495 KVMState *s = kvm_state;
496
497 if (s->coalesced_mmio) {
498 struct kvm_coalesced_mmio_zone zone;
499
500 zone.addr = start;
501 zone.size = size;
502 zone.pad = 0;
503
504 (void)kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone);
505 }
506 }
507
508 int kvm_check_extension(KVMState *s, unsigned int extension)
509 {
510 int ret;
511
512 ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension);
513 if (ret < 0) {
514 ret = 0;
515 }
516
517 return ret;
518 }
519
520 static int kvm_set_ioeventfd_mmio(int fd, uint32_t addr, uint32_t val,
521 bool assign, uint32_t size, bool datamatch)
522 {
523 int ret;
524 struct kvm_ioeventfd iofd;
525
526 iofd.datamatch = datamatch ? val : 0;
527 iofd.addr = addr;
528 iofd.len = size;
529 iofd.flags = 0;
530 iofd.fd = fd;
531
532 if (!kvm_enabled()) {
533 return -ENOSYS;
534 }
535
536 if (datamatch) {
537 iofd.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH;
538 }
539 if (!assign) {
540 iofd.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
541 }
542
543 ret = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &iofd);
544
545 if (ret < 0) {
546 return -errno;
547 }
548
549 return 0;
550 }
551
552 static int kvm_set_ioeventfd_pio(int fd, uint16_t addr, uint16_t val,
553 bool assign, uint32_t size, bool datamatch)
554 {
555 struct kvm_ioeventfd kick = {
556 .datamatch = datamatch ? val : 0,
557 .addr = addr,
558 .flags = KVM_IOEVENTFD_FLAG_PIO,
559 .len = size,
560 .fd = fd,
561 };
562 int r;
563 if (!kvm_enabled()) {
564 return -ENOSYS;
565 }
566 if (datamatch) {
567 kick.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH;
568 }
569 if (!assign) {
570 kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
571 }
572 r = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick);
573 if (r < 0) {
574 return r;
575 }
576 return 0;
577 }
578
579
580 static int kvm_check_many_ioeventfds(void)
581 {
582 /* Userspace can use ioeventfd for io notification. This requires a host
583 * that supports eventfd(2) and an I/O thread; since eventfd does not
584 * support SIGIO it cannot interrupt the vcpu.
585 *
586 * Older kernels have a 6 device limit on the KVM io bus. Find out so we
587 * can avoid creating too many ioeventfds.
588 */
589 #if defined(CONFIG_EVENTFD)
590 int ioeventfds[7];
591 int i, ret = 0;
592 for (i = 0; i < ARRAY_SIZE(ioeventfds); i++) {
593 ioeventfds[i] = eventfd(0, EFD_CLOEXEC);
594 if (ioeventfds[i] < 0) {
595 break;
596 }
597 ret = kvm_set_ioeventfd_pio(ioeventfds[i], 0, i, true, 2, true);
598 if (ret < 0) {
599 close(ioeventfds[i]);
600 break;
601 }
602 }
603
604 /* Decide whether many devices are supported or not */
605 ret = i == ARRAY_SIZE(ioeventfds);
606
607 while (i-- > 0) {
608 kvm_set_ioeventfd_pio(ioeventfds[i], 0, i, false, 2, true);
609 close(ioeventfds[i]);
610 }
611 return ret;
612 #else
613 return 0;
614 #endif
615 }
616
617 static const KVMCapabilityInfo *
618 kvm_check_extension_list(KVMState *s, const KVMCapabilityInfo *list)
619 {
620 while (list->name) {
621 if (!kvm_check_extension(s, list->value)) {
622 return list;
623 }
624 list++;
625 }
626 return NULL;
627 }
628
629 static void kvm_set_phys_mem(MemoryRegionSection *section, bool add)
630 {
631 KVMState *s = kvm_state;
632 KVMSlot *mem, old;
633 int err;
634 MemoryRegion *mr = section->mr;
635 bool log_dirty = memory_region_is_logging(mr);
636 bool writeable = !mr->readonly && !mr->rom_device;
637 bool readonly_flag = mr->readonly || memory_region_is_romd(mr);
638 hwaddr start_addr = section->offset_within_address_space;
639 ram_addr_t size = int128_get64(section->size);
640 void *ram = NULL;
641 unsigned delta;
642
643 /* kvm works in page size chunks, but the function may be called
644 with sub-page size and unaligned start address. */
645 delta = TARGET_PAGE_ALIGN(size) - size;
646 if (delta > size) {
647 return;
648 }
649 start_addr += delta;
650 size -= delta;
651 size &= TARGET_PAGE_MASK;
652 if (!size || (start_addr & ~TARGET_PAGE_MASK)) {
653 return;
654 }
655
656 if (!memory_region_is_ram(mr)) {
657 if (writeable || !kvm_readonly_mem_allowed) {
658 return;
659 } else if (!mr->romd_mode) {
660 /* If the memory device is not in romd_mode, then we actually want
661 * to remove the kvm memory slot so all accesses will trap. */
662 add = false;
663 }
664 }
665
666 ram = memory_region_get_ram_ptr(mr) + section->offset_within_region + delta;
667
668 while (1) {
669 mem = kvm_lookup_overlapping_slot(s, start_addr, start_addr + size);
670 if (!mem) {
671 break;
672 }
673
674 if (add && start_addr >= mem->start_addr &&
675 (start_addr + size <= mem->start_addr + mem->memory_size) &&
676 (ram - start_addr == mem->ram - mem->start_addr)) {
677 /* The new slot fits into the existing one and comes with
678 * identical parameters - update flags and done. */
679 kvm_slot_dirty_pages_log_change(mem, log_dirty);
680 return;
681 }
682
683 old = *mem;
684
685 if (mem->flags & KVM_MEM_LOG_DIRTY_PAGES) {
686 kvm_physical_sync_dirty_bitmap(section);
687 }
688
689 /* unregister the overlapping slot */
690 mem->memory_size = 0;
691 err = kvm_set_user_memory_region(s, mem);
692 if (err) {
693 fprintf(stderr, "%s: error unregistering overlapping slot: %s\n",
694 __func__, strerror(-err));
695 abort();
696 }
697
698 /* Workaround for older KVM versions: we can't join slots, even not by
699 * unregistering the previous ones and then registering the larger
700 * slot. We have to maintain the existing fragmentation. Sigh.
701 *
702 * This workaround assumes that the new slot starts at the same
703 * address as the first existing one. If not or if some overlapping
704 * slot comes around later, we will fail (not seen in practice so far)
705 * - and actually require a recent KVM version. */
706 if (s->broken_set_mem_region &&
707 old.start_addr == start_addr && old.memory_size < size && add) {
708 mem = kvm_alloc_slot(s);
709 mem->memory_size = old.memory_size;
710 mem->start_addr = old.start_addr;
711 mem->ram = old.ram;
712 mem->flags = kvm_mem_flags(s, log_dirty, readonly_flag);
713
714 err = kvm_set_user_memory_region(s, mem);
715 if (err) {
716 fprintf(stderr, "%s: error updating slot: %s\n", __func__,
717 strerror(-err));
718 abort();
719 }
720
721 start_addr += old.memory_size;
722 ram += old.memory_size;
723 size -= old.memory_size;
724 continue;
725 }
726
727 /* register prefix slot */
728 if (old.start_addr < start_addr) {
729 mem = kvm_alloc_slot(s);
730 mem->memory_size = start_addr - old.start_addr;
731 mem->start_addr = old.start_addr;
732 mem->ram = old.ram;
733 mem->flags = kvm_mem_flags(s, log_dirty, readonly_flag);
734
735 err = kvm_set_user_memory_region(s, mem);
736 if (err) {
737 fprintf(stderr, "%s: error registering prefix slot: %s\n",
738 __func__, strerror(-err));
739 #ifdef TARGET_PPC
740 fprintf(stderr, "%s: This is probably because your kernel's " \
741 "PAGE_SIZE is too big. Please try to use 4k " \
742 "PAGE_SIZE!\n", __func__);
743 #endif
744 abort();
745 }
746 }
747
748 /* register suffix slot */
749 if (old.start_addr + old.memory_size > start_addr + size) {
750 ram_addr_t size_delta;
751
752 mem = kvm_alloc_slot(s);
753 mem->start_addr = start_addr + size;
754 size_delta = mem->start_addr - old.start_addr;
755 mem->memory_size = old.memory_size - size_delta;
756 mem->ram = old.ram + size_delta;
757 mem->flags = kvm_mem_flags(s, log_dirty, readonly_flag);
758
759 err = kvm_set_user_memory_region(s, mem);
760 if (err) {
761 fprintf(stderr, "%s: error registering suffix slot: %s\n",
762 __func__, strerror(-err));
763 abort();
764 }
765 }
766 }
767
768 /* in case the KVM bug workaround already "consumed" the new slot */
769 if (!size) {
770 return;
771 }
772 if (!add) {
773 return;
774 }
775 mem = kvm_alloc_slot(s);
776 mem->memory_size = size;
777 mem->start_addr = start_addr;
778 mem->ram = ram;
779 mem->flags = kvm_mem_flags(s, log_dirty, readonly_flag);
780
781 err = kvm_set_user_memory_region(s, mem);
782 if (err) {
783 fprintf(stderr, "%s: error registering slot: %s\n", __func__,
784 strerror(-err));
785 abort();
786 }
787 }
788
789 static void kvm_region_add(MemoryListener *listener,
790 MemoryRegionSection *section)
791 {
792 kvm_set_phys_mem(section, true);
793 }
794
795 static void kvm_region_del(MemoryListener *listener,
796 MemoryRegionSection *section)
797 {
798 kvm_set_phys_mem(section, false);
799 }
800
801 static void kvm_log_sync(MemoryListener *listener,
802 MemoryRegionSection *section)
803 {
804 int r;
805
806 r = kvm_physical_sync_dirty_bitmap(section);
807 if (r < 0) {
808 abort();
809 }
810 }
811
812 static void kvm_log_global_start(struct MemoryListener *listener)
813 {
814 int r;
815
816 r = kvm_set_migration_log(1);
817 assert(r >= 0);
818 }
819
820 static void kvm_log_global_stop(struct MemoryListener *listener)
821 {
822 int r;
823
824 r = kvm_set_migration_log(0);
825 assert(r >= 0);
826 }
827
828 static void kvm_mem_ioeventfd_add(MemoryListener *listener,
829 MemoryRegionSection *section,
830 bool match_data, uint64_t data,
831 EventNotifier *e)
832 {
833 int fd = event_notifier_get_fd(e);
834 int r;
835
836 r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space,
837 data, true, int128_get64(section->size),
838 match_data);
839 if (r < 0) {
840 fprintf(stderr, "%s: error adding ioeventfd: %s\n",
841 __func__, strerror(-r));
842 abort();
843 }
844 }
845
846 static void kvm_mem_ioeventfd_del(MemoryListener *listener,
847 MemoryRegionSection *section,
848 bool match_data, uint64_t data,
849 EventNotifier *e)
850 {
851 int fd = event_notifier_get_fd(e);
852 int r;
853
854 r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space,
855 data, false, int128_get64(section->size),
856 match_data);
857 if (r < 0) {
858 abort();
859 }
860 }
861
862 static void kvm_io_ioeventfd_add(MemoryListener *listener,
863 MemoryRegionSection *section,
864 bool match_data, uint64_t data,
865 EventNotifier *e)
866 {
867 int fd = event_notifier_get_fd(e);
868 int r;
869
870 r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space,
871 data, true, int128_get64(section->size),
872 match_data);
873 if (r < 0) {
874 fprintf(stderr, "%s: error adding ioeventfd: %s\n",
875 __func__, strerror(-r));
876 abort();
877 }
878 }
879
880 static void kvm_io_ioeventfd_del(MemoryListener *listener,
881 MemoryRegionSection *section,
882 bool match_data, uint64_t data,
883 EventNotifier *e)
884
885 {
886 int fd = event_notifier_get_fd(e);
887 int r;
888
889 r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space,
890 data, false, int128_get64(section->size),
891 match_data);
892 if (r < 0) {
893 abort();
894 }
895 }
896
897 static MemoryListener kvm_memory_listener = {
898 .region_add = kvm_region_add,
899 .region_del = kvm_region_del,
900 .log_start = kvm_log_start,
901 .log_stop = kvm_log_stop,
902 .log_sync = kvm_log_sync,
903 .log_global_start = kvm_log_global_start,
904 .log_global_stop = kvm_log_global_stop,
905 .eventfd_add = kvm_mem_ioeventfd_add,
906 .eventfd_del = kvm_mem_ioeventfd_del,
907 .coalesced_mmio_add = kvm_coalesce_mmio_region,
908 .coalesced_mmio_del = kvm_uncoalesce_mmio_region,
909 .priority = 10,
910 };
911
912 static MemoryListener kvm_io_listener = {
913 .eventfd_add = kvm_io_ioeventfd_add,
914 .eventfd_del = kvm_io_ioeventfd_del,
915 .priority = 10,
916 };
917
918 static void kvm_handle_interrupt(CPUState *cpu, int mask)
919 {
920 cpu->interrupt_request |= mask;
921
922 if (!qemu_cpu_is_self(cpu)) {
923 qemu_cpu_kick(cpu);
924 }
925 }
926
927 int kvm_set_irq(KVMState *s, int irq, int level)
928 {
929 struct kvm_irq_level event;
930 int ret;
931
932 assert(kvm_async_interrupts_enabled());
933
934 event.level = level;
935 event.irq = irq;
936 ret = kvm_vm_ioctl(s, s->irq_set_ioctl, &event);
937 if (ret < 0) {
938 perror("kvm_set_irq");
939 abort();
940 }
941
942 return (s->irq_set_ioctl == KVM_IRQ_LINE) ? 1 : event.status;
943 }
944
945 #ifdef KVM_CAP_IRQ_ROUTING
946 typedef struct KVMMSIRoute {
947 struct kvm_irq_routing_entry kroute;
948 QTAILQ_ENTRY(KVMMSIRoute) entry;
949 } KVMMSIRoute;
950
951 static void set_gsi(KVMState *s, unsigned int gsi)
952 {
953 s->used_gsi_bitmap[gsi / 32] |= 1U << (gsi % 32);
954 }
955
956 static void clear_gsi(KVMState *s, unsigned int gsi)
957 {
958 s->used_gsi_bitmap[gsi / 32] &= ~(1U << (gsi % 32));
959 }
960
961 void kvm_init_irq_routing(KVMState *s)
962 {
963 int gsi_count, i;
964
965 gsi_count = kvm_check_extension(s, KVM_CAP_IRQ_ROUTING);
966 if (gsi_count > 0) {
967 unsigned int gsi_bits, i;
968
969 /* Round up so we can search ints using ffs */
970 gsi_bits = ALIGN(gsi_count, 32);
971 s->used_gsi_bitmap = g_malloc0(gsi_bits / 8);
972 s->gsi_count = gsi_count;
973
974 /* Mark any over-allocated bits as already in use */
975 for (i = gsi_count; i < gsi_bits; i++) {
976 set_gsi(s, i);
977 }
978 }
979
980 s->irq_routes = g_malloc0(sizeof(*s->irq_routes));
981 s->nr_allocated_irq_routes = 0;
982
983 if (!s->direct_msi) {
984 for (i = 0; i < KVM_MSI_HASHTAB_SIZE; i++) {
985 QTAILQ_INIT(&s->msi_hashtab[i]);
986 }
987 }
988
989 kvm_arch_init_irq_routing(s);
990 }
991
992 void kvm_irqchip_commit_routes(KVMState *s)
993 {
994 int ret;
995
996 s->irq_routes->flags = 0;
997 ret = kvm_vm_ioctl(s, KVM_SET_GSI_ROUTING, s->irq_routes);
998 assert(ret == 0);
999 }
1000
1001 static void kvm_add_routing_entry(KVMState *s,
1002 struct kvm_irq_routing_entry *entry)
1003 {
1004 struct kvm_irq_routing_entry *new;
1005 int n, size;
1006
1007 if (s->irq_routes->nr == s->nr_allocated_irq_routes) {
1008 n = s->nr_allocated_irq_routes * 2;
1009 if (n < 64) {
1010 n = 64;
1011 }
1012 size = sizeof(struct kvm_irq_routing);
1013 size += n * sizeof(*new);
1014 s->irq_routes = g_realloc(s->irq_routes, size);
1015 s->nr_allocated_irq_routes = n;
1016 }
1017 n = s->irq_routes->nr++;
1018 new = &s->irq_routes->entries[n];
1019
1020 *new = *entry;
1021
1022 set_gsi(s, entry->gsi);
1023 }
1024
1025 static int kvm_update_routing_entry(KVMState *s,
1026 struct kvm_irq_routing_entry *new_entry)
1027 {
1028 struct kvm_irq_routing_entry *entry;
1029 int n;
1030
1031 for (n = 0; n < s->irq_routes->nr; n++) {
1032 entry = &s->irq_routes->entries[n];
1033 if (entry->gsi != new_entry->gsi) {
1034 continue;
1035 }
1036
1037 if(!memcmp(entry, new_entry, sizeof *entry)) {
1038 return 0;
1039 }
1040
1041 *entry = *new_entry;
1042
1043 kvm_irqchip_commit_routes(s);
1044
1045 return 0;
1046 }
1047
1048 return -ESRCH;
1049 }
1050
1051 void kvm_irqchip_add_irq_route(KVMState *s, int irq, int irqchip, int pin)
1052 {
1053 struct kvm_irq_routing_entry e = {};
1054
1055 assert(pin < s->gsi_count);
1056
1057 e.gsi = irq;
1058 e.type = KVM_IRQ_ROUTING_IRQCHIP;
1059 e.flags = 0;
1060 e.u.irqchip.irqchip = irqchip;
1061 e.u.irqchip.pin = pin;
1062 kvm_add_routing_entry(s, &e);
1063 }
1064
1065 void kvm_irqchip_release_virq(KVMState *s, int virq)
1066 {
1067 struct kvm_irq_routing_entry *e;
1068 int i;
1069
1070 for (i = 0; i < s->irq_routes->nr; i++) {
1071 e = &s->irq_routes->entries[i];
1072 if (e->gsi == virq) {
1073 s->irq_routes->nr--;
1074 *e = s->irq_routes->entries[s->irq_routes->nr];
1075 }
1076 }
1077 clear_gsi(s, virq);
1078 }
1079
1080 static unsigned int kvm_hash_msi(uint32_t data)
1081 {
1082 /* This is optimized for IA32 MSI layout. However, no other arch shall
1083 * repeat the mistake of not providing a direct MSI injection API. */
1084 return data & 0xff;
1085 }
1086
1087 static void kvm_flush_dynamic_msi_routes(KVMState *s)
1088 {
1089 KVMMSIRoute *route, *next;
1090 unsigned int hash;
1091
1092 for (hash = 0; hash < KVM_MSI_HASHTAB_SIZE; hash++) {
1093 QTAILQ_FOREACH_SAFE(route, &s->msi_hashtab[hash], entry, next) {
1094 kvm_irqchip_release_virq(s, route->kroute.gsi);
1095 QTAILQ_REMOVE(&s->msi_hashtab[hash], route, entry);
1096 g_free(route);
1097 }
1098 }
1099 }
1100
1101 static int kvm_irqchip_get_virq(KVMState *s)
1102 {
1103 uint32_t *word = s->used_gsi_bitmap;
1104 int max_words = ALIGN(s->gsi_count, 32) / 32;
1105 int i, bit;
1106 bool retry = true;
1107
1108 again:
1109 /* Return the lowest unused GSI in the bitmap */
1110 for (i = 0; i < max_words; i++) {
1111 bit = ffs(~word[i]);
1112 if (!bit) {
1113 continue;
1114 }
1115
1116 return bit - 1 + i * 32;
1117 }
1118 if (!s->direct_msi && retry) {
1119 retry = false;
1120 kvm_flush_dynamic_msi_routes(s);
1121 goto again;
1122 }
1123 return -ENOSPC;
1124
1125 }
1126
1127 static KVMMSIRoute *kvm_lookup_msi_route(KVMState *s, MSIMessage msg)
1128 {
1129 unsigned int hash = kvm_hash_msi(msg.data);
1130 KVMMSIRoute *route;
1131
1132 QTAILQ_FOREACH(route, &s->msi_hashtab[hash], entry) {
1133 if (route->kroute.u.msi.address_lo == (uint32_t)msg.address &&
1134 route->kroute.u.msi.address_hi == (msg.address >> 32) &&
1135 route->kroute.u.msi.data == le32_to_cpu(msg.data)) {
1136 return route;
1137 }
1138 }
1139 return NULL;
1140 }
1141
1142 int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg)
1143 {
1144 struct kvm_msi msi;
1145 KVMMSIRoute *route;
1146
1147 if (s->direct_msi) {
1148 msi.address_lo = (uint32_t)msg.address;
1149 msi.address_hi = msg.address >> 32;
1150 msi.data = le32_to_cpu(msg.data);
1151 msi.flags = 0;
1152 memset(msi.pad, 0, sizeof(msi.pad));
1153
1154 return kvm_vm_ioctl(s, KVM_SIGNAL_MSI, &msi);
1155 }
1156
1157 route = kvm_lookup_msi_route(s, msg);
1158 if (!route) {
1159 int virq;
1160
1161 virq = kvm_irqchip_get_virq(s);
1162 if (virq < 0) {
1163 return virq;
1164 }
1165
1166 route = g_malloc0(sizeof(KVMMSIRoute));
1167 route->kroute.gsi = virq;
1168 route->kroute.type = KVM_IRQ_ROUTING_MSI;
1169 route->kroute.flags = 0;
1170 route->kroute.u.msi.address_lo = (uint32_t)msg.address;
1171 route->kroute.u.msi.address_hi = msg.address >> 32;
1172 route->kroute.u.msi.data = le32_to_cpu(msg.data);
1173
1174 kvm_add_routing_entry(s, &route->kroute);
1175 kvm_irqchip_commit_routes(s);
1176
1177 QTAILQ_INSERT_TAIL(&s->msi_hashtab[kvm_hash_msi(msg.data)], route,
1178 entry);
1179 }
1180
1181 assert(route->kroute.type == KVM_IRQ_ROUTING_MSI);
1182
1183 return kvm_set_irq(s, route->kroute.gsi, 1);
1184 }
1185
1186 int kvm_irqchip_add_msi_route(KVMState *s, MSIMessage msg)
1187 {
1188 struct kvm_irq_routing_entry kroute = {};
1189 int virq;
1190
1191 if (!kvm_gsi_routing_enabled()) {
1192 return -ENOSYS;
1193 }
1194
1195 virq = kvm_irqchip_get_virq(s);
1196 if (virq < 0) {
1197 return virq;
1198 }
1199
1200 kroute.gsi = virq;
1201 kroute.type = KVM_IRQ_ROUTING_MSI;
1202 kroute.flags = 0;
1203 kroute.u.msi.address_lo = (uint32_t)msg.address;
1204 kroute.u.msi.address_hi = msg.address >> 32;
1205 kroute.u.msi.data = le32_to_cpu(msg.data);
1206
1207 kvm_add_routing_entry(s, &kroute);
1208 kvm_irqchip_commit_routes(s);
1209
1210 return virq;
1211 }
1212
1213 int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg)
1214 {
1215 struct kvm_irq_routing_entry kroute = {};
1216
1217 if (!kvm_irqchip_in_kernel()) {
1218 return -ENOSYS;
1219 }
1220
1221 kroute.gsi = virq;
1222 kroute.type = KVM_IRQ_ROUTING_MSI;
1223 kroute.flags = 0;
1224 kroute.u.msi.address_lo = (uint32_t)msg.address;
1225 kroute.u.msi.address_hi = msg.address >> 32;
1226 kroute.u.msi.data = le32_to_cpu(msg.data);
1227
1228 return kvm_update_routing_entry(s, &kroute);
1229 }
1230
1231 static int kvm_irqchip_assign_irqfd(KVMState *s, int fd, int virq, bool assign)
1232 {
1233 struct kvm_irqfd irqfd = {
1234 .fd = fd,
1235 .gsi = virq,
1236 .flags = assign ? 0 : KVM_IRQFD_FLAG_DEASSIGN,
1237 };
1238
1239 if (!kvm_irqfds_enabled()) {
1240 return -ENOSYS;
1241 }
1242
1243 return kvm_vm_ioctl(s, KVM_IRQFD, &irqfd);
1244 }
1245
1246 #else /* !KVM_CAP_IRQ_ROUTING */
1247
1248 void kvm_init_irq_routing(KVMState *s)
1249 {
1250 }
1251
1252 void kvm_irqchip_release_virq(KVMState *s, int virq)
1253 {
1254 }
1255
1256 int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg)
1257 {
1258 abort();
1259 }
1260
1261 int kvm_irqchip_add_msi_route(KVMState *s, MSIMessage msg)
1262 {
1263 return -ENOSYS;
1264 }
1265
1266 static int kvm_irqchip_assign_irqfd(KVMState *s, int fd, int virq, bool assign)
1267 {
1268 abort();
1269 }
1270
1271 int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg)
1272 {
1273 return -ENOSYS;
1274 }
1275 #endif /* !KVM_CAP_IRQ_ROUTING */
1276
1277 int kvm_irqchip_add_irqfd_notifier(KVMState *s, EventNotifier *n, int virq)
1278 {
1279 return kvm_irqchip_assign_irqfd(s, event_notifier_get_fd(n), virq, true);
1280 }
1281
1282 int kvm_irqchip_remove_irqfd_notifier(KVMState *s, EventNotifier *n, int virq)
1283 {
1284 return kvm_irqchip_assign_irqfd(s, event_notifier_get_fd(n), virq, false);
1285 }
1286
1287 static int kvm_irqchip_create(KVMState *s)
1288 {
1289 QemuOptsList *list = qemu_find_opts("machine");
1290 int ret;
1291
1292 if (QTAILQ_EMPTY(&list->head) ||
1293 !qemu_opt_get_bool(QTAILQ_FIRST(&list->head),
1294 "kernel_irqchip", true) ||
1295 !kvm_check_extension(s, KVM_CAP_IRQCHIP)) {
1296 return 0;
1297 }
1298
1299 ret = kvm_vm_ioctl(s, KVM_CREATE_IRQCHIP);
1300 if (ret < 0) {
1301 fprintf(stderr, "Create kernel irqchip failed\n");
1302 return ret;
1303 }
1304
1305 kvm_kernel_irqchip = true;
1306 /* If we have an in-kernel IRQ chip then we must have asynchronous
1307 * interrupt delivery (though the reverse is not necessarily true)
1308 */
1309 kvm_async_interrupts_allowed = true;
1310 kvm_halt_in_kernel_allowed = true;
1311
1312 kvm_init_irq_routing(s);
1313
1314 return 0;
1315 }
1316
1317 static int kvm_max_vcpus(KVMState *s)
1318 {
1319 int ret;
1320
1321 /* Find number of supported CPUs using the recommended
1322 * procedure from the kernel API documentation to cope with
1323 * older kernels that may be missing capabilities.
1324 */
1325 ret = kvm_check_extension(s, KVM_CAP_MAX_VCPUS);
1326 if (ret) {
1327 return ret;
1328 }
1329 ret = kvm_check_extension(s, KVM_CAP_NR_VCPUS);
1330 if (ret) {
1331 return ret;
1332 }
1333
1334 return 4;
1335 }
1336
1337 int kvm_init(void)
1338 {
1339 static const char upgrade_note[] =
1340 "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n"
1341 "(see http://sourceforge.net/projects/kvm).\n";
1342 KVMState *s;
1343 const KVMCapabilityInfo *missing_cap;
1344 int ret;
1345 int i;
1346 int max_vcpus;
1347
1348 s = g_malloc0(sizeof(KVMState));
1349
1350 /*
1351 * On systems where the kernel can support different base page
1352 * sizes, host page size may be different from TARGET_PAGE_SIZE,
1353 * even with KVM. TARGET_PAGE_SIZE is assumed to be the minimum
1354 * page size for the system though.
1355 */
1356 assert(TARGET_PAGE_SIZE <= getpagesize());
1357
1358 #ifdef KVM_CAP_SET_GUEST_DEBUG
1359 QTAILQ_INIT(&s->kvm_sw_breakpoints);
1360 #endif
1361 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
1362 s->slots[i].slot = i;
1363 }
1364 s->vmfd = -1;
1365 s->fd = qemu_open("/dev/kvm", O_RDWR);
1366 if (s->fd == -1) {
1367 fprintf(stderr, "Could not access KVM kernel module: %m\n");
1368 ret = -errno;
1369 goto err;
1370 }
1371
1372 ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0);
1373 if (ret < KVM_API_VERSION) {
1374 if (ret > 0) {
1375 ret = -EINVAL;
1376 }
1377 fprintf(stderr, "kvm version too old\n");
1378 goto err;
1379 }
1380
1381 if (ret > KVM_API_VERSION) {
1382 ret = -EINVAL;
1383 fprintf(stderr, "kvm version not supported\n");
1384 goto err;
1385 }
1386
1387 max_vcpus = kvm_max_vcpus(s);
1388 if (smp_cpus > max_vcpus) {
1389 ret = -EINVAL;
1390 fprintf(stderr, "Number of SMP cpus requested (%d) exceeds max cpus "
1391 "supported by KVM (%d)\n", smp_cpus, max_vcpus);
1392 goto err;
1393 }
1394
1395 s->vmfd = kvm_ioctl(s, KVM_CREATE_VM, 0);
1396 if (s->vmfd < 0) {
1397 #ifdef TARGET_S390X
1398 fprintf(stderr, "Please add the 'switch_amode' kernel parameter to "
1399 "your host kernel command line\n");
1400 #endif
1401 ret = s->vmfd;
1402 goto err;
1403 }
1404
1405 missing_cap = kvm_check_extension_list(s, kvm_required_capabilites);
1406 if (!missing_cap) {
1407 missing_cap =
1408 kvm_check_extension_list(s, kvm_arch_required_capabilities);
1409 }
1410 if (missing_cap) {
1411 ret = -EINVAL;
1412 fprintf(stderr, "kvm does not support %s\n%s",
1413 missing_cap->name, upgrade_note);
1414 goto err;
1415 }
1416
1417 s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO);
1418
1419 s->broken_set_mem_region = 1;
1420 ret = kvm_check_extension(s, KVM_CAP_JOIN_MEMORY_REGIONS_WORKS);
1421 if (ret > 0) {
1422 s->broken_set_mem_region = 0;
1423 }
1424
1425 #ifdef KVM_CAP_VCPU_EVENTS
1426 s->vcpu_events = kvm_check_extension(s, KVM_CAP_VCPU_EVENTS);
1427 #endif
1428
1429 s->robust_singlestep =
1430 kvm_check_extension(s, KVM_CAP_X86_ROBUST_SINGLESTEP);
1431
1432 #ifdef KVM_CAP_DEBUGREGS
1433 s->debugregs = kvm_check_extension(s, KVM_CAP_DEBUGREGS);
1434 #endif
1435
1436 #ifdef KVM_CAP_XSAVE
1437 s->xsave = kvm_check_extension(s, KVM_CAP_XSAVE);
1438 #endif
1439
1440 #ifdef KVM_CAP_XCRS
1441 s->xcrs = kvm_check_extension(s, KVM_CAP_XCRS);
1442 #endif
1443
1444 #ifdef KVM_CAP_PIT_STATE2
1445 s->pit_state2 = kvm_check_extension(s, KVM_CAP_PIT_STATE2);
1446 #endif
1447
1448 #ifdef KVM_CAP_IRQ_ROUTING
1449 s->direct_msi = (kvm_check_extension(s, KVM_CAP_SIGNAL_MSI) > 0);
1450 #endif
1451
1452 s->intx_set_mask = kvm_check_extension(s, KVM_CAP_PCI_2_3);
1453
1454 s->irq_set_ioctl = KVM_IRQ_LINE;
1455 if (kvm_check_extension(s, KVM_CAP_IRQ_INJECT_STATUS)) {
1456 s->irq_set_ioctl = KVM_IRQ_LINE_STATUS;
1457 }
1458
1459 #ifdef KVM_CAP_READONLY_MEM
1460 kvm_readonly_mem_allowed =
1461 (kvm_check_extension(s, KVM_CAP_READONLY_MEM) > 0);
1462 #endif
1463
1464 ret = kvm_arch_init(s);
1465 if (ret < 0) {
1466 goto err;
1467 }
1468
1469 ret = kvm_irqchip_create(s);
1470 if (ret < 0) {
1471 goto err;
1472 }
1473
1474 kvm_state = s;
1475 memory_listener_register(&kvm_memory_listener, &address_space_memory);
1476 memory_listener_register(&kvm_io_listener, &address_space_io);
1477
1478 s->many_ioeventfds = kvm_check_many_ioeventfds();
1479
1480 cpu_interrupt_handler = kvm_handle_interrupt;
1481
1482 return 0;
1483
1484 err:
1485 if (s->vmfd >= 0) {
1486 close(s->vmfd);
1487 }
1488 if (s->fd != -1) {
1489 close(s->fd);
1490 }
1491 g_free(s);
1492
1493 return ret;
1494 }
1495
1496 static void kvm_handle_io(uint16_t port, void *data, int direction, int size,
1497 uint32_t count)
1498 {
1499 int i;
1500 uint8_t *ptr = data;
1501
1502 for (i = 0; i < count; i++) {
1503 if (direction == KVM_EXIT_IO_IN) {
1504 switch (size) {
1505 case 1:
1506 stb_p(ptr, cpu_inb(port));
1507 break;
1508 case 2:
1509 stw_p(ptr, cpu_inw(port));
1510 break;
1511 case 4:
1512 stl_p(ptr, cpu_inl(port));
1513 break;
1514 }
1515 } else {
1516 switch (size) {
1517 case 1:
1518 cpu_outb(port, ldub_p(ptr));
1519 break;
1520 case 2:
1521 cpu_outw(port, lduw_p(ptr));
1522 break;
1523 case 4:
1524 cpu_outl(port, ldl_p(ptr));
1525 break;
1526 }
1527 }
1528
1529 ptr += size;
1530 }
1531 }
1532
1533 static int kvm_handle_internal_error(CPUState *cpu, struct kvm_run *run)
1534 {
1535 fprintf(stderr, "KVM internal error.");
1536 if (kvm_check_extension(kvm_state, KVM_CAP_INTERNAL_ERROR_DATA)) {
1537 int i;
1538
1539 fprintf(stderr, " Suberror: %d\n", run->internal.suberror);
1540 for (i = 0; i < run->internal.ndata; ++i) {
1541 fprintf(stderr, "extra data[%d]: %"PRIx64"\n",
1542 i, (uint64_t)run->internal.data[i]);
1543 }
1544 } else {
1545 fprintf(stderr, "\n");
1546 }
1547 if (run->internal.suberror == KVM_INTERNAL_ERROR_EMULATION) {
1548 fprintf(stderr, "emulation failure\n");
1549 if (!kvm_arch_stop_on_emulation_error(cpu)) {
1550 cpu_dump_state(cpu, stderr, fprintf, CPU_DUMP_CODE);
1551 return EXCP_INTERRUPT;
1552 }
1553 }
1554 /* FIXME: Should trigger a qmp message to let management know
1555 * something went wrong.
1556 */
1557 return -1;
1558 }
1559
1560 void kvm_flush_coalesced_mmio_buffer(void)
1561 {
1562 KVMState *s = kvm_state;
1563
1564 if (s->coalesced_flush_in_progress) {
1565 return;
1566 }
1567
1568 s->coalesced_flush_in_progress = true;
1569
1570 if (s->coalesced_mmio_ring) {
1571 struct kvm_coalesced_mmio_ring *ring = s->coalesced_mmio_ring;
1572 while (ring->first != ring->last) {
1573 struct kvm_coalesced_mmio *ent;
1574
1575 ent = &ring->coalesced_mmio[ring->first];
1576
1577 cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len);
1578 smp_wmb();
1579 ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX;
1580 }
1581 }
1582
1583 s->coalesced_flush_in_progress = false;
1584 }
1585
1586 static void do_kvm_cpu_synchronize_state(void *arg)
1587 {
1588 CPUState *cpu = arg;
1589
1590 if (!cpu->kvm_vcpu_dirty) {
1591 kvm_arch_get_registers(cpu);
1592 cpu->kvm_vcpu_dirty = true;
1593 }
1594 }
1595
1596 void kvm_cpu_synchronize_state(CPUState *cpu)
1597 {
1598 if (!cpu->kvm_vcpu_dirty) {
1599 run_on_cpu(cpu, do_kvm_cpu_synchronize_state, cpu);
1600 }
1601 }
1602
1603 void kvm_cpu_synchronize_post_reset(CPUState *cpu)
1604 {
1605 kvm_arch_put_registers(cpu, KVM_PUT_RESET_STATE);
1606 cpu->kvm_vcpu_dirty = false;
1607 }
1608
1609 void kvm_cpu_synchronize_post_init(CPUState *cpu)
1610 {
1611 kvm_arch_put_registers(cpu, KVM_PUT_FULL_STATE);
1612 cpu->kvm_vcpu_dirty = false;
1613 }
1614
1615 int kvm_cpu_exec(CPUState *cpu)
1616 {
1617 struct kvm_run *run = cpu->kvm_run;
1618 int ret, run_ret;
1619
1620 DPRINTF("kvm_cpu_exec()\n");
1621
1622 if (kvm_arch_process_async_events(cpu)) {
1623 cpu->exit_request = 0;
1624 return EXCP_HLT;
1625 }
1626
1627 do {
1628 if (cpu->kvm_vcpu_dirty) {
1629 kvm_arch_put_registers(cpu, KVM_PUT_RUNTIME_STATE);
1630 cpu->kvm_vcpu_dirty = false;
1631 }
1632
1633 kvm_arch_pre_run(cpu, run);
1634 if (cpu->exit_request) {
1635 DPRINTF("interrupt exit requested\n");
1636 /*
1637 * KVM requires us to reenter the kernel after IO exits to complete
1638 * instruction emulation. This self-signal will ensure that we
1639 * leave ASAP again.
1640 */
1641 qemu_cpu_kick_self();
1642 }
1643 qemu_mutex_unlock_iothread();
1644
1645 run_ret = kvm_vcpu_ioctl(cpu, KVM_RUN, 0);
1646
1647 qemu_mutex_lock_iothread();
1648 kvm_arch_post_run(cpu, run);
1649
1650 if (run_ret < 0) {
1651 if (run_ret == -EINTR || run_ret == -EAGAIN) {
1652 DPRINTF("io window exit\n");
1653 ret = EXCP_INTERRUPT;
1654 break;
1655 }
1656 fprintf(stderr, "error: kvm run failed %s\n",
1657 strerror(-run_ret));
1658 abort();
1659 }
1660
1661 trace_kvm_run_exit(cpu->cpu_index, run->exit_reason);
1662 switch (run->exit_reason) {
1663 case KVM_EXIT_IO:
1664 DPRINTF("handle_io\n");
1665 kvm_handle_io(run->io.port,
1666 (uint8_t *)run + run->io.data_offset,
1667 run->io.direction,
1668 run->io.size,
1669 run->io.count);
1670 ret = 0;
1671 break;
1672 case KVM_EXIT_MMIO:
1673 DPRINTF("handle_mmio\n");
1674 cpu_physical_memory_rw(run->mmio.phys_addr,
1675 run->mmio.data,
1676 run->mmio.len,
1677 run->mmio.is_write);
1678 ret = 0;
1679 break;
1680 case KVM_EXIT_IRQ_WINDOW_OPEN:
1681 DPRINTF("irq_window_open\n");
1682 ret = EXCP_INTERRUPT;
1683 break;
1684 case KVM_EXIT_SHUTDOWN:
1685 DPRINTF("shutdown\n");
1686 qemu_system_reset_request();
1687 ret = EXCP_INTERRUPT;
1688 break;
1689 case KVM_EXIT_UNKNOWN:
1690 fprintf(stderr, "KVM: unknown exit, hardware reason %" PRIx64 "\n",
1691 (uint64_t)run->hw.hardware_exit_reason);
1692 ret = -1;
1693 break;
1694 case KVM_EXIT_INTERNAL_ERROR:
1695 ret = kvm_handle_internal_error(cpu, run);
1696 break;
1697 default:
1698 DPRINTF("kvm_arch_handle_exit\n");
1699 ret = kvm_arch_handle_exit(cpu, run);
1700 break;
1701 }
1702 } while (ret == 0);
1703
1704 if (ret < 0) {
1705 cpu_dump_state(cpu, stderr, fprintf, CPU_DUMP_CODE);
1706 vm_stop(RUN_STATE_INTERNAL_ERROR);
1707 }
1708
1709 cpu->exit_request = 0;
1710 return ret;
1711 }
1712
1713 int kvm_ioctl(KVMState *s, int type, ...)
1714 {
1715 int ret;
1716 void *arg;
1717 va_list ap;
1718
1719 va_start(ap, type);
1720 arg = va_arg(ap, void *);
1721 va_end(ap);
1722
1723 trace_kvm_ioctl(type, arg);
1724 ret = ioctl(s->fd, type, arg);
1725 if (ret == -1) {
1726 ret = -errno;
1727 }
1728 return ret;
1729 }
1730
1731 int kvm_vm_ioctl(KVMState *s, int type, ...)
1732 {
1733 int ret;
1734 void *arg;
1735 va_list ap;
1736
1737 va_start(ap, type);
1738 arg = va_arg(ap, void *);
1739 va_end(ap);
1740
1741 trace_kvm_vm_ioctl(type, arg);
1742 ret = ioctl(s->vmfd, type, arg);
1743 if (ret == -1) {
1744 ret = -errno;
1745 }
1746 return ret;
1747 }
1748
1749 int kvm_vcpu_ioctl(CPUState *cpu, int type, ...)
1750 {
1751 int ret;
1752 void *arg;
1753 va_list ap;
1754
1755 va_start(ap, type);
1756 arg = va_arg(ap, void *);
1757 va_end(ap);
1758
1759 trace_kvm_vcpu_ioctl(cpu->cpu_index, type, arg);
1760 ret = ioctl(cpu->kvm_fd, type, arg);
1761 if (ret == -1) {
1762 ret = -errno;
1763 }
1764 return ret;
1765 }
1766
1767 int kvm_has_sync_mmu(void)
1768 {
1769 return kvm_check_extension(kvm_state, KVM_CAP_SYNC_MMU);
1770 }
1771
1772 int kvm_has_vcpu_events(void)
1773 {
1774 return kvm_state->vcpu_events;
1775 }
1776
1777 int kvm_has_robust_singlestep(void)
1778 {
1779 return kvm_state->robust_singlestep;
1780 }
1781
1782 int kvm_has_debugregs(void)
1783 {
1784 return kvm_state->debugregs;
1785 }
1786
1787 int kvm_has_xsave(void)
1788 {
1789 return kvm_state->xsave;
1790 }
1791
1792 int kvm_has_xcrs(void)
1793 {
1794 return kvm_state->xcrs;
1795 }
1796
1797 int kvm_has_pit_state2(void)
1798 {
1799 return kvm_state->pit_state2;
1800 }
1801
1802 int kvm_has_many_ioeventfds(void)
1803 {
1804 if (!kvm_enabled()) {
1805 return 0;
1806 }
1807 return kvm_state->many_ioeventfds;
1808 }
1809
1810 int kvm_has_gsi_routing(void)
1811 {
1812 #ifdef KVM_CAP_IRQ_ROUTING
1813 return kvm_check_extension(kvm_state, KVM_CAP_IRQ_ROUTING);
1814 #else
1815 return false;
1816 #endif
1817 }
1818
1819 int kvm_has_intx_set_mask(void)
1820 {
1821 return kvm_state->intx_set_mask;
1822 }
1823
1824 void *kvm_ram_alloc(ram_addr_t size)
1825 {
1826 #ifdef TARGET_S390X
1827 void *mem;
1828
1829 mem = kvm_arch_ram_alloc(size);
1830 if (mem) {
1831 return mem;
1832 }
1833 #endif
1834 return qemu_anon_ram_alloc(size);
1835 }
1836
1837 void kvm_setup_guest_memory(void *start, size_t size)
1838 {
1839 #ifdef CONFIG_VALGRIND_H
1840 VALGRIND_MAKE_MEM_DEFINED(start, size);
1841 #endif
1842 if (!kvm_has_sync_mmu()) {
1843 int ret = qemu_madvise(start, size, QEMU_MADV_DONTFORK);
1844
1845 if (ret) {
1846 perror("qemu_madvise");
1847 fprintf(stderr,
1848 "Need MADV_DONTFORK in absence of synchronous KVM MMU\n");
1849 exit(1);
1850 }
1851 }
1852 }
1853
1854 #ifdef KVM_CAP_SET_GUEST_DEBUG
1855 struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUState *cpu,
1856 target_ulong pc)
1857 {
1858 struct kvm_sw_breakpoint *bp;
1859
1860 QTAILQ_FOREACH(bp, &cpu->kvm_state->kvm_sw_breakpoints, entry) {
1861 if (bp->pc == pc) {
1862 return bp;
1863 }
1864 }
1865 return NULL;
1866 }
1867
1868 int kvm_sw_breakpoints_active(CPUState *cpu)
1869 {
1870 return !QTAILQ_EMPTY(&cpu->kvm_state->kvm_sw_breakpoints);
1871 }
1872
1873 struct kvm_set_guest_debug_data {
1874 struct kvm_guest_debug dbg;
1875 CPUState *cpu;
1876 int err;
1877 };
1878
1879 static void kvm_invoke_set_guest_debug(void *data)
1880 {
1881 struct kvm_set_guest_debug_data *dbg_data = data;
1882
1883 dbg_data->err = kvm_vcpu_ioctl(dbg_data->cpu, KVM_SET_GUEST_DEBUG,
1884 &dbg_data->dbg);
1885 }
1886
1887 int kvm_update_guest_debug(CPUArchState *env, unsigned long reinject_trap)
1888 {
1889 CPUState *cpu = ENV_GET_CPU(env);
1890 struct kvm_set_guest_debug_data data;
1891
1892 data.dbg.control = reinject_trap;
1893
1894 if (env->singlestep_enabled) {
1895 data.dbg.control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP;
1896 }
1897 kvm_arch_update_guest_debug(cpu, &data.dbg);
1898 data.cpu = cpu;
1899
1900 run_on_cpu(cpu, kvm_invoke_set_guest_debug, &data);
1901 return data.err;
1902 }
1903
1904 int kvm_insert_breakpoint(CPUArchState *current_env, target_ulong addr,
1905 target_ulong len, int type)
1906 {
1907 CPUState *current_cpu = ENV_GET_CPU(current_env);
1908 struct kvm_sw_breakpoint *bp;
1909 CPUArchState *env;
1910 int err;
1911
1912 if (type == GDB_BREAKPOINT_SW) {
1913 bp = kvm_find_sw_breakpoint(current_cpu, addr);
1914 if (bp) {
1915 bp->use_count++;
1916 return 0;
1917 }
1918
1919 bp = g_malloc(sizeof(struct kvm_sw_breakpoint));
1920 if (!bp) {
1921 return -ENOMEM;
1922 }
1923
1924 bp->pc = addr;
1925 bp->use_count = 1;
1926 err = kvm_arch_insert_sw_breakpoint(current_cpu, bp);
1927 if (err) {
1928 g_free(bp);
1929 return err;
1930 }
1931
1932 QTAILQ_INSERT_HEAD(&current_cpu->kvm_state->kvm_sw_breakpoints,
1933 bp, entry);
1934 } else {
1935 err = kvm_arch_insert_hw_breakpoint(addr, len, type);
1936 if (err) {
1937 return err;
1938 }
1939 }
1940
1941 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1942 err = kvm_update_guest_debug(env, 0);
1943 if (err) {
1944 return err;
1945 }
1946 }
1947 return 0;
1948 }
1949
1950 int kvm_remove_breakpoint(CPUArchState *current_env, target_ulong addr,
1951 target_ulong len, int type)
1952 {
1953 CPUState *current_cpu = ENV_GET_CPU(current_env);
1954 struct kvm_sw_breakpoint *bp;
1955 CPUArchState *env;
1956 int err;
1957
1958 if (type == GDB_BREAKPOINT_SW) {
1959 bp = kvm_find_sw_breakpoint(current_cpu, addr);
1960 if (!bp) {
1961 return -ENOENT;
1962 }
1963
1964 if (bp->use_count > 1) {
1965 bp->use_count--;
1966 return 0;
1967 }
1968
1969 err = kvm_arch_remove_sw_breakpoint(current_cpu, bp);
1970 if (err) {
1971 return err;
1972 }
1973
1974 QTAILQ_REMOVE(&current_cpu->kvm_state->kvm_sw_breakpoints, bp, entry);
1975 g_free(bp);
1976 } else {
1977 err = kvm_arch_remove_hw_breakpoint(addr, len, type);
1978 if (err) {
1979 return err;
1980 }
1981 }
1982
1983 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1984 err = kvm_update_guest_debug(env, 0);
1985 if (err) {
1986 return err;
1987 }
1988 }
1989 return 0;
1990 }
1991
1992 void kvm_remove_all_breakpoints(CPUArchState *current_env)
1993 {
1994 CPUState *current_cpu = ENV_GET_CPU(current_env);
1995 struct kvm_sw_breakpoint *bp, *next;
1996 KVMState *s = current_cpu->kvm_state;
1997 CPUArchState *env;
1998 CPUState *cpu;
1999
2000 QTAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) {
2001 if (kvm_arch_remove_sw_breakpoint(current_cpu, bp) != 0) {
2002 /* Try harder to find a CPU that currently sees the breakpoint. */
2003 for (env = first_cpu; env != NULL; env = env->next_cpu) {
2004 cpu = ENV_GET_CPU(env);
2005 if (kvm_arch_remove_sw_breakpoint(cpu, bp) == 0) {
2006 break;
2007 }
2008 }
2009 }
2010 QTAILQ_REMOVE(&s->kvm_sw_breakpoints, bp, entry);
2011 g_free(bp);
2012 }
2013 kvm_arch_remove_all_hw_breakpoints();
2014
2015 for (env = first_cpu; env != NULL; env = env->next_cpu) {
2016 kvm_update_guest_debug(env, 0);
2017 }
2018 }
2019
2020 #else /* !KVM_CAP_SET_GUEST_DEBUG */
2021
2022 int kvm_update_guest_debug(CPUArchState *env, unsigned long reinject_trap)
2023 {
2024 return -EINVAL;
2025 }
2026
2027 int kvm_insert_breakpoint(CPUArchState *current_env, target_ulong addr,
2028 target_ulong len, int type)
2029 {
2030 return -EINVAL;
2031 }
2032
2033 int kvm_remove_breakpoint(CPUArchState *current_env, target_ulong addr,
2034 target_ulong len, int type)
2035 {
2036 return -EINVAL;
2037 }
2038
2039 void kvm_remove_all_breakpoints(CPUArchState *current_env)
2040 {
2041 }
2042 #endif /* !KVM_CAP_SET_GUEST_DEBUG */
2043
2044 int kvm_set_signal_mask(CPUState *cpu, const sigset_t *sigset)
2045 {
2046 struct kvm_signal_mask *sigmask;
2047 int r;
2048
2049 if (!sigset) {
2050 return kvm_vcpu_ioctl(cpu, KVM_SET_SIGNAL_MASK, NULL);
2051 }
2052
2053 sigmask = g_malloc(sizeof(*sigmask) + sizeof(*sigset));
2054
2055 sigmask->len = 8;
2056 memcpy(sigmask->sigset, sigset, sizeof(*sigset));
2057 r = kvm_vcpu_ioctl(cpu, KVM_SET_SIGNAL_MASK, sigmask);
2058 g_free(sigmask);
2059
2060 return r;
2061 }
2062 int kvm_on_sigbus_vcpu(CPUState *cpu, int code, void *addr)
2063 {
2064 return kvm_arch_on_sigbus_vcpu(cpu, code, addr);
2065 }
2066
2067 int kvm_on_sigbus(int code, void *addr)
2068 {
2069 return kvm_arch_on_sigbus(code, addr);
2070 }